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Abstract 
 

Functional connectivity (FC) metrics describe brain inter-regional interactions and may complement 

information provided by common power-based analyses. Here we investigated whether the FC-

metrics weighted Phase Lag Index (wPLI) and weighted Symbolic Mutual Information (wSMI) may 

unveil functional differences across four stages of vigilance – wakefulness (W), NREM-N2, NREM-

N3 and REM sleep – with respect to each other and to power-based features. Moreover, we explored 

their possible contribution in identifying differences between stages characterized by distinct levels of 

consciousness (REM+W vs. N2+N3) or sensory disconnection (REM vs. W). Overnight sleep and 

resting-state wakefulness recordings from 24 healthy participants (27±6yrs, 13F) were analysed to 

extract power and FC-based features in six classical frequency bands. Cross-validated linear 

discriminant analyses (LDA) were applied to investigate the ability of extracted features to 

discriminate i) the four vigilance stages, ii) W+REM vs. N2+N3, and iii) W vs. REM. For the four-

way vigilance stages classification, combining features based on power and both connectivity metrics 

significantly increased accuracy relative to considering only power, wPLI or wSMI features. Delta-

power and connectivity (0.5-4Hz) represented the most relevant features for all the tested 

classifications, in line with a possible involvement of slow waves in consciousness and sensory 

disconnection. Sigma-FC, but not sigma-power (12-16Hz), was found to strongly contribute to the 

differentiation between states characterized by higher (W+REM) and lower (N2+N3) probabilities of 

conscious experiences. Finally, alpha-FC resulted as the most relevant FC-feature for distinguishing 

among wakefulness and REM sleep and may thus reflect the level of disconnection from the external 

environment. 

 

Keywords:  

EEG, Functional Connectivity, Sleep, Classification, NREM, REM, Consciousness, Disconnection. 
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Statement of Significance 
 

This study shows that changes in brain activity across sleep stages may be better understood through 

the combined use of power and of functional connectivity (FC) metrics. Delta power and connectivity 

were found to be related to stage-dependent changes in consciousness and disconnection in line with 

previous works. In contrast to results obtained in subjects under anaesthesia or in patients with 

disorders of consciousness, we found that alpha-FC does not contribute to the classification of states 

with high and low levels of consciousness, and is instead highly relevant for distinguishing between 

wakefulness and REM sleep, a state typically characterized by vivid conscious experiences. Alpha-FC 

could therefore mark disconnection from the external environment rather than the level of 

consciousness per se. 
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Introduction 
 

Classically, the transition from wakefulness to sleep and the alternation of the different sleep stages 

are described in terms of variations in electrophysiological brain activity, as measured using scalp 

electroencephalography (EEG). The falling asleep process is characterized by a shift from high-

frequency, low-amplitude oscillations, to low-frequency, high-amplitude activity, with typical slow 

waves (0.5-4Hz) and spindles (12-16Hz)
1–3

. An increase in the incidence and amplitude of regional 

slow waves then marks the deepening of Non-REM sleep. The occurrence of REM sleep, every 60-

150min, is instead identified by a relative EEG desynchronization, with an increase in theta activity 

(4-8Hz), and by bursts of sawtooth-waves (2-5Hz) that commonly precede the occurrence of rapid eye 

movements
4–6

. All these changes may be efficiently captured through the analysis of signal power in 

classical frequency bands. 

However, evidence indicates that the different stages of vigilance are also characterized by variations 

in the way distinct areas of the brain interact with each other (e.g., 
7–11

). These differences can be 

explored using functional connectivity (FC) metrics, which identify statistical (undirected) 

associations among the EEG time-series of spatially distinct brain regions. Interestingly, distinct FC 

indices may allow the detection of partially different inter-regional interaction dynamics, with distinct 

weights of linear and nonlinear components, and may thus produce partially different results
7,8

. 

However, it is unclear whether connectivity metrics, either analysed individually or in combination, 

can actually provide relevant or rather overlapping (i.e., redundant) information about the current 

stage of vigilance of an individual with respect to classical (power-based) measures of EEG brain 

activity. 

The weighted Phase Lag Index (wPLI
12

) and the weighted Symbolic Mutual Information (wSMI
13

) 

are two robust FC approaches increasingly applied to MEG and EEG data because of their relative 

immunity to volume conduction. Thanks to this property, wPLI and wSMI are less likely to detect 

spurious functional interactions determined by the quasi-simultaneous conduction of real brain signals 

and of physiological or non-physiological noise to EEG-sensors distant from the actual source. 

Interestingly, both methods have been suggested to track the level of consciousness based on 

promising findings in patients with severe brain injury (minimally conscious state, unresponsive 

wakefulness syndrome) and in volunteers under anaesthesia
13–17

. Of note, we recently demonstrated 

that wPLI and wSMI present a different sensitivity to distinct FC dynamics and may thus provide 

complementary information regarding brain inter-regional interactions
8
. Specifically, while wPLI has 

an optimal sensitivity for dynamics presenting a mixture of linear and nonlinear components, wSMI 

has higher sensitivity to predominantly nonlinear dynamics. 

In light of the above premises, here we set out to investigate whether wPLI and wSMI may allow the 

detection of FC differences across distinct stages of vigilance including wakefulness, light NREM 

sleep (N2), deep NREM sleep (N3) and REM sleep, and whether the provided information is 

redundant or complementary with respect to that granted by power-based indices of brain activity. To 

this aim, a supervised classification approach was used to identify the optimal combination of power- 

and FC-based features allowing to distinguish among vigilance stages. Crucially, this classification 

was cross-validated across different sets of participants, thus allowing to determine the ability of the 

predictive model to generalise across independent groups of subjects. For each individual feature, we 

also investigated its relevance, information content and degree of redundancy with other examined 

features. In addition, the present study offered us the opportunity to investigate the potential value of 

FC-derived indices as markers of the levels of consciousness and of sensory disconnection during 
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sleep. Indeed, the probability of having a conscious experience varies greatly between wakefulness 

and sleep as well as across the different sleep stages: subjects may report a conscious experience (a 

dream) in less than 30% of the awakenings from deep (N3) NREM sleep, while this percentage may 

get close to 100% in REM sleep
18–21

. Yet, while REM sleep is populated by rich and vivid conscious 

experiences that often resemble in many aspects those of wakefulness, it is also characterized by a 

relative disengagement (or ‘disconnection’) of the individual from the external environment
18,22,23

. 

Therefore, we specifically investigated whether FC-based indices could significantly contribute to the 

classification of states characterized by high (wakefulness, REM) vs. low (NREM) levels of 

consciousness, as well as by ‘connected’ (wakefulness) and ‘disconnected’ (REM) consciousness
22

. 

 

 

Methods 
 

Participants. Twenty-four healthy adult participants (26.7 5.7yrs, 13F) underwent hd-EEG 

recordings (257 channels, 500Hz) during the night and while awake in bed after sleep (8am; 6min, 

eyes-closed). The overnight recordings were started at the usual bed-time of each subject and 

interrupted at 7am. Twelve subjects (25.5±3.7 yrs, 6F; dataset-1) were studied in the context of a 

project aimed at exploring the effects of short-term visual deprivation on brain activity during sleep
24

. 

Here we only included data from the control condition, in which subjects remained in the sleep 

laboratory and watched movies of their choice (selected from a pre-defined list) from 3 to 8pm. The 

other twelve subjects (27.9±7.1 yrs, 7F; dataset-2) only arrived at the laboratory 2h prior to the 

beginning of the overnight recording. 

All volunteers had a good sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI score 

≤ 5; 
25

) and scored ≤ 10 points on the Epworth Sleepiness Scale (ESS; 
26

). Volunteers were asked to 

maintain a regular sleep-wake schedule in the week preceding the overnight recording. Compliance 

was verified using wrist-worn actigraphy devices (MotionWatch 8, CamNtech). The study was 

approved by the ethical committee of the Lausanne University Hospital. Written informed consent 

was obtained from each subject. 

 

Wake EEG recordings. Resting-state eyes-closed recordings collected in the morning, during 

wakefulness (W), were bandpass-filtered between 0.5 and 45 Hz. Each recording was divided into 

non-overlapping 5s epochs and visually inspected to identify and reject bad channels and epochs 

containing large artifacts (NetStation 5.3; Electrical Geodesic). An independent component analysis 

(ICA) was then performed to remove residual ocular, muscular, and electrocardiograph artifacts using 

EEGLAB
27

. This procedure has been shown to reduce the impact of EEG artifacts on power 

computation and on the identification of individual graphoelements while producing negligible 

changes in physiological signals of interest
28,29

. Rejected channels were interpolated using spherical 

splines. Finally, two 2s non-overlapping data segments were obtained from each 5s epoch by 

discarding the first 0.5s and the last 0.5s of data. 
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Sleep EEG recordings. Sleep EEG recordings were scored according to standard criteria using 30s 

epochs
30

. For scoring purposes, electrodes located in the chin-cheek region were used to evaluate 

muscular activity, whereas four electrodes placed near the eyes were used to monitor horizontal and 

vertical eye movements
1
. Recordings were bandpass filtered between 0.5 and 45 Hz. All epochs 

scored as N2, N3 (NREM) or REM were then extracted and visually inspected to remove bad 

channels (later replaced by spherical spline interpolation). N1 was not considered in the analysis, as it 

is a transitional state and therefore generally very short, accounting for only about 5% of total sleep 

time. As described above, an ICA-based procedure was used to reduce potential artifacts. Finally, 

each 30s epoch was divided into 15 non-overlapping 2s data segments. 

Given that NREM and REM sleep are affected by homeostatic and circadian factors, and that REM 

sleep is especially represented toward the morning hours, further analyses were focused on NREM 

epochs extracted from the first half of the night and on REM epochs identified in the second half of 

the night. This approach also allowed us to minimize the impact of inter-subject differences in the 

relative distribution of NREM and REM epochs across the night (e.g., due to the lack of consistent 

REM sleep during the first sleep cycle in some participants). 

 

Data bootstrapping. A bootstrapping procedure with replacement was applied to account for 

differences in the amount of data available for each stage of vigilance (see Supplementary Figure S1). 

Specifically, at each iteration of the bootstrapping procedure (Nboot=2000) and for each considered 

stage (W, N2, N3 and REM), fifteen 2s segments were randomly chosen, thus obtaining 30s-long data 

epochs. Of note, due to how wPLI is defined, connectivity can only be computed across multiple data 

segments
12

. Thus, in our case, only one connectivity value was obtained for each set of 15 segments 

(and for each frequency band). For consistency, power and wSMI, were computed in each of the 

fifteen 2s segments and then averaged, thus obtaining one value for each set of 15 segments. A 

current-source-density transform was applied to all EEG data epochs using the CSD toolbox
31

, as 

described in previous works
8,12,13

. This method provides a reference-independent signal and acts as a 

spatial filter, leading to a relatively improved spatial resolution
32

. 

 

Power analysis. The Power Spectral Density (PSD; Welch's method, Hamming windows, 8 sections, 

50% overlap) was calculated for each electrode in 2s data segments. Then, the signal power (POW) 

was computed for delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), sigma (12-16Hz), beta (18-25Hz), 

gamma (30-45Hz) and broad-band (0.5-45Hz) frequency bands by integrating the PSD values in the 

frequency ranges of interest. Relative power (relPOW) was computed by expressing the value of each 

frequency band as a percentage with respect to the total broad-band power. Finally, the mean was 

computed across the 15 segments of each 30s epoch and the median power was computed across all 

electrodes. 
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Connectivity analysis. For each 30s epoch, FC was computed in 2s data segments for each pair of 

electrodes, as detailed below. Then, the median connectivity across all channel pairs was obtained and 

used in subsequent analyses. 

 

wPLI. The wPLI measures the extent to which phase angle differences between two time series x(t) 

and y(t) are distributed towards positive or negative parts of the imaginary axis in the complex plane 

(similar to the PLI
12,33

). The underlying idea is that volume-conducted activity accounts for the 

greatest proportion of detected 0° or 180° phase differences between signals. Therefore, to obtain a 

conservative estimate for real, non-volume conducted activity, only phase angle distributions 

predominantly on the positive or negative side are considered. The PLI is defined as the absolute 

value of the sum of the signs of the imaginary part of the complex cross-spectral density S
xy

 of two 

real-valued signals x(t) and y(t) at trial t. 

 

    |
∑    (    (     ))

 
   

 
|    (1) 

 

While PLI is already insensitive to zero-lag interactions, the weighted Phase-Lag Index
12

 further 

addresses potential confounds caused by volume conduction, by scaling contributions of angle 

differences according to their distance from the real axis, as ‘almost-zero-lag’ interactions are 

considered as noise affecting real zero-lag interactions:  

 

     |
∑ |    (     )|   (    (     ))

 
   

∑ |    (     )|
 
   

|  (2) 

 

The wPLI is based only on the imaginary component of the cross-spectrum, and thus implies 

robustness to noise compared to coherence, as uncorrelated noise sources cause an increase in signal 

power
34

. Here wPLI was computed using the Fieldtrip toolbox
35

 (multi-taper method fast Fourier 

transform, single Hanning taper
12

, 0.5 Hz frequency resolution). For each frequency band, the mean 

value across the frequency-bins in the frequency range of interest was computed to obtain a single 

wPLI coupling value. 

 

wSMI. The wSMI
13

 evaluates the extent to which two EEG signals present non-random joint 

fluctuations, suggesting sharing of information. The time series X and Y in all EEG channels are first 

transformed into sequences of discrete symbols ( ̂,  ̂). The symbols are coded according to the trends 

in amplitudes of a specific predefined number of consecutive time points. We chose the kernel k to be 

3, implying that the symbols are constituted of three elements, leading to 3!=6 different potential 

symbols in total
13,36

. The temporal separation of elements that constitute a symbol was set to be  =[41, 

21, 14, 10, 6, 3] frames, such that the maximum resolved frequency possible was      
  

   
. The 
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corresponding frequencies were      =[4.1, 7.94, 11.90, 16.67, 27.78, 55.56] Hz, whereby - due to 

the band-pass-filtering of the signal up to 45Hz - the maximum resolved frequency for   =3 was 

45Hz. 

Prior to wSMI computation, the signal was low-pass-filtered using a 6
th
 order Butterworth IIR filter 

with an additional mirror padding (‘ft_preproc_padding’) of 1s before and after each individual 

segment to avoid potential filter edge-artifacts. For the analysis in frequency bands, a bandpass-filter 

(4
th
 order Butterworth IIR filter) was used with the same padding scheme. The joint probability of 

each pair of symbols co-occurring in two different time-series is computed to estimate the symbolic 

mutual information (SMI) shared across two signals. To address volume conduction artifacts, the 

weighted symbolic mutual information disregards co-occurrences of identical or opposite-sign 

signals. 

 

 

    (  ̂  ̂)  
 

        
∑ ∑    ̂  ̂    ̂  ̂    

   ̂  ̂ 

   ̂    ̂  ̂  ̂ ̂  ̂    (3) 

 

The wSMI can lead to negative values, given that it is a weighted mutual information measure, a form 

of weighted relative entropy
37

. 

 

Statistical comparisons. As described above, for each bootstrap iteration, we computed the median 

power across electrodes and the median connectivity (wPLI/wSMI) across all pairs of channels in 

delta, theta, alpha, sigma, beta, and gamma frequency bands, thus obtaining 6 features per metric and 

18 features in total (see Supplementary Figure 2 for frequency-resolved power and wPLI). For each 

individual feature, non-parametric paired permutation tests (Nperm1=10,000) were performed 

between mean values obtained from the bootstrap procedure for all vigilance stages. A Bonferroni-

correction was applied for the number of tested comparisons, separately for power-, wPLI- and 

wSMI-based features (N=36; corrected p < 0.05). Topographic comparisons between vigilance stages 

can be found in Supplementary Figures S3-6. 

 

Classification Procedure. The subjects were divided into two equal-sized groups (N=12) 

corresponding to dataset-1 and dataset-2. A two-fold cross-validated LDA-based approach
38

 was 

applied to investigate the ability of power- and FC-based features obtained from one dataset to 

discriminate vigilance stages in the other dataset (and vice-versa). Specifically, at each bootstrap 

iteration the classifier was trained on features extracted from a single 30s sampled epoch per stage of 

interest from each one of the 12 subjects of one dataset (1 or 2) and tested using features extracted 

from a single 30s epoch per stage of interest from each one of the 12 subjects of the other dataset (2 or 

1). This procedure was repeated for all bootstrap iterations (Nboot=2,000) to estimate the 

corresponding classification accuracy. The overall prediction accuracy was computed as the mean 

across all bootstrap iterations and then averaged across the two classification runs. 

A forward selection procedure was performed to identify the best combination of features, henceforth 

referred to as the ‘optimal feature set’. In particular, the procedure started with an empty feature set. 
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At each step of the forward selection procedure, the accuracies of classification models based on each 

available additional feature were computed. The feature giving rise to the highest classification 

accuracy was then added to the existing feature set. The selection was stopped when the added feature 

provided no further increase in either mean or median accuracy (accuracy variation ≤ 0). The final 

number of features included in each classification model is displayed in panel A of Figures 1, 3 and 4, 

together with the achieved mean accuracy. The full list of selected features for each optimal feature 

set is reported in Supplementary Table S1.  

A permutation-based test was applied to determine whether accuracy values obtained from the 

optimal, selected feature-sets were significantly different from chance. Specifically, for each 

permutation (Nperm2=2,000), the labels were shuffled in the training and in the test sets of the 

classifier and the mean accuracy estimate per permutation was obtained using the same bootstrapping 

procedure as in the original dataset. The true mean accuracy across bootstrap iterations was then 

compared to the null distribution to obtain the p-value expressing significance of accuracy relative to 

chance. A False Discovery Rate correction (FDR
39

) was applied across tested models (FDRq < 0.05; 7 

comparisons). Moreover, the accuracies of models based on different feature-types (POW, wPLI, 

wSMI) were directly compared using multiple pairwise bootstrap tests. Specifically, for each pair of 

models, we computed the relative accuracy differences for every bootstrap iteration. We then 

computed the 2.5% and 97.5% confidence intervals (CI; α = 0.05) for this distribution and determined 

whether zero (corresponding to no difference between models), was included (or not) in the CIs. In 

addition, p-values were derived from the bootstrap confidence intervals using the formula:  

 

p = min(
             

       
, 
             

       
   (4) 

 

where X represents the distribution of differences
40

. For each one of the three different comparisons 

of vigilance stages (W vs. N2 vs. N3 vs. REM, W+REM vs. N2+N3 and W vs. REM), an FDR 

correction was applied to account for multiple comparisons testing among all pairs of models (FDRq 

< 0.05; 21 comparisons).  

 

Mutual information analysis. In order to better understand which individual features carried more 

relevant information for distinguishing between the considered classes, we qualitatively compared the 

single-feature LDA performance (reflecting prediction across subjects) with the mutual information 

(MI) each feature contained about the classes (reflecting prediction within subjects). Specifically, MI 

was calculated and used to quantify how much information each individual feature contained about 

the three different comparisons of vigilance stages: W vs. N2 vs. N3 vs. REM, W+REM vs. N2+N3 

and W vs. REM. Of note, we selected MI instead of a within-subject LDA approach, since the latter 

would have implied splitting the data of each subject in two sets, for training and testing respectively. 

Since, we only have few minutes of EEG recordings in wakefulness, this would have meant further 

reducing the usable data from this stage (Supplementary Figure S1). 

The continuous feature values were binned based on ranks into 4 equal-population bins, and the 

standard discrete formulation of MI was used 
41,42

. A Miller-Madow bias correction was also 

applied
43

. A data augmentation procedure was used to ensure that a minimum of 100 values was 

available in each subject for enabling MI computation. Specifically, 50 data epochs were repeatedly 
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sampled with replacement (2,000 iterations) from the previously generated data distribution (see 

“Data bootstrapping” section). Of note, this procedure was especially necessary for wakefulness 

data, since only few minutes were recorded in all subjects, whereas more than 25 min of data were 

available for all other stages in 23 of the 24 studied volunteers. Mean MI values (across bootstrap 

iterations) of each subject were averaged to obtain a group-level MI value. Finally, the obtained MI 

values were plotted against LDA accuracies in order to allow for a qualitative evaluation of the 

relative contribution of each feature to within- or between-subjects classification of the conditions of 

interest (Figure 5). Specifically, for these plots the single-feature LDA classification procedure was 

repeated by performing the training on the same augmented datasets obtained for MI computation 

across all 12 subjects in dataset-1 (2) and tested on one 30s epoch per subject in dataset-2 (1). 

 

Partial information decomposition. We used partial information decomposition (PID)
44,45

 to 

determine the level of information about the stage of vigilance that was shared by all pairs of 

examined features. In fact, two features could convey the same, shared information, which is 

quantified as redundancy. Each feature could convey unique information that is not available from the 

other feature. Moreover, two features could also convey more information together than they do 

separately, i.e. if the relationship between the feature values is itself informative about the vigilance 

stage. This is quantified as synergy. PID was computed for each subject on the same extracted data as 

for MI. 

 

Results 
 

Classification of vigilance stages. For the classification across all considered vigilance stages (W, 

N2, N3, REM) the accuracy estimate obtained with each single metric was 66.63% for relPOW, 

58.24% for wPLI and 60.31% for wSMI (Figure 1). The combination of two feature types increased 

accuracy to 75.90% for relPOW+wPLI, 74.90% for relPOW+wSMI, and 70.22% for wPLI+wSMI. 

The highest accuracy (80.49%) was obtained when all types of features were considered together 

(relPOW+wPLI+wSMI; accuracy relative to chance level: FDRq < 0.05). Figure 1B shows the 

relative differences between tested models. Of note, while the model including all feature types 

performed significantly better than relPOW, wPLI or wSMI alone (FDRq < 0.05), no significant 

differences were found with respect to models combining relPOW and one connectivity metric (wPLI 

or wSMI; P > 0.05, uncorrected), or combining wPLI and wSMI (P < 0.05, uncorrected). The three 

most relevant features for the relPOW+wPLI+wSMI model included elements from each of the 

considered metrics, namely delta-POW, sigma-wPLI and sigma-wSMI (Figure 1C). Statistical 

comparisons based on paired non-parametric permutation tests (P < 0.05, Bonferroni correction; 

Figure 2) showed that both NREM (N2/N3) and REM sleep were characterised by increased delta-

POW (N3>N2>REM>W), with respect to W, while sigma-wPLI (N2>N3>REM=W) and sigma-

wSMI (N2=N3>REM=W) were higher in NREM relative to both wakefulness and REM sleep. 

Additional relevant features included alpha-wSMI (W>N3>N2>REM) and delta-wPLI 

(N2>N3=REM>W). 

 

[Figures 1, 2] 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa247/5998102 by IM

T Advanced Studies user on 18 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

Classification of high vs. low level of consciousness. For the classification between stages associated 

with higher (W+REM) and lower (N2+N3) probability of conscious experiences, the classification 

accuracy estimate obtained with each single metric was 81.58% for relPOW, 75.53% for wPLI and 

81.81% for wSMI (Figure 3). The combination of two feature types increased accuracy to 88.99% for 

relPOW+wPLI, 89.28% for relPOW+wSMI, and 83.94% for wPLI+wSMI. The highest accuracy 

(92.05%) was obtained when all feature types were included (relPOW+wPLI+wSMI; accuracy 

relative to chance level: FDRq < 0.05). Figure 3B shows the relative differences between tested 

models. While the model including all feature types performed significantly better than relPOW or 

wPLI (but not wSMI; P < 0.05, uncorrected), no significant differences were found with respect to 

models combining relPOW and one connectivity metric (wPLI or wSMI; P > 0.05, uncorrected), or 

combining wPLI and wSMI (P < 0.05, uncorrected). The most relevant features for the 

relPOW+wPLI+wSMI model were sigma-wSMI, delta-POW and sigma-wPLI. Delta-wPLI also 

provided a minor contribution to overall model accuracy. Statistical comparisons based on paired non-

parametric permutation tests (P < 0.05, Bonferroni correction; Figure 2) showed that both NREM 

(N2/N3) and REM-sleep were characterised by increased delta-POW (N3>N2> REM>W) and higher 

sigma-FC (wPLI/wSMI) in N2/N3-sleep with respect to both W and REM-sleep (no differences 

between W and REM).  

 

[Figure 3] 

 

Classification of consciousness with and without sensory disconnection. For the comparison 

between wakefulness (‘connected’ consciousness) and REM sleep (‘disconnected’ consciousness), the 

maximum classification accuracy obtained with each single metric was 92.91% for relative POW 

(relPOW), 77.29% for wPLI and 87.03% for wSMI (Figure 4). The combination of two feature types 

increased accuracy to 92.91% for relPOW+wPLI, 93.59% for relPOW+wSMI, and 87.03% for 

wPLI+wSMI. The model including all feature types (POW+wPLI+wSMI) achieved an accuracy 

similar to the one obtained using relPOW+wSMI (93.59%; accuracy relative to chance level: FDRqp < 

0.05). Of note, the POW+wPLI+wSMI model did not perform significantly better than any of the 

other tested models, although it tended to achieve a higher accuracy relative to the one based on wPLI 

alone (P < 0.05, uncorrected; Figure 4B). In fact, wPLI-features also tended to perform worse than 

relPOW, relPOW+wPLI and relPOW+wSMI (P < 0.05, uncorrected). The most relevant features for 

the POW+wPLI+wSMI model resulted to be delta-POW, theta-POW and alpha-wSMI. Statistical 

comparisons based on paired non-parametric permutation tests (P < 0.05, Bonferroni correction; 

Figure 2) showed increased delta-POW and theta-POW and decreased alpha-wSMI in REM sleep 

with respect to wakefulness.  

 

[Figure 4] 
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Contribution of individual features. In order to further evaluate which individual features carried 

more relevant information for distinguishing between considered classes (i.e., vigilance stages), we 

contrasted the single-feature LDA performance (regarding the predictability across subjects) with the 

mutual information each feature contained about the classes (within subjects’ analysis). On the one 

hand, LDA tests the generalisation of predictive accuracy of a specific feature to a new set of subjects. 

On the other hand, MI is a within-subject analysis, determining the predictive power of the features 

within each individual. In this light, the two approaches provide related, but complementary 

information. Results obtained from this analysis are shown in Figure 5. It is important to note that 

most features were distributed along the diagonal of the plots, indicating a relative consistency in the 

relevance of tested features for within- and across-subjects classifications. In line with this, the 

Spearman’s ρ between LDA and MI for the three plots were 0.89, 0.90 and 0.78, respectively (p < 

0.01). 

For the differentiation between all stages of vigilance (W, N2, N3, REM), delta-POW resulted as the 

best feature based on both its individual classification performance and MI value (59.83%, 

MI=0.93bits; Figure 5A). For the comparison between NREM (N2, N3) sleep and W+REM, sigma-

wSMI resulted as the best feature (81.30%, MI=0.53bits; Figure 5B). Finally, for the comparison of 

W and REM sleep, alpha-wSMI alone achieved 87.17% accuracy (with the greatest recorded MI 

value of 0.73bits for this comparison), although a higher LDA accuracy was obtained by delta-POW. 

 

[Figure 5] 

 

Redundancy Analysis. In order to determine to what extent the statistical relationship in two features 

is common or overlapping, we used an information theoretic framework called partial information 

decomposition (PID)
46,47

. Here, we assessed whether the information that any particular feature 

contains regarding the label (W vs. N2 vs. N3 vs. REM in Figure 6A, W+REM vs. N2+N3 in Figure 

6B, W vs. REM in Figure 6C) is shared among two features or is unique to that feature (see 

Supplementary Figure S7 for corresponding synergy results). Results shown in Figure 6 indicate that 

especially power-based features were highly redundant with each other. Indeed, non-parametric 

permutation tests (nPerm3=10,000) showed that redundancy among power-features was higher than 

that among wPLI and wSMI features, respectively (42.98 7.51% vs. 16.77 3.41% vs. 

28.28 7.62%; p=0.0001) for the comparison among all the four vigilance stages (W, N2, N3, REM). 

Power features were more redundant with respect to wSMI features and less redundant relative to 

wPLI features (27.43 5.10% vs. 19.56 3.30%; p=0.0001). Of note, wPLI features showed a low 

redundancy with respect to wSMI features (18.54 3.30%), thus confirming that the two metrics are 

sensitive to distinct FC-dynamics. Similar differences were observed for the W+REM vs. N2+N3 and 

W vs. REM comparisons. Interestingly, in the W vs. REM case, both alpha-POW and alpha-wSMI 

appeared to be highly redundant with respect to delta-POW (83.44% and 72.27%, respectively) and 

with each other (72.42%). This may explain both why alpha-POW was not included in the forward 

selection procedure and the fact that the inclusion of alpha-wSMI determined only a marginal increase 

in overall classification accuracy (Figure 4). 

 

[Figure 6] 
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Discussion 
 

Power-based features are known to differ significantly across vigilance stages and may be used for the 

development of automated sleep scoring algorithms with a satisfactory level of accuracy
48–50

. 

However, previous work also showed that vigilance stages may differ in terms of functional 

connectivity (FC), and that distinct FC-metrics may also reveal different variations in inter-regional 

neural communication as a function of their specific sensitivity for linear and nonlinear interaction 

dynamics
7,8

. Yet it was still unclear whether FC metrics actually provide relevant or rather redundant 

information with respect to classical quantitative measures of brain EEG activity. By using a linear 

discriminant analysis (LDA) with features based on signal power and two connectivity metrics with 

known distinct sensitivity for linear and nonlinear interactions (i.e., wPLI and wSMI), here we 

showed that the inclusion of connectivity-based features significantly increases the classification 

accuracy of vigilance stages. Moreover, we determined which specific individual features provide the 

best accuracy not only for distinguishing among all vigilance stages, but also for comparisons 

contrasting states associated with lower or higher probabilities of having a conscious experience 

(typically in the form of dreams during sleep), and states associated with more or less ‘disconnection’ 

from the external environment. In line with previous evidence
16,17,51,52

, our results showed that delta-

power carries relevant information for all of these comparisons. Moreover, our results indicate that 

sigma-FC may be especially relevant for distinguishing among vigilance stages respectively 

characterized by higher and lower probability of conscious experiences during sleep, while changes in 

alpha-FC may mainly mark the degree of sensory disconnection rather than the level of consciousness 

per se. 

 

Contribution of connectivity-based metrics to the classification of vigilance stages. Relative 

variations in brain activity that characterize distinct vigilance stages may be efficiently captured 

through the analysis of signal power in classical frequency bands. Of note, however, evidence 

indicates that the different stages of vigilance are also accompanied by relative variations in the way 

distinct areas of the brain interact with each other
7
. Here we showed that information granted by FC 

analysis, as determined using wPLI and wSMI metrics, provides complementary information with 

respect to power-based features. In fact, while individual FC metrics showed a lower accuracy (58-

60%) at discriminating the four examined stages of vigilance (W, N2, N3, REM) with respect to 

power-based features (~67%), their inclusion in the model considerably increased the overall 

accuracy, which reached ~80%. The adopted LDA classifier, at each one of its two folds, was trained 

on one group of subjects and tested on a separate group of individuals, thus supporting the 

generalisability of our observations. 

Importantly, combining power-based features and features based on only one connectivity metric 

(either wPLI or wSMI) led to a ~10% increase in accuracy relative to power-features alone, while the 

addition of a second connectivity metric only determined a further ~5% gain in accuracy. However, 

only the combination of power-based features with both wPLI- and wSMI-based features determined 

a significant accuracy increase with respect to the classifier based on relative power alone, thus 

suggesting that combining multiple FC-features may be advantageous for the purpose of sleep-stage 
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classification. It should be noted however, that our main aim was to directly evaluate and compare the 

information content of simple power and connectivity features, without considering other indices 

often employed by previous studies on automated sleep stage classification
53

. Such indices include 

EEG features extracted from either the time domain, the frequency domain, or the time-frequency 

domain, as well as complexity and non-linear indices. In this respect, we cannot exclude that other 

types of features could provide a similar information content with respect to connectivity-based 

indices. Further studies will be necessary to clarify this issue. Another aspect to consider is that 

different classifiers may have a different performance and provide partially different results. 

However, an exploratory analysis performed in our dataset, showed overall similar performance levels 

for LDA, quadratic discriminant analysis (QDA) and Naïve Bayes classifiers (Supplementary Figure 

S8), thus implying that the selected classification approach did not have a major impact on our results. 

Interestingly, a specific evaluation of the contribution provided by individual features showed that 

delta-power is the most relevant feature for the cross-participant classification for all vigilance stages 

and carries the most information at the within-subject level. Other relevant features included several 

FC-features based on both wPLI (sigma-wPLI, delta-wPLI) and wSMI (sigma-wSMI, alpha-wSMI). 

Overall, these results indicate that the inclusion of FC-based features in the classification of vigilance 

stages can lead to a higher accuracy with respect to using power-based features alone. Indeed, the 

model including features based on power and both connectivity metrics led to a significantly higher 

accuracy relative to models based on single feature types (power, wPLI, wSMI); however, we found 

no significant differences between the model encompassing all feature types and models including 

features based on power and only one FC-metric. Nevertheless, it should be kept in mind that a lack 

of statistical significance does not necessarily imply an equivalence of the compared models, and that 

our results also confirmed previous evidence indicating that wPLI and wSMI provide partially distinct 

and complementary information. In fact, we found that the two FC-metrics have a relatively low 

redundancy with respect to each other and a significantly different degree of redundancy with respect 

to signal power. 

 

Classification of states with high or low levels of consciousness or disconnection. Previous 

works reported differences in delta
15,17,54

 and alpha
17,55–57

 connectivity between states 

characterized by high or low levels of consciousness. These studies compared healthy adult 

individuals and patients in unresponsive wakefulness syndrome (UWS) or minimally 

conscious state (MCS), or the same subjects before, after and during anaesthesia. However, 

any valid metric of consciousness should be able to identify differences between wakefulness 

with awareness and all states associated with a reduced level of consciousness, including 

dreamless sleep
58,59

. Thus, here we investigated whether, in line with previous studies, FC-

based indices could be used to distinguish between states characterized by a higher level of 

consciousness, that are wakefulness and REM sleep, and states associated with a relatively 

reduced probability of having a conscious experience, corresponding to N2 and N3 sleep
20

. 

The obtained classification model led to a high accuracy (~92%), which was mainly driven 

by a subset of FC- and power-based features. In particular, the strongest contribution to 

accuracy was provided by sigma-wSMI and delta-power, while sigma-wPLI and delta-wPLI 

provided a smaller contribution. Of note, the contribution of delta power and connectivity is 

especially consistent with previous findings indicating a relationship between these 

parameters and changes in the level of consciousness during sleep and in pathological states 

or anesthesia
15,17,54,60

. Variations in sigma-connectivity have been less often reported, but 

may reflect here the occurrence and cortical ‘propagation’ of sleep spindles 
61,62

. In fact, 
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previous work indicates that changes in spindle parameters may be related to the presence of 

conscious experiences during NREM sleep
19

. It should be noted, though, that sigma-power 

did not significantly contribute to classification accuracy. 

The additional classification between wakefulness and REM-sleep, respectively representing 

states of connected and disconnected consciousness, revealed an important contribution of 

alpha-FC (wSMI) to classification accuracy (other features included delta-power and theta-

power). As mentioned above, this feature did not contribute instead to the distinction between 

states characterized by high or low levels of consciousness. Based on this finding, we suggest 

that alpha connectivity may mainly mark disconnection or disengagement from the external 

environment rather than the current level of consciousness, in line with recent findings 

describing a suppression in TMS-evoked alpha activity during disconnected consciousness in 

REM sleep 
22

. 
Interestingly, delta-power appeared among the most relevant features for all tested classifications. 

Stage-related variations in this parameter may depend on the occurrence and cortical spreading of 

sleep slow waves (0.5-4Hz). Indeed, the sleep slow wave, which marks temporary neuronal off-

periods at cortical level, has been suggested to interrupt the causal flow of information among brain 

areas, thus impairing the possible emergence of conscious experiences in both NREM and REM 

sleep
21,63,64

. Moreover, sensory-evoked slow-wave-like events (i.e., K-complexes) have been 

suggested to also have a direct role in the relative disconnection that characterize sleep through the 

quenching of incoming sensory information
65–68

. Of note, evidence indicates that delta waves may 

have a role in sensory disconnection also during REM sleep
69

. Indeed, slow waves similar to those of 

NREM have been described in primary sensory cortices during this stage
4,69,70

. In addition, recent 

work demonstrated that the processing of informative stimuli is significantly reduced during rapid eye 

movements 
71

, which are in turn associated with peculiar centro-parietal delta waves called sawtooth 

waves
4
. Importantly, while artifacts related to eye movements could represent a non-neural source of 

delta activity in REM sleep, a relevant contribution to our results is unlikely. First, the ICA-based 

artifact rejection allowed to strongly reduce all sources of artifactual activity. Second, global power 

and FC values were computed using the median across electrodes, thus reducing the possible impact 

of residual extreme artifactual activity. Finally, a control analysis indicated that similar classification 

accuracies were obtained for power-based features computed using all electrodes or after exclusion of 

electrodes located around the eyes, on the cheeks and on the neck. Specifically, the accuracy obtained 

for the full set of electrodes (N=257) was 92.9 ± 3.9%, while the value obtained using the same 

features and the reduced set of electrodes (N=165) was 92.1± 4.0% (p > 0.05; CI [-0.042, 0.063]). 

These observations indicate that the key contribution of delta activity to the distinction between 

wakefulness and REM sleep was likely due to the presence in the latter of sawtooth waves and/or 

slow-wave like activity. 

 

Limitations of the study. In the four-way classification of vigilance stages, the model including 

features based on power and both connectivity metrics led to a significantly higher accuracy relative 

to models based on single feature types (power, wPLI, wSMI). However, we found no significant 

differences between the model encompassing all feature types and models including features based on 

power and only one FC-metric, as well as between these latter models and the model relying on 

power-based features alone. In this light, while our findings are consistent with previous observations, 

indicating that wPLI and wSMI provide useful and complementary information
8
, further 

investigations will be necessary to clarify the unique contribution of each of the two metrics in 

characterizing brain connectivity changes across vigilance stages.  
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While it has been shown that the probability of dreaming in NREM sleep is around 50% (across N2 

and N3) as compared to 80-100% in REM sleep and wakefulness
21

, we did not directly assess the 

presence of conscious experiences and the level of consciousness in the present data. Similarly, we 

did not directly assess the level of relative sensory disconnection. Therefore, analyses investigating 

the power- and connectivity-based correlates of consciousness and disconnection should be 

considered as preliminary. Future studies should include within-stage analyses comparing conditions 

with or without conscious experiences and with low or high responsiveness to external stimuli 

(high/low arousal threshold). Moreover, here only the whole-brain, median power and connectivity 

across channels were used, and topographic differences in the distribution of evaluated features were 

not included in the LDA classifiers. However, recent studies clarified that local variations in brain 

activity may determine significant changes in the level of consciousness within and across sleep 

stages
19,21

. Thus, the inclusion of topographic information could be expected to increase classification 

accuracy. Relatedly, it would be also important for future studies to investigate whether considering a 

smaller sensor layout would lead to similar results with respect to those obtained here using hd-EEG 

with 257 electrodes
72

. 

Importantly, accuracy values obtained in our analyses are likely to represent an overestimation of true 

accuracies for the tested models. In fact, the same data sets used for feature selection were also used 

for model testing. We note however that our present aim was not to obtain an exact estimate of 

accuracy to determine the absolute validity of our tested models, but rather to evaluate the relative 

contribution of distinct power and connectivity features. Accuracy values obtained using distinct 

training (N=8), validation (N=4) and testing (N=12) sets are reported in Supplementary Figure S9. 

Importantly, while this procedure led to overall lower accuracy values (potentially also due to the 

smaller number of subjects included in the training set), the main selected features are largely 

consistent with those obtained in our main analyses reported in Figures 1, 3 and 4 (also see 

Supplementary Figure S10).  

 

Conclusions 

 

Our results demonstrate that changes in brain activity across sleep stages are better characterised by 

the combined use of the signal power and the two connectivity metrics wPLI and wSMI, relative to 

both individual connectivity approaches and power-based indices alone. In line with previous studies 

regarding the neural correlates of consciousness, present results also showed that variations in delta 

power and connectivity are among the most relevant classification features. On the other hand, in 

contrast to previous works, alpha-connectivity did not contribute to the classification of states with 

high and low levels of consciousness, and was instead found to represent one of the best features for 

distinguishing between wakefulness and REM sleep, a state typically characterized by vivid conscious 

experiences. In this light, present results suggest that connectivity changes in the alpha range could 

mark disconnection from the external environment rather than the level of consciousness per se. 

Overall, our results indicate that connectivity metrics provide relevant, complementary information 

with respect to metrics based on signal power, and also show that the application of connectivity 

approaches with different sensitivity to linear and nonlinear interaction dynamics may allow to 

achieve a more complete description of brain activity across different behavioural and vigilance 

states.  
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Figure Captions 

 

Figure 1. Four-way classification of W, N2, N3 and REM vigilance stages. (A) LDA accuracy for 

tested feature sets in the classification of W vs. N2 vs. N3 vs. REM sleep. The top values reported in 

each box indicate the mean accuracy across bootstrap iterations (marked by a white dot), while the 

bottom values indicate the number of included features F based on the forward selection procedure. 

(B) Differences among models based on different feature-sets (bootstrap tests). The dark-colored red 

(row > column) cells indicate significant differences between compared models (FDRq < 0.05), while 

the light-colored cells indicate P < 0.05, uncorrected. For these cells, the corresponding confidence 

intervals (2.5% and 97.5% CI; α = 0.05) are shown. The grey cells indicate non-significant differences 

(P > 0.05). (C) Forward feature selection for the classification of W vs. N2 vs. N3 vs. REM sleep 

(whole-brain analysis). The blue continuous line represents the mean classification accuracy across 

bootstrap iterations, while the dashed lines represent the 2.5% and 97.5% confidence interval 

boundaries on the accuracy estimate. The dashed grey vertical line indicates the threshold for which 

inclusion of additional features did not improve either mean or median classification accuracy.  

Figure 2. Statistical comparisons between stages of vigilance in delta, theta, alpha, sigma, beta and 

gamma frequency bands for whole-brain (A) relative power, (B) wPLI and (C) wSMI. Red dots 

indicate subjects of dataset-1, while blue dots indicate subjects of dataset-2. * p < 0.05, Bonferroni 

correction across all performed comparisons for each considered metric. 

Figure 3. Two-way classification of W+REM vs. N2+N3 vigilance stages. (A) LDA accuracy for 

tested feature sets in the classification of W+REM vs. N2+N3 vigilance stages. The top values 

reported in each box indicate the mean accuracy across bootstrap iterations (marked by a white dot), 

while the bottom values indicate the number of included features F based on the forward selection 

procedure. (B) Differences among models based on different feature-sets (bootstrap tests). The dark-

colored red (row > column) cells indicate significant differences between compared models (FDRq < 

0.05), while the light-colored cells indicate P < 0.05, uncorrected. For these cells, the corresponding 

confidence intervals (2.5% and 97.5% CI; α = 0.05) are shown. The grey cells indicate non-significant 

differences (P > 0.05). (C) Forward feature selection for the classification of W+REM vs. N2+N3 

vigilance stages. The green continuous line represents mean classification accuracy across bootstrap 

iterations, while the dashed lines represent the 2.5% and 97.5% confidence interval boundaries on the 

accuracy estimate. The dashed grey vertical line indicates the threshold for which inclusion of 

additional features did not improve either mean or median classification accuracy. 

 

Figure 4. Two-way classification of W and REM vigilance stages. (A) LDA accuracy for tested 

feature sets in the classification of W vs. REM-sleep. The top values reported in each box indicate the 

mean accuracy across bootstrap iterations (marked by a white dot), while the bottom values indicate 

the number of included features F based on the forward selection procedure. (B) Differences among 

models based on different feature-sets (bootstrap tests). The light-red (row > column) and the light-

blue (row < column) cells indicate P < 0.05, uncorrected (no effects survived after FDR correction for 

multiple comparisons). For these cells, the corresponding confidence intervals (2.5% and 97.5% CI; α 

= 0.05) are shown. The grey cells indicate non-significant differences (P > 0.05). (C) Forward feature 

selection for the classification of W vs. REM-sleep. The red continuous line represents mean 

classification accuracy across bootstrap iterations, while the dashed lines represent the 2.5% and 
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97.5% confidence interval boundaries on the accuracy estimate. The dashed grey vertical line 

indicates the threshold for which inclusion of additional features did not improve either mean or 

median classification accuracy. 

Figure 5. Mutual Information vs. LDA classifier accuracy. Each plot represents the single-feature 

LDA performance (y-axis) with respect to the mean within-participant MI conveyed by the feature 

about the vigilance classes (x-axis) for all three tested comparisons: (A) W vs. N2 vs. N3 vs. REM, 

(B) W+REM vs. N2+N3, (C) W vs. REM. For each point, the horizontal black lines represent the 

standard error of the mean for MI, while the vertical lines indicate the standard deviation across LDA 

bootstrap estimates. 

Figure 6. Relative Redundancy among features (redundancy as computed by partial information 

decomposition divided by the sum of redundancy, synergy, unique X and unique Y information 

values). The three matrices display the results based on partial information decomposition (PID) for 

the three tested comparisons: A) W vs. N2 vs. N3 vs. REM, B) W+REM vs. N2+N3, C) W vs. REM. 

A higher value (darker colour) indicates higher redundancy between two features. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa247/5998102 by IM

T Advanced Studies user on 18 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

Acknowledgments 

This work was supported by the Swiss National Science Foundation (Ambizione Grant 

[PZ00P3_173955] to F.S.), the Divesa Foundation Switzerland (to F.S.), the Pierre-Mercier 

Foundation for Science (to F.S.), the Bourse Pro-Femme of the University of Lausanne (to F.S.), the 

Foundation for the University of Lausanne (to F.S and G.B.), the Wellcome Trust [214120/Z/18/Z] (to 

R.A.A.I.) and an International Brain Research Organization Pan-European Regional Committee short-

term postdoctoral fellowship (to G.B.). The authors wish to thank Giacomo Handjaras and Denis 

Engemann for their contribution to the definition of methodologies adopted in the present work. 

 

Author Contributions 

Conceptualization: L.S.I., G.B.; Data acquisition: J.C., G.B., M.B., F.S.; Data 

preprocessing: J.C., G.B., M.B., L.S.I.; Data analysis: L.S.I.; Methodology: L.S.I., R.A.A.I., 

G.B.; Results interpretation: L.S.I., G.B., F.S., R.A.A.I.; Wrote the manuscript: L.S.I., G.B.; 

Revised and edited the manuscript: All authors. 

 

Disclosure Statement 

Non-financial Disclosure: none. Financial Disclosure: none. 

 

Data Availability 

The data and scripts that support the findings of this study are available on request from the first 

corresponding author. The data are not publicly available due to privacy or ethical restrictions. 

 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa247/5998102 by IM

T Advanced Studies user on 18 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

Figure 1 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa247/5998102 by IM

T Advanced Studies user on 18 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

Figure 2 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa247/5998102 by IM

T Advanced Studies user on 18 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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