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Abstract

In the recent past, major increases in the allocations to the

provision for loan losses by several money center banks have
focused the attention of the financial community and regulators on
the implications of such decisions for the short term earnings of
those banking firms versus their ability to weather major borrower
defaults in the medium and long run.

This study examines the process by which a bank determines
the size of its loan loss provision for any particular period.
This decision is influenced by many internal bank factors as well
as competition, regulation, and tax factors. This work approaches
the bank's decision with respect to the provision for loan losses
from a decision- theoretic standpoint. It is shown that a

normative rule results which is not only consistent with the
principle of expected utility maximization, but also intuitive and
easy to implement.





Introduction

In the recent past, major increases in the allocations to the

Provision for Loan Losses by several money center banks in the United

States and the United Kingdom, led by Citicorp, have focused the atten-

tion of the financial community and regulators to the implications of

such decisions for the short-term earnings of those banking firms ver-

sus their ability to weather major defaults by Third World sovereign

borrowers in the medium and long run.

Little has been said about the process by which a bank arrives or

should rationally arrive at a decision with respect to the Provision

for Loan Losses. However, that decision in and of itself is of

fundamental importance to the bank, not only because it has implica-

tions for its capital structure, but primarily due to the penalties

associated with making a set of decisions over time which are either

too conservative or too aggressive. A bank that is consistently "con-

servative" in its decision with respect to the Provision for Loan

Losses (i.e., the provision consistently exceeds the actual losses by

a large amount) will have reduced earnings, a lower leverage multi-

plier, and reduced growth rates. On the other hand, a bank that is

consistently "aggressive" (i.e. , the provision consistently falls

short of actual losses) will experience increased regulatory attention,

pressure to increase capital and, if loan losses are severe enough,

ultimate bankruptcy. This point deserves further elaboration.

Consider the following argument. An increase in the riskiness

of a commercial bank's loan portfolio has two effects: it increases

earnings, but also increases the probability that losses will be
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incurred. Whatever losses emerge would be provided for by the Loan

Loss Reserves (LLR); unanticipated losses over and above that level

would result in write-offs of capital, with a consequent change in the

capital structure of the banking firm in precisely the opposite direc-

tion of that desired by the regulatory authority. To see this, notice

that when the banking firm decides on the Provision for Loan Losses in

a given period, it does so based on some beliefs or anticipations of

possible asset losses. Once this decision is made, three possibilities

result. The first is uninteresting and represents the case where the

provision exactly matches the losses of the period and no changes in

the Loan Loss Reserve result. The second represents the behavior of

a "conservative" institution, where the losses turn out to be less

than the amount of the provision; in this case, a net addition to the

Loan Loss Reserve results. If we accept the inclusion of the Loan

2
Loss Reserve in the broader definition of bank capital, a change in

the bank's capital structure also results, in the direction of a less

leveraged position. The third possibility is the opposite of the

second—an "aggressive" bank would experience actual losses greater

than its provision in a particular period. There would be a net

decline in the LLR and a consequent change in the capital structure

3
towards a more leveraged position.

This paper attempts to approach the bank's decision with respect

to the Provision for Loan Losses from a decision-theoretic or Bayesian

4
standpoint. Figure 1 shows a schematic view of this approach. The

three major building blocks which contribute to the bank's decision

are its prior information, contemporaneous information (represented by
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a likelihood function), and a loss function. The prior distribution

and the likelihood function, according to Bayesian decision theory,

combine to form a posterior distribution for loan losses. Given the

loss function, the resulting Provision for Loan Losses is such that

minimizes expected posterior loss and therefore maximizes expected

utility. The actual loan losses, in turn, are added to the informa-

tion set represented by the prior distribution and the whole decision

cycle starts again. This work argues that, given careful choices of

those major building blocks for the model, particularly the loss func-

tion, it is possible to arrive at a normative rule for the Provision

of Loan Losses which is both theoretically defensible, in the sense of

being consistent with the principle of maximization of expected util-

ity, and easy to use.

The paper is organized as follows. Section 1 presents some defi-

nitions and the notation which will be used throughout this work.

Section 2 discusses the loss function. Section 3 addresses the

problem of the appropriate functional form for the prior distribution

of loan losses. Sections 4 and 5 form the core of the model. Section

4 explains the application of Bayesian analysis to the problem at hand

and in Section 5 the Bayes rule for the Provision for Loan Losses is

derived. In Section 6 the important problems of admissibility and

robustness of the resulting Bayes rule are considered. Finally,

Section 7 presents some concluding observations and suggestions for

the implementation of the statistical model suggested in this study.
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1. Definitions and Notation

This section presents some fundamental definitions, pertaining to

the decision theoretic approach to inference, which will be referred

to in several occasions. In addition, the notation which will be used

in the several expressions introduced throughout the paper is also

presented below.

6
a. Definitions

(1) A decision problem is a problem in which the decision maker,

without knowing the outcome of the experiment, must make a decision,

the consequences of which will depend on the outcome of the experiment.

The elements of a decision problem are a parameter space ft, a decision

space D, and a real-valued loss function L (the negative of the util-

ity function) which is defined on the product space ft x D.

(2) A statistical decision problem is a decision problem in which

the decision maker, before choosing a decision from the set D, has the

opportunity of observing the value of a random variable or random vec-

tor Y that is related to the parameter W; the observation of Y provides

the decision maker with some information about the value of W which

may be helpful in choosing a good decision. The elements of a sta-

tistical decision problem are the same as above plus a family of con-

ditional p.d.f.s (f(»|w), weft} of an observation Y whose value will be

available when a decision is taken.

(3) An estimation problem is a statistical problem in which the

decision is the estimate of the value of some parameter vector W =

(w, , ..., w, ) ' whose values belong to a subset ft of R (k > 1). TheIk —
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ilyst's decision d = (d , ..., <L)' e R is his or her estimate of

the value w (w. , . .., w )' of W, and the loss L (w, d) which he or

she incurs reflects the discrepancy between the value w and his or

her estimate d.

(4) A test of hypotheses is a decision problem in which the deci-

sion space D contains exactly two decisions D = {d. > d }. Decision

d is appropriate if the parameter W lies in a certain subset ft of

the parameter space ft and decision d~ is appropriate if W lies in the

c
complementary subset ft

9
= ft . There may be some points in either ft

or ft
9

for which the decisions d and d are equally appropriate.

(5) Risk is defined as expected loss. A decision maker should

choose, if possible, a decision which minimizes the risk (i.e., ex-

pected loss), for this decision is consistent with the expected utility

hypothesis.

(6) The Bayes risk is defined as the greatest lower bound for the

risks of all decisions. Any Bayes decision will be an optimal deci-

sion for the decision maker because the risk cannot be smaller for any

other decision. It is possible, however, that no decision in the

space D is a Bayes decision.

b. Notation

In the discussion that follows the notation introduced below will

apply. Some additional conventions may be introduced on occasion for

the sake of clarification.

9 the parameter of interest, i.e., net losses in the bank's port-

folio of loans and commitments;

9 the parameter space;
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J{ the set of all possible actions;

a a particular action; in this study, the action is the amount of

the provision for loan losses;

L(9,a) a loss function. We will assume it is defined for all

( 9 , a ) e x ;

X = (X., X , ..., X )' vector of independent observations from a cora-~ 1 z n

mon distribution, i.e., a random vector representing the outcome

of a statistical investigation performed to obtain information

about 9

;

x a particular realization of X;

)t the sample space, i.e., the set of all possible outcomes;

it(9) the prior density for 9;

6 a nonrandomized decision rule;

L(9,5) the loss function for a nonrandomized decision rule;

R(9,5) the risk function (expected loss) of a decision rule;

£> the class of nonrandomized decision rules with R(9,5) < °° for all

9;

r(TT,5) the Bayes risk of a decision rule;

7T

6 a Bayes decision rule;

r(-n) the Bayes risk of it (i.e., r(ir) = r(-rf,5 ));

£(9) the likelihood function (i.e., 4(9) = f(x|9));

m(x) the marginal density of X (i.e., m(x) - / f (x
1
9)dF

1T

(9) )

;

tt(9|x) the posterior distribution of 9 given x (i.e.,

tt(9|x) = f(x|9)n(9)/m(x));

C or C(x) a confidence of credible region for 9;



-7-

U(9,a) utility function;

H_, H null hypothesis, alternative hypothesis.

2. The Loss Function

A loss function is one of the basic components of a decision-

theoretic statistical model. The equivalence of utility maximization

and loss minimization is well established in the literature. This

equivalence implies that expected loss is the proper measure of loss

in a random situation. This fact, in turn, justifies the use of

expected loss as a decision criterion when talking about risks as well

as Bayes risks.

In this study we will consider two major types of "standard"

losses: the squared error loss and the linear loss. The squared-error

loss has the form

L(9,a) = (8-a)
2

(1)

The use of this type of loss in decision analysis makes the calcu-

lations relatively simple, which explains its popularity. Problems,

however, arise because one can reason that the loss function should

usually be bonded and (at least for large errors) concave. The

squared-error loss is neither of these. Moreover, in our problem the

symmetry of the squared-error loss is disturbing. The penalties asso-

ciated with an overestimation of the Provision for Loan Losses (i.e.,

a decreased growth rate of assets and lower earnings) are smaller than

those associated with consistent underestimation (write-offs of capital
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and ultimate bankruptcy). Thus a generalization of squared-error

loss, which is of interest, is

L(9,a) = w(9)(9-a)
2

(2)

This loss, the weighted squared-error loss , has the attractive

2
feature of allowing the squared error, (9-a) , to be weighted by a

function of 9 , reflecting the fact that the consequences of an estima-

tion error often vary according to the magnitude of the loan losses.

The second major type of loss of interest for this research is the

linear loss. But consider first the loss

L(9,a) = |9-a| (3)

which is a particular case of linear loss called absolute error loss .

The symmetry of this loss causes the same problems of the squared-error

loss in this study. Note, however, that penalties are less severe for

large errors.

The general case of linear loss is more interesting. We can write

this type of loss as

K (9-a) if 9 - a > 0,

L(9,a) = {
°

(4)

K (a-9) if 9 - a < 0.

Notice that the constants K and K , which will usually be different,

can be chosen to reflect the relative importance of underestimation

and overestimation, a feature that fits well the needs of the problem

under study.
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The specific choice of a loss function will be discussed in the

context of robustness, i.e., the sensitivity of the performance of the

decision rule to assumptions with respect to the loss function. We

now turn to the analysis of another fundamental component of this

model, the prior distribution.

3. Prior Information

Among the techniques available for the subjective determination of

a prior density, it seems appropriate for this study to use the

matching of a given functional form. That is, we will assume that

tt (9 ) is of a given functional form, and then choose the density of

this given form (i.e., the parameters) which most clearly matches

prior beliefs.

In this work, we have the relatively rare opportunity of observing

the past values of 9, as opposed to having a knowledge of the data,

x , arising from past , in which case the recovery of past informa-

tion from the x, can be difficult. If values 8,. 9., ..., 9 of 9
i 1 Z n

(i.e., net loan losses in past periods) are available, it is clear

that they should be used in the construction of 11(9).

Moreover, if the past values of 9 are the sole input, the problem

of determining the prior distribution is the standard statistical

problem of determining a density from a series of observations from

that density. Unfortunately, this gain in simplicity comes at the

expense of neglecting non-data based information, which is both

o

existent and relevant for this research.
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Berger (1980) suggested two ad hoc procedures for combining past

9
data and subjective (i.e., non-data based) prior information. The

first is to proceed as follows. Determine the subjective prior n„(Q)

(ignoring the past data) and the past data prior ^(9) (ignoring the

subjective information). Then choose a number N for which the degree

of confidence in tt would be equivalent to the degree of confidence in

a past data prior based on N past observations. If n is the actual

number of past observations used in constructing it , a natural choice

for the combined prior it (9) is then

A second possible ad hoc procedure for determining tt( 9 ) is to

assume a given functional form for the prior, as suggested above, and

then proceed to combine the past data with the subjective beliefs in

estimating the parameters of the functional form. Although the ulti-

mate choice of the functional form for the prior distribution of loan

losses will rest on the particular loan loss experience of the banking

firm when this model is applied, two continuous probability density

functions are of special interest due to their wide application in

classical statistical analysis, as well as some properties that they

exhibit which contribute to a better understanding of this decision-

theoretic model.

The first is the univariate normal distribution, which can be

written asy/(u,a ): jL=R,- a><\i< oo,a > 0. and
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„ I

2
x

1 "(x-u)
2
/2a

2

f(x|u,a )
= T7T" e • ( 6 )

(2») '

The normal distribution is especially useful to demonstrate the use of

conjugate distributions, a procedure that simplifies considerably the

calculations leading to the posterior distribution. The second p.d.f.

of interest is the Student _t distribution. This interest arises mainly

from robustness considerations which will be considered below. At

this point it suffices to say that, given its "flat" tail, the Student

_t distribution is a good choice in order to minimize the influence of

the tail of the prior on the optimal decision rule. We can write a t

distribution with a degrees of freedom as

2 v 1 2
t(o,u,o ): J = R , a > 0, ^»<u<», a >0

and

et I ^ r[(a+i)/2] M Cx-ioV C * 1^ 2
,-.f(x|a,u,a ) = Tjl (* + 2~) ( 7)

a (an)' T(a/2) ao

where T is the gamma function, i.e., for any positive integer n,

T(n) = (n-1)!.

Summing up, in the problem under study the fundamental elements

for the construction of the prior distribution will be, first, a time

series of past loan losses (data-based prior information), as well

as tax and regulatory considerations (non-data based prior informa-

tion). We now proceed to the implementation and evaluation of this

decision-theoretic analysis based on the Bayes principle.
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4. The Posterior Distribution of Loan Losses: Applying the Bayes

Theorem

Bayesian analysis is performed by combining the prior information

(it (9)) and the sample information (x) into what is called the posterior

distribution of 9 given x, from which all decisions and inferences are

made. Thus, the posterior distribution tt(9|x) reflects the updated

beliefs about 9 after observing the sample x.

This assertion can be demonstrated as follows. The joint (subjec-

tive) density of 9 and X can be written as

h(x,9) = tt(9) f(x|9). (8)

In addition, the marginal density of the observations X, m(x), is

m(x) =
J Q

f(x|9)ir(9)dF
7T

(9). (9)

Substituting equation (8) into equation (9), we obtain

m(x) =
/ Q

h(x,9)d9. (10)

It follows that, provided that m(x) * 0,

/q I
\ h(x,9) /i i

\

tt(9 x) = 7—t— . (11)
m(x)

That is, the posterior distribution, by definition, is the conditional

distribution of 9 given the sample observation x.

In this study, the sample information is composed by the most

recent loan loss experience of a cross-section of commercial banks

whose characteristics are as close as possible to the institution

under analysis. This procedure may be justified on the grounds that
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it gives a better perspective of the bank within a group of similar

institutions, instead of focusing only on the present experience of

the bank under study. The criteria for the selection of this sample

would include size, location, and similarities of the structure of the

loans and securities portfolio (i.e., this is a proxy for "risk

class")

.

An important objection to this approach is that the institution

under study might be an outlier in this sample, in the sense of having

a particular loan loss experience far above or below some measure of

location (e.g., the sample mean). In this case, the sample informa-

tion would be essentially irrelevant. A counterargument to this objec-

tion is that the posterior distribution follows not only from a com-

bination of the prior distribution and the sample information, but its

parameters also reflects the degree of confidence (or quality) that

the analyst has in the prior and in the sample.

In order to illustrate this point, consider the simple case of a

2 2
sample X = (X. , ..., X ) from a/(9,a ) distribution (a known). In~ 1 n '

addition, assume that it (6) has a//(\i>x ) density. Nothing that

X~y(9,a /n) it follows that the posterior distribution of 9, given

x = (x. , ..., x ), is/(y(x),p ), where

2 2

u(x) T~T~ y +
2 \ x (12)

(t +o /n) (t +a /n)

and

2 2 2 2
p = (nx -h? )/xV

.

(13)
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The upshot of this example is to show that the precision measures of

the prior and the sample information will function as weights when

computing the parameters of the posterior distribution.

This example is also helpful to demonstrate the use of conjugate

families. The calculation of the posterior distribution can be greatly

simplified by finding a conjugate prior. The usual procedure is to

examine the likelihood function I (9) = f(x|8) and choose, as a con-
x '

jugate family, the class of distributions ~£ with the same functional

form as the likelihood function.

The use of conjugate priors is appealing because it allows one to

start with a prior of a given functional form and end up with a pos-

terior distribution of the same functional form, but with parameters

updated by the sample information. A note of caution should be added

here, however. The basic question when choosing a priori distribution

is whether or not a conjugate prior can be chosen which gives an

approximation to the true prior, for it is this latter quality of the

prior that is central to the accuracy of the Bayesian approach.

The logical sequence to the above line of reasoning is to perform

the Bayesian inference based on the posterior distribution. Since the

posterior distribution supposedly contains all the available informa-

tion about 9 (both sample and prior information), any inferences con-

cerning 9 should be made solely through this distribution. To estimate

9, a number of classical techniques can be applied to the posterior

distribution, the most common being maximum likelihood estimation

(MLE).
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In this work, however, we have a major concern not only with the

role of the prior information, but with the influence of the loss

function as well. We face, in this work, a so-called "true decision

problem." In other words, we are interested in deriving optimal sta-

tistical decision rules for the choice of the Provision for Loan Losses

in commercial banks, in examining the admissibility of these rules and

their robustness with respect to changes in the prior p.d.f. as well

as the loss function, and in comparing these optimal rules with the

actual choices (provisions) made by banks. Moreover, we are ultimately

interested in how capital structure and asset portfolio regulations

affect these decision rules and, a fortiori, the capital structure and

solvency of banking firms. This analysis can be performed with the

use of Bayesian decision theory, which forms the core of this statis-

tical model. The Bayes rule, given the structure of this model, is

derived in the next section.

5. Derivation of the Bayes Rule: The Optimal Decision Regarding
Loan Losses

Two important assumptions will be introduced at this point. These

assumptions are necessary to carry out the analysis below. We will

assume, first, that the prior p.d.f. is proper. Second, we will assume

that the problem has a finite Bayes risk. The method that will be

used in this study for determining a Bayes rule is known as the exten-

sive form of Bayesian analysis. This method may be developed as fol-

lows. Write the Bayes risk of a decision rule as
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r(TT,5) =
/

R(9,5)dF
7T

(9)

"
/ Q /

jt

L(9,5(x))dF
X

l

9
dF

1T

(9)

=
/
JL

[/ L(e,5(x))f(x|9)dF
7T

(9)]dx, (14)

in the case of continuous distributions. In order to minimize Bayes

risk, i.e., the quantity in the right-hand side of equation (14), 5(x)

should be chosen to minimize the expression inside the brackets, that

is,

/ 9
L(9,5(x))f(x|9)dF

TT

(9)

for each x eV . But note that if an action a minimizes

/ Q
L(9,a)f(x|9)dF

TT

(9)

then the same action a minimizes

[m(x)]"
1
/ L(9,a)f(x|9)dF

7T

(9) =
/ Q

L( 9,a)dF
7l( 9

'

x)
(9) . (15)

The quantity in the r.h.s. of equation (15), i.e., the expected

loss with respect to tt(9|x), the posterior distribution of 9 given x,

is called the posterior expected loss of the action a. This quantity

is the same as the one which is called (somewhat loosely) "average

loss" in Figure 1.

This result is summarized by Berger (1980) as follows: "A Bayes

rule can be found by choosing, for each x, an action which minimizes

the posterior expected loss , or equtvalently , which minimizes

/
L(9,a)f(x|9)dF

1T

(9).
Ml3

(16)
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In order to obtain specific Bayes rules, we need to spell out the

loss function that applies to the problem under study. This is one of

the crucial points in the application of this model. The particular

features of the problem under analysis, as well as robustness consider-

ations (to be discussed below), are the major factors to be taken into

consideration in the choice of the loss function. As discussed before,

for this study two types of losses are of interest: the weighted

squared-error loss and the linear loss. It can be demonstrated that

14
the Bayes rules for these loss functions are the following.

2
Consider the weighted squared-error loss. If L(9,a) = w(9)(9-a)

,

the Bayes rule is

.», . E*<
9
l*>[ew(9)l

E [w(9)]

_ /9w(9)f(x[9)dF
Tr

(9)

Jw(9)f(x|e)dF
1T

(9)

Thus, the Bayes rule is a ratio of weighted averages of the posterior

distribution. While the weight function plays a role similar to that

of the prior it (6 ) , an interesting fact given robustness concerns, on

the whole this decision rule does not seem attractive given the objec-

tives of this study, for two reasons: first, because it does not

suggest intuitively any particular location parameter or fractile of

the posterior distribution; second, because of the disturbing presence

of the (unknown) parameter of interest in the weight function.
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Th e second type of standard loss function considered in this

study—the linear loss—offers a more attractive result. If we

rewrite the linear loss as

K
n
(0-a) if 9 - a >

L(6,a) « { (4)

K (a-9) if 9 - a < 0,

then any (K
Q
/(K +R )) fractile of tt(9|x) is a Bayes estimate of 9.

This result has several appealing features given the problem of

estimating loan losses in a bank's portfolio. First, it is intuitive:

it is relatively easy to conceptualize a fractile of a p.d.f. Second,

it allows for the asymmetric effects of overestimation and underesti-

mation to be reflected in the optimal decision rule. Third, and per-

haps most important, the weights K and K can be used to represent

the impact of different regulatory regimes. Thus, when robustness

considerations with respect to the choice of the prior distribution

and the loss function arise, this choice of loss function allows the

impact of the regulator to be felt on both.

To sum up our progress thus far, we have been able to show that,

under reasonable assumptions with respect to the choice of a loss

function and a prior distribution of loan losses, a Bayes decision

rule for the choice of the Provision for Loan Losses emerges which is

both theoretically sound and intuitive. The remaining question to be

dealt with in this study pertains to the admissibility of the Bayes

rule and its robustness with respect to changes in the prior distribu-

tion and the loss function.
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6. Assessing the Degree of Confidence on the Estimate of Loan Losses:
Admissibility and Robustness of the Bayes Rule

Under the two basic assumptions introduced in the previous section,

namely, that the prior p.d.f. is proper and the problem has a finite

Bayes risk, there is little need for concern with respect to admis-

sibility for the Bayes rules.

With proper priors, Bayes rules are virtually always admissible.

The basic reason for this virtual certainty is that, if a rule with

better R(9,6) existed, that rule would also have better Bayes risk,

since

r(n,5) = E*[R(9,5)] (18)

given the assumption that the Bayes risk of the problem is finite. As

in the case of the assumption of proper priors, formal Bayes rules

need not be admissible if their Bayes risks are infinite.

The issue of robustness deserves a more careful investigation.

The robustness of a decision rule may be defined as the sensitivity of

the rule to changes in the model's assumptions. In particular, in the

case of decision-theoretic models, we are interested in robustness

with respect to the sample density, the loss function, and the prior

density. In the model formulated in this study, we will be especially

concerned with the loss function and the prior density. The sample

density, as discussed above, comes from a cross-section of banks with

characteristics similar to the banking firm under study. Problems of

sample selection bias are likely to arise, but these are beyond the

scope of this work.
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Next, in an increasing order of importance with respect to robust-

ness, comes the robustness of a decision rule with respect to the loss

function. The feature of a loss which can cause the most serious

robustness difficulties is a weighting factor w(9). However, decision

rules are usually robust with respect to the specification of large

errors. In the case of this study, since a linear loss (i.e., a loss

of the form L(B-a)) is primarily used, the decision rule is usually

robust with respect to the form of L for large (9-a).

This point is both reassuring and important. Since we are essen-

tially free of robustness concerns with respect to our chosen loss

function, we can conceptualize changes in its parameters K and K

as effects of the regulatory regime on the perceived consequences of

overestimation and underestimation of loan losses. In other words, we

can vary K and K until the Bayes decision coincides with the actual

decision and, when that happens, observe the values of K~ and K and

evaluate the relative emphasis placed on perceived losses due to

underestimation or overestimation. Alternatively, it is possible to

choose values for K and K and examine the difference between the

Bayes decision and the actual decision for several groups of banking

firms (by size, region, etc.). We now can turn to robustness with

respect to the prior p.d.f., which seems to be the major cause for

concern in the case of this study.

The concern about robustness with respect to the specification of

the prior distribution comes from the fact that, in a Bayesian analy-

sis, one could be led into making a poor decision because of an inade-

quate description of prior beliefs. Given our assumption that the
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prior p.d.f. is proper, the basic issue is to determine the degree of

accuracy of the prior specification needed for the analysis.

In the case of this study, since we are dealing with typical sub-

jectively chosen priors, it is necessary to distinguish between the

"central" portion of the prior (i.e., the part that corresponds to,

say, 90 percent or 95 percent of the a priori credible region of 9)

and the "tail" (the extreme regions of small probability). This is

so because, first, as noted by Berger (1980), Bayes procedures will

usually be robust with respect to small changes in the central portion

of the prior, but only rarely will be robust with respect to large

changes. Thus, it is important to try to accurately specify the

16
central portion of the prior. The tail of the prior, in contrast,

is hard to specify, so robustness with respect to this tail is

desirable. One way to minimize the influence of the tail of the prior

is to use a prior with a "flat" tail. In particular, when the obser-

vation x is extreme, in the sense that the likelihood function

£(9) f(x|9) gives considerable weight to the tail of the prior, the

posterior distribution will be significantly affected by the type of

prior tail chosen. This, in turn, will cause a lack of robustness.

The upshot of this argument is that the use of conjugate priors,

and in particular conjugate normal priors, while very convenient, can

be dangerous if x Is extreme. That is why, in the previous discussion

of the possible choices for prior distributions, the use of the

Student _t prior has been suggested as an interesting alternative to

the normal prior. Its use seems to be quite adequate if, as in this
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study, one uses the functional form approach to develop the prior.

Some concluding observations are presented next.

7. Concluding Observations

This paper has attempted to approach the bank's choice of the

Provision for Loan Losses from a decision-theoretic standpoint. We

have argued that this approach produces a decision rule which is theo-

retically defensible, intuitive, and easy to implement. The statisti-

cal model leading to such rule is a Bayesian model. Most of our dis-

cussion concerned the examination of the three major building blocks

of the model: the loss function, the prior distribution, and the like-

lihood function. A final word concerning the application of this

model is now in order.

This model is not only superior to an arbitrary choice of the

Provision for Loan Losses, but addresses several objectives. First,

it may be used as a normative model in order to provide guidance for

the optimal choice of the Provision for Loan Losses in commercial

banks. Second, it provides a rigorous way to evaluate the actual

decisions made by banking firms and to compare them with the optimal

Bayes decisions. Third, it allows us to investigate the impact of

regulatory constraints on the decision, both through the prior distri-

bution and the loss function, and to obtain meaningful conclusions

with respect to the effectiveness and the desirability of regulatory

actions, given their impact on the Loan Loss Reserve and ultimately

on the capital structure of the banking firm.
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NOTES

We abstract here from possible intuitional complications and

accounting practices that might allow the bank to make such a decision

ex post for practical purposes.

2
For a detailed discussion of the new bank capital standards and

the "nine percent capital rule," see R. Alton Gilbert, Courtenay C.

Stone, and Michael E. Trebing (1985, May). The new bank capital ade-
quacy standards, Monthly Review , Federal Reserve Bank of St. Louis _67_

(5), pp. 12-20.

3
The labels "conservative" and aggressive" should not be inter-

preted strictly. Conservative banks may make insufficient provisions

in certain periods and aggressive banks may do the reverse. The idea

is to capture a consistent or overall behavioral pattern. Also, we

are abstracting here from recoveries occurring during the period,

which would also be added to the LLR and change the bank's capital
structure.

4
For an alternative perspective, see, for example, David C. Cates

(1985, March), What's an adequate loan loss reserve? ABA Banking
Journal LXXVI1 (3), p. 42.

The intellectual debt that this research owes to George Vojta's
works is" an important one. In the development of the statistical

model below, what is essentially proposed is to provide a sound theo-

retical justification for his views, with the use of statistical deci-
sion theory and Bayesian methods. See Vojta (1973a, 1973b).

Most of the definitions are taken from Morris H. DeGroot (1970),
Optimal Statistical Decisions (New York: McGraw-Hill), several

chapters.

This notation follows James 0. Berger (1980), Statistical decision

theory: Foundations, concepts, and methods (New York: Springer-
Verlag).

Q
Non-data based prior information takes primarily the form of tax

and regulatory considerations. See Figure 1.

9
Berger (1980), pp. 83-84.

The length of this time series is arguable. It should be long

enough to allow an approximation of a continuous p.d.f. It seems
reasonable to say that 50-60 data points would suffice.

See Figure 1.
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12
The size of this sample is also arguable. In practice, we would

be inclined to accept the largest sample that meets the criteria men-
tioned in the text.

13
Berger (1980), Result 1, p. 109, emphasis mine. It should be

noted that the expected posterior loss might have mere than one mini-
mizing action, so there might be more than one Bayes rule. Also,

refer to Figure 1 for an overall view of the logic of this method.

14
For a derivation of these results see, for example, Berger

(1980), pp. 111-112.

For a more detailed discussion of this point, see Berger (1980),
pp. 128-129.

16
Berger (1980), p. 140.

Recall that the likelihood function is formed by a cross-section
of similar banks and represents contemporaneous loan losses. In this

regard, x can be taken as the location parameter of that p.d.f.
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