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ABSTRACT

An approximate method is developed for computing options on the

maximum or the minimum of several assets. The method is very fast and
is accurate for parameter ranges that are often of the most interest.
The approach casts the problem in terras of order statistics and can be

used to handle situations where the initial asset prices, the asset
variances and the covariances are all unequal. Numerical values are
given to illustrate the accuracy of the method.

*This paper was written when both authors were visiting the University
of Illinois, Urbana-Champaign, whose hospitality is gratefully acknowl-
edged.





1. Introduction

Options on the maximum and options on the minimum of several

assets are of both theoretical and practical interest. Stulz [1982]

developed closed form expressions for European options in the case of

two underlying assets. Johnson [1987] extended these results to

handle European options in the case of n assets. Boyle, Evnine and

Gibbs [1988] have used a multinomial lattice method to value American

options when there are several underlying assets. However, when the

number of assets exceeds two the computations quickly become very

burdensome.

Since a number of corporate securities contain option features of

this nature there is some interest in obtaining methods to price these

options. In addition the quality option which is present in a number

of important futures contracts can be valued in terras of options on

the minimum of the set of deliverable assets. Under the quality

option the short position can deliver any one of a set of acceptable

assets and the existence of this option reduces the futures price.

Several recent papers have examined the impact of the quality option.

Gay and Manaster [1984] analyzed its impact in the case of wheat

futures contracts by assuming that there were just two deliverable

types of wheat. Boyle [1989] extended this analysis to the case of n

deliverable assets and obtained numerical results by imposing very

strong symmetry conditions on the problem. He assumed that the assets

had all the same initial price, the same variance and that all the

covariances were equal.
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The quality option is also of considerable importance in the case

of the Treasury Bond Futures contract. Cheng [1985], Heraler [1988]

and Chowdry [1986], among others, have analyzed this situation. For

tractability these authors assumed a multivariate lognorraal diffusion

process. Carr [1988] in tackling this problem uses a more realistic

process for the stochastic behavior of bond prices.

The aim of the present paper is to present an approximation method

which computes the value of options on the maximum or the minimum of

several assets. The method is applicable to the situation where the

asset prices follow a multivariate lognormal distribution. It can

handle cases where the asset prices are unequal and it does not

require that the variance-covariance matrix of the asset returns has

any particular structure. The basic idea is to analyze the problem of

valuing options on the maximum or the minimum in terras of order sta-

tistics. The algorithm uses an approximation method due to Clark

[1961] for computing the moments of the maximum of n jointly normal

random variables. Lerman and Manski [1981] provide evidence of the

accuracy of the Clark approach.

In the next section we describe the operation of the Clark

approach. It is a recursive procedure which only involves the compu-

tation of the univariate normal cumulative distribution function at

each step. This method can be used to approximate the first four

moments of the extreme order statistics of a set of multivariate

normal random variables. We show how to derive the corresponding

results in the case of a multivariate lognormal distribution. As

shown in Section 3, this can then be used to derive the value of the
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quality option since the futures price in this case is related to a

call option on the minimum of n assets with a strike price of zero.

This call option can be computed in terms of the expectation of the

lowest order statistic. Some numerical values are given and compared

with those computed by other methods.

In Section 4 we describe how the Clark approach can be modified to

deal with censored distributions. The objective here is to obtain a

method to value options with a non-zero strike price. The details are

given in the Appendix. We present numerical results to illustrate the

accuracy of the approximation. For plausible parameter values the

algorithm gives values that are within 1 or 2% of the accurate value.

We indicate the range of accuracy of the approximation. The final

section contains some concluding comments.

2. The Clark Algorithm

In this section we describe the Clark algorithm and indicate how

it can be used to obtain the first four moments of the maximum of a

set of normal variates.

The Clark algorithm provides exact expressions for the first four

moments of the maximum of a pair of jointly normal variates as well as

the correlation coefficient between the maximum of the pair and a

third normal variate. Suppose we have three variables with a multi-

variate normal distribution. Assume that we know the expected values

and the variances of the first two variates and their correlation co-

efficient. Clark [1961] obtained explicit expressions for the first

four moments of the distribution of the maximum of these two variables.
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If the correlations between each member of this pair and the third

normal variate are also known then Clark also provided an explicit

expression for the correlation between the maximum of the first two

variates and the third variate.

This result can be used to approximate the first four moments of

the maximum of a set of n normal variates. The method proceeds recur-

sively and the computations at each stage are very simple. Although

the results are approximate previous research (Clark [1961] and Lerman

and Manski [1981]) attests to their accuracy over a range of assump-

tions.

Assume we have n jointly normal variates: X. , X_ , ..., X with
j j 1 ' 2 n

known means, variances and correlation coefficients. Let Y denote the

maximum of these n variates. The following definitions are useful.

Y
1

= Max[X
1

, X
2

]

Y
2

= Max[X
1

, X
2

, X ]
= Max[Y

1
, X^

Y. = Max[X
L

, X
2

, ..., X.
+1 ] = Max[Y._

1
, X.

+1

Hence

Y = Y . = Max[Y _, X ].
n-1 n-2 n

By applying Clark's algorithm at each step we can set up a recur-

sive procedure to compute the first four moments of Y. We begin by

computing the mean and variance of Y, . In addition we obtain the
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correlation coefficients of Y, with the remaining (n-2) variates. We

now assume the joint distribution of Y n
and the variates X_ , .... X

1 3 n

is multivariate normal. This assumption is obviously not correct but

the virtue of Clark's method is that nonetheless it enables us to

obtain quite accurate answers. We proceed in an iterative fashion

until Y _, = Y. At this stage we apply Clark's algorithm to obtain

the first four moments of Y.

3. The Quality Option

The algorithm just described can be extended to compute the value

of the futures price in the presence of a quality option. It can be

shown that in some circumstances this futures price can be expressed

in terms of a European call option, with a zero strike price, on the

minimum of the assets in the deliverable set. Boyle [1989] uses this

approach and we follow his notations and assumptions. The European

call, with the strike price equal to zero, on the minimum of the n

assets can be expressed in terras of the expected value of the minimum

of the n assets. Since the asset returns are assumed to follow a log-

normal distribution we can modify the procedure described above for

the normal distribution to obtain the result. Clark's procedure is

used to obtain the first four moments of the multivariate normal dis-

tribution of the asset returns. These moments are used to derive a

Taylor series expression for the expected value of the minimum of the

n assets. This corresponds to the lowest extreme order statistic.

The European call option on the minimum of n assets, with zero

strike price is denoted by
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EC[ t,(A
1
(t),A

2
(t ),...,

A

n
(t)),O

f
t+T]

where t denotes current time, (t+T) denotes the expiry date of the

option and A.(t) denotes the current price of asset i. This European

call can be written as the discounted expectation of the minimum of

the n assets at the expiry date; i.e.,

e E[Min(A
1
(t+T),A

2
(t+T),... ,A (t+T))]

where R is the (assumed constant) riskless rate and E denotes the

expectation over the risk adjusted distribution of terminal asset

prices.

To simplify the notation we let

A. (t+T) = A. 1 < i < n
1 l — —

B. = £n(A.) 1 < i < n,li — —

The B. variates have thus a multivariate normal distribution. The
l

required expectation becomes

E[Min(eBl ,e
B2

,...,eBn )]

= E[exp(Min(B
1
,B

2
,...,B

n
))]

= E[exp(-Max(-B, ,-B , .. . ,-B ))]
1 l n

= E[exp(-W)]

where W = Max(-B, ,-B
2

, . . . ,-B ).
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Since B.,B.,...,B are jointly normal, -B, ,-B. -B are also12 n 12 n

jointly normal. We can use Clark's procedure to compute the first

four moments of W. We denote the mean of W by u and higher order

moments about the mean by \i

.

, for i = 2, 3 and 4. The required expec-

tation can be written as a Taylor series expansion in terms of these

moments , i.e.

,

M
2

U
3

M
4

E(exp[-W]) - exp(-u)[l +~- ^ + ^1. (1)

Table 1 provides some numerical comparisons between the values

obtained using equation (1) and results obtained by Boyle [1989] using

a different method. For these computations all assets have the same

initial value of $40 and the same standard deviation of 25%. In addi-

tion the correlation between each pair of assets is assumed to be

equal to 0.95. Table 1 compares the two methods as the number of

assets in the deliverable set increases.

For small numbers of deliverable assets the agreement is excep-

tionally good and even for 50 assets the difference is only 0.06%.

One advantage of the procedure developed in this paper is that it can

handle non-equal variances, covariances and initial asset prices. The

procedure proposed by Boyle [1989] imposes strong symmetry in that the

variances and correlations are assumed to be equal.

4 . Options on the Maximum and Minimum of Several Assets

The procedure developed in the previous Section to compute the

value of a European call, with a zero strike price, on the minimum of

several assets could also be used to compute the price of a European
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call, with a zero strike price, on the maximum of n assets. In addi-

tion the procedure can be extended to value European options on the

maximum or the minimum of several assets when the strike price is non-

zero. In this case we need to compute the moments of the extreme

order statistics of a censored distribution. The technical develop-

ment of the procedure is given in the Appendix. To illustrate the

method we compare the results with the accurate values obtained by

integrating the multivariate normal density. The present method is

much simpler from a computational viewpoint.

The results obtained in the case of three assets for different

parameter values are given in Tables 2 through 7. We note that the

agreement between the approximate results and the accurate values is

very good. There does not appear to be any discernible pattern in the

bias. It should be pointed out, however, that the results are based

on one particular ordering of the assets. With unequal current asset

prices, volatilities or correlation coefficients, the algorithm is not

invariant to the ordering of the assets. In general, if the average

of the results for different orderings is taken as the approximation,

the accuracy is further improved. Similar results were obtained when

we used four assets and compared the approximate values with the

accurate ones. We found that the method does not give good results

for long-dated options, for example, options with 10 years to maturity.

In this case the distribution of asset returns becomes strongly skewed

and deviates considerably from the normal.
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5. Concluding Remarks

The approximate method described in this note is very convenient

for evaluating options on the minimum of several assets when the

strike price is zero. Such options can be used to compute the

price of certain futures contracts when there is a quality option.

The method was extended to evaluate European options on the maximum or

the minimum of several assets when the strike price was non-zero. We

provided numerical examples to illustrate the accuracy of the proce-

dure. It is hoped this approach may be a useful supplement to the

more accurate methods available which involve extensive computation

when there are several assets.
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TABLE 1 . Option values, with zero strike price, for different numbers
of deliverable assets: Comparison of results obtained using equation
(1) with those of Boyle [1989]

Number of Option Value Option Value
Deliverable Assets Equation (1) Boyle [1989]

2 38.908 38.908
3 38.371 38.374
4 38.029 38.033

5 37.782 37.786

10 37.102 37.100
15 36.752 36.746
20 36.522 36.511
25 36.351 36.338
30 36.217 36.201

35 36.107 36.089
40 36.013 35.994
45 35.933 35.912

50 35.862 35.840
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TABLE 2 . Comparison of European call prices on the maximum and the
minimum of three assets with accurate values. Interest rate 10% p. a.

continuously compounded. Time to expiration nine months. Equal Asset
Prices; Equal Volatilities; Equal Correlations.

Current Asset
Prices

Volatilities

Correlation
Matrix

One

40

30%

1.0

0.9

0.9

Two

40

30%

0.9

1.0

0.9

Three

40

30%

0.9

0.9

1.0

Strike Price

30

35

40

45

50

Call on Maximum

Approx Accurate

Call on Minimum

Approx Accurate

16.351 16.351 10.396 10.405
12.383 12.384 7.086 7.094
8.984 8.986 4.581 4.588
6.267 6.270 2.835 2.840
4.226 4.229 1.694 1.698
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TABLE 3. Comparison of European call prices on the maximum and the

minimum of three assets with accurate values. Interest rate 10% p. a.

continuously compounded. Time to expiration nine months. Equal Asset

Prices; Unequal Volatilities; Equal Correlations.

Current Asset
Prices

Volatilities

Correlation
Matrix

One

40

25%

1.0

0.9

0.9

Two

40

30%

0.9

1.0

0.9

Three

40

35%

0.9

0.9

1.0

Strike Price Call on Maximum

Approx Accurate

30

35

40

45

50

16.703
12.682
9.235

6.490
4.438

16.687
12.661
9.223

6.496
4.462

Call on Minimum

Approx Accurate

10.172 10.178
6.914 6.917
4.441 4.427

2.715 2.681
1.593 1.545
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TABLE^. Comparison of European call prices on the maximum and the
minimum of three assets with accurate values. Interest rate 10% p. a.

continuously compounded. Time to expiration nine months. Equal Asset
Prices; Equal Volatilities; Unequal Correlations.

Current Asset
Prices

Volatilities

Correlation
Matrix

One

40

30%

1.0

0.6

0.4

Two

40

30%

0.6

1.0

0.6

Three

40

30%

0.4

0.6

1.0

Strike Price

30

35

40

45

50

Call on Maximum

Approx Accurate

20.046 20.018
15.758 15.730
11.855 11.832
8.536 8.520
5.901 5.895

Call on Minimum

Approx Accurate

7.184 7.214
4.323 4.345

2.408 2.419
1.259 1.262
0.626 0.626
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TABLE 5 . Comparison of European call prices on the maximum and the

minimum of three assets with accurate values. Interest rate 10% p. a.

continuously compounded. Time to expiration nine months. Equal Asset
Prices; Unequal Volatilities; Unequal Correlations.

One Two Three

Current Asset
Prices

Volatilities

Correlation
Matrix

40

25%

1.0

0.6

0.4

40

30%

0.6

1.0

0.6

40

35%

0.4

0.6

1.0

Strike Price Call on Maximum Call on Minimum

30

35

40
45

50

Approx

20.185

15.885
11.969
8.644

6.013

Accurate

20.153

15.847
11.929
8.611
5.995

Approx

7.172

4.326
2.409
1.258

0.625

curate

7,.172

4,.311

2,.379

1,.220

.589
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TABLE 6 . Comparison of European call prices on the maximum and the
minimum of three assets with accurate values. Interest rate 10% p. a,

continuously compounded. Time to expiration nine months. Unequal
Asset Prices; Equal Volatilities; Equal Correlations.

One Two Three

Current Asset

Prices

Volatilities

Correlation
Matrix

40

30%

1.0

0.9

0.9

45

30%

0.9

1.0

0.9

50

30%

0.9

0.9

1.0

Strike Price Call on Maximum Call on Minimum

30

35

40

45

50

Approx

19.431
15.419
11.866

8.872
6.466

Accurate

19.448
15.436
11.882

8.888
6.479

pprox Accurate

9.076 9.084
6.194 6.200
4.057 4.061
2.569 2.570
1.584 1.584
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TABLE 7 . Comparison of European call prices on the maximum and the
minimum of three assets with accurate values. Interest rate 10% p. a.

continuously compounded. Time to expiration nine months. Unequal
Asset Prices; Equal Volatilities; Unequal Correlations.

One Two Three

Current Asset
Prices 40

Volatilities 30%

Correlation 1.0

Matrix
0.6

0.4

45

30%

0.6

1.0

0.6

50

30%

0.4

0.6

1.0

Strike Price

30

35

40
45

50

Call on Maximum

Approx Accurate

22.511
18.248

14.325
10.891
8.037

22.510
18.245

14.321
10.889
8.038

Call on Minimum

Approx Accurate

6.538 6.600
4.031 4.078

2.342 2.373
1.296 1.314

0.690 0.699
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Appendix

Evaluation of European Call Option on Max(A.,...,A ) and Min( A, , . . . , A )In In
First consider option on Max(A, ,...,A ). Let K be the strike priceIn

and P be the payoff of the call option at maturity. Then

where

P = MaxtMaxCA^...^ )-K,0]

-K + Max[Max(A
1
,...,A

n
),K]

-K + Max[e
V
,K]

V = Max(B ,... ,B ). (A.l)

Hence E(P) = -K + E[Max(e ,K)] and the value of the call option is

—RT A * V
e E(P). Thus, we need to evaluate E[Max(e ,K)j.

We use Clark's algorithm to evaluate the mean and variance of V,

2
and denote these by y and o , respectively. With the standardization

transformation Z = (V~u )/o , we have

E[Max(e
V
,K)]

= i[Max(ey
^"avZ

,K)]

= i(eyv+avZ*] (A. 2)

where Z* is a censored random variable defined by
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2

Z if Z > K*

Z* =
{

K* if Z < K*

with K* = (£n(K)-u )/o . If we denote u* = E(Z*) and u* = E(Z*-u*)
1

for i 2, 3 and 4, by a Taylor series expansion (A. 2) can be written as

* 2 * 3 * A

To compute the moments of Z*, we approximate the density function of Z

by a Gram-Charlier approximation (see Kendall and Stuart [1969]). We

denote the density and distribution function of a standard normal

variate by <£(•) and $(•), respectively. The third and fourth central

moments of Z, denoted by \i and u , respectively, can be computed from

the moments of V. The Gram-Charlier expansion approximates the density

function of Z, f(*), by the equation

"^3
3 V 3

4 2
f(z) = <j>(z)[l +yK* -3z) + -~-(z -6z+3)]. (A. 4)

Then the moments u* and u* for i = 2, 3 and 4, can be evaluated from

the integrals

K* » .

ECZ*
1

) = K*
1
/ f(z)dz + / z

1
f(z)dz i = 1,...,4. (A. 5)

K*

Straightforward integration shows that (A. 5) can be calculated using

the formulae

E(Z ) = H. n + THH.,-3H.,) + -^7-(H..-6H.„+ 3H. n )
lO 6 i3 ll 24 i4 i2 iO

i = 1,... ,4 (A. 6)
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* i
where H.. = K J. + I... for i = 1,...,4 and j = 0,...,4, with I. and

lj J l+J !

J. given by

I
Q

= 1-*(K*)

I
I

= 4>(K*)

I
i+1

= II + K*
X
<KK*) i = 1.....7

J
Q

= $(K*)

J
l

= - 1
!

J
2

- 1 - I
2

J
3

=
~h

J
4

= 3 " X4'

Finally, to evaluate the option on Min(A, ,...,A ) we only need to

replace V by -W = Max(-B, , . . . ,-B ).in
A listing of a FORTRAN program for the above algorithm can be

obtained from the authors on request.
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