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Summary  

Isogenic microbial populations, even when exposed to homogeneous conditions, display cell-to-cell 

differences in metabolic traits, phenomenon also known as metabolic heterogeneity (MH). The outcome 

of MH can affect the whole function of a population, impacting fitness, metabolic processes, or even the 

effectiveness of infections treatment. Understanding cell-to-cell heterogeneity and its main drivers may 

thus have huge implications in medical microbiology, concerning antibiotic response and resistance or 

biofilm formation; in biotechnology with respect to achievement of good performance and high yield in 

largescale; in environmental microbiology regarding the impact on biodegradation processes and 

biogeochemical cycles in natural ecosystems. Despite its importance in many fields, a ‘unit measure’ for 

heterogeneity is currently missing; moreover, the triggering factors and its specific ecological role are not 

yet fully understood. 

In the present thesis, the MH in microbial populations has been studied at single-cell level, to i) 

understand the influence of abiotic and biotic factors, and emerging contaminants, i.e. antibiotics, on its 

occurrence; ii) understand its ecological role at different scales, from model organisms to natural 

communities. Chemical Imaging with nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) was the 

technology of choice due to the high spatial resolution combined with high precision, which allow for 

qualitative and quantitative measurements at single-cell level.   

During my work, I have optimized protocols for the preparation of microbial cells to preserve their 

morphological and chemical integrity prior to nanoSIMS analysis. This was necessary to reduce as much 

as possible related artefacts and thus biases on the quantitation of metabolic activity of single cells.  

At first, I proposed two methods for quantitation of MH: the Heterogeneity Coefficient (HC), 

applicable when populations follow asymmetric, but still unimodal, distribution and the Cumulative 

Differentiation Tendency Index (CDTI) useful for populations following multimodality. The developed 

indices are useful to quantitate heterogeneity in different contexts and with different techniques.  

MH in isogenic populations has been shown to increase under nutritional and spatial limitations or 

fluctuating environments, however little is known on the MH of bacteria under favorable and non-limiting 

growth conditions, and its triggering factors. Therefore, using three different model species, I have 

investigated on the effects of growth substrates, substrates’ concentrations, and electron acceptors on their 

anabolic activity at single-cell level. The main finding was that all tested microbial populations did show 

MH under non-limiting conditions although none of the tested abiotic factors prevailed as a main driver 

of MH.  

I subsequently studied the role of biotic factors e.g. other microorganisms on the bacterial functional 

heterogeneity. A synthetic system consisting of hyphal forming pseudo-fungi and two bacterial species, 

used as reporter system, grown in co-cultures was used. The results showed that bacterial functional 

heterogeneity in ‘horizontal gene transfer’ was observed mainly in the vicinity of hyphal surface, 

suggesting that such biotic interactions may increase bacterial MH in these sites.  
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In nature, beside abiotic and biotic factors, microbial communities are exposed to several stressors, 

even when nutritional conditions are non-limiting. As last part of my thesis, I therefore focused on the 

impact of antibiotics on water samples collected from the river Holtemme (Hartz, Germany) at two 

different sampling sites. Pristine and wastewater treatment plant-affected waters were treated with two 

antibiotics, at two different concentrations, and stable isotopes to investigate on the communities’ 

metabolic activity upon 24 hours exposure. Focusing in particular on two specific phylotypes, I found that 

antibiotics strongly affect the assimilation rates and this corresponded to an increase of bacterial MH, 

which impacted more Carbon than Nitrogen activity.  

To conclude, in my thesis I proposed, optimized and successfully applied sample preparation protocols 

for chemical imaging and electron microscopy. I developed two methods for quantitation of 

heterogeneity that could be exploited by other researchers to investigate not only metabolic but also 

phenotypic, morphological and functional heterogeneity. I provided evidences for the first time on MH 

occurring under non-limiting conditions in isogenic microbial populations, thus shedding light on key 

factors and its mechanisms. Because the microbial MH of different bacterial strains was triggered in a 

growth-conditions-specific manner, this highlights the necessity to study this phenomenon more deeply to 

understand its implications in each of the studied processes in the related fields and in nature. Metabolic 

interactions are constantly taking place in natural environment shaping the functions of the ecosystems. I 

brought insights on how these microbial interactions can play a role in the functional and MH of synthetic 

and natural systems. Emerging contaminants, such as antibiotics, had a strong impact on the microbial 

metabolic activities, thus undermining their contribution to the Carbon and Nitrogen cycling and 

consequently altering microbial-mediated processes, e.g. remineralization. The targeted phylotypes 

increased their MH but never showed cessation of Carbon or Nitrogen assimilation upon antibiotic 

exposure, suggesting that cell-to-cell metabolic diversification could help microbial populations to better 

thrive in their environments despite the presence of the stressors. 

With my thesis, I provided more insights on the phenomenon of MH at different ecological scales, 

shedding light on its dynamics in microbial populations and its potential ecological role in nature. 

 

Keywords: Metabolic heterogeneity; isogenic populations; non-limiting conditions; abiotic and biotic 

factors; emerging contaminants; single-cell analysis; nanoSIMS; stable isotope probing 

(SIP); sample preparation; heterogeneity quantitation; assimilation-rate quantitation.  
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1. Introduction 
1.1 Phenotypic heterogeneity: the origins  

In the 1864, Louis Pasteur scientifically proved the existence of microorganisms laying the 

groundwork for the flourishment of microbiology field as we currently know. Decades later Robert Koch 

developed a system for growing bacteria on specific media for their characterization, introducing the 

concept of pure culture. During the Second World War, Jacques Monod started his studies on bacteria 

growth behavior suggesting the still valid theory of exponential growth and thereafter the diauxic phase 

growth when microorganisms are feed with two sources of sugar 1,2. All these discoveries and many others 

shade light on the physiology and the behavior of microbial populations that were considered as assembly 

of genetically identical cells originating from a single-common-ancestor cell. Whether growing in agar 

plate forming single visible colonies or in liquid media forming suspensions, microbiologists usually 

referred to these as monoclonal or isogenic populations 2,3. 

The genetic makeup of a cell, i.e. the set of genes on the chromosome that determines hereditary 

characters, constitutes its genotype while the visible effects, i.e. the set of characters that the cell manifests, 

composes the phenotype, which depends on the interactions between genotype, epigenetic and external 

factors 4. Therefore, the phenotype can be considered every observable feature of a cell in its morphology, 

physiology, function, and behavior. When translating this concept to an isogenic population, it is implied 

that the offspring or a clonal cell are supposed not only to be genetically identical, i.e. isogenic, but also 

morphologically, physiologically, and metabolically identical with the ancestor cell.  

 

However, since the early 20th century, many evidences have shown that there is a functional cell-to-

cell variability within cells belonging to a monoclonal population, phenomenon nowadays knows as 

phenotypic heterogeneity. Benzer was the first one talking about homogeneity referring to the 

simultaneous response of the cells to a certain stimulus and hence the simultaneous and equal kinetics of a 

certain enzyme formation 5. He demonstrated the homogeneous induction of beta-galactosidase in a 

population of Escherichia coli under saturated concentration of enzymatic inducer and gratuity conditions, 

i.e. neither the enzyme itself nor its inducer affect the general cellular metabolism 5. On the contrary, he 

noticed that when lactose is used as both carbon source and inducer, the induction of beta-galactosidase 

enzyme resulted heterogeneous among cells within the same population. This observation paved the way 

to the pioneer work about cell-to-cell variability by Novick and Weiner 6. Always focusing on the 

induction of beta-galactosidase enzyme in E. coli, the authors discovered how low inducer concentrations 

caused the split of the culture in two subpopulations: one expressing enzyme at full rate and the other not 

expressing it at all. Interestingly, they were already raising the issue on the bias of observing an “average 

rate” that does not mirror the behavior of individual cells in the culture.  

Following this study, Cohn and Horibata showed evidences that the state of the two subpopulations, 

induced or not induced, was “transmitted” clonally or cytoplasmically inherited to the descendant microbial 

cells. This “cytoplasmic entity”, that today it would probably called translated enzyme (upon induction) 
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was responsible for the discontinuity in the synthesis of this beta-galactosidase enzyme by individual cells. 

In other words: if the daughter cells received the cytoplasmic entity, the lactose permease, these cells were 

easily induced and produced enzymes always at maximum rate since it was an autoinductive and 

autocatalytic system; if the daughter cells received just a very small amount or not at all, the cells were 

insensitive to induction 7. The authors extended the concept of heterogeneity in autocatalytic systems also 

to the galactozymase of the yeast previously shown by Spiegelman 8.  

Another groundwork about cell-to-cell heterogeneity regarded Bacillus subtilis and the competency, 

namely the capability to acquire external DNA fragments from the surrounding environment under 

stressing conditions. The “competent” cells were different from “non-competent” ones in cell density, 

water permeability and number of chromosomes per cell, but they were able to revert when the conditions 

became again favorable 9,10. From then on, just recently in the last few decades a joint and increased 

research effort began, providing remarkable breakthroughs on this topic with both theoretical 

understanding and empirical evidences.  

Phenotypic heterogeneity is now a common and broad term which indicates cell-to-cell variation in 

morphological, physiological, and functional traits among genetically identical cells. In the following 

chapters, the most important discoveries in the recent years are discussed, as well as the current challenges 

and open questions about phenotypic heterogeneity and the techniques that allowed for a better 

understanding and comprehension of this topic.  

 

1.2 Known sources of phenotypic heterogeneity  

Many decades ago, when the heterogeneity was first observed in the scientific community, single 

microbial cells were difficult to investigate with the existing methodologies. Therefore, the concept of 

individuality was more challenging to prove. Not all the above-mentioned hypotheses in fact could be 

experimentally addressed because of the lack of single-cell techniques. The problem was partially 

overcome with genetic engineering which was flourishing at the end of the Nineties 11. One of the main 

questions that challenged and still challenges the scientists is: which are the molecular mechanisms behind 

the occurrence of phenotypic heterogeneity? 

 

1.2.1 Cellular noise  

Most of the biological processes inside the cells, e.g. gene expression, transcription and translation, are 

stochastic, that is they do not follow fixed principles or rates but they are rather subjected to randomness 

and environmental cues 12. Such cellular noise derives from the fact that biochemical reactions depend on 

a distinct and small number of molecules, meaning that both random encounters of few macromolecules 

and fluctuations in their transitions or conformational states inside the cell occur in parallel 13. The noise 

in turn can be distinguished in two sources/occurrences: ‘‘intrinsic’’ noise, the inherent stochasticity of 

biochemical processes, and the ‘‘extrinsic’’ noise, fluctuations in the amounts of other cellular components 
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that indirectly induce variations in the final process 14,15 (Fig. 1). Cell-to-cell variations in the expression 

of a single gene will therefore be the result of both intrinsic and extrinsic contributions of noise 14-16. 

However, the first experimental evidence of noise in gene expression showed that intrinsic noise could be 

prevalent and most importantly that such noise could be the cause of phenotypic heterogeneity in isogenic 

populations 17. If two genetic elements 

were introduced into the chromosome of 

Escherichia coli under control of the 

same promoter, the cyan and the yellow 

allele of green fluorescent protein (GFP), 

each cell should express identical and 

constant levels of the two fluorescent 

proteins. Instead, different cells showed 

a pronounced variability in absolute 

fluorescence levels and the ratio between 

the two colors 17 (Fig. 2) indicating a 

strong cell-to-cell variability. 

 
Figure 1. A schematic representation of the known sources of  
stochasticity in the manifestation of phenotypic heterogeneity. 

 

 

A parallel study with an isogenic population of Bacillus subtilis investigated the contribution of 

transcription and translation to the cellular noise. The authors used two different methods: an inducible 

promoter which controlled the expression of a downstream GFP protein for regulating transcriptional 

efficiency and different point mutations in the ribosome binding site (RBS) and the initiation codon of GFP 

protein for translational efficiency 18. The higher the translational efficiency the stronger the variation in 

gene expression or, in other words, high translation rates induced bigger protein fluctuations and 

consequently higher phenotypic variation within individual cells 18. Many regulatory proteins control the 

synthesis of several downstream products and translational noise can be a check point to regulate in turn 

the noise in the gene expression cascade. Low transcription but high translation rates produced a fluctuating 

burst of proteins inside the cell and hence more noise. In contrast, high transcription but low translational 

rates resulted in a constant flood of transcripts that could not be translated, making the translation apparatus 

the bottleneck of the cycle but overall reducing the noise 18,19. This could explain why most of the promoters 

upstream of important constitutive genes are less efficient in transcription and translation than other 

operons 19,20. 
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Figure 2. Intrinsic and extrinsic noise in gene expression. A) shows a schematic representation of gene expression in 
an isogenic population: in the absence of intrinsic noise the two fluorescent proteins, under the control of the same 
regulator, fluctuate in a similar manner and each cell will have the same amount of these proteins (same yellow color), 
therefore homogeneity. On the contrary, B) shows the contribution of intrinsic noise which gives rise to cell-to-cell 
differences in the expression of the two fluorescent proteins and therefore heterogeneity (different colors). Right 
panels show corresponding fluorescent images of Escherichia coli strain when the promoter is repressed A) or when 
inducer is added for increasing the intrinsic noise B). Pictures are modified from 17. 
 
 
 

Regulatory feedbacks can also be responsible of cellular noise. In order to limit the entity of 

fluctuations and noise, regulatory mechanisms, amplification and exploitation of noise usually interact in 

the complex cellular networks involving multiple feedback loops 21. The cells implement auto-regulatory 

mechanisms, i.e. negative feedback loops in genetic circuits with the aim to bring back the stability into 

the system 22. Negative feedbacks regulate and provide homogeneous distribution of transcriptional 

repressors within the cell, but they are not the only biochemical processes involved in the regulatory 

mechanisms 22. Positive feedbacks include, for example, the well-studied phenomenon of quorum sensing 

or pheromone sensing 23-25, where a series of positive feedback loops are responsible for both input and 

output of signal transmission.  

Moreover, the so-called Feedback-Based Multistability can take place, typically involving 

interconnected positive and/or negative feedbacks. Intuitively, in such case the cellular noise increases 

accordingly due to the many turning points that have to be orchestrated 26. The phenotypes then are 

responsible for defining the function, structure and physiology of the entire population 27. 

 
These evidences and many others 15,28-31 suggested that noise in biochemical networks accounts for one of 

the main sources of cell-to-cell variations (Fig. 1). 



 

 
7 

 

1.2.2 Bistability and Multistability  

Stochastic fluctuations in the cellular components and cellular noise can cause different physiological 

or functional states, which eventually cause the co-occurrence of two or more distinct phenotypes, a 

phenomenon better known as Bistability or Multistability respectively 32-35 (Fig. 3).  

Under the very same surrounding conditions, the interaction between auto-regulatory and cross-regulatory 

mechanisms inside the cells can induce either the shift between two states (Bistability) or the coexistence 

of diverse intermediate stable states (Multistability) 36.  

 

 

 
 

Figure 3. Schematic drawing of the “toggle switch” mechanism in gene expression noise. Stochasticity in gene 
expression and epigenetic mechanisms together with environmental stimuli can trigger the toggle switch in ON state. 
This can stay “ON” in a unimodal fashion A) for the majority of the cells in the population. However, most of the 
time, a subpopulation of cells is blocked in “OFF” state generating a bimodal distribution B) or even in intermediate 
states that will be revealed as multimodal distribution C).   

 

 

 

Theoretical studies have shown that Multistability is favored by the interplay between noise 

amplification and noise compensation resulting from balance between auto- and cross-regulation and hence 

in a series of transient states within the individual cell 37. These various states are usually called switches 

or phenotypic switches and they are essential for the adaptation of the cells (Fig. 3).  
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A feature of bistable system is the so-called “toggle switch behavior” (Fig. 3), which indicates a bi-

phase where ON or OFF states are alternating due to the transient nature of the switches 38. The first 

example of a bistable system in microbial populations was the lactose utilization by Escherichia coli via 

the lac operon 6, 39,7. However, Ozbudak and colleagues have later shown that between the two states of the 

system, induced and not-induced, there were certain intermediate multi-states due to a graded gene 

expression from low to high values 30. 

Very interestingly, the induction of the lac system follows a hysteretic behavior, meaning that the 

process response is not equally bidirectional, rather the reverse transition (i.e. uninduction) has to be greater 

than the forward transition event, (i.e. induction) (Fig. 4). This means that the inducer level must exceed 

the basal concentration level in order to induce the cells; instead from induction to uniduction, the inducer 

concentration has to be much lower than the minimum concentration required for induction 30.This 

behavior is probably responsible of the final ON (induced)/OFF (uninduced) phenotype. 

Bacillus subtilis model organism also offers several examples of bistable systems 34. One of the best 

described is the already mentioned competence, which occurs transiently just during stationary phase or 

stressing conditions 40,41. Noise in comK transcription determined the entry into competency and a bistable 

system determined the reverting process 42,43. The entry into sporulation is another example of 

Bistability 34. The activation of Spo0A, the main regulator for spore formation was activated under nutrient 

limitations and followed ON/OFF switch 44. Likewise, B. subtilis displayed a bistable mechanism in the 

flagellar expression for the switch between motile or sessile phenotype 45-47. 

 

1.2.3 Epigenetics and phenotypic memory 

One of the characteristics of Bistability is the hysteretic behavior (Fig. 4). This feature is in turn 

dependent on two mechanisms: epigenetics, responsible for the inheritance of the phenotypic switches, and 

phenotypic memory, caused by a pool of inherited biomolecules, e.g. intracellular inducers, repressors, 

enzymatic proteins or mRNA, which carry-over the reminiscence of the cells’ past 48-50. 

Epigenetics refers to the fact that the phenotypic changes do not depend on the mutations in the DNA 

sequence but rather on the reversible DNA-assembly modifications or cellular biomolecules 

conformations. Epigenetic mechanisms allow the offspring to inherit the phenotype for one or even many 

generations since they are controlled by DNA methylation, protein auto/phosphorylation, prions, phage 

life cycle shifts, plasmids, transfer of active transcriptional regulators during cell division and protein-

protein fold/conformation 51-53. 

 

The methylation of DNA, for example, is responsible for epigenetic reversible control of the genetic 

makeup, being based on the modification of adenosine and cytosine nucleotides in the DNA. This 

phenomenon, largely known for eukaryotes, has recently attracted attention for prokaryotes studies 51,54,55. 

Methylation of DNA in bacteria directly or indirectly regulates a number of important cellular events 

including DNA repair and replication, cell-cycle progression, gene expression and virulence 54.  
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Figure 4. Schematic representation of 
the hysteretic behavior of a bistable 
system. The system is stable and 
uninduced until the level of inducer 
does not start to increase and 
overcome a positive threshold (green 
sphere). After this point, induction is 
triggered and the system is switched 
ON, then reaching a stable state with 
the maximum level of inducer. In order 
to come back to original uninduced 
state (switch OFF) the process does 
not follow the same path. The inducer 
level inside the cell has to reach a 
negative threshold (red sphere) and 
this reverse transition takes longer 
than the forward one. The difference 
between the “switch ON” and “switch 

OFF” represents the “hysteresis” and it 

represents a typical feature of the 
bistable system.  

 

 

 

For instance, DNA methylation controls the reversible switch of pyelonephritis-associated pili (pap) 

operon responsible for the expression of pili in uro-pathogenic Escherichia coli (UPEC); these pila allow 

the strain to bind epithelial receptors in the bladder. DNA methylation pattern controls the ON/OFF 

expression state of pap operon. The methylation of the proximal site of the promoter activates the 

transcription of pilin as well as the positive feedback between regulatory proteins (PapI and Lrp) and the 

transcription of pap operon (switch ON), while methylation of the distal site of the promoter inhibits the 

process (switch OFF) (Fig. 5-A). The methylation pattern of the operon is imposed by alternating binding 

and unbinding of regulatory proteins to the specific binding site of Dam methylase; hence, this inherited 

pattern is responsible for the phenotypic switch and for the heritable transcription state ON or OFF in UPEC 

strains 56-58 (Fig. 5-A).  

The expression of several operons in Escherichia coli is regulated by a mechanism called chromosome 

superhelicity, supercoils forming DNA-superhelixes. It has been proposed that the coordination between 

chromosomal modifications, energetic levels, and environment signals finely tunes the basal expression of 

many operons in Escherichia coli. Both the chromosomal constraint, imposed by DNA superhelicity and 

the proteins responsible for supercoils can be inherited from the daughter cells that will “receive” the same 

type of regulation 59. 
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Figure 5. Example of phenotypic heterogeneity due to A) epigenetics or B) phenotypic memory. A) is a schematic 
representation of pap operon in Escherichia coli UPEC and its epigenetic transmission to the daughter cells. B) 
Example of phenotypic memory in Bacillus subtilis for the sporulation entry. Figure B) readapted from 60. 

 

 

Phenotypic memory instead results from a transfer, or carry-over, of cellular components from mother 

to daughter cells, which in turn determines the phenotype of the offspring. In such way the cells passively 

acquire the knowledge of the previous environment and the cost of frequent regulatory switches will be 

mitigated 48. An example of this mechanism is the so called “non-inherited resistance”, referred to a 

transient invulnerability of cells to antibiotics purely conferred by a phenotypic switch. This differs from 

the non-(vertically) inherited resistance resulting from transposons, horizontally transferred genes or 

plasmids and mutations in existing genes 61.  

In bacterial populations of Escherichia coli and Campylobacter jejuni subtle changes in gene 

expression, e.g. phage receptors, were thought to be responsible for the phenotype that conferred phage-

resistance, “deciding” about the lysis or non-lysis fate of the entire culture. This phenotypic resistance 

rendered phages unable to kill bacterial cells; these latter were virtually sensitive to the phage infection but 

because of a low transient receptors’ expression, phage adsorption was hindered and the cells were not 

lysed 62. 

Bacillus subtilis is able to switch between a proliferative vegetative state and a dormant state when 

nutrients availability become limiting into the environment. It was recently shown that B. subtilis displayed 

phenotypic memory by remembering the state expressed before entering dormancy 60. The timing of 

sporulation was different at individual level and the population was constituted of early- and late-

sporulating cells. During cell division, the late-sporulating cells “diluted” the amount of metabolic enzymes 
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(in this study alanine dehydrogenase was used as proof of concept) before becoming spores while the 

early-sporulating did not (because they form spores before dividing). When the conditions became 

favorable again, early-sporulating cells were able to reinitiate growth already after a weak nutrient up-shift 

thanks to the carry-over of the pool of alanine dehydrogenase, necessary to promptly reinitiate the 

metabolism and growth. On the contrary, late-sporulating cells needed a strong nutrient up-shift because 

of the lack of such pool and the necessity of enzymatic induction (Fig. 5-B). The authors named this process 

as “first in–first out” and they speculated that this behavior could be widespread among other bacterial 

spore formers 60.  

Phenotypic memory was shown for Escherichia coli grown in microfluidic chambers under cyclical 

glucose/lactose nutritional environment; cells were able to remember the previous metabolic adaptation 

reducing significantly the lag phase between the diauxic shifts 50. The lac operon was shown to be under 

control of two different types of memory: 1) a phenotypic memory, i.e. the “transmitted” cellular 

concentration of lactose, allolactose, lac operon-mRNA and lac proteins; 2) a response memory, i.e. the 

ability of the regulatory network to respond even when the inducing signal is removed. The first type was 

supposed to help maintaining an adapted state for multiple generations when longer shifts in carbon sources 

occurred, the second type took place upon rapidly changing conditions. These two different types of 

physiological memories were suggested to allow for the adaptation of E. coli to a wide range of fluctuations 

depending on their timescale occurrence 50. 

Interestingly, a recently published work has speculated that both mechanisms, epigenetics and 

phenotypic memory can happen in parallel within isogenic populations of E. coli and B. subtilis 63. Each 

of the parental DNA strands is associated to so-called “strand-specific hyperstructures”; these epigenetic 

structures are segregated to different positions during the replication of the chromosome upon cell 

division. The inheritance of one of the parental DNA generated a strand-specific phenotype and it was 

supposed to be responsible for cell-to-cell differences in growth rate; one subpopulation inherited the 

hyperstructures which led to a slow-growing phenotype while the other inherited the hyperstructures 

imposing fast-growing phenotype. In conjunction with this epigenetic transmission, phenotypic memory 

could occur because during cell division there is a partition of RNA polymerases, ribosomes, 

transcription/translation regulators, and DNA-binding proteins. This unequal carry-over of these 

biomolecules in the daughter cells was supposed to contribute to the observed phenotypic switch in growth 

rate 63. 

Although the occurrence of a certain genetic variability cannot be excluded, especially considering the 

speed of bacterial replication and growth, it has to be considered that genetic mutations will not be really 

beneficial for the population as a whole. Indeed, if a mutation is fixed in the DNA and is transmitted to the 

offspring, the new mutants will scarcely adapt to the environment as soon as sudden fluctuations occur 

again. In such scenario, non-genetic variability would be preferred: while cells keep bearing the original 

genetic makeup, their phenotypes will adapt faster and concurrently to the external conditions. On the other 

hand, the genetic variability could become beneficial when the environmental changes last for long periods; 

in this case, the new phenotype will be better adapted to a permanent change. 
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1.3 Phenotypic heterogeneity in metabolic traits: metabolic heterogeneity 

The stochastic nature of biochemical processes affects the metabolic activity within isogenic 

populations 15,17,29,64,65. Cell-to-cell variability in metabolic traits is usually referred to as metabolic 

heterogeneity (MH) 66,67 since the observed phenotype in this case would be a specific metabolic function. 

Metabolic pathways are controlled by cascades of molecular events, in turn tuned by few key regulator 

factors; stochastic fluctuations of these factors were supposed to be responsible for the outcome of 

subpopulations, which will perform metabolically differently 15,19. Theoretical models have shown that 

asymmetric partitioning of metabolic enzymes or large enzyme complexes may cause immediate metabolic 

differences in daughter cells upon division, being both gene expression and genome duplication random 

processes 68. The environment surrounding the cells strongly influences the metabolic behavior of the 

population but which factors are mainly responsible for the display of MH is still an open question.  

So far, it has been suggested that the major environmental driver of MH is nutrients limitation, 

especially when occurring together with temporal and spatial fluctuations 67. In clonal populations 

subjected to scarcity of nutrients, electron donors or electron acceptors, MH increased 69-71; fluctuations of 

such resources such as nutrient up-shift after long starvation were responsible for the outcome of 

subpopulations with distinct growth phenotypes and metabolic activities 72. Spatial limitation was also 

shown to be a driver of MH. E. coli cells grown on microfluidic chambers created nutrient gradients 

alongside the channels with the subsequent formation of two distinct subpopulations that cross-feed each 

other 73; this spatial distribution created heterogeneous microenvironments which caused the generation of 

subpopulations with different growth- and gene-expression rates. Such differences were suggested to allow 

the subpopulations to become stress resilient during alternating substrate injection 73 and antibiotic 

exposure 74. Besides the special distribution and differentiation within biofilm 75, fluctuations in space and 

time favored the metabolic codependence, i.e. peripheral and internal cells alternated cyclically metabolic 

phases with a reciprocal benefit, on one side preventing the starvation of the inner biofilm and on the other 

side allowing for colony growth toward the periphery 76. 

Nutrients shifts from glucose to the gluconeogenic substrates induced the emerging of two cellular 

subpopulations: one growing and one non-growing, indicating heterogeneous adaptation occurring just 

after the shift 64. Such responsive diversification was suggested to reside at the core of central metabolism 

and strongly depended on the metabolic fluxes within each individual cell. The occurrence of two distinct 

growth phenotypes underlaid a bistable control: if the flux inside the cells was below a certain watershed, 

cells chose the non-growing phenotype entering the dormant state, otherwise cells continued to grow 

quickly switching to gluconeogenic substrates 64. 

Single cells are challenged for the optimization of their fitness in temporally and spatially fluctuating 

environments. Displaying cell-to-cell variations has functional consequences because it allows the whole 

population to benefit in fitness or survival even if one or more subpopulations will succumb 77. Besides 

stochasticity, isogenic microbial populations have evolved two main strategies to display phenotypic and 
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MH heterogeneity, which reflect different response mechanisms to fluctuating and ever-changing 

environments: bet-hedging 78 and division of labor 79 (Fig. 6)  31,32,77,80-82.  

The bet-hedging strategy, literally counterbalancing the wager, does not require a real interaction or 

communication within different members of the population but it requires a certain investment from the 

cells. This risk-spreading strategy pays back because when the fluctuation is gone the population as whole 

will survive, in spite of the subpopulation that will not 83-85.  

When facing a diauxic shift from glucose to a less-preferable carbon source like cellobiose, isogenic 

populations of Lactococcus lactis differentiated in two subpopulations, one dividing and continuing 

growing on the new substrate and the other stopping growing 86. The cellobiose consumption from 

individual cells strongly depended on the stringent response, a negative control of catabolism for 

minimizing energy use, and the carbon catabolite repression, a regulatory system which determines the 

order and the cell preference of multiple sugar sources. The interplay between these two mechanisms 

generated the alternation of metabolic states, presumably as result of bet-hedging strategy. Interestingly, 

the non-growing phenotype on cellobiose was able to resume growth on another source much faster than 

cellobiose-specialized cells; the promptness of individual cells to adapt to fluctuations in the environment 

further suggested the evolutionary advantage of MH 86. 

 

 

 
Figure 6. Different ways of displaying heterogeneity in microbial populations. Stochasticity is a constitutive feature 
of biological systems. Bet-hedging and division of labor are different strategies used by microorganisms to take 
advantage from the diversification within the population and increase its survival under changing environmental 
conditions. Image modified from 77. 
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The division of labor strategy consists in the formation of two or more subpopulations, each having a 

different task in a shared pathway, for the common benefit of the population. The division of labor 

involves interactions between cells or subpopulations and is based on a collective behavior rather than a 

selfish and competitive one as for the bet-hedging. Environmental fluctuations over time, such as shifts in 

temperature or from oxic to anoxic conditions, boosted MH of Candidatus Microtrhix parvicella 87. Within 

the same filament, individual Ca. M. parvicella cells differed a lot in substrate uptake providing an example 

of division of labor. The high activity of some cells in the same filament was suggested to support the low 

or non-activity of the rest, enabling the whole population to better cope with the ever-changing environment 

inside biological wastewater treatment plants 87. Microfluidic experiments with B. subtilis showed that 

bacteria engage in division of labor when growing on two carbon sources 88. Co-consumption of glucose 

and malate usually causes the accumulation and secretion of high levels of acetate, which in turn may be 

toxic for the cells 89. However, under these conditions two different subpopulations emerged: one growing 

on glucose and malate and secreting high level of acetate and the other specialized on the conversion of 

acetate to acetoin, which was nontoxic for the cells. This subpopulation appeared just when acetate started 

to accumulate in the medium, showing the advantage of such metabolic specialization for the benefit of the 

whole population 88. 

 

Interestingly in some case division of labor strategy can be the consequence of a bet-hedging scheme 

in which bacteria engage, as for example in various biodegradation pathways. Pseudomonas putida mt-2 

isogenic populations degrade aromatic compounds via the TOL plasmid 90. The TOL transcriptional 

network encompasses two operons that encode for i) the upper pathway, which serves to process m-xylene 

or toluene and ii) the lower pathway, which encodes for meta-enzymes for the conversion of intermediates 

such as benzoate or 3-methyl benzoate in central metabolic intermediates, i.e. pyruvate and acetaldehyde. 

In the presence of m-xylene and succinate, the TOL network followed bimodal activation, resulting in a 

subpopulation able to grow on m-xylene and a subpopulation growing just on succinate 91. Besides this 

bet-hedging strategy, it has been shown that the cells using the TOL plasmid engaged in different segments 

of m-xylene catabolic pathway, i.e. one subpopulation activated just the upper pathway, providing 

intermediates to the other subpopulation, which activated just the lower pathway 92. This metabolic 

specialization of P. putida mt-2 was suggested to be an example of division of labor as strategy used to 

balance the cost-benefit of an energy‐demanding biodegradation process 93. 

  

There is a growing body of evidences supporting the phenomenon of MH and nowadays it is receiving 

a lot of interest because of its implications in many fields especially medicine and biotechnology 66,94-99. 

The reason resides in the fact that striking and insightful examples of physiological and metabolic cell-to-

cell variations have been possible just with the emerging of single-cell techniques, which are able to 

provide information at individual-cell level. The concept of individuality allowed for understanding the 

importance of features and behaviors of single cells and will be discussed in the next section.  
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1.4 Single-cell techniques for studying heterogeneity  

The field of single-cell approaches is rapidly growing, shading light on the physiology of individual 

cells within a population 100,101. The implementation of single-cell techniques has indeed brought to the 

understanding that the behavior of an individual bacterium often differs from the average of its own 

population. Therefore, single-cell techniques became essential for studying phenotypic and MH since they 

are able to give insights on many levels of information: intracellular components or genetic circuits 

regulation, individual-cell dynamics in space and time, morphological and physiological states and cell-to-

cell interactions in a population or a group 102-105. However, our understanding is still limited and the further 

development of single-cell analyses and techniques will continue to be indispensable 106. Several single-

cell techniques are applied for studying heterogeneity. As a very general principle, it is possible to divide 

them in high-throughput and low-throughput. While low-throughput methods provide for spatially 

resolved information on the isolated cells, this is usually not possible with high-throughput methods. The 

choice of one of these two categories usually depends on the research question behind. In this section, the 

focus will largely be on the technique used for my PhD work and to a lesser extent on the other single-cell 

techniques, which will be just briefly presented. 

 

1.4.1 Nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) 

Methods for microbeam analysis characterize the elemental composition of a sample, giving both 

qualitative and quantitative insights at single-cell level resolution with high sensitivity 100,106,107. A very 

powerful microbeam technique is nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) for isotopic 

and trace elements analysis at high spatial and mass resolution, and high sensitivity, qualities that render 

this instrument unique (Fig. 7-A). A primary ion beam bombards the sample surface, triggering a collision 

cascade and causing the production of secondary ions; the latter are ejected from the sample surface and 

transferred to a mass spectrometer, where they are separated according to their mass-to-charge ratio 

(m/z) 108-110. Thus, secondary ions are collected for each individual pixel while scanning a precise area 

(raster), usually no larger than 100 × 100 µm2. The isotopic and elemental distribution maps of the analyzed 

sample are given by the secondary ion counts per pixel per unit time and the chemical mapping (i.e. 

imaging) is possible for up to 7 masses simultaneously. Using specific software, such as WinImage (from 

CAMECA), OpenMIMS 111, L’Image (developed by Nittler L. R., Carnegie Institution of Washington), 

Look@NanoSIMS - LANS 112 (a review on the different software tools is given by 113), it is possible to 

correct for detector dead-time, quasi-simultaneous ion arrival (QSA) and lateral drift as well as to calculate 

isotope and elemental ratios.  

In combination with Stable Isotopes Probing (SIP), i.e. using isotope-labeled compounds as tracers, 

SIP-nanoSIMS technique allows for the quantitation of assimilated elements into the cell biomass from the 

changes in isotopic composition upon uptake of each single cell, due to its high lateral resolution, down to 
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35 nm, and a mass resolving power M/ΔM > 8000 104,111,114-117. For this reason, SIP-nanoSIMS technique 

was recently applied in several studies analyzing MH of microbial populations 69-71,87,118,119. 

The use of nanoSIMS has many applications in the analysis of different biological samples, particularly 

microorganisms which require high spatial resolution 114,120-122, and allows alone or in combination with 

other techniques to track microbial intra- and inter-species interactions as well as symbioses 104,116,117. 

 

 

 
Figure 7. Example of the two main single-cell techniques used for metabolic and phenotypic heterogeneity studies. 
A) nanoSIMS technique, mainly used in my project. B) Time-lapse in microfluidic devices with fluorescence 
microscopy. Figure 7-B) modified from101.  
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A very powerful approach with the nanoSIMS is the possibility to combine such technique with 

Fluorescence In Situ Hybridization (FISH, 123) and Catalyzed reporter deposition-FISH also known as 

tyramide signal amplification (CARD-FISH, 124) for linking cells’ identity with their metabolic activity in 

complex microbial populations. FISH and CARD-FISH give information on the phylogenetic identity of 

single cells, being based on a specific probe which targets the ribosomal RNA. For FISH applications, the 

probe has a fluorescent dye directly attached on it at the 5’-end (Fig. 8). For CARD-FISH a Horse Radish 

Peroxidase (HRP) is attached to the 5´of the probe and in a second step the cells are treated with tyramide 

coupled with a fluorophore; many tyramide molecules will react in the vicinity of HRP-probe, and will be 

deposited in the vicinity of HRP binding site, in the presence of the H2O2, allowing for an amplification of 

the fluorescence signal (Fig. 8).  

 

 

 
Figure 8. Schematic depiction of FISH and CARD-FISH adapted from125. 

 

 

Cell identification for both FISH and CARD-FISH is done using a florescence microscope equipped 

with filters corresponding to the excitation/emission of the fluorescent dyes used to label the probes or the 

tyramides 125. While FISH or CARD-FISH are used to identify the cells phylogenetically, the nanoSIMS 

analysis gives insight on the elemental and isotopic composition and distribution at sub-cellular level as 

well as on the metabolic activity of the cells 126. Moreover, in complex microbial communities, co-cultures 

or consortia it is possible to study the mutualistic metabolic pathway and syntrophic interactions 127 and 
128,129(see appendix). 

 

1.4.2 Microfluidic techniques 

Microfluidic techniques allow for the manipulation of reduced amount of fluid, incorporating both 

sorting and analysis of small biological samples, such as microorganisms and molecules into a small-scale 

system working with a laminar flow. Usually, the cells flow inside micro-channels, which can be very tiny, 
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and can be afterword collected for further analysis. An interesting application of microfluidic system is the 

droplet microfluidic which allows separating single cells inside small droplets; the latter will be further 

processed with other techniques or used for cell growth assays and cell-to-cell interactions studies. 

Compartmentalization in droplets can be useful as a method for linking phenotype to genotype of each 

single cell, for instance specific responses after drug treatment, virus infection and antigenicity 130.  

Another application always combined with microfluidic is time-lapse microscopy, the recording of 

sequential microscopic images from which a movie with the population history can be extracted. 

Combining the monitoring of cells on micro-spatial scales in microfluidic channels with the fluorescence 

observation made possible to measure cellular properties, intracellular dynamics, gene expression, protein 

transcription and single-cell response to environmental cues 101. The monitoring of spatiotemporal dynamic 

with microfluidics and time-lapse microscopy (Fig. 7-B) allowed to unravel some of the mechanisms 

responsible for phenotypic heterogeneity in stress response of Mycobacterium tuberculosis 131 and MH 

in response to antibiotics treatment, spatial and nutritional limitations 73,74,132. The power of microfluidic 

lies in the possibility to control and change the chemical composition of growth medium by continuous 

perfusion, while observing the behavior of single cells in temporal and spatial scale. However, the perfusion 

itself may be also a disadvantage when studying, for instance, cell-to-cell-interactions, environmental 

signals, or protein secretions, since these molecules cannot accumulate but are continuously washed 

away 133.  

 

1.4.3 Spectroscopic techniques  

Spectroscopic methods can provide biochemical information on the molecular composition of single 

cells at different levels of lateral resolution. Raman spectroscopy and Surface Enhanced Raman 

spectroscopy (SERS) techniques are probably the most exploited for microbial studies 134. Raman 

spectroscopy exploits the inelastic scattering of a very small number of photons, the so called Raman 

scatter, which depends on the chemical structure of the analyzed samples 135. As a result, a Raman spectrum 

is obtained which encompasses a number of peaks, showing the intensity and wavelength position of the 

Raman scattered light, each providing information on the types of chemical bonds and on the molecular 

conformation within the cell. Single-cell Raman spectrometry often coupled with laser tweezers, is a non-

invasive technique, which has been applied for investigating the biochemical and morphological 

heterogeneity of microbial populations 136,137. Laser tweezers and other optical tweezers techniques are 

essential for single-cell isolation, a prerequisite for analyzing individual cell and hence study cell 

heterogeneity 138. Confocal Raman micro-spectroscopy has been largely applied in biology 139 even in 

combination with SIP 140. However, the main drawback for the application of Raman-SIP in the study of 

cell-to-cell MH, is the relatively high enrichment in heavy isotopes that cells have to incorporate in order 

to achieve a good peak resolution (sensitivity), e.g. for 13C a minimum of 10at% (atomic percent) is 

required 140. Additionally, the interpretation of metabolic pathways and the quantitative contribution of 

isotope-labelled-compounds incorporation into microbial biomass with Raman-SIP is difficult and the 
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method is undoubtedly less sensitive than SIP-NanoSIMS approach 140. The lateral resolution achieved by 

Raman is primarily defined by the combination of laser wavelength and microscope objective, ranging 

from 250 nm up to 1 µm, while the depth resolution can span from ~1 to 6 µm 141-143. Moreover, this 

technique has other downsides, such as auto-fluorescence of certain samples that interferes with Raman 

signal, low sensitivity (signals are weak especially at single-cell level), relatively slow acquisition time and 

time-consuming data processing 139,142. These last features indeed make even the Raman a low-throughput 

technique but less sensitive in comparison with nanoSIMS.  

 

1.4.4 Flow cytometry  

One of the most applied single-cell high-throughput techniques is flow cytometry. This technique 

rapidly analyses single cells while “flowing” alongside channel, giving both quantitative and qualitative 

insights 144,145. This includes, for example, the use of fluorescent activated cell sorting (FACS) approaches 

to sort, count and recover cells of a specific size and with specific florescence, which in turn indicates 

specific functions or even the presence of photosynthetic pigments 146. Cytometry combined with cell 

sorting has been extensively used for detection of heterogeneity within isogenic populations 98,147-149 since 

each individual cell is analyzed for both fluorescence and visible light scatter. The latter can be measured 

as Forward Scatter light (FSC), which give insights about cell size and Side Scatter light (SSC), which 

further provides information on the cell complexity or granularity according to the light refraction 150. 

The applicability of flow cytometry in single-cell studies is further exploited by its linking to other 

high-throughput techniques such as transcriptomic, genomic, metagenomics approaches, i.e. the recovery 

of RNA, DNA from single cells obtained from laboratory cultures or directly from the environmental 

samples 151-153. Once the cells are sorted and segregated, they can further undergo genomic 154, proteomic 

and metabolomic analyses, applied for the study of physiological single-cell heterogeneity 101. However, 

the dynamism of the single-cell metabolism and the quick turnover of most of the intracellular proteins 

cannot be captured by these techniques 155. Moreover, most of the single-cell “omics” approaches have the 

limitation to require a high amount of material for a reliable and sensitive analysis, which sometimes might 

be difficult to obtain 156, especially for microorganisms. This is a current challenge that scientists have to 

tackle, giving the raise of multiomics approaches application and the contextual need for a better 

understanding of the dynamics of intracellular pathways and the mechanisms responsible for heterogeneity.  

 

 

It is important to remark that each method delivers a different type of information. None of the above 

is able to measure the isotopic composition of individual cells with a combination of high precision and 

high lateral resolution, features that make nanoSIMS unique for the investigation of metabolic activity at 

single-cell level. The other techniques can offer important information on physiological, metabolic, or 

phenotypic traits, but missing the quantitative precision, e.g. assimilation of isotope-labelled substrates per 

cell, that it is very valuable when studying MH. 
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2. Knowledge gaps  

The advent of single-cell techniques has facilitated the study of individual cells revealing that each 

population is composed of phenotypically distinct subpopulations, although genetically identical. In fact, 

the possibility to investigate each individual cell within an isogenic population is extremely valuable in 

combination with bulk analyses and omics methods. Thanks to the single-cell approaches, it is possible to 

increase our understanding of many biological phenomena, especially regarding the physiology and the 

metabolism of microbial populations. Despite the huge plethora of insightful studies about phenotypic and 

metabolic heterogeneity (MH), there are still many unsolved questions regarding this phenomenon. 

The main scope of this work was to investigate the influence of various factors on the MH of microbial 

populations, to provide a broader understanding of this phenomenon in model organisms and synthetic 

systems and then to extend its significance in natural microbial communities. In this perspective, the whole 

doctoral project was divided in the following specific objectives:  

 

1. Optimization of sample preparation for cell-integrity preservation and reliable measure of cellular 

isotopic content.  

 

2. Method validation for: a) quantitation of assimilation rates and b) quantitation of MH. 

 

3. Assessing the influence of abiotic factors such as C-source concentrations, different growth substrates, 

and electron acceptors on the display of MH in three model microbial strains. 

 

4. Assessing the influence of microbial interactions such as Bacterial-Fungal-Interactions (BFI) on 

bacterial MH.  

 

5. Assessing the influence of emerging contaminants, such as antibiotics, on the ecophysiology and the 

MH of natural microbial communities.  
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3. Results and discussion  
To study metabolic heterogeneity (MH) and the factors that may be responsible for this phenomenon, 

SIP-nanoSIMS approach was used in the present work. However, in order to achieve accurate information 

on the extent of MH, a series of upstream measurements and calculations are necessary, which, if not 

considered properly, may lead to errors. For instance, it is pivotal to preserve the integrity of the cells 

during sample preparation prior to nanoSIMS, in order to avoid massive loss of cytoplasmic content and 

therefore strongly underestimate the cellular elemental content. Then, it is essential to have a common way 

to measure assimilation rates after nanoSIMS analysis to compare reliably the metabolic activities between 

single cells. Finally, it is fundamental to have a parameter for the quantitation of the degree of MH 

displayed under different environmental conditions. To date, such comprehensive approach is still missing 

but urgently needed for the quantitation of heterogeneity. 

 

3.1 Optimization of sample preparation  

A suitable protocol for nanoSIMS analysis usually has to fulfill few main requirements: 1) usage of a 

relatively low number of chemicals, 2) low exposure times to chemicals, 3) usage of chemicals that are 

less damaging to cells, in order to preserve cell integrity and native chemical composition, 4) complete 

dehydration of the specimens to stand high vacuum, 5) samples have to be either conductive or deposited 

on a conductive substrate. In general, the first step of sample preparation requires the concentration of 

liquid cell suspensions on porous polycarbonate filters coated with thin conductive layer. But filters and 

samples need to be as flat as possible in order to be efficiently ionized upon nanoSIMS analysis and avoid 

the so-called topography effect. In fact, the samples topography is responsible for aberrations and shadow 

effects (Fig. 9) 113,157, and influences the ionization trajectories of secondary ions into the spectrometer, 

thus impacting the imaging, the pixel by pixel-ion mapping and the ions quantification (Fig. 9) 113,158.  
 

 

 
Figure 9. Example of distortion due to topography and ions-distribution effects within a single image. a) 12C14N− 
secondary ions and b) secondary electrons (SE) nanoSIMS images of a cyanobacterial microbial consortium; c) 
represents the merged image of a) and b) with a scale intensity realized with special python's cubehelix software 113. 
Shadow effects are shown with red arrows, which distort the signal in c). Figure panels are modified from 113. 
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In principle, a sample preparation that is suitable for Scanning Electron Microscopy (SEM) imaging 

works also for SIMS imaging 159. However, one has always to test the preexisting protocols and validate 

the suitability for specific samples, since different organisms may require different protocol adaptations. 

Moreover, while SEM analysis provides morphological information about the specimen, nanoSIMS 

analysis additionally provides chemical information at nanoscale resolution; therefore, it is essential to 

preserve cells shape, to consequently preserve their isotopic and elemental content. Because the quality of 

the samples will strongly influence the quality of the measurements, it was necessary to invest a lot of 

effort in the sample preparation protocols prior to chemical imaging analysis. 

 

Classical protocol  
The classical protocol usually includes a first step of chemical fixation with either Paraformaldehyde 

(PFA) or Glutaraldehyde (GA) followed by washing steps to remove excess of fixative and afterwards a 

post-fixation procedure that increases the preservation of the cellular morphology 160-163. Fixation cross-

links mainly proteins while post-fixation is done with oxidizing agents for keeping the cells-structural 

information as well as achieving a better contrast during SEM imaging 162,164 (Sketch 1). The post-fixatives 

mostly used are osmium tetroxide (OsO4) or potassium permanganate (KMnO4), which are strong oxidative 

and staining agents 165,166. After these steps, the cell walls usually become stiffer but their cytoplasmic 

content is still liquid 167. 

Water has a high surface tension to air, meaning that the cohesive bonds of water molecules to one 

another form a strong barrier between the atmosphere and the water. When cells are immersed into the 

aqueous solutions and they are left to air-dry, the surface tension of the water exerts a huge force on the 

cells, pressing on their surface and causing damages to the cell walls 168. Therefore, a water-substitution 

step is necessary to facilitate dehydration while preserving the cells structure. The commonly used 

techniques for water substitution are: HexaMethylDi-Silazane (HMDS); 1-Butyl-3-Methylimidazolium 

tetra-fluoroborate (Ionic Liquid, IL); Acetone or Ethanol (EtOH). The principle is the same for all: slow 

and gradual substitution of the water content inside the cells with the above-mentioned fluids, which create 

less surface tension and evaporate with minor effects on the cells shape 168 167,169. In the case of IL, after 

immersion in a solution of 4% IL dissolved in distilled deionized water (ddH2O), the samples are air-

dried 170; for HMDS, water is first substituted with EtOH, then EtOH is substituted with HMDS and finally 

samples are air-dried 171,172; for acetone, methanol or EtOH, a series of gradually increasing concentration 

is used to substitute water inside the cells while the alcohols are then dried with a critical point drying 

(CPD). The latter exploits the critical point of CO2, in which EtOH can mix acting as inert fluid. At a 

certain temperature and pressure, CO2 can be found at the liquid and gaseous phases together and when its 

critical point is reached, the transition from liquid to gas will be possible without any disruption of the 

cells 167. EtOH is usually preferred for bacterial preparation, since acetone has a lower viscosity and induces 

a more rapid dehydration process; additionally, acetone is more hygroscopic and may lead to incomplete 

dehydration with the resulting disruption of cell integrity 161. 



 

 
23 

 

  

 Sketch 1. Protocols applied for sample preparation prior to SEM observation. 
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Protocol optimization 

The sample preparation optimization was done for i) single bacterial species and ii) bacteria and 

pseudo-fungi co-cultures. 

 

Maintaining cells’ morphological and chemical integrity for single bacterial species 

i) The first part of sample preparation optimization was done with Pseudomonas putida mt-2 KT2440 as 

model organism.  

Cells were fixed with either 4% PFA or 3% GA in cacodylate buffer (CB) (0.2 M, pH 7.4, EM Science, 

Hatfield, Pennsylvania) overnight at 4°C. After fixation, cells were filtered and distributed onto Gold 

Palladium (Au/Pd)-coated filters (GTTP type, 0.22 μm pore size, 25 mm, Merck). Pieces of filter were 

used to apply different post-fixation agents after each of the fixative: KMnO4, OsO4 or H2O2 1% v/v in 

ddH2O or no post-fixation. Water substitution was performed with EtOH (30, 50, 70, 80, 90, 96 and 100%; 

3 min each), HMDS in EtOH (50 and 100%, 5 min each), 4% v/v IL in ddH2O, and drying either with CPD 

or air (Sketch 1). Samples were observed with SEM to check the cells’ integrity and the quality of the 

sample preparation. 

The first preparations were done using PFA or GA as fixatives, KMnO4 or OsO4 for post-fixation and 

the 3 above-mentioned methods for water substitution (Figs. 10, 11). The best results were achieved with 

OsO4 followed by CPD drying with both fixatives. The protocol with OsO4 is strongly recommended when 

the main aim is keeping the surface structural information for imaging with SEM or Helium Ion microscopy 

(HIM), e.g. to visualize the interactions between predator-prey and study their life cycle 173 or within 

microbial co-cultures able to oxidize ethane 128 (see appendix). OsO4 was largely used as staining in 

protocols for electron microscopy due to its property to penetrate the cells and react with lipids 174.  

However, the introduction of this oxidant may change the chemical composition as well as the nature 

of chemical bonds, influencing the ionization under the primary ion beam during nanoSIMS analysis 113and 

thus the chemical imaging.  

Hydrogen peroxide (H2O2) was successfully applied as method for oxidized-protein labeling in mass-

spectrometry (MS)-based proteomics. Oxidizing specific chemical groups of the proteins made them easier 

to be detected, separated and quantified with MS 175. We aimed to use the oxidative principle of H2O2 for 

the post-fixation, because it is less penetrant and cause mostly in situ oxidation 175 in comparison with OsO4 

and KMnO4. Therefore, in a further attempt, bacterial cells were post-fixed using 1% H2O2 in ddH2O, or 

trying with no post-fixation at all. In parallel, different concentrations of GA were also tested to evaluate 

the possibility to decrease the concentration of fixative as well (Fig. 12). No post-fixation followed by 

CPD-drying resulted in the formation of holes in the membranes, and presumably loss of cytoplasmic 

content (Fig. 12); no post-fixation in combination with air-drying resulted in the collapse and the disruption 

of cell morphology (Fig. 12).  
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 Figure 10. P. putida cells prepared with different protocols after PFA fixation. White bars correspond to 200 nm. 
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Figure 11. P. putida cells prepared with different protocols after GA fixation. White bars correspond to 200 nm. 
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Figure 12. P. putida cells prepared after GA fixation. Different concentrations of GA have been tested and two 
concentrations of H2O2 or no post-fixation (No PF). Dehydration was done with CDP or air-drying (AD). Green-
framed picture shows the result after all steps in CB. White bars correspond to 1 µm. 

 

 

 

Instead, fixation with 3% GA, post-fixation with 1% H2O2 and CPD gave the best result (Fig. 12), but still 

the surface of bacteria was slightly “fury” and sometimes irregular (Fig. 12). An increase of H2O2 

concentration to 3% did not improve bacterial shapes, suggesting that 1% H2O2 was enough to preserve 

their structure (Fig. 12). In the previous protocol, after both fixation (in CB) and post-fixation (in ddH2O), 

one washing step in CB and two washes in ddH2O were performed. Assuming that such alternation of 

buffer and water might cause osmotic stress to the cells, all steps were performed in CB, from fixation until 

water substitution. SEM observations confirmed that the cellular shape was better preserved (Fig. 12, green 

framed picture), hence I chose this protocol as the most suited one for P. putida cells (Fig. 13-A).  
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Figure 13. Sample preparation with the optimized protocol for A) P. putida, B) P. stutzeri and C) T. aromatica. Scale 
bars correspond to 2 µm. 

 

 

Different microorganisms may require different sample preparations because of the different cell-wall 

composition 162,171,176,177. However, as general principle, bacteria with similar cell-wall composition, e.g. 

gram negatives, should give similar results with the same preparation. Thus, the chosen protocol was tested 

with T. aromatica and P. stutzeri, to validate the suitability for the other strains involved in my study. The 

cell shape was likewise preserved for these species (Fig. 13-B, C).  

The samples prepared with different post-fixatives were analyzed with Energy-Dispersive X-ray 

spectroscopy (EDX) coupled with SEM. High levels of Osmium (coming from OsO4) and Manganese 

(from KMnO4) were found on top of bacterial cell membranes (Fig. 14). Instead, H2O2 does not accumulate 

as compound per se, because it either forms radicals oxidizing the molecules in loco or it self-decomposes 

by forming water and oxygen 178.  

 

 

Figure 14. SEM-EDX analysis on P. putida cells after sample preparation with the A) KMnO4 and B) OsO4 as post-
fixation agents.  
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NanoSIMS is a chemical imaging technique and each chemical modification in the samples will alter 

the ionization efficiency when bombarding by the primary ion beam, hence resulting in strong changes of 

signal intensity up to many orders of magnitude 113. 

The incorporation into the cell membranes of Osmium (Os) or Manganese (Mn) could thus change the 

molecules ionization. For this reason, and due to the well-preserved cell integrity (Fig 13), the protocol 

with 1% H2O2 as post-fixative was preferred for the subsequent sample preparations prior to nanoSIMS in 

my work. The sample preparation development described here is intended as peer-reviewed publication 

and is currently in preparation (see appendix).  

 

Maintaining cells’ morphological and chemical integrity for bacteria and pseudo-fungi cocultures 

ii) The second part of sample preparation optimization was done with co-cultures of the pseudo-fungus 

Pythium ultimum and the bacteria Pseudomonas putida. This required particular attention, due to the 

necessity to keep the spatial context and potential trophic interactions between the partners.  

As part of my PhD project, I studied the role played by associated microorganisms on the bacterial 

heterogeneity in a laboratory-controlled system, using Pythium ultimum as hyphae forming pseudo-fungus 

and the engineered strain Pseudomonas putida KT2442::dsRed-lacIq(pWW0::Plac-gfp) with the wild type 

strain Pseudomonas putida KT2440 as reporter system 230 (see chapter 3.4 for further details). In such case, 

the whole protocol was adapted to maintain the morphological integrity of both partners and consequently 

the integrity of their potential interactions.  

Prior to nanoSIMS analysis, samples need to be fixed and then dehydrated as explained above but it 

becomes challenging to keep the spatial distribution of bacteria and hyphae unaltered, particularly when 

sample-preparation steps require immersion in various liquid solutions (Sketch 1).  

First, fixation in vapor was considered for this set-up in order to avoid i) sudden dryness of the 

microorganisms and especially ii) soaking into fixative, thus disturbing the spatial distribution of the whole 

system. Samples were fixed under vapor with a mixture of 10% PFA (in ddH2O) and 37% EtOH at 35°C. 

The water was removed from the samples while fixing and substituting it with EtOH vapor to reduce the 

tension on the cell surfaces. Then vapor was released very slowly and sample air-dried overnight. However, 

bacteria cells were flattened and hyphae resulted transparent under SEM observation (Fig. 15-A, B).  

Other 4 subsequent tries were performed with this method gradually decreasing the content of water 

in the fixative mixture (53, 40, 25, 0% water respectively). The principle was to avoid “new” introduction 

of water and to facilitate the fixative-vapor/air exchange for a slower dehydration (EtOH boiling point is 

lower than water). Nevertheless, these tries resulted again in a bad morphology of bacteria, which were 

buried underneath the collapsed hyphae (Fig. 15-C). Moreover, at higher magnification, many impurities 

remained on the hyphal surface, probably salts and other organic residues (Fig. 15-D); in fact, no washing 

steps were performed with such protocol. Air-drying without any fixation also resulted in transparent or 

uneven hyphae surface, flattened and distorted bacteria shapes, and many inorganic and organic residues 

on the hyphal surface (yellow arrow-heads, Fig. 16).  
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Figure 15. Sample preparation of pseudo-fungi and bacteria set-up with vapor fixation. A) and B) show the first try 
with vapor-fixation. Hyphal surface is completely transparent (red arrows) and bacteria cells are flattened and almost 
melted to each other. Observations were done with SEM. C) and D) show a subsequent try resulting again in C) 
flattened hyphae (red arrows) with bacteria buried underneath (green arrows) and D) many impurities on the hyphal 
surface. Observations were done with HIM. Scale bar is 2 µm. 
 
 
 
 
 

 
Figure 16. Air-drying of pseudo-fungi and bacteria set-up. Hyphae are transparent (red arrows), bacteria shape is 
aberrant and sometimes cells are fused with the close ones (green arrows). Many impurities are present alongside the 
hyphae (yellow arrow-heads). Observations were done with HIM. 
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From these results, I concluded that fixative-vapor/air exchange was not optimal to substitute water 

inside the bacterial cells and the hyphae. Therefore, I tried with the protocol optimized for P. putida 

(previous section), although it was in liquid, aiming to a better shape of hyphae and bacteria. I developed 

a method where all these sample preparation steps were performed inside a single well of a 12-wells-plate 

(2 cm of diameter). Using a small piece of gaze underneath the filter and keeping the filter on the opposite 

side of the pipetting spot, I aimed to reduce the disturbance of the spatial distribution.  

HIM observations confirmed that hyphal and bacterial morphologies were much better preserved (Fig 

17-A). Surprisingly their physical interactions were likewise maintained, making even possible to observe 

the migration of bacteria on the “hyphal highway” 179 (Fig. 17-B). Thus, I was able to prepare samples 

suitable for high-vacuum conditions, while contemporarily preserving spatial arrangements of the co-

cultures.  

 

 

 
Figure 17. Sample preparation in “liquid” of pseudo-fungi and bacteria set-up. A) Hyphal and bacterial morphologies 
are well preserved. B) Bacteria along their journey on “hyphal highway” (green arrows) in a different area with higher 
magnification. Pictures were acquired with HIM. 
 
 
 

Further preparation improvements 
Improvement of cell distribution and density  

Cell density and homogenous distribution on the filter/support are other prerequisites for single-cell 

analysis by nanoSIMS, not always easy to achieve. This issue is mostly faced when preparing cell 

suspensions, especially when samples come from natural environments with a relatively low cell number, 

or in general when it is not possible to yield higher cell density. Moreover, the numerous washing and 

dehydration steps upon sample preparation can strongly contribute to a reduction in the initial cell numbers 
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on the filter area, which may result in a non-homogenous distribution. The classical protocol in fact 

involves several washing steps in small petri dishes containing the chemicals (Sketch 1), implying a strong 

loss of cells throughout the procedure. This may result in few tens of cells per Field of View (FoV) during 

SEM observation (Figure 18-A). To overcome this issue, I develop a method, in which all the preparation 

steps were performed inside a stainless-steel syringe filter holder (Sartorius, Model 16214), a filtration 

device custom-made for a single 25 mm Ø filter (Sketch 1). After fixation overnight into 2-ml tubes, the 

suspensions were withdrawn with 1 ml syringe, filtered, and concentrated inside this holder; then the 

successive steps, such as washing of fixative, post-fixation and post-fixation-washing, water substitution, 

were performed, never removing the filter from the inside. In this way, it was not only possible to 

concentrate the cells but also to reduce the quantity of chemicals used; 1 ml of solution was enough for 

each step to prepare the samples in a proper way. Filters were removed from the holder just before 

undergoing CPD, resulting in a very low dilution in cell numbers per surface area (Fig. 18-B).  

 

 

 
Figure 18. Sample preparation of P. putida cells for the optimization of cell density. All the steps were performed in 
A) petri dishes and B) entirely in the filter device. Scale bars correspond to 2 µm. 

 

 

Improvement of the sample carrier  

All the attempts for sample preparation mentioned above have been performed using as support 

polycarbonate filters, which were coated with a thin (30 nm) layer of Au/Pd to be conductive. One of the 

disadvantages of these filters however can be the introduction of topography effects because the filters are 

easily bending during the numerous sample preparation steps. Still, their utilization is necessary for cell 

concentration during filtration, particularly important for environmental samples 69,70,126,180. 

We recently proposed a way to overcome the challenges of filters topography and cell density 

mentioned above for sample preparation. It consists of a silicon wafer (Si-wafer) covered with a special 

polymer layer used as a specimen support for high-resolution imaging. We called it carrier since it can be 

subsequently used for different preparation steps and with many techniques such SEM, HIM, Fluorescence 
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Microscopy and Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS)181 (Fig. 19-A). The 

polymer was inert, solvent resistant and most importantly it acted as a sponge for liquid suspensions due 

to its hydrophilicity.  

 

 

 
Figure 19. A) The polymer-coated silicon wafer after treatment with UV/O3 cleaner and its applicability to many 
analytical techniques, such as Optical and Fluorescence Microscope (OM/FM), Scanning Electron Microscopy (SEM) 
and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and several specimens, i.e. bacteria, sections, 
tissues and nanoparticles (NPs). B) High-resolution microscopy observations of Pseudomonas putida with Helium 
Ion Microscopy. C). Optical microscope observation of thin section of plant root embedded in resin. D) High-
resolution SEM images of frozen rabbit skin sections deposited onto polymer-coated carrier, modified from 181.  
 
 
 

These features allowed for i) a reduction in sample preparation steps (a single carrier can be used from 

the beginning until the end of the protocol) ii) diminution of chemicals volume used (everything is done 

on the carrier that is usually 1×1cm2), and especially iii) homogeneous distribution of the samples on the 

filter while preserving the sample integrity, as revealed by SEM observation 181 (see appendix and Fig. 19-

B, D). 

SEM and nanoSIMS imaging usually require a conductive support for the sample’s analyses. The 

polymer layer was not acting as a full insulator, thus providing enough conductivity with low-current beam 

and charge compensation upon SEM observations (the latter to avoid the so called “charging effect” on the 

samples). However, it was not conductive enough for the analysis with nanoSIMS. The lack of conductivity 

could be circumvented in the future by coating the carrier after sample preparation, but this requires further 

optimizations, since it can introduce some bias, e.g. topography effects or localized surface potential 182. 

This emphasizes the necessity for further improvements of sample preparation supports and carriers 

suitable for comparative high-resolution imaging and complementary analyses which reduce the effort of 

preparing samples individually for each single technique. 
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In conclusion, the choice of a sample preparation protocol strongly depends on the subsequent 

downstream analysis that one has to perform. In my case, the preservation of the cellular morphology and 

the native chemical composition was necessary in order to avoid bias that could have disturbed the chemical 

imaging with nanoSIMS later on. Artifacts from sample preparation may indeed hinder the quantification 

of the cellular elemental composition and hence compromise the evaluation of cell-to-cell differences and 

MH. The effort to optimize the protocol thus served the scope to find the best trade-off between making 

the sample suitable for high-vacuum conditions of the NanoSIMS and preserving the native chemical 

composition as much as possible.  
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3.2 Validation of quantitation methods 

3.2.1. Common quantitation method for nutrient assimilation by single cells  

The application of SIP-nanoSIMS approach allowed for the quantitation of metabolic activity in 

microbial communities. However, to date, a widespread and common way to assess the metabolic activity 

is missing. Many attempts have been done to quantify the elemental assimilation and most of the time in 

an empirical way 69,70,119,183. The analysis with nanoSIMS allows calculating and quantifying the 

enrichment of the heavy isotope, for instance 13C versus 12C or 15N versus 14N at the initial and final states 

of the incubation using isotope-labelled compounds. The uptake of 13C or 15N into the cell biomass is 

measured as isotopic ratios and used for showing the activity of bacteria in the samples 184. For a correct 

quantitation, the sample preparation effects, physiological state of the cells and potential errors propagation 

from all parameters have to be considered in the calculations. Besides the already-known dilution effect on 

the final isotopic enrichment 185,186, there are other factors to consider, such as cultivation parameters and 

analytical errors. For this reason, I was involved in a work aiming to quantitate single-cells assimilation 

when SIP-nanoSIMS approach is employed 187 (see appendix). 

 

Dilution effect and errors 
Using the nanoSIMS-50L (CAMECA, France), we analyzed Pseudomonas putida mt-2 KT2440 cells 

grown on 13C-glucose and calculated the changes in heavy isotopes ratios, Df, such as 13C/12C or 
12C15N/12C14N. For the calculation of the assimilated elements over certain times of incubation, we 

considered the following parameters: i) dilution effect due to the sample preparation including 185, ii) 

cultivation conditions, iii) isotope fractionation effects, volume and element-specific-density, i.e. mass of 

an element (e.g. C or N) per volume (fg ·  μm-3) of the cells considered for the analysis.  

For the restoration of single-cell isotopic composition we considered the dilution effect while taking 

into account the fraction of heavy isotope in chemicals (Dch) and the calculated fraction of C introduced 

upon a specific preparation method, (K) 185. The fraction of heavy isotope of the growth substrates, Dgs, in 

the culture medium as well as the isotope fractionation effects, α, were also considered in the calculation. 

The latter refers to the preferential uptake/processing of lighter isotopes in comparison with heavier during 

biochemical reactions 188; this “preference” may bring to a reduced assimilation rate for the heavy isotope. 

The propagation of errors in all these factors was considered in the expression of the KA error (dKA 

value) 187.  

The KA value accounts for the fraction of an assimilated element, e.g. C or N, relative to its initial 

content in the cell. Starting from this value, we were able to calculate the rate of assimilation of an 

element. To do so, it is important to provide the cell volume and the element-specific cellar density. The 

cell volume can be calculated for a single cell with optical microscopy or SEM 189 or alternatively can be 

calculated as Region of Interest (RoI)-confined cellular volume from nanoSIMS data (each RoI 

corresponding to a single cell). In the last case, a certain bias will be included considering that RoI 

definition is usually performed manually and therefore is more prone to errors. Indeed, when estimating 
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the error of assimilation rate calculated from RoI-confined volume or per volume (µm3), errors are much 

higher in the first case (Fig. 20). However, especially in mixed and/or natural community is not always 

possible to calculate the “real” biovolume for each single cell, then it becomes useful to quantify the 

assimilation rate using RoI-confined volume (see chapter 3.5). Despite the consideration of volume, in both 

cases, the element-specific-density has to be given in input for a correct expression of the assimilation rate. 

In this way, it is possible to approximate the initial elemental content, e.g. C or N, per cell or per volume. 

 

 
Figure 20. Carbon assimilation 
rates calculated for P. putida 
incubated in 13C-glucose 
medium. In the left frame, 
assimilation rates per single 
cell, Fc (hollow red rectangles, 
pg·cell−1·h−1), and per volume, 
FV (filled blue circles, 
pg·μm−3·h−1), are shown with 
mean value and standard 
deviation for each of the 105 
single cells analyzed.  
In the right frame, the 
distributions of cell-specific 
(Fc) and volume-specific (FV) 
assimilation rates are shown as 
box plots. Boxes represent Q16– 
Q84 interpercentile range; Min-
Max values, median values 
(horizontal lines) and mean 
values (rectangles) are also 
shown. Picture from 187. 

 

 

By knowing the elemental composition of that specific cell before and after nanoSIMS measurement, 

it is possible to reconstruct back the total assimilation rate. If the single-cell volume is reconstructed from 

the RoI-confined volume, Fc will be calculated corresponding to pg or fg ∙ cell-1 ∙ h-1 of an element; 

otherwise Fv can be calculated, i.e. pg or fg ∙ µm-3 ∙ h-1 of that element (Fig. 20). In few words, KA 

represents the quantity of assimilated elements, e.g. C or N, relatively to their initial abundance in the cells, 

and from this value it is possible to reconstruct the assimilation rates per single cell (Fc) or per volume (Fv) 

giving as input the element-specific density 187 (see appendix). 

 

Lateral dilution effect 
Another interesting finding was that the quantification of the heavy isotope based on counts acquired 

with nanoSIMS is different between monoatomic carbon (i.e. 13C− and 12C− ions) and molecular carbon 

(i.e. 13C14N− and 12C15N− ions)187 (Fig. 21). When the volume was calculated from the RoI definition, cell 
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size derived from monoatomic carbon ion maps was smaller (Fig. 21-B) in comparison with the cell size 

calculated from molecular carbon ion maps (Fig. 21-D), probably due to the high contribution of 12C− 

counts from the polycarbonate filter used as substrate (while contribution of 13C14N− from the filter is very 

low) (Fig. 21 A, C). 

 
Figure 21. P. putida cells 
measured by nanoSIMS. Lateral 
distribution maps of monoatomic 
ions A) 12C− and B) 13C− counts 

and E) their fraction; molecular 
ions C) 12C14N−, D) 13C14N− and 
G) their fraction derived in at%. 
E) and G) show RoIs definition 
around bacteria and filter areas 
drawn on LANS software (white 
line confined). F) and H) show 
the depth profiles of the 
respective 13C fractions (gray 
circles) for all defined RoIs. The 
mean values of 13C fraction with 
standard deviation are shown for 
cells (red and blue rectangles) 
and filter areas (black circles) in 
each scanned plain. Scale bar 
length is 4 μm. Figure readapted 

from 186. 
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Moreover, two main outcomes were visible when the fraction of heavy isotopes was calculated after 

definition of RoIs: i) the final fraction achieved from monoatomic counts was smaller than the fraction 

from molecular counts (Fig. 21-E, G); ii) the standard deviation was bigger for monoatomic counts than 

for molecular counts (8.003± 0.378at% vs. 10.585 ± 0.153at% Fig. 21-F, H). Such differences were 

probably due to the fact that secondary CN− ions originates in higher amount from proteins and nucleic 

acid belonging to the cells, while the filter contains just low molecular mass compounds escaped during 

sample preparation or remained from growth-substrate leftover. Therefore, the total contribution of CN− 

ions was much higher (Fig. 21). 

It becomes important to consider this lateral dilution effect when deciding for the masses to measure 

with the nanoSIMS on the one hand and when defining RoIs (and consequently doing quantitation) on the 

other hand. For instance, when RoIs are drawn on the monoatomic C− maps, it is important to exclude 

completely the filter area, rich in 12C−, confining each cell within the inner side, rich in 13C−. This may 

lead to imprecision, in fact when considering RoI-confined volume, the error in the assimilation rate was 

much higher (Fig. 20). However, also these errors were included in the calculation of the KA value 187 (see 

appendix).  

 

KA as metabolic activity index  
The majority of studies using SIP-nanoSIMS derived the assimilation or metabolic activity from i) the 

isotopic ratios 114; ii) the isotope enrichment values in delta notation or atomic percent (at%) 180,190-195; iii) 

the normalization of nanoSIMS-derived isotope ratios to either bulk rates, unlabeled cells, cell volume or 

standards 71,126,196-199. The most common way 69-71,119,200 to quantify the assimilated elements into the 

biomass is to calculate the final fraction of 13C taken up by the cells, Df. However, we showed that the 

dependency of KA on Df was not linear 201 (dotted line in Fig. 22).  

Let’s assume that one wants to measure the single-cell C assimilation from the Df alone; upon 

incubation with isotope-labelled substrates the cells will become gradually enriched. If we consider a 

cellular 13C enrichment from 1 to 3 at% or from 7 to 10 at% (Fig. 22, X-axis), the final assimilated quantity 

will correspond to the difference between the two values (and it will be 3 at% in both cases). With this 

assumption, one can consider that the extent in cell assimilation from 1-3 at% is exactly the same as from 

7-10 at%. Let’s now assume that KA, calculated from the same cells, is considered for activity quantitation 

instead. In this case, we need to consider the right Y-axis in Fig. 22. When Df values go from 1 to 3 at% 

enrichment (Fig.22, X-axis), the corresponding KA values go from 0 to 0.125 (Fig. 22, right Y-axis), 

meaning that cells assimilated 12.5% of the total carbon. However, if we consider Df from 7 to 10 at%, the 

corresponding KA values go from 0.45 to 0.90 (Fig. 22-A, right Y-axis), meaning that in this case the cells 

have to assimilate 45% of the total carbon, that is twice as much, to achieve that level of enrichment. 

Such discrepancy can be explained by the fact that Df  value considers just the final 13C enrichment and 

with this assumption the cells make the same “metabolic effort” despite the initial amount of carbon upon 

the incubation time; instead, KA considers both 12C and 13C and thus it assumes that the more carbon cells 
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have to accumulate in the biomass the higher 

effort/engagement they have to make. The KA value 

thus can better quantify the “real” metabolic activity 

since it takes into account the total carbon assimilation 

relative to the initial quantity upon cells incubation. 

 

Additionally, the KA value has its own error that 

comes from the propagation and consideration of all 

the uncertainties related to the input parameters (error 

in ions counts consideration, e.g. C− vs. CN−, error in 

volume or in carbon density), making it even more 

precise. Because of so many different ways to calculate 

and express assimilation and metabolic activity from 

nanoSIMS-measured isotopic ratios, so far, a universal 

parameter would serve two scopes: 1) a better accuracy 

in the quantitation of elemental assimilation or rates; 

2) the possibility to compare reliably different studies 

from different laboratories with a certain consistency. 

The calculation of KA values was further used for the 

quantitation of single-cell relative assimilation from 

the further SIP-nanoSIMS experiments performed in 

my work. 

 

 

 

 

 

3.2.2. Quantitation of heterogeneity  

Phenotypic or MH is a spread phenomenon shown by many microbial species and with several 

analytical approaches 77,80,202. In many studies, the occurrence of cell-to-cell differences was an obvious 

and visible outcome, e.g. two different fluorescent proteins, two different sizes, two evident phenotypes, 

clear bimodal distribution, ON-OFF switches 34. These qualitative types of observation did not necessarily 

require a quantitation, since the outcome was already informative. In other cases, however, the extent of 

cell-to-cell heterogeneity was not clear; it was measured indirectly via comparing growth rates, nutrients 

Figure 22. Histograms of P. stutzeri FC01 
cells in their 13C fraction (Df) plotted at 
three different time points of incubation 
with 13C-labeled substrate. Right Y-axis 
represents the relative carbon assimilation 
(KA) values. The dependence of KA on Df is 
shown with the dotted line representing the 
trend of KA in comparison with Df. 
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assimilation 70,118,119, normalizing for averaged measurements or standards 69,71 or with the Coefficient of 

Variation (CV), the ratio of the standard deviation over the arithmetic mean value of the population 

considered  69,118,119,203 and many others.  

The downside of the CV as a measure of heterogeneity is that it implies a normal distribution of single 

cells in their activity or function. This means that when plotting the cells on a probability distribution 

function or a histogram, their distribution will follow the bell-shape or Gaussian curve, with the mean (µ) 

corresponding roughly to the peak of the distribution (Fig. 23-A). Such distribution is often called ́ normal´. 

When isogenic populations display heterogeneity, instead, the single cells follow either asymmetrical 

distribution (meaning that the shape presents a tail with outliers) or a typical bi- or multimodal distribution 

(meaning two or more peaks as shown in Fig. 23-B). In few words, cells in a heterogeneous population do 

not follow Gaussian distribution, and in such case the µ of the population would not be representative (Fig. 

23-B dotted lines); hence the CV cannot take into account the bi- or multimodality, that is one of the main 

features of heterogeneity. 

 

 

 

 

In fact, a universal parameter to quantitate heterogeneity is currently missing. This is becoming 

urgent because while a growing body of evidences is demonstrating phenotypic or MH occurrence, it is 

not possible to compare different conditions or studies in a reliable and unbiased way. To understand the 

importance of a measure unit for heterogeneity, one can consider the length of a certain object. Although 

everybody can measure with ́ its own thumb´ and deliver a “proper and subjective measure”, a scientifically 

recognized quantity would be given in ́ inch´ or ́ meter´, officially part of the International System of Units. 

Figure 23. Different 
distributions of single cells. 
A) Normal distribution and 
Coefficient of Variation 
(CV), calculated from the 
ratio between the standard 
deviation (σ) and the mean 

(µ).  
B) Asymmetric, bi- and 
multi-modal distributions, 
meaning that the single cells 
are spread out in different 
ways. The µ values 
represented as dotted lines 
cannot be representative of 
the real data dispersion. 
Figure B) is modified from 
www.ck12.org/c/statistics/m
easures-of-spreaddispersion/.  
 

http://www.ck12.org/c/statistics
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For this reason, I was aiming to develop measuring parameters for quantitation and comparison of MH 

(Sketch 2) between different experimental conditions, potentially exploitable with the use of other 

techniques.  

 

 

 

Sketch 2. Approaches used for quantitation of MH. After nanoSIMS analysis, single-cell metabolic activity is 
calculated as KA and the distributions of single-cells values are plotted as histograms; chemical maps acquired with 
nanoSIMS [RGB overlay of 13C14N−/12C14N− (red), 31P16O2− (green), and 12C14N− (blue)] are shown as insets. Two 
approaches were developed for quantitation of MH, depending on the distribution of the populations: a) asymmetric 
(skewed) distribution, b) bi- or multimodal distribution. 
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Precision of cellular isotopic composition measurements with nanoSIMS 
As first step, it was necessary to achieve good precision (agreement between repeated measurements 

under the same conditions) of the single-cell isotopic composition measured with nanoSIMS. With the aim 

to reduce as much as possible cell-to-cell variability coming from analytical and technical errors, 

Pseudomonas stutzeri FC01 cells were grown with unlabeled-acetate substrate, thus detecting natural 

abundance of 13C isotope, which is an already known reference value. NanoSIMS measurement parameters, 

such as the current of the primary ion beam, raster size (in pixel) and area (in µm2) were optimized201 (see 

appendix and Fig. 24-A).  

The best single-cell precision was achieved with a primary ion current beam of 4 pA, a raster size 

of 512 × 512 pixels and a raster area of 20 × 20 µm2. Slightly compromising the focus of the picture 

(Fig. 24-B), we were able to optimize the parameters and achieve two main goals: 1) enhancement of the 

counting statistics (number of secondary ions counted per each analysis) and 2) reduction of analytical 

errors (precision) coming from the measurement parameters (Fig. 24).  

 

 

Figure 24. Optimization of nanoSIMS measurement parameters on P. stutzeri cells. A) On the left panel the mean 
values ± SD of 13C fraction achieved with three different raster sizes analyzed with 2 pA primary ion current are 
shown. On the right panels, each dot represents single-cell 13C fraction value [at%] and its error (± SD, error bar). B) 
On the left panel single-cell 13C fraction values achieved with two different raster sizes analyzed with 4 pA primary 
ion beam. On the right panel Secondary-electrons pictures acquired upon nanoSIMS analysis are shown. Single-cell 
precision values are indicated in the insets for each condition. 

 

 

Labeling experiments and evaluation of metabolic heterogeneity (MH) 
Isotope-labelling experiments were performed with Pseudomonas putida mt-2 KT2440 and P. stutzeri 

FC01 (isolated from environmental samples during this work) grown in a mineral salts medium, 

supplemented with NaHCO3 (30 ml/L) and 10% CO2 in the headspace as buffer system, with addition of 
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5 mM acetate, of which 20% was 13C-labeled. Cells were withdrawn at three time points of their 

exponential growth phase and prepared for nanoSIMS analysis. Each sample was analyzed with the 

optimized parameters mentioned above and the acquired data were treated with the software 

Look@NanoSIMS (LANS) 112 for planes accumulation, drift correction and RoIs definition. Each RoI was 

drawn around each single cell using the 12C14N− ions map, as proxy for biomass distribution, 31P16O2− ions 

map, as indicator for DNA and RNA molecules within the cells, and Secondary Electrons (SE) images, as 

indicator of cellular morphology. Ratios values from the LANS software were used as input for the 

calculation of the KA values on the excel file provided with 187(see appendix). KA values from the excel 

sheet were further exported, plotted and statistically analyzed with Origin software package (version 2019). 

Single cells belonging to each time point and to each condition were plotted as histograms for the 

evaluation of the single-cells distribution (Fig. 25, Sketch 2). Both histograms and nanoSIMS-acquired 

chemical maps revealed the occurrence of different extent of MH in all samples. While in some cases the 

distribution was skewed, in others was clearly multimodal with many cells, especially for P. putida strain, 

showing very low assimilation even after 2 hours of incubation with the 13C-labeled-acetate (Fig. 25). For 

this reason, two different approaches were developed for quantitation of heterogeneity under one or the 

other occurrence (Sketch 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. The histograms 
of P. stutzeri and P. putida 
cells distribution in their 
relative assimilation KA.  
The insets show the RGB 
overlay of 13C14N−/12C14N− 

(Red), 31P16O2− (Green), and 
12C14N− (Blue) acquired 
with nanoSIMS at each time 
point for the respective 
strains. 
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Heterogeneity Coefficient (HC) 
Previous studies measured phenotypic or MH with the Coefficient of Variation (CV). As mentioned 

before, the CV as a measure of heterogeneity implies a normal distribution of single cells in their activity 

or function (Fig. 23-A). However, no bacterial populations tested in my work followed normal (Gaussian) 

distribution, rendering the CV not applicable to my samples. Thus, by extending the concept of CV, the 

expression of the heterogeneity coefficient (HC) was developed (Fig. 26), which additionally involved 

the correction for the Counting Statistics Error (CSE) as source of bias coming from the nanoSIMS 

analysis, that we called HCcorr 201(Fig. 27-A, B).  

 

 

 

 
Figure 26. Representative illustration of a skewed distribution and derivation of the distribution width (DW). 
 𝑄3  − 𝑄1 corresponds to interquantile range ∆13 = 𝑄84  − 𝑄16 . The ε factor represents the sensitivity to the skew 

for the consideration of DW. The full equation of HC is shown as inset with green frame.  
 

 

 

The CV considers ~68% of the cells distributed around the mean value, the distribution width (DW) 

(Fig. 23), while HC considers the 68% around the median (Fig. 26). Since median corresponds to Q2 or 

Q50, this range corresponds to the interquantile range 𝑄3  − 𝑄1  =  𝑄84  − 𝑄16 (Fig. 26). In order to provide 

a tool for tuning the sensitivity to the distribution asymmetry, i.e. the skew, we introduced the ε factor into 

the HC expression (Fig. 26). With this ε, it was possible to include in the DW range the cells from the 

extremes of the distribution (outliers) that are usually excluded from statistical analysis of the variance. 

Nonetheless, the presence of such outlier-cells at the two extremes of the distributions was often observed 

in my experiments (Fig. 25). In fact, by changing the ε factor, the resulting HCcorr values were very 

different, especially for P. putida that was much more heterogeneous than P. stutzeri (Fig. 27-A, B). 
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Figure 27. Heterogeneity indices. A) P. putida and B) P. stutzeri show the comparison of HCcorr values at different 
incubation times calculated with different ε values; error bars represent the correction for CSE, ΔHCcorr. C) and D) 
show the trend over time of the Cumulated Differentiation Tendency Index (CDTI) represented as S ± ΔS. 

 

 

Importantly, the HC expression returned the same value of CV if applied on datasets with normal 

(Gaussian) distribution, since both skew and ε factor would equal zero. However, neither the CV nor the 

HC could account for one of the features of MH, that is the outcome of subpopulations. In this latter case, 

cells were no longer distributed into a skewed distribution, but rather into two or several peaks (Fig. 23-

B), namely bi- or multimodal distribution. 

 

Cumulative/Differentiation Tendency Index (C/DTI) 
For tackling the challenge to quantitate heterogeneity under bi- or multimodality, we used a 

modification of Lavallette’s power function describing the empirical Zipf’s law 204, previously used to 

describe the rank–frequency distribution of words in literary texts 205 and applied it to the rank-activity 

distribution of bacterial cells 201(see appendix). Instead of showing the cells activity distribution with 

histograms (Fig. 25), we first represented them in double logarithmic scale, putting the rank on X-axis and 

cell activity, expressed in KA, on Y-axis (Fig. 28). With this representation, it was easier to see the 

occurrence of many steps alongside the distribution of single cells, corresponding to each subpopulation 

within the same bacterial population (grey arrows, Fig. 28). When plotting the cells as histogram it was not 

possible to appreciate this net subdivision (histogram on the Y-axis, Fig. 28). Once having the rank-activity 

plot, each population of cells was then approximated with the modified Lavallette’s function by fitting its 

parameters (q, s, N) using Origin2019 software; with this approximation it was possible to obtain a “fitting 

curve” with one slope (s), which indicated the differentiation tendency index (DTI) of the population. 
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We found that when s was equal or close to zero, the slope was horizontal and the population followed 

unimodality; in fact, this corresponded to having many cells with similar KA values (e.g. up-left 

subpopulation in Fig. 28).  

 

 

 

 

 

 

 

 

When single-cell-KA values differentiated a lot to each other, the resulting slope after fitting was more 

and more steep, meaning that the higher the s values the more the heterogeneity within the population 

increases (e.g. down-right subpopulation in Fig. 28). 

In few words, when the population followed normal (Gaussian) distribution, it was possible to fit all 

the cells with one single DTI (Fig. 29). Instead, when it followed bi- or multimodal distribution, one single 

DTI did not fit anymore the whole population, resulting in a very large error (s ± Δs, inset in the Fig. 30). 

In such case, it was necessary to derive one DTI for each subpopulation (red lines and grey arrows, Fig. 

28).  Because we wanted to obtain a unique parameter to measure MH, the Cumulative Differentiation 

Tendency Index (CDTI) was derived, which “cumulates” each DTI, while accounting for the number of 

subpopulations and the number of cells in each subpopulation. We called such method multi-component 

Zipfian approximation, due to the necessity to fit each single component first and derive the cumulative 

value thereafter 201 (see appendix).  

We thus calculated CDTI for the two Pseudomonas strains at each time point (Fig. 27-C, D). P. putida 

was much more heterogeneous than P. stutzeri at each incubation time considered. 

Figure 28. Rank–activity (KA) 
distribution of P. putida single 
cells after 60 min of incubation 
with 13C-acetate. Grey hollow 
circles represent the relative C 
assimilation (KA) of each single 
cell. Dark grey arrows 
represent subpopulations. On 
the Y-axis, the histogram 
representing the distribution of 
the same cells overlaid for 
comparison. Red lines 
represent the fitting with 
modified Lavallette’s Zipfian 
law. 
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Figure 29. Simulated unimodal distributions of different population sizes plotted as rank-cellular activity and fitted 
with modified Zipfian law. Different colors show different cell numbers (N). DTI (s) values are provided as inset in 
the plot. On the right panels, the outcome of Zipfian approximations is shown as it is provided by Origin software. 

 

 

 

Indeed, the CDTI trend over time for P. putida resulted completely different from the trend in HCcorr 

(Fig. 27-A, C); this was because the distribution of the population was clearly multimodal and CDTI 

could appreciate and account for the contribution of the subpopulations (Fig. 27-C). For P. stutzeri instead, 

the CDTI trend was more similar to the HCcorr calculated with the ε factor=1, i.e. more sensitivity to the 

outliers (Fig. 27-D). P. stutzeri showed less MH, resulting in a bimodal distribution just at time 30 minutes 

(Fig. 25), which indeed corresponded to an increase of CDTI (and of HCcorr just when calculated with ε 

factor=1)(Fig. 27-B, D) 201(see appendix). 
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Besides CV, so far, few other attempts have been done to calculate heterogeneity in microbial 

populations. Saccharomyces cerevisiae and Escherichia coli grown aerobically in glucose-limited 

chemostats showed phenotypic heterogeneity depending on applied dilution rates and glucose pulses in 

the media 206. Simulating fluctuations in substrate concentration normally happening at industrial scale, the 

heterogeneity was quantified based on the shape of the distribution of single-cell fluorescence values 

obtained with flow cytometry 206. In particular, a combination of parameters such as the slope of the 

distribution function, peak width, CV and skewness have been used; the latter was calculated as difference 

between mean and mode, and considered as index for measuring asymmetry. The slope of the distribution 

in turn indicated the distribution width: the higher the slope the narrower the distribution and therefore the 

lower the population heterogeneity. On the contrary, an increase of heterogeneity was displayed as lower 

slope, higher peak-width, and higher CV values. In comparison with our approach, this approach presents 

two limitations: it does not provide a unique value of heterogeneity (it is actually the combination of more 

parameters) and it is less sensitive and powerful in the case of the occurrence of subpopulations, especially 

when unimodal distribution is hiding a potential Bimodality or when the distribution is clearly 

multimodal 206.  

Another application focused on the dynamics of heterogeneity overtime, using a segregostat, a 

particular chemostat able to monitor phenotypic diversification of microbial populations with online 

analysis. A special pattern of subpopulations of Pseudomonas putida and Escherichia coli grown with 

Figure 30. Rank-activity in KA 
plots and single-component 
Zipfian approximation for P. 
stutzeri at three different time 
points. The inset shows the 
s±∆s obtained with the fit. 

Time point 30 minutes showed 
a huge error of fitting because 
of the non-unimodal 
distribution. 
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glucose pulses could be observed and the heterogeneity was measured based on subpopulations ratios 207. 

Such approach did not consider heterogeneity under unimodal distribution. Moreover, it did not take into 

account the contribution of each subpopulation, i.e. cell numbers, within the whole population. Indeed, the 

focus of the study was on the heterogeneity dynamics, rather than heterogeneity quantitation, upon 

induction of the outcome of subpopulations via glucose pulses 207. 

A further attempt was done to quantitate and compare MH on photosynthetic pico-eukaryotes, 

Prochlorococcus and Synechococcus species sampled from two different locations 208. Coupling flow 

cytometry with nanoSIMS, the authors could reveal heterogeneity in metabolic activity when different 

inorganic C- or N-sources or urea were administered to the cells. The heterogeneity was measured always 

as CV, although a correction factor for the analytical error coming from the Poisson distribution of the 

counts detected with nanoSIMS was introduced. The correction was done using counts average from 

isotope fraction, Poisson distribution model and assimilation based on the normalization with bulk method, 

omitting the statistical error (CSE) upon ions counting in each single cell, the duration of cell incubation 

and the initial isotopic abundance, thus possibly introducing other bias in the heterogeneity 

measurement 208. 

 

 

HC and DTI/CDTI as universal parameters  
The DTI is independent of the population size (Fig. 29), normalization procedures, and measure units, 

making its use general and universal. To prove this last point, we applied the HC and DTI/CDTI indexes 

for quantitation of heterogeneity measured with other techniques. 

Flow cytometry 

P. putida cells grown in M9-leucine medium supplemented with 1 g/L of acetate were sampled at 8 

time points upon cultivation in batch for 26 h, stained with DAPI (4′,6-Diamidin-2-phenylindol) and 

analyzed with flow cytometry (Fig. 31). During the cell cycle, cells duplicate their DNA and expand, but 

not always, their volume; additionally many chromosomes may co-exist before cell division within each 

cell 209. DAPI stains the DNA, thus labelling the chromosome inside each individual cell, so that with flow 

cytometry it is  possible to measure DAPI fluorescence intensity on the one side and the cellular Forward 

Scattered signals (FSC) on the other 209. Cells can thus be sorted based on their size (FSC) and their DNA 

content (DAPI) and the resulting dot plots allow for the identification of subpopulations based on the 

chromosome numbers (Fig. 31-A). Multimodal distributions (outcome of subpopulations) were clearly 

evident from the dot plots and further confirmed from the histograms (Fig. 31-B). Single cells represented 

as dot plots of FCS (X-axis) vs. DAPI intensity (Y-axis) (obtained from data transformation with dedicate 

flow cytometry software) (Fig. 31-A) were compared with the same cells represented as histograms 

(Fig. 31-B) and as rank-DAPI intensity plot (Fig. 31-C). Therefore, using flow-cytometry-raw data and 

plotting them in the rank-DAPI intensity distribution, CDTI was calculated with multicomponent Zipfian 

approximation (Fig. 31-C, E) for each of the time points analyzed. The measured CDTI values were able 
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to reproduce the changes in subpopulations’ number, and additionally quantitate heterogeneity within 

and between the bacterial populations at each time point (Fig. 31-E). Considering all the subpopulations 

(G1-Gx), the CDTI patterns nicely described the dynamics of the population heterogeneity: at the T0 it was 

very high, then decreased at 2 h to steeply increase at 6 h; at 24h it returned back to a very similar value 

with the initial one (Fig. 31-E). This pattern similarity further supported the applicability of the CDTI for 

measuring heterogeneity with different data sets, due to its ability to resolve the subpopulations 

contribution. HC was also calculated on these data, but it failed to reproduce the same heterogeneity 

dynamics, proving once more its unsuitability for quantitating heterogeneity when populations follow 

multimodality (Fig. 31-D). 

 

 

 

Figure 31. Flow cytometry data of P. putida cells and heterogeneity dynamics during growth over 26 h. A) 
Representative dot plots corresponding to 0, 2, 6, and 24 h samples showing DAPI fluorescence intensity (related to 
DNA content) vs. forward scatter (FSC) intensity (related to cell size). B) Histograms of DAPI fluorescence intensity 
distribution used to define the boundaries between the subpopulations G1–Gx, which correspond to the chromosomes 
number in the cells. C) Rank-DAPI intensity plots with the multicomponent Zipfian fit (solid red line). D) Derived 
HC and E) CDTI values after multicomponent Zipfian approximation. The corresponding time points are highlighted 
with black open circles. 
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Microscopy 

We further proved the applicability of our method using an already published dataset where the cell 

length was measured with microscopy 119. In this work, the metabolic specialization of E. coli under feeding 

or co-feeding with two C-sources, glucose (Glc) and arabinose (Ara), was studied.  

Measuring heterogeneity with CV, the authors found the highest heterogeneity during co-feeding under 

C-limitations conditions (Fig. 32-C); instead, growth on one single C-source, even under nitrogen 

limitation, caused less heterogeneity. The bacterial populations showed unimodality under all tested 

conditions, never showing bimodality even upon co-feeding 119. We further tested these results while 

applying HC and DTI for heterogeneity quantitation. The HC values calculated with ε factor=0, or =−1 

(Fig. 26) followed the CV trend (Fig. 32-C, D), as expected for unimodal distribution. HC with ε factor=1 

was higher for the condition 10 µM Glc + 10 µM Ara (Fig. 32-D), reflecting indeed the slight skew of this 

distribution (Fig. 32-A). Then, we plotted the cell populations as rank–length distributions (Fig. 32-B) and 

approximated with DTI (Fig. 32-E). Two observations could be done: i) heterogeneity between 

3 μM Ara + 3 μM Glc and 10 µM Glc + 10 µM Ara was almost the same although this was not revealed 

by the CV values (Figure 32-C). Moreover, the condition 3 μM Ara + 3 μM Glc showed a higher DTI error 

reflecting the larger distribution width of this population (Fig. 32-E). ii) We could approximate all 

conditions with one single DTI and high goodness of fit (Fig. 32-E). Indeed, both HC and DTI indices 

confirmed the unimodal distribution of all populations, in agreement with what was reported by Nikolic 

and coauthors119.  

 

These results showed the usefulness and applicability of our method on a large variety of datasets and 

different techniques. While accounting for unimodal and asymmetric distribution on one side and bi- or 

multimodal distribution on the other, we provided two universal indices as heterogeneity units measure. 

When applied on nanoSIMS data, the correction for CSE was implemented to account for the error in HC 

coming from the experimental conditions. To the best of our knowledge, no studies have shown this before. 

Understanding the entity of CSE helps to estimate how much ion counts need to be acquired per cell in 

order to minimize the heterogeneity caused by counting statistics 201. The developed indices are suitable 

for measuring not only metabolic but also physiological, morphological and phenotypic heterogeneity. 

Most importantly, both HC and DTI/CDTI provide unique values, with their errors, that can be used 

reliably to compare different conditions to each other. For this reason, such indices were successfully 

applied for quantitation and comparison of MH under different experimental conditions in the next 

section of my work. 
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Figure 32. The distribution of Escherichia coli single cells in their length upon growth under different conditions as 
reported in 119 represented as A) histograms and B) rank–length plots of the respective histograms. Single-cell length 
heterogeneity derived as C) Coefficient of variation (CV) together with the median cell length and its error [± median 
absolute deviation (MAD) interval]; D) Heterogeneity Coefficient (HC) calculated with different ε values; E) 
Differentiation Tendency Index [DTI, s, Zipfian slope] of the rank–length distributions as s ± Δs (error bars are shown 
as ±Δs × 100 to be magnified). 
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3.3 Abiotic factors shaping metabolic heterogeneity in bacterial populations  

A quantitative understanding of each single-cell contribution to metabolic activity of the whole 

population could help to explain cell-to cell variability in response to different factors. Phenotypic and 

MH have been shown so far mostly under unfavorable conditions, such as nutrients limitations, oxidative 

and thermal stresses, spatial restriction, or antibiotics exposure. However, little is still known about MH, 

if and how can be displayed by microbial populations under physiological or non-limiting conditions and 

particularly which abiotic factors influence mostly its outcome. Under limiting conditions, different 

species behave in the same way upon equal modality of limitation. For example, MH in N2 fixation of 

Klebsiella oxytoca 69 and Chlorobium phaeobacteroides 72 populations increase in a similar way under NH4 

limitation, although the species are phylogenetically distant. There are no studies currently investigating 

on how the same abiotic factors can influence the outcome of heterogeneity in the same or diverse 

microbial genera under physiological conditions. 

 

Non-limiting conditions 
I aimed to investigate the MH of three bacterial strains under non-limiting conditions considering the 

influence of abiotic factors such as carbon sources (C-sources) and their concentrations as well as two 

electron acceptors, namely oxygen and nitrate (Sketch 3-A). During the semi-logarithmic phase of their 

growth, bacteria do not experience any limitations in growth substrate and electron acceptors, which at this 

phase should be not yet depleted. To test this hypothesis, three different species were cultivated in batch: 

Pseudomonas putida mt-KT440, Thauera aromatica K172 and Pseudomonas stutzeri FC01. For the two 

Pseudomonas species a mineral salts medium was used, supplemented with NaHCO3 (30 ml/L) as buffer 

system, with addition of 10% CO2 in the headspace (9 ml) and 1 ml inoculum. For T. aromatica a 

phosphate-buffered DSM 586 medium 210 was used because of the strain preference for this buffer instead 

of NaHCO3. For aerobic cultivation, medium was prepared with the omission of nitrate; for anaerobic one 

the complete DSM 586 medium was prepared following the procedures for anoxic media preparation 211. 

All bacterial suspensions were prepared in sealed 140-ml serum bottles containing 29 ml of medium and 

1 ml inoculum and grown at 30°C with orbital shaking (100 rpm). The three strains were grown with two 

distinct C-sources, acetate and benzoate, at two concentrations, 0.5 and 5 mM or 0.1 and 1 mM, 

respectively. T. aromatica was grown using either oxygen or nitrate as electron acceptors (Sketch 3-A).  

Bacteria were cultivated for several passages under each of the above-mentioned condition, after which 

growth kinetics (optical density at 𝜆 = 600 𝑛𝑚, OD600) and substrate consumption (Ionic-exchange Liquid 

Chromatography for acetate and High-Pressure Liquid Chromatography for benzoate) were measured over 

time in duplicate for each condition (Sketch 3-B). This was necessary to establish the sampling time 

corresponding to the phase in which bacteria are growing exponentially while still having more than half 

than initial substrates and electron acceptors (mid-log phase). From now on, I will refer to such conditions 

as non-limiting. 
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Sketch 3. Investigation of factors shaping MH in three bacterial populations A) Abiotic factors tested to investigate 
their influence on MH. B) Schematic of the labelling experiments workflow: growth kinetics evaluation in batch 
cultures, labelling experiments, sampling at different time points and downstream analysis, such as growth evaluation 
with optical density, substrates concentration measurement and nanoSIMS analysis. 

 

 

Afterwards, isotope-labeling experiments were performed. The cultures were grown with each 

combination of C-sources and concentrations and, for T. aromatica, electron acceptors. Each culture was 

incubated with unlabeled substrates for the span of the lag-phase, determined from the growth curve, and 
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then spiked with 13C-acetate (Ac) or 13C-benzoate (Bz), corresponding to 20 at% of the initial 

concentration, just after the beginning of the exponential phase (Sketch 3-B). 

Cells were withdrawn before the addition of label, called T0, and for three subsequent time points until the 

mid-exponential phase, depending on the growth kinetic of each strain under different growth conditions. 

Then, samples were split in three aliquots to test: bacteria growth (OD600), substrate concentrations, and 

anabolic activity (nanoSIMS analysis) (Sketch 3-B). This was done to confirm that cells were still under 

non-limiting conditions, so that we could measure their activity and investigate on their MH. Each sample 

was analyzed with nanoSIMS instrument with the optimized parameters discussed above (see paragraph 

“Precision of cellular isotopic composition measurements with nanoSIMS”); 7 masses (secondary ions) 

were collected in parallel: 12C2−, 13C12C−, 12C14N−, 13C14N−, 31P−, 32S−, and 31P16O2− in negative extraction 

mode. The data treatment, the calculation of KA values and heterogeneity quantitation were performed 

as mentioned in the previous chapters. In total, 10443 cells were analyzed, corresponding to 3 to 5 randomly 

picked FoVs per each condition and time point (Table 1). 
 

Single-cell Carbon assimilation 
Before isotope-labels addition, at T0, cells showed 13C14N−/12C14N− ratios ranging from 0.0103 to 

0.0118, values very close to the natural abundance (13C =0.0109). Following the addition of 20 at% labelled 

substrate, cells collected from each set-up showed a gradual enrichment in the 13C content over time, further 

revealed by their relative C-assimilation measured as KA (Fig. 33).  

Single cells of P. putida showed a similar distribution in their carbon assimilation at both Ac 

concentrations, 0.5 vs. 5 mM (Fig. 33-A), with relatively similar KA median values. A substantial fraction, 

i.e. 14 to 35% of analyzed cells, showed no or little assimilation of carbon (KA<10%) at both substrate 

concentrations and all time points, except for T3 of the culture growing with 0.5 mM Ac (Fig. 33-A, B). 

Instead, P. putida cells showed distinct carbon assimilation trends with Bz, with significantly higher KA 

observed for 1 mM vs. 0.1 mM initial substrate concentrations (Fig. 33-B); even the distribution of single 

cells in their carbon assimilation was different: with 0.1 mM Bz it was always scattered around the median 

at all T points, while with 1 mM it was initially more compact at the beginning to become more scattered 

at T3 (Fig. 33-B).  

Single cells of P. stutzeri showed higher C-assimilation with the higher initial substrate concentrations 

for both substrates; in fact, at T3 the median KA was about 6.2-fold higher for both conditions (Fig. 27-C, 

D). The cells distribution in C-assimilation is less scattered around the median KA values for the higher 

concentration in comparison with a much scattered for 0.5 mM Ac and 0.1 mM Bz. Interestingly, T2 of 

both 5 mM Ac and 1 mM Bz assays showed a marked bimodal distribution, where 4.5 and 56% of the 

cells respectively showed KA values below 25% (Fig. 33-D); this was also the reason why the KA median 

values were small despite the highly active cells, especially for 1 mM Bz (Fig. 33-D, Table 1).  
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Figure 33. Single-cell assimilation over time. Each row represents a different strain with the two C-sources used: 
acetate (Ac - A, C, E, G) and benzoate (Bz - B, D, F, H). P. putida (A, B), P. stutzeri (C, D) and T. aromatica under 
aerobic (E, F) vs anaerobic conditions (G, H) are shown. For each substrate, the panel shows single-cell carbon 
assimilation values (KA) with the low concentration (lighter color) and the high one (darker color) distributed in box 
plots (boxes include the 16–84 percentile range, whiskers and Min or Max values the rest of the distribution); 
horizontal lines represent median values. Examples of 13C14N−/12C14N− ion maps acquired with nanoSIMS, 
corresponding to the low substrate concentration assays, are shown as insets. Scales of micrographs is 2 µm. 
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Table 1. Number of cells analyzed with nanoSIMS at each time point for all the tested conditions. Carbon 
assimilation (median KA) in percentage, growth rate calculated from OD600 (bulk) and calculated from KA (single 
cells) are provided. 
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T. aromatica cells under aerobic conditions showed a similar behavior to that of P. stutzeri (Fig. 33-E, 

F). C-assimilation was higher for the higher concentration of both substrates. Moreover, the cells 

distributions from incubations with 5 mM Ac and 1 mM Bz were less scattered around the KA median 

values for all time points, except T3 (Fig. 33-E). On the contrary, incubations with lower substrate 

concentration showed more scattered distributions, particularly the 0.1 mM Bz assay that showed bi- or 

multimodality (Fig. 33-F).  

Instead, most of T. aromatica cells grown under anaerobic conditions (nitrate as electron acceptor) 

showed high C-assimilation, with none or few cells showing low KA values. Again, the distribution of cells 

was less scattered around the median for high substrate concentration assays in comparison with low 

concentrations; cells from T1 grown with 5 mM Ac showed even unimodal, though skewed, distribution 

(Fig. 27-G). For 1 mM Bz instead there was always a percentage of low-active cells, 21%, 5% and 4% for 

T1, T2 and T3 respectively, which made the distribution very tailed. For Ac, median KA values were always 

higher at high concentration (Fig. 33-G; Table 1) while for Bz the opposite was observed (Fig. 33-H; 

Table 1).  

From the analysis of the single-cell distributions in relative C-assimilation, it was obvious that in 

almost all the cases bacterial populations were not following unimodality but rather bi- or multimodality. 

However, the distribution per se was uninformative about the heterogeneity within each bacterial 

population, so the single-cell KA values were exported to the Origin software (package version 2019) and 

further used for quantitation of heterogeneity (Sketch 2). Because the distribution was never unimodal, 

the cumulative differentiation tendency index (CDTI) was calculated as a quantitative measure of the MH.  

With SIP-nanoSIMS approach, isotope-labeled compounds are used as tracers to quantify assimilated 

elements into the cell biomass, thanks to their biosynthetic activity (anabolism); for this reason, cell-to-cell 

differences shown with nanoSIMS analysis are considered as anabolic heterogeneity (AH) 118. The higher 

the CDTI value, the higher AH displayed by the population. 

To study the dynamics of heterogeneity over time, we calculated CDTI values for the T1 – T3 samples 

and linked them to the actual substrate concentration (consumed upon labeling experiments) and the 

relative C-assimilation, namely KA median values (Fig. 34). At T0, the 13C fraction in the growth substrate 

corresponded to the natural abundance, thus offering a different resolution degree (from 0.0103 to 0.0118) 

in comparison with the 13C-enichemnt in T1–T3 samples (from 0.0103 to 0.1711 in all other T points) for 

the evaluation of AH heterogeneity.  

 

Dynamics of the anabolic heterogeneity (AH)  

In general, the addition of isotope-labeled substrates (Fig. 34, red arrows) brought to a temporary 

increase in the substrate concentrations. The only exception was P. putida with 0.5 mM Ac, where the 

concentration at T1 was lower than T0, probably because of the rapid substrate consumption within the 1 

h sampling interval (Fig. 34-A, Table 1). Upon growth on labels, while Ac and Bz concentrations were 

decreasing, the single-cell C-assimilation was increasing as shown by KA values at each incubation 

condition (Fig. 33). The only exceptions to that were P. stutzeri with 1 mM Bz and T. aromatica aerobic 
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with 0.1 mM Bz assays, which showed a nonlinear increase of KA median values over time; this was 

probably the effect of the clear bimodal distribution of these populations at T2, as shown before (Fig. 33-

D, 33-F). 

For P. putida, the CDTI values decreased with increasing median KA and decreasing substrate 

concentrations for all tested conditions. The extent of AH was generally higher for Ac vs. Bz (Fig. 34-A, 

D). While Ac assays showed similar initial CDTI (T1) for both concentrations, with a decrease over time 

more prominent for the 0.5 mM Ac initial (Fig. 34-A, B), Bz assays showed CDTI values inversely 

correlated with the concentration: 0.1 mM Bz resulted in CDTI index more than 2-fold higher than 

1 mM Bz concentration (Fig. 34-C, D).  

For P. stutzeri, the CDTI values also showed a decreasing trend with increasing median KA, except 

for cells grown with 0.5 mM Ac which showed a relatively low AH, with low and similar CDTI values 

over time (Fig. 34-E, H). The 5 mM Ac assay was more heterogeneous than 0.5 mM Ac with a decreasing 

trend over time. On the contrary, the CDTI dynamics for Bz assays was clearly inverse with substrate 

concentration (Fig. 34-E, F). The 0.1 mM Bz assay showed the highest heterogeneity, especially at T1 and 

T2, among all tested conditions. Although decreasing from almost 1 to 0.6 at T3, the CDTI values remained 

high over time. Instead, the heterogeneity of 1 mM Bz assay stayed relatively low over time, with slightly 

decreasing CDTI from 0.2 to less than 0.1 at T3 (Fig. 34-G, H). 

For T. aromatica differences in anabolic activity were observed not only within but also between the 

bacterial populations grown under aerobic or anaerobic conditions (Fig. 34-I to P). With oxygen as electron 

acceptor, CDTI trend over time slightly decreased for 0.5 mM Ac but steeply increased for 5 mM Ac initial 

concentration (Fig. 34-I, J); when nitrate was used instead, the opposite trend was observed: CDTI trend 

steeply increasing for 0.5 mM Ac, and slightly decreasing, though having very low values, for 5 mM Ac 

assay (Fig. 34-M, N).  

A different scenario was observed for Bz. CDTI values were relatively constant over time at 0.1 

mM Bz concentration, although overall AH was higher for aerobic vs. anaerobic conditions (Fig. 34-M, N). 

For the 1 mM Bz assays, CDTI trend steeply decreased following the steep decrease of substrate 

concentration under aerobic conditions (Fig. 34-L), while it just decreased from T1 to T2 and remained 

constant at T3 under anaerobic conditions (Fig. 34-P). In the latter case, the substrate consumption was not 

as evident as for aerobic counterpart, probably influencing the AH of the bacteria population (Fig. 34-P).   

The heterogeneity dynamics of each single condition was necessary to understand how each species 

react to different abiotic factors. However, we wanted to determine which factor/s influenced the most 

AH among substrate type and concentration, strain type, and electron acceptor. Plotting the actual 

concentrations (values measured with liquid chromatography) vs. the respective CDTI showed no obvious 

correlation (Fig. 35-A). 



 

 
60 

 

 
Figure 34. Heterogeneity, carbon assimilation and substrate concentration over time. Carbon assimilation (as 
median KA) and substrate concentration over time before (red arrow) and after label addition. Colored filled circles 
show the trend of the CDTI index; hollow gray circles represent the median KA; hollow black circles correspond to 
substrate concentration for assays of P. putida (panels A-D); P. stutzeri FC01 (panel E-H); T. aromatica under aerobic 
(panels I-L) or anaerobic (panel M-P) conditions. Note the different CDTI scale for P. stutzeri with 0.1 mM benzoate 
vs. all other CDTI plots, and the different scaling for the concentrations and KA axes.  
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We also performed Mann-Whitney-U paired test as a statistical non-parametric test to study the 

differences between the treatments on the CDTI. When paired-compared, neither the concentration (Fig. 

35-B) nor the other factors (Fig. 35-C) showed a statistical significance, indicating no influence on CDTI, 

thus on AH. To verify if some of the treatments were following a common CDTI trend over time, CDTI 

values were plotted as hierarchical clustering. However, also in this case no obvious clustering was visible, 

indicating that the AH dynamics over time were not influenced by the abiotic factors tested (Fig. 35-D). 

As final step, we calculated growth rates at both bulk level (from OD600) and single-cell level (from KA 

values) to test if there was at least a correlation of CDTI values with the growth rates (Table 1). The growth 

rates at single-cell level differed from the bulk growth rate (Table 1), due to the fact that OD measurement 

cannot distinguish between less and highly-active cells (while KA does resolve cell-to-cell differences 187). 

However, none of the growth rates showed any correlation with CDTI values.  

Previous experiments with SIP-nanoSIMS approach showed higher MH in continuous cultures in 

comparison with batch 71,118,119. Different dilution rates in chemostat possibly induce single cells or small 

subpopulations to differentiate, changing their metabolic activity and their growth rates as a strategy for 

optimization of resources 118. To reduce as much as possible additional sources of heterogeneity, we thus 

chose batch cultivation to investigate if substrate types, concentrations and electron acceptors, influence 

the AH of three different bacterial populations. However, growing bacteria under non-limiting conditions 

brought to two very surprising results: i) microbial populations display AH even in batch cultures under 

non-limiting conditions, in the absence of apparent stressors; ii) almost in all conditions the decrease in 

substrate concentration corresponded to a decreasing trend of AH (Fig. 34). On the contrary, we would 

have expected that while approaching limiting conditions (low Ac or Bz in the growth medium) 

heterogeneity would increase 67,69.  

In general, some common trends were found in almost all conditions. For example, the substrates were 

never depleted in any of the conditions (Fig. 34). Even when the substrates were 50% of the initial 

concentration, namely for T. aromatica with 1 mM Bz (aerobic) and T. aromatica with 5 mM Ac 

(anaerobic), the corresponding CDTI values were close to zero, i.e. very little heterogeneity. This was a 

further proof that bacteria were not facing yet nutritional limitations.  

Moreover, the median KA values showed in almost all conditions a linear increase in C-assimilation 

over time, indicating that the cells were still actively engaging in anabolic activities (Fig. 33 and Fig. 34). 

The only exceptions were P. stutzeri with 1 mM Bz and T. aromatica grown aerobically with 0.1 mM Bz, 

but this was rather the effect of a bimodal distribution that strongly decreased the median, than an evidence 

of an overall decrease in population activity (Fig. 33-D and 33-F). 

However, statistical analyses showed that CDTI values are not influenced by any of the abiotic factors 

tested (Fig. 35-B, C). Nor a common heterogeneity pattern over time could be identified (Fig. 35-D), 

probably due species-specific dynamics of metabolic interactions and regulations over the growth phase. 

These results brought to the consideration that stochasticity was the driving force for the display of AH in 

bacterial cultures. Gene expression noise and extrinsic noise could be part of the causes, as it has been well 

documented for Escherichia coli 14,17,19,212.  
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Figure 35. Factors influencing anabolic heterogeneity. A) Scatter plot of CDTI vs. substrate concentration. B) and 
C) show the results of Mann-Whitney-U paired test comparing B) substrate concentration C) substrate type, species 
and electron acceptor. Box plots of CDTI from all treatments grouped by the tested variables; lines in the box represent 
median values. D. CDTI represented as a heatmap with the different conditions ordered by hierarchical clustering as 
shown by the dendrogram. Clustering was computed with the CDTI values from all treatments to reveal patterns of 
heterogeneity over time. Color gradient represents a scale from 0 to 1, with the highest values in red (high CDTI) and 
the lowest in blue (low CDTI).  
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The transport and metabolic pathways of C-sources into the cells are key regulation points 213 and can 

be also subjected to noise, since in turn, they depend on promoter activity, ribosomal RNA and cytoplasmic 

content of proteins and enzymes involved in that pathway 214. For instance, benzoate degradation pathway 

is either encoded by chromosomal or plasmid-borne operons 215 and their induction is often subjected to 

phenotypic Bistability 6,7,30,91. Last but not least, phenotypic memory can also be responsible for cell-to-

cell differences caused by inherited concentration of inducers, mRNA transcripts or proteins from mother 

to daughter cells 50.  

Using SIP-nanoSIMS approach, we could demonstrate how the stochasticity can be reflected 

quantitatively in the cellular anabolic activity, and additionally we could follow the dynamic over time. 

The nanoSIMS analysis offers a snapshot of a microbial population, allowing for quantification and 

visualization of the labels’ incorporation into the single cells in that specific time 216. In previous 

experiments using SIP-nanoSIMS approach, the dynamics component, i.e. trend over time was missing, 

because the focus was the study of heterogeneity under limitation of C- or N-sources 69,70,119 or electron 

donors 70,71. Instead, we could also provide qualitative and quantitative information on anabolic activity in 

a temporal dimension over the span of their mid-exponential growth. After each passage, the cultures would 

bear a certain “memory” of the past conditions. Such memories are coming both from the environmental 

conditions and biochemical, structural and genetic information; phenomenon also known as phenotypic 

memory 48. Assuming that at the beginning of each “new” growth phase bacteria carry already this 

heterogeneity, after the addition of isotope-labelled compounds, the initial heterogeneity can be 

“magnified”, via tracking the 13C-incorporation and thus single-cell anabolic activity. This means that if a 

cell at the T1 is enriched in 13C, that same cell can never go back to 13C-natural abundance: instead, the cell 

will have two “choices”: i) to stop the label uptake (thus remaining with the same 13C-enrichment value 

overtime), or ii) to increase the uptake, thus resulting in higher 13C-enrichment at T3.  

Consequently, the cells with very low KA values, i.e. very low C-assimilation, found at T3, would be 

the very same cells that since the beginning “decided” not to engage in substrate uptake probably as a result 

of a bet-hedging strategy.  

 

Ecological significance 
In this perspective, our findings have a potential importance in environmental microbiology and 

biogeochemistry studies focused on in situ metabolic activity of natural populations with the use of SIP-

nanoSIMS approach. While very useful to study the impact of uncultured microbial populations, or the 

mechanisms of trophic interactions in natural or synthetic systems 217-220 and 129(see appendix), such studies 

often revealed heterogeneous populations with respect to isotopic enrichment or substrate assimilation. So 

far, heterogeneity has been interpreted as resources limitations 69-71, reduced substrates availability 221 or 

potential differences in metabolic pathways 120. According to our results, we suggested that the low-

enriched cells should not be interpreted as dormant or poorly active per se, but rather as the results of cell-

to-cell metabolic diversification in response to environmental conditions, or as a ‘memory effect’ of their 
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past conditions 48,50. T. aromatica growing with 0.5 mM Ac (aerobic) and with 0.1 mM Bz (anaerobic) 

showed high C-assimilation while having and keeping a very low AH over time. Likewise, one would 

expect that environmental limitations, such as low nutrients or growth-substrates concentrations, should 

not necessarily bring to an increase of cell-to-cell heterogeneity.  

 

Future studies will be necessary to investigate if the display of low or high AH over time ensures the 

survival and the success of microbial populations in their natural environments. 

Understanding the mechanisms taking place under physiological conditions will also help to 

understand the role and the evolution of MH between cells belonging to the same population. In turn, this 

can help to exploit the heterogeneity in a positive way if the factors that are boosting or reducing its 

occurrence are known. These insights can be especially important for biotechnological applications as well 

as bioprocesses, where bacteria have to perform a constant activity to achieve the highest possible yield 

starting with high concentration of substrates. Moreover, microbial populations could face abundance of 

nutrients even under environmental conditions, e.g. during biodegradation processes, in the vicinity of 

eutrophic areas or heavily contaminated environments.  
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3.4 Influence of biotic factors in shaping heterogeneity  

Several evidences proved cell-to-cell heterogeneity in microbial populations both in model strains and 

in isolates from natural environments. Very little however is known about this phenomenon upon 

interactions of more than one species. Especially in soil, fungi and bacteria are important functional groups, 

where they shape new ecological niches. Bacteria-Fungal-Interactions (BFI) play an important role in 

element cycling and compounds turnover 222-225. Fungal hyphae can act as a dispersal networks for bacteria, 

allowing for important ecological processes such as biodegradation, that otherwise would be limited or 

hindered because of physically distant substrates 179,226-228. The hyphosphere is the spatially and 

physiologically defined habitat formed and affected by hyphae 229. Such habitat has been described as a 

location of increased Horizontal Gene Transfer (HGT) 230 between bacterial strains. However, how this 

directly influences the MH of the bacteria is still an open question. HGT may depend on physiological 

status of the bacteria and may not take place if bacteria are under nutrients limitations. In turn, the 

physiology of bacteria can be influenced by the physical and metabolic interactions with hyphae. The latter 

may influence metabolic activity, e.g. by promoting HGT between bacteria or the exchange of nutrients, 

and thus be a driver of bacterial MH.  

 

Optimization of the experimental set-up 
In order to study the BFI, I created a laboratory controlled ecosystem, using a bacterial reporter system 

consisting of two strains: Pseudomonas putida KT2442::dsRed-lacIq(pWW0::Plac-gfp) as plasmid donor, 

(by the simultaneous expression of LacIq, this bacteria express DsRed while repressing the plasmid-

encoded GFP), and Pseudomonas putida KT2440 wild type (Sketch 4). 

When the transconjugation takes place, i.e. the plasmid uptake, the recipient will be able to express GFP, 

thus fluorescing in green and making possible to track it with fluorescence microscope (Sketch 4). The 

species of oomycete Pythium ultimum, a pseudo-fungus, was used as model of hyphae-forming organism 

as described earlier 230. The rationale was to study and visualize HGT between bacteria and to correlate 

later on with their metabolic activity (i.e. uptake of isotope-labeled substrates) with SIP-nanoSIMS 

approach. To do so, it was first necessary to validate a suitable set-up able to preserve the spatial 

distribution between hyphae and bacteria but also suitable for high-vacuum-compatible sample 

preparation. In a previous paper 117, a set-up was built, consisting of two plugs of agar and a Si-wafer in 

between (Fig. 36-A): the pseudo-fungus was inoculated on one side and allowed to grow over the Si-wafer 

before reaching the second agar plug (Fig. 36-B). However, in 117 hyphae grew over a bare Si-wafer mainly 

in dry conditions (to test the resuscitation of bacterial spores).  

On the contrary, for my experiments, a humid environment was required because both organisms needed 

to be alive and the water film around the hyphae was necessary for the movement of the bacteria 

alongside 179, 230. Exploiting the same principle, a slightly different set-up was used (Fig. 36-C), simply 

substituting the Si-wafer with a third agar plug in the middle, inside a 3-well chamber glass slide (ibidi®, 

Germany).  
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Sketch 4. Workflow to study biotic factors influencing MH. A) Optimization of the experimental set-up. B 

Performing in parallel labelling experiments and letting bacteria to engage in Horizontal Gene transfer (HGT). After 
incubation the bacteria-pseudo-fungi interactions are observed with a) fluorescence microscope to quantify the trans-
conjugants; b) HIM microscopy to verify the cells structures preservation and the physical interactions; c) nanoSIMS 
to quantify the metabolic activity at single-cell level. C) Pictures taken from a) 230; b) 231; c) 117. 

 
 

 

Classical chemical fixation and dehydration, that are usually performed under soaking conditions 

(Sketch 1), applied to the agar resulted in the formation of clumps that disturb the topography and in turn 

the subsequent observations (Fig. 37-A). High Pressure Freezing (HPF) coupled with Freeze-

Substitution 232 could be a good alternative to visualize co-cultures and study the BFI. Samples are usually 

prepared in special support with a height of 200 µm. So, a very thin agar layer was placed in the middle of 

the set-up, to verify the growth of the hyphae. However, P. ultimum did not grow well over the agar when 
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the thickness was below 1 mm (Fig. 38-C) and the agar tended to dehydrate very soon even at room 

temperature. Double pseudo-fungi inoculum in either the opposite agar wells (Fig. 38-A) or the same well 

(Fig. 38-B) did not show hyphal growth after 72 hours (h) as well (Fig. 38). 

 
 

 
Figure 36. First try of the set-up based on the approach used by 117. A) Set-up with two agar plugs and a Si-wafer in 
the middle and B) schematic illustration of hyphal growth on top of the Si-wafer in the middle used by 117. C) 
Approach used in my project with thin layers of agar, using the same principle as B) but replacing the Si-wafer with 
a third agar well. D) Addition of a piece of Au/Pd-coated filter on top of the middle agar well for growing hyphae-
bacteria co-cultures on a conductive support.  

 

 

Agar could not be avoided due to the fact that bacteria needed a thin liquid film to disperse along 

hyphae and make HGT 230. When using 1.8% agar (Bacto-Agar, Difco™, BD) in water w/v (hard agar), 

hyphae preferably grow above the agar surface; in turn bacteria cannot go through the thickness of the agar 

and will be “obliged” to run on top of the hyphae 230.  

 

The Au/Pd coated filters (0.2 µm pores) are usually the preferred support for nanoSIMS analysis. We 

assumed that, if a piece of coated filter is placed on top of the middle agar well (Fig. 36-D), this should 

preserve the passage of nutrients and water through the pores while allowing the hyphae to grow 

undisturbed on top of it. 
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Figure 37. Microscopy observation with black field of the middle agar well. A) Agar well after fixation and air-
drying; B) Pseudo-fungi and bacteria on the Au/Pd filter on top of the agar well. Red arrows indicate single bacterial 
cell migrating on the hyphae; light-blue arrow-heads indicate the water film around hyphae. Scale bar correspond 20 
µm. 

 

 

 

 
Figure 38. Growth of fungal hyphae on very thin agar plugs. A) Inoculum on both external agar plugs; B) double 
inoculum on the same plug; C) single inoculum on the first agar plug.  
 
 

To be sure that the filter was hydrophilic, adhering to the agar and guarantying the formation of a thin 

layer of water, the UV cleaning system was used, developed for the removal of organic contaminants on 

top of the carriers used for microscopy and chemical imaging 181(see appendix). After treating with UV for 
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2 minutes, pieces of filters were placed directly on top of the middle agar well. Then, P. ultimum was 

inoculated in the first agar well and let to overgrow in a humid chamber (Sketch 4-A). Hyphae were not 

only able to grow on top of the Au/Pd filter but, most importantly, they could keep their surface properties 

and the water film which could allow bacteria to migrate and “take the highway” 179,230 (Fig. 37-B). 

 

Study of the HGT  
Under environmental conditions, bacteria are spread around the hyphae and they are not concentrated 

in few spots 231. To simulate realistic conditions and understand the dynamics and the timing of the HGT 

events, the inoculum of the bacteria on top of the hyphae had to be considered. Three main factors were 

studied: i) the time, ii) the position and iii) the quantity of inoculum, i.e. amount of bacteria (optical density 

(OD)). First, I used the set-up as in Fig. 36-C.  

If bacteria were inoculated at the same time as P. ultimum, yet not at the same location, after 24 h they 

formed a colony (Fig. 39-A) and when hyphae reached that area, they were physically hindered and instead 

they grew below the colony; thus bacteria did not migrate (Fig. 39-B). When fungal hyphae were allowed 

to overgrow first and then bacteria were inoculated, bacteria were able to migrate on top of them 

immediately after the inoculum (Fig. 40). For such reason, all the following experiments were performed 

in this way, letting hyphae growing on top of the filter for about 50-62 h and then inoculate bacteria. 

 
 

 
Figure 39. Inoculum of bacteria and pseudo-fungi at the same time on the same agar well. A) Bacteria after 24 h 
formed a colony. B) No bacteria migrated on top of the hyphae as a result, because of the slower growth of hyphae. 
Some bacteria remained stuck on the agar (green arrows). Scale bars correspond to 1mm. 

 
 

In 230, HGT was studied inoculating separately the plasmid-donors and -recipients on the opposite sides 

of the agar plug. Using the same configuration with my set-up (Fig. 41-A), transconjugation events were 

monitored for 24, 36 and 48 h after co-incubation by fluorescence microscopy. Even after 48 h, no 

transconsjugants were visible, probably because it was difficult for bacteria to get in contact to each other 

with this set-up (Fig. 41-A). As alternative, the two bacterial types were inoculated together (Fig. 41-B), 
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with the assumption that they were “forced” to be closer and thus easily meet and transfer the plasmid upon 

migration.  Plasmid-donor and -recipients were grown separately, mixed in a 1:1 v/v co-culture just before 

the inoculation, and immediately transferred on top of the middle agar well. After 72 h of incubation, many 

tranconjugation events took place as observed by fluorescence microscopy (Fig. 41-B).   

 
 
 

 
Figure 40. Inoculum bacteria after overgrowth of hyphae on the same agar well. A) Bacteria migrating along the 
hyphae after 12 h of co-incubation (black arrows). B) Many bacteria located in the intertwining points of hyphae. The 
water film responsible for the migration of bacteria (red arrows) is also visible. Scale bars correspond to 20 µm. 
 
 
 

As bacterial concentration in the inoculum, I used the same procedure as in230, i.e. an overnight 

bacterial culture with OD600 = 3.8, inoculating 1 µl of each suspension (plasmid- donors and recipients 

bacteria). However, the number of bacteria that migrated around the hyphae was high (Fig. 42-B) and 

bacterial concentration needed to be optimized for my set-up. Different dilutions of the abovementioned 

bacterial culture were tested.  

The rationale was that I had to find a compromise in the cell number: too many bacteria tended to stack 

and eventually to form small colonies on the agar after 72 h (thus not migrating to perform HGT) but too 

few bacteria resulted in weak or no fluorescent signal (thus it would not be possible to observe and quantify 

the transconjugation events). Moreover, HGT events take about 4-5 min to occur 230, and a too long 

incubation would bring to an oversaturation of the fluorescence signal (as in Fig. 41-B). Dilutions of 1:10, 

1:50 and 1:100 from the OD600 3.8 cultures, still showed high bacterial numbers (Fig. 42), therefore a 

further dilution of 1:500 was tested (Fig. 43).  
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Figure 41. Position of the bacteria inoculum within the agar well. A) Plasmid-donor (D) and -recipients (R) are 
inoculated on the opposite sides resulting in no transconjugation event as shown by black field images with the 
corresponding areas observed with fluorescence microscopy; just red cells (plasmid-donor bacteria) are observed 
under this condition. B) Inoculation of (D) and (R) together, resulting in transconjugation events. Fluorescence 
pictures show bacteria migrating on the hyphae. Green color represents the tranconjugants bacteria, red color the 
plasmid-donor bacteria while hyphae either appear in dark color or emit auto-fluorescence (light blue color).Grey). 
Grey arrows indicate empty space in the agar-well where it is still possible to see the water film (grey double-headed 
arrows). Pictures were acquired after 72 h of co-incubation. 

 
 
 
 

 
 

Figure 42. Trials with different concentrations of the bacterial inoculum. A) 1:10, B) 1:50, C) 1:100 dilution from 
OD600 3.8 overnight culture (used in 230). Bacteria formed ´carpets´ of cells on top and around hyphae. Scale bars 
correspond to100 µm. 
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Both black field and fluorescence microscopy observations confirmed that after 8 h and 12 h of co-

incubation bacteria were migrating without being stuck in the hyphal branches’ nodes (Fig. 43-A, B); after 

12 h the occurrence of the first transconjugation events were observed (Fig. 43-C). Thus, this incubation 

time, 8 to 12 h, seemed to be a good compromise for both fluorescence microscopy and nanoSIMS analysis.  
 

 

 

Figure 43. Pseudo-fungi and bacteria co-cultures. Bacteria were diluted 1:500 (from OD600 3.8 cultures230) and 
observed after A) 8 h, B) 12 h in black field and C) fluorescence microscopy. Green color represents the 
tranconjugants bacteria, red color the plasmid-donor bacteria. 

 

 

Functional heterogeneity  
One of the hypotheses to test was that bacteria would use nutrients, i.e. C and N, from fungi, especially 

under scarcity conditions and consequently the difference in HGT rates could depend on the different 

metabolic activity between the hyphosphere regions and the farther ones. Bacterial intra-population MH 

would be then different between bacteria close and far away from hyphae. 

Transconjugations events took place mainly in the vicinity of the hyphae but not far away from them 

(Fig. 44) as observed with fluorescence microscope; instead without hyphae no transconjugation took 

place, although bacteria were motile by their own. This finding clearly revealed a functional heterogeneity 

occurring in this synthetic system; bacteria close to hyphae were possibly provided with a new function 

(TOL plasmid metabolic capability) while bacteria far from them did not benefit from it. 

Transmissions of metabolic or functional information (HGT) such as new virulence or resistance genes, 

take place frequently in the hyphosphere 230,233,234; plasmid transfers can occur in the presence of special 

spatial structures and nutrients conditions 235, or can require selection pressure 236. However, there are not 

yet evidences on how HGT between bacteria is dependent on the metabolic and physiological status of the 

cells. 

A previous study investigated the interactions between Pseudomonas putida and Saccharomyces 

cerevisiae to study the influence of fungal metabolism on the bacterial physiology 237. It was shown that 

based on the available C-sources fungi can shape the pH of the environment allowing for the survival of 

bacteria, that otherwise would be killed by the high acidity in the medium 237. However, studying the BFI 
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in liquid and solid medium, the spatial distribution and the correlation between physical and metabolic 

interactions were missing in this study. Fungal hyphae can act as dispersal networks for bacteria, 

facilitating biodegradation processes and the access to physically distant nutrients 179,226-228,231. Using SIP-

nanoSIMS approach, it was shown that spore-forming bacteria were able to resuscitate if they were in the 

vicinity of hyphae, due to the active transfer of water and nutrients; the germination of the spores did not 

happen if bacteria were not close to hyphae 117. 

 

 

 
Figure 44. Transconjugation events taking place alongside hyphae after 24h of incubation. Transconjugants (green 
colored cells) were mainly distributed alongside the hyphae but not in the distant regions from hyphosphere. Red 
arrows indicate plasmid donors (red color) that stayed far from hyphae and were thus not able to transfer the plasmid 
anymore.  

 

 

To correlate our findings on functional heterogeneity (HGT) with metabolic activities and 

consequently with MH at high lateral resolution, nanoSIMS experiments will be necessary. This will be 

the next and future step to perform, allowing to gain important insights on the BFI and how they shape and 

tune the functional (HGT) and in turn MH (C- and N-uptake). In the chapter 3.3, it was shown how MH 

was displayed by monoculture of P. putida (used as wild type strain in this set-up) under non-limiting 

conditions. It remains to investigate how and if bacterial MH will be different in co-cultures, due to the 

influence of the hyphosphere and the physiological status of the two species. These insights will shed more 

light on bacterial MH and its ecological consequences with a further level of interactions complexity. 
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3.5 Metabolic heterogeneity and ecophysiology of natural microbial populations impacted 

by emerging contaminants 

Microorganisms play important ecological roles in their natural environments, being involved in 

biogeochemical cycles. For instance, inland water ecosystems, i.e. reservoirs, lakes and rivers, are active 

“hotspots” for the transformation of terrestrial Carbon (C), which is further remineralized by heterotrophic 

bacteria 238. However, emerging water contaminants, including antibiotics, may affect microbial 

physiology and thus C-balance in the biosphere, due to their presence and persistence into the 

environment 239-241 242. 

Antibiotics are discharged in surface waters directly as aquacultures, surface runoffs, including those 

from livestock and agriculture, or indirectly as effluents from sewage treatment plants, receiving human, 

veterinary and drug manufacturers’ wastes 243,244. Wastewater treatment plants (WWTPs) are the main 

entry points of pharmaceuticals into the surface waters, because they are not built to retain and deactivate 

antibiotics 245-248. Ciprofloxacin is the most frequently detected antibiotic in the rivers worldwide 249,250 

while amoxicillin is the most frequently consumed antibiotic 251, however quite prone to hydrolysis and 

photo-degradation 252-254. 

Antibiotics can undermine the equilibrium of natural ecosystems 255, impacting crucial functional 

features, such as community composition, species richness and metabolic capacity 256. So far, studies 

assessing the impact of antibiotics on the aquatic microbial communities offered an overview by the use of 

either bulk tests 257-259 or model species 260,261, missing details on the impact on single cells or single 

phylotypes within natural communities. Bacterial model organisms exposed to antibiotics showed 

phenotypic heterogeneity 132,262.  

Within isogenic bacterial populations, antibiotics exposure highlights preexisting cell-to-cell 

differences in growth rate. For instance, after ampicillin treatment E. coli population consisted of one 

normally growing subpopulation and two non-growing ones that become persisters; the latter were either 

dormant having a very long stationary phase (type I persisters) or continuously generated due to the slowing 

down of the growth (type II persisters) 132. The nutrients gradient on a micrometer scale generated from 

growth on microfluidic chambers resulted in metabolic cross-feeding between E. coli subpopulations, one 

(glucose fermenting) at the opening of the channel and the other (acetate respiring) at the back of it. This 

metabolic specialization corresponded to different growth rates of the two subpopulations and in turn 

caused different response upon antibiotic exposure. The slow or non-growing subpopulations were indeed 

resistant to streptomycin exposure74. Salmonella typhimurium subpopulations, expressing the type three 

secretion system 1 (ttss-1) divided at very slow rate and increased the expression of virulence genes at the 

same time; such phenotype was able to survive ciprofloxacin and kanamycin exposure in contrast with fast-

growing and avirulent phenotype that instead succumbed 95. In all the above-mentioned studies, persistence 

to antibiotics was reversible after antibiotic removal and restoration of optimal growth conditions 74,95,132. 

Phenotypic heterogeneity thus provided a chance for surviving in fluctuating and hostile environments. 

However, using microfluidic devices coupled with fluorescence time-lapse microscopy, these studies could 
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not provide quantitative information on the metabolic activity of the bacteria. SIP-nanoSIMS approach, 

instead, is the only tool that can provide quantitative information on the single-cell metabolic activity 

(measured as heavy-isotope uptake) and therefore can account for the contribution of microbial populations 

to specific biochemical processes 104. Combining isotope labelling with the administration of ciprofloxacin 

and amoxicillin, I aimed to investigate i) the effect of these emerging contaminants on the metabolic 

activity of single cells, i.e. uptake of 13C- and 15N-labelled substrates, and on the ecophysiology of 

microorganisms inhabiting river waters and ii) the antibiotics influence on the MH of the most abundant 

microbial groups. 

 

Sampling campaign and labelling experiments 

The river Holtemme is located in the Hartz Mountain in Germany, where we carried our sampling 

campaign on the 8th of November 2018. Samples were collected at site 1, characterized by pristine (Pr) 

waters surrounded by forest and site 17, downstream water, close to a waste water treatment (WWT) plant 

in Halberstadt, Sachsen-Anhalt 263 (Sketch 5). Samples were collected in situ into 2 L pre-sterilized bottles 

and were immediately stored in the dark inside a thermic box, remaining in these conditions for 

approximately 5 h during transport in the laboratory. Immediately after arrival in the laboratory, the 

collected waters were further aliquoted in 1 L bottles, and samples were injected with 0.5 mM acetate, from 

which 25 – 38 at% of initial concentration was 13C-labelled (Table 2, Sketch 5). For Pr samples, 1.7 mM 
14NH4 from which 20 at% of 15NH4 was added as nitrogen source; for WWT samples just 0.425 mM 15NH4 

(thus 99.9 at%) was added, since the natural ammonium concentration in this site was ca. 30 mg/L, that is 

ca. 1.7 mM (Table 2, Sketch 5). Together with isotope–labelled compounds, unlabeled Ciprofloxacin 

(CIP) and Amoxicillin (AMO) antibiotics were injected at two different concentrations: 1 µg/L and 1 mg/L 

(Table 2, Sketch 5). Samples were incubated for 24 h with a controlled temperature of 15 °C, in the dark 

to avoid photo-inactivation/photolysis of antibiotics. After this time, from each sample, three different 

aliquots were withdrawn for: community sequencing, fluorescence in situ hybridization (FISH and CARD-

FISH) and cell counting, and single-cell nanoSIMS analysis (Sketch 5).  

 

Community analysis  

We investigated the diversity of both Pr and WWT communities before and after addition of 

antibiotics in order to identify changes in the community composition as well as in the abundance of 

bacterial phylotypes under each condition for further FISH-probe selection. An aliquot of 20 ml from each 

water sample was concentrated onto a polycarbonate filter and stored at -20°C. DNA extraction was 

performed with Macherey-Nagel Nucleospin® kit according to the manufacturer’s instructions, using a 

beads-beater device (Power Lyzer TM, 24MoBIO). The DNA was concentrated in a final volume of 100 µl. 

The 16S rRNA gene in the DNA extracts was PCR-amplified using universal primers for Bacteria domain, 

GM3 forward (8-24; 5’-AGAGTTTGATCMTGGC-3’) and GM4 reverse (1492–1507; 5’-

TACCTTGTTACGACTT-3’) 264 to verify quality and quantity of the extraction. Samples were sent to a 

genomic facility (LGC Genomics GmbH, Berlin) for sequencing with a MiSeq Illumina system (2 × 250 
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paired). Sequences were analyzed with the QIIME pipeline 265 for Operational Taxonomic Units (OTUs) 

clustering and taxonomic assignment. The OTUs accounting for more than 1% of total sequences were 

further selected for identification of the most abundant taxa in the communities under each of the studied 

conditions. 

 

Diversity indices  

To evaluate the impact of antibiotics on the species diversity in comparison with antibiotics-free 

samples (Ab−), we calculated alpha and beta diversity indices. Alpha index considers the quantitative 

diversity within each sample/condition and it was calculated as Chao1 index. The samples from WWT 

resulted much more diverse on average than Pr ones. The antibiotics treatments did not change the number 

of different taxa between the conditions in WWT samples, while in Pr the difference between Ab− and 

antibiotics-treated samples was more marked especially for CIP (Fig. 45-E). To assess how the 

communities changed after each treatment, we calculated Beta diversity index as ‘weighted variant of 

UniFrac’. The Principal Coordinate Analysis Plot (PCoA) showed how far Pr resulted from WWT 

samples, highlighting a high dissimilarity between the two waters. Within each group (black ellipses, 

Fig. 45-E), further dissimilarities among the conditions were observed, suggesting a variation in the 

composition of the bacterial communities induced by different antibiotics exposure (Fig. 45-F). 

 

Table2. Treatments applied for all tested conditions on Pr and WWT water samples. Ratio 
of 13C/12C and 15N/14N in the growth substrates (Dgs) are shown as well as the probes used for FISH and 
CARD-FISH protocols.  

 
Conditions  Addition of 13C-

acetate  

at% in Dgs 

Addition of 
15N-ammonium 

at% in Dgs 

FISH 

probe 

CARD-FISH 

probes 

WTT (Ab−, Lab+) 

0.369 ± 0.004 

 

99.997 ± 0.001 ACA-652266  CTE-659267, Eub338_I268–

III269  

WWT_AMO1 µg/L 0.367 ± 0.003 99.997 ± 0.001 ACA-652 CTE-659, Eub338_I -III 

WWT_AMO 1 mg/L 
0.373 ± 0.004 

 

99.997 ± 0.001 ACA-652 CTE-659, Eub338_I -III 

WWT_CIP1 µg/L 
0.379 ± 0.004 

 

99.997 ± 0.001 ACA-652 CTE-659, Eub338_I -III 

WWT_CIP 1 mg/L 0.365 ± 0.003 99.997 ± 0.001 ACA-652 CTE-659, Eub338_I -III 
     

Pr (Ab−, Lab+) 0.273 ± 0.006 0.211 ± 0.06    CTE-659, Eub338_I -III 

Pr_AMO 1 µg/L 0.278 ± 0.005 0.211 ± 0.06    CTE-659, Eub338_I -III 

Pr_AMO 1 mg/L 0.270 ± 0.003 0.211 ± 0.06    CTE-659, Eub338_I -III 

Pr_CIP 1 µg/L 0.261 ± 0.013 0.211 ± 0.06    CTE-659, Eub338_I -III 

Pr_CIP 1 mg/L 0.269 ± 0.006 0.211 ± 0.06    CTE-659, Eub338_I -III 
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Sketch 5. Sampling and experimental set-up of river-water samples. Samples were collected from the Holtemme 
River and brought to the laboratory to start labelling experiments. 13C-labelled acetate and 15N-labelled ammonium 
(as markers of microbial activity) and two antibiotics (amoxicillin and Ciprofloxacin) at two different concentrations 
were injected. After 24h of incubation, samples underwent: 16S rRNA gene sequencing, FISH or CARD-FISH and 
nanoSIMS analysis. Prior to the nanoSIMS, specific areas (where FISH-probe-targeted cells were abundant) were 
visualized with fluorescence microscopy (FM) and mapped with Laser Microdissection (LMD) to be easily identified 
during nanoSIMS analysis.  
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Total cellular abundance  
Total cell counts were performed to determine the natural microbial abundance and thus decide the 

amount of water volume to be withdrawn, from each site, for labelling and successive experiments.  

The average cell counts at T0 (prior incubation) as quantified by DAPI staining was 5.0×105 cells∙ml–1 for 

Pr and 1.5×106 cells∙ml–1 for WWT sites, respectively. Thus, to achieve a sufficient number of cells for 

good cell abundance statistics during counting, a 5-times higher volume was filtered for Pr (10 ml) in 

comparison with WWT (2ml). 

The initial total dissolved nitrogen (DNB) and dissolved organic carbon (DOC) were also measured at 

the two sites of sampling, corresponding to 1.76 mg/L and 3.75 mg/L in Pr, and 32.4 and 5.16 mg/L in 

WWT waters, respectively. Water samples were incubated with and without addition of labels and 

antibiotics for 24 h (Fig. 45-B, D). Ten to fifteen different FoVs were acquired under a fluorescent 

microscope for each condition and then averaged and converted in cell∙ml–1; standard deviations were also 

calculated from the counted FoVs for each condition. Total DAPI-cell counts increased under all conditions 

in comparison with T0, with the only exception of CIP 1 mg/L in Pr waters. The antibiotic-free samples 

(Ab−) showed an increase in cell numbers which was 1.4 time higher in Pr (7.0×105 cells∙ml–1) and 2.1 

times higher (3.1×106 cells∙ml–1) in WWT water, possibly due to the addition of 13C-labelled acetate and 
15N-ammonium as well as the available dissolved nitrogen and carbon sources in the two water samples 

(Fig. 45).  

The addition, of the antibiotics induced distinct changes in the community composition also supported 

by changes in cell numbers. While AMO did not strongly changed the total cell numbers in comparison 

with antibiotic free treatment (Ab−) neither in Pr (AMO 1 µg/L was 7.7×105 cells∙ml–1 and 1mg/L was 

6.2×106 cells∙ml–1) nor in WWT (AMO 1 µg/L was 3.0×106 cells∙ml–1 and 1mg/L was 2.9×106 cells∙ml–1), 

CIP treatment instead showed a clear dependence on the antibiotic concentration in comparison with Ab−. 

Thus, 1 mg/L brought to lower cell counts in both sites (4.5×105 cells∙ml–1 in Pr and 2.3×106 cells∙ml–1 in 

WWT samples) while CIP 1 µg/L caused a much higher cell number in WWT (4.0×106 cells∙ml–1) but a 

substantially lower number in Pr (5.8×105 cells∙ml–1). 

The reason may lie in the different effects induced by the 2 antibiotics. AMO is a bactericide from the 

β-lactam class causing the disruption of the microbial cell walls and thus cell death, while CIP is a 

bacteriostatic from fluoroquinolone class acting on the DNA gyrase, inhibiting the DNA replication and 

hence the growth. Thus, their different spectrum of activity might be responsible for the different outcomes 

at the two sampling sites, where also the species composition was distinct as revealed by 16S rRNA gene 

sequencing (Fig. 45-A, C). Being affected from the effluent of a close WWTP, the WWT waters are 

already exposed to pharmaceuticals and other contaminants 270. This suggested that the natural microbial 

communities may have developed different strategies for coping with antibiotics depending on the 

indigenous species and the class of pharmaceuticals.  

Among the several detected OTUs, Comamonadaceae, Oxalobacteriaceae, Lachnospiraceae and 

Ruminococcaceae were mainly detected in Pr waters (Fig. 45-A) while Acinetobacter, Arcobacter, 
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Commamonadaceae and Flavobacter were detected in WWT samples (Fig. 45-C) as the most represented 

phylotypes after the addition of antibiotics. Hence, the strong increase in the total cell number with 

CIP 1 µg/L concentration in WWT can be due to the outgrowth of resistant or persistent bacteria, e.g. 

Acinetobacter and Arcobacter related species, largely abundant under this condition (Fig. 45-C).  

 

 

 

 

Figure 45. Microbial diversity and cell abundance in Pr (A and B) and WWT waters (C and D) after 24 h of 
incubation. Pies represent the community composition under different incubation conditions and colors depict 
different phylogenetic groups. Ab– indicates no antibiotics addition. B) and D) represent total cell counts calculated 
by DAPI staining for Pr and WWT waters, respectively. Each bar represents average cell abundances in cells∙ml–1 

(calculated from 10-15 different FoVs) and the corresponding standard deviation for each incubation condition. E) 
Alpha diversity measured with Chao1 index. F) Beta diversity calculated with UniFrac weighted method. Significance 
code for p values: □=Not Significant (> 0.05); * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001 

 

 

 

Selection of Fluorescence In Situ Hybridization (FISH) probes 
We aimed to apply FISH/CARD-FISH approaches in order to quantify the relative abundance of the 

most representative members in Pr and WWT communities. Thus, it was necessary at first to select suitable 

probes, which target the V3–V4 region of 16S rRNA genes (corresponding to the sequenced region by 

Illumina). Among the publicly available FISH probes, we could select 10 different ones. These probes were 

further aligned against all representative OTU sequences obtained from our water samples. This was to 

verify if the selected probes were indeed reverse complementary with the amplicons in our sequencing data 

(indirectly predicting the possibility to identify and target microorganisms present in our original samples). 

We could confirm just 2 out of 10 selected probes that meet such criteria: ACA-652 266 specific for 

Acinetobacter genus and CTE-659 267 for Comamonadaceae family. 
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Group-specific FISH and CARD-FISH analysis 

Microbial identification and relative abundance 

FISH and CARD-FISH with probes targeting Acinetobacter (ACA-652) and Comamonadaceae (CTE-

659) related species (Table 2) were performed to quantify group-specific abundance in Pr and WWT 

samples. After overnight fixation (ca. 16 h) with 1% PFA, samples were filtered onto Au/Pd coated 

polycarbonate filters using a multi-chamber filtration system (Millipore 1225 Sampling Manifold, Merck). 

The hybridizations were performed following the standard FISH and CARD-FISH protocols 123,124. All 

filters were counterstained with DAPI before fluorescence microscopy to calculate the relative abundance 

of the probe-targeted species in each sample as percentage of total DAPI-stained cells. For each treatment, 

ten different pictures (FoVs) were acquired and averaged, and then standard deviations were calculated for 

these FoVs. 

FISH results showed the presence of Acinetobacter related species in the WWT samples (Fig. 46-E), 

that were almost absent after 24 h in the sample without labelled substrates and antibiotics (Ab−Lab−) and 

consisted of an average of 20.3±10.7 % of the total counts in the sample with labels but antibiotics free 

(Ab−Lab+), as also shown by OTU-based community analysis (Fig.45-A, C). In WWT waters, ACA-

targeted cells were mostly affected by the CIP 1 mg/L concentration, which reduced their relative 

abundance down to 8.7±5.3%; AMO addition, instead, did not affect cell abundances much (AMO 1 µg/L 

was 26.2±10% and 1 mg/L was 21±20%) (Fig. 46-C). In Pr samples, this group was absent under all 

conditions tested (Figs. 45 and 46).  

In most experimental conditions, the relative abundance of ACA-targeted-cells quantified with FISH 

(Fig. 46-C, E) was half than that calculated from 16S rRNA amplicon sequencing (Fig 45-C). While with 

the latter, all the OTU sequences found to be related to Acinetobacter genus were assigned to this group, 

we cannot rule out the possibility that the ACA-652 probe might not target all the phylotypes belonging to 

Acinetobacter genus present in our samples. Moreover, 16S rRNA sequencing is based on the PCR 

amplification and the consequent sequencing of specific regions of the 16S rRNA gene, thus being 

subjected to potential related bias, e.g. variation in copy numbers, chimaera formations and sequencing 

errors that may overestimate the relative proportion of some bacterial taxa in comparison with the original 

samples 271,272. This could explain the differences detected between the OTU- and FISH-based abundance.  

Comamonadaceae related species were present at both sampling sites. Using a similar FISH protocol 

for targeting Comamonadaceae related species by CTE-659 probe resulted in low fluorescence intensity 

or lack of signals in Pr samples. To overcome this issue CARD-FISH was performed instead, which 

resulted in high signal intensity (Fig. 46-B). To compare the relative abundance of this phylotype in Pr and 

WWT under the same experimental conditions, CARD-FISH approach was applied for both sampling sites 

(Fig. 46-B, D). After 24 h without addition of labels and antibiotics (Ab−Lab−), the relative abundance of 

CTE-659 targeted cells (Fig. 46) was higher in Pr (28.8±5.8%) than in WWT waters (17.0±6.3%), 

mirroring the results from OTU-based diversity (Fig. 45-A, C). The AMO addition did not have a negative 

impact on Comamonadaceae relative abundance not even at 1 mg/L concentration, which instead brought 
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to a slightly higher cell number; such trend was observed in both Pr (for 1 µg/L was on average 27.3±7.8% 

and 1 mg/L was 29.2±7.2%) and WWT samples (for 1 µg/L was on average 21.2±7.3% and 1 mg/L was 

25.2±7.1%, respectively). In contrast, the addition of CIP had a strong influence on CTE-targeted cells in 

both sampling sites. In Pr samples, Comamonadaceae relative abundance decreased strongly from 

29.3±6.6% in Ab− sample to 8.2±2.5% at CIP 1 µg/L and 6.3±1.8% at CIP 1 mg/L, respectively. A similar 

tendency was observed in WWT samples, with their relative abundance decreasing from 18.9±5.2% (Ab−) 

to 14.4±3.8% at CIP 1 µg/L and 11.7±3.9% at CIP 1 mg/L, respectively. Therefore, relative abundance 

results confirmed that these two phylotypes were numerically dominant in the natural water communities 

constituting up to ca. 30% of the whole communities even after antibiotics treatment. 

 

 

Figure 46. FISH and CARD-FISH using CTE-659 probe for targeting Comamonadaceae and ACA-652 probe 
targeting Acinetobacter related species, respectively in Pr (A-B) and WWT (C-E) samples exposed to different 
treatments upon 24h incubations. A) and C) show relative abundance of hybridized cells to total DAPI counts in % 
and its standard deviation. Antibiotics-free samples (Ab−) were treated with isotope-labelled compounds (Lab+) and 
without (Lab−). B) and D) depict representative fluorescence images after CARD-FISH with CTE659 probe 
(magenta) overlaid with DAPI staining (blue) at different Ciprofloxacin (CIP) concentrations. E) shows fluorescence 
pictures after mono-labelled-FISH with ACA-652 probe (magenta) overlaid with DAPI staining (blue).  
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Quantitation of metabolic activity  
Anabolic activity of the whole community 

 In order to measure anabolic activity in the communities and potential changes induced by antibiotics 

addition, we added stable isotopes, 13C-acetate and 15N-ammonium into the samples and incubated for a 

time of 24 h. The first step was to compare the 13C- and 15N-enrichment into single cells measured by 

nanoSIMS with the uptake into the bulk biomass measured by Isotope Ratio Mass Spectrometry (IRMS). 

Before filtration, glass microfiber filters (GFF, 0.7 µm pores, Whatman) were baked at 450°C for 5h. 

Aliquots of 20 ml water samples were filtered onto each filter, followed by storage at –20°C. Prior to 

analysis, filters were dried at room temperature for 4 h, decalcified in a vapor atmosphere generated by 

37% hydrochloric acid, dried for 2 h into a 55°C desiccator, trimmed in round 5mm diameter pieces and 

finally wrapped in small Tin cups (HEKA tech, Germany) for the combustion in IRMS (Thermo Fisher, 

Germany). NanoSIMS analysis was performed as described in the previous chapters using a raster area of 

40 x 40 µm2 (to include a higher number of cells per FoV) and adding the detection of the mass 12C15N−. 

Using different levels of resolution with IRMS and nanoSIMS, i.e. bulk vs. single-cell analysis, we 

measured heavy-isotope enrichment in unidentified microorganisms (no prior identification with FISH or 

CARD-FISH) (Fig. 47).  

In general, microbial activity in both Pr and WWT communities was strongly affected by antibiotics 

exposure at higher concentrations. The 1 µg/L concentration of AMO and CIP did not change or resulted 

in slightly higher median values of isotope enrichment in comparison with Ab−; the addition of 1 mg/L 

AMO and CIP resulted instead in lower 13C- and 15N-enrichment median values in comparison with Ab−, 

as showed by both bulk and single-cell measurements. The median values at single-cell level showed that 

in Pr waters 13C-enrichment was ca. 8 times lower for 1 mg/L of AMO and CIP treatments while 15N-

enrichment was drastically lower in comparison with Ab− samples, 27 times in AMO and 10 times in CIP 

treatments, respectively. 

In WWT samples, 13C-uptake decreased ca. 1.2 times in both AMO and CIP 1 mg/L treatments but 
15N-enrichment median values were lower, ca. 4 times in AMO and 11 times in CIP treatments than Ab− 

samples. The IRMS data of the same treatments mirrored the concentration dependency in C- and N-

enrichment values, but could not quantify and discriminate the real variation between treatments (Fig 47-

B, D). Moreover, with single-cell approach in Pr samples, 15N-enrichment was always higher than 13C-

enrichment (except for AMO 1 mg/L), however the opposite trend was observed with IRMS method, 

which resulted in 15N-enrichment values always lower than 13C ones (Fig 47-A, B). In WWT samples, 

instead IRMS data were better mirroring the values obtained with nanoSIMS, i.e. higher median 15N-

enrichment values in comparison with 13C (Fig 47-C, D). 

Moreover, median values of the isotopic enrichment of single cells showed that in Pr waters 13C-uptake 

was 6.2 times higher for Ab− (8.51 at% vs. 1.38 at%) and 3 times higher for CIP 1 µg/L addition (4.47 at% 

vs. 1.84 at%) than the corresponding treatments in WWT, and relatively similar for the rest of the 

conditions (Fig. 47- A, C). Instead, with IRMS the WWT values were more than 2 times higher in 
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comparison with Pr under all the tested conditions (Fig. 47-B, D). In general, however, both 13C- and 15N-

enrichment median values were affected by the 1 mg/L concentration of AMO and CIP with a higher 

effect on the N-anabolic activity in comparison to C one, but differentially for the sampling sites: in Pr 

samples the values were mostly affected by AMO, while in WWT were mostly affected by CIP.  

 

 

 
Figure 47. Community isotopic-ratio analysis by nanoSIMS and IRMS for A) - B) Pr and C) - D) WWT samples. 
Boxplots with green and red circles represent 13C- and 15N-uptake values respectively, for single cells (dots) calculated 
as atomic percent [at%] based on nanoSIMS data; thick horizontal lines represent median values, boxes comprise 
interpercentile range Q16-Q84, whiskers and min-max values are also shown. Green and red diamonds represent the 
13C- and 15N-enrichment values calculated from the bulk IRMS measurements. SEM pictures corresponding to E) 
and G) antibiotic-free (Ab−) control samples; F) and H) samples after incubation with AMO 1µg/L (E and F show 
Pr samples, G and H WWT samples). 

 

 

 

It is important to mention that in all the conditions, and especially in Pr samples, the distribution of 

single cells in the box plots was very scattered, suggesting a huge variability in cells activity among the 

different members of the communities. Indeed, a big variety of microorganisms were observed in both 

sampling sites with distinct morphology and size, prior and after antibiotics treatment, even though we 

found no clear evidences of particular morphotypes selection upon exposure as shown by the pictures 

acquired with SEM (Fig. 47-E to H). On the contrary, as observed with 16SrRNA gene sequencing, the 

community composition in both Pr and WWT shifted after antibiotics exposure, suggesting a selection of 

few phylotypes that outgrew and outcompeted the others (Fig. 45-A, C). 

The anabolic activity measurement of the community proved that C- and N-assimilation were indeed 

influenced by the antibiotics´ concentration, and distinctively in respect with the two sampling sites 

(Fig. 47). However, we aimed to disentangle the antibiotics effect on the metabolic activity of the dominant 

microbial groups in comparison with non-targeted species and how this was translated in the functioning 

of the whole communities.  



 

 
84 

 

Anabolic activity of the FISH-targeted members of the microbial communities  

To investigate the anabolic activity of the dominant microbial groups in both Pr and WWT waters, 

FISH/CARD-FISH using group-specific oligonucleotide probes coupled with nanoSIMS was performed: 

this was important to correlatively link their identity and relative abundance (Fig. 46) with their activity 

(Fig. 48). After FISH and CARD-FISH procedures, pieces of filters were marked with Laser Micro-

Dissection microscope (LMD, Leica Germany) to map specific areas of interest in which probe-targeted 

microbial cells were highly abundant. In this way, it was possible to analyze the same observed cells with 

the nanoSIMS afterwards (Sketch 5).  

NanoSIMS analysis was performed for all treatments specified in Table 2. For each defined single cell 

we first calculated the 13C- and 15N-enrichment in order to compare the data with the single-cell-community 

analysis (Fig. 47) and then we calculated the Fc (assimilation rate per single cell 187, Chapter 3.2), taking 

into account the dilution effect 185 on the isotopic enrichment introduced by the different FISH and CARD-

FISH protocols prior to nanoSIMS 187. We used biovolumes values previously published for 

Acinetobacter 273 and Comamonadaceae related specie 274 and converted the isotopic enrichment in uptake 

rates fg C/N∙µm-3, by following the equation used in 189 in order to obtain C and N density (ρ) values 

(ρ C=326×V−0.35 and ρ N=78×V−0.33 ) relative to these two phylotypes. The error of each single Fc median 

value was calculated as median absolute deviation (MAD). 

The obtained results showed that the CTE-659 targeted cells were on average very active in comparison 

with most of non-targeted cells (Fig. 48). In general, Comamonadaceae related species were more active 

in N- than C-uptake in both Pr and WWT waters. Moreover, the median values of single-cell-13C-

enrichment showed that CTE-targeted cells activity was higher in Pr in comparison with WWT at all 

conditions, while their N-activity was showing the opposite (Fig. 48). 

Due to the huge scatter in the distributions of single-cell values within each treatment, we based the 

comparison on the median values of 13C- and 15N-enrichment as well as on the single-cell distribution 

shapes between different incubation conditions. To do so, we performed the Mann Whitney U test, a 

parametric test which allows to evaluate if the differences between two populations (distributions) are 

statistically significant. The number of cells in each population and the p values obtained are shown in 

Table 3.  

 

In Pr samples, the isotopic enrichment of the CTE-targeted cells remained almost unaltered between 

Ab− and samples treated with AMO at both concentrations. However, while 15N-uptake and single-cells 

distribution was significantly (negatively) affected, no significant differences in the 13C-uptake distribution 

of single cells were found. In contrast, by CIP exposure, both 13C- and 15N-single-cells distributions were 

changed in comparison with Ab− samples (Fig. 48-A, B). For both AMO and CIP, in general, the 

concentration of antibiotic did not seem to play a role in the activity of CTE-targeted cells neither in C- 

nor in N-activity (Fig. 48-A, B). 
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In WWT samples, the concentration of antibiotics impacted differently the activity of CTE-targeted 

cells for both C- and N-uptake (Fig. 48-C, D). The samples treated with 1 µg/L concentration of both AMO 

and CIP did not show significant differences in the median activity and the single-cells distributions in 

comparison with Ab−, while the 1 mg/L concentration of both antibiotics caused a strong decrease in C- 

and N-uptakes as well as in the single-cell enrichment-values distributions (Fig. 48 -C, D). 

 

 

Figure 48. Carbon (C) and Nitrogen (N) uptake of single cells in Pr (A-B) and WWT waters (C-D). A) and C) show 
C-assimilation while B) and D) N-assimilation of single cells and their distribution in box plots for Comamonadaceae 
related species (CTE-659 targeted, purple circles) vs. non-targeted cells (grey circles). In C) and D) single cells 
belonging to Acinetobacter related species (ACA-652-targeted) are represented in light blue. Each condition is 
compared with antibiotics-free samples (Ab─). All boxes comprise interpercentile range Q16-Q84; horizontal lines 
within each box plot represents the median value for that particular group of cells, whiskers and Min-Max values are 
also represented. The number of cells analyzed and p values per each specific treatment can be found in Table 3. 
Significance code for p values: ns=not significant (> 0.05); * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 

 
 

In general, CIP exposure had a stronger effect than AMO on both C- and N-activity of 

Comamonadaceae related species. In comparison with CTE-targeted cells, the activity of the non-targeted 

cells was always lower on average for both C- and N-uptake, at both sampling sites. In Pr, antibiotics 

exposure with AMO and CIP brought to lower median 13C- and 15N-enrichment values as compared with 

Ab− samples at both, higher and lower, concentrations (Fig. 48-A, B). In WWT samples, instead, the C- 
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and N-activity of the non-targeted cells were almost the same between Ab− and antibiotics-treated samples. 

The only exception was CIP 1mg/L condition, which resulted in significantly lower 13C- and 15N-

enrichment median values and different single-cells distribution (Fig. 48-C, D). 

ACA-targeted cell activity was higher than CTE-targeted cells for both C- and N-uptake in WWT 

samples. The antibiotics addition strongly decreased the 13C- and 15N-enrichment median values in 

comparison with Ab− samples, with the only exception of 13C values of AMO 1 µg/L (Fig. 48-C, D). 

Acinetobacter related species activity was strongly dependent on both AMO and CIP concentration: in 

general, 1 mg/L concentration reduced more heavily than 1 µg/L the 13C- and 15N-median enrichment 

values. However, the impact of CIP at both concentrations was stronger than that of AMO (Fig. 48-C, D). 

 

To conclude, the single-cell analysis, supported by the bulk data, showed that both C- and N-

assimilation values were generally lower in antibiotic-treated samples in comparison with Ab− samples 

after 24 h of incubation in both Pr and WWT samples. The assimilation of C and N into the cell biomass 

depended on i) the concentration of antibiotics and ii) the antibiotic class, with the strongest effect played 

by CIP (Fig. 48). 

 

 

Table 3. Single cells analyzed with nanoSIMS and p values obtained from the Mann Whitney U test. 
Numbers (n) of single cells per condition analyzed belonging to CTE-targeted, ACA-targeted or non-
targeted (others) groups. P values (p) obtained from the single-cell-values distribution, comparison 
between antibiotics free sample (Ab−) vs. each of the conditions with antibiotics addition are provided for 

both Carbon (C) and Nitrogen (N) activity.  

 

Conditions  

CTE-

targeted 

cells (n) 

p 

of CTE 

in C 

p 

of CTE 

in N 

ACA-

targeted 

cells (n) 

p 

of ACA 

in C 

p 

of ACA 

in N 

Others 

 

(n) 

p 

others 

in C 

p 

others 

in N 

WTT  
(Ab−) 

33   107   140   

WWT_AMO  
1 µg/L 

55 5.41E-03 8.92E-01 128 9.96E-02 0.00E+0
0 

219 2.88E-03 5.57E-01 

WWT_AMO  
1 mg/L 

37 1.77E-05 1.29E-02 100 2.61E-12 6.70E-48 101 7.60E-01 5.28E-01 

WWT_CIP    
1 µg/L 

25 5.30E-01 9.50E-01 245 0.00E+0
0 

0.00E+0
0 

279 8.91E-05 1.88E-02 

WWT_CIP    
1 mg/L 

25 4.51E-11 2.62E-11 30 4.71E-17 1.30E-30 319 1.14E-04 9.77E-12 

          

Pr  
(Ab−) 

91      37   

Pr_AMO  
1 µg/L 

53 5.05E-01 2.23E-04    76 1.37E-01 1.82E-06 

Pr_AMO 
1 mg/L 

73 4.95E-01 9.26E-05    83 2.95E-02 1.37E-05 

Pr_CIP  
1 µg/L 

93 1.84E-06 5.70E-03    68 1.59E-01 1.10E-04 

Pr_CIP  
1 mg/L 

63 1.14E-02 1.35E-03    76 4.25E-03 2.88E-05 
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While single-cell community analysis showed a strong influence on the anabolic microbial activity of 

the higher antibiotics’ concentration in both Pr and WWT, the investigation on the anabolic activity of 

Comamonadaceae and Acinetobacter related species allowed us to discriminate how these specific 

phylotypes are impacted by antibiotics exposure within the communities.  

For instance, anabolic activity of CTE-targeted species was affected more by the antibiotic class than 

the variations in concentration in Pr samples; instead, in WWT water their activity was strongly influenced 

by the concentration of both antibiotics. Similarly, ACA-targeted cells activity in WWT strongly depended 

on the AMO and CIP concentration. Moreover, cells belonging to the targeted species were on average 

more active in comparison with the non-targeted cells, suggesting that the dominance of these phylotypes 

was not only quantitative (as confirmed by 16S rRNA gene sequencing and FISH-based-relative 

abundance) but also qualitative (concerning their anabolic activity). 

Interestingly, 13C-enrichment median values of CTE-targeted cells were higher in Pr than WWT 

waters while 15N-median values showed the opposite; this can be due to the diverse community 

composition at the two sampling sites and the amount of species that compete and thrive in the same 

environment for the same resources. In fact, in WWT waters Acinetobacter related species were much 

more active than Comamonadaceae in both C- and N-assimilation, reflecting not only the greater relative 

abundance of these two groups, but also the greater ability of Acinetobacter to outgrow and become 

dominant over the other species upon antibiotics exposure (Fig. 45-C).  

 

Assimilation rates  
To more precisely account for the impact of antibiotics exposure on the water communities we 

calculated and compared the C- and N-assimilation rates of Acinetobacter and Comamonadaceae vs. non-

targeted cells (Fig. 49). We calculated the Fc values, i.e. fg of C and N assimilated per hour by each single 

cell, and then the median with its error (MAD) for each condition. Fc considers the initial C/N density of 

each single cell and the final one (amount of C/N assimilated during the time of incubation) and, 

considering each singe cell volume (as defined by manual RoI definition, see chapter 3.2.1), precisely 

estimates the single-cell-assimilation rate under the specific tested conditions 187.  

CTE-targeted cells showed a very similar trend in their assimilation rates in both Pr and WWT. AMO 

exposure induced an increase in anabolic activity in comparison with Ab− samples: 1 µ/L concentration 

showed not only higher rates but also big MAD values (10.6±6.0 fg C∙cell−1∙h−1 and 4.3±1.9 fg N∙cell−1∙h−1 

in Pr and 9.4±6.8 fg C∙cell−1∙h−1 and 7.2±5.1 fg N∙cell−1∙h−1 in WWT) in comparison with 1 mg/L 

concentration (7.6±4.4 fg C∙cell−1∙h−1 and 2.8±1.4 fg N∙cell−1∙h−1 in Pr and 4.2±2.5 fg C∙cell−1∙h−1 and 

3.6±2.3 fg N∙cell−1∙h−1 in WWT) (Fig. 49-A to D). CIP treatment caused lower C- and N-assimilation rates 

in comparison with Ab− samples at both concentrations (Fig. 49-A to D). Specifically, CIP 1 µg/L lowered 

the rate to 4.8±3.4 fg C∙cell−1∙h−1 and 2.4±1.3 fg N∙cell−1∙h−1 in Pr and to 2.1±2.0 fg C∙cell−1∙h−1 and 

1.3±1.3 fg N∙cell−1∙h−1 in WWT; rates at CIP 1 mg/L concentration were 5.8±3.4 fg C∙cell−1∙h−1 and 

2.7±1.1 fg N∙cell−1∙h−1 in Pr and 1.6±1.6 fg C∙cell−1∙h−1 and 1.0±0.9 fg N∙cell−1∙h−1 in WWT. 
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Figure 49. Carbon and Nitrogen assimilation rates in Pr (A-B) and WWT waters (C-D) after SIP-FISH/CARD-FISH 
nanoSIMS analysis. A) and C) represent the median values of fg C∙cell─1∙hour─1, while B) and D) median values of 
fg N∙cell─1∙hour─1; their errors are expressed as Median Absolute Deviation (MAD). Two FoVs from Pr E) and F) 
and from WWT samples G) and H) showing fluorescence micrographs after CARD-FISH (left panels) and the 
corresponding FoV analyzed with nanoSIMS (right panels) for the antibiotics free sample (Ab─) and AMO 1 µg/L, 
which corresponded to the condition where cells were most active. Left panels show microbial cells identified with 
CTE-659 probe (magenta) after CARD-FISH with close unidentified cells (blue, DAPI stained) that were not 
hybridized; right panels show nanoSIMS ions-maps represented as RGB (Red: 12C15N─/12C14N─; Green: 12C14N─; 
Blue: 13C14N─/12C14N─).  
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The assimilation rates of Acinetobacter related species confirmed that this phylotype was more active 

than Comamonadaceae in WWT samples. However, they showed a relatively similar behavior upon 

antibiotics exposure, with AMO (upon 1 µg/L rates were 40.9±9.0 fg C∙cell−1∙h−1 and 

106.9±24.4 fg N∙cell−1∙h−1 while upon 1 mg/L were 14.3±4.3 fg C∙cell−1∙h−1 and 31.3±7.1 fg N∙cell−1∙h−1) 

inducing much higher C- and N-assimilation rates than Ab− (8.5±3.0 fg C∙cell−1∙h−1 and 45.3±8.7 

fg N∙cell−1∙h−1). In contrast, CIP exposure resulted in much lower rates of 1.2±0.6 fg C∙cell−1∙h−1 and 

10.8±5.2 fg N∙cell−1∙h−1 at 1 µg/L concentration while upon 1 mg/L, values were 0.6±0.4 fg C∙cell−1∙h−1 and 

0.8±0.5 fg N∙cell−1∙h−1, for C and N, respectively. The difference between AMO and CIP though was more 

marked for ACA-targeted species especially for N-assimilation, for which also the antibiotics’ 

concentration played a big role (Fig. 49-D).  

At all conditions the rates of targeted cells were much higher than those calculated for non-targeted 

cells, further confirming that the ACA-652 and CTE-659 targeted groups were metabolically dominant in 

the communities upon antibiotics exposure, driving the C- and N-anabolic activity at the expenses of the 

other phylotypes. Pictures acquired with LMD after CARD-FISH procedure were combined with ion maps 

showing the corresponding area analyzed with nanoSIMS: they nicely depicted the higher isotopic 

enrichment (13C and 15N) of the targeted cells in comparison with non-targeted cells (Fig. 49-E to H). 

Moreover, in the combined ion maps as pictures (RGB, Fig. 49-E to H) it was possible to appreciate the 

heterogeneous assimilation of heavy isotopes into the cell biomass among the CTE-targeted cells in both 

Pr and WWT waters (Fig. 49-E to H). This observation together with the huge scatter of the single-cell 

values distribution in 13C- and 15N-uptake (Fig. 48), as well as the big error values (MAD) relative to the 

assimilation rates (Fc), highlighted different extent of heterogeneity in the cellular anabolic activity within 

each treatment. For this reason, we aimed to understand the influence of antibiotics exposure on the 

Anabolic Heterogeneity (AH) of cells belonging to ACA-652 and CTE-659 targeted groups. 

 

Anabolic Heterogeneity (AH) in natural microbial populations 

To understand the magnitude of the antibiotics effect on the anabolic activity measured with nanoSIMS 

in the water communities we quantitated AH, comparing the same phylogenetic groups (i.e. genus or 

family) under all tested conditions. Therefore, we calculated the HCcorr and its error ΔHCcorr 201 for the 

Acinetobacter and Comamonadaceae related species in both C- and N-activity (Fig. 50). In Pr samples, 

after the addition of antibiotics, CTE-targeted cells increased their AH in comparison with Ab− in a 

concentration dependent manner: the higher the antibiotic concentration applied, the higher the AH in both 

C- and N-assimilation (Fig. 50).  

In WWT samples, the AH of CTE-targeted cells in C- and N-assimilation strongly increased with CIP 

in comparison with AMO (Fig. 50); with CIP the AH was very similar between the two tested 

concentrations while with AMO the AH was higher at the 1 µg/L than 1 mg/L concentration. In general, 

for Comamonadaceae related species a higher AH value in N activity corresponded to a higher value in C 

anabolic activity in both Pr and WWT samples (Fig. 50).  
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ACA-targeted cells showed lower AH values in both C- and N-assimilation in comparison with CTE-

targeted cells (Fig. 50). The HCcorr values for AMO were low and relatively similar at both tested 

concentrations in C- and N-assimilation, while CIP treatment influenced AH in a concentration dependent 

manner, with higher HCcorr values at 1 mg/L concentration (Fig. 50). Interestingly, the AH in C-activity 

for this specific group was much higher than AH in N-activity. 

 

 

 

Figure 50. Corrected Heterogeneity Coefficient (HCcorr) values for all the tested conditions. Anabolic heterogeneity 
measured as HCcorr in C- and N-anabolic activity from CTE-659-targeted cells (purple dotted lines) and ACA-652-
targeted cells (light blue dotted line) in Pr and WWT samples. Gray symbols indicate the antibiotic-free sample 
(Ab─), filled symbols represent the highest concentration of antibiotic and hollow ones the lowest concentration. 

AMO is in orange while CIP is in magenta. Errors values (ΔHCcorr) are depicted in black for C-activity and in colors 
for N-activity.  

 

 

Studies with model organisms have shown that antibiotics exposure boosts phenotypic heterogeneity, 

allowing bacteria to increase their chance of survival after the antibiotic was removed from the culture and 

the conditions became favorable again 74,132. Phytoplankton communities exposed to pharmaceutical 

mixture reduced their phenotypic diversity, namely morphology and Chlorophyll-a content, in a 

concentration dependent manner and changed their assemblage pattern along the water depth, thus 

potentially affecting the whole ecosystem functioning 275.  

So far, no studies have shown MH or AH with single-cell approach upon antibiotic exposure in natural 

microbial communities. Neither they have quantified the AH. In our study, we investigated the effect of 

AMO and CIP on the anabolic activities of two different water samples, Pr and WWT, with special focus 

on specific phylotypes dominant in these communities after antibiotics treatment. 
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The same group, CTE-targeted present in both Pr and WWT, displayed different extent of AH in the 

two sampling sites, probably as result of different levels of competition with other species or previous 

exposure to other stressors into the water. CTE-targeted cells in fact were more heterogeneous in WWT 

than in Pr. The AH of both ACA-652 and CTE-659 targeted cells was affected much more by the highest 

concentration of antibiotics rather than the lowest, suggesting that the increase of heterogeneity might be 

a strategy to cope with high level of contaminants in the environment. In fact, although single-cell values 

were strongly differentiating from each other (in most case greatly scattering from the median values) the 

two phylotypes were always metabolically active upon AMO and CIP exposure. However, CIP impacted 

both anabolic activity and the AH much more than AMO overall, indicating the role of antibiotic class in 

shaping distinctively the heterogeneity of microbial populations.  

Bacteria belonging to the genus Acinetobacter have gained increasing attention in recent years, due to 

their resistance to a wide variety of antimicrobials 276-279, in turn responsible for severe nosocomial 

infections 280,281. Many representatives of this genus isolated from aquatic samples have shown to have 

resistance to AMO and CIP 279,281-283 and this can explain their dominance in abundance into the WWT 

waters as well as their higher metabolic rates upon antibiotics exposure in our experiments. Antibiotics-

resistant representatives of Comamonadaceae family, as well as Arcobater genus (that could not be 

targeted in our study due to the lack of a suitable probe) have been also found in river waters and WWTP 

effluents 283-287. The resistance to antibiotics could explain the ability of Comamonadaceae related species 

to thrive upon AMO and CIP treatments, maintaining high C- and N-assimilation rates and a great 

abundance into both sampling sites.  

 

Interestingly, AH of ACA-652 and CTE-659 related species was higher in C activity than N activity. 

Heterotrophs in the aquatic ecosystem play a critical role in the global C-cycle. Rivers in particular not 

only transport huge quantity of C from the land to the ocean but actively take parts in the C-cycle thanks 

to respiration and sequestration processes 288,289. In our study, antibiotics exposure brought to a very high 

metabolic activity on the one side, e.g. Acinetobacter under AMO treatment, or a strong suppression in 

metabolic activity on the other, e.g. both Comamonadaceae and Acinetobacter related species with CIP. 

These alterations may have important consequences on the community equilibrium and can be even at the 

expenses of other species. There is still a limited knowledge on how pollutants and other emerging 

contaminants, such as antibiotics, impact the C-cycle in freshwater ecosystems and more generally how 

they contribute to the total C-budget 290. Our study showed that antibiotics may strongly affect the C-

respiration/remineralization, thus undermining the equilibrium of the C-fluxes and -cycle in the rivers. AH 

could play a big role in the adaptation to stressing conditions and help the species to thrive even at high 

concentration of contaminants. Single-cell approach revealed that different species apply different 

strategies to cope and were not equally affected by antibiotics. These findings suggest that we need a deeper 

understanding on the impact of emerging contaminants on natural community and on how these effects can 

be translated to a wider scale.  
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Further studies are necessary to disentangle the mechanisms responsible for AH upon antibiotics exposure. 

As future perspective, it will be interesting to understand how AH shapes the community adaptation upon 

longer-term exposure and eventually when more than one contaminant is present in the environment, a 

phenomenon more commonly found due to the increasing human activity 244,291. This poses a serious 

challenge in the understanding of the effects and the risks of these pharmaceuticals for the biogeochemical 

cycles in aquatic microbial communities. 

 

Ecological significance of AH on natural communities 
Many studies have focused on the effects of antibiotics in biogeochemical processes mainly in soil 292-

297. Despite the importance of aquatic ecosystems in biogeochemical cycles and the well-documented 

occurrence of antibiotics in water bodies 239,240,298, very little is known on the effects of antibiotics in aquatic 

natural communities, especially for individual cells. Antibiotics may have direct and indirect effects on the 

microbial communities 255. Direct effects usually refer to the changes in the community composition, since 

antibiotics can act against both targeted (depending on the class of antibiotics) and non-targeted species, 

having direct effects on their inhibition or viability 255.The reduction in microbial diversity can strongly 

affect the equilibrium of the ecosystem and alter the microbial-mediated processes 255,299,300. Indirect effects 

comprise the phenotypic variability, modification of important ecological functions, e.g. while killing 

microorganisms engaged in single step of larger processes, or selection of antibiotics-resistant species 255. 

Moreover, the effects of antibiotics may hugely vary depending on the phase of bacterial growth 301, in 

many cases strongly dependent on the trophic levels in the environment.  

Few studies have investigated the impacts of antibiotics exposure in aquatic microbial populations. For 

instance, amoxicillin with clavulanic acid at 1 mg/L, but not ciprofloxacin at the same concentration, 

impaired denitrification processes performed by microbial communities from surface waters, sampled 

downstream from a sewage discharge 258. Ciprofloxacin instead strongly decreased the microbial ability to 

degrade pyrene in marine/sediment communities 259 and modified the microbial composition selectively 

favoring Gram negative populations in detriment of Gram positive in salt marshes 257. Ciprofloxacin 

induced bacterial mortality and reduced the extracellular enzymatic activity, mainly when combined with 

other antibiotics in biofilm from Llobregat river in Spain 302; but instead it increased the activity of protease 

and dehydrogenase as well as the production of Exopolysaccharides and proteins in the biofilm of 

simulated drinking-water-distribution systems, especially in combination with sulfadiazine 261. Being 

based on bulk measurements, these experimental works investigating the antibiotics effects may sometimes 

arrive to different conclusions and thus be ambiguous about the impact and the effects on the ecosystem 

function. In fact, with bulk approaches it is not possible to appreciate the differential sensitivity of single 

members of natural communities, since functions of some microbial groups may be substituted by 

functionally redundant microorganisms 258,259,303. Single-cell analysis allowed to discriminate such 

differences, that most of the time are not detected. 
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In our work, following the incorporation into the biomass of C and N at single-cell level, and combining 

the phylogenetic identification with their activity with FISH/CARD-FISH-nanoSIMS approach, we were 

able to demonstrate that different phylogenetic groups in the natural communities can respond distinctively 

to stressors such as antibiotics, depending on the nature of the samples, the class of antibiotics and their 

concentrations. Interestingly, C- and N-activity are differently affected by the same treatments, thus 

highlighting different impacts on metabolic activities within the community. To the best of our knowledge, 

this was the first study focused on the activity of microorganisms withdrawn from their natural 

environments. Providing qualitative (who) and quantitative (how much) information on the anabolic 

activity (quantified as assimilation rates) allowed to evaluate the direct effect/s of these emerging 

contaminants on the environment on one side, and to disentangle these effects on particular community 

groups and their potential impact on the ecosystem functioning on the other.  

In our study, C- and N-assimilation were strongly influenced by CIP, especially at the highest 

concentration. This finding has a strong relevance for two reasons: i) CIP is one of the widely used 

antibiotics for treating human and veterinary infections 304,305 and is (consequently) the most detected 

pharmaceutical in the river waters worldwide249,306. Additionally, CIP is more persistent in the environment 

in comparison with AMO, the latter being much more subjected to hydrolysis and photo-degradation in 

natural environments 252-254. ii) The assimilation rates after CIP 1mg/L treatment were up to 50 times lower 

than our control without antibiotic (Ab−) for Acinetobacter. Thus, the presence and persistence into the 

aquatic environment of this antibiotic poses a serious risk, undermining C- and N-cycles, and pushing 

toward a reduced microbial diversity.  

Antibiotics represent a threat for the environment and it is thus important to fully understand their 

effects on biogeochemical cycles for keeping a stable and heathy ecosystem functioning 300. Knowing their 

direct and indirect effects will help us to understand the consequences of antibiotics in the aquatic 

environments and establish regulatory measures to limit their discharge and use worldwide. 
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4. Conclusions 

The implementation of single-cell techniques made possible to shed light on the concept of 

individuality, overlooked so far by bulk approaches that hid the contribution of the individual cells within 

complex microbial populations. Overall, in my PhD work I was able to advance the field of single-cell 

microbiology, by providing: 

i) Optimized sample-preparation protocols for future studies on metabolic activity and 

heterogeneity with SIP-nanoSIMS approach. The same protocols can be used to 

visualize bacteria with SEM or HIM as well as other techniques where preservation of 

morphological and chemical integrity is required.  

Adaptations of the protocol for co-cultured microbial species, especially when 

preservation of the spatial context is a desired component.  

ii) Two new indices for the quantitation of MH in microbial populations. These indices are 

universal and can be applied to study different model strains and more complex 

environmental samples; importantly, they can be applied to other techniques such as flow 

cytometry and microscopy.   

iii) Insights on the role played by abiotic and biotic factors on the cell-to-cell variability of 

different microbial populations and evidences about the occurrence of increased MH even 

under non-limiting conditions.  

iv) New insights about the impact of emerging contaminants on the MH of natural microbial 

communities thriving in surface waters, quantitatively and qualitatively accounting for 

the effects on C- and N-assimilation upon antibiotics exposure. 
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5. Outlook 
Phenotypic and MH are recently gaining a lot of interest in many fields, especially in medical and 

environmental microbiology and biotechnology. Understanding the mechanisms and the driving forces of 

heterogeneity can help to identify, for instance, phenotypes able to resist virus infections or antibiotic 

treatments on one side, or the factors that may decrease heterogeneity and thus leading to a better yield in 

bioreactors on the other side. Since MH affects the metabolism and the physiology of single cells, this 

raises the question about the contribution of heterogeneity on the ecosystem functioning and its stability. 

How interactions among different organisms shape the MH of the species and how this can translate in 

fluctuations of important biological processes, such as biodegradation or remineralization in the 

environment, is still poorly understood. The MH of one species involved in a certain metabolic pathway, 

in fact, may affect the entire function of the community, especially if that pathway becomes crucial in their 

environment. While co-culturing hyphal-forming species and bacteria in the synthetic set-up developed 

during my work, I was able to combine functional and spatial information. So far, this is still very 

challenging to achieve mainly due to methodological difficulties. Nonetheless, the field of ‘spatial 

microbial ecology’ is advancing, aiming to provide understanding on the mechanisms of complex 

interactions within microbial communities maintaining the spatial context 307.  

 

The future perspective of my work is to link the spatial complexity of co-cultures with the metabolic 

interactions, and understand if they play a role in bacterial MH in such context. This approach could be 

then further implemented, for instance, increasing the complexity of the systems (more species) or studying 

the effect of stressors and limitations in such spatial constraints. In natural microbial communities, in fact, 

several species coexist and function as key players of biogeochemical cycles. Having methods to quantify 

assimilation of various isotope-labelled compounds, e.g. 13C- or 15N-labelled growth substrates, will help 

to scale-up from model organisms to complex microbial communities and as such to study the effects on 

the ecophysiology and MH upon exposure to emerging contaminants, e.g. antibiotics. I foresee that these 

types of studies will ultimately lead to a sort of automation of the in situ-processes quantitation, thus 

enlarging our view on the in situ functioning, which will be a valuable addition in the context of 

environmental changes that we are facing nowadays. 

 

One of the remaining challenges is the integration of qualitative and quantitative data coming from 

different single-cell techniques to have a comprehensive and reproducible overview on the single-cells 

functions in their natural environments. Performing a multi-parameters analysis would be a breakthrough 

in microbial ecology, since it would make possible to combine gene-expression and -translation with other 

physiological and metabolic aspects at single-cell level. Nowadays, we are assisting at the growing 

development of single-cell techniques and technologies, which will allow us to understand fundamental 

and mechanistic insights into cellular processes, cellular heterogeneity and its importance and implication 

in broader environmental processes. 
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