

Indian Journal of Traditional Knowledge Vol 20(4), October 2021, pp 990-1001

Medicinal plants used for veterinary diseases by the local inhabitants of the Teshil Tangi, District Charsadda, Pakistan

Hammad Ahmad Jan^{a,*}, Latif Ahmad^b, Rainer W Bussmann^c, Samin Jan^d, Sher Wali^d, Shiekh Marifatul Haq^e, Israr Alam^f & Muhammad Romman^g

^aDepartment of Botany, University of Buner, Pakistan

^bDepartment of Botany, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan

^cDepartment of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia

^dDepartment of Botany, Islamia College Peshawar, Pakistan

^eDepartment of Botany, University of Kashmir, Hazratbal, Srinagar 190 006, Jammu and Kashmir, India

^fDepartment of Zoology, University of Buner, Pakistan

^gDepartment of Botany, University of Chitral, Pakistan

E-mail: hajmughul@yahoo.com

Received 16 August 2019; revised 02 August 2021

Therapeutic plants ethnically utilized for the cure of various aliments of animals have an important part in the rural veterinary healthcare system because allopathic medicines remain inaccessible, particularly in the third world countries. This work was carried out in Teshil Tangi District Charsadda, Pakistan, in 2016-18, aiming for conserving the ethnic medicinal plants knowledge about veterinary illnesses. Information was collected from older people, herbalists and *pansaris* (herbal sellers) via semi-structured questionnaire and open ended interviews. Quantification of the result was done by Relative Frequency Citation (RFC) and Use Value (UV). The result of current study comprises of the 118 therapeutic plant species' collection which belong to forty-six families by interviewing 233 native informants. Among the 46 botanical families, Leguminosae with 14 species was the leading family. The most dominant growth habit was herbs constituted (68%). Leaves (42%) were the main morphological parts used for ethnoveterinary medicine. The highest UV was obtained for 0.52 for *Silybum marianum* (L.) and RFC (0.33) for *Silybum marianum* (L.). Most of the therapeutic plants have been utilized for curing digestive illnesses, followed by promote lactation and wounds healing. Due to the dense and diverse vegetation, the study area is rich in ethnobotanical knowledge and the people still use medicinal plants to cure animal diseases.

Keywords: District Charsadda, Medicinal plants, Pakistan, Tehsil Tangi, Veterinary diseases

IPC Code: Int Cl.²¹: A61K 36/00, A61K 36/28, A61K 36/185

Therapeutic plants ethnically utilized to cure various ailments of animals have played a key part in the indigenous healthcare systems. Specially, plants' resources commonly indicate the most important form of treatment in the veterinary healthcare system of rural areas because allopathic medicines remain inaccessible, principally in countries of the third world. The oral transmission of ethnic medicinal plants' knowledge is endangered and insubstantial, and needs priority base attention for being documented and recorded¹. Majority of the rural livestock holders stated that they commonly use the plants' extracts obtained from flower, bark, latex, leaf, seed, tuber and root for medicinal purposes, which are

used in different methods and administered to livestock for a variety of ailments².

Collection and utilization of the aromatic and medicinal plants' for treatment of human and veterinary diseases is centuries old practice and utilized almost in all cultures³. Not only in the third world countries medicinal plants are commonly used to cure various diseases but also in the developed countries medicinal plants are nowadays used extensively for the cure of various diseases⁴. Besides, in these societies, the use of therapeutic plants have become more common to cure minor disorders, due to the perception that they are secure, and also due to the rapidly increasing cost of personal healthcare⁵.

At present livestock representing almost 70% of the animals are cured by therapeutic plants.

Utilization of therapeutic plants has now become a science and an art, used according to the observation, disease theory, experiences and tradition of the healers⁶. Plants having therapeutic properties are enjoying the highest attention of the indigenous herbal medicines systems world widely. This is principally factual in the third world countries, where medicines are very expensive as well as unreachable from most of the population⁷.

As an agriculture country, about 80% population of Pakistan is reliant on livestock and agriculture⁹. According to an estimate there are 4 million asses, 27 million buffaloes, 1 million camels, 30 million cattle, 54 million goats, 0.3 million horses, 0.2 million mules, 74 million poultry and 27 million sheep populations in Pakistan¹⁰. Because of the modern medicines' high prices, the poor farmers are paying attention to the phytomedicines. The local population utilizes therapeutic plants and they have the opinion that the ethnoveterinary medicines are the only easily available as well as economic source to cure different ailments of animals. As a result, the local people highly depend on herbal remedies to treat many acute and chronic diseases. In rural areas for livestock's ailments, traditional indigenous medicine is still practiced regardless of the development of clinical agents and development of pharmaceutical industry. The disadvantages of modern veterinary medicines comprise chemo-resistance development in cattle, doubtful quality of medicines as well as user inauspicious effects like high doses anti-biotic as well

as hormones minimizes the production of milk and other animals' products. An initiative has been taken over the past few decades, for the documentation of the threatened ethno-veterinary medicines practices in different areas of Pakistan because it is declining due to many factors like rapid socio-economic environmental and technological changes¹¹. Present survey was carried-out with the aim to collect and conserve local therapeutic plants and the ethnic knowledge of the collected therapeutic plants for various illnesses of animals.

Materials and Methods

Area of study

The study area is located in the North-West of Charsadda district with main elevations around 300 m asl. The area is located on 34°18'0N 71°39'14E (Fig. 1). According to the 2017 census the population of the area is about 428239¹². The climate of the area is temperate with four seasons i.e. spring, summer, autumn and winter¹³. The coolest month of the year is January with mean temperature of about 4°C and in June temperature reaches up to 44°C. The average rainfall is 460 mm. The soil of the study area is sandy loam, with thick vegetation¹⁴. The Tehsil Tangi has 12 Union Councils, i.e., Abazai, Dakki, Ghan Dheri, Harichand, Hisara Nehri, Koz Behramm Dheri, Mandani, Mirzadher, Sherpao, Shodag, Tangi MC and Ziam¹⁵. The local people of the area mainly relay on agriculture. The literacy rate is 56.9% ¹⁶.

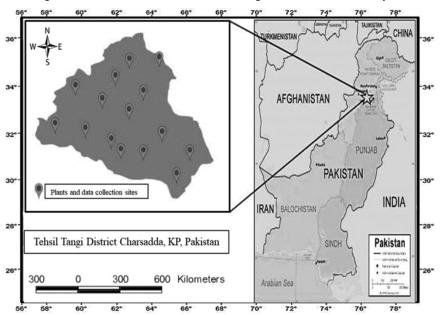


Fig. 1 — Map of the study area (Source: The map is made through ACR-GIS software by the Principal Author)

Field survey, informant interviews and ethnoveterinary data collection

The ethnobotanical data documentation was done by visiting frequently various parts of all the 12 union councils (Abazai, Dakki, Ghan Dheri, Harichand, Hisara Nehri, Koz Behramm Dheri, Mandani, Mirzadher, Sherpao, Shodag, Tangi MC and Ziam) of the Tehsil Tangi. Ethnobotanical information was recorded according to the technique of Jan et al. 17 from the native populations, comprises of farmers, Hakeems, Pansaries and other plant seller. This study has been carried out in different seasons during 2016-18. Weekly basis field trips have been conducted for the investigation and collection medicinally significant plants and documentation of ethnoveterinary knowledge. A total of 233 informants have been interrogated after getting Prior Informed Consent from each respondent, which included 22 Pansaris, 85 people (comprising both males as well as females with age 50 years or above), 102 with age ranges between 35-49 years and 24 young in the age of 25-34 as shown in Table 1.

Plants' collection, identification and preservation

All the therapeutic plants have been collected according to the techniques followed by Langshiang *et al.*¹⁸ and Jan *et al.*¹⁷. The collection place, local name, habit and habitat of the plants were also documented for prospect correspondence. Identification of plants was done according to the techniques of Devi *et al.*¹⁹ and was confirmed by Dr. Sher Wali, Department of Botany, Islamia College Peshawar and Dr. Siraj ud Din Department of Botany, University of

Table 1 -	— Demographic pro	ofile of the study area									
	Informants Inte	erviewed									
Gender		No. Informants									
Male		150									
Female	83										
Traditional Knowledge of Medicinal Plants											
Age Group	No. Informants	Medicinal Plants Reported									
50 and above	85	90									
35-49	102	73									
25-34	24	29									
Total Informants		233									
	Literacy Data of	Informants									
Age Group	No. Informants	% age									
50 and above	12/85	14.11									
35-49	59/102	57.84									
25-34	15/24	62.50									
Total	86/233	36.91									

Peshawar. To authenticate the correct names of the plants the online "Flora of Pakistan" was used. After collection and drying the specimens were glued on the standard herbarium sheets and were conceded to the Herbarium of Botany Department, Islamia College Peshawar.

Quantitative ethnobotany

Collected ethnoveterinary data has been evaluated through ethno-botanical indexes such as relative frequency of citation (RFC) and use value (UV).

Relative Frequency Citation (RFC)

This index has been applied for finding out the indigenous position of each medicinal plant in the local community via., the below formula;

RFC =FC/N

Where, FC is the respondents' numbers citing a single therapeutic plant and N is the overall respondents' number. The RFC value varies between zero (no single informant cited the plant as significant) and one (all informants cited the plant for medicinal use)²¹.

Use Value (UV)

This index revealed the comparative medicinal significance of plants known locally for medicinal uses. It has been calculated through the subsequent formula²².

$UV = \sum Ui/N$

Where Ui is the medicinal uses of a plant stated by respondents and N is the overall informants' number.

Results and Discussion

Socio-demographic data

To collect the ethnoveterinary data from the indigenous population 233 informants were interrogated, which comprised 22 *Pansaris*, 85 community persons (comprising both males as well as females having ages 50 years), 102 in the age range of 35-49 years and 24 young in the age range 25-34 as shown in Table 1. The ages of the people interviewed were between 25 to 93 years.

It was noted that people with age 45 years or above were more knowledgeable; our findings are in accordance with the other researchers from surrounding areas and around the globe^{1,23-26}. Furthermore, it was observed that females have more ethnomedicinal knowledge than males and similar results were reported by other authors^{24,27}. According to Howard²⁸ this is

because women have key role in the daily life activities like providence of food, preparing herbal medicines and care of family members. Similarly elder people of the society have more traditional knowledge because of their vast experiences^{1,22-26,29,30}. In this study we interviewed only 83 women, this is due to the cultural restriction in the study area³⁰.

Species' diversity, status, and life form

Result of the present work is shown in Table 2 which has plants' botanical names organized in ascending alphabetic order in conjunction to their indigenous name (s), parts used, application,

preparation, ethnoveterinary use (s) and respondents' number (s). The leading family is Leguminosae (14 sp.), followed by Asteraceae, Poaceae and Amaranthaceae (Fig. 2). The dominance of these families is widely seen as effect of their wide distribution of the species of these families not only the study area but all over the Pakistan³¹⁻³³.

Herbs were the principal form of life (68%) followed by shrubs (24%) and trees (10%) (Fig. 3). The common use of herbs as medicines has been interpreted as effect of them having high amounts of bio-active compounds³⁴⁻³⁶, also herbs grow more commonly in nature³⁶⁻⁴⁰, thus being easily accessible.

Table 2 Scientific name -	Local	f Ethnovete Status ^a	erinary medic Growth	cinal plants Part	used by the local inhal Veterinary	bitants in the Mode of		ırsadda UV°	FC^d	RFC°
Voucher no.	name	Status	form	used ^b	uses		application	OV	rc	KIC
Acanthaceae	D. ''	***	G1 1	* * * 7		ъ	0.1	0.22	4.5	0.10
<i>Justicia adhatoda</i> L ICPH 101 Aizoaceae	- Baikar	W	Shrub	LV	Anti- inflammatory	Decoction	Oral	0.23	45	0.19
Trianthema portulacastrum L ICPH-185	Da jowaro insat	W	Herb	AP	Skin Sores	Paste	External	0.04	12	0.05
Alismataceae Sagittaria latifolia Willd ICPH-161	Mamana	W	Herb	LV	Skin diseases	Paste	External	0.04	11	0.05
Amaranthaceae Achyranthes aspera L ICPH-6	Wara guhsky	W	Herb	LV	Indigestion	Direct	Oral	0.23	45	0.19
Aerva javanica (Burm.f.) Juss. ex Schult ICPH-9	Speen boty	W	Herb	WP	Purgative in cattle's	Decoction	Oral	0.13	24	0.10
Alternanthera sessilis (L.) R Br. ex DC ICPH-14	. Shna	W	Herb	LV	Mastitis in dairy cattle	Direct	Oral	0.03	15	0.06
Amaranthus albus L ICPH-15	Sarmay	W	Herb	AP	Warmness in cattle after birth	Direct	Oral	0.10	26	0.11
Amaranthius spinosus L ICPH-17	chorlaye	W	Herb	LV	Increase lactation, dog bite		External,	0.23	38	0.16
Chenopodium ambrosioides L ICPH-49	Skha boty	W	Herb	LV	horses	Direct	Oral	0.07	19	0.08
Chenopodium botrys L ICPH-50 Apiaceae	Narry sarmay	W	Herb	AP	Digestive tract infection	Decoction	Oral	0.04	16	0.06
Apraceae Ammi visnaga (L.) Lam ICPH-19		W	Herb	LV	Abdominal pain	Direct	Oral	0.27	19	0.08
Anethum graveolens L ICPH-21	Sovaa	W	Herb	WP	Indigestion	Direct	Oral	0.33	44	0.18
Apocynaceae Calotropis procera (Aiton) Dryand ICPH-37	Spalmay	W	Herb	LV	Cough and cold in cows, goats and buffalo	Decoction	Oral	0.24	43	0.18
Nerium oleander L ICPH- 125	Gander	C/W	Shrub	LV	Ulcer	Decoction	Oral	0.10	39	0.17
Rhazya stricta Decne ICPH-154 Araceae	Gandaray	W	Herb	LV	Anti-maggots	Paste	Oral	0.30	28	0.12
Pistia stratiotes L ICPH- 142 Arecaceae		W	Herb	LV	Gastroenteritis in bulls	Decoction	Oral	0.16	34	0.15
Nannorrhops ritchieana (Griff.) Aitch ICPH-123	Mazari	С	Herb	LV	diseases	Powder	Oral	0.16	26	0.11
					Purgative	Paste	External			(Conto

cientific name - Voucher no.	Local name	Status ^a	Growth form	Part used ^b	Veterinary uses		Route of application	UV^{c}	FC^d	RFC
Phoenix dactylifera L CPH-136	Zangali Kajoor	W	Tree	FR	Infertility in cattle		Oral	0.07	18	0.0
asteraceae Artemisia vulgaris L CPH-25	Turkhaa	W	Shrub	LV	Treat endoparasites, and	Decoction	Oral	0.20	30	0.1
Carthamus arborescens L CPH-42		W	Herb	AP	as tonic Wound healing	Paste	External	0.20	31	0.1
Ci 11-42 Cichorium intybus L CPH-52	Zangali shawtal	W	Herb	LV	Digestive disorders	Decoction	Oral	0.05	12	0.0
Cirsium arvense (L.) Scop CPH-54	Asghaki	W	Herb	LV	Treat endoparasites in rabbits	Decoction	Oral	0.32	20	0.0
Erigeron canadensis L CPH-72	-	W	Herb	LV	Laxative in goats and sheep	Powder	Oral	0.06	14	0.0
Cchinops echinatus Roxb CPH-75	-	W	Herb	LV	Wound healing	Paste	External	0.28	38	0.1
	-	W	Herb	LV	Wound healing	Paste	External	0.02	9	0.0
actuca serriola L ICPH- 02	Showdafy	W	Herb	AP	Lactation	Decoction	Oral	0.12	18	0.0
aunaea nudicaulis (L.) Iook.f ICPH-104	-	W	Herb	WP	skin infections	Poultice	External	0.13	21	0.0
ilybum marianum (L.) Saertn ICPH-170	Ghata Ghana	W	Herb	AP, SE	Kidney and liver disorder in cattle		Oral	0.52	78	0.3
onchus asper (L.) Hill - CPH-174	-	W	Herb	AP	Abscesses, to increase klactation	Direct	Oral	0.20	28	0.1
onchus oleraceus (L.) L CPH-175	1 7	W	Herb	AP	Increase lactation		Oral	0.10	17	0.0
araxacum campylodes G.E. [aglund - ICPH-181	Ziyar guly	W	Herb	AP	Treatment of udder tumors in cows	Direct	Oral	0.03	19	0.0
rassicaceae Prassica campestris L CPH-34	Sharsham	C	Herb	LV, SE	Broken horns	Paste	External	0.28	45	0.1
Eruca sativa Mill ICPH-82	2Jamama	C/W	Herb	LV	Tonsillitis in hens Lice infestation in cattle		Oral External	0.28	44	0.1
<i>lasturtium officinale</i> R.Br CPH-124 Cactaceae	Tarmera	W	Herb	WP	As a Tonic for horses	Direct	Oral	0.30	38	0.1
<i>Opuntia dillenii</i> (Ker Gawl.) Iaw ICPH-127	Zaqqum	W	Herb	AP	Lactation	Direct	Oral	0.21	41	0.1
annabaceae Cannabis sativa L ICPH- 9	Bang	W	Herb	WP	Mouth diseases, piles, retention of the placenta	Decoction	Oral	0.15	39	0.1
Capparaceae Capparis decidua (Forssk.) Cdgew ICPH-40	Kerrla	W	Shrub	Bk, FR	Anti-diarrheal	Decoction	Oral	0.32	49	0.2
Sapparis spinosa L ICPH- 1 Sleomaceae	Da ghar prewatai	W	Shrub	LV	Respiratory problems	Direct	Oral	0.13	23	0.1
leomaceae leome viscosa L. – ICPH- lonvolvulaceae	Sakha Bhutay	W	Herb	SE	Anti-maggots	Paste	External	0.10	20	0.0
Cuscuta reflexa Roxb CPH-62	Maraz boty	W	Herb	AP	Anti-lice	Paste	External	0.07	16	0.0
oomoea carnea Jacq CPH-100	Ghat gulabasi	W	Shrub	LV	Wounds healing	Paste	External	0.17	36	0.1
Cyperaceae Cyperus laevigatus L CPH-65	Dela	W	Herb	AP	Arthritis	Paste	External	0.02	13	0.0

(Contd.)

Scientific name - Voucher no.	Local name	Status ^a	Growth form	Part used ^b	Veterinary uses	Mode of	Route of application	UV^{c}	FC^d	RFC
Cucurbitaceae	name		101111	usea	uses	preparation	аррисацоп			
Citrullus colocynthis (L.) Schrad ICPH-55	karkondi	W	Herb	LV, FR	Abdominal pain	Direct	Oral	0.07	19	0.08
Euphorbiaceae Chrozophora tinctoria (L.)	Lengattty	W	Herb	LV, FR	Skin problems	Paste	External	0.12	23	0.10
A. Juss ICPH-51 Euphorbia hirta L ICPH- 66	Jaghje	W	Herb	LV	Increase lactation, appetite stimulant	Powder	Oral	0.10	18	0.0
Euphorbia helioscopia L CPH-85	Mandalroo	W	Herb	AP		Decoction	Oral	0.03	11	0.0
Euphorbia prostrata Aiton - CPH-87	-	W	Herb	AP	Antipyretic in buffaloes, rheumatism	Decoction	Oral	0.10	17	0.0
Ricinus communis L CPH-155 Lamiaceae	Aranda	W	Shrub	LA	Constipation,	Powder	Oral	0.07	15	0.0
	Dhurseli	W	Shrub	LV, INF	Anti-maggots	Paste	Oral	0.15	24	0.10
Mentha spicata L ICPH- 16	Podena	W	Herb	WP	Respiratory disorders	Direct	Oral	0.14	47	0.20
Salvia acerifolia B.L. Turner ICPH-163		W	Herb	LV	Anti-lice in cattle	Paste	External	0.12	27	0.11
/itex negundo L ICPH- 94 .eguminosae		W	Shrub	LV	Foot and Mouth disease	Direct	Oral	0.11	19	0.0
Acacia catechu (L.f.) Willd. ICPH-2	Angrezy kikar	W	Shrub	LV	Cure of injured horns in cattle	Poultice	External	0.06	13	0.0
Acacia farnesiana (L.) Villd ICPH-3	Kikar	W	Shrub	LV, SE	Eye infections	Eyedrops	External	0.17	27	0.1
Acacia modesta Wall CPH-4	Phalosa	W	Shrub	LV, SE	To expel placenta after birth	Decoction	Oral	0.24	24	0.1
Acacia nilotica (L.) Delile - CPH-5	Kikar	W	Shrub	LV, FR	Foot diseases	Decoction	Oral	0.10	15	0.0
Albizia lebbeck (L.) Benth - CPH-11	Srekh	W	Tree	LV, BK	Anti-diarrheal in cows and sheep	Powder	Oral	0.30	30	0.1
Alhagi maurorum Medik CPH-12	Narry	W	Shrub	LV, SE	Gastrointestinal disorders	Decoction	Oral	0.31	39	0.1
Bauhinia variegata L CPH-29	Da sago wana	С	Tree	LV, SE	Anti-diarrheal	Decoction	Oral	0.07	14	0.0
Cassia fistula L ICPH-44 Cassia occidentalis L	Amaltas	W W	Tree Shrub	LV, FR LV, LT	Stomach disorders Mouth and foot	Powder Decoction	Oral Oral	0.20 0.06	32 13	0.1
CPH-45 Leucaena leucocephala	Srekh	W	Shrub	SE		Powder	Oral	0.15	23	0.0
0 1 2 1	Pishtari	W	Herb	WP	horses For swiftness in	Powder	Oral	0.16	25	0.1
CPH-111 Parkinsonia aculeata L	Kikar	W	Shrub	LV, SE	horses Dog bite	Decoction	Oral	0.31	34	0.1
CPH-130 Frigonella corniculata Sibth.) Sm. ICPH-187	Malhozi	W	Herb	LV, SE	Regulate fertility	Decoction	Oral	0.03	10	0.0
ythraceae Voodfordia fruticosa (L.) Kurz - ICPH-196	Pallay	W	Shrub	LV	Anti-diarrheal	Direct	Oral	0.25	29	0.1
Malvaceae Abutilon indicum (L.) Sweet ICPH-1	Ziar guly	W	Herb	AP	Carminative	Decoction	Oral	0.16	33	0.1
Rorn-1 Bombax albidum Gagnep CPH-32	Foomba	W	Tree	LV, SE	Treat broken horn	Paste	External	0.18	35	0.1
Aalvastrum oromandelianum (L.) Garcke - ICPH-109	Jaro boty	W	Herb	AP	Anti-allergic in cattle	Paste	External	0.12	23	0.1
Moraceae Broussonetia papyrifera (L.)	Gultooth	С	Tree	FR	Increase lactation	Direct	Oral	0.20	25	0.1

Scientific name - Voucher no.	Local name	Status ^a	Growth form	Part used ^b	Veterinary uses	Mode of preparation	Route of application	UV°	FC^d	RFC
	Enzar	W	Shrub	LV, FR	Expel placenta Skin disorders	Powder Paste	Oral External	0.07	33	0.14
Ficus palmata Forssk CPH-90	Zangali Enzar	W	Shrub	FR	Indigestion	Direct	Oral	0.05	7	0.05
Ficus religiosa L ICPH-91	Pepal	W	Tree	LV	Retention of placenta	Direct	Oral	0.01	14	0.12
Morus alba L ICPH-119	Speen tooth	W	Tree	FR	Constipation in cows and buffaloes	Direct	Oral	0.06	5	0.03
Morus nigra L ICPH-121 Meliaceae	Toor tooth	W	Tree	FR	Cough	Powder	Oral	0.07	17	0.06
Melia volkensii Gürke - CPH-113	Thora shunday	W	Tree	LV, BK	Anti-lice, carminative	Decoction Paste	Oral External	0.11	43	0.18
Menispermaceae										
Cocculus pendulus (J.R. Forst. & G. Forst.) Diels - CPH-57 Nyctaginaceae	Chamelle	W	Shrub	LV	Carminative	Decoction	Oral	0.08	18	0.08
Mirabilis jalapa L ICPH- 117 Oxalidaceae	Gul abasi	С	Herb	LV, SE	Urinary disorders	Direct	Oral	0.45	53	0.23
Oxalis corniculata L CPH-128 Papaveraceae	Trewaky	W	Herb	AP	Abdomen pain	Direct	Oral	0.04	11	0.05
Argemone mexicana L CPH-115		W	Herb	LV, FR	Rheumatism	Paste	External	0.15	29	0.12
	Papra	W	Herb	WP	Mastitis	Direct	Oral	0.06	15	0.06
Pinus roxburghii Sarg CPH-141 Plantaginaceae	Nakhtar	W/C	Tree	LV	Wounds healing, anti-lice	Paste	External	0.35	43	0.18
Plantago lanceolata L CPH-143 Poaceae	Mansoor da jendi	W	Herb	AP	Treatment of rabies in cattle	Decoction	Oral	0.10	19	0.08
Apluda mutica L ICPH-22	Speen wakha	W	Herb	AP	Treat Mouth sore	Poultice	External	0.14	19	0.08
Avena sativa L ICPH-27	•	W	Herb	AP	Lactation, food poisoning	Direct	Oral	0.10	22	0.09
Bambusa bambos (L.) Voss - CPH-28	Banus	W		LV, RT	Retention of placenta	Decoction	Oral	0.20	29	0.12
<i>Brachiaria reptans</i> (L.) C.A. Gardner & C.E. Hubb CPH-33	Kurii	W	Herb	AP	Increase lactation	Direct	Oral	0.03	11	0.04
Bromus catharticus Vahl CPH-35	Zangali jawder	W	Herb	LV	Purgative in dogs	Powder	Oral	0.03	13	0.03
Desmostachya bipinnata (L.) Stapf - ICPH-69	Pasta drab	W	Herb	LV	Urinary troubles	Decoction	Oral	0.12	20	0.09
Echinochloa crus-galli (L.) P. Beauv ICPH-74		W	Herb	AP	Promote lactation	Decoction	Oral	0.05	15	0.0
Eleusine indica (L.) Gaertn. CPH-79		W	Herb	LV	Anti-diarrheal in cattle	Direct	Oral	0.07	17	0.0
mperata cylindrica (L.) Laeusch ICPH-99	Wakha	W	Herb	LV	Anthelmintic	Powder	Oral	0.04	14	0.0
eptochloa chinensis (L.) Nees - ICPH-106	Shamoha	W	Herb	AP	Lactation	Decoction		0.03	13	0.0
Phragmites australis (Cav.) Frin. ex Steud ICPH-137		W	Herb	AP	Retain placenta	Decoction		0.12	28	0.13
Caccharum spontaneum L CPH-159 Polygonaceae	Sharghashi	W	Herb	AP	Anti-allergic in cattle	Powder	Oral	0.10	31	0.13
	Pholpolak	W	Herb	AP	Expel skin worms in dogs	Paste	External	0.04	20	0.0

Scientific name - Voucher no.	Local name	Status ^a	Growth form	Part used ^b	Veterinary uses	Mode of	Route of application	UV^{c}	FC^{d}	RFC ^e
Rumex dentatus L ICPH- 158	Shulkhay	W	Herb	AP	Anti-diarrheal	Direct	Oral	0.05	24	0.10
Primulaceae										
Anagallis arvensis L ICPH-20	Mashkanry	W	Herb	WP	Leech expelling	Paste	External	0.05	11	0.05
Pontederiaceae <i>Eichhornia crassipes</i> (Mart.)		W	Herb	RT, LV	Skin rashes in	Paste	External	0.15	26	0.11
<i>Etchnorma crassipes</i> (Mart.) Solms - ICPH-77 Pteridaceae		VV	него	KI, LV	horses	rasie	External	0.13	20	0.11
Adiantum capillus-veneris L. - ICPH-7/	Sumbal	W	Herb	WP	Vermifuge	Direct	Oral	0.10	17	0.07
Ranunculaceae Ranunculus aberdaricus Ulbr ICPH-152	Chaghna	W	Herb	AP	Skin disorders	Paste	External	0.04	12	0.05
Rhamnaceae										
Ziziphus jujuba Mill ICPH-199	Markhanary	W	Tree	LV, FR	Foot and mouth diseases	Direct	Oral	0.12	16	0.07
Ziziphus nummularia (Burm. f.) Wight & Arn ICPH-200 Rosaceae		W	Shrub	LV, FR	Used as Anthelmintic	Direct	Oral	0.25	51	0.22
Rosa brunonii Lindl ICPH-156	Zangali gulab	W	Shrub	LV	Anti-diarrheal	Decoction	Oral	0.03	12	0.05
Rosa webbiana Wall. ex Royle - ICPH-157 Rubiaceae	Khwraluch	W	Shrub	LV	Anti-diarrheal in chicken	Decoction	Oral	0.04	16	0.06
Galium aparine L. – ICPH- 96	Gashky	W	Herb	AP	Maintain pregnancy in	Direct	Oral	0.02	15	0.06
Phyla nodiflora (L.) Green - ICPH-138		W	Herb	AP	cattle Indigestion in cattle	Direct	Oral	0.05	13	0.05
Verbena officinalis L ICPH-192	Jaro boty	W	Herb	AP	Digestive disorders	Direct	Oral	0.02	9	0.03
Sapindaceae <i>Dodonaea viscosa</i> (L.) Jacq. - ICPH-71	Ghwarlaskai	W	Shrub	LV, SE	Rheumatism in goats	Paste	External	0.25	40	0.17
Scrophulariaceae Verbascum thapsus L ICPH-191	Khar ghwag	W	Herb	LV	Carminative	Decoction	Oral	0.40	11	0.05
Simaroubaceae Ailanthus altissima (Mill.) Swingle - ICPH-10	Shundai	С	Tree	ВК	Laxative for shee	pDecoction	Oral	0.37	40	0.17
Solanaceae Solanum nigrum L ICPH- 172	Kach macho	W	Herb	LV, FR	Urinary troubles	Direct	Oral	0.10	18	0.08
<i>Withania somnifera</i> (L.) Dunal - ICPH-	Kotilal	W	Herb	LV, SE	Treatment of arthritis	Direct	Oral	0.15	17	0.07
Tamaricaceae <i>Tamarix aphylla</i> (L.) H. Karst - ICPH-180	Ghuz	W	Shrub	LV, BK	Dermatitis	Paste	External	0.30	37	0.16
Xanthorrhoeaceae Aloe vera (L.) Burm. f ICPH-13	Kamal panra	С	Herb	LV	Scabies	Paste	External	0.31	47	0.20
Zygophyllaceae Fagonia indica Burm. f ICPH-88		W	Herb	AP	Appetite stimulant,	Powder	Oral	0.36	58	0.25
Tribulus terrestris L ICPH-	-Markonday	W	Herb	LV, FR	indigestion Retain placenta	Decoction	Oral	0.35	40	0.17

^a*W: Wild, C: Cultivated;

b*RT: Root, LV: Leaves, SE: Seed, FR; Fruit, AP: Above-ground plant parts, BK: Bark, WP: Whole plant, LT: Latex, INF: Inflorescence, BK: Bark

c*UV: Use Value;
d*FC: Frequency of citation;

e*RFC: Relative frequency of Citation.

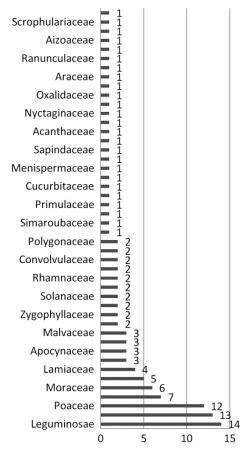


Fig. 2 — Number of ethnoveterinary plant species in different families

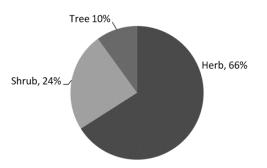


Fig. 3 — Life form of ethnoveterinary plants in the study area

Parts used, methodology of herbal formulation, and administration

In current survey, different morphological parts of therapeutic plants have been utilized for the different ethnoveterinary illnesses. Leaves (42%) were the main morphological parts, followed by aerial parts (24%), and fruits (8%) (Table 2, Fig. 4). In most of the herbal preparation, the common utilization of leaves is because of easily available in naturally habitats⁴¹. Leaves are the principal photosynthetic organs as well as contain lots of metabolites⁴².

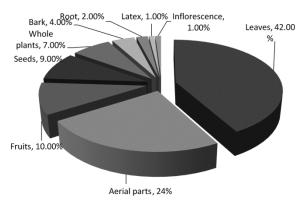


Fig. 4 — Percentage of different morphological parts used for ethnoveterinary medicine

Furthermore, the use of leaf and aerial parts are regarded as safe mode of administration as well as sustainable⁴³.

The key mode of the herbal preparation was direct utilization of the therapeutic plants (32%), shadowed by decoction (28%), paste (23%), and powder (6%), while poultice and bandage represented the least used herbal preparation methods (Table 2). In our study, both external and internal modes of administration have been assumed to cure various domesticated animal illnesses. In most cases, the recipes were orally administered.

Qualitative study

Use Value (UV)

The calculated UV for every therapeutic plant species is given in Table 2. These quantitative techniques are commonly practiced to find out the comparative significance of each therapeutic plant. If the value is near to one then the plant is considered to be more medicinally important and if it is close to those plants have few remedial uses (approach to 0) as compared to the informants' numbers. In this work, UV ranged from 0.52 for Silybum marianum (L.) to 0.01 for Ficus religiosa L. Based on UV values we have grouped all documented plants in three classes to analyze data. The classes along with number of sp. and their UV range are: 1st class includes 17 sp. (0.52-0.30); 2nd class 59 sp. (0.29-0.10); 3rd having 42 sp. (0.09-0.01). The first class may be considered as more significant than other and consists of Silybum marianum (L.), Verbascum thapsus L., Cirsium arvense (L.) Scop., Alhagi maurorum Medik., Albizia lebbeck (L.) Benth, Fagonia indica Burm.f, Capparis decidua (Forssk.) Edgew., Tribulus terrestris L., Anethum graveolens L., Ailanthus altissima (Mill.) Swingle, Mirabilis jalapa L., Pinus roxburghii Sarg., Z. nummularia (Burm.f.) Wight & Arn, Aloe vera (L.) Burm.f. and Mentha spicata L., Nasturtium officinale R.Br., Rhazya stricta Decne. and Tamarix aphylla (L.) H. Karst. The low UV is may be due less knowledge about the plant with informants or may be uncommonness of the plant in study area⁴⁴.

Relative Frequency Citation (RFC)

On the bases of RFC values, the most consumed therapeutic plant species comprises Silvbum marianum (L.) (0.33), Fagonia indica Burm.f (0.25), Capparis decidua (Forssk.) Edgew. And Mirabilis jalapa L. (0.23), Z. nummularia (Burm.f.) Wight & Arn (0.22), Aloe vera (L.) Burm.f. and Mentha spicata L. (0.20), (Table 2). Least values of RFC were represented by Eclipta prostrata (L.) L, Morus alba L., and Verbena officinalis L. (0.03), Brachiaria reptans (L.) C.A. Gardner & C.E.Hubb. and Trigonella corniculata Sibth. & Sm. (0.04), Anagallis arvensis L., Bromus catharticus Vahl., Cichorium intybus L., E. helioscopia L., F. palmata Forssk., Leptochloa chinensis (L.) Nees., Oxalis corniculata L., Phyla nodiflora (L.) Greene, Rosa brunonii Lindl., Ranunculus aberdaricus Ulbr., Sagittaria latifolia Willd., Trianthema portulacastrum L. and Verbascum thapsus L. (0.05). The plants having high RFC values narrate the fact that the majority of the informers have ethnomedicinal knowledge about these therapeutic plant species. Furthermore, to discover new drugs, phytochemical and pharmaceutical assessment of the plants having high RFC should be carried out⁴⁵.

Conclusions

It is evident from the result that the ethnoveterinary knowledge is still alive in the study area as the people still use phytomedicines for the various illnesses of the animals. A total of 118 medicinal plants were collected used for ethnoveterinary diseases. The principal life form for medicine was herb and leaf was the principal plant part used. Furthermore, the most common treated diseases group was digestive disorders. The highest use value was obtained for Silybum marianum (L.). Similarly the highest RFC was recorded for Acacia modesta Wall. It is also evident from the results that there is a great risk to the progressive loss of traditional knowledge. The plants reported in this study give leads for further phytochemical and pharmacological studies.

Data and materials accessibility

The raw data without the names of informants can be provided by authors.

Acknowledgements

All the authors are grateful to Islamia College Peshawar, Pakistan and the Higher Education Commission (HEC), Pakistan. We are also indebted to the indigenous societies of the study area for providing us the ethnic knowledge about medicinal plants. We are also thankful to all who helped during the study.

Ethical approval

The current work has been permitted by the ethical committee of the Botany Department of Islamia College Peshawar and Biodiversity Action Plan (BAP-2010-2020) for Pakistan. Prior consent has been obtained from all participants before conducting interviews. This study has been conducted under the provisions of the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity.

Map Discalimer

Authors declare that the map has no disputed area. The boundaries and names shown, and designations used on this map do not imply official endorsement or view point of IJTK, its Editorial Board or its Publisher. IJTK neither has a position with regard to any jurisdictional claims that might be inferred from the maps, nor does IJTK have any vested interest in the details of the jurisdictional boundaries depicted.

Conflict of Interests

No competing interest and conflict of interest for this article.

Authors' Contributions

HAJ and SJ deliberate this work; the field work was conducted by HAJ, LA, IA and SW, HAJ, the main statistical analysis were performed by SMH and RB, HAJ and RB wrote the manuscript, the revision of the data analysis and manuscript was done by HAJ, RB and MR; all authors read, corrected and approved the manuscript.

References

- Abbasi A M, Khan M A, Khan N & Shah M H, Ethnobotanical survey of medicinally important wild edible fruits species used by tribal communities of Lesser Himalayas-Pakistan, *J Ethnopharmacol*, 148 (2) (2013) 528-536.
- Alawa J P, Jokthan G E & Akut K, Ethnoveterinary medical practice for ruminants in the subhumid zone of Northern Nigeria, *Prevent Vet Res*, 54 (2002) 79-90.

- 3 Sher H, Al-Yemeni M & Sher H, Forest resource utilization assessment for economic development of rural community in northern parts of Pakistan, *J Med Plants Res*, 4 (2010) 1786-1789.
- Jinous A & Fereshteh R, Chemistry, pharmacology and medicinal properties of *Peganum harmala L.*, *Afr J Pharm Pharmacol*, 6 (22) (2012)1573-1580.
- 5 Sher H & Aldosari A, Ethnobotanical survey on plants of veterinary importance around Al-Riyadh (Saudi Arabia), Afr J Pharm Pharmacol, 7 (21) (2013) 1404-1410.
- 6 Viegi L, Pieroni A, Guarrera P M & Vangelisti R, A review of plants used in folk veterinary medicine in Italy as basis for a databank, *J Ethnopharmacol*, 89 (2-3) (2003) 221-244.
- Harun-or-Rashid M D, Tanzin R, Ghosh K C, Jahan R, Khatun A, et al., An ethnoveterinary survey of medicinal plants used to treat cattle diseases in Birishiri area, Netrakona district, Bangladesh, Adv Nat Appl Sci, 4 (1) (2010) 10-13.
- 8 Ghani A, Medicinal Plants of Bangladesh (Second edition). Asiatic Society of Bangladesh, Dhaka, Bangladesh, (2003) p. 603.
- 9 Hassan H, Murad W, Tariq A & Ahmad A, Ethnoveterinary study of medicinal plants in Malakand Valley, district Dir (lower), Khyber Pakhtunkhwa, Pakistan, *Irish Vet J*, 67 (1), (2014)1-6.
- 10 Abbasi A M, Khan S M, Ahmad M, Khan M A, Quave C L, et al., Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan, J Ethnobiol Ethnomed, 9 (1) (2013) 1-21.
- Badar N, Iqbal Z, Sajid M S, Rizwan H M, Jabbar A, et al., Documentation of ethnoveterinary practices in district Jhang, Pakistan, JAPS, 27 (2) (2017) 398-406.
- 12 Pakistan Bureau of Statistics Government of Pakistan. www.pbs.gov.pk
- 13 Jan R, Khan R U, Rehman H U, Khan A Z, Waheed M A, et al., Ethnobotanically important flora of Tehsil Tangi, District Charsadda, Pakistan, J Chem Pharma Res, 8 (3) (2016) 108-116.
- 14 Ali S, Shuaib M, Ali H, Ullah S, Ali K, *et al.*, Floristic list and their ecological characteristics, of plants at village Sherpao District Charsadda, KP-Pakistan, *J Med Plants*, 5 (5) (2017) 295-299.
- 15 Politic. www.politicpk.com
- 16 Perveen F K, Checklist of butterfly (Insecta: Lepidoptera) fauna of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan, Arthropods, 4 (4) (2015) 98.
- 17 Jan H A, Jan S, Wali S, Ahmad L, Sisto F, et al., Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan, *Indian J Tradit Know*, 20 (2) (2021) 378-389.
- 18 Langshiang A S, Debnath A, Bhattacharjee A, Paul C & Debnath B, Traditional healing practices of Pnar and War communities in West Jaintia Hills district of Meghalaya, Northeast India, *Indian J Tradit Know*, 19 (4) (2020) 776-787.
- 19 Devi K, Samant S S, Puri S, & Singh A, Diversity, distribution pattern and traditional knowledge of sacred plants in Kanawar Wildlife Sanctuary (KWLS), Himachal Pradesh, Northwestern Himalaya, *Indian J Tradit Know*, 19 (3) (2020) 642-651.
- 20 http://www.tropicos.org/project/pakistan
- 21 Akash, Navneet & Bhandari B S, Ethnobotanical plants used in health care and traditional practices by local inhabitants

- (Gujjars) of Rajaji Tiger Reserve, Uttarakhand, India, *Indian J Tradit Know*, 20 (1) (2021) 1-6.
- 22 Akhtar A, Shah A H Jabeen T, Khan K R, & Farooq M, Qualitative and quantitative ethnobotanical evaluation of plant resources of Kiwai, Kaghan valley, district Mansehra, Pakistan, *Indian J Tradit Know*, 20 (1) (2021) 141-153.
- 23 Ayantunde A A, Briejer M, Hiernaux H, Henk M, Udo J & Tabo R, Botanical knowledge and its differentiation by age, gender and ethnicity in south western Niger, *Human Econ*, 36 (2008) 881-889.
- 24 Alam N, Shinwari Z K, Ilyas M & Ullah Z, Indigenous knowledge of medicinal plants of Chagharzai valley, District Buner, Pakistan, Pak J Bot, 43 (2) (2011) 773-780.
- 25 Thomas B, Mathews R P, Rajendran A & Kumar K P, Ethnobotanical observations on tribe Arnatans of Nilambur Forest, Western Ghats region of Kerala, India, *Res Plant Biol*, 3 (2) (2013) 12-17.
- 26 Ahmad K & Pieroni A, Folk knowledge of wild food plants among the tribal communities of Thakht-e-Sulaiman Hills, North-West Pakistan, *J Ethnobio Ethnomed*, 12 (1) (2016) 17.
- 27 Cornara L, La Rocca A, Marsili S & Mariotti M G, Traditional uses of plants in the Eastern Riviera (Liguria, Italy), *J Ethnopharmacol*, 125 (1) (2009) 16-30.
- 28 Howard P L, Women and the plant world: an exploration, Women & Plants. Gender Relations in Biodiversity Management & Conservation. London (Zed Books), (2003) 1-48.
- 29 Mehdioui R & Kahouadji A, Etude ethnobotanique auprès de la population riveraine de la forêt d'Amsittène: cas de la Commune d'Imi n'Tlit (Province d'Essaouira), Bulletin de l'Institut scientifique, Dhilon Rabat, section Sciences de la vie. 29 (2007) 11-20.
- 30 Ahmad M, Sultana S, Fazl-i-Hadi S, Ben Hadda T, Rashid S, et al., An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat-Pakistan), J Ethnobiol Ethnomed, 10 (1) (2014) 36.
- 31 Ali S I, Significance of Flora with special reference to Pakistan, *Pak J Bot*, 40 (3) (2008) 967-971.
- 32 Abbas Z, Khan S M, Abbasi A M, Pieroni A, Ullah Z, *et al.*, Ethnobotany of the Balti community, Tormik valley, Karakorum range, Baltistan, Pakistan, *J Ethnobiol Ethnomed*, 12 (1) (2016) 38.
- 33 Bibi T, Ahmad M, Tareen N M, Jabeen R, Sultana S, et al., The endemic medicinal plants of Northern Balochistan, Pakistan and their uses in traditional medicine, J Ethnopharmacol, 173 (2015) 1-10.
- 34 Mesfin F, Demissew S, & Teklehaymanot T, (An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia, *J Ethnobiol Ethnomed*, 5 (1) (2009)28.
- 35 Teklehaymanot T, Giday M, Medhin G & Mekonnen Y, Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia, *J Ethnopharmacol*, 111 (2) (2007) 271-283.
- 36 Giday M, Asfaw Z & Woldu Z, Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study, *J Ethnopharmacol*, 124 (3), (2009) 513-521.
- 37 Shrestha P M & Dhillion S S Medicinal plant diversity and use in the highlands of Dolakha district, Nepal, *J Ethnopharmacol*, 86 (1) (2003) 81-96.
- 38 Ayyanar M & Ignacimuthu S, Medicinal plants used by the tribals of Tirunelveli hills, Tamil Nadu to treat poisonous

- bites and skin diseases, *Indian J Tradit Know*, 4 (3) (2005) 229-236.
- 39 Uniyal S K, Singh K N, Jamwal P & Lal B, Traditional use of medicinal plants among the tribal communities Chhota, Western Himalaya, *J Ethnobiol Ethnomed*, 2 (2006) 14.
- 40 Islam M K, Saha S, Mahmud I, Mohamad K & Awang K, *et al.*, An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh, *J Ethnopharmacol*, 151 (2) (2014) 921-930.
- 41 Singh K N & Lal B, Ethnomedicines used against four common ailments by the tribal communities of Lahaul-Spiti in western Himalaya, *J Ethnopharmacol*, 115 (1) (2008) 147-159.
- 42 Asif M, Haq S M, Yaqoob U, Hassan M & Jan H A, Ethnobotanical study of indigenous knowledge on medicinal

- plants used by tribal communities in tehsil "Karnah" of District Kupwara (Jammu and Kashmir) India, *Ethnobot Res Appl*, 21 (2021) 1-14.
- 43 Giday M, Asfaw Z, Elmqvist T & Woldu Z, An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia, *J Ethnopharmacol*, 85 (2003) 43-52.
- 44 Yaseen G, Ahmad M, Sultana S, Alharrasi A S, Hussain J, et al., Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan, J Ethnopharmacol, 163 (2015) 43-59.
- 45 Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, et al., Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) - An alpine ethnobotanical study, J Ethnopharmacol, 145 (2) (2013) 517-529.