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Abstract— In this paper, we present a methodology to imple-
ment the stochastic policy gradient method using actor-critic
techniques, when the policy is approximated using an MPC
scheme. The paper proposes a computationally inexpensive
approach to build a stochastic policy generating samples that
are guaranteed to be feasible for the MPC constraints. For
a continuous input space, imposing hard constraints on the
policy poses technical difficulties in the computation of the
score function of the policy, required in the policy gradient
computation. We propose an approach that solves this issue,
and detail how the score function can be computed based on
parametric Nonlinear Programming and primal-dual interior
point. The approach is illustrated on a simple example.

I. INTRODUCTION

Reinforcement Learning (RL) offers useful tools for tack-

ling Markov Decision Processes (MDP) without relying on

a detailed model of the probability distributions underlying

the state transitions [3], [21]. RL has drawn attention thanks

to its relatable accomplishments, e.g., making it possible for

robots to learn to walk or fly without supervision [1], [22]. In

the recent RL literature, unstructured function approximation

techniques are often used to carry the policy approximation

needed in RL, such as, e.g., Deep Neural Networks (DNN).

Structured function approximations based on formal control

methods have recently gained the attention of the community

[2], [7], [9], [11], [13], [14], [16], [18], [20], with the aim

of providing formal closed-loop guarantees, and making it

possible to directly use knowledge of the system.

In that context, Model Predictive Control (MPC) is an in-

teresting candidate to carry the policy. Indeed, provided that

a (possibly inaccurate) model of the real system is available,

MPC delivers a suboptimal but typically reasonable policy

for the real system. Moreover, MPC can treat explicitly hard

constraints, which are typically used to impose limitations on

the evolution of the state and inputs of the system. Robust

MPC techniques can be used to impose safety guarantees

on the closed-loop behavior of the real system under the

MPC-based policy. Finally, because it seeks to minimize a

given cost and respect constraints explicitly, the behavior of

an MPC-based policy is often easier to interpret than the one

of a generic policy approximation.

The use of MPC as a function approximator for RL is

formally justified and detailed in [7], where it is shown

that—under some stability assumptions—MPC schemes can

theoretically generate jointly the optimal value function,

action value function and policy underlying an MDP even

though the model does not capture the real system correctly.
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This can be achieved via modifications of the MPC cost and

constraints. This approach has been used in [8], [9], [17],

[23], [24], [25] to propose adaptations of MPC schemes

using RL techniques, allowing one to improve the closed-

loop performance using data collected on the real system.

In [6], [10], [15] supervised learning is used to approxi-

mate an MPC feedback law, under the assumption that the

nominal model used in MPC is exact, i.e., it describes the

real system with no prediction error. In this paper, we assume

that the MPC model can represent the system dynamics only

approximately, and we perform a data-based adaptation of

the MPC parameters to optimize its closed-loop performance.

Among the well-established RL methods, policy gradient

methods based on Actor-Critic (AC) techniques [21] offer an

attractive approach because arguably, unlike the Q-learning

method, they are based on genuine conditions of optimality

of the closed-loop policy. The stochastic policy gradient

method is a popular AC approach, and rather simple assump-

tions are required for the method to work, making it fairly

robust to use. In this paper, we investigate the use of the

stochastic policy gradient approach in the context of MPC-

based policies, and, more generally, constrained policies.

If constraints are to be handled, one expects the stochastic

policy to generate actions that respect these constraints, i.e.,

that are feasible for the MPC scheme. An approach to do that,

discussed in [9], consists in projecting the policy (supported

by any function approximator) onto the set of actions that

are feasible for MPC. In this paper instead, we directly

construct the policy based on MPC such that it is feasible

by construction. We first discuss how this requirement can

be handled. We then discuss the technical issues resulting

from having a stochastic policy limited by constraints, and

propose an approach to circumvent them. We finally detail

how the score function of the stochastic policy—central to

computing the policy gradient—can be computed.

The paper is organized as follows. Section II provides

background material on RL. Section III presents the MPC-

based policy approximation, and details how to build a

feasible stochastic policy from an MPC scheme. Section IV

discusses how the score function—central to the policy gradi-

ent evaluation—can be computed. Section V provides further

algorithmic details, and Section VI provides an academic

example and Section VII provides conclusions.

II. BACKGROUND

In the following, we will consider that the dynamics

of the real system are described as a stochastic process

on continuous state-input spaces, which can be modeled



only inaccurately. We will furthermore consider stochastic

policies πθ , parametrized by parameter θ, taking the form

of probability densities:

πθ [a | s] : R
m × R

n → R+, (1)

denoting the probability density of selecting input a when the

system is in state s. For a given stage cost function L(s, a) ∈
R and a discount factor γ ∈ [0, 1], the performance of a

policy πθ is assessed via the total expected discounted cost:

J(πθ) = Eπθ

[

∞
∑

k=0

γkL(sk, ak)

∣

∣

∣

∣

∣

ak ∼ πθ [ . | sk]

]

. (2)

The optimal policy parameters θ⋆ are then given by:

θ⋆ = argmin
θ

J(πθ). (3)

The policy gradient ∇θ J(πθ) associated with the stochastic

policy πθ is instrumental in finding θ⋆, and can be obtained

using various actor-critic methods [21]. In this paper, we will

use the actor-critic formulation:

∇θ J(πθ) = Eπθ
[∇θ log πθ δπθ

] , (4)

δπθ
:= L (s, a) + γVπθ

(s+)− Vπθ
(s) , (5)

where the value function Vπθ
, associated with a given policy

πθ is typically approximated and evaluated via Temporal-

Difference (TD) techniques [21]. RL requires exploration

to compute the policy gradient, which can be generated via

perturbations over a deterministic policy. In continuous input

spaces, it is common to define the stochastic policy πθ as an

arbitrary density centred at a deterministic policy πθ .

The advantage of policy gradient methods over a direct

exploration of the policy parameters θ is that open-ended

scenarios can be handled and the directions obtained from

the policy gradient tend to be less noisy than those obtained

from exploring the policy parameters directly. Policy gradient

methods can however become noisy if the approximation of

the value function Vπθ
is poor [21].

III. MPC-BASED POLICY APPROXIMATION

In this paper, we will build a stochastic policy πθ based on

a perturbation of a deterministic policy πθ . That determin-

istic policy will be based on a parametric Model Predictive

Control (MPC) scheme. More specifically, for a given state s

of the real system, the MPC scheme generates a deterministic

policy given by:

πθ (s) = u
⋆
0 (s, θ) ∈ R

m, (6)

where u
⋆
0 is the first element of the input sequence u

⋆ =
{

u
⋆
0, . . . ,u

⋆
N−1

}

resulting from solving the MPC scheme:

u
⋆(s, θ),x⋆(s, θ) = argmin

u,x
Tθ(xN )+

N−1
∑

k=0

ℓθ(xk,uk) (7a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (7b)

hθ (xk,uk) ≤ 0, h
f
θ (xN ) ≤ 0, (7c)

where u0,...,N−1, x0,...,N are the MPC input profile and

predicted state trajectory. Note that, as discussed in [7],

all functions defining the MPC scheme and, therefore, the

policy πθ , can in principle be parametrized by θ: Tθ, ℓθ
are the terminal and stage costs, respectively, and fθ the

system model; functions hθ , hf
θ are the stage and terminal

inequality constraints, respectively. We ought to stress here

that the policy resulting from an MPC scheme is in general

suboptimal, due to the inexact MPC model, the unmodelled

stochastic disturbances impacting the real system, and the

finite horizon. Even if the MPC model is obtained by per-

forming a thorough system identification of the real system

dynamics, there is not guarantee that (6) is optimal, and a

further adjustment of the policy parameters can be beneficial.

This remains true if the uncertainties are embedded in MPC

via a stochastic or robust MPC formulation.

The use of MPC as a policy approximation in RL has

been investigated and justified in [7], [8], [9], [17], [23],

[24], [25], and offers some advantages over the more generic

function approximations often used in RL. The main advan-

tage is aguably that MPC-based policies allow one to impose

explicitly and a priori constraints on the state trajectories

predicted by the MPC model. Robust MPC techniques can

then be used to ensure that the closed-loop trajectories of the

real system respect these constraints, hence offering a natural

path to safe RL. Moreover, MPC-based polices allow one

to readily exploit the existing knowledge of the system (i.e.,

models and constraints) in the learning process. Furthermore,

a vast set of theoretical tools are available to analyze the

closed-loop behavior of MPC scheme, such as, e.g., stability

and recursive feasibility. These tools are readily available to

analyze and handle the closed-loop behavior of an MPC-

based policy in the RL context.

It will be useful in the following to cast (7) as a generic

parametric Nonlinear Program (NLP):

u
⋆ (s, θ) ,x⋆ (s, θ) = argmin

u,x
Φ(x,u, θ) (8a)

s.t. F (x,u, s, θ) = 0, (8b)

H (x,u, θ) ≤ 0. (8c)

The theory developed in this paper will apply to (8) and will

not be limited to MPC-based policies, but cover all stochastic

policies generated from a smooth and well-posed NLP. Note

that efficient algorithms are available to solve (8) and in this

paper we are rather interested in compensating for model

inaccuracies so as to recover optimality.

The use of MPC as a policy approximation has the

benefits detailed above, however, it can arguably also present

some challenges because the relationship between the MPC

parameters θ and the closed-loop performance J (πθ) can

be highly nonconvex, such that local minima can impede

the learning process when following the policy gradient

∇θJ (πθ). It shall be stressed, though, that Deep Neural

Networks (DNNs), which are very popular in RL due to their

effectiveness in high-dimensional spaces, also suffer from the

non-convexity of J (πθ) in the network parameters θ. We

ought to stress that for an MPC-based policy the learning

process can typically be started from a good initial guess, in

the form of a reasonable system model, cost and constraints.



In contrast, good initial guesses for the weights in DNNs

can be difficult to form and an initial supervised training of

the DNN against a given policy can be required. In the light

of these remarks, it is debatable whether the non-convexity

issue is more severe for an MPC-based policy approximation

than for more conventional function approximators.

A. MPC-Based Stochastic Policy

RL requires that the inputs applied to the real system

undergo some exploration—i.e., that they do not consistently

follow a deterministic policy πθ—in order to discover di-

rections in the policy parameters θ that can improve closed-

loop performance. Stochastic policies naturally generate this

exploration. In continuous input spaces, stochastic policies

are often generated via random perturbations added to a

deterministic policy πθ . In the context of MPC-based poli-

cies where constraints are meant to be respected, one is

likely to desire that the exploration remains feasible for the

MPC scheme underlying the deterministic policy πθ . E.g.,

in the context of robust MPC, imposing that the exploration

is feasible for the robust MPC scheme is necessary and

sufficient (under some assumptions) to ensure that the real

system trajectories respect the constraints imposed to the

system, see [23]. As a result, in the MPC-based policy

context, one should arguably build the stochastic policy with

care, so that the feasibility of the exploration is guaranteed.

We propose to address this issue with an approach that

does not add computational expenses to solving the regular

MPC scheme. We propose a stochastic policy:

a ∼ πθ [a | s] (9)

built from a = u
d
0 (s, θ,d) where u

d
0 is generated by the

randomly perturbed NLP

u
d (s, θ,d) = argmin

u
Φd(x,u, θ,d) (10a)

s.t. F (x,u, s, θ) = 0, (10b)

H (x,u, θ) ≤ 0, (10c)

where the parameter d ∈ R
m is drawn from an arbitrary

probability density ̺ (·), e.g., a simple Gaussian distribution.

In the following we will make the simple choice:

Φd(u, s, θ,d) = Φ(u, s, θ) + d
⊤
u0. (11)

for the perturbed cost function (10a) though alternatives can

and should be considered.

By construction, a stochastic policy built from the per-

turbed NLP (10) is guaranteed to have all its support in the

set of feasible inputs for (6). More specifically, the solutions

stemming from (10) are feasible for (6) by construction,

because they result from a perturbation of the cost function

alone. It follows that the samples a drawn from (9)-(10) are

guaranteed to be feasible for the MPC scheme, if the latter

is recursively feasible.

Note that sampling (9) (i.e., generating a sample from

density πθ [a | s]) is straightforward as it requires one to only

generate a sample from the chosen density ̺(·) and solve

the perturbed NLP (10). It is arguably a computationally

cheap approach to build a stochastic policy with guaranteed

feasibility. We will discuss next how to compute the score

function ∇θ log πθ[a | s] (required in (4)) for (9).

IV. SCORE FUNCTION

We detail next how the score function ∇θ log πθ[a | s]
associated to (9)-(10) required in the policy gradient compu-

tation (4) can be computed efficiently. While sampling the

stochastic policy πθ [a | s] resulting from (9)-(10) is straight-

forward, evaluating it (i.e., computing the value πθ [a | s] for

s, a, θ given) is not. For s,d, θ and the sample a resulting

from (9)-(10) given, we will show next how the score

function can be computed at limited expenses.

A first issue to overcome is that, when u
⋆
0 lies at (or close

to) the constraint hθ (s,u0) ≤ 0, the density πθ [a | s] from

(9) can become Dirac-like on the boundary of the feasible set

of hθ (s,u0) ≤ 0. More generally, this can happen whenever

input u0 can be blocked by a constraint in the MPC scheme.

This feature results from a lack of local invertibility of

the mapping d to u
d
0 generated by the NLP (10) in these

specific cases1, and creates difficulties for computing the

score function ∇θ log πθ[a | s].
In order to alleviate this difficulty, we will cast (10)

in an interior-point context. For computational reasons, we

will consider the primal-dual interior point formulation of

(10) [5], which have the First-Order Necessary Conditions

(FONC):

rτ (z, θ,d) =





∇wΦd +∇wHµ+∇wFλ

F

diag(µ)H+ τ



 = 0, (12)

for τ > 0 and under the conditions H < 0, µ > 0. Here

we label w = {u,x} and z = {w, λ,µ} the primal-dual

variables of (10). We will label uτ (s, θ,d), xτ (s, θ,d) the

parametric primal solution of (12), and πτ
θ [a|s] the stochastic

policy resulting from using a = u
τ
0 (s, θ,d) and d ∼ ̺(·).

Under standard regularity assumptions on (10), the algebraic

conditions (12) admit a primal-dual solution that matches the

solution of (10) with an accuracy of the order of the barrier

parameter τ [5]. Moreover, the solution u
τ (s, θ,d) is guar-

anteed to be feasible for (10). Additionally, if H,F,Φ are

smooth, then the mapping d to u
d
0 becomes locally invertible

under mild regularity conditions (LICQ and SOSC2 [19]), as

we will prove in Lemma 1.

To derive the next results, we will invert uτ
0 (s, θ,d) with

respect to d, to obtain function ζ(a, θ, s) satisfying:

d = ζ (uτ
0 (s, θ,d) , θ, s) , ∀d. (13)

The local existence of ζ is guaranteed by the Implicit

Function Theorem (IFT) if
∂uτ

0

∂d
is full rank. The stochastic

policy πθ then results from the transformation of the user-

defined probability density ̺(·) via NLP (10), and can be

1Suppose that Φd is given by (11), a constraint is u ≥ 0 and for a given
d0 one obtains u⋆

0
= 0. Then, for d1 > d0 the solution is still u⋆

0
= 0.

2Linear Independence Constraint Qualification and strong Second-Order
Sufficient Conditions.



evaluated using [4]:

πθ [a | s] = ̺ (ζ)

∣

∣

∣

∣

det

(

∂ζ

∂a

)∣

∣

∣

∣

a,θ,s

. (14)

For the sake of completeness, we provide hereafter a Lemma

establishing that
∂uτ

0

∂d
is full rank for the gradient perturbation

strategy (11).

Lemma 1: For the choice of cost function (11), and if (10)

satisfies LICQ and SOSC, the Jacobian
∂uτ

0

∂d
of function u

τ
0

implicitly defined by (12) is full rank for any τ > 0.

Proof: For the sake of simplicity, we will prove the re-

sult using the primal interior-point conditions corresponding

to (12). The lemma will then hold due to the equivalence

between the primal-dual and primal interior-point solutions

[19]. The primal interior-point conditions read as:
[

∇wΦd + τ∇wh diag(h)−1 +∇wfλ

f

]

= 0. (15)

The IFT then guarantees that:
[

H ∇wf

∇wf
⊤ 0

] [

∂w
∂d
∂λ
∂d

]

= −

[

∇2
wdΦ

d

0

]

, (16)

where H is the Jacobian of the first row in (15) with respect

to w. Defining N the null space of ∇wf
⊤, i.e., ∇wf

⊤N =
0, one can verify that using ∇2

u0d
Φd = Im×m from (11):

∂w

∂d
= −N

(

N⊤HN
)−1

N⊤∇2
wdΦ

d (17)

= −N
(

N⊤HN
)−1

N⊤

0 , (18)

where N0 =
[

Im×m 0 . . . 0
]

N . Invertibility of

N⊤HN is follows from LICQ and SOSC of (10). Then,

∂uτ
0

∂d
= −N0

(

N⊤HN
)−1

N⊤

0 . (19)

Since the dynamics f cannot restrict the input u in (10), N
spans the full space of u, and, therefore, the full input space

for u0, such that N0 and (19) are full rank.

One can further verify that the determinant in (14) is always

positive. We can now turn to detailing how the score function

∇θ log πθ[a | s] can be computed from (14). The following

Lemma provides the sensitivity of ζ required in (14).

Lemma 2: If (10) satisfies SOSC and LICQ then the

following equalities hold:

∂ζ

∂θ
= −

(

∂uτ
0

∂d

)−1
∂uτ

0

∂θ
,

∂ζ

∂a
=

(

∂uτ
0

∂d

)−1

, (20)

for any θ, s, a = u
τ
0 (s, θ,d) and d = ζ (a, θ, s).

Proof: We observe that

u
τ
0 (s, θ, ζ (a, θ, s)) = a, ∀a, θ, s. (21)

The invertibility of ∂g
∂d

follows from Lemma 1 and entails

that the IFT applies. From the IFT, it follows that

d

dθ
u
τ
0 (s, θ, ζ (a, θ, s)) =

∂uτ
0

∂θ
+

∂uτ
0

∂d

∂ζ

∂θ
= 0, (22)

Moreover, we observe that

d

da
u
τ
0 (s, θ, ζ (a, θ, s)) =

∂uτ
0

∂d

∂ζ

∂a
= I, (23)

which establishes (20).

We can then use (14) to develop expressions for computing

the gradient of the policy score function ∇θ logπθ. This is

detailed in the following Proposition. Computational aspects

are further discussed in Section V.

Proposition 1: The gradient of the score function for a

obtained via solving (10) from a realization of d reads as:

∇θ log πθ [a | s] = m−

(

̺−1 ∂̺

∂d

(

∂uτ
0

∂d

)−1
∂uτ

0

∂θ

)⊤

, (24)

evaluated at s, θ,d, where the components of vector m are:

mi = Tr

(

∂uτ
0

∂d

d

dθi

∂ζ

∂a

)∣

∣

∣

∣

s,θ,d,a

. (25)

Proof: Using (14), the score function of πθ [a | s] is:

log πθ [a | s] = log ̺ (ζ)− log det

(

∂ζ

∂a

)

. (26)

Using (20) we observe that:

∇θ log ̺ (ζ) =

(

̺−1 ∂̺

∂d

∂ζ

∂θ

)⊤
∣

∣

∣

∣

∣

s,θ,d,a

(27)

= −

(

̺−1 ∂̺

∂d

(

∂uτ
0

∂d

)−1
∂uτ

0

∂θ

)⊤
∣

∣

∣

∣

∣

∣

s,θ,d

,

hence providing the second term in (24). From calculus and

using (20), we get:

d

dθi

log det

(

∂ζ

∂a

)

= Tr

(

(

∂ζ

∂a

)−1
d

dθi

∂ζ

∂a

)

(28)

= Tr

(

∂uτ
0

∂d

d

dθi

∂ζ

∂a

)

= mi,

hence providing (25) component-wise.

V. COMPUTATIONAL ASPECTS

We now turn to detailing how the sensitivities of functions

u
τ
0 and ζ required in (24)-(25) can be computed at a

limited computational cost. First, it is useful to provide the

sensitivities of function ζ. If LICQ and SOSC hold [19] for

NLP (10), one can verify that the IFT guarantees that for rτ
readily obtained from (12):

∂rτ
∂z

∂z

∂d
+

∂rτ
∂d

= 0,
∂rτ
∂z

∂z

∂θ
+

∂rτ
∂θ

= 0, (29)

and therefore
∂uτ

0

∂d
and

∂uτ

0

∂θ
, required in the second term of

(24), can be extracted as the first components of ∂z
∂d

and ∂z
∂θ

obtained by solving the linear systems (29).

Obtaining the second-order term ∂2ζ
∂θi∂a

in (28) can be

fairly involved. In order to simplify its computation, we

propose to use the following approach. Let us define:

z̃ = {d, u1, . . . , uN−1,x, λ,µ} , (30)

One can observe that z̃ results from replacing variable u0

with d in z. One can then verify that the sensitivities of ζ

can be obtained from considering u0 as a parameter in (12)



and d as part of the solution, becoming an implicit function

of u0. The IFT then naturally applies and delivers the first-

order sensitivities:

∂rτ
∂z̃

∂z̃

∂a
+

∂rτ
∂u0

= 0,
∂rτ
∂z̃

∂z̃

∂θ
+

∂rτ
∂θ

= 0, (31)

and second-order sensitivities:

∂rτ
∂z̃

∂2
z̃

∂θi∂a
+





∂2
rτ

∂θi∂z̃
+
∑

j

∂2
rτ

∂z̃∂zj

∂z̃j
∂θi





∂z̃

∂a
+

∂2
rτ

∂θi∂a

+
∑

j

∂2
rτ

∂a∂z̃j

∂z̃j
∂θi

= 0. (32)

The second-order term ∂2ζ
∂θi∂a

in (28) can be extracted from

solving the linear system (32) for ∂2z̃
∂θi∂a

and observing that
∂2ζ

∂θi∂a
= ∂2d

∂θi∂a
is the first element of ∂2z̃

∂θi∂a
.

In summary, computing the score function, requires then

one to form and solve the linear systems (29)-(32), and

to use the resulting sensitivities in (24)-(25). We ought to

underline here that the linear systems (29)-(32) are typically

large but very sparse if coming from an MPC scheme.

If their sparsity is correctly exploited when forming and

solving the linear systems, the computational burden remains

fairly small, typically a fraction of the computational burden

associated with the solution of the MPC poolicy.

VI. ILLUSTRATIVE EXAMPLE

This section presents a brief academic example where the

proposed method is applied. The example is simple so as to

present results that can be easily interpreted, and we do not

claim that the problem could not be treated by alternative

methods. We consider the system:

s+ =

[

1 1

10

0 1

]

s+

[

1

10
0

0 1

]

a+ e, (33)

where e ∼ N
(

0, 10−2I
)

is a stochastic perturbation that we

assume unknown. The baseline cost was chosen as:

L(s, a) = ‖s− s̄‖2+‖a− ā‖2+10·1⊤max (0,h (s)) , (34)

hence imposing a linear penalty on the state constraints

h (s) ≤ 0 being violated, where

h (s)
⊤
=
[

−s1 −s2 s1 − 1 s2 − 1
]

(35)

imposes bounds on the states. The MPC scheme reads as:

min
x,u,σ,δ

‖xN − x̄‖2Q +

N−1
∑

k=0

ℓθ (xk,uk) + 10 · 1⊤σk (36a)

s.t. xk+1 =

[

1 1

10

0 1

]

xk +

[

1

10
0

0 1

]

uk (36b)

h (xk) + δk ≤ σk, σk ≥ 0 (36c)

δk+1 = diag(c)δk + b (36d)

x0 = s, δ0 = 0 (36e)

with N = 30 and where ℓθ = ‖x− x̃‖2 + ‖u− ũ‖2

and θ = {c,b, x̃, ũ} is the set of parameters adjustable

by RL. One can readily observe that for c,b > 0, (36c)-

(36d) performs a form of tightening of the state constraints,

implicitly accounting for the stochasticity of the system.

If the support of e is bounded and can be enclosed in a

known polytope, then efficient techniques exist to compute

a tightening ensuring that no violation of the constraints can

happen [12]. Here, the constraint relaxation penalties chosen

as 10 is not very large, such that occasional violations of

h (s) ≤ 0 are beneficial in regard of the baseline cost (34).

RL then uses data to discover the right amount of constraint

tightening and possibly reference changes to achieve the

optimal amount of constraints violation, without an actual

knowledge of the process noise e. Guaranteed constraint

satisfaction is not the objective in this formulation, we

refer to the robust MPC techniques in [23], which can be

readily combined with the approach presented here to tackle

problems with constraints that should never be violated.

A rudimentary RL strategy was used, where the value

function Vπθ
is approximated via a quadratic function, and

estimated via Least-Squares TD on batches of 50 time

samples. The policy gradient is computed on the same

batches, without experience replay. A discount of γ = 0.9
was chosen. No step size adaptation was used so a fairly

small step size of 10−3 was selected. The density ̺ was

chosen as Gaussian of standard deviation 10−3, and the

barrier parameter was chosen as τ = 10−2. A non-episodic

scenario was considered. The infeasible baseline reference

s̄
⊤ =

[

−10−1 0
]

was used with ā = 0. The RL steps

where projected on the constraint b ≥ 0, such that positive

backoffs are ensured. A much higher sample efficiency could

clearly be achieved via more advanced algorithmic setups,

but the focus here was on simplicity.

Fig. 1 depicts the (relative) evolution of the cost associated

to each batch over the learning process. Fig. 2 depicts the

evolution of the MPC parameters c,b handling the constraint

tightening. Fig. 3 and 4 depict the evolution of states s1, s2
and inputs a1, a2, together with the backoff parameters b

in Fig. 3 and the evolution of the MPC references x̃, ũ in

both Fig. 3 and 4. All horizontal axis have the unit of time

samples, RL steps are taken every 50 time samples. One can

observe the reduction of the cost J , albeit it is noisy due to

the process noise. The increase of closed-loop performance

is achieved via removing the constraint tightening while

adjusting MPC references in a non-trivial combination. The

tightening time constants c are not changed much. Due to

the high noise in the cost function J , a direct policy search

is likely to be difficult for this example.

VII. CONCLUSION

This paper investigates the use of the Actor-Critic, stochas-

tic policy gradient method on MPC-based policies. If it is

desired that the inputs applied to the system are always

feasible with respect to the MPC scheme, then the stochastic

policy must be constructed carefully. This paper proposes

a very simple and inexpensive technique to do so. The

paper further details how the score function associated to the

MPC-based policy can be evaluated in view of computing
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Fig. 1. Progression of the (normalized) cost over the RL steps, evaluated
on the batches of 50 samples (without discount). The learning starts at the
vertical red line.

Fig. 2. MPC parameters θ over the RL steps. The left graph depicts b

and the right graph depicts c. The learning starts at the vertical red line.

the policy gradient. Principles from parametric Nonlinear

Programming and the primal-dual interior point methods are

required to achieve that. The computational aspects required

to implement the proposed approach are provided. The paper

concludes with a simple example, where the constraints are

tightened in the MPC scheme and adjusted via RL in order

to achieve the optimal amount of violations in regard to the

constraints relaxation in use. Techniques combining robust

MPC and RL [23], can arguably be readily combined to the

policy gradient approach presented here to tackle problems

where constraints should never be violated.
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