

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/21319

To cite this version :

Bhrigu K. LAHKAR, Pierre-Yves ROHAN, Helene PILLET, Patricia THOREUX, Wafa SKALLI -Development and evaluation of a new procedure for subject-specific tensioning of finite element knee ligaments - Computer Methods in Biomechanics and Biomedical Engineering - Vol. 24, n°11, p.1195-1205 - 2021

Any correspondence concerning this service should be sent to the repository Administrator : archiveouverte@ensam.eu

Development and evaluation of a new procedure for subject-specific tensioning of finite element knee ligaments

Journal:	Computer Methods in Biomechanics and Biomedical Engineering
Manuscript ID	GCMB-2020-0206.R1
Manuscript Type:	Research Article (5500 words)
Date Submitted by the Author:	n/a
Complete List of Authors:	Lahkar, Bhrigu; Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak Rohan, Pierre-Yves; Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak Pillet, Hélène; Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak Thoreux, Patricia; Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak; Université Sorbonne Paris Nord Skalli, Wafa; Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak; Université Sorbonne Paris Nord
Keywords:	Finite Element Analysis, Ligament Prestrain, Subject-Specific Knee Model, Joint Kinematics, Model Evaluation

1		
2		
4	1	Research Article
5 6	2	
7 8	3	Development and evaluation of a new procedure for subject-specific tensioning of
9 10	4	finite element knee ligaments
11	5	
12 13	6	AUTHORS
14		
15 16 17	7	Bhrigu K. Lahkar ^{1, *} , Pierre-Yves Rohan ¹ , Helene Pillet ¹ , Patricia Thoreux ^{1, 2} , Wafa Skalli ¹
17 18 19	8	AFFILIATIONS
20 21 22	9	¹ Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris,
23 24	10	France
25 26 27	11	² Université Sorbonne Paris Nord, Bobigny, France
27 28 29	12	
30 31	13	*Corresponding author: Bhrigu K. Lahkar
32 33 34	14	Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, 151
35 36	15	Boulevard de l'Hôpital, 75013 Paris, France
37 38	16	E-mail address: bhrigu_kumar.lahkar@ensam.eu
39 40 41	1/	Tel: +33 611/45/48
42	18	
43 44 45	19	Total Word Count (Introduction to Reference): 5452
46 47	20	Word count (Abstract): 104
48 49 50	21	
50 51 52	22	
53 54	23	
55 56 57	24	
57 58 59 60	25	

Abstract

Subject-specific tensioning of ligaments is essential for the stability of the knee joint and represents a challenging aspect in the development of finite element models. We aimed to introduce and evaluate a new procedure for the quantification of ligament prestrains from biplanar X-ray and CT data. Subject-specific model evaluation was performed by comparing predicted femorotibial kinematics with the *in vitro* response of six cadaveric specimens. The differences obtained using personalized models were comparable to those reported in similar studies in the literature. This study is the first step towards the use of simplified, personalized knee FE models in clinical context such as ligament balancing.

Keywords

Finite Element Analysis, Ligament Prestrain, Subject-Specific Knee Model, Joint Kinematics,

iez oni

Model Evaluation

1. Introduction

The knee joint is highly susceptible to frequent injury of ligaments. If it remains untreated, has the probability of limiting joint stability, and can further lead to progression of joint arthritis (Fleming et al. 2005). In such scenario, early stage clinical intervention e.g., ligament repair or replacement is often recommended. For such therapeutic interventions and to properly plan surgical procedures, accurate knowledge of the biomechanical behavior of knee ligaments is fundamental.

Several experiments dealing with main knee ligaments (anterior cruciate ligament (ACL),
posterior cruciate ligament (PCL), lateral collateral ligament (LCL) and medial collateral
ligament (MCL)) have been carried out in the literature (Gardiner et al. 2001; Yoo et al. 2010;
Aunan et al. 2012; Belvedere et al. 2012; Rochcongar et al. 2016; Pedersen et al. 2019).
Although these studies have substantially increased knowledge on joint functions, yet the
complexity of measurements, lesser availability of cadavers, ethical and cost implications have
made data acquisition challenging.

Alternatively, finite element (FE) models are commonly used as a reliable complementary means to experimental studies providing significant insight into knee joint biomechanics. A variety of modeling techniques have been utilized to model the joint structure, particularly ligaments. Some of the strategies are steered by simplicity, while others concentrate on faithful capture of specimen-specific anatomy with varying levels of joint representation fidelity. For example, some models included 3D geometries of ligaments with complex material behavior (Limbert et al. 2004; Peña et al. 2005; Kiapour et al. 2014; Orsi et al. 2016). Such approach allows to consider ligament wrapping behavior and analysis of local biomechanical response (e.g., 3D stresses and strains across tissue). Nevertheless, higher anatomically complex models require detailed image-based information of the soft tissue structures under consideration. Generation and simulation of such models often require manifold higher time than that for

simpler models (Bolcos et al. 2018). Therefore, simpler models may be beneficial for studies
where higher number of subjects need to be analyzed and, at the same time, capable of
predicting joint mechanics.

In an attempt for model simplification, other authors have proposed to represent ligaments as bundles of springs or tension only cables (Moglo and Shirazi-Adl 2005; Adouni and Shirazi-Adl 2009; Baldwin et al. 2012). Although ligaments are exposed to both compressive and tensile states of stress, yet the contribution of tensile stress is substantially higher than others (Peña et al. 2006; Orsi et al. 2016). Therefore, such simplification is considered reasonable and recommended particularly for predicting joint kinematics (Naghibi Beidokhti et al. 2017). Nevertheless, personalization of ligament properties (stiffness and prestrain), although clinically essential to restore joint stability, yet represents a challenge for the community. For example, there is a consensus that graft under-tensioning could lead to joint laxity, which is biomechanically analogous to a ligament deficient knee (Sherman et al. 2012). In addition to that, owing to variable morphology, different bundles of a ligament (e.g., two main fiber bundles of ACL) may exhibit variable prestrain by becoming active at different flexion angles (Girgis et al. 1975). From a modeling perspective, it has also been reported that incorrectly applied ligament prestrain can have a considerable effect on the kinematics of the knee (Mesfar and Shirazi-Adl 2006; Rachmat et al. 2016). To tackle this issue, some authors made subject-specific adjustment using inverse methods to calibrate specific ligament constitutive behavior. Models either used laxity tests (Baldwin et al. 2012; Naghibi Beidokhti et al. 2017) or distraction loading (Zaylor et al. 2019) to estimate ligament properties by minimizing differences between model-predicted and experimental kinetics. Such calibrations are, however, likely to be computationally expensive. In light of the above considerations, we proposed an original framework for calibrating subject-specific tensioning of FE knee ligaments based on experimentally acquired data.

2 3 4	98
5 6	99
7 8 0	100
) 10 11	101
12 13	102
14 15 16	103
17 18 19	104
20 21	105
22 23	106
24 25 26	107
20 27 28	108
29 30	109
31 32 33	110
34 35	111
36 37	112
38 39 40	113
40 41 42	114
43 44	115
45 46 47	116
47 48 49	117
50 51	118
52 53 54	119
55 56	120
57 58 59	121

98 Subject-specific model evaluation was performed by comparing predicted femorotibial 99 kinematics under passive flexion with the experimental data of six cadaveric specimens. We 100 hypothesized that the employed methodology of building personalized FE models with 101 experiment-based prestrains could predict overall passive kinematics of the knee joint.

2. Materials and methods

103 The overall workflow of generating specimen-specific FE mesh is presented in figure 1

[Figure 1 here]

105 2.1. Experimental data acquisition

We obtained the experimental knee kinematic responses in a previous study (Rochcongar et al. 06 2016). The experimental procedure is recalled briefly hereafter. Six fresh-frozen lower limb 07 specimens harvested from subjects with age range 47 to 79 years, were tested under passive 801 flexion-extension on a previously validated kinematic test-bench (Hsieh and Draganich 1997; 09 Azmy et al. 2010). Skin and muscles were removed except eight centimeters of quadriceps .10 .11 tendon and popliteus muscle prior to the kinematic data collection. All other relevant joint soft tissue structures (such as ligaments, articular capsule) were kept intact during kinematic data .12 acquisition. The femur was kept fixed, and flexion movement was introduced to the tibia by a .13 rope and pulley system. During flexion, the positions of the three marker tripods placed on the .14 femur, tibia, and patella were recorded using an optoelectronic system (Polaris, Northern .15 Digital Inc., Canada). These recorded positions allowed establishing ancillary reference frames .16 (referred to as $R_{ANC_{POL}}(t)$) from t = 0 (before applying flexion load) till the end of flexion .17 (Figure 1(a)). Measurement uncertainties with the optoelectronic system was previously .18 assessed. Overall uncertainties of less than 0.5 mm in translational and 1° in rotational DoF 19 were obtained (Azmy et al. 2010). .20 In addition, two orthogonal radiographs of each specimen were acquired using an EOS .21

⁶⁰ 122 biplanar X-ray system (EOS, EOS-imaging, France) to obtain 3D digital models of the bones

and tripod markers. From the 3D models, anatomical reference frames (referred to as R_ANAT_{EOS}) for the femur, tibia, and patella were defined (Schlatterer et al. 2009). Ancillary reference frames (referred to as R_ANC_{EOS}) from the tripod markers were also defined allowing a relationship between anatomical frames and ancillary frames, termed as M_ANAT_ANC (Figure 1(b)). This relation was further used for converting acquired kinematic data, R_ANC_{POL} (*t*) to relative patellofemoral and tibiofemoral motions in the femur anatomical reference frame with Cardan sequence ZY'X''.

After the kinematic data acquisition, each specimen was fully dissected to identify the ligament attachment sites. Absence of trauma and integrity of soft tissue structures was checked during the dissection. An experienced surgeon identified the origin and insertion locations for the following ligaments: anteromedial (AM) and posterolateral (PL) bundles of ACL, posteromedial (PM) and anterolateral (AL) bundles of PCL, superficial (MCLs) and deep (MCLd) bundles of MCL, and LCL. Identified locations were marked with radio-opaque paints, and the bones were scanned using a computed tomography (CT) scanner (Philips, Best, The Netherlands). 3D digital models of each dissected specimen were acquired using MITK-GEM (version 5.0) giving anatomical frames (R_ANAT_{CT}) and ligament attachment sites (P_LIGA_{CT}) in the CT scanner system of reference (Figure 1(c)). 3D Digital models and digital footprints of ligament attachment sites were then registered into experimental initial Registration was performed with biplanar X-ray data. Once the centroidal configuration. coordinates of the attachment sites were known, the end-to-end distance of the ligaments origin and insertion site was computed at experimental initial configuration. For the sake of readability, end-to-end distance will be referred to as ligament length hereafter.

145 2.2. Initial bone pose estimation

1 2		
2 3 4	146	Relative pose (position and orientation) of tibia and patella w.r.t. the femur at initial unloaded
5 6	147	configuration was obtained using the relation M_ANAT_ANC and experimental kinematic data,
7 8 9	148	$R_ANC_{POL}(t)$ at time=0 (Figure 1(d)).
10 11	149	2.3. Specimen specific FE model
12 13 14	150	2.3.1. FE mesh
15 16	151	First, subject-specific FE hexahedral mesh for each bony segment was created based on the
17 18	152	subject-specific CT based digital models (Figure 1(e)) (Lahkar et al. 2018). Then, only the
19 20	153	surface mesh (4-noded shell element) was kept to represent bones and cartilage to reduce
21 22 23	154	computational cost (Germain et al. 2016). Then, mesh smoothing was performed at the articular
24 25	155	surfaces to improve the mesh quality (Taubin 1995).
26 27 28	156	Mesh quality was assessed using standard ANSYS mesh quality indicators: aspect ratio,
29 30	157	parallel deviation, maximum angle, Jacobian ratio, and warping factor. The surface accuracy
31 32	158	of specimen specific mesh for each specimen was compared against respective 3D digital
33 34 35	159	model (i.e. segmented 3D geometry from CT data) by registering Hausdorff distance expressed
36 37	160	in mean (2RMS) values.
38 39 40	161	2.3.2. Knee joint FE model
41 42	162	Bones were assumed to be isotropic linear elastic with Young's modulus of 12000 MPa (Choi
43 44 45	163	et al. 1990). As the loading pattern in the study is quasi-static, cartilage was assumed as single-
45 46 47	164	phase linear isotropic material (Eberhardt et al. 1990). Cartilage regions were modeled as
48 49	165	cortico-cartilage material and assigned with Young's modulus of 250 MPa to summarize the
50 51 52	166	material properties of cortical bone and cartilage (Germain et al. 2016). A very thin strip of
52 53 54	167	material between bones and cortico-cartilage region were also modeled with intermediate
55 56	168	properties (2000 MPa) to limit mechanical discontinuity (Germain et al. 2016) (Figure 2).
57 58	169	[Figure 2 here]
59 60		

170	Attachment sites for the cruciate and collateral ligaments were based on the already
171	identified locations (Rochcongar et al. 2016). For other ligaments and tendons (femoro-patellar
172	ligament, patellar tendon, quadriceps tendon, posterior capsule), general anatomical sites based
173	on <i>a priori</i> knowledge of an anatomist were used. Each cruciate ligament was represented by
174	2 bundles (Blankevoort and Huiskes 1991) along with MCL (deep and superficial) (Smith et
175	al. 2016). Posterior capsule and femoropatellar ligaments were each represented by 8 bundles
176	(4 bundles in the medial and lateral side each), while quadriceps and patellar tendon as 4
177	bundles each (Germain et al. 2016) and LCL as one (Meister et al. 2000). All ligaments and
178	tendons were represented as point-to-point, tension-only cable elements as their contribution
179	in tension is much higher than that in compression (Baldwin et al. 2009; Harris et al. 2016).
180	Three frictionless surface-to-surface contact pairs were considered: tibia-femur cartilage
181	(medial and lateral) and femur-patella cartilage with augmented penalty solution algorithm.
182	
183	2.3.3. Ligament material properties
184	Three cases of ligament prestrain values (%) were considered for cruciate and collateral
185	ligaments. No prestrain values for other ligaments were considered and stiffness (k) values for
186	all the ligaments were adopted or estimated from our previous study (Germain et al. 2016). It
187	is to be noted that constant stiffness values were applied across all specimens.
188	[Figure 3 here]
189	Case 1: Generic material properties. Prestrain values for ACL (5%), PCL (-3%), MCL (0%)
190	and LCL (0%) were adopted from previous study (Germain et al. 2016).
191	Case 2: Automatic pre-computation from experimental data. For each specimen, ligament
192	and bundle specific prestrains were automatically computed from the experimental ligament
193	lengths using equation 1. This is illustrated for the MCL in figure 3.
194	Case 3: Combination of automatic pre-computation and further manual adjustment.

1 2		
2 3 4	195	Initial values for the 7 ligament parameters (prestrains) were assigned with
5 6	196	precomputed ligament prestrains. The minimum and maximum bounds for each parameter was
7 8 0	197	defined from the literature (Blankevoort and Huiskes 1996; Baldwin et al. 2009). Each
9 10 11	198	parameter at a time was modified by changing the previously assigned value by roughly 10%
12 13	199	and RMS error between numerical and experimental kinematics was observed for each DOF.
14 15 16	200	Based on the error, a new parameter set was assigned. Thus the procedure was repeated till
10 17 18	201	rotational and translational RMS error became steady state. Stopping criteria was chosen as
19 20	202	change in RMS error between two consecutive iterations is less than or equal to 0.1° for
21 22 22	203	rotational and 0.1 mm for translation.
23 24	204	
25 26	205	prestrain = $\left(\frac{\delta}{L}\right) * 100 = \left(\frac{L - L_0}{L}\right) * 100$ (1)
27 28 29	206	where, L is the experimental ligament length at initial configuration (before application of
30 31	207	flexion load), and L_0 is the zero-strain length at the end of flexion, with an assumption that
32 33 24	208	ligaments experience no force after the prescribed maximum flexion angle.
34 35 36	209	2.3.4. FE model simulation states
37 38	210	Three different configurations were defined to represent different simulation states applicable
39 40	211	to all the FE models and all cases of ligament properties. As the models are built from the
41 42 43	212	experimental initial configuration, the first state is referred to as (a) no-load or stress free
44 45	213	configuration. The second state corresponds to the configuration after attaining equilibrium
46 47	214	under prestrain effect, termed as (b) initial equilibrium configuration (or reference
48 49 50	215	configuration). The third state corresponds to the deformed states of the model upon application
50 51 52	216	of incremental rotational displacements on the tibial malleolus until 70° of flexion angle
53 54	217	(Germain et al. 2016). Knee flexion took place at the third state and referred to as (c) current
55 56 57	218	deformed configuration. Remaining DOFs were left unconstrained. Only geometric non-
57 58 59 60	219	linearity was considered for the model simulations.

2
3
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
22
~~ 72
23
24
25
26
27
28
29
30
31
37
22
22
34
35
36
37
38
39
40
41
42
-⊤∠ ∕\?
45
44
45
46
47
48
49
50
51
52
53
57
54 57
55
56
57
58
59
60

220 2.3.5. Model evaluation: Knee joint kinematics

The relative position and orientation of the tibia w.r.t. femur was computed based on their 221 anatomical reference frames, as described in (Schlatterer et al. 2009) and interpreted in the 222 femur anatomical reference frame. One-to-one model evaluation was performed by comparing 223 predicted femorotibial kinematics to experimental measurements throughout flexion motion 224 for both the cases 2 and 3. Specimen specific RMS differences between model-predicted and 225 experimental measurements were computed based on values at 1° interval for a range of flexion 226 angle 0-60°. Eventually, RMS difference with experimental data was averaged for all the 227 228 specimens. 3. Results 229 *3.1*. *Mesh quality* 230 Quality of individual knee joint FE mesh showed no occurrence of error in terms of ANSYS 231 mesh quality indicators. 232 *3.2*. Surface representation accuracy 233 [Figure 4 here] 234 FE mesh surface accuracy for the femur, tibia, and patella w.r.t. corresponding CT surface 235 across all specimens were found less than or equal to (mean (2RMS) in mm) 0.04 (0.12), 0.06 236 (0.18) and 0.05 (0.14) respectively. Error-values are pictorially represented in figure 4 for 237 specimen 1 for the sake of example. 238 3.3. Estimation of subject-specific ligament material properties 239 3.3.1. Case 2: Based on automatic pre-computation from experimental data 240 [Table 1a and Table 1b here] 241 Estimated ligament stiffness and pre-strain values computed according to the procedure 242 described in subsection 2.3.3 (case 2) are presented in Table 1a and Table 1b, respectively. 243

2 3	244	Positive prestrain denotes tight condition and negative prestrain slack condition. Ligament
4 5	277	Toshive prestum denotes tight condition and negative prestum shock condition. Eigement
6 7	245	prestrains showed both ligament-specific and specimen-specific variability.
, 8 9	246	3.3.2. Case 3: Combination of automatic pre-computation and further manual adjustment
10 11 12 13	247	[Table 1c here]
14 15 16	248	Estimated ligament pre-strain values computed according to the procedure described in
17 18	249	subsection 2.3.3 (case 3) are presented in Table 1c. Ligament stiffness values were kept the
19 20	250	same as presented in Table 1a.
21 22 23	251	3.4. One-to-one validation of knee joint kinematics
24 25	252	On implementation of the generic ligament properties (case 1), only two FE models out of six
26 27 28	253	achieved full convergence. Convergence in this study refers to successful attainment of
28 29 30	254	mechanical equilibrium (within a default tolerance value of ANSYS) at each load step.
31 32	255	Predicted kinematics showed large deviation from the experimental both in magnitude and
33 34 25	256	trend (not reported in this manuscript as only two models achieved convergence). Using the
35 36 37	257	ligament material properties computed automatically (case 2, Table 1b), 5 models out of 6
38 39	258	achieved convergence throughout 60° of flexion.
40 41	259	[Figure 5 and Figure 6 here]
42 43 44	260	Using the ligament material properties computed automatically combined with manual
45 46	261	adjustment (case 3, Table 1c), all the FE knee models remained stable throughout the range of
47 48	262	flexion. Individual run time was approximately 13 minutes per specimen. One-to-one
49 50 51	263	comparison of model predicted femorotibial kinematics against corresponding in vitro results
52 53	264	for all specimens are presented in Figure 5 and Figure 6 for automatically computed prestrains
54 55	265	and adjusted ligament prestrains respectively. For both the cases, model kinematics for all DOF
56 57	266	are shown from the reference configuration (state-b) until the end of flexion movement.
58 59 60	267	[Table 2 here]

Table 2 summarizes the RMS difference between model-predicted and experimental kinematics for the range of flexion angle $0-60^{\circ}$ for the two cases (case 2 and case 3) of ligament material properties. Since 5 models out of 6 were converged while applying automatically computed ligament prestrains, differences are presented for 5 models.

¹² 13 272 **4. Discussion**

Subject-specific tensioning of ligaments is essential in developing personalized knee FE models. In this study, we built subject-specific knee FE model with CT-based geometry and evaluated a new procedure for subject-specific calibration of ligaments prestrain from biplanar X-ray data. Predicted femorotibial kinematics of each model was compared to the corresponding *in vitro* response for three different cases of ligament properties (prestrain). First, we investigated whether the FE models with generic prestrain values can capture inter-individual variability of the *in vitro* kinematics. Second, experimentally obtained prestrains were recruited to the FE models and predicted kinematics were observed (case 2). Third, model kinematics were observed with respect to calibrated ligament properties based on the combination of pre-computed prestrains and further adjustment (case 3). For case 2, RMS differences between model-predicted and experimental results for abduction/adduction and external/internal rotation were less than or equal to 2.4° and 6.3° respectively. For translation kinematics, the differences observed were less than or equal to 5.0 mm, 1.9 mm and 1.2 mm respectively for posterior/anterior, superior/inferior, and lateral/medial motions. For case 3, improvement in model kinematics was observed with RMS differences 1.5° and 5.3° for abduction/adduction and external/internal rotation. Differences for posterior/anterior, superior/inferior, and lateral/medial motions were 3.4 mm, 1.2 mm and 2 mm respectively. These results show that the proposed methodology allows us to obtain a good first approximation of the prestrain values with further manual adjustment to improve the kinematic prediction.

2		
3 4	293	As far as the authors are aware of, there are numerous challenges exist in determining
5 6	294	ligament prestrain. Challenges are linked to both measurement issues and modeling issues.
7 8 0	295	Measurement challenges are mainly methodological issues related to identification of ligament
9 10 11	296	attachment sites and determination of ligament elongation pattern during motion (Woo et al.
12 13	297	1990; Gardiner et al. 2001; Belvedere et al. 2012). Because of such difficulties, FE models in
14 15	298	general, adopt prestrain values from other studies available in the literature (Yang et al. 2010;
16 17 18	299	Galbusera et al. 2014). As these values are adopted from other experimental studies and not
19 20	300	corresponding to the specimen under consideration, thereby cannot be considered as subject-
21 22	301	specific. Optimization methods have also been extensively used to calibrate specific ligament
23 24 25	302	constitutive behavior. These approaches particularly used laxity tests to calibrate their models
25 26 27	303	(Baldwin et al. 2012; Naghibi Beidokhti et al. 2017). Such approaches are, although shown
28 29	304	effective to attain specimen-specific ligament properties, yet computationally expensive.
30 31	305	The current study focused on the development and evaluation of a new procedure for
32 33 34	306	subject-specific tensioning of FE knee ligaments. The proposed procedure builds upon data
35 36	307	previously collected during an experimental investigation conducted to identify ligament
37 38	308	(cruciate and collateral) attachment sites, and to determine the ligament elongation patterns
39 40 41	309	during passive knee flexion (Rochcongar et al. 2016). The FE model replicates the natural
42 43	310	ligament (cruciate and collateral) insertions since these are derived from the radio opaque paint
44 45	311	locations painted on the specimens prior to the CT-scan (figure 1). The values obtained were
46 47 48	312	consistent with those experimental measurements reported in the literature (Bicer et al. 2010;
49 50	313	Belvedere et al. 2012). It is worth mentioning that because of the lack of experimental data for
51 52	314	other ligaments, generic insertion sites were employed. Although, it is difficult to directly
53 54	315	compare the estimated prestrains with similar studies in literature because of variability in
55 56 57	316	ligament geometry and material property, yet the prestrain values were found within the range
58 59 60	317	confirmed by others (Wismans et al. 1980; Amiri et al. 2006; Zaylor et al. 2019). Also, most

3 4	318
5 6	319
7 8	320
9 10 11	321
12 13	322
14 15	323
16 17 19	324
18 19 20	325
21 22	326
23 24 25	327
25 26 27	328
28 29	329
30 31	330
32 33 34	331
35 36	332
37 38	333
39 40 41	334
42 43	335
44 45	336
46 47 48	337
49 50	338
51 52	339
53 54 55	340
55 56 57	341
58 59	342
00	

318	of the ligaments were found in tensed state at full extension except PCL, which is overall in
319	agreement with the literature (Blankevoort and Huiskes 1991; Moglo and Shirazi-Adl 2005;
320	Guess et al. 2016). Similarly, predicted kinematic response also showed good correspondence
321	with the experimental results for all specimens. The experimental-numerical differences found
322	in this study were comparable to similar studies reported in the literature (Harris et al. 2016;
323	Naghibi Beidokhti et al. 2017). For instance, Beidokhti et al. reported an average RMS
324	difference of 3.5° and 2.8° respectively for abduction/adduction and external/internal rotations.
325	For anterior/posterior, superior/inferior and lateral/medial motions the differences were 3 mm,
326	2.3 mm and 1.6 mm respectively. It is worthwhile to mention that when generic properties were
327	used, most of the models couldn't reach convergence. As previously reported by other research
328	teams (e.g., (Schwartz et al., 2019)) focusing on the medial collateral ligament) convergence
329	difficulty appeared in this kind of models when material properties were not personalized.
330	The procedure to compute ligament prestrain directly from experimental data (Case 3)
331	provided satisfactory initial guess, based on which model estimated kinematics were already
332	in good agreement with the experimental data. As this approach appears to be computationally
333	inexpensive (15-20 sec to obtain ligament specific prestrain for a single knee model) and
334	methodologically simple, it may serve as a reliable alternative for estimating subject-specific
335	ligament prestrain values. To be noted that no direct evaluation of the ligament tensions was
336	performed in the present study. The decision to implement the current technique as an
337	alternative has to be conducted with caution. For successful implementation of this technique
338	towards clinics, exhaustive model evaluation under various loading conditions is required
339	including ligament tension and contact stress. Nevertheless, validating joint kinematics as a
340	first step could be valuable to show feasibility of the current approach.
341	This study contains some considerations and limitations worth highlighting. First,
342	while comparing with experimental kinematics, model-predicted results were shown from

reference configuration (state-b). It is an auto-equilibrated configuration under the prestrain effect, which is not concurrent with initial experimental configuration and difficult to calibrate. This results in absolute offset from the experimental kinematics (Baldwin et al. 2012), although masked in relative kinematics. Second, we acknowledge that one of the sources of discrepancies between experimental-numerical kinematics may come from model simplifications and assumptions. It is also to be noted that predicted kinematics with a combination of initial guess from experimental data and further manual adjustment displayed closer correspondence to *in vitro* data. Although the difference is minimal, this may be attributed to the representation of overall joint soft tissue structure with simple ligamentous structures without including cartilage layers and menisci. As the proposed methodology is not based on current state-of-the-art approaches (such as MRI based complex models with detailed soft tissue structures), there was difficulty to obtain subject-specific geometry of cartilage and menisci with available imaging modalities (CT and biplanar X-ray) employed in our study. Such simplification, therefore doesn't hold if we are interested in more detailed local insights, e.g., cartilage contact stress. However, for analysis, such as graft tensioning effect on knee response while reconstructing ACL, such simplification was considered relevant (Peña et al., 2005). Third, exclusion of meniscus may overestimate the role of the ligaments in constraining the joint and providing stability (Harris et al. 2016). However, other studies reported no remarkable influence of meniscus on the assessment of the knee joint kinematics, especially for the flexion range 0°–90° (Amiri et al. 2006; Guess et al. 2010). Fourth, ligaments and tendons were represented as bundles of 1D elements, which may not capture actual ligament length variation, as they do not account for material continuum, fiber twisting or wrapping. Yet, such simplification provides faster solutions and recommended, particularly for the prediction of knee kinematic parameters (Bolkus et al., 2018; Naghibi Beidokhti et al., 2017). Fifth, we chose to personalize only ligament prestrains, although stiffness values vary from

3	
4 5	
6	
7 8	
9	
10	
12	
13	
14 15	
16	
17 18	
19	
20	
21 22	
23	
24 25	
26	
27 28	
20	
30 21	
32	
33	
34 35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 5⊿	
55	
56 57	
57 58	
59	
60	

subject to subject. This consideration was based on sensitivity analyses found in literature, 368 where model predicted kinematics are proclaimed to be highly sensitive to strain state at initial 369 configuration rather than stiffness values (Wismans et al. 1980; Peña et al. 2005). Besides, the 370 models were validated only under passive flexion load, which may not imitate an in-vivo 371 situation of clinical interest, yet could be a first step of assessing the potential of the models 372 towards complex scenarios. In this contribution, a maximum flexion angle of 70° was 373 considered to calibrate the model as this range covers the most common amplitude of in-vivo 374 motion under level walking, during which ligaments offer a substantial contribution to knee 375 376 stability (Butler et al. 2007). However, perspective work will focus on calibrating the model up to 120° of knee flexion. We acknowledge that no influence of experimental uncertainty nor 377 sensitivity of ligament attachment sites on predicted kinematics was performed. Future study 378 is necessary to asses this issue. Finally, the study was limited to six specimens due to time and 379 labor associated with CT segmentation, yet higher in number compared to other similar 380 published studies. This might limit the model at the current state for clinical translation; 381 however, it was imperative to build CT based models to minimize the impact of geometrical 382 uncertainty in model predictions. 383 In conclusion, as it was a first study to directly implement prestrain values on models 384

In conclusion, as it was a first study to directly implement prestrain values on models directly from the experiment, which may find scopes in model-based clinical studies, such as planning of ligament balancing or reconstruction as it reduces complexity in model development (especially ligament calibration) as well as computational cost, while maintaining good correspondence with experimental data. In that aim, further model evaluation would be necessary for larger specimen size and in other clinically relevant scenarios.

390

391 Conflict of Interest

392 None

2		
3 4	393	Acknowledgments
5 6	394	The authors are deeply grateful to the ParisTech BiomecAM chair program on subject-specific
7 8 9	395	musculoskeletal modeling for financial support.
10 11 12	396	References
13 14 15 16	397 398	Adouni M, Shirazi-Adl A. 2009. Knee joint biomechanics in closed-kinetic-chain exercises. Comput Methods Biomech Biomed Engin. 12(6):661–670.
17 18 19 20	399 400 401	Amiri S, Cooke D, Kim IY, Wyss U. 2006. Mechanics of the passive knee joint. Part 1: The role of the tibial articular surfaces in guiding the passive motion. Proc Inst Mech Eng Part H J Eng Med. 220(8):813–822.
21 22 23 24 25	402 403 404	Aunan E, Kibsgård T, Clarke-Jenssen J, Röhrl SM. 2012. A new method to measure ligament balancing in total knee arthroplasty: Laxity measurements in 100 knees. Arch Orthop Trauma Surg. 132(8):1173–1181.
26 27	405 406	Azmy C, Guérard S, Bonnet X, Gabrielli F, Skalli W. 2010. EOS® orthopaedic imaging system to study patellofemoral kinematics: Assessment of uncertainty. Orthop Traumatol Surg Res. 96(1):28–36.
28 29 30 31 32	407 408 409	Baldwin MA, Clary C, Maletsky LP, Rullkoetter PJ. 2009. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J Biomech [Internet]. 42(14):2341–2348. http://dx.doi.org/10.1016/j.jbiomech.2009.06.028
33 34 35 36	410 411 412	Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ. 2012. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J Biomech [Internet]. 45(3):474–483. http://dx.doi.org/10.1016/j.jbiomech.2011.11.052
37 38 39 40	413 414 415	Belvedere C, Ensini A, Feliciangeli A, Cenni F, D'Angeli V, Giannini S, Leardini A. 2012. Geometrical changes of knee ligaments and patellar tendon during passive flexion. J Biomech [Internet]. 45(11):1886–1892. http://www.ncbi.nlm.nih.gov/pubmed/22677336
42 43 44 45	416 417 418	Bicer EK, Lustig S, Servien E, Selmi TAS, Neyret P. 2010. Current knowledge in the anatomy of the human anterior cruciate ligament. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 18(8):1075–1084. https://doi.org/10.1007/s00167-009-0993-8
46 47 48 49	419 420	Blankevoort L, Huiskes R. 1991. Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng [Internet]. 113(3):263–269. http://www.ncbi.nlm.nih.gov/pubmed/1921352
50 51 52	421 422 423	Blankevoort L, Huiskes R. 1996. Validation of a three-dimensional model of the knee. J Biomech [Internet]. [accessed 2019 Sep 3] 29(7):955–961. https://linkinghub.elsevier.com/retrieve/pii/0021929095001/492
53 54 55 56 57	424 425 426	Bolcos PO, Mononen ME, Mohammadi A, Ebrahimi M, Tanaka MS, Samaan MA, Souza RB, Li X, Suomalainen JS, Jurvelin JS, et al. 2018. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci Rep [Internet]. [accessed 2019 Aug 29] 8(1):17351.
58 59 60	427 428	www.nature.com/scientificreports Butler RJ, Marchesi S, Royer T, Davis IS. 2007. The Effect of a Subject-Specific Amount of Lateral

1		
2		
5 4	429	Wedge on Knee. J Orthop Res Sept. 25(June):1121–1127.
5	420	Chei K. Kuhn H. Ciaralli MI. Caldetain CA. 1000. The electic moduli of human subshandral
6	430	choi K, Kunn JL, Clarelli MJ, Goldstein SA. 1990. The elastic moduli of human subchondral,
7	431	trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech.
8	432	23(11):1103–1113.
9	133	Eberhardt AW, Keer IM, Lewis II, Vithoontien V, 1990, An analytical model of joint contact, J
10	433	Biomech Eng [Internet] 112(4):407–413 https://doi.org/10.1115/1.2891204
12	737	bomeen Eng [internet]. 112(4).407 415. https://doi.org/10.1115/1.2051204
13	435	Fleming BC. Hulstyn MJ. Oksendahl HL. Fadale PD. 2005. Ligament injury, reconstruction and
14	436	osteoarthritis. Curr Opin Orthop. 16(5):354–362.
15		
16	437	Galbusera F, Freutel M, Dürselen L, D'Aiuto M, Croce D, Villa T, Sansone V, Innocenti B. 2014.
17	438	Material models and properties in the finite element analysis of knee ligaments: A literature review.
18	439	Front Bioeng Biotechnol [Internet]. 2(NOV):1–11.
19 20	440	http://journal.frontiersin.org/article/10.3389/fbioe.2014.00054/abstract
20		
22	441	Gardiner JC, Weiss JA, Rosenberg TD. 2001. Strain in the human medial collateral ligament during
23	442	valgus loading of the knee. Clin Orthop Relat Res.(391):266–274.
24		
25	443	Germain F, Rohan PY, Rochcongar G, Rouch P, Thoreux P, Pillet H, Skalli W. 2016. Role of ligaments in
26	444	the knee joint kinematic behavior: Development and validation of a finite element model. In: Joldes
27 29	445	GR, Doyle B, Wittek A, Nielsen PMF, Miller K, editors. Comput Biomech Med Imaging, Model
20 29	446	Comput. Cham: Springer International Publishing; p. 15–26.
30	447	Current TM, Denu G, Johandan H, 2016, Euclustics of Knowledge Machanics Using Computational
31	447	Guess TM, Razu S, Janandar H. 2016. Evaluation of Knee Ligament Mechanics Using Computational
32	448	Models. J Knee Surg. 29(2):126–137.
33	110	Guess TM Thiagaraian G. Kia M. Mishra M. 2010. A subject specific multihody model of the knee
34	449	with menisci Med Eng Phys [Internet] [accessed 2019 Jul 24] 32(5):505–515
35 36	450 //51	https://linkinghub.elsevier.com/retrieve/nii/\$1350/153310000/9/
30	431	https://inkinghub.cisevier.com/retrieve/pi/j1550455510000454
38	452	Harris MD. Cyr AJ. Ali AA. Fitzpatrick CK. Rullkoetter PJ. Maletsky LP. Shelburne KB. 2016. A
39	453	Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint
40	454	Laxity. J Biomech Eng. 138(8):081004.
41		
42	455	Hsieh YF, Draganich LF. 1997. Knee kinematics and ligament lengths during physiologic levels of
43 44	456	isometric quadriceps loads. Knee. 4(3):145–154.
44 45		
46	457	Kiapour A, Kiapour AM, Kaul V, Quatman CE, Wordeman SC, Hewett TE. 2014. Finite element model
47	458	of the knee for investigation of injury mechanisms: Development and validation. J Biomech Eng.
48	459	136(1):011002.
49		
50	460	Lahkar BK, Rohan P-Y, Pillet H, Thoreux P, Skalli W. 2018. Fast subject specific finite element mesh
51	461	generation of knee joint from biplanar x-ray images. In: Cmbbe [Internet]. [place unknown];
52 53	462	[accessed 2019 Aug 7].
54	463	http://cmbbe2018.tecnico.ulisboa.pt/pen_cmbbe2018/pdf/WEB_PAPERS/CMBBE2018_paper_143.p
55	464	ατ
56	165	Limbort G. Taylor M. Middleton I. 2004. Three dimensional finite element modelling of the human
57	405 166	ACL: Simulation of passive knee flexion with a stressed and stress free ACL. L Diamach. 27(11):1722
58	400 167	ACL. Simulation of passive knee nexion with a stressed and stress-free ACL. J Biometh. 37(11):1723-
59 60	407	1/51.
00		

1		
2		
3	468	Meister BR, Michael SP, Moyer RA, Kelly JD, Schneck CD. 2000. Anatomy and kinematics of the
4 5	469	lateral collateral ligament of the knee. Am J Sports Med. 28(6):869–878.
6 7	470	Mesfar W, Shirazi-Adl A. 2006. Biomechanics of changes in ACL and PCL material properties or
, 8	471	prestrains in flexion under muscle force-implications in ligament reconstruction. Comput Methods
9 10	472	Biomech Biomed Engin [Internet]. 9(4):201–209. https://doi.org/10.1080/10255840600795959
10	473	Moglo KE, Shirazi-Adl A. 2005. Cruciate coupling and screw-home mechanism in passive knee joint
12	474	during extension-flexion. J Biomech [Internet]. [accessed 2019 Jul 10] 38(5):1075–1083.
13	475	https://linkinghub.elsevier.com/retrieve/pii/S0021929004002805
14		
15	476	Naghibi Beidokhti H, Janssen D, van de Groes S, Hazrati J, Van den Boogaard T, Verdonschot N. 2017.
16	477	The influence of ligament modelling strategies on the predictive capability of finite element models
17	478	of the human knee joint. J Biomech [Internet]. [accessed 2019 Jul 12] 65:1–11.
18 19	479	https://linkinghub.elsevier.com/retrieve/pii/S0021929017304529
20 21	480	Orsi AD. Chakravarthy S. Canavan PK. Peña E. Goebel R. Vaziri A. Naveb-Hashemi H. 2016. The effects
21	481	of knee joint kinematics on anterior cruciate ligament injury and articular cartilage damage. Comput
23	482	Methods Biomech Biomed Engin. 19(5):493–506.
24		
25	483	Pedersen D, Vanheule V, Wirix-Speetjens R, Taylan O, Delport HP, Scheys L, Andersen MS. 2019. A
26	484	novel non-invasive method for measuring knee joint laxity in four dof: In vitro proof-of-concept and
27 28	485	validation. J Biomech [Internet]. 82:62–69. https://doi.org/10.1016/j.jbiomech.2018.10.016
29	486	Peña E, Calvo B, Martínez MA, Doblaré M. 2006. A three-dimensional finite element analysis of the
30	487	combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech [Internet].
31 22	488	[accessed 2019 Jul 24] 39(9):1686–1701.
32 33 34	489	https://linkinghub.elsevier.com/retrieve/pii/S0021929005002113
35	490	Peña E. Martínez MA. Calvo B. Palanca D. Doblaré M. 2005. A finite element simulation of the effect
36	491	of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech. 20(6):636–644.
37		
38	492	Rachmat HH, Janssen D, Verkerke GJ, Diercks RL, Verdonschot N. 2016. In-situ mechanical behavior
39	493	and slackness of the anterior cruciate ligament at multiple knee flexion angles. Med Eng Phys
40	494	[Internet]. [accessed 2019 Jul 19] 38(3):209–215.
41	495	https://linkinghub.elsevier.com/retrieve/pii/S1350453315002696
42 13		
43	496	Rochcongar G, Pillet H, Bergamini E, Moreau S, Thoreux P, Skalli W, Rouch P. 2016. A new method
45	497	for the evaluation of the end-to-end distance of the knee ligaments and popliteal complex during
46	498	passive knee flexion. Knee [Internet]. 23(3):420–425. http://dx.doi.org/10.1016/j.knee.2016.02.003
47		
48	499	Schlatterer B, Suedhoff I, Bonnet X, Catonne Y, Maestro M, Skalli W. 2009. Skeletal landmarks for
49	500	TKR implantations: Evaluation of their accuracy using EOS imaging acquisition system. Orthop
50 51	501	Traumatol Surg Res. 95(1):2–11.
52	502	Sherman SL, Chalmers PN, Yanke AB, Bush-Joseph CA, Verma NN, Cole BJ, Bach BR. 2012. Graft
53	503	tensioning during knee ligament reconstruction: Principles and practice. J Am Acad Orthop Surg.
54 55 56	504	20(10):633–645.
50 57	505	Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG. 2016. The influence of component alignment
58	506	and ligament properties on tibiofemoral contact forces in total knee replacement. J Biomech Eng
59	507	[Internet]. [accessed 2019 Jun 20] 138(2):021017.
60	508	https://biomechanical.asmedigitalcollection.asme.org

- Taubin G. 1995. Curve and surface smoothing without shrinkage. IEEE Int Conf Comput Vis.:852–857.
- 5 510 Wismans J, Veldpaus F, Janssen J, Huson A, Struben P. 1980. A three-dimensional mathematical
 - 511 model of the knee-joint. J Biomech [Internet]. [accessed 2019 Sep 9] 13(8):677–685.
- bit model of the knee-joint. J biometri [internet]. [accessed 2019 Sep
 512 https://linkinghub.elsevier.com/retrieve/pii/0021929080903541
- Woo SLY, Weiss JA, Gomez MA, Hawkins DA. 1990. Measurement of changes in ligament tension
 with knee motion and skeletal maturation. J Biomech Eng. 112(1):46–51.
- S15 Yang NH, Canavan PK, Nayeb-Hashemi H, Najafi B, Vaziri A. 2010. Protocol for constructing subject specific biomechanical models of knee joint. Comput Methods Biomech Biomed Engin. 13(5):589–
 517 603.
- 17
 18
 19
 20
 18(3):292-297.
 17
 18
 19
 19
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <
- 21 22 521 Zaylor W, Stulberg BN, Halloran JP. 2019. Use of distraction loading to estimate subject-specific knee
- 522 ligament slack lengths. J Biomech [Internet]. 92:1–5.
 523 https://doi.org/10.1016/j.jbiomech.2019.04.040
- 24 523 https://doi.org/10.1016/j.jbiomech.2019.04
- 26 524 27

527

28

39

46

1 2

12

²⁹ 526 Figure Captions

31 Figure 1. Schematic illustration for (a) kinematic test: position of tripod markers in Polaris coordinate 528 32 529 system (CSYS), (b) biplanar X-ray: 3D digital models of bone and tripod markers giving anatomical 33 and ancillary reference frames in EOS CSYS, (c) CT scan: Accurate 3D digital models of bone and 530 34 ligament attachment sites giving anatomical reference frames and ligament attachment locations in CT 531 35 532 CSYS, (d) knee in experimental initial configuration giving anatomical reference frames in Polaris 36 CSYS, (e) CT based subject-specific FE mesh and ligament attachment sites in experimental initial 533 37 534 configuration 38

- Figure 2. FE model with soft tissues (only shown for the distal femur and proximal tibia region)
- Figure 3. Experimental ligament length change for superficial MCL throughout the flexion movement.
 A similar strategy was implemented for other ligaments except for PCL, which is based on literature values
- Figure 4. Surface representation accuracy as a Hausdorff distance for femur, tibia, and patella
 Figure 4. Surface representation accuracy as a Hausdorff distance for femur, tibia, and patella
- Figure 5. One-to-one comparison of FE model kinematic predictions against corresponding experimental data for (a) (b): rotational and for (c) (e): translational femorotibial kinematics interpreted in femur anatomical reference frame. Results reported are based on the implementation of automatically computed ligament prestrains
- 54Figure 6. One-to-one comparison of FE model kinematic predictions against corresponding56545experimental data for (a) (b): rotational and for (c) (e): translational femorotibial kinematics57546interpreted in femur anatomical reference frame. Results reported obtained using a combination of58547automatic pre-computation and further manual adjustment
- 60 548

1 2		
2 3 4 5	549 550	Table Headings
6 7	551	Table 1a Estimated ligament stiffness values for a single specimen
8 9	552	Table 1b Automatically computed ligament prestrain values from experimental data (case 2)
10 11	553	Table 1c Prestrain obtained with a combination of automatic pre-computation and further manual
12 13	554	adjustment (case 3)
14 15	555	Table 2 Average RMS difference \pm SD between experimental and model-predicted kinematics
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		

Figure 1

249x159mm (800 x 800 DPI)

190x85mm (1200 x 1200 DPI)

0.3

0.1

0.04

0.00

57 58

59 60 Computer Methods in Biomechanics and Biomedical Engineering

Figure 5

239x134mm (600 x 600 DPI)

(b)

-5

-10 (-lateral

-15

-20

-25

+medial)mm

(d)

^{30 40} flexion(°)

 Specimen 1

Specimen 2 Specimen 3 Specimen 4

Specimen 5

Specimen 6

Numerical

30 40 flexion(°)

Experimental

(e)

Table 1a

Ligaments	ACL		PCL		MCL		LCL
Bundles	AM	PL	AL	PM	MCLd	MCLs	
Stiffness(N/mm)	125	105	125	65	45	25	60

Table 1b: Case 2

	G	AC	L	РС	ĽL	M	CL	LCI
	Specimens		PL	AL	PM	MCLd	MCLs	LCL
	Specimen1	8	14	- 8	- 20	— 1	- 3	10
Prestrain (%)	Specimen2	6	17	-17	-3	10	5	10
	Specimen3	- 8	16	- 10	- 10	3	2	8
	Specimen4	4	20	- 16	- 15	6	2	10
	Specimen5	9	20	- 15	-6	8	4	7
	Specimen6	0	13	-9	4	-3	-2	9

Table 1c: Case 3

	Ligaments	AC	ĽL	PCL		MCL		
	& Bundles	AM	PL	AL	PM	MCLd	MCLs	LUL
	Specimen1	8	10	-2	- 8	8	3	6
	Specimen2	6	12	- 8	<u> </u>	6	3	5
%) u	Specimen3	8	10	- 8	- 8	2	1	4
estrai	Specimen4	10	10	— 9	- 5	2	3	6
Pr	Specimen5	10	13	- 5	<u> </u>	3	2	2
	Specimen6	6	6	-3	-3	4	3	3
		Ċ						
Table 2	22.							
0	A1 1/A 11 ° O		· • •			а <i>и</i> с.	1	

Table 2

Flexion	Case	Abd/Add in°	Ext/Int in°	Post/Ant in mm	Sup/Inf in mm	Lat/Med in mm
	1	-	-	- 4	-	-
0 – 60°	2	2.4 ± 1.3	6.3 ± 6.2	5.0 ± 3.5	1.9 ± 1.8	1.2 ± 1.1
	3	1.5 ± 1.3	5.3 ± 5.1	3.4 ± 2.3	1.2 ± 0.8	2.0 ± 1.9
2						