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26 Abstract

27 Subject-specific tensioning of ligaments is essential for the stability of the knee joint and 

28 represents a challenging aspect in the development of finite element models. We aimed to 

29 introduce and evaluate a new procedure for the quantification of ligament prestrains from 

30 biplanar X-ray and CT data. Subject-specific model evaluation was performed by comparing 

31 predicted femorotibial kinematics with the in vitro response of six cadaveric specimens. The 

32 differences obtained using personalized models were comparable to those reported in similar 

33 studies in the literature. This study is the first step towards the use of simplified, personalized 

34 knee FE models in clinical context such as ligament balancing. 

35
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48 1. Introduction

49 The knee joint is highly susceptible to frequent injury of ligaments. If it remains untreated, has 

50 the probability of limiting joint stability, and can further lead to progression of joint arthritis 

51 (Fleming et al. 2005). In such scenario, early stage clinical intervention e.g., ligament repair or 

52 replacement is often recommended. For such therapeutic interventions and to properly plan 

53 surgical procedures, accurate knowledge of the biomechanical behavior of knee ligaments is 

54 fundamental.

55 Several experiments dealing with main knee ligaments (anterior cruciate ligament (ACL), 

56 posterior cruciate ligament (PCL), lateral collateral ligament (LCL) and medial collateral 

57 ligament (MCL)) have been carried out in the literature (Gardiner et al. 2001; Yoo et al. 2010; 

58 Aunan et al. 2012; Belvedere et al. 2012; Rochcongar et al. 2016; Pedersen et al. 2019). 

59 Although these studies have substantially increased knowledge on joint functions, yet the 

60 complexity of measurements, lesser availability of cadavers, ethical and cost implications have 

61 made data acquisition challenging. 

62 Alternatively, finite element (FE) models are commonly used as a reliable complementary 

63 means to experimental studies providing significant insight into knee joint biomechanics. A 

64 variety of modeling techniques have been utilized to model the joint structure, particularly 

65 ligaments.  Some of the strategies are steered by simplicity, while others concentrate on faithful 

66 capture of specimen-specific anatomy with varying levels of joint representation fidelity.  For 

67 example, some models included 3D geometries of ligaments with complex material behavior 

68 (Limbert et al. 2004; Peña et al. 2005; Kiapour et al. 2014; Orsi et al. 2016). Such approach 

69 allows to consider ligament wrapping behavior and analysis of local biomechanical response 

70 (e.g., 3D stresses and strains across tissue). Nevertheless, higher anatomically complex models 

71 require detailed image-based information of the soft tissue structures under consideration. 

72 Generation and simulation of such models often require manifold higher time than that for 
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73 simpler models (Bolcos et al. 2018).  Therefore, simpler models may be beneficial for studies 

74 where higher number of subjects need to be analyzed and, at the same time, capable of 

75 predicting joint mechanics. 

76 In an attempt for model simplification, other authors have proposed to represent ligaments 

77 as bundles of springs or tension only cables (Moglo and Shirazi-Adl 2005; Adouni and Shirazi-

78 Adl 2009; Baldwin et al. 2012). Although ligaments are exposed to both compressive and 

79 tensile states of stress, yet the contribution of tensile stress is substantially higher than others 

80 (Peña et al. 2006; Orsi et al. 2016). Therefore, such simplification is considered reasonable and 

81 recommended particularly for predicting joint kinematics (Naghibi Beidokhti et al. 2017). 

82 Nevertheless, personalization of ligament properties (stiffness and prestrain), although 

83 clinically essential to restore joint stability, yet represents a challenge for the community. For 

84 example, there is a consensus that graft under-tensioning could lead to joint laxity, which is 

85 biomechanically analogous to a ligament deficient knee (Sherman et al. 2012). In addition to 

86 that, owing to variable morphology, different bundles of a ligament (e.g., two main fiber 

87 bundles of ACL) may exhibit variable prestrain by becoming active at different flexion angles 

88 (Girgis et al. 1975). From a modeling perspective, it has also been reported that incorrectly 

89 applied ligament prestrain can have a considerable effect on the kinematics of the knee  (Mesfar 

90 and Shirazi-Adl 2006; Rachmat et al. 2016). To tackle this issue, some authors made subject-

91 specific adjustment using inverse methods to calibrate specific ligament constitutive behavior. 

92 Models either used laxity tests (Baldwin et al. 2012; Naghibi Beidokhti et al. 2017) or 

93 distraction loading (Zaylor et al. 2019) to estimate ligament properties by minimizing 

94 differences between model-predicted and experimental kinetics. Such calibrations are, 

95 however, likely to be computationally expensive. 

96 In light of the above considerations, we proposed an original framework for calibrating 

97 subject-specific tensioning of FE knee ligaments based on experimentally acquired data. 
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98 Subject-specific model evaluation was performed by comparing predicted femorotibial 

99 kinematics under passive flexion with the experimental data of six cadaveric specimens. We 

100 hypothesized that the employed methodology of building personalized FE models with 

101 experiment-based prestrains could predict overall passive kinematics of the knee joint. 

102 2. Materials and methods

103 The overall workflow of generating specimen-specific FE mesh is presented in figure 1

104 [Figure 1 here]

105 2.1.  Experimental data acquisition

106 We obtained the experimental knee kinematic responses in a previous study (Rochcongar et al. 

107 2016). The experimental procedure is recalled briefly hereafter. Six fresh-frozen lower limb 

108 specimens harvested from subjects with age range 47 to 79 years, were tested under passive 

109 flexion-extension on a previously validated kinematic test-bench (Hsieh and Draganich 1997; 

110 Azmy et al. 2010). Skin and muscles were removed except eight centimeters of quadriceps 

111 tendon and popliteus muscle prior to the kinematic data collection. All other relevant joint soft 

112 tissue structures (such as ligaments, articular capsule) were kept intact during kinematic data 

113 acquisition. The femur was kept fixed, and flexion movement was introduced to the tibia by a 

114 rope and pulley system. During flexion, the positions of the three marker tripods placed on the 

115 femur, tibia, and patella were recorded using an optoelectronic system (Polaris, Northern 

116 Digital Inc., Canada). These recorded positions allowed establishing ancillary reference frames 

117 (referred to as ) from  (before applying flexion load) till the end of flexion  𝑅_𝐴𝑁𝐶POL(𝑡) 𝑡 = 0

118 (Figure 1(a)). Measurement uncertainties with the optoelectronic system was previously 

119 assessed.  Overall uncertainties of less than 0.5 mm in translational and 1° in rotational DoF 

120 were obtained (Azmy et al. 2010). 

121 In addition, two orthogonal radiographs of each specimen were acquired using an EOS 

122 biplanar X-ray system (EOS, EOS-imaging, France) to obtain 3D digital models of the bones 
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123 and tripod markers. From the 3D models, anatomical reference frames (referred to as 

124 ) for the femur, tibia, and patella were defined (Schlatterer et al. 2009). Ancillary 𝑅_𝐴𝑁𝐴𝑇EOS

125 reference frames (referred to as ) from the tripod markers were also defined allowing  𝑅_𝐴𝑁𝐶EOS

126 a relationship between anatomical frames and ancillary frames, termed as 𝑀_𝐴𝑁𝐴𝑇_𝐴𝑁𝐶 

127 (Figure 1(b)). This relation was further used for converting acquired kinematic data, 𝑅_𝐴𝑁𝐶POL

128 to relative patellofemoral and tibiofemoral motions in the femur anatomical reference frame (𝑡) 

129 with Cardan sequence .  𝑍𝑌′𝑋′′

130 After the kinematic data acquisition, each specimen was fully dissected to identify the 

131 ligament attachment sites. Absence of trauma and integrity of soft tissue structures was checked 

132 during the dissection. An experienced surgeon identified the origin and insertion locations for 

133 the following ligaments: anteromedial (AM) and posterolateral (PL) bundles of ACL, 

134 posteromedial (PM) and anterolateral (AL) bundles of PCL, superficial (MCLs) and deep 

135 (MCLd) bundles of MCL, and LCL. Identified locations were marked with radio-opaque 

136 paints, and the bones were scanned using a computed tomography (CT) scanner (Philips, Best, 

137 The Netherlands). 3D digital models of each dissected specimen were acquired using MITK-

138 GEM (version 5.0) giving anatomical frames ( ) and ligament attachment sites (𝑅_𝐴𝑁𝐴𝑇CT

139 ) in the CT scanner system of reference (Figure 1(c)). 3D Digital models and digital 𝑃_𝐿𝐼𝐺𝐴CT

140 footprints of ligament attachment sites were then registered into experimental initial 

141 configuration.  Registration was performed with biplanar X-ray data. Once the centroidal 

142 coordinates of the attachment sites were known, the end-to-end distance of the ligaments origin 

143 and insertion site was computed at experimental initial configuration. For the sake of 

144 readability, end-to-end distance will be referred to as ligament length hereafter. 

145 2.2.  Initial bone pose estimation
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146 Relative pose (position and orientation) of tibia and patella w.r.t. the femur at initial unloaded 

147 configuration was obtained using the relation  and experimental kinematic data, 𝑀_𝐴𝑁𝐴𝑇_𝐴𝑁𝐶

148  at time=0 (Figure 1(d)). 𝑅_𝐴𝑁𝐶POL(𝑡)

149 2.3.  Specimen specific FE model 

150 2.3.1. FE mesh

151 First, subject-specific FE hexahedral mesh for each bony segment was created based on the 

152 subject-specific CT based digital models (Figure 1(e)) (Lahkar et al. 2018). Then, only the 

153 surface mesh (4-noded shell element) was kept to represent bones and cartilage to reduce 

154 computational cost (Germain et al. 2016). Then, mesh smoothing was performed at the articular 

155 surfaces to improve the mesh quality (Taubin 1995). 

156 Mesh quality was assessed using standard ANSYS mesh quality indicators: aspect ratio, 

157 parallel deviation, maximum angle, Jacobian ratio, and warping factor. The surface accuracy 

158 of specimen specific mesh for each specimen was compared against respective 3D digital 

159 model (i.e. segmented 3D geometry from CT data) by registering Hausdorff distance expressed 

160 in mean (2RMS) values.  

161 2.3.2. Knee joint FE model 

162 Bones were assumed to be isotropic linear elastic with Young’s modulus of 12000 MPa (Choi 

163 et al. 1990). As the loading pattern in the study is quasi-static, cartilage was assumed as single-

164 phase linear isotropic material (Eberhardt et al. 1990). Cartilage regions were modeled as 

165 cortico-cartilage material and assigned with Young’s modulus of 250 MPa to summarize the 

166 material properties of cortical bone and cartilage (Germain et al. 2016). A very thin strip of 

167 material between bones and cortico-cartilage region were also modeled with intermediate 

168 properties (2000 MPa) to limit mechanical discontinuity (Germain et al. 2016) (Figure 2). 

169 [Figure 2 here]
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170 Attachment sites for the cruciate and collateral ligaments were based on the already 

171 identified locations (Rochcongar et al. 2016). For other ligaments and tendons (femoro-patellar 

172 ligament, patellar tendon, quadriceps tendon, posterior capsule), general anatomical sites based 

173 on a priori knowledge of an anatomist were used. Each cruciate ligament was represented by 

174 2 bundles (Blankevoort and Huiskes 1991)  along with MCL (deep and superficial) (Smith et 

175 al. 2016). Posterior capsule and femoropatellar ligaments were each represented by 8 bundles 

176 (4 bundles in the medial and lateral side each), while quadriceps and patellar tendon as 4 

177 bundles each (Germain et al. 2016) and LCL as one (Meister et al. 2000). All ligaments and 

178 tendons were represented as point-to-point, tension-only cable elements as their contribution 

179 in tension is much higher than that in compression (Baldwin et al. 2009; Harris et al. 2016).  

180 Three frictionless surface-to-surface contact pairs were considered: tibia-femur cartilage 

181 (medial and lateral) and femur-patella cartilage with augmented penalty solution algorithm. 

182

183 2.3.3. Ligament material properties 

184 Three cases of ligament prestrain values (%ε) were considered for cruciate and collateral 

185 ligaments. No prestrain values for other ligaments were considered and stiffness (k) values for 

186 all the ligaments were adopted or estimated from our previous study (Germain et al. 2016). It 

187 is to be noted that constant stiffness values were applied across all specimens.  

188 [Figure 3 here]

189 Case 1: Generic material properties. Prestrain values for ACL (5%), PCL (−3%), MCL (0%) 

190 and LCL (0%) were adopted from previous study (Germain et al. 2016).

191 Case 2: Automatic pre-computation from experimental data. For each specimen, ligament 

192 and bundle specific prestrains were automatically computed from the experimental ligament 

193 lengths using equation 1. This is illustrated for the MCL in figure 3. 

194 Case 3: Combination of automatic pre-computation and further manual adjustment. 
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195 Initial values for the 7 ligament parameters (prestrains) were assigned with 

196 precomputed ligament prestrains. The minimum and maximum bounds for each parameter was 

197 defined from the literature (Blankevoort and Huiskes 1996; Baldwin et al. 2009). Each 

198 parameter at a time was modified by changing the previously assigned value by roughly 10% 

199 and RMS error between numerical and  experimental kinematics was observed for each DOF. 

200 Based on the error, a new parameter set was assigned.  Thus the procedure was repeated till 

201 rotational and translational RMS error became steady state. Stopping criteria was chosen as 

202 change in RMS error between two consecutive iterations is less than or equal to 0.1° for 

203 rotational and 0.1 mm for translation. 

204

205 (1)prestrain =  (
𝐿) ∗ 100 =  (𝐿 ― 𝐿0

𝐿 ) ∗ 100 

206 where, L is the experimental ligament length at initial configuration (before application of 

207 flexion load), and L0 is the zero-strain length at the end of flexion, with an assumption that 

208 ligaments experience no force after the prescribed maximum flexion angle.

209 2.3.4. FE model simulation states 

210 Three different configurations were defined to represent different simulation states applicable 

211 to all the FE models and all cases of ligament properties. As the models are built from the 

212 experimental initial configuration, the first state is referred to as (a) no-load or stress free 

213 configuration. The second state corresponds to the configuration after attaining equilibrium 

214 under prestrain effect, termed as (b) initial equilibrium configuration (or reference 

215 configuration). The third state corresponds to the deformed states of the model upon application 

216 of incremental rotational displacements on the tibial malleolus until 70° of flexion angle 

217 (Germain et al. 2016). Knee flexion took place at the third state and referred to as (c) current 

218 deformed configuration. Remaining DOFs were left unconstrained. Only geometric non-

219 linearity was considered for the model simulations. 
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220 2.3.5. Model evaluation: Knee joint kinematics 

221 The relative position and orientation of the tibia w.r.t. femur was computed based on their 

222 anatomical reference frames, as described in (Schlatterer et al. 2009) and interpreted in the 

223 femur anatomical reference frame. One-to-one model evaluation was performed by comparing 

224 predicted femorotibial kinematics to experimental measurements throughout flexion motion 

225 for both the cases 2 and 3. Specimen specific RMS differences between model-predicted and 

226 experimental measurements were computed based on values at 1° interval for a range of flexion 

227 angle 0−60°. Eventually, RMS difference with experimental data was averaged for all the 

228 specimens.

229 3. Results

230 3.1.  Mesh quality

231 Quality of individual knee joint FE mesh showed no occurrence of error in terms of ANSYS 

232 mesh quality indicators. 

233 3.2.  Surface representation accuracy 

234 [Figure 4 here]

235 FE mesh surface accuracy for the femur, tibia, and patella w.r.t. corresponding CT surface 

236 across all specimens were found less than or equal to (mean (2RMS) in mm) 0.04 (0.12), 0.06 

237 (0.18) and 0.05 (0.14) respectively. Error-values are pictorially represented in figure 4 for 

238 specimen 1 for the sake of example. 

239 3.3.  Estimation of subject-specific ligament material properties 

240 3.3.1. Case 2: Based on automatic pre-computation from experimental data

241 [Table 1a and Table 1b here]

242 Estimated ligament stiffness and pre-strain values computed according to the procedure 

243 described in subsection 2.3.3 (case 2) are presented in Table 1a and Table 1b, respectively. 
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244 Positive prestrain denotes tight condition and negative prestrain slack condition. Ligament 

245 prestrains showed both ligament-specific and specimen-specific variability.

246 3.3.2. Case 3: Combination of automatic pre-computation and further manual adjustment 

247 [Table 1c here]

248 Estimated ligament pre-strain values computed according to the procedure described in 

249 subsection 2.3.3 (case 3) are presented in Table 1c. Ligament stiffness values were kept the 

250 same as presented in Table 1a.

251 3.4.  One-to-one validation of knee joint kinematics 

252 On implementation of the generic ligament properties (case 1), only two FE models out of six 

253 achieved full convergence. Convergence in this study refers to successful attainment of 

254 mechanical equilibrium (within a default tolerance value of ANSYS) at each load step. 

255 Predicted kinematics showed large deviation from the experimental both in magnitude and 

256 trend (not reported in this manuscript as only two models achieved convergence). Using the 

257 ligament material properties computed automatically (case 2, Table 1b), 5 models out of 6 

258 achieved convergence throughout 60° of flexion. 

259 [Figure 5 and Figure 6 here]

260 Using the ligament material properties computed automatically combined with manual 

261 adjustment (case 3, Table 1c), all the FE knee models remained stable throughout the range of 

262 flexion. Individual run time was approximately 13 minutes per specimen. One-to-one 

263 comparison of model predicted femorotibial kinematics against corresponding in vitro results 

264 for all specimens are presented in Figure 5 and Figure 6 for automatically computed prestrains 

265 and adjusted ligament prestrains respectively. For both the cases, model kinematics for all DOF 

266 are shown from the reference configuration (state-b) until the end of flexion movement. 

267 [Table 2 here]
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268 Table 2 summarizes the RMS difference between model-predicted and experimental 

269 kinematics for the range of flexion angle 0−60° for the two cases (case 2 and case 3) of ligament 

270 material properties. Since 5 models out of 6 were converged while applying automatically 

271 computed ligament prestrains, differences are presented for 5 models.

272 4. Discussion

273 Subject-specific tensioning of ligaments is essential in developing personalized knee FE 

274 models. In this study, we built subject-specific knee FE model with CT-based geometry and 

275 evaluated a new procedure for subject-specific calibration of ligaments prestrain from biplanar 

276 X-ray data. Predicted femorotibial kinematics of each model was compared to the 

277 corresponding in vitro response for three different cases of ligament properties (prestrain). 

278 First, we investigated whether the FE models with generic prestrain values can capture inter-

279 individual variability of the in vitro kinematics. Second, experimentally obtained prestrains 

280 were recruited to the FE models and predicted kinematics were observed (case 2). Third, model 

281 kinematics were observed with respect to calibrated ligament properties based on the 

282 combination of pre-computed prestrains and further adjustment (case 3). For case 2, RMS 

283 differences between model-predicted and experimental results for abduction/adduction and 

284 external/internal rotation were less than or equal to 2.4° and 6.3° respectively. For translation 

285 kinematics, the differences observed were less than or equal to 5.0 mm, 1.9 mm and 1.2 mm 

286 respectively for posterior/anterior, superior/inferior, and lateral/medial motions. For case 3, 

287 improvement in model kinematics was observed with RMS differences 1.5° and 5.3° for 

288 abduction/adduction and external/internal rotation. Differences for posterior/anterior, 

289 superior/inferior, and lateral/medial motions were 3.4 mm, 1.2 mm and 2 mm respectively. 

290 These results show that the proposed methodology allows us to obtain a good first 

291 approximation of the prestrain values with further manual adjustment to improve the kinematic 

292 prediction. 
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293 As far as the authors are aware of, there are numerous challenges exist in determining 

294 ligament prestrain. Challenges are linked to both measurement issues and modeling issues. 

295 Measurement challenges are mainly methodological issues related to identification of ligament 

296 attachment sites and determination of ligament elongation pattern during motion (Woo et al. 

297 1990; Gardiner et al. 2001; Belvedere et al. 2012). Because of such difficulties, FE models in 

298 general, adopt prestrain values from other studies available in the literature (Yang et al. 2010; 

299 Galbusera et al. 2014). As these values are adopted from other experimental studies and not 

300 corresponding to the specimen under consideration, thereby cannot be considered as subject-

301 specific. Optimization methods have also been extensively used to calibrate specific ligament 

302 constitutive behavior. These approaches particularly used laxity tests to calibrate their models 

303 (Baldwin et al. 2012; Naghibi Beidokhti et al. 2017). Such approaches are, although shown 

304 effective to attain specimen-specific ligament properties, yet computationally expensive.  

305 The current study focused on the development and evaluation of a new procedure for 

306 subject-specific tensioning of FE knee ligaments. The proposed procedure builds upon data 

307 previously collected during an experimental investigation conducted to identify ligament 

308 (cruciate and collateral) attachment sites, and to determine the ligament elongation patterns 

309 during passive knee flexion (Rochcongar et al. 2016). The FE model replicates the natural 

310 ligament (cruciate and collateral) insertions since these are derived from the radio opaque paint 

311 locations painted on the specimens prior to the CT-scan (figure 1). The values obtained were 

312 consistent with those experimental measurements reported in the literature (Bicer et al. 2010; 

313 Belvedere et al. 2012).  It is worth mentioning that because of the lack of experimental data for 

314 other ligaments, generic insertion sites were employed. Although, it is difficult to directly 

315 compare the estimated prestrains with similar studies in literature because of variability in 

316 ligament geometry and material property, yet the prestrain values were found within the range 

317 confirmed by others (Wismans et al. 1980; Amiri et al. 2006; Zaylor et al. 2019). Also, most 
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318 of the ligaments were found in tensed state at full extension except PCL, which is overall in 

319 agreement with the literature (Blankevoort and Huiskes 1991; Moglo and Shirazi-Adl 2005; 

320 Guess et al. 2016).  Similarly, predicted kinematic response also showed good correspondence 

321 with the experimental results for all specimens. The experimental-numerical differences found 

322 in this study were comparable to similar studies reported in the literature (Harris et al. 2016; 

323 Naghibi Beidokhti et al. 2017). For instance, Beidokhti et al. reported an average RMS 

324 difference of 3.5° and 2.8° respectively for abduction/adduction and external/internal rotations. 

325 For anterior/posterior, superior/inferior and lateral/medial motions the differences were 3 mm, 

326 2.3 mm and 1.6 mm respectively. It is worthwhile to mention that when generic properties were 

327 used, most of the models couldn’t reach convergence. As previously reported by other research 

328 teams (e.g., (Schwartz et al., 2019)) focusing on the medial collateral ligament) convergence 

329 difficulty appeared in this kind of models when material properties were not personalized. 

330 The procedure to compute ligament prestrain directly from experimental data (Case 3) 

331 provided satisfactory initial guess, based on which model estimated kinematics were already 

332 in good agreement with the experimental data. As this approach appears to be computationally 

333 inexpensive (15-20 sec to obtain ligament specific prestrain for a single knee model) and 

334 methodologically simple, it may serve as a reliable alternative for estimating subject-specific 

335 ligament prestrain values. To be noted that no direct evaluation of the ligament tensions was 

336 performed in the present study. The decision to implement the current technique as an 

337 alternative has to be conducted with caution. For successful implementation of this technique 

338 towards clinics, exhaustive model evaluation under various loading conditions is required 

339 including ligament tension and contact stress. Nevertheless, validating joint kinematics as a 

340 first step could be valuable to show feasibility of the current approach. 

341 This study contains some considerations and limitations worth highlighting. First, 

342 while comparing with experimental kinematics, model-predicted results were shown from 
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343 reference configuration (state-b). It is an auto-equilibrated configuration under the prestrain 

344 effect, which is not concurrent with initial experimental configuration and difficult to calibrate. 

345 This results in absolute offset from the experimental kinematics (Baldwin et al. 2012), although 

346 masked in relative kinematics. Second, we acknowledge that one of the sources of 

347 discrepancies between experimental-numerical kinematics may come from model 

348 simplifications and assumptions. It is also to be noted that predicted kinematics with a 

349 combination of initial guess from experimental data and  further manual adjustment displayed 

350 closer correspondence to in vitro data. Although the difference is minimal, this may be 

351 attributed to the representation of overall joint soft tissue structure with simple ligamentous 

352 structures without including cartilage layers and menisci. As the proposed methodology is not 

353 based on current state-of-the-art approaches (such as MRI based complex models with detailed 

354 soft tissue structures), there was difficulty to obtain subject-specific geometry of cartilage and 

355 menisci with available imaging modalities (CT and biplanar X-ray) employed in our study. 

356 Such simplification, therefore doesn’t hold if we are interested in more detailed local insights, 

357 e.g., cartilage contact stress. However, for analysis, such as graft tensioning effect on knee 

358 response while reconstructing ACL, such simplification was considered relevant (Peña et al., 

359 2005). Third, exclusion of meniscus may overestimate the role of the ligaments in constraining 

360 the joint and providing stability (Harris et al. 2016). However, other studies reported no 

361 remarkable influence of meniscus on the assessment of the knee joint kinematics, especially 

362 for the flexion range 0°–90° (Amiri et al. 2006; Guess et al. 2010). Fourth, ligaments and 

363 tendons were represented as bundles of 1D elements, which may not capture actual ligament 

364 length variation, as they do not account for material continuum, fiber twisting or wrapping. 

365 Yet, such simplification provides faster solutions and recommended, particularly for the 

366 prediction of knee kinematic parameters (Bolkus et al., 2018; Naghibi Beidokhti et al., 2017). 

367 Fifth, we chose to personalize only ligament prestrains, although stiffness values vary from 
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368 subject to subject.  This consideration was based on sensitivity analyses found in literature, 

369 where model predicted kinematics are proclaimed to be highly sensitive to strain state at initial 

370 configuration rather than stiffness values (Wismans et al. 1980; Peña et al. 2005). Besides, the 

371 models were validated only under passive flexion load, which may not imitate an in-vivo 

372 situation of clinical interest, yet could be a first step of assessing the potential of the models 

373 towards complex scenarios. In this contribution, a maximum flexion angle of 70° was 

374 considered to calibrate the model as this range covers the most common amplitude of in-vivo 

375 motion under level walking, during which ligaments offer a substantial contribution to knee 

376 stability (Butler et al. 2007). However, perspective work will focus on calibrating the model 

377 up to 120° of knee flexion. We acknowledge that no influence of experimental uncertainty nor 

378 sensitivity of ligament attachment sites on predicted kinematics was performed. Future study 

379 is necessary to asses this issue. Finally, the study was limited to six specimens due to time and 

380 labor associated with CT segmentation, yet higher in number compared to other similar 

381 published studies. This might limit the model at the current state for clinical translation; 

382 however, it was imperative to build CT based models to minimize the impact of geometrical 

383 uncertainty in model predictions. 

384 In conclusion, as it was a first study to directly implement prestrain values on models 

385 directly from the experiment, which may find scopes in model-based clinical studies, such as 

386 planning of ligament balancing or reconstruction as it reduces complexity in model 

387 development (especially ligament calibration) as well as computational cost, while maintaining 

388 good correspondence with experimental data. In that aim, further model evaluation would be 

389 necessary for larger specimen size and in other clinically relevant scenarios. 

390
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525
526 Figure Captions
527
528 Figure 1. Schematic illustration for (a) kinematic test: position of tripod markers in Polaris coordinate 
529 system (CSYS), (b) biplanar X-ray: 3D digital models of bone and tripod markers giving anatomical 
530 and ancillary reference frames in EOS CSYS, (c) CT scan: Accurate 3D digital models of bone and 
531 ligament attachment sites giving anatomical reference frames and ligament attachment locations in CT 
532 CSYS, (d) knee in experimental initial configuration giving anatomical reference frames in Polaris 
533 CSYS, (e) CT based subject-specific FE mesh and ligament attachment sites in experimental initial 
534 configuration

535 Figure 2. FE model with soft tissues (only shown for the distal femur and proximal tibia region)

536 Figure 3. Experimental ligament length change for superficial MCL throughout the flexion movement. 
537 A similar strategy was implemented for other ligaments except for PCL, which is based on literature 
538 values

539 Figure 4. Surface representation accuracy as a Hausdorff distance for femur, tibia, and patella

540 Figure 5. One-to-one comparison of FE model kinematic predictions against corresponding 
541 experimental data for (a) – (b): rotational and for (c) – (e): translational femorotibial kinematics 
542 interpreted in femur anatomical reference frame. Results reported are based on the implementation of 
543 automatically computed ligament prestrains

544 Figure 6. One-to-one comparison of FE model kinematic predictions against corresponding 
545 experimental data for (a) – (b): rotational and for (c) – (e): translational femorotibial kinematics 
546 interpreted in femur anatomical reference frame. Results reported obtained using a combination of 
547 automatic pre-computation and further manual adjustment

548
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549 Table Headings
550

551 Table 1a Estimated ligament stiffness values for a single specimen

552 Table 1b Automatically computed ligament prestrain values from experimental data (case 2)

553 Table 1c Prestrain obtained with a combination of automatic pre-computation and further manual 

554 adjustment (case 3)

555 Table 2 Average RMS difference ± SD between experimental and model-predicted kinematics
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Table 1a

Ligaments ACL PCL MCL LCL

Bundles AM PL AL PM MCLd MCLs

Stiffness(N/mm) 125 105 125 65 45 25 60

Table 1b: Case 2

ACL PCL MCL
   Specimens

AM PL AL PM MCLd MCLs
LCL

Specimen1 8 14 8― 20― 1― 3― 10

Specimen2 6 17 17― 3― 10 5 10

Specimen3 8― 16 10― 10― 3 2 8

Specimen4 4 20 16― 15― 6 2 10

Pr
es

tra
in

 (%
)

Specimen5 9 20 15― 6― 8 4 7

Specimen6 0 13 9―    4 3― 2― 9
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Table 1c: Case 3

ACL PCL MCLLigaments

& Bundles AM PL AL PM MCLd MCLs
LCL

Specimen1 8 10 2― 8― 8 3 6

Specimen2 6 12 8― 4― 6 3 5

Specimen3 8 10 8― 8― 2 1 4

Specimen4 10 10 9― 5― 2 3 6

Specimen5 10 13 5― 5― 3 2 2Pr
es

tra
in

 (%
)

Specimen6 6 6 3― 3― 4 3 3

Table 2

Flexion Case Abd/Add in° Ext/Int in° Post/Ant in mm Sup/Inf in mm Lat/Med in mm

1 - - - - -

2 2.4 ± 1.3 6.3 ± 6.2 5.0 ± 3.5 1.9 ± 1.8 1.2 ± 1.1 0 – 60°

3 1.5 ± 1.3 5.3 ± 5.1 3.4 ± 2.3 1.2 ± 0.8 2.0 ± 1.9
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