Supplementary Information

An efficient naphthalimide based receptor for selective detection of Hg^{2+} and Pb^{2+} ions

Pramod D Jawale Patil^{a,c}, Sopan M Wagalgave^{a,b}, Mohammad Al Kobaisi^d, Shailesh S Birajdar^{a,b}, Rajesh S Bhosale^f, Rajita D Ingle^c, Rajendra P Pawar^c, Sheshanath V Bhosale^e & Sidhanath V Bhosale^{*a,b}

^a Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India

^c Department of Chemistry, Deogiri College, Aurangabad 431 005, India

^d Department of Chemistry and Biotechnology, FSET, Swinburne University of Technology, Hawthorn VIC 3122, Australia

e School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India

^f Department of Chemistry, Indrashil University, Kadi, Mehsana 382 740, India

E-mail: bhosale@iict.res.in

Received 7 February 2020; accepted (revised) 18 August 2021

Figure S1. FT-IR of compound C.

Figure S2.¹HNMR spectra of compound Cin CDCl₃.

Figure S3.¹³CNMR spectra of compound Cin CDCl₃.

Figure S4. ESI-MASS spectrum of compound C.

Figure S5. FT-IR spectra of receptor 1.

Figure S6.¹HNMR spectra of receptor 1in CDCl₃.

Figure S7.¹³CNMR spectra of receptor 1in CDCl₃.

Figure S8. ESI-MASS spectrum ofreceptor 1.

Figure S9.HRMSspectrumof receptor 1.

Figure S10. Job's plot for **1** with analyte Hg^{2+} at 600 nm. ($\lambda_{ex} = 460$ nm)

Figure S11. Job's plot for **1** with analyte Pb^{2+} at 600 nm ($\lambda_{ex} = 460$ nm)

Figure S12. Benesi-Hildebrand plot of receptor 1 in presence of Hg^{2+} .

Figure S13. Benesi-Hildebrand plot of receptor **1** in presence of Pb^{2+} .

Figure S14. Calibration curve of receptor 1 in acetonitrile solution with the addition of increasing concentration of Hg^{2+} .

Figure S15. Calibration curve of receptor 1 in acetonitrile solution with the addition of increasing concentration of Pb^{2+} .

Analyte (ions)	Organic Chromophores	Solvent	LOD	Ref.
2+				
Hg²'	Coumarin	HEPS buffer solution (20 mM HEPES, pH 7.2, EtOH:H ₂ O = 1:1, v/v)	$1 \times 10^{-5} \mathrm{M}$	1
Hg ²⁺	Rhodamine B derivatives	DMSO-HEPES buffer (0.02 mol/L, pH 7.4; v/v = 6:4) Milli-Q water	2.36 × 10 ⁻⁶ M	2
Hg ²⁺	Non-sulfur rhodamine derivatives	Acetonitrile	$2 \times 10^{-7} \mathrm{M}$	3
Hg ²⁺	Rhodamine C	HEPS buffer solution (20 mM HEPES, pH 7.0, EtOH:H ₂ O = 7:3, v/v)	$7.4 \times 10^{-8} \text{ M}$	4
Hg ²⁺	Fluorescein and rhodamine B	Dichloromethane	$2.02 \times 10^{-8} \text{ M}$	5
Hg ²⁺	Rhodol-coumarin	MeOH:H ₂ O = $1:1, v/v$)	$5.5 \times 10^{-9} \mathrm{M}$	6
Hg ²⁺	Dansyl-Met-NH ₂	HEPS buffer solution (10 mM HEPES, pH 7.4)	5 × 10 ⁻⁹ M	7
Pb ²⁺	1,3,6-trihydroxy xanthone	DMSO:H2O solution (2:1 ratio, v/v)	$1.8 \times 10^{-7} \text{ M}$	8
Pb ²⁺	Rhodamine hydroxamate derivative	HEPS buffer solution (10 mM HEPES, pH 6.5)	$2.5 \times 10^{-7} \mathrm{M}$	9
Pb ²⁺	BODIPY fluorophore	PBS buffer (0.1 M, pH 7.2)	$1.34 \times 10^{-8} \text{ M}$	10
Pb ²⁺	Rhodamine trimethoxy benzaldehyde conjugate derivative	HEPS buffer solution (pH 7.54)	1.5 × 10 ⁻⁸ M	11
Pb ²⁺	Rhodamine 6G derivatives	HEPS buffer solution (10 mM	2.7 × 10 ⁻⁹ M	12

Table S1: Fluorescent sensor for Hg^{2+} and Pb^{2+} analytes based on organic chromophores.

		HEPES, pH 7.4)		
Pb ²⁺	Coumarin	Phosphate buffer (20 mM, 1:9 DMSO/H ₂ O (v/v), pH 8.0	1.9 × 10 ⁻⁹ M	13
Pb ²⁺	Coumarin	HEPES buffer solution (CH ₃ CN:H ₂ O = 95:5, v/v, 10 mM, pH 7.2)	$3.36 \times 10^{-11} \text{ M}$	14
Hg ²⁺ and Pb ²⁺	Rhodamine 6G hydrazide	HEPS buffer solution (10 mM HEPES, pH 7.2, EtOH:H ₂ O = 9:1, ν/ν)	$Hg^{2+} = 1.6 \times 10^{-8} M$ $Pb^{2+} = 1.2 \times 10^{-8} M$	15
Hg^{2+} and Pb^{2+}	Benzothiazole- naphthalimide- pyrrolidine conjugate	Acetonitrile	$Hg^{2+} = 7.44 \times 10^{-10} M$ $Pb^{2+} = 1.26 \times 10^{-9} M$	This work

	Excited states	E (nm)	f _{Osc}
1	HOMO→LUMO (87%)	446.3	0.35124
2	H-1→LUMO (100%)	510.1	0.00004
3	HOMO→L+1 (99%)	408.9	0.00193
4	H-2→LUMO (97%)	393.1	0.00044
5	H-3→LUMO (40%), HOMO→L+3 (55%)	307.5	0.00438
6	HOMO→L+2 (81%)	298.2	0.55728
7	H-5→LUMO (90%)	303.7	0.00148
8	H-4→LUMO (50%), H-3→LUMO (18%), HOMO→L+3 (17%)	282.1	0.08390

Table S2. The singlet electronic transitions of **1** as calculated using TD-DFT at B3LYP def2-TZVP def2/J RIJCOSX level of theory.

References

1. Xu, Y.; Jiang, Z.; Xiao, Y.; Zhang, T.-T.; Miao, J.-Y.; Zhao, B.-X. A new fluorescent turn-on chemodosimeter for mercury ions in solution and its application in cells and organisms. *Anal. Chim. Acta***2014**, 807, 126–134

Li, M.; Sun, Y.; Dong, L.; Feng, Q.-C.; Xu, H.; Zang, S.-Q.; Mak, T.C.W. Colorimetric recognition of Cu²⁺ and fluorescent detection of Hg²⁺ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS₂ receptor. *Sens. Actuators B Chem.*2016, 226, 332–341
 Gao, T.; Lee, K.M.; Kim, S.H.; Heo, J.; Yang, S.I. A Mercuric Ion Selective Fluorescent Sensor Based on Rhodamine B with an Ethylene Unit. *Bull. Korean Chem. Soc.*2017, *38*, 292–295.

4. Yan, F.; Cao, D.; Wang, M.; Yang, N.; Yu, Q.; Dai, L.; Chen, L. A new rhodamine-based "off-on" fluorescent chemosensor for Hg (II) ion and its application in imaging Hg (II) in living cells. *J. Fluoresc.***2012**, *22*, 1249–1256.

5. Wanichacheva, N.; Hanmeng, O.; Kraithong, S.; Sukrat, K. Dual optical Hg²⁺-selective sensing through FRET system of fluorescein and rhodamine B fluorophores. *J. Photochem. Photobiol. A Chem.***2014**, *278*, 75–81.

6. Huang, K.; Jiao, X.; Liu, C.; Wang, Q.; Qiu, X.; Zheng, D.; He, S.; Zhao, L.; Zeng, X. Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. *Dye Pigment*.**2017**, *142*, 437–446.

7. Aliberti, A.; Vaiano, P.; Caporale, A.; Consales, M.; Ruvo, M.; Cusano, A. Fluorescent chemosensors for Hg²⁺ detection in aqueous environment. *Sens. Actuators B Chem.***2017**, *247*, 727–735.

Karak, D.; Banerjee, A.; Lohar, S.; Sahana, A.; Mukhopadhyay, S.K.; Adhikari, S.S.; Das, D. Xanthone based Pb²⁺ selective turn on fluorescent probe for living cell staining. *Anal. Methods*2013, *5*, 169–172.

9. Li, M.; Jiang, X.-J.; Wu, H.-H.; Lu, H.-L.; Li, H.-Y.; Xu, H.; Zang, S.-Q.; Mak, T.C.W. A dual functional probe for "turn-on" fluorescence response of Pb²⁺ and colorimetric detection of Cu²⁺ based on a rhodamine derivative in aqueous media. *Dalton Trans*.2015, 44, 17326–17334.
10. Liu, J.; Wu, K.; Li, S.; Song, T.; Han, Y.; Li, X. A highly sensitive and selective fluorescent chemosensor for Pb²⁺ ions in an aqueous solution. *Dalton Trans*.2013, 42, 3854–3859.

Sunnapu, O.; Kotla, N.G.; Maddiboyina, B.; Singaravadivel, S.; Sivaraman, G. A rhodamine based "turn-on" fluorescent probe for Pb(II) and live cell imaging. *RSC Adv*.2015, *6*, 656–660.
 Wan, J.; Zhang, K.; Li, C.; Li, Y.; Niu, S. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb²⁺ ion. *Sens. Actuators B Chem*.2017, 246, 696–702.

13. Shaily; Kumar, A.; Parveen, I.; Ahmed, N. Highly selective and sensitive coumarin–triazole-based fluorometric 'turn-off' sensor for detection of Pb²⁺ ions. *Luminescence*2018, *33*, 713–721.
14. Wu, G.; Li, M.; Zhu, J.; Lai, K.W.C.; Tong, Q.; Lu, F. A highly sensitive and selective turn-on fluorescent probe for Pb(II) ions based on a coumarin-quinoline platform. *RSC Adv*.2016, *6*, 100696–100699.

15. Li, M.; Jiang, X.-J.; Wu, H.-H.; Lu, H.-L.; Li, H.-Y.; Xu, H.; Zang, S.-Q.; Mak, T.C.W. A dual functional probe for "turn-on" fluorescence response of Pb²⁺ and colorimetric detection of Cu²⁺ based on a rhodamine derivative in aqueous media. *Dalton Trans*.**2015**, *44*, 17326–17334.