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Abstract

Quantum computers can, in theory, impressively reduce the time required to solve

many pertinent problems. Such problems are found in applications as diverse as cryp-

tography, machine learning and chemistry, to name a few. However, in practice the set

of problems which can be solved depends on the amount and quality of the quantum

resources available. With the addition of more qubits, improvements in noise levels,

the development of quantum networks, and so on, comes more computing power. Mo-

tivated by the desire to measure the power of these devices as their capabilities change,

this thesis explores the verification, characterisation and benchmarking techniques that

are appropriate at each stage of development. We study the techniques that become

available with each advance, and the ways that such techniques can be used to guide

further development of quantum devices and their control software. Our focus is on ad-

vancements towards the first example of practical certifiable quantum computational

supremacy; when a quantum computer demonstrably outperforms all classical com-

puters at a task of practical concern. Doing so allows us to look a little beyond recent

demonstrations of quantum computational supremacy for its own sake.

Systems consisting of only a few noisy qubits can be simulated by a classical computer.

While this reduces the applicability of quantum technology of this size, we first provide

a methodology for using classical simulations to guide progress towards demonstra-

tions of quantum computational supremacy. Using measurements of the noise levels

present in the NQIT Q20:20 device, an ion-trap based quantum computer, we use clas-

sical simulations to predict and prepare for the performance of larger devices with

similar characteristics. We identify the noise sources that are the most impactful, and

simulate the effectiveness of approaches to mitigating them.

As quantum technology advances, classically simulating it becomes increasingly re-

source intensive. However, simulations remain useful as a point of comparison against

which to benchmark the performance of quantum devices. For so called ‘random quan-

tum circuits’, such benchmarking techniques have been developed to support claims

of demonstrations of quantum computational supremacy. To give better indications of

the device’s performance in practice, instances of computations derived for practical

applications have been used to benchmark devices. Our second contribution is to intro-

duce a suite of circuits derived from structures that are common to many instances of

computations derived for practical applications, contrasting with the aforementioned

approach of using a collection of particular instances. This allows us to make broadly

applicable predictions of performance, which are indicative of the device’s behaviour

when investigating applications of concern. We use this suite to benchmark all lay-

ers of the quantum computing stack, exploring the interplay between the compilation

strategy, device, and the computation itself. The circuit structures in the suite are

sufficiently diverse to provide insights into the noise channels present in several real

devices, and into the applications for which each quantum computing stack is best

suited. We consider several figures of merit by which to assess performance when im-

plementing these circuits, taking care to minimise the required number of uses of the

quantum device.

As our third contribution, we consider benchmarking devices performing Instanta-

iii



neous Quantum Polynomial time (IQP) computations; a subset of all the computa-

tions quantum computers are capable of performing in polynomial time. By using

only a commuting gate set, IQP circuits do not require the development of a univer-

sal quantum computer, but are still thought impossible to simulate efficiently on a

classical computer. Utilising a small quantum network, which allows for the trans-

mission of single qubits, we introduce an approach to benchmarking the performance

of devices capable of implementing IQP computations. As the resource consump-

tion of our benchmarking technique grows reasonably as the size of the device grows,

it enables us to benchmark IQP capable devices when they are of sufficient size to

demonstrate quantum computational supremacy, and indeed to certify demonstrations

of quantum computational supremacy. The approach we introduce is constructed by

concealing some secret structure within an IQP computation. This structure can be

taken advantage of by a quantum computer, but not by a classical one, in order to

prove it is capable of accurately implementing IQP circuits. To achieve this we derive

an implementation of IQP circuits which keeps the computation, and as a result the

structure introduced, hidden from the device being tested. We prove this implementa-

tion to be information-theoretically and composably secure.

In the work described above we explore verification, characterisation and benchmark-

ing of quantum technology both as it advances to demonstrations of quantum computa-

tional supremacy, and when it is applied to real world problems. Finally, we consider

demonstrations of quantum computational supremacy with an instance of these real

world problems. We consider quantum machine learning, and generative modelling in

particular. Generative modelling is the task of producing new samples from a distri-

bution, given a collection of samples from that distribution. We introduce and define

‘quantum learning supremacy’, which captures our intuitive notion of a demonstration

of quantum computational supremacy in this setting, and allows us to speak formally

about generative modelling tasks that can be completed by quantum, but not classical,

computers. We introduce the Quantum Circuit Ising Born Machine (QCIBM), which

consists of a parametrised quantum circuit and a classical optimisation loop to train

the parameters, as a route to demonstrating quantum learning supremacy. We adapt

results that exist for IQP circuits in order to argue that the QCIBM might indeed be

used to demonstrate quantum learning supremacy. We discuss training procedures for

the QCIBM, and Quantum Circuit Born Machines generally, and their implications on

demonstrations of quantum learning supremacy.
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Lay Summary
In recent decades, computers have become ubiquitous in all walks of life. The com-

puters which are prevalent around us today, which we call ‘classical computers’ are

used for computations as disparate as performing basic arithmetic and predicting the

weather. ‘Quantum computers’ are an emerging technology which, unlike classical

computers, make use of the effects of quantum mechanics to perform computation. In

principle doing so allows quantum computers to quickly perform computations that

would take a classical computer millennia .

However, as with classical computers, the computations that a quantum computer can

perform might be limited by the amount of data that it can process, and by corrupting

factors such as errors. Indeed the quantum computers that exist now are extremely

prone to errors, and are very limited in the amount of data they can process. In this

thesis we consider what these small and noisy quantum computers can be used for, and

how to assess their performance. Our contributions can be divided as follows:

Chapter 2: We suppose we know how well individual components that make up a

quantum computer work, but not how well they would work together. We use

classical computers to simulate how well a bigger quantum computer, built up

from these small components, would work. We use these simulations to deter-

mine how to improve the individual components, and how best to utilise and

combine them, so that the performance of the larger device is improved.

Chapter 3: We suppose that the larger quantum computers simulated in Chapter 2

have been built, and explore how to assess their performance directly. Indeed, we

consider a few such devices which are available today. We specify computations

which measure how well these devices would perform when used for pertinent

applications. This uses classical simulation, but as a point of comparison rather

than as a predictive tool as in Chapter 2. We determine which of the quantum

computers considered are best suited for which application, and which properties

of those quantum computers lead to better performance.

Chapter 4: We consider devices that are so large that we cannot use classical simula-

tion to check how well they perform. Instead we present a particular computation

that can be run on a quantum computer in order to measure its capabilities. This

computation could not be performed by any classical computer, and so can be

used to show that quantum computers are more powerful than classical com-

puters. However the computation does not require a large, noiseless quantum

computer.

Chapter 5: Finally, as in Chapter 4, we consider quantum computers which can out-

perform classical computers, but which are still quite small and noisy. We ex-

plore the ways in which to use these devices for practical applications; in partic-

ular by designing a machine learning algorithm using such quantum computers.

We argue that there are some features of a collection of data which could be

learnt by this algorithm, but not any algorithm running on a classical computer.
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Chapter 0

Introduction

Outside of the size and speed regimes of our everyday experience, many surprising

behaviours emerge. This is true of the behaviour of atoms and subatomic particles,

which, during the first half of the 20th century, quantum mechanics was developed to

explain. The theory arose from a series of discoveries in the early part of the century,

notable amongst which are a solution to the black-body radiation problem by Max

Planck in 1900, and an explanation of the photoelectric effect by Albert Einstein in

1905. A flurry of further discoveries followed [25].

Those physical theories that predate quantum mechanics and the theories of relativity,

referred to collectively as ‘classical mechanics’, well describe slow moving macro-

scopic objects. While these theories fall short of making accurate predictions in small

size regimes, they explain most familiar everyday phenomena. In contrast, several

predictions of quantum mechanics were, and remain, unfamiliar and counter-intuitive.

Phenomena such as quantum tunnelling, which allows a particle to pass though a bar-

rier, or quantum entanglement, which Einstein famously referred to as “spooky action

at a distance”, defied expectations at the time. The ‘measurement problem’, which

arises from the probabilistic, observer dependent, nature of measurements in quantum

theory, eludes explanation even today. Despite the surprising nature of the predictions

of quantum mechanics, many have been experimentally verified. This is so much the

case that there are now everyday technologies, such as lasers and semi-conductor de-

vices, which rely on uniquely quantum mechanical phenomena.

In the 1980s it was proposed that the quantum mechanical properties of physical sys-

tems could be used to reduce the resource costs of performing some computations. This

is to say, for example, that the time taken to perform a computation may be reduced if a

‘quantum computer’ could be used, as compared to the time taken by a ‘classical com-

puter’. Initially this idea was inspired by the apparently natural application of quantum

computers to the problem of simulating physical systems [26]. The laws of quantum

mechanics apply to such systems, and their classical simulation proves extremely dif-

ficult. Indeed it was a seminal result in the field which showed that such simulations

can be achieved on a quantum computer [27]. Since this initial proposal, it has become

apparent that the simulation of physical systems is only one of many applications of

quantum computers [28, 29].
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Chapter 0. Introduction

A digital quantum computer, referred to in this thesis as simply a quantum computer,

can be formalised as acting a sequence of ‘quantum gates’, which are local unitary

transformations, on ‘qubits’, which are 2 level quantum systems [30]. This model

of computation is sufficient to simulate a ‘Turing machine’, the archetypal model of

classical computing, but also to simulate the evolution of physical systems [27, 31, 32]

as mentioned above. Importantly, this formalism enabled the discovery of many other

domains of interest to which quantum computers may be fruitfully applied. To name

but a few, these include: cryptography [5, 8, 33], search and optimisation [16, 34–36],

linear algebra [9], and random walks [37].

One particularly important example application of quantum computing is through

Shor’s algorithm for prime factorisation [33]. The problem solved by Shor’s algo-

rithm is: given the product of two primes N = p× q, to find p and q. These primes

can be found by running Shor’s algorithm on a quantum computer, with the number of

time steps required significantly reduced as compared to the best known classical algo-

rithm [38]. The security of the widely used RSA encryption scheme relies on factoring

being hard [20], implying that it is not secure in the presence of quantum computers.

Because of the ubiquitous use of RSA, Shor’s algorithm has come to epitomise the

pertinence of quantum computers.

Quantum Computational Supremacy

At present, the advantage over classical approaches of the aforementioned applications

of quantum computers is predominately justified by theoretical performance predic-

tions, rather than practical demonstrations of this advantage. Pragmatically, the goal

is to experimentally demonstrate one gains an advantage in solving a set of problems

by using a device which utilises quantum mechanics. While what this entails is some-

what subjective, in this thesis we will say that a given device demonstrates quantum

computational supremacy1 [39, 40] by disproving the following hypothesis:

For any problem, there is a classical machine performing as well or better at solving

the problem than the given device.

As this advantage is measured relative to solving the same set of problems using any

available purely classical machine, it is implicitly ensured that a device demonstrating

quantum computational supremacy utilises some uniquely quantum phenomena. In

this thesis we will almost always measure this advantage by comparing the number of

computing steps required to complete a computation.2

From this definition, one can extract two conditions that need to be fulfilled in order to

demonstrate quantum computational supremacy.

1. Provide a theoretical proof that some quantum algorithm outperforms the best

possible classical algorithm for the same task.

1Many other terms are regularly used interchangeably with quantum computational supremacy. In

particular variations upon “quantum-advantage” or “quantum-superiority” are also popular.
2In practice other measures such as the energy consumption may be of concern.
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2. Provide experimental evidence of such an advantage via an implementation of

this algorithm.

The first condition ensures that a demonstration of quantum computational supremacy

is not just a result of asymmetric technological advancement. This is to say, it avoids

the situation where quantum computers outperform classical computers at some fixed

time, but classical computers could always perform equally as well as quantum com-

puters after the development of new classical technology. This condition will not be of

concern from a purely practical point of view, as users will endeavour to solve prob-

lems by whichever means is the most efficient at the time, regardless of the technology

that may be available in the future. The latter condition ensures that there are no

unforeseen hurdles to exploiting the advantage that quantum computers provide. This

includes both technological hurdles, and hitherto misunderstood physical laws limiting

the precise control of quantum systems.

As mentioned, Shor’s algorithm is one example of a quantum algorithm which solves

a problem, in this case prime factorisation, in fewer time steps than the best know clas-

sical algorithm for solving the same problem. However it fails on both counts as a

means to demonstrate quantum computational supremacy. This is respectively because

the classical hardness of factoring is poorly understood, and because the resource re-

quirements of Shor’s algorithm are significantly beyond that which is available with

current realisations of quantum computers [41]. Similarly there remain hurdles to the

use of the simulation of physical systems as a means to demonstrate quantum com-

putational supremacy. Firstly, as with Shor’s algorithm, the classical hardness of per-

forming such simulations is poorly understood at present. Secondly, and perhaps more

philosophically, it appears undesirable to claim a demonstration of quantum compu-

tational supremacy was performed by some large molecule simulating its own evolu-

tions. For this reason, it is often taken that a device demonstrating quantum compu-

tational supremacy should be programmable or controllable in some way. While we

leave ‘programmability’ somewhat poorly defined, we will take it to mean that the

device may be used for a wide selection of computations, as determined by a user.

Noisy Intermediate Scale Quantum Technology

Many possible realisations of a quantum computer are known [42] and include, for

example, photonic quantum computers [43, 44], superconducting quantum computers

[45], and quantum computers based on trapped ions [46, 47]. Each implementation

has its own advantages and disadvantages, and a popular measure of the quality of a

realisation of a quantum computer is via a comparison to DiVincenzo’s criteria [48].

Loosely speaking this amounts to requiring that: ‘well-characterised’ qubits can be

added to the system at not too great a cost; there is available a finite ‘universal’ set

of gates which are collectively sufficient to perform any computation that is possible

within the quantum computing model; quantum states can be initialised and measured;

and errors are not too impactful, or can be corrected.3

3DiVincenzo’s criteria also includes two criteria that are necessary for quantum communication.

These are namely that qubits can be converted between stationary and ‘flying’ qubits, and that flying

qubits can be moved between locations.
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At present quantum computing devices meet these criteria to only a limited degree.

Indeed, the quantum computers available at present are of insufficient size, measured

in number of qubits, to implement many of the most impactful protocols. Adding

sufficiently many qubits appears challenging. Besides being few in number (less than

100), qubits in existing technology are also susceptible to ‘noise’ which can interfere

with a computation being performed. This noise perturbs the quantum state, and results

from interactions between the quantum device and its environment. This interaction

breaks the ideal assumption that a quantum computer can be affected by a programmer,

and nothing else.

In general, the threshold theorem for quantum computation states that, provided the

noise levels in the quantum computation can be reduced below a constant value, 4 error

correcting codes 5 can reduce the error arbitrarily [57]. Error correction codes allow for

computations to be performed on logical qubits, which are often built by redundantly

storing information on many physical qubits. However, implementing error correction

codes of the form demanded by the threshold theorem may require several thousand

qubits [54]. This is unfeasible with current technology, possibly raising the cost of

Shor’s algorithm, and other pertinent protocols, to a few million qubits [58, 59].

However, the difference between the resources required to perform a demonstration

of quantum computational supremacy, and those that are required to perform error-

corrected quantum computation, appears to be very large [60]. When qubits are noisy,

and behave in a poorly controlled manner, they can still, for example, be used to

perform certain types of random number generation. These ‘sampling problems’ are

thought not to be accessible to classical computers [60]. Those noisy quantum devices

which are not large enough to implement fault-tolerant quantum computations, but

which are large enough to demonstrate quantum computational supremacy, are called

the Noisy Intermediate Scale Quantum (NISQ) devices [12]. The term NISQ focuses

on hardware, but we may use the term ‘NISQ-algorithm’, or ‘near-term application’ to

refer to protocols that may run on NISQ hardware.

There have been several proposals of sampling problems which could demonstrate

quantum computational supremacy using physical architectures with a significantly

reduced resource cost as compared to error corrected quantum computers [61–63].

Amongst these proposals are Instantaneous Quantum Poly-time (IQP) circuits [63],

which are a subset of all quantum circuits. This subset is namely those circuits that

are constructed only from gates that commute with each other. This has several prac-

tical advantages, including: a reduced gate set, which may be technically easier to

implement; and potentially improved circuit optimisation capabilities as a result of

the commuting gate set. Because of these advantages, and others, IQP circuits are of

4Presently there appears to be a gap between the error rates needed to achieve quantum computa-

tional supremacy and those needed to facilitate fault-tolerance. There are conflicting views on whether

this gap is insurmountable [49, 50].
5The first error correction codes where developed by Shor [51] and Steane [52] in the 1990s. In

the intervening period the problem has attracted much attention, with surface codes being amongst the

most promising developments [53]. This thesis is concerned with quantum computers that have too

few qubits with too high noise levels to perform significant error correction, and so we do not review

progress in the area. We direct the reader to several elegantly constructed reviews [53–56].
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particular concern in this thesis.

While the experimental realisation of these sampling problems may be within reach,

the theoretical proofs that they outperform classical computers depend on conjectures

about the computational hardness of certain computations. However, these conjectures

are certainly more believable than the rather circumstantial evidence that factoring

should be hard; based largely on no fast classical algorithm having been found. In-

terestingly, these theoretical results extend to give guarantees about the difficulty that

a classical computer would have in reproducing the outputs of a quantum computer

subject to some limited forms of noise [61, 64–66]. This further aligns these sampling

problems to NISQ technology.

Besides their use as a means to demonstrate quantum computational supremacy, it is

also of interest to study how NISQ technology can be used for practical applications

[67, 68]. It is common, although not always the case, that protocols run on NISQ

technology are of the variational kind [67]. The general approach of variational algo-

rithms is to update the parameters of a Parametrised Quantum Circuit (PQC) until the

outputs of the circuit minimise some ‘cost function’. This cost function may indicate

how close the output state is to the ground state of some Hamiltonian, or how close

the distribution of outputs is to a desired one. Typically the cost function is calculated

by a classical computer, which minimises the number of operations that need to be

performed by the quantum computer, and aligns the approach with NISQ technology.

Amongst the first variational quantum algorithm were Variational Quantum Eigen-

solvers (VQE) [22, 23], which are useful in, for example, quantum chemistry, and

the Quantum Approximate Optimisation Algorithm (QAOA) [16] for solving combi-

natorial optimisation problems. Outside of chemistry and combinatorial optimisation,

variational quantum algorithms have been used to: solve numerical problems such as

factoring [69]; solve problems in finance such a portfolio optimisation [70]; and ex-

plore the prospects for machine learning [14, 71]. In each case the components of the

variational algorithm will vary. In particular the choice of the form of the PQC will

depend on the problem, and possibly on the quantum device. As such some devices

will perform better at some applications.

Quantum Characterisation Verification and Validation

Note that the requirement to provide experimental evidence as part of a demonstration

of quantum computational supremacy is a multi-faceted one. While we have discussed

the technological restrictions to doing so, verification of such a demonstration pro-

vides further theoretical challenges. Explicitly, we would require that the solution to

a problem arrived at by a quantum computer could be checked for its correctness by a

classical computer. Shor’s algorithm lends itself well to this particular problem as the

factors p and q can be multiplied together to check that they do indeed constitute fac-

tors of N. This gives an approach to verifying the solution to a very particular problem

solved on a quantum computer. However, in general it is not clear that the solutions to a

computation which can only be arrived at by a quantum computer could be verified by

a classical computer. By construction, repeating the computation on a classical com-

puter in order to check by comparison the solution arrived at by a quantum computer
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would not be possible.

In the case of large universal error-corrected quantum computers, there exist schemes

to verify the correct implementation of any quantum computation [72–80]. Instead

of checking the solution directly, these schemes work by checking that each step of

the computation is implemented faithfully. These rely on the ‘Client’, who wishes to

check for the correct implementation of a computation by the ‘Server’, either: hav-

ing access to a small quantum computer [72–76, 80], being able to play two servers off

against each other [78, 79], or being able to safely make assumptions about the compu-

tational hardness of some particular problems [77]. Unfortunately, these approaches to

verification of universal quantum computation are beyond the reach of NISQ devices,

requiring many more qubits, and much lower noise levels, than are currently available.

At the other extreme, for very small systems consisting of only a few qubits, Quan-

tum Characterization, Validation, and Verification (QCVV) protocols focus on proper-

ties of one or several qubits, and quantify their exposure to noise [81]. For example,

procedures such as randomised benchmarking [18, 19] and gate set tomography [82]

provide insights into the error rates of gates. This information is highly valuable,

but, taken alone, provides limited insights into a device’s practical performance. In-

deed, as quantum computers evolve from bespoke laboratory experiments comprising a

handful of qubits, to more general-purpose, programmable, commercial-grade systems

[83, 84], and on towards large devices that might demonstrate quantum computational

supremacy, new techniques for characterising them are needed at each step.

Summary of Thesis

As the above discussion highlights, the problems to which quantum computing can

be applied depends heavily on how advanced the underlying quantum technology is.

Similarly, the QCVV protocols that are accessible, and desirable, vary as technology

advances. In this spirit it is the stated goal of this thesis to:

Explore the QCVV protocols that are appropriate as quantum technology develops. In

doing so, understand which applications of quantum technology are the most fruitful

at each stage of the progress of technology.

The particular domains of interest of each of the chapters of this thesis are compared

here and summarised in Table 1. With the exception of Chapter 1, which contains some

preliminary material, and should be read first, the chapters of this thesis can be read

independently. They are however ordered so that the technological requirements of the

schemes proposed within each chapter are roughly increasing throughout this thesis.

Chapter 2 Starting with early stage quantum technology, we consider the utility of

the properties uncovered by QCVV protocols run on very small quantum computers.

The properties we use include information about the noise levels of individual qubits

and gates. While instructive, this information reveals little about the performance of

the device as a whole, when implementing computations, or as the size of the device

increases. This makes it hard to prioritise further technological advancements, as the

impact of an advancement, say in the area of one of DiVincenzo’s criteria, on practical
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performance is unclear.

In Chapter 2 we propose a methodology for incorporating these noise level measure-

ments into classical simulations of larger devices with similar noise properties. By tak-

ing measurements of the noise levels present on existing small devices, in this case the

NQIT Q20:20 device, we can predict and prepare for the performance of these devices

as they grow in size. In particular, we will simulate the behaviour of IQP circuits that

are similar in form, but smaller in size, to those that might be used in a demonstration

of quantum computational supremacy. By varying the noise levels used within these

simulations we can identify dominant noise sources, and suggest the most urgent im-

provements that should be made. We propose approaches to making the improvements

identified, and use our methodology to evaluate these approaches.

Chapter 3 As larger quantum computers are developed, using classical simulation

to predict the performance of future developments becomes very resource intensive,

and eventually impossible. In this domain we instead consider the use of classical

simulation as a point of comparison with quantum technology, rather than as a means

of predicting the performance of larger devices, as we did in Chapter 2. In Chapter 3 we

introduce a suite of three classes of circuits to be used during such a benchmarking of a

device. Assessing the performance of a device at implementing these circuits requires

they be run on the quantum device, and that certain properties of the ideal output

from the device be calculated classically. The resource requirements of the classical

calculation of these properties scale poorly, and this approach to benchmarking would

not be possible for arbitrarily large devices. However by demonstrating that the circuits

we select have a particular distribution of output probabilities, we ensure the number

of samples required from the device scales only polynomially with the circuit size.

Further, the classical resource requirements, although scaling exponentially, can be

distributed advantageously as a result [62, 85].

Each circuit class is derived from structures that are common to many instances of cer-

tain near-term applications of quantum technology, such as those discussed above. By

choosing circuits with features common to many instances of applications, rather than

random circuits [62, 85] or explicit instances of applications [86–95], this benchmark

suite allows us to make broadly applicable predictions of the performance of devices.

We use this suite to benchmark all layers of several real quantum computing stacks,

exploring the interplay between the compilation strategy, device, and the computation

itself. Utilising this information, we identify the applications that each quantum com-

puting stack is best suited for. We also identify the properties of the devices explored,

such as the qubit connectivity and noise sources present, which result in improved

performance.

Chapter 4 As technology advances to the point of being able to demonstrate quantum

computational supremacy, classical simulation, and so the approaches of Chapter 2

and Chapter 3, becomes impossible. However, as discussed, verification schemes for

universal quantum computation require resources beyond that of NISQ technology, and

so cannot yet be used. Fortunately, schemes for the verification of universal quantum

computation are, for our objectives, unnecessarily versatile, and may be simplified
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for the purposes of demonstrating quantum computational supremacy. Indeed, in the

case in which one hopes to demonstrate quantum computational supremacy, only a

limited number of computations must be checked, rather than requiring all quantum

computations be verified.

In Chapter 4 we explore this middle ground between smaller NISQ technology and de-

vices large enough for the verification of universal quantum computation. In particular

we develop a scalable approach to certifying a demonstration of quantum computa-

tional supremacy using IQP circuits. The advances we are able to make as a result

of studying this reduced model are twofold. We are first able to derive a ‘blind’ im-

plementation of IQP circuits which does not require that the Server knows the com-

putation to be performed. This implementation can be proven to be compositionally

secure, but requires the presence of a network able to transmit single qubits from the

Client to the Server. This adapts similar schemes available for universal quantum com-

puting [96], but with a reduced resource cost in our case. Secondly we make use of

a class of computations with known output properties in order to certify the accu-

racy of an implementation. Using the blind implementation we introduce allows us

to conceal which computation from this class is being run, and so conceal the output

property that will be checked. This prevents the Server from cheating the test by using

pre-computed statistics, or a classical device, as we show that to do so would require

knowledge of the concealed property. Checking these properties provides a way of

benchmarking the device, and also, as a result, a way of verifying a demonstration of

quantum computational supremacy.

Chapter 5 Having considered the certification of a demonstration of quantum com-

putational supremacy in Chapter 4, in Chapter 5 we are concerned with extending

the notion of quantum computational supremacy to demonstrations via practical ap-

plication. We consider the case of demonstrating quantum computational supremacy

through unsupervised learning, specifically in the case of generative modelling [90,

97]. This is the case in which a quantum model must recognise underlying patterns in

a data set, construct a representation of a probability distribution close to that which

the data was produced from, and produce samples from that distribution. Such a set-

ting is a natural extension of the discussions in the previous chapters. In particular, as

as we have considered certification of sampling problems throughout this thesis, there

is a great commonality between generative modelling, where distributions should be

learnt and sampled from, and the preceding chapters.

We first introduce quantum learning supremacy to formalise a demonstration of quan-

tum computational supremacy via generative modelling. We then introduce a machine

learning model called the Quantum Circuit Ising Born Machine, which is particularly

well suited to NISQ technology. The Quantum Circuit Ising Born Machine allows for

the output distributions from IQP circuits to be generated, providing grounds to be-

lieve the Quantum Circuit Ising Born Machine could learn distributions that could not

be learnt by a classical generative model. Finally we discuss means to train the Quan-

tum Circuit Ising Born Machine, and argue why it could be believed that this model,

and the associated training procedure, could be used to demonstrate quantum learning

supremacy.
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Quantum Technology Required Contribution of Classical Computing Subject of Investigation

Chapter 2 Few Connected Noisy Qubits Simulation with Noise Model Predictions of Performance

Only indicative noise levels of gates and

qubits are required. Only the capacity to

implement IQP circuits is needed.

Simulate larger devices than those that

are available. Use noise models to im-

prove predictive power. This is not effi-

cient and scales poorly to larger devices.

Identify dominant noise sources as those

that have the greatest negative impact on

the simulated performance of larger de-

vices than those that exist. Similarly,

evaluate means to manage these errors.

Chapter 3 Several Connected Noisy Qubits Calculate Ideal Properties Application-Motivated Benchmark

Not sufficiently large to demonstrate

quantum computational supremacy.

Should be able to implement near-term

applications.

Calculation of some properties of the

ideal output of a circuit, against which

to compare a real device. This is not effi-

cient and scales poorly to larger devices.

Predictions and measures of the perfor-

mance of existing devices when utilised

for applications of practical concern.

Chapter 4 Many Connected Noisy Qubits Processing of Measurement Results Quantum Computational Supremacy

Sufficient to demonstrate quantum com-

putational supremacy. Only the imple-

mentation of IQP circuits are required.

A quantum network capable of transmit-

ting single qubits is required.

Minimal processing of classical mea-

surement results from the quantum de-

vice. This is in order to guide the com-

putation and benchmark its accuracy.

This scales well to larger devices.

Demonstration of quantum computa-

tional supremacy and performance mea-

sures of devices capable of demonstrat-

ing quantum computational supremacy.

Chapter 5 Many Connected Noisy Qubits Minimise Cost Function Quantum Learning Supremacy

Sufficient to demonstrate quantum com-

putational supremacy with practical

task. The capacity to implement IQP cir-

cuits is a sufficient minimum.

Calculate updates to parameters of PQC

in order to improve accuracy of gener-

ative model. This scales well to larger

devices.

Demonstration of quantum computa-

tional supremacy via practically moti-

vated task.

Table 1: A summary and comparison of the chapters of this thesis. Traffic light colouring indicates relative technological complexity: high

[ ], medium [ ], low [ ].
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Chapter 1

Preliminaries

Here we introduce basic notions from quantum computation and quantum information,

as well as background literature which we will require for later chapters. In Section 1.1

we recall fundamental tools which ground later discussions on quantum computing in

a solid mathematical framework. To allow us to talk formally about quantum computa-

tional supremacy, and the computational power of different models of computing more

generally, in Section 1.2 we outline useful definitions and results from computational

complexity theory. In Section 1.3 we introduce terminology and results relating to the

impact of noise of quantum computation, and to instances where classical computers

can recreate the behaviour of quantum ones. We contrast the circuit model of quantum

computing introduced in Section 1.1 with Measurement Based Quantum Computing

in Section 1.4. The class of quantum circuits called IQP is discussed in Section 1.5.

In Section 1.6 we discuss quantum computing in a delegated setting, the security of

which can be formalised by abstract cryptography as is introduced in Section 1.7. The

dependencies of the remaining chapters of this thesis on the sections of this chapter are

detailed in Figure 1.1.

1.1 Quantum Computation and Information

Here we introduce some basic tools and terminology from quantum computing and

quantum physics1. In particular we introduce the postulates of quantum mechanics,

which collectively provide a mathematical framework within which to develop and

discuss quantum computation. Models for quantum systems are introduced in Section

1.1.1, while methods for their manipulation are seen in Section 1.1.2. The circuit model

allows us to reason about these systems in order to perform quantum computation, and

is introduced in Section 1.1.3.

1.1.1 Quantum States, Qubits, and Entanglement

The basic unit of information in quantum computing is the qubit. We model a qubit,

written using the ket notation |ψ〉, by its state vector, which is a linear combination, or

1Two popular resources which cover this material in far greater detail than we do here are [25, 28].
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Chapter 1. Preliminaries

Section 1.1 - Quantum

Computation and

Information

Section 1.2 - Computational

Complexity Theory

Section 1.3 - Classical

Simulation and Noisy

Computation

Section 1.4 - Measurement

Based Quantum

Computing

Section 1.5 - Instantaneous

Quantum Poly-time

Computations

Section 1.6 - Delegated

Quantum Computing

Section 1.7 - Abstract

Cryptography

Chapter 2 - Methods for

Classically Simulating

Noisy Networked

Quantum Architectures

Chapter 3 - Application

Motivated, Holistic

Benchmarking of a Full

Quantum Computing Stack

Chapter 4 - Blind IQP

Computation, and an

IQP Hypothesis Test

Chapter 5 - Quantum Learning

Supremacy: Quantum

Computational Supremacy

with Computations

of Practical Concern

Figure 1.1: The dependencies of later chapters on sections of the preliminaries. A

connecting edge indicates that the preliminaries section is a prerequisite for the chapter.
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1.1. Quantum Computation and Information

superposition, of the states |0〉 and |1〉.

|ψ〉= α|0〉+β|1〉 such that α,β ∈ C, |α|2 + |β|2 = 1 (1.1)

As such the computational basis {|0〉, |1〉} defines a two dimensional complex vector

space. Denoting the adjoint of a vector |ψ〉 using the bra notation 〈ψ|, the inner prod-

uct between two states |ψ〉, |φ〉, for which we use the notation 〈ψ|φ〉, is the product

of vectors 〈ψ|, |φ〉. This defines a two dimensional Hilbert space denoted C
2, and

presents a special case of Postulate 1 of quantum mechanics.2

Postulate 1 Associated to any physical system is a complex vector space

with inner product known as the state space of the system. The system

is completely described by its state vector, which is a unit vector in the

system’s state space.

An alternate basis of this Hilbert space is the Hadamard basis of equation (1.2), which

is generalised in equation (1.3) by allowing any θ ∈ [0,2π).

|+〉= 1√
2
(|0〉+ |1〉) |−〉= 1√

2
(|0〉− |1〉) (1.2)

|+θ〉=
1√
2

(
|0〉+ eiθ|1〉

)
|−θ〉=

1√
2

(
|0〉− eiθ|1〉

)
(1.3)

The qubit representation in equation (1.1), and the associated conditions on the coeffi-

cients, are equivalently well represented by

|ψ〉= eiγ

(
cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)

where γ,θ,φ ∈ [0,2π] . (1.4)

The factor eiγ, which we call a global phase, can often be ignored, permitting the

representation of a single qubit as a point on surface of the Bloch sphere of Figure 1.2.

The |0〉 and |1〉 states are found on the positive and negative Z axis of the Bloch sphere

respectively, while the |+〉 and |−〉 states are found on the X axis. The |+θ〉 and |−θ〉
states are found on the X-Y plane; the equatorial plane in Figure 1.2.

Larger, multi-qubit systems are constructed from smaller ones using the tensor prod-

uct. The elements of the tensor product, V ⊗W , of two vector spaces V and W , are

linear combinations of vectors |v〉⊗|w〉 where |v〉 ∈V and |w〉 ∈W . If |i〉 and | j〉 form

an orthonormal basis of V and W respectively, then vectors of the form |i〉⊗ | j〉 forms

an orthonormal basis of V ⊗W . This reflects Postulate 2 of quantum mechanics.

Postulate 2 The state space of a composite physical system is the tensor

product of the state spaces of the component physical systems. If systems

1 to n are prepared in the states |ψ1〉, ..., |ψn〉 then the joint state of the

system is |ψ1〉⊗ ...⊗|ψn〉.
In the case of n qubits, where a single qubit is described by |xi〉 ∈ C

2, the composite

system is |x1〉⊗ ...⊗|xn〉 ∈ C
2⊗ ...⊗C

2. The map |y1〉⊗ ...⊗|yn〉 → |y〉, y ∈ {0,1}n,

2Note that the statements and ordering of these postulates may vary between texts.
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Y

Z

X

φ

|ψ〉
θ

Figure 1.2: The Bloch sphere. An intuitive representation of the state vector of a qubit

|ψ〉. The notation used is as in equation (1.4). The state of a qubit is represented by a

point on the surface of the sphere.

between the basis vectors of C2⊗ ...⊗C
2 and C

2n
extends by linearity to an isomor-

phism, and gives us the oftused shorthand |x1〉⊗ ...⊗|xn〉= |x1...xn〉.
More complicated states, called entangled states, are those elements of the composite

spaces that cannot be written as a tensor product of elements of the component spaces.

A typical example of an entangled state is the following EPR pair or Bell state.

|Φ+〉=
1√
2
(|00〉+ |11〉) (1.5)

Entangled states give rise to non-locality, which is behaviour that cannot be explained

by a theory that permits influence on an object only by its immediate surroundings.3

Elements of tensor product spaces, which we will continue to denote using kets, are

called pure states, and give a complete description of a quantum system. To capture

uncertainty about the state of a physical system, which may, for example, arise from

an unknown external influences or probabilistic state preparation, it is necessary to

introduce density matrices. The density matrix of a pure state |ψ〉 is

ρ = |ψ〉〈ψ|.

In this case ρ2 = ρ, which is referred to as being idempotent. The converse, that an

idempotent density matrix represents a pure state, is also true.

More generally, a mixed state is a probability distribution over pure states. For an

ensemble of pure states {|ψi〉}, each occurring with probability pi, the corresponding

3While this “spooky action at a distance” was unpalatable to Einstein [98], it has since been shown

to manifest in experiments [6, 99, 100].
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density matrix is

ρ = ∑
i

pi|ψi〉〈ψi|. (1.6)

While not all density matrices are idempotent, they do all share the property that they

are positive semi-definite, Hermitian operators with Tr(ρ) = 1. Tr(ρ) of a linear oper-

ator ρ, called the trace of ρ, is the sum of its eigenvalues.

The maximally mixed state represents the state of maximal uncertainty about the quan-

tum system. In that case ρ = III/d, where d is the dimension of the Hilbert space of the

system and III is the d× d identity matrix. Indeed, if the ensemble {|ψi〉} in equation

(1.6) were a basis of a d dimensional Hilbert space, then a maximally mixed state of

dimension d is equivalent to a uniform distribution over the basis.

1.1.2 Operators on Quantum States

Qubits can be manipulated by operators, which are represented by matrices acting on

the state space of the system. The representation of an operator A as a matrix AAA may

be arrived at by considering equation (1.7), where vectors of the form |k〉 form an

orthonormal basis.

A = ∑
i j

|i〉〈 j|AAAi j where AAAi j = 〈i|A| j〉 (1.7)

Unitary matrices constitute nondestructive operators on the state space, which is to say

they may be reversed. Their action is described by Postulate 3 of quantum mechanics.

Postulate 3 In a closed system, the state of the system at time t1 is related,

as seen in equation (1.8), to the state of the system at time t2 by the unitary

operator U which depends only on the times t1 and t2.

|ψt2〉=U |ψt1〉 (1.8)

U(n) is the group of all n×n unitary matrices. When a constant phase can be ignored,

we can restrict to the special unitary group SU(n), consisting of n×n unitary matrices

with a determinant of 1.

An alternate but equivalent formalism to that of Postulate 3, which is encountered only

in passing in this thesis, is in the ‘Schrödinger picture’. In the Schrödinger picture

the time evolution of quantum state is given by a Hamiltonian, H. H is a hermitian

operator and |ψt2〉= eiH(t2−t1)|ψt1〉 if H is independent of time.

As well as the smooth evolution under a unitary operator, a system may undergo a

change due to measurement, as described by Postulate 4. Measurement is not re-

versible, with some information being lost when measurement is performed, and so

we will refer to the operation as destructive.4

4This use of destructive does not refer to the destruction of the quantum system itself, as in when a

photon hits a screen during measurement, but instead to the loss of information.
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Postulate 4 A measurement may have m different outcomes. Each is

represented by an operator acting on the Hilbert space of the system being

measured. Together these operators form the collection {M1, ...,Mm} and

must satisfy the completeness equation

∑
m

M†
mMm = 1. (1.9)

The probability p(m) of each outcome m relates on the state |ψ〉 of the

system prior to measurement by

p(m) = 〈ψ|M†
mMm|ψ〉. (1.10)

In the case that the outcome of the measurement is m, the state of the

system is transformed by

|ψ〉 → 1√
p(m)

Mm|ψ〉. (1.11)

The completeness condition of equation (1.9) ensures the total probability of all mea-

surement outcomes is 1, while equation (1.11) ensures that the outcome of the mea-

surement is a unit vector. In particular, one will notice from equation (1.10) that the

condition on the coefficients in equation (1.1) is equivalent to ensuring the probabil-

ity of measuring either computational basis sums to 1. Global phases, such as that of

equation (1.4), do not contribute to the value of the probability calculated in equation

(1.10) and may be ignored. As discussed, this facilitates the use of the Bloch sphere of

Figure 1.2.

A particularly important class of measurement operators are the projective operators.

In addition to the conditions on Mm in equation (1.9), projective operators are Her-

mitian and obey the relation MmMn = δm,nMm, where δm,n is the Kronecker delta. A

projective measurement is described by an observable A, which is a Hermitian opera-

tor in the state space. The spectral decomposition of A, seen in equation (1.12), gives

A in terms of projection operators, Pa and the corresponding eigenvalues, a. Each Pa

projects along the subspace defined by eigenvector |a〉 of A.

A = ∑
a

aPa (1.12)

Taking the possible outcomes from the measurement to be the eigenvalues a, Postulate

4 gives the expected value, 〈A〉ψ, when measuring the state |ψ〉 to be

〈A〉ψ = ∑
a

ap(a) = ∑
a

a〈ψ|Pa|ψ〉= 〈ψ|∑
a

aPa|ψ〉= 〈ψ|A|ψ〉.

In fact, given the other postulates of quantum mechanics introduced, projective mea-

surements are equivalent to measurements as in Postulate 4, and would work equally

well as a postulate [28].
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For a density matrix ρ, evolution by U gives the state UρU†. A measurement by the

operators {Mi} gives the outcome m with probability

p(m) = Tr
(

MmρM†
m

)

and produces the state

MmρM†
m

p(m)
.

This reveals that a measurement of a maximally mixed state in a basis of the corre-

sponding Hilbert space would measure all possible outcomes with equal probability.

1.1.3 The Quantum Circuit Model

Postulate 3 taught us that unitary operators are used to evolve quantum states. These

unitary operators manifest as gates in the gate model of quantum computing. The

quantum equivalent of the classical NOT gate is the Pauli-X gate which, when acting

on the computational basis states, performs the transformation

|0〉 → |1〉 , |1〉 → |0〉.

The unitary to which this corresponds is

X=

[
0 1

1 0

]
.

Here, and in the remainder of this section, we have used the computational basis and

equation (1.7) to derive this representation. In general any basis may be used, and in

particular X would be diagonal if the Hadamard basis was used.

Other commonly used gates are seen in equation (1.13), and are referred to as: the

Pauli-Y gate, Y; the Pauli-Z gate, Z; the Hadamard gate, H; and the phase gate, RZθ.

Y =

[
0 −i

i 0

]
Z=

[
1 0

0 −1

]
H=

1√
2

[
1 1

1 −1

]
RZθ =

[
1 0

0 eiθ

]
(1.13)

H can be used to change between the computational and Hadamard basis, with other

common gates being RZ
π
2 =
√
Z = S and RZ

π
4 =
√
S = T. Some useful relationships

which we will encounter are HZH= X and HXH= Z. If there is ambiguity as to which

qubit the gates are being applied, we will use a subscript, such as Xi, to indicate that it

is applied to the ith qubit.

We will refer to such things as ‘a measurement of the Z observable’ which alludes to

the use of the projective operators |0〉〈0| and |1〉〈1|, defined by the eigenvectors of

Z. These eigenvectors are referred to as the Z basis, terminology which extends to all

Pauli matrices. This explains the labelling of the axis in the Bloch sphere of Figure

1.2.

We will often draw circuit diagrams to display circuits composed of these gates. In

this formalism, qubits are represented by horizontal lines which are acted on by gates
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U

(a) One-qubit gate. (b) Measurement.
(c) CX. (d) CZ.

Figure 1.3: Circuit notation. This notation is used to represent operations on qubits,

represented by a line or wire, with time passing from left to right. Here U ∈ SU(2) while

CX and CZ are defined in equation (1.14). Double lines carry classical information.

over time, with time flowing from left to right. For a unitary U acting on a single qubit

we will use the notation in Figure 1.3a when drawing circuit diagrams. Measurement

is represented as in Figure 1.3b where a double wire carries classical information.

The simplest example of multi-qubit gates is tensor products of operators U1⊗ ...⊗Um,

where Ui ∈ SU(2ni). Each Ui acts on the corresponding subspace of the state space

C
2n1 ⊗ ...⊗C

2nm
, which is to say U1 acts on the first n1 qubits, U2 acts on the next

n2 qubits, and so on. Important examples of two qubit gates are the controlled gates,

which apply an operation to a target qubit, conditional on the value of a control qubit.

One example of a controlled gate is CX, or the controlled-X gate,5 which applies X to

the target if the control is in the state |1〉, and the identity if the control is in the state

|0〉. CZ, or the controlled-Z gate, is the analogue in the case of the Z gate. Both are

seen in equation (1.14). Also in equation (1.14) is the SWAP gate, which swaps the

position of two qubits.

CX=




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 CZ=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 SWAP=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 (1.14)

One may, for example, write CXi, j when CX is applied to the control qubit, i, and the

target qubit, j. The CZ gate is symmetric, which is to say that whichever of the two

qubits is the control or target does not influence the outcome, while in the case of the

CX gate this choice is important. In circuit diagrams, these gates are represented as in

Figure 1.3c and Figure 1.3d.

Of the gates discussed, the Pauli group

G1 = {±I,±iI,±X,±iX,±Z,±iZ,±Y,±iY} ,

and the groups of n-fold tensor products of elements on the Pauli group, Gn, are of

particular importance. When dealing with states that are stabilised by elements of a

subgroup S of Gn, which is to say states that are fixed by the action of every element

of S, it is often more convenient to work with S as opposed to the states themselves.

This is of particular importance as S can uniquely define many interesting and highly

entangled states, such as the EPR pair of equation (1.5), in this way.

Amongst the uses of this stabiliser formalism6 is as a means of describing the action

5This gate also goes by the name CNOT.
6The stabiliser formalism is incredibly powerful and we are far from doing it justice here. One of its

many applications is in the development of error correction codes referred to as stabiliser codes [101].
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of gates in the Clifford group of operators. These operators normalise the Pauli group,

which is to say that a Clifford operator U has the property that UPU† ∈ Gn if P ∈ Gn.

Clifford gates, which are the gate model representation of elements of the Clifford

group, can always be decomposed into combinations of H, CX, and S. Their action on

a state stabilised by S can be described by transforming S to give a new subgroup of the

Gn. This new subgroup stabilises the state that results from the action of the Clifford

gates on the original state. This approach of keeping track of the Pauli operators that

stabilise a quantum state as it is acted on by a Clifford circuit is more convenient than

tracking the impact on the state directly, which could require the storage of exponen-

tially many amplitudes of a state vector. This is so much the case that we have the

following remarkable theorem.

Theorem 1.1.1 (Gottesman–Knill theorem [102]). A computation involving:

• state preparations in the computational basis,

• the action of Clifford gates,

• and measurements of the Pauli observables

may be reproduced on a classical computer using a number of time steps that grows at

most polynomially with the number of qubits.

Although Theorem 1.1.1 covers a great many of the gates discussed, gates from the

Clifford group, in combination with the T gate, can be used to approximate any unitary

operation. We refer to any set of gates of which a finite sequence can approximate

any unitary up to arbitrary precision, as a universal gate set. The Solovay-Kitaev

theorem [103, 104] allows us to place a reasonable bound on the required length of

this sequence, and teaches us that it is efficient to find such a sequence. If we allow for

infinitely many gates to be in our universal gate set then we can exactly recreate any

unitary. One example of such a gate set is {CZ,U} where U represents all single qubit

gates.

1.2 Computational Complexity Theory

During discussions about quantum computational supremacy, such as those we con-

duct throughout this work, it will be useful to have a means of formally describing the

resources required to solve certain problems. Computational complexity theory is the

correct formalism to use for this purpose. As such, to facilitate these discussions we

now introduce some commonly used complexity classes, along with some more gen-

eral notions and notation from the field.7 For reference, we summarise the complexity

classes introduced in this section in Table 1.1.

A succinct comparison of the resource requirements of different computations can be

achieved using Bachmann–Landau notation, and in particular, big O notation. This is

used to compare the asymptotic resource requirements of computations as the input

size n increases. In this notation O ( f (n)) is used to convey that the requirement a

computation has for a resource, such as time or storage space, is some function g(n),
and that there are constants c and n0 such that |g(n)| ≤ c f (n) for all n > n0.

7More extensive introductions to the topics discussed in this section can be found in [105, 106].
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One relevant class of problems is that of decision problems, which can be thought of

as those problems which admit yes-no answers. More precisely, a decision problem

may be defined as a subsets of all finite length binary strings, called a language, which

should be ‘accepted’ by a decision procedure for that problem. For example, a lan-

guage L is in the complexity class denoted P if there is a deterministic Turing Machine

which runs in polynomial time, and which ‘accepts’ or assigns ‘yes’ to all the elements

of L, and ‘rejects’ or assigns ‘no’ to all other finite length binary strings. Such a Turing

Machine is said to have ‘decided’ L. P is said to contain problems which are ‘tractable’

or ‘efficiently solvable’ by a classical computer, and includes such things as linear pro-

gramming [107] and determining if a number is prime [108]. In general ‘efficiently’ is

taken to mean that the time it takes to solve the problem, given the available conditions

and resources, scales polynomially in the size of the input.

A second popular decision class is NP, which contains all languages that can be de-

cided by a polynomial-time non-deterministic Turing Machine. Such a Turing machine

may specify more than one possible action to be taken at any step of the computation.

These steps create multiple possible ‘paths’ of computation, with a non-deterministic

Turing Machine accepting if at least one path accepts, and rejecting if all paths reject.

An alternate characterisation of NP is as the class of decisions problems for which yes

instances admit proofs or witnesses which can be verified in polynomial time by a de-

terministic Turing Machine. NP includes problems such as: the travelling salesperson;

integer factorisation; SAT, the problem of deciding whether a given Boolean formula

has any satisfying assignments; and MaxCut, the problem of determining a bipartition

of a graph with the maximum possible number of edges between the resulting vertex

subsets. In fact, the travelling salesperson problem, SAT and MaxCut are also NP-hard

[109, 110], which is to say that an algorithm for solving any of them can be efficiently

translated into an algorithm for solving any problem in NP. When a problem is in NP

and is also NP-hard it is called NP-complete, with these notions of hard and complete

generalising to other complexity classes. Related to NP is its complement coNP, which

contains all languages for which the no instances can be verified in polynomial time

by a deterministic Turing Machine.

The power of complexity classes can be boosted by oracles, which provide black-box

access to solutions of a problem in a single time step. For example, the class of lan-

guages which can be decided by a deterministic polynomial-time Turing Machine with

access to an oracle function O will be denoted PO. Indeed, the Polynomial Hierarchy

uses oracles to generalise P, NP, and coNP.

Definition 1.2.1 (Polynomial Hierarchy (PH) [111]). Let P = ∆P
0 = ΠP

0 = ΣP
0 be the 0th

level ∆0 of the Polynomial Hierarchy. For k > 0, the kth level ∆k is defined by the three

classes ∆P
k := PΣP

k−1 , ΠP
k := coNPΣP

k−1 , and ΣP
k := NPΣP

k−1 . PH is the union of all of its

levels.

The equality of PH to one of its levels is described as a collapse of PH to that level,

but such a collapse is thought to be unlikely [105]. Notably, a collapse to the 0th

level would imply P = NP, contradicting the widely held belief to the contrary [112].

Indeed a conclusion which implies the collapse of PH is often used as evidence that

at least one assumption which led to that conclusion is false [61, 63, 66]. Such proofs
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by contradiction are used by results which argue that it is impossible to reproduce the

outputs of quantum computers classically, as we outline in Section 1.5.2.

One vital complexity class which arises throughout this work is BQP, the class of prob-

lems solvable by a quantum computer with error probability less than 1
3 in polynomial

time.

Definition 1.2.2 (Bounded-Error Quantum Polynomial-Time (BQP)). A language L

belongs to BQP if there exists a polynomial p and uniform8 family of quantum circuits

{Cn}, where Cn contains at most p(n) gates, such that for any x ∈ {0,1}n
:

• if x ∈ L then P(Cn (x) = 1)≥ 2
3

• if x /∈ L then P(Cn (x) = 1)< 1
3

Integer factorisation is in BQP [33], although it is not thought to be BQP-hard. As

such, that there is no known classical algorithm to factor integers is regarded as weaker

evidence for the impossibility of classically simulating quantum computers than is the

stability of PH. The analogue to NP in this setting is QMA, which stands for Quantum

Merlin-Arthur and refers to the set of problems for which there is a witness for yes

instances that can be verified by a BQP machine.

The classical equivalent of BQP is BPP, the class of bounded-error probabilistic poly-

nomial time computations, where quantum circuits are supplemented in the definition

of BQP for classical probabilistic Turing Machines. Informally, BPP is the largest

class of ‘practical’ decision problems, which is to say that algorithms for problems in

BPP can be run on modern classical computers. As such this class, rather than P, is

compared to BQP during discussions on quantum computational supremacy. The class

PP of probabilistic polynomial-time computations is similar to BPP, but with weaker

error probability demands. Namely it is the class of decision problems solvable by a

probabilistic Turing Machine with error probability less than 1
2 .

One class which will arise in this work, due to its connection with the complexity of

calculating the probability of outputs from quantum circuits, but which is not a decision

class, is #P. This is the class of functions that count the number of accepting paths of

a polynomial-time non-deterministic Turing Machine, generalising NP. #P contains

such problems as #SAT, which is concerned with counting the number of satisfying

assignments of a given Boolean function.

Of particular importance for NISQ technology, and the work of this thesis, are classes

of sampling problems. In the case of sampling problems the task is to produce samples

from a probability distribution, rather than binary outputs as in the case of decision

problems. In the case of classical computation, this may be seen as the task of trans-

forming uniformly random bits into non-uniformly random bits. Quantum computing,

on the other hand, is probabilistic by the nature of measurement. Several such classes,

8In this context uniform identifies that there is a deterministic Turing machine running in

polynomial-time which, given 1n as input, outputs a description of Cn. Uniformity prevents signifi-

cant computational power being hidden in the circuit construction phase. However other uniformity

conditions, where the Turing machine producing the circuits have different computational resources

available, may also be of use.
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Acronym Meaning

BosonSampling Boson Samlping.

BPP Bounded-Error Classical Polynomial-Time.

BQP Bounded-Error Quantum Polynomial-Time.

IQP Instantaneous Quantum Polynomial-Time.

NP Nondeterministic Polynomial-Time.

P Deterministic Polynomial-Time.

PH Polynomial Hierarchy.

PP Probabilistic Polynomial-Time.

QMA Quantum Merlin Arthur

RCS Random Circuit Sampling.

Table 1.1: A summary of complexity classes and acronyms.

with reduced physical requirements as compared to those of BQP, have been intro-

duced. These same classes are, in spite of the reduced resource requirement, thought

not to be contained in BPP.

Two examples of sampling problems which are native to the circuit model are sampling

from IQP circuits [113], discussed in Section 1.5, and Random Circuit Sampling (RCS)

[62], introduced in Section 1.5.3. One such class of problems from outside of the

circuit model is BosonSampling, which we also discuss further in Section 1.5.3, and

which requires samples to be taken from linearly scattering individual Bosons [61].

All three are examples of classes of problems which cannot be approximately sampled

from by a classical computer if PH does not collapse to its third level, ∆3 [61, 63,

66]. In general we refer to models of quantum computation with reduced resource

requirements as compared to BQP as sub-universal models.

1.3 Classical Simulation and Noisy Computation

As exemplified by the Gottesman–Knill theorem of Theorem 1.1.1, it is sometime pos-

sible to use classical simulation to efficiently reproduce some property of the output

distributions of quantum circuits.9 In general this may be samples from the distribu-

tions, the amplitudes of some outputs, or the full output probability distribution. How-

ever, it is thought that, in general, the resource requirement for the classical simulation

of universal quantum computation grows exponentially with the number of qubits, and

so this becomes increasingly difficult as the sizes of the circuits considered approach

those required for demonstrations of quantum computational supremacy. Indeed, a

9There are many publicly available classical simulators of quantum computation. Some of the

most easily available classical simulators can be accessed through general purpose quantum software

packages [114–116], while other highly optimised simulators are also publicly available [117–119].
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‘brute-force’ simulation of a quantum system by multiplying the matrices which ap-

peared in Section 1.1, requires that the full state vector, which grows exponentially in

size as the number of quits increases, be stored.

Despite the hardness of classically simulating quantum circuits, the effect of noise

channels prevalent in NISQ hardware might be to create distributions that can be sim-

ulated. For some circuits and noise types there are theoretical guarantees that this is

not the case. We discuss some of the guarantees that exist for the simulation of IQP

circuits in Section 1.5.2. The theoretical guarantees that can be given depend on how

accurately the noisy distributions approximate the ideal ones, with some notions of

approximation discussed in Section 1.3.1.

Further, classical simulation is of particular importance as a means of validating small

quantum devices, once again in spite of its difficulty in general. For example, the be-

haviour of real quantum computers, which may experience errors, can be compared

to an ideal implementation simulated using a classical computer. This is of particular

importance for our work in Chapter 2 and Chapter 3 where we will explore the impact

of noise on the output distributions from real hardware. While in some cases highly

optimised brute-force simulators are the best known approach to simulating quantum

computation [120–122] improvements are possible, and the review of classical simu-

lation techniques in Section 1.3.2 allows us to select the best such technique for our

purposes. In Section 1.3.3 we introduce several noise channels, pertinent to our work

of Chapter 2 and Chapter 3, and consider on how they may be modelled and simulated.

1.3.1 Notions of Approximation and Simulation

Measurements of the states that result from quantum circuits produce classical binary

strings. We will use pC (x) = 〈x|C|0n〉 to denote the probability that x ∈ {0,1}n is mea-

sured when an n qubit quantum circuit C acts on |0n〉. As such, a faithful reproduction

of the behaviour of a quantum computer by a classical one would generate samples

from the distribution of outputs from a quantum circuit. This is referred to as weak

simulation.

Definition 1.3.1 (Weak simulation). We say that a circuit family C can be weakly

classically simulated if, given a circuit C ∈ C acting on n qubits, its output distribution

can be sampled from in classical poly(n) time. This is to say that the number of time

steps required grows at worst as a polynomial in n.

A stronger classical simulator would return the output probabilities and marginal prob-

abilities for subsets of qubits. With these values one can reproduce weak simulation

by sampling successive bits; using the conditional distributions, conditioned on those

bits already seen, to sample the next [123]. As the inverse is not true [124], it is in this

sense that strong simulation is stronger than weak simulation.

Definition 1.3.2 (Strong simulation). We say that a circuit family C can be strongly

classically simulated if, given a circuit C ∈ C acting on n qubits, any output probability

and any marginal probability can be computed to m digits of precision in classical

poly(n,m) time.
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It is known that the existence of such strong simulations for some classes of quantum

computations would imply the collapse of the PH [123]. In fact, as we will discuss in

Section 1.5.2, this is also true for weak simulation.

It is more realistic, even for real quantum computers, to request approximate simula-

tion, as this permits some errors due to noise, such as those discussed in Section 1.3.3.

The notion of approximation that one uses affects the noise that can be accommodated.

A very strong notion of approximation is up to multiplicative error, which permits little

noise, but allows for strong impossibility results to be derived.

Definition 1.3.3 (Weak simulation with multiplicative error). We say that a circuit

family C can be weakly classically simulated with multiplicative error α≥ 1 if there is

a family of distributions D, where DC ∈ D is a distribution over {0,1}n
indexed by an

n qubit circuit C ∈ C , such that for all C ∈ C , DC can be sampled in classical poly(n)
time, and for all x ∈ {0,1}n

we have:

1

α
pC (x)≤DC (x)≤ αpC (x) .

This notion of approximation is, however, unrealistic as it depends on the probability of

the sample in the ideal quantum distribution pC. In particular it demands that outcomes

with probability 0 in pC also have probability 0 in DC. It is more reasonable, and closer

to the true capabilities of noisy quantum computers, to consider closeness in ℓ1-norm

distance, which is independent of the probabilities themselves.

Definition 1.3.4 (Weak simulation with ℓ1-norm distance error). A circuit family C
can be weakly classically simulated with ℓ1-norm distance error ε if there is a family

of distributions D, where DC ∈ D is a distribution over {0,1}n
indexed by an n qubit

circuit C ∈ C , such that for all C ∈ C , DC can be sampled in classical poly(n) time

and we have:

ℓ1 (pC,DC) = ∑
x∈{0,1}n

|pC (x)−DC (x)|< ε.

Such a metric is sufficiently strong that for several classes of quantum circuits it is

known that the existence of an algorithm for weak simulation of all circuits in that class

within ℓ1-norm distance is unlikely [61, 65, 66]. However, this notion of simulation

may also be too strong to be representative of realistic noise as constant errors on each

gate may result in distributions that are far from the ideal in ℓ1-norm distance.

1.3.2 Approaches to Classical Simulation

With regards to the possibility of efficient classical simulation of quantum systems,

quantum computational supremacy concerns cases where negative results exist. Here

we discuss some of the positive results that exist, and some of the approaches that

can be taken to improve on the brute-force approach when they do not. One approach

to extending the reach of classical simulation is to restrict the class of circuits that a

classical simulation algorithm should target. Ideally the structure of these circuits can

then be exploited in order to accelerate their classical simulation. This may result in an
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T = • S

|A〉
Figure 1.4: The gadget used to replace a T gate [137]. |A〉 are the magic states of

equation (1.15).

algorithm to efficiently simulate that class of circuits [102, 125–128], or an algorithm

with a scaling which is better than that of brute-force simulation [129, 130].

Of particular importance in this regards is the Gottesman-Knill theorem [102], stated

in Theorem 1.1.1. That result led to several highly optimised simulators of Clifford cir-

cuits and circuits with few non-Clifford gates [131–133]. In particular, as mentioned

in Section 1.1, while the Clifford gate set is not universal for quantum computation,

adding just the T gate to the set makes it universal for quantum computation. In [134],

an algorithm to classically simulate circuits built using the Clifford + T gate set is

introduced, and will henceforth be referred to as the Bravyi-Gosset Simulator. The

Bravyi-Gosset Simulator runs in time that is exponential in the number of T gates but

polynomial in the number of qubits and Clifford gates.10 This allows circuits domi-

nated by Clifford gates to be simulated.

Circuits in the Clifford + T gate set are of concern in Chapter 2, and so we are motivated

to utilise the Bravyi-Gosset Simulator there, and to introduce some of the details of the

algorithm now. First, all T gates in the circuit are replaced by the gadget of Figure 1.4.

The measurement can be replaced by post-selection onto the 0 outcome, which is to

say by the projection |0〉〈0|. The magic states [136]

|A〉= 1√
2
(|0〉+ eiπ/4|1〉) (1.15)

are replaced by a decomposition into a linear combination of exponentially many sta-

biliser states. The result is a circuit consisting of only Clifford gates, acting on a linear

combination of exponentially (in the number of T gates) many stabiliser states, which

can be simulated using the Gottesman-Knill theorem. A randomised algorithm is used

to reduce the resources required to estimate single qubit outcome probabilities from

the resulting state. As a consequence, this algorithm performs a probabilistic strong

simulation of the initial circuit. If an approximate decomposition of |A〉 is used then

probabilities of single outcomes cannot be accurately derived, while such a decompo-

sition is still sufficient to build an algorithm to perform approximate weak simulation.

An alternate approach, when it is necessary to simulate arbitrary quantum circuits, is to

tackle the bottlenecks to classical simulation, such as restricted memory, as they arise

from the particular classical computing architecture used. Feynman simulators com-

pute output bit string amplitudes by adding all Feynman path contributions, and require

memory which grows polynomially with the number of qubits, but a number of opera-

tions which grows exponentially [85]. This is in contrast with the brute-force approach

10The Bravyi-Gosset Simulator has also been generalised to allow for other gate sets [135].
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described above, which demanded high levels of storage, but places more reasonable

demands on time steps. In fact, there is a ‘smooth trade-off’ between memory usage

and runtime, allowing for some flexibility depending on the resources available [85].

Storage is often the bottleneck, and so Feynman simulators are used to establish the

frontier of what is possible on classical computers [60, 138, 139].

1.3.3 Noise in Quantum Computations

The notions of approximation discussed in Section 1.3.1 are particularly relevant for

quantum computers exposed to noise. Throughout this work, but in Chapter 2 and

Chapter 3 in particular, we are concerned with the impact noise in real quantum de-

vices has on these notions of approximation, and in turn on the applicability of those

devices. To facilitate our work in Chapter 2 and Chapter 3 we introduce some perti-

nent noise channels here. We shall consider two groups of noise channels. A coherent

noise channel is one which preserves the purity of the input state. This includes, for

example, the application of a unitary other than the one intended. More generally,

systems on which noise acts are not closed, with interactions with the ‘environment’

bringing about the noise. Such noise channels do not necessarily preserve the purity of

the system, and are referred to as incoherent.11

Modelling incoherent noise requires an extension of the mathematical tools intro-

duced in Section 1.1. We consider more general operators E which are linear maps

E : D (H1)→ D (H1) from density matrices on one Hilbert space to another. To pre-

serve the normalisation of the state, these operators should preserve trace, which is

to say Tr(E (ρ)) = Tr(ρ). Further, to ensure that E (ρ) is a valid density operator, E

should map positive operators to positive operators. This should also be true for E⊗ I,

when the operator is applied to only part of a system, which we refer to as being com-

pletely positive. These completely positive trace preserving maps (CPTP) constitute

all deterministic operations permitted by quantum mechanics.12

Any CPTP map can be written, using the operator-sum representation [28], as

E (ρ) = ∑
i

KiρK
†
i

where {Ki} is a set of linear operators, known as Kraus operators [142], which satisfy

∑
i

K
†
i Ki = 1.

We use this decomposition to introduce the noise channels studied in our later work.

Bit flip: Flips the qubits |0〉 and |1〉 with probability 1− p. In this case E (ρ) =

K0ρK
†
0 +K1ρK

†
1 , where

K0 =
√

p I K1 =
√

1− pX.

11Coherent errors can interfere constructively in the worst case, and so coherent noise channels are

often regarded as more concerning than incoherent ones. Indeed transforming coherent noise channels

into incoherent ones proves to be a fruitful approach to reducing their impact [140, 141].
12Non-deterministic operations, such as measurement, do not preserve trace.
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Dephasing: Applies Z with probability 1− p. In this case

K0 =
√

p I K1 =
√

1− pZ.

The strength of a dephasing channel is often quantified by T2, referred to as the

device’s ‘T2 time’. The probability that a |+〉 state has not transformed to the |−〉
state during a time interval t, or vice versa, decays like e

−t
T2 . This is to say that

no error occurs with probability P

(
0; t

T2

)
, the probability of no events occurring

during a Poisson process with mean t
T2

Depolarising: Replaces, with probability p, the initial state with the maximally mixed

state, resulting in the overall effect

E (ρ) = p
I

2
+(1− p)ρ. (1.16)

Here we notice that the output probability distribution tends to the uniform one

with increasing noise. This is not in the operator-sum notation, but noting that

I

2
=

ρ+XρX+ZρZ+YρY

4
,

along with some re-parametrisation, gives

E (ρ) = (1− p)ρ+
p

3
(XρX+ZρZ+YρY) .

Amplitude Damping: Models energy dissipation and the relaxation from an excited

state to the lowest energy eigenstate. For a one-qubit system with a probability

γ of decaying from |1〉 to |0〉 we have

K0 =

[
1 0

0
√

1− γ

]
K1 =

[
0
√

γ
0 0

]
.

This error channel may also be referred to as relaxation. The strength of an

amplitude damping channel of a device is often quantified by T1, referred to as

the device’s ‘T1 time’. In that case the probability that a |1〉 state has not decayed

to the |0〉 state (but not the inverse, as with |+〉 and |−〉 in the case of dephasing

noise) after a time t falls like e
−t
T1 .13

In all cases above, the Kraus operators, and the CPTP map they define, do not depend

on time. In general this property, which is referred to as Markovianity and corresponds

to assuming that the environments causing separate noise instances act independently,

may not hold. However, it is often reasonable and convenient to assume that the noise

of a system is Markovian, and it is an assumption that we will make throughout.

In contrast to the modelling of noise channels using density matrices, many classical

simulation algorithms, and in particular the Bravyi-Gosset Simulator which we use in

13‘Decoherence time’ is often used to refer to the combination of T1 and T2 time, while ‘decoherence’

may also be used to refer to any noise channel resulting in loss of purity.

27



Chapter 1. Preliminaries

Chapter 2, consider only pure states. To address this apparent incompatibility, noise

channels are modeled on a classical computer by performing many runs and ensuring

that the effect of the noise model is recreated on average. This is achieved by applying

a random choice of the Kraus operators which make up a CPTP map, in place of that

map. More precisely, during the nth execution of the simulation, the Kraus operator

Kin is applied to the initial state |φ〉 to give 1√
pin

Kin |φ〉, where pin = 〈φ|K†
in

Kin |φ〉. Then

the average over N executions is

1

N

N

∑
n=1

1

pin

Kin |φ〉〈φ|K†
in
.

Letting Ni be the number of times Ki is randomly selected gives

∑
i

Ni

N pi
Ki|φ〉〈φ|K†

i . (1.17)

If Ki is chosen with probability pi then N pi converges to Ni, and so equation (1.17)

converges to a behaviour equivalent to the desired CPTP map. As a result, such sim-

ulations of noise channels using pure states are not only made possible by, but also

require many executions.

One notable source of noise, that we do not fit into the above framework, is read-

out error, which results from imperfect measurement. There are many instances, no-

tably in the case of superconducting qubits, where this can be well understood by a

classical noise model [143]. In this case, noise is modelled by a transition matrix

AAA ∈ {0,1}2n×2n

, where AAAx̃xx,xxx is the probability of observing x̃xx when the true outcome

is xxx. For mathematical convenience or otherwise, the assumption that the noise acts

independently on each qubit is often made, which allows for the decomposition of AAA

into a tensor product of n many 2× 2 matrices [144].14 In either case, characterising

and inverting AAA provides a means to mitigate readout error [144–146].

A second such notable source of errors is crosstalk, which broadly encapsulates viola-

tions of assumptions of spatial locality and independence of operations. This is to say

that operations may inadvertently affect qubits which are not the target of the opera-

tion, or that the impact of the operation may depend on the operations applied to other

qubits. Crosstalk is challenging to model [147, 148], and we will not attempt to do so

in this thesis. This will become particularly important in Chapter 3 where we com-

pare simulations using noise models and the behaviour of real devices. However there

has been some success in tackling crosstalk by decoupling qubits to prevent non-local

correlated noise [60, 149]. Both readout errors and crosstalk are often significant in

near-term devices, as discussed in Chapter 3.

1.4 Measurement Based Quantum Computing

Unlike the circuit model introduced in Section 1.1.3, Measurement Based Quantum

Computing (MBQC) [150, 151] is a model of quantum computing without a classical

14Intermediate models, which consider limited correlation between qubits, also allow for some effi-

ciency savings as compared to the most general model [144, 145].
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analogue. Quantum computation is described in the circuit model by unitary evolution

of a quantum state, followed by measurements at the end. Conversely MBQC utilises

measurement throughout, with no unitary operations employed after an initial entan-

gled state is prepared. Although measurements are destructive, in Section 1.4.1 we

will outline how MBQC can be used to perform universal quantum computation.15

For some implementations of quantum computing, such as those based on photonics,

MBQC is a natural model. Indeed there are promising proposals of ways that MBQC

can be used to perform fault tolerant quantum computing in this way [154]. Further,

MBQC clearly divides classical and quantum resources, lending it to a setting where

a computationally weak client delegates a computation to a computationally power-

ful server. This facilitates the use of MBQC to perform blind quantum computing,

as discussed in Section 1.6.1. By blindly manipulating the initial entangled state it is

possible to perform verification of universal quantum computation, which we intro-

duce in Section 1.6.2. The initial entangled state is manipulated by bridge and break

operations, which are discussed in Section 1.4.2.

In Section 1.5.4, we will see how a similar but simplified set of tools can be used to

derive an implementation of IQP circuits in MBQC. This implementation is used in

Chapter 2 since it explicitly parallelises the computation and reduces the execution

time, which proves beneficial for the device explored there. Indeed, by using the tools

from this section to implement IQP in MBQC, in Chapter 4 we are able to develop a

simple blind implementation, which is vital to other results in that chapter.

1.4.1 Universality

Typically, MBQC proceeds by initialising qubits in the state |+〉, entangling them

using the CZ operator, and measuring them in the basis Mθ := {|+θ〉, |−θ〉}. This is

sufficient to perform any single qubit gate, and the CZ gate, themselves sufficient to

perform universal quantum computation. We outline how to implement these gates.

Single Qubit Gates: Consider performing a CZ operation between an initial qubit |ψ〉
and |+〉, and measuring the initial qubit in the basis Mθ, as described in Figure

1.5a. This produces the state XmJ−θ|ψ〉, where m is the measurement outcome

and Jφ := HRZφ, as indicated in Figure 1.5b. Since any single qubit unitary may

be decomposed as J0Jθ1Jθ2Jθ3 , if we could correct for the Xm operation then by

composing this technique any single qubit gate is accessible. We shall discuss

this correction below.

The CZ Gate: Setting θ = 0 in the single qubit case creates the state XmH|ψ〉, which

we call performing ‘teleportation’ up to a correction XmH. Consider enacting

CZ between two such teleported states. Notice that the measurement operations,

and the CZ operation on the teleported states, act on different subsets of qubits.

This means the temporal ordering of these operations can be swapped, in which

case all entanglement (i.e. that required for teleportation and for entangling the

teleported states) is performed prior to measurement. This is consistent with the

15Besides the brief overview of MBQC which we give here, there are several others going into more

detail [152, 153].
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|ψ〉
Mθ

|+〉

(a) Initial entanglement and

measurement pattern.

m XmJ−θ|ψ〉

(b) State resulting from measurement. m is the outcome of the

measurement described in Figure 1.5a.

Figure 1.5: Single qubit gate in MBQC. Filled circuits indicate unmeasured qubits,

unfilled circles indicate measured qubits, solid lines indicate CZ operations.

H|ψ〉
M0 |+〉

H|φ〉
M0

|+〉

(a) Initial entanglement and

measurement pattern. An H

gate has been applied us-

ing an instance of the single

qubit operation of Figure 1.5.

m1
Xm1 |ψ〉

m2
Xm2 |φ〉

≡

Xm1Zm2 |ψ〉

Xm2Zm1 |φ〉

(b) State resulting from measurement. m1 and m2 are the re-

sults of measurements in Figure 1.6a. To the left of the equiva-

lence we indicate the action of CZ on the teleported state. On

the right we describe the effect of commuting the corrections

so that they instead act on the entangled state.

Figure 1.6: CZ gate in MBQC. Circles and lines are as in Figure 1.5.

philosophy of MBQC. The H correction can be cancelled with a single qubit gate

beforehand. Commuting the X correction before the entanglement results in a XZ

correction, as indicated by Figure 1.6b. As such we have a scheme to perform a

CZ gate, up to a correction, between two qubits using only measurement on an

entangled state, which is described in Figure 1.6a.

In both cases, the action of the gate is up to a possible correction of X or Z. Rather than

performing the corrections on the unmeasured qubits, this can equivalently be done by

altering their own measurement angle. In particular we have the relationships

MθX= M−θ , MθZ= Mθ+π

which allow us to derive a new measurement angle θ′ which depends on the measure-

ment outcomes of neighbouring qubits.

This allows us to define a procedure for performing an MBQC computation which is

sufficiently general to be able to perform universal quantum computation. This proce-

dure can be found in Protocol 1.4.1, which first builds a graph state before repeatedly

performing measurements and measurement angle corrections. Implicit in Protocol

1.4.1 is the order of the measurements, which, along with the measurement angles of

each qubit, forms a measurement pattern. Indeed qubits whose measurement angles

depend on the measure outcomes of others should not be measured before those others.

This ordering of the qubits is referred to as flow [155], which gives a partial ordering

of the qubits and a consistent order of measurements and corrections.16 Indeed, the

16That a measurement pattern has a flow is a sufficient condition for determinism in the MBQC
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Figure 1.7: The Brickwork state [96]. The dotted region is repeated throughout. Per-

forming measurements on this region, at angles θi ∈
{

0, π
4 , . . .

7π
4

}
, is sufficient to repli-

cate a universal gate set.

same graph utilising different flows may result in different computations [157]. Alter-

natively, non-adaptive MBQC is a sub-universal model of quantum computation where

measurement angles are not adapted according to the outcomes of those before. It is

thought that efficiently classically simulating even this model of computation, of which

the IQP circuit introduced in Section 1.5 are an example, is not possible [24, 158].

Protocol 1.4.1 A general MBQC computation.

Input: Graph GGG, initial measurement angles θ1, ...,θn.

Output: Outputs can be classical or quantum.

1: Preparation: Prepare qubits q1, ...,qn in the state |+〉.
2: Entanglement: Apply CZ between qubits when their corresponding vertices are

connected in the graph GGG.

3: for all qubits ∈ {q1, ...,qn} do

4: Measurement: Measure qubit qi in the basis Mθ′i

5: Correction: Correct the measurement angles of connected qubits according to

the measurement outcomes.

6: end for

In fact there are fixed graphs GGG which can be used for all quantum computations. One

such universal graph state is the brickwork state [96], seen in Figure 1.7. In particular,

performing measurements on the highlighted pattern of qubits in Figure 1.7, at angles

θi ∈
{

0, π
4 , . . .

7π
4

}
, is sufficient to replicate a universal gate set. Universal quantum

computation can then be achieved with a fixed order of measurements on the brickwork

state, namely from top to bottom and then from left to right.

That the graph and order of measurement are the same for any computation is vital for

blind quantum computing. This ensures that the computations cannot be distinguished

model. Generalised flow, or g-flow, is an extension of flow which gives a necessary condition for

determinism [156]
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Figure 1.8: Bridge and break operations. An example of a sequence of one bridge

and one break operation as defined in Definition 1.4.1.

by these properties, which is a technique we will also employ in Chapter 4 to blindly

perform IQP computations. What remains is to conceal the measurement angles and

measurement outcomes, which we discuss in Section 1.6.1.

While measurements of the brickwork state in the basis Mθ for θ ∈
{

0, π
4 , . . . ,

7π
4

}
is

sufficient to perform universal computation, it may sometimes be convenient to use

other graphs and measurment basis. This may, for example, be because the connectiv-

ity and measurement basis made available by a device differ from these. Further, when

considering other classes of computation than universal quantum computation it may

be preferable to use other basis and graphs if doing so results in some resource saving.

Indeed this is the case for IQP circuits, as we discuss in Section 1.5.4.

1.4.2 Break and Bridge Operations

Break and bridge operations [73] allow for some connections within the graph state to

be removed. One use of this is to disconnect single qubits from a graph state, which

can then be used to check a computation is running correctly, as we discuss in Section

1.6.2. A second use, which is of concern for us in Chapter 4, is to reduce an initial

generic graph state to arrive at a more desirable one. Starting from a generic state, and

reducing it ‘blindly’, reduces the information revealed about the computation.

Consider a graph G̃GG = (Ṽ , Ẽ), with vertex set Ṽ and edge set Ẽ.

Definition 1.4.1 (Bridge and Break Operators). The break operator acts on a vertex

v ∈ Ṽ of degree 2 in a graph G̃GG. It removes v from Ṽ and also removes any edges

connected to v from Ẽ.

The bridge operator acts also on a vertex v ∈ Ṽ of degree 2 in a graph G̃GG. It removes

v from Ṽ , removes any edges connected to v from Ẽ and adds a new edge between the

neighbours of v.

Figure 1.8 gives an example of multiple applications of the bridge and break operators.

Graph states can be built from graphs using a graph state circuit.17

Definition 1.4.2 (Graph State Circuit). Consider a matrix GGG∈ {−1,0,1}na×np and use

the function g(i, j) = k to define indices k = 1, . . . ,nb for the elements GGGi j = −1. The

matrix corresponds to a graph, which we also denote by GGG, with vertex set

V =
{

p1, . . . pnp
,a1 . . . ,ana

,b1, . . . ,bnb

}

17The notation we use here is convenient for the remainder of this work, although it may not be the

most natural for build graph states more generally. In other work, adjacency matrices are often used.
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and edge set including edges between p j and ai if GGGi j = 1, and between bg(i, j) and ai,

and, bg(i, j) and p j, when GGGi j =−1. The graph state circuit EGGG on (na+np+nb) qubits

applies CZ operations between qubits p j and ai if GGGi j = 1, and between qubits bg(i, j)

and ai, and, bg(i, j) and p j, when GGGi j =−1.

Finally, it is known that bridge and break operations on graphs have a corresponding

notion in operations on graph states.

Lemma 1.4.1 (From [73]). If it is possible to obtain the graph GGG from G̃GG through a se-

quence of bridge and break operations, then for any state |φ〉, there is a state |ψ〉 such

that it is possible to obtain EGGG|φ〉 from E
G̃GG
|ψ〉 through a sequence of Pauli measure-

ments and local rotations about the Z axis through angles from the set
{

0, π
2 ,π,

3
2π
}

.

We will detail, and adapt, the proof of Lemma 1.4.1 in Chapter 4. Importantly for

our work in Chapter 4, these bridge and break operations can be delegated, by a client

to a server, in such a way that two operations are indistinguishable to a server [73].

This means that a graph state can be constructed by a server, but without revealing the

connectivity of the graph to them.

1.5 Instantaneous Quantum Poly-time Computations

In contrast to universal quantum computing, described in Section 1.1, it may be that

sub-universal models of quantum computation are easier to implement. This may, for

example, be because they: require a restricted gate set, which is more readily imple-

mentable; demand limited connectivity between qubits, which is native to available

hardware; or are fault-tolerant to some extent. Such models, with accompanying the-

oretical grounds to believe they would be hard to simulate classically, could expedite

demonstrations of quantum computational supremacy. Several such intermediate, sub-

universal models of quantum computation, such as the one clean qubit model [159],

the Ising model [160], the BosonSampling model [61] and random circuit sampling

[62], have been developed with this goal of early implementation in mind. The class

of Instantaneous Quantum Polynomial-time (IQP) circuits [113] is another such sub-

universal model with significant practical advantages [24, 64, 161].

IQP circuits consist of commuting gates, in contrast to the non-commuting gate set

needed for universal computations. This property could theoretically be used to paral-

lelise the computation and reduce the requirement for quantum memory, which would

otherwise be physically hard to achieve.18 In spite of this limited gate set, IQP circuits

are believed to remain hard to classically simulate [63, 65]; even in the presence of

realistic noise [64, 162] and on well motivated architectures [24, 64]. Indeed, cur-

rent predictions put the number of qubits one expects to require for a demonstration

of quantum computational supremacy using IQP circuits within the realm of what is

thought to be possible in the near future [163]. Further, circuits consisting of only

commuting gates are of significance for super- and semi-conductor qubit implemen-

tations, where they are simpler to implement fault-tolerantly than gates drawn from a

18Quantum memory is hard to achieve in the sense that it is difficult to store quantum states for long

periods of time without them succumbing to noise.
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fully universal set [161].

Because of this relationship between IQP circuits and demonstrations of quantum com-

putational supremacy on near-term devices, they are the ideal subject of study when

one is concerned with measuring the potential for such demonstrations, as we are in

Chapter 2 and Chapter 3. For the same reason, it is of great interest that there exist ef-

ficient methods for verifying some IQP computations without classical simulation [24,

75, 113]; an example of which we give in Chapter 4. It can also be reasonably argued,

as we do in Chapter 3 and Chapter 5, and as has been done elsewhere [113, 164, 165],

that demonstrations of quantum computational supremacy when addressing real world

applications would be possible using IQP circuits. To facilitate discussions in these

later chapters, we formally introduce the class of IQP circuits in Section 1.5.1, and

detail some of the theoretical results mentioned above in Section 1.5.2. We position

IQP amongst other sub-universal models of quantum computation in Section 1.5.3, and

discuss the physical implementation of IQP circuit in Section 1.5.4.

1.5.1 Definitions

IQP circuits are comprised of commuting gates, with polynomial referring to the num-

ber of such gates, and instantaneous alluding to the theoretical capacity to apply the

gates simultaneously as discussed in Section 1.5.4.

Definition 1.5.1 (Instantaneous quantum poly-time (IQP) circuit [63]). An IQP circuit

on n qubits is a quantum circuit with the following structure: each of the polynomially

many gates in the circuit is diagonal in the X basis, the input state is |0〉, ..., |0〉, and the

output is the result of a computational basis measurement on a specified set of output

qubits.

Often it is helpful to consider, as we will regularly do, the equivalent case where gates

which are diagonal in the Z basis are sandwiched between layers of H gates.

It should be ensured that these circuits can be efficiently represented. One possible

representation of an IQP circuit is by an X-program.

Definition 1.5.2 (X-program [113]). An X-program is described by a pair (QQQ,θ) ∈
{0,1}na×np × [0,2π). Each row qqq ∈ {0,1}np of QQQ, called a program element, corre-

sponds to the gate

exp


iθ

⊗

j:qqq j=1

X j


 .

Given a gate for each program element, their product defines the action of the X-

program. This is equivalent to an evolution by the Hamiltonian

na

∑
i=1

⊗

j:QQQi j=1

X j

for a time θ.19 Note also that it may sometimes be convenient to allow θ to vary

between program elements.

19Note that i, when not used as an index, is the imaginary unit.

34



1.5. Instantaneous Quantum Poly-time Computations

An example of one such X-program is

QQQ =

(
1 0 1

0 1 1

)
, θ =

π

8
→ exp

(
i
π

8
X1X3

)
exp
(

i
π

8
X2X3

)
. (1.18)

Alternate descriptions of IQP circuits, such as defining gates by their diagonal entries

and the qubits on which they act, are possible [63]. In that case the gates may act on

at most O (logn) qubits in order to ensure an efficient representation. We choose the

X-program representation as it allows us to understand the relationships within large

classes of IQP circuits, which we discuss in Section 1.6.3 and utilise in Chapter 4.

Applying an X-program to a computational basis state |0np〉, and measuring the result

in the computational basis, constitutes an IQP circuit. Using the random variable X to

represent the distribution of output samples, the probability distribution of outcomes

x̃ ∈ {0,1}np is

P(X = x̃) = |〈x̃|exp




na

∑
i=1

iθ
⊗

j:QQQi j=1

X j


 |0np〉|2. (1.19)

1.5.2 Hardness Results and Their Robustness to Noise

Because of the close connection between IQP circuits and demonstrations of quan-

tum computational supremacy on near-term devices, we will repeatedly utilise them

throughout this work. We outline some of the results pertaining to this connection

now. We consider weak classical simulation, defined in Section 1.3.1, of IQP circuit

families, and how the possibility of weak simulation depends on the accuracy required

and the noise present in the system.

The strictest notion of weak simulation, where one demands simulation of the ideal

circuit to within a multiplicative error, is known to be impossible in general, assuming

the non-collapse of PH.

Theorem 1.5.1 (From [63]). If all families of IQP circuits could be weakly classically

simulated to within multiplicative error 1≤ c <
√

2 then PH = ∆3.

The proof of Theorem 1.5.1 utilises post-selection, with a post-selected circuit having,

in addition to an output register O, a register of lines called the post-selection register

P . The output distribution on O is then taken to be P(O = xxx|P = 000). In practice this

may be implemented by running a computation many times and selecting only those

runs for which P = 000. As the probability that P = 000 may be exponentially small,

in reality this may incur an exponential overhead, which provides an insight into the

power of post-selection. We will use the prefix post- to indicate the class of problems

that can be solved by the post-selected version of circuits from the original class.

Post-selection significantly boosts the power of IQP, with post-IQP = post-BQP [63].

To realise this consider the universal gate set {T,CZ,H}. Post selecting circuits built

from this gate set gives us post-BQP. T and CZ can be constructed from gates of the

form ei π
8Z and ei π

8Z⊗Z, and so it remains to show that H can be implemented using a

circuit in post-IQP in order to show that post-IQP = post-BQP. Indeed the Hadamard

Gadget of Figure 1.9 is such a circuit.
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|φ〉 U H V VHU|φ〉

(a) H intermediate in BQP circuit.

|0〉

|φ〉 U

H

H

V VHU|φ〉

〈0|

(b) Implementation of intermediate H using

a post-IQP circuit. Note that H acts only

at the beginning and end of the circuit, as

permitted in IQP circuits.

Figure 1.9: Hadamard Gadget [63]. Figure 1.9b recreates the effect of the action of

a H gate acting intermediately between other gates, as seen in Figure 1.9a. |φ〉 is an

arbitrary input state, and 〈0| represents post selection onto |0〉.

Noting post-BQP = PP [166] reveals that PH ⊆ PPP = Ppost-IQP [167], which should

be compared to Ppost-BPP ⊆ ∆3 [168]. This shows the comparative power of post-

IQP, as an oracle, as compared to post-BPP, assuming that there is no collapse of

PH. Indeed, the proof of Theorem 1.5.1 proceeds by demonstrating that if such a

classical simulation where possible, then post-IQP = post-BPP, and hence that PH

would collapse to its third level.

Theorem 1.5.1 is remarkable in its demonstration that quantum computers which are

very much weaker than a universal BQP machine are likely to be impossible to effi-

ciently simulate with a classical computer. These results are, however, proven in the

setting where one demands a classical simulator produce samples which are within a

multiplicative error of the ideal. It better reflects the power of real quantum computers

to allow the classical simulator to be wrong up to ℓ1-norm distance, and in this case

too hardness results exist.

Theorem 1.5.2 (From [65]). Assume either one of two conjectures, relating to the

hardness of approximating the Ising partition function and the gap of degree 3 poly-

nomials. If it is possible to weakly classically simulate all families of IQP circuits to

within an ℓ1-norm distance of 1
192 then PH = ∆3.

The two conjectures in Theorem 1.5.2 are that it should be #P-hard to approximate the

partition function of an Ising model on a randomly weighted complete graph, and to

approximate gap( f ) := |{x : f (x) = 0}|− |{x : f (x) = 0}| of a randomly chosen de-

gree 3 polynomial f over F2, up to constant multiplicative error on average. While

both hold in the worst-case [65, 169, 170] (i.e. for at least one instance of these prob-

lems) it is not known if this is the case on average (i.e. for a large fraction of instance)

as these conjectures require.

Both the partition function and gap( f ) also emerge as amplitudes in the output prob-

ability distributions of families of IQP circuits.20 It can be shown that if there was a

classical algorithm to sample from the output distribution of all IQP circuits to within

constant ℓ1-norm distance, then these samples would be enough for a BPP machine

with access to an NP oracle to give an additive error approximation of these ampli-

20Such functions emerge as properties of the output distributions of other sub-universal models of

quantum computation, such as the one clean qubit model [171].
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tudes. Such an algorithm would be in ∆3, the third level of PH. The existence of an

algorithm approximating these amplitudes is guaranteed by Stockmeyer’s Counting

Theorem [172], and allows for a multiplicative error approximation if the output prob-

abilities of this family of IQP circuits anti-concentrate. This is to say that the amplitude

of a random outcome in the output distribution is likely to be high, which was proven to

be the case for these circuits [65]. In summary this implies that there exists a procedure

in ∆3 which can be used to approximate, to within a multiplicative error, quantities that

are conjectured to be #P-hard to approximate in this sense. Since PH ⊆ P#P, and be-

cause the proposed algorithm for approximating these #P-hard problems is in ∆3, the

existence of such an algorithm would collapse PH.

Similar proof techniques can be used to show a collapse of PH in the case of weak clas-

sical simulation of a selection of other sub-universal classes of quantum circuits [61].

In particular, in [24] a family of nearest neighbour, translation invariant, 2 local (which

is to say the corresponding Hamiltonian can be decomposed into the sum of hermitian

operators acting on only 2 qubits), constant depth IQP circuits called 2-dimensional

dynamical quantum simulators (2D-DQS) are defined. The name references the 2D

square lattice architecture involved, as motivated by the connectivity of several near-

term devices, and that they could be realised with sub-universal quantum simulators.

Indeed, because this architecture is similar to that of the NQIT Q20:20 device discussed

in Chapter 2, we choose these schemes as a benchmark of that device. Architecture I

from [24] is seen in Protocol 1.5.1, the construction is summarised in Figure 1.10, and

the relevant hardness theorem is stated in Theorem 1.5.3.

Protocol 1.5.1 A description of an instance of the 2D-DQS problem introduced by

[24]. E and V are the edge and vertex set respectively of a Nx×Ny 2D square lattice.

1: Choose τ ∈ {0,1}Nx×Ny uniformly at random.

2: Initialise the product state:

|φτ〉=
N=Nx×Ny⊗

i=1

(
|0〉+ eiτi

π
4 |1〉

)

3: Allow system to evolve for time t = 1 according to the nearest neighbour, transla-

tion invariant, Ising Hamiltonian

H := ∑
(i, j)∈E

π

4
ZiZ j−∑

i∈V

π

4
Zi.

This is equivalent to applying CZ operations on each edge.

4: Measure all qubits in the X basis.

Theorem 1.5.3 (From [24]). Assume two conjectures, relating to the hardness of ap-

proximating the Ising partition function and that the output probabilities of samples

from Protocol 1.5.1 anticoncentrate. If it is possible to weakly classically simulate all

circuits of the form of Protocol 1.5.1 to within an ℓ1-norm distance of 1
22 then PH = ∆3.

Unlike in the case of Theorem 1.5.2, anticoncentration is conjectured and numerically
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Figure 1.10: An example of an instance of the 2D-DQS problem for quantum com-

putational supremacy, detailed in Protocol 1.5.1 and introduced in [24]. The value

in each qubit describes the state of initialisation while the lines connecting them indicate

the application of a CZ gates between those qubits. Each qubit of the resulting state is

measured in the Pauli-X basis.

justified in [24], rather than proven. In addition, a procedure for the certification of

the correctness of the final state before readout exists for this scheme, as we discuss in

Section 1.6.3.

The result of Theorem 1.5.3 goes some way to understanding the persistence of quan-

tum computational supremacy in realistic settings. This is namely by reducing long

range interactions between qubits which would otherwise incur significant overheads

when mapping to realistic hardware [173]. In a further step towards understanding

this setting, in [64] a scheme to generate IQP circuits, which have depth O (logn) with

high probability, is introduced. These circuits can be implemented, with the addition

of SWAP gates, on a 2D lattice in depth O (
√

n logn) [174] while, of the circuits pro-

duced by the scheme, a constant fraction cannot be weakly classically simulated to

within constant ℓ1-norm distance.

However, the noise model remains unrealistic, with models such as constant indepen-

dent noise applied to each qubit leading to a distribution that is far in ℓ1-norm distance

from the original. Indeed for most IQP circuits, and in particular those from Theo-

rem 1.5.2, if independent depolarising noise with a constant probability p as defined

in equation (1.16) is applied to each qubit immediately before measurement then the

resulting probability distribution can be approximately sampled from up to constant

ℓ1-norm distance in general [64]. However, a multiplicative error approximation is

still impossible [162]. This does not contradict the threshold theorem mentioned in

Section 1.3.3, which allows for constant error below some value, as no error correction

techniques have been used. Indeed it can also be shown that simple classical error cor-

rection techniques can be used to create an equivalent circuit producing a distribution

which is a constant ℓ1-norm distance from the ideal, which cannot be classically sim-

ulated [64]. This error correction technique destroys the anti-concentration property

on which the classical simulation technique relies, but produces outputs from which

outputs from the original IQP circuit can be recovered. That being said, the more gen-
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eral case of constant independent noise being applied to each gate enables the classical

simulation of a wide family of circuits [175].

Collectively these results give strong justification for believing that IQP circuits will

allow us to exploit the power of quantum computing on near-term devices. As such,

the focus of later chapters will be on benchmarking and verifying implementations of

these circuits, and identifying applications where they will be of impact.

1.5.3 A Comparison With Other Sub-Universal Classes of Quan-

tum Computation

Besides IQP, the most promising proposals for demonstrating quantum computational

supremacy are BosonSampling [61] and random circuit sampling [62]. All three pro-

posals are sampling problems, which are preferred as they better reflect the capabil-

ities of near-term devices than do decision problems. While BosonSampling is little

explored in this work, it is a cornerstone of work on sub-universal models of quantum

computation and quantum computational supremacy. Indeed recent experiments have

demonstrated quantum computational supremacy with a related model [176]. On the

other hand, random circuit sampling forms the basis of another recent demonstration

of quantum computational supremacy [60], and will be used in our work of Chapter 3.

BosonSampling is the class of problems which formalise sampling from the distribu-

tion of detection outcomes from a linear optical network of non-interacting photons.

Importantly there are solid grounds to believe that the classical simulation of all Boson-

Sampling output distributions to within a constant additive error is impossible [61]. As

with IQP circuits, the necessary proofs are based on conjectures: the first of which

relates to the anticoncentration of the permanent21 of a random matrix, mirroring the

anticoncentration result that was proven for IQP circuits; the second of which is the

“permanent-of-Gaussians” conjecture, which states that the permanent of a matrix of

Gaussian random variables should be hard to approximate up to small multiplicative er-

ror on average, mirroring the average case conjectures made in Theorem 1.5.2. Besides

this result there have been others showing the robustness [177, 178], and vulnerability

[179–181], of BosonSampling to noise. There have been several experimental demon-

strations of models related to BosonSampling [176, 178, 182], as well as investigations

into the limits of classical simulations of such experiments [129, 130].

Random circuits, like IQP circuits, are native to the circuit model, and closely mirror

the capabilities of near-term superconducting computing devices [62, 85]. A random

circuit, for a fixed number of qubits n and coupling map Gn, is generated by applying

m = poly(n) uniformly random two-qubit SU(4) gates between qubits connected by

edges of Gn. Here, ‘uniformly random’ means according to the Haar measure [183].

Random Circuit Sampling (RCS) is the task of sampling from the output distribution

of random circuits.22 To perform RCS approximately is to sample from a distribution

close to that produced by the random circuit. This has been shown to be hard [66, 186].

21Similarly to IQP circuits, the permanent emerges as amplitudes in output distributions of Boson-

Sampling circuits.
22In fact, as with IQP circuits but unlike in the case of BosonSampling, the distribution of output

samples from random circuits can be proven to anticoncentrate [184, 185].
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Theorem 1.5.4 (Informal [66]). There exists a collection of coupling maps Gn, with

one for each n, and procedure for generating random circuits respecting each Gn, for

which there is no classical randomised algorithm that performs approximate RCS, to

within inverse polynomial ℓ1-norm distance error, unless then PH = ∆3.

The conditions imposed on which coupling maps and circuit generation procedures

are covered by this theorem are quite mild. For example, there are random circuits

obeying the connectivity restraints of 2D square lattice coupling maps which illustrate

Theorem 1.5.4 [66, 85]. In particular Ref.[85] proposes taking Gn to be a ⌈√n⌉×⌈√n⌉
square lattice, and constructing random circuits by acting 2-qubit gates along n2 edges

selected at random (with replacement). This architecture is particularly relevant for

NISQ technology.

As with Theorem 1.5.2 and similar results for BosonSampling, Theorem 1.5.4 relies on

conjectures. One advantage that both RCS and BosonSampling have over IQP is with

regards to conjectures on the hardness of calculating output probabilities. In particular,

‘average-to-worst-case reduction’ results are known for RCS and BosonSampling. In

brief such results ensure that if calculating an output probability of a class of circuits

is known to be hard in the worst-case, then it can be shown that this is also true in the

average-case. This means that for many classes of RCS and BosonSampling circuits it

can be shown that exactly calculating most output probabilities of most of the circuits

is hard. This strengthens our belief in conjectures such as the permanent-of-Gaussians

conjecture and similar ones made in the case of RCS. Similar conjectures, such as

those made in Theorem 1.5.2, stand with less support as no average-case results are

known. In all cases these conjectures are not proven as these average-to-worst-case

results only prove the hardness of exact calculation of output probabilities, rather than

approximate calculation.

1.5.4 IQP in MBQC

As outlined in Section 1.6, MBQC facilitates blind and verifiable implementations of

quantum computations. This is of particular concern to us in Chapter 4, where we give

a protocol to realise an IQP circuit blindly. An implementation of an IQP computation

in MBQC is a prerequisite for that scheme. As such, in the following we give the

equivalent MBQC implementation of a given X-program. This approach was originally

outlined in [113], while we give a thorough exploration here to introduce definitions

and ideas which facilitate later discussion, particularly in Chapter 2 and Chapter 4.

Notice that we can rewrite equation (1.19) as

P(X = x̃) = |〈x̃|Hnp




na

∏
i=1

exp


iθ

⊗

j:QQQi j=1

Z j




 |+np〉|2. (1.20)

In combination with Lemma 1.5.1, this allows us to build an MBQC implementation

of an X-program by building an implementation of each row of QQQ.
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|p̃1〉
...

|p̃#i〉
|p̃#i+1〉

...

| p̃np
〉

|+〉

. . .

Z

...

Z

Figure 1.11: An MBQC implementation of equation (1.21). The input qubits
{

p j

}np

j=1

are rearranged so that if #i is the Hamming weight of row i of the matrix QQQ, then for

k = 1, . . . ,#i each p̃k corresponds to one p j such that QQQi j = 1 and for k = #i+1, . . . ,np

they correspond to p j such that QQQi j = 0. The ancillary qubit measurement is in the

basis {|02θ〉, |12θ〉} of equation (1.24).

Lemma 1.5.1. The circuit of Figure 1.11 implements

exp


iθ

⊗

j:QQQi j=1

Z j


 . (1.21)

Proof. We show that the effect of Figure 1.11 and equation (1.21) is the same on all

inputs. We can rewrite equation (1.21) as

cosθInp
+ i sinθ

⊗

j:Qi j=1

Z j. (1.22)

The action of equation (1.22) on a computational basis state |p〉 = |p1〉 . . . |pnp
〉, p j ∈

{0,1} has two possible outcomes.

1. If ∑ j:Qi j=1 p j is even, then there will be a phase change of cosθ+ i sinθ, as the⊗
j:QQQi j=1Z j operator will extract an even number of negatives.

2. If ∑ j:Qi j=1 p j is odd, then the phase change will be cosθ− i sinθ.

Hence, depending on the parity of |p〉 in the positions where QQQi j = 1, the effect is to

produce one of the two states:

(cosθ± isinθ) |p〉= e±iθ|p〉 (1.23)

We show the effect of Figure 1.11 is the same. Consider a permutation of the states

|p̃1〉, . . . , |p̃#i〉, . . . , |p̃np
〉 in Figure 1.11 such that the first #i qubits are the ones for

which QQQi j = 1.

The action of the CZ gates is to check the parity of |1〉’s in the input as each appearance

of a |1〉 will flip the bottom ancillary qubit between the states |+〉 and |−〉. After the

action of all CZ operators, we have the state |p〉|+〉 if there is an even number of
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|p̃k〉 = |1〉 for k = 1, . . . ,#i and |p〉|−〉 if this number is odd. Making a measurement

of the ancillary qubit in the basis

{|02θ〉, |12θ〉}=
{

1√
2

(
e−iθ|+〉+ eiθ|−〉

)
,

1√
2

(
e−iθ|+〉− eiθ|−〉

)}
(1.24)

leaves us with one of the two states ±e−iθ|p〉 in the odd parity case and with the state

eiθ|p〉 in the even parity case. The negative sign preceding the exponential term in the

odd parity case comes from measuring the state |12θ〉 (a measurement outcome of 1)

and the positive sign comes from measuring |02θ〉.

In the case of a measurement outcome 1, we then apply Z operators to all unmeasured

qubits to ensure that the resulting states are as in equation (1.23) and with the same

dependency of the sign on the parity of |p〉.

We can now identify an MBQC implementation of IQP circuits.

Lemma 1.5.2. A graph and measurement pattern can always be designed to simulate

an X-program efficiently.

We give an outline of the proof of Lemma 1.5.2. Lemma 1.5.2 is proven formally by

Protocol 1.5.2, although we will require some further terminology to appreciate that.

Proof. (Outline) Producing the distribution in equation (1.20) can be achieved by in-

putting the state |+np〉 into a circuit made from composing circuits like the one in

Figure 1.11, with one for each term of the product in equation (1.20), and measuring

the result in the Hadamard basis. The Z corrections commute with the CZ opera-

tions and therefore can be moved to the end of the new, larger circuit. Further the Z

corrections, conditional on the measurement outcomes of the ancillary qubits, can be

implemented via classical NOT operations after the Hadamard basis measurement of

qubits
{

p j

}np

j=1
. As such all entanglement precedes all measurement, with no opera-

tions acting on unmeasured qubits after the initial entanglement, as is consistent with

the philosophy of MBQC.

Notice that this implementation is non-adaptive, which, assuming the free preparation

of graph states, reveals the origin of the term instantaneous in the name of the IQP

class. Hence, this approach will be useful for implementations on near-term devices,

as we utilise in Chapter 2, since the computation can be parallelised to one round of

entanglement and measurement.

The entanglement pattern which is implicit in the proof of Lemma 1.5.2 is that of an

undirected bipartite graph, which we will refer to as an IQP graph.

Definition 1.5.3 (IQP Graph). An undirected bipartite graph, which we refer to as an

IQP graph, consists of a bipartition of vertices into two sets P and A of cardinality

np and na respectively. We may represent such a graph by QQQ ∈ {0,1}na×np . An edge

exists in the graph when QQQi j = 1, for i = 1, . . . ,na and j = 1, . . . ,np, with no edge when

QQQi j = 1. We call the set P primary vertices and the set A ancillary vertices.
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a1 a2

p1 p2 p3

QQQ =

(
1 0 1

0 1 1

)

Figure 1.12: Bipartite graph. An example of a bipartite graph described by matrix the

QQQ of the X-program of equation (1.18). Here, np = 3 and na = 2 while the partition used

is P = [p1, p2, p3] and A = [a1,a2].

By referring to the bottom qubit of Figure 1.11 as the ancillary qubit and the others as

primary qubits we understand why this type of graph is relevant and how the X-program

matrix QQQ, interpreted and a bipartite graph, exactly describes the entanglement pattern.

Throughout this work, we refer to QQQ interchangeably as a matrix corresponding to an

X-program and a graph. Figure 1.12 gives an example of this relationship.

Throughout this work we refer to the state built in Lemma 1.5.2 as an IQP state.

Definition 1.5.4 (IQP State). Using the notation introduced in Definition 1.4.2, states

of the form EQQQ|+〉na+np , where QQQ ∈ {0,1}na×np , or Z rotations there of, shall be re-

ferred to as IQP states.

With this last piece of terminology, we can now formalise the protocol detailed in

the proof of Lemma 1.5.2 in Protocol 1.5.2. We will often refer to IQP computations

implemented via Protocol 1.5.2 as instances of IQP-MBQC.

1.6 Delegated Quantum Computing

At present, and for the foreseeable future, quantum computing devices are few in num-

ber, come with a high maintenance cost, and require specialist facilities and highly

trained individuals to operate. This mirrors the situation which applies to classical

High Performance Computers (HPC). Therefore it is likely that, as with access to clas-

sical HPC, access to quantum computers will be remote, with the devices themselves

maintained by resource rich specialists. Indeed, such Delegated Quantum Computing

(DQC) is the approach taken today [83, 84], while work on a ‘Quantum Internet’ may

permit this approach to be further extended and improved [187].

As input from the Client, DQC schemes take a classical description of a computation,

and the input to that computation. After possibly several rounds of communication

with the Server, the result of that computation is returned to the Client.23 During the

design of DQC schemes there are two considerations to be made. Firstly, implementing

a computation in this manner should allow the Client to reduce the resources they

require below that which they would need to implement the computation alone. Ideally

this might mean removing the requirement that the Client perform quantum operations

of any kind. Secondly, a DQC scheme may need to account for the Client’s mistrust

23Throughout this thesis we will use ‘the Client’ and ‘the Server’ to refer directly to two parties

participating in a DQC scheme. Other works may instead use ‘Alice’ and ‘Bob’ respectively.
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Protocol 1.5.2 An implementation of IQP computation in MBQC. IQP computations

implemented in this way are referred to as an instance of IQP-MBQC.

Input: Graph QQQ ∈ {0,1}na×np , measurement angle θ
Output: x̃ ∈ {0,1}np

1: Preparation: Generate states |+〉 = |p j〉 and |+〉 = |ai〉 for j ∈
{

0, ...np

}
and

i ∈ {0, ...na}.
2: Entanglement: Implement EQQQ on the generated qubits.

3: Measurement: Measure primary qubits in the Hadamard basis and ancillary

qubits in the basis of equation (1.24) to obtain measurement outcomes sp ∈
{0,1}np and sa ∈ {0,1}na . Note that the basis used here differs from that of Proto-

col 1.4.1.

4: Correction: Perform the following corrections on the classical measurement out-

comes to generate the output x̃.

x̃ j = s
p
j + ∑

i:QQQi j=1

sa
i (mod 2) (1.25)

The correction in equation (1.25) is arrived at by considering which ancillary

qubits may pass a Z correction to a given primary qubit, as detailed in Figure 1.11.

In particular this is all those which correspond to a program element affecting the

particular primary qubit.

of the Server, which could entail providing guarantees that a protocol is secure against

malicious behaviour by the Server.

For example, the Client may wish to ensure that the details of the computation being

performed are kept from the Server, possibly because they contain some private in-

formation. Blind Quantum Computing (BQC) looks to address this concern, and we

discuss this in Section 1.6.1. Further, the Client may have cause to believe the Server

will incorrectly implement the requested protocol, either because they are malicious,

or because they lack the required computing power. Several techniques, referred to un-

der the banner Quantum Characterisation, Verification, and Validation (QCVV), have

emerged to address this.24 At the highest level of assurance, the Client may request the

Server be able to prove they have accurately implemented any quantum computation

the Client requests, which we call verification, as we will discuss in Section 1.6.2. At a

lower level of assurance the Client might request the Server prove they can accurately

implement a sub-universal class of quantum computations, as we discuss in Section

1.6.3, or just that they are capable of some computation that is outside of the capacity

of classical computers, as discussed in Section 1.6.4

The resources required to perform verification of universal quantum computation is

typically very high, and certainly inaccessible by NISQ devices. In Chapter 4 we aim

to reduce these resource requirements by specialising to a particular IQP computa-

tion. The approach derived in Chapter 4 depends heavily on the techniques for blind

24Popular resources providing a thorough overview of both BQC and QCVV are [188, 189].
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quantum computation introduced in Section 1.6.1, particularly Universal Blind Quan-

tum Computing (UBQC), and is inspired by the verification techniques discussed in

Section 1.6.2, particularly Verifiable Universal Blind Quantum Computing (VUBQC).

The computation we implement blindly in Chapter 4 is similar to the one used as part

of the Shepherd-Bremner IQP Hypothesis Test, introduced in Section 1.6.3.

In Section 1.6.4 we focus in particular on Heavy Output Generation Benchmarking and

Cross-Entropy Benchmarking. The figures of merit used as part of these benchmarking

schemes are also used in our work of Chapter 3. This is namely because they provide

a means for a purely classical client to assess the performance of a quantum device.

1.6.1 Universal Blind Quantum Computing

Intuitively, the Server is ‘blind’ to the computation being performed if the process of

implementing it is indistinguishable from the process of implementing any computa-

tion in some large class. A commonly used notion of blindness is to demand that only

an upper bound on the size of the computation should be learnt by the Server. The

first protocol to achieve this allowed a client with quantum memory, and the ability

to perform Pauli operations, to perform universal quantum computing with the assis-

tance of a universal quantum server [190]. The Client and Server exchange quantum

states without details of the computation being revealed to the Server. In that case

the resources required by the Client, namely the quantum memory, depend on the

computation. This dependency is removed by shifting the storage requirements to the

Server and permitting the Client to perform arbitrary operations on a constant number

of qubits [191].

By utilising MBQC, the requirements on the Client can be further reduced to just the

ability to prepare and send single qubits to the Server [96]. As discussed in Section

1.4.1, an MBQC computation on an Nx×Ny brickwork state is completely defined by

the measurement angles θi. In the UBQC scheme [96] the Client conceals these by

preparing Nx×Ny states |ψi〉 = 1√
2

(
|0〉+(−1)ri eiφi |1〉

)
, where ri ∈ {0,1} and φi ∈{

0, π
4 , . . .

7π
4

}
are chosen uniformly at random.25 The Server is sent these states, but

not the values of ri, and uses them to construct an Nx×Ny brickwork state. As opposed

to requesting a measurement in Mθ′i , as is done in the MBQC computation outlined

in Protocol 1.4.1, the Client requests a measurement in Mθ′i−φi . Since the random Z

rotation at preparation commutes through the entanglement used to build the brickwork

state, this measurement undoes the φi rotation at preparation. By setting mi = bi⊕ ri,

where bi is the measurement returned by the Server, the Client recovers the ‘true’

measurement outcome, while it remains hidden from the Server. This allows the Client

to otherwise proceed as if performing a normal MBQC computation on a brickwork

state. As such both the measurement angles and the measurement outcomes have been

one-time padded, while the distribution of messages sent to the Server is maximally

mixed. UBQC has been demonstrated experimentally [192], while in Chapter 4 we

will use a similar technique, but with reduced resource requirements, to implement an

IQP computation blindly. An alternate but similar take on this idea is to have the Client

25In other work r and φ may be combined as a single variable, while it is convenient here to reason

about them separately.
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receive and measure the qubits, rather than prepare and send them [193], in which case

the measurement angles can be seen to be kept from the Server.

The notion of blindness used when UBQC was introduced [96] limits the Server’s in-

formation to being completely determined by some function L(x) of the Client’s input

x. Such a scheme is called blind while leaking at most L(x), with UBQC achieving

blindness while leaking at most Nx and Ny. This definition is insufficient if, for exam-

ple, the Server is able to learn more information about x in the future. To address this,

an alternate security definition was introduced which relies on Abstract Cryptography,

as introduces in Section 1.7, which gives assurances about the compositional security

of a BQC protocol [194]. It transpires that UBQC, and the related receive and measure

scheme [193], are both secure within this framework [194].

UBQC requires the Client to have the ability to perform quantum operations only in or-

der to ensure that the state in the Server’s possession is random, unknown to the Server,

and known to the Client. This task, which is referred to as random remote state prepa-

ration (RSP) [21], may also be implemented using only classical operations by the

Client, if conjectures about the post-quantum security of the learning with errors prob-

lem (LWE) are made [195, 196]. This is as opposed to the schemes discussed above

where no computational hardness conjectures are made, and so which are information-

theoretically, or unconditionally, secure. In this way, the quantum resources required

by the Client to perform BQC can be removed, although the overall number of qubits

and computing steps required are increased as compared to UBQC.

1.6.2 Verification of Universal Quantum Computation

A DQC protocol is said to be ‘verifiable’ if it is possible for the Client to detect ma-

licious behaviour on the part of the Server. That is to say that the probability that the

Server can convince the Client of a false statement is small, while the probability they

will accept a correct one is high. BQC and verification are often linked, with one pre-

senting a route to achieving the other. Trapification, where a BQC scheme is used to

conceal easily computed computations, called traps, within a computation to be ver-

ified, is one approach to achieving this connection [72–74]. In the VUBQC protocol

[73] the break operations discussed in Section 1.4.2 are used to isolate qubits, whose

measurement outcomes are known, from the rest of the computation. These can then

be used as traps, while their locations are hidden by adapting the UBCQ scheme dis-

cussed above. This approach has been demonstrated experimentally [197], and also

has parallels in receive and measure verification schemes [72]. Again, the computa-

tional resources required by the Client may be reduced to being purely classical by

using classical client random RSP [21, 195, 196].

Verification schemes which are not blind are also possible. Post-hoc verification [75,

76], deriving its name from the property that the verification can be performed at any

time after the computation, is one such approach. This protocol uses that any BQP

computation can be framed as an instance of the 2-local Hamiltonian problem [198,

199]. A k-local Hamiltonian is a hermitian operator H = ∑i Hi, where each Hi is a

hermitian operator which acts non-trivially on at most k qubits. For any language

L ∈ BQP and input x, there exists a 2-local Hamiltonian whose smallest eigenvalue
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indicates if x ∈ L or x /∈ L. Indeed, the lowest energy eigenstate, referred to as the

ground state, is a witness that x ∈ L, which can be sent to the Client to verify [200].

Given the circuit of concern, the corresponding Hamiltonian, called a Feynman-Kitaev

Hamiltonian, can be found efficiently [198], while its ground state can be prepared by

a BQP machine, and verified using single qubit measurements on multiple copies of

the state [75, 201]. This scheme is not blind as the circuit required to build the ground

state which encodes the solution to the computation is sent to the Server. It is also

possible to adapt post-hoc verification to remove the need for quantum operations to

be performed by the Client [77]. In this case, the challenge is to ensure the Server can

be trusted to perform measurements, in contrast to the case of random RSP where it is

ensured that they are trusted to produce random states. This is achieved by committing

the Server, at the start of the computation, to performing a particular measurement,

with the security of the commitment relying on the conjectured hardness of LWE.

Another approach to achieving classical client verification schemes, with information-

theoretic security, is to introduce multiple servers [78, 79]. In this case the Client

distributes the computation amongst the Servers, which share entanglement at the start

of the computation but do not communicate thereafter. These schemes often make use

of self-testing, which verifies the state and the share of the Servers, and their behaviour

during the scheme. In such procedures, the Client acts as a referee in non-local games

for which there is a unique optimal strategy that the Servers can carry out. The Servers

return responses to questions posed by the Client, who uses these responses to deter-

mine if the optimal strategy is being used. The optimal strategy can only be achieved if

the Servers share a particular state and perform particular operations, which the Client

can verify by determining if the responses to its questions are satisfactory.

In [79], which is a blind verification scheme using two entangled but non-

communicating universal servers, the CHSH game [6] is employed. Here the optimal

quantum strategy is for the Servers to share and measure multiple copies of the EPR

pair from equation (1.5). Verification is achieved by making these games indistin-

guishable from tests for the accuracy of measurement and state preparation, and from

the computation itself. This indistinguishably intertwines the optimal strategy, which

can be verified, with the computation. In fact, the power of one of the Servers in this

scheme can be reduced to just that of a measurement device [80], which the Client can

use to prepare the quantum state required for the computation on the second server.26

Approaches based on post-hoc verification can also be used to perform non-blind ver-

ification using multiple servers and a classical client [76].

1.6.3 Verification of Sub-Universal Quantum Computation

The schemes outlined in Section 1.6.1 and Section 1.6.2 for BQC and verification

require the Server has access to operations that are universal for BQP, even if a sub

universal class of circuits is being implemented. As such, in the case that the Server is

not a universal BQP machine the computational requirements of the protocols would

26A similar approach, using the verifiable preparation of a quantum state on one server, is used in

[202] with multiple servers.
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be too high for them to be used. This motivated the development of several schemes for

verifying, both partially and wholly, sub-universal models of quantum computation.

One approach to doing this relies on post-hoc verification techniques to ensure that

the ground state of the Feynman-Kitaev Hamiltonian corresponding to an IQP circuit

of concern has been produced [75]. One of the prepared states can be used to sample

from a distribution which can be verified to be a bounded ℓ1-norm distance from the

output distribution of the IQP circuit. Note that this is not a direct application of the

post-hoc techniques discussed in Section 1.6.2 as IQP is not a decision class. While in

general the ground state could not be prepared by an IQP circuit, this can be made to

be the case for the 2D-DQS circuits described in Theorem 1.5.3. The state prepared by

those circuits are the ground states of 2-local Hamiltonians, and so the preparation and

sampling can be verified [24]. This notion of verification is stronger than that of the

scheme we present in Chapter 4, where we can say something only about the compu-

tational power of the device of concern, but the limitations on the noise permitted are

higher and may not be realisable in the very near future.

A second approach is to adapt VUBQC so as to reduce the resource requirements to

that of sub-universal models. This technique has been used in the one-clean qubit

model [203] and the Ising model [204], with trapification utilised as the means of per-

forming verification. In Chapter 4 we take a similar approach, but, rather than trapifi-

cation, take a proposed scheme for a classical client to benchmark the implementation

of IQP computations [113], which we call the Shepherd-Bremner IQP Hypothesis Test,

as our starting point. The Shepherd-Bremner IQP Hypothesis Test verifies that a device

is capable of performing IQP computations, providing a path to demonstrating quan-

tum computational supremacy, rather than verifying one IQP circuit in particular. This

is achieved by concealing a small X-program, which enforces some property on the

output, within a larger, hard to simulate, one. This property of the output can be used

to aid verification. The security of this hiding relies on computational complexity as-

sumptions that were since shown not to hold. However, in Chapter 4 we adapt VUBQC

to recover information-theoretic security guarantees. We do so without requiring all of

the operation necessary for VUBQC, although some operation required are outside of

the capabilities of IQP circuits. To facilitate the discussion in Chapter 4 we outline the

Shepherd-Bremner IQP Hypothesis Test scheme now.

The Shepherd-Bremner IQP Hypothesis Test

The Shepherd-Bremner IQP Hypothesis Test introduces some structure in the program

elements, qqqi, of the X-program which defines an IQP computation. This, in turn, results

in some structure in the distribution of the outputs. If the Server is asked to implement

an X-program with this structure the Client can use the structure to check the Server’s

reply. A server capable of IQP computations can reproduce this structure by imple-

menting the X-program. However, if the structure is well hidden, and therefore cannot

be used by a weaker server to reproduce the computation, a server not able to perform

IQP computations cannot generate outputs obeying the same rules.

The methodology of the Shepherd-Bremner IQP Hypothesis Test can be broken down:
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Hard Problem The Client asks the Server to perform an IQP computation that is hard

to classically simulate.

Known Structure The Client can check the solution to this computation because they

know some secret structure that makes this checking processes efficient.

Hidden Structure The Server must be unable to efficiently uncover this structure.

The aim of the Shepherd-Bremner IQP Hypothesis Test is not to verify the accuracy of

a particular IQP computation, as in the case of the schemes introduced in Section 1.6.2.

Instead the aim is to measure a device’s capacity to implement IQP computations, using

a hard instance as a representative example of the IQP class. We refer to schemes of this

form as IQP Hypothesis Tests. While performing well at an IQP Hypothesis Test for

sufficiently large circuits could constitute a demonstration of quantum computational

supremacy, an IQP Hypothesis Test should be able to give indications of a device’s

performance at even larger sizes than those required for such a demonstration. In

this way an IQP Hypothesis Test is more powerful than the schemes for certifying

demonstrations of quantum computational supremacy outlined in Section 1.6.4.

The particular known structure of the output which is used is its bias.

Definition 1.6.1. If X is a random variable taking values in {0,1}n
and sss ∈ {0,1}n

then the bias of X in the direction sss is P
(
X · sssT = 0

)
where the product is performed

modulo 2. Hence, the bias of a distribution in the direction sss is the probability of a

sample from the distribution being orthogonal to sss.

To calculate the bias of X in direction sss ∈ {0,1}np , consider the matrix QQQsss formed

from all rows, qqqi of QQQ from the X-program, (QQQ,θ) ∈ {0,1}na×np × [0,2π], such that

qqqi · sssT = 1. Consider then the linear code Csss generated by QQQsss; which is to say, the

linear code of which the columns of QQQsss form the basis. Defining ns to be the number

of rows of QQQsss, and #ccc to be the Hamming weight of a vector ccc, allows us to understand

equation (1.26), derived in [113].

P
(
X · sssT = 0

)
= Eccc∈Csss

[
cos2 (θ(ns−2 ·#ccc))

]
(1.26)

We find that the bias of an X-program in the direction sss depends only on θ and the linear

code defined by the generator matrix QQQs. Therefore, a client, with the computational

power to calculate the quantity of equation (1.26), has the necessary information to

compute the bias and check the samples from the Server adhere to that bias.

In [113] the authors develop a protocol for building an X-program and a vector sss per-

forming this type of test. The code Csss used to build the X-program is a quadratic

residue code27 while θ is set to π
8 . In that case the bias value, which is cos2

(
π
8

)
for

their choice of X-program and sss, can be calculated in polynomial time. In particular,

this value is high compared to that if uniformly random bit strings were produced.

The problem of hiding the known structure then reduces to hiding the direction sss in

which the bias will be checked. As such we now introduce some operations that allow

27Details of the procedure for producing a generator matrix of the quadratic residue code, along with

an implementation of the procedure, can be found in [205].
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us to randomise and pad sss, while maintaining our knowledge of the bias. In fact it

is easier to understand how operations on the X-program matrix QQQ can be used to

randomise sss, and so we begin with this.

Notice that adding the columns of QQQsss to one and other, and duplicating columns of QQQsss,

does not affect the linear code generated. Further, permuting the rows of QQQsss does not

change the Hamming weight of its vectors. As such the right-hand side of equation

(1.26) is equal for all generator matrices in a matroid. 28

Definition 1.6.2 (i-Point Binary Matroid [206]). A i-point binary matroid is an equiv-

alence class of matrices with i rows, defined over F2. Two matrices, MMM1 and MMM2,

are said to be equivalent if, for some permutation matrix RRR, the column echelon re-

duced form of MMM1 is the same as the column echelon reduced form of RRR ·MMM2 (In the

case where the column dimensions do not match, we define equivalence by deleting

columns containing only 0s after column echelon reduction).

These operations give some freedom to the X-programs which can be used without

affecting the expectation in equation (1.26). However, such actions will affect the

relationship between the rows and sss. In order to move to a new matrix within the same

matroid, consider the right-multiplication with matrix AAA on QQQ. Notice that qqqisss
T =

(qqqiAAA)
(

AAA−1sssT
)

and so rows originally non-orthogonal to sss are now non-orthogonal to

AAA−1sssT . Hence, loosely speaking, we can identify the matroid which QQQsss represents in

QQQAAA by using AAA−1sssT .29

In this way sss can be randomised with such an operation AAA. We now understand what to

do to the X-program we are considering so that the value of the bias does not change.

The matrix might also include additional rows orthogonal to sss, which do not affect the

value of the bias. It is now simply a matter for the Server to implement the randomised

X-program and for the Client to check the bias of the output in the new direction,

with the final proposal of [113] outlined in Protocol 1.6.1. Importantly the number of

samples required from the X-program to be implemented by the Server, denoted by K

in Protocol 1.6.1, is constant, ensuring that the scheme can be implemented efficiently.

This discussion allows us to elaborate on the realisation of the methodology detailed

above in the case of the Shepherd-Bremner IQP Hypothesis Test:

Hard Problem Given an X-program generated as in Protocol 1.6.1, produce bitstrings

orthogonal to AAA−1sss⊺ with probability close to cos2
(

π
8

)
. It is conjectured in [113]

28There are several cryptomorphic definitions of a matroid [206], of which binary matroids are a

special case. Intuitively matroids generalise the notion of linear independence, with independent sets

being one popular basis on which to formalise this intuition. There a matroid consists of a set, called the

ground set, and a family of subsets, called the independent sets. The equivalence between the definition

via independent sets and that of Definition 1.6.2 comes from identifying the ground set as the set of

columns of a matrix, and the independent sets as those columns that are independent as vectors. The

definition via matrices used in this work is convenient as it makes clear connections to binary linear

codes which we use later.
29This ease with which operation on QQQ and the effect on outputs can be related is powerful. Indeed,

as introduced in Section 1.5.2, by considering AAA to be a generator matrix of an error correcting code,

simple noise channels can be corrected [64].
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Protocol 1.6.1 An outline of the Shepherd-Bremner IQP Hypothesis Test of [113]. The

complete construction can be found at [205].

Public: θ = π
8

Client input: na prime such that na +1 is a multiple of 8, K ∈ Z.

Client output: o ∈ {0,1}

Client

1: Set np =
na+1

2 +1

2: Take the quadratic residue code generator matrix QQQrrr ∈ {0,1}na×(np−1)

3: Let QQQsss ∈ {0,1}na×np be QQQrrr with a column of ones appended to the last column.

⊲ Notice that the all 1 vector is a code word of the quadratic residue code,

and that all rows are non-orthogonal to the vector (0, . . . ,0,1).
4: Append na rows to the bottom of QQQs, which are random subject to having 0 as their

last entry.

⊲ Notice that all the appended rows are orthogonal to the vector (0, . . . ,0,1).
5: Randomly permute the rows.

6: Row reduce the matrix. Suppose that QQQ = QQQsAAA is the row reduced form of QQQs

7: Send QQQ to the Server and request K output string.

Server:

8: Perform the IQP computation QQQ using implementation of choice.

9: Return K samples x̃i to the Client.

Client:

10: Let sss ∈ {0,1}np be the vector with entries all equal to zero with the exception of

the last which is set to one.

11: Test the orthogonality of the output x̃i against AAA−1sssT , setting oi = 0 if it is not

orthogonal and oi = 1 if it is orthogonal.

12: Return o = 1 if the fraction of i with oi = 1 is close to cos2
(

π
8

)
, and o = 0 other-

wise.
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that doing so, without knowing the relevant AAA−1sss⊺, is hard to do on a classical

computer.

Known Structure The Client will check if this hard problem has been solved by

calculating the probability that the returned bitstrings are orthogonal to AAA−1sss⊺,

which the Client themselves decided upon.

Hidden Structure It is conjectured in [113] that recovering AAA−1sss⊺ from the given

X-program is hard to do using a classical computer.

We turn then to the basis for the conjectures made above. That is to say, we wish to

understand if the scheme outlined in Protocol 1.6.1 could be fooled by a classical de-

vice. Note that to do so, it would be sufficeint to break either of the two conjectures

outlined. In particular, if the Server could recover AAA−1sss⊺ from the X-program received,

then it would be sufficient to return classical strings which are orthogonal with the

appropriate probability. As stated when describing the hidden structure, it is conjec-

tured in [113] that to recover AAA−1sss⊺ is not possible, with this conjecture supported by

analogies to finding cliques in graphs, which is an NP-complete problem. It is this

conjecture that we are able to remove in Chapter 4.

Note that the conjecture made in the case of the hard problem implicitly assumes that

the class of X-programs generated by Protocol 1.6.1 are hard to classically simulate. If

they were not, it would be possible to sample from their output distributions using a

classical computer, and to easily pass the test. Proofs for such hardness results are rare,

and in this particular case in [113] this hardness is conjectures based on the hardness

of simulating circuits from the IQP class more broadly, as discussed in Section 1.5.2.

However, even if it was not possible to sample from these distributions classically, this

would not be enough to ensure a classical client could not spoof this particular test

by generating bitstrings with a high bias in some other way. As such, this particular

conjecture is supported in [113] by giving a ‘best attempt’ at classical simulation

without knowledge of AAA−1sss⊺ which achieves maximum bias value 0.75. This classical

scheme works by showing that yyy ·AAA−1sss⊺, where yyy is the sum of the rows of the X-

program received by the Server that are orthogonal to either of two randomly generated

binary vectors, is equal to the product of random codewords of the quadratic residue

code. These codewords are orthogonal if either codeword has even parity which, by the

nature of the quadratic residue code, occurs with probability 0.5. Hence the probability

that either has even parity, and so the expectation of yyy ·AAA−1sss⊺, is 0.75. In Chapter 4 we

are able to strengthen this conjecture.

As discussed in Section 1.5.2, there are strong grounds to believe a direct simulation of

the role of the Server in Protocol 1.6.1 using a classical device would be hard. Indeed in

[113] it is conjectured that the distribution produced by the X-program of Protocol 1.6.1

should be hard to sample from in a reasonable amount of time without an IQP capable

computing device for na ≈ 250 [205]. However a non-simulation attack on the scheme

has been identified which allows for a purely classical server to recover, with high

probability, the hidden string in time polynomial in the number of qubits [207]. This

attack adapts the classical approach of [113] by fixing one of the random codewords so

that, with probability 0.5, all of the vectors yyy in that scheme are orthogonal to AAA−1sss⊺.

This probability can be boosted arbitrarily close to 1, and the vectors yyy then provide a
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set of linear equations which can be used to recover AAA−1sss⊺.

Vital to the scheme outlined in Protocol 1.6.1 is an element of blindness, the security of

which is found wanting by the attack of [207]. In particular the conjecture that uncov-

ering AAA−1sss⊺ should be hard was unfounded. To avoid the attack of [207], in Chapter

4 we propose an alternate hiding scheme which requires the Client has small quantum

computing power, but which provides information-theoretical security against uncov-

ering the hidden string.

1.6.4 Classical Certification of Demonstrations of Quantum Com-

putational Supremacy

When the number of qubits is few and the Client is not capable of any quantum opera-

tions, the above schemes become inappropriate. Those schemes that require quantum

networks are inaccessible, while Random RSP and measurement commitment schemes

require too many qubits to be used to compensate for this. By running additional cir-

cuits, and making assumptions of the form of the noise, it is possible to bound the

ℓ1-norm distance between an ideal and real output probability distribution without re-

quiring quantum operations by the Client, or increases in the number of qubits [24,

208]. While such schemes can allow even for spatially and temporally correlated noise

[208], other necessary noise assumptions, such as the absence of coherent errors, may

be unfounded on NISQ technology.

In the very near-term we require both computations that are well suited to the archi-

tecture being considered, and certification schemes that do not add any more qubits or

circuits than are required by the computation. One such combination of computation

and certification scheme is RCS and either Heavy Output Generation Benchmarking or

Cross-Entropy Benchmarking [62, 85]. Both Heavy Output Generation Benchmarking

and Cross-Entropy Benchmarking use guarantees about the shape of the distribution of

output probabilities from RCS circuits in order to measure the performance of a real,

possibly noisy, implementation. In particular they use these guarantees to check that

the outputs produced most regularly by an implementation are indeed the outputs that

are the most likely in the ideal distribution. As it is thought that RCS is hard for clas-

sical computers, Heavy Output Generation Benchmarking and Cross-Entropy Bench-

marking are used to certify demonstrations of quantum computational supremacy [60].

Neither Cross-Entropy Benchmarking nor Heavy Output Generation Benchmarking

can be used to bound the ℓ1-norm distance. This prevents us from using them to draw

strong conclusions about demonstrations of quantum computational supremacy, such

as those discussed in Section 1.5.2 [66], which rely on bounds to the ℓ1-norm distance.

However, there are grounds to believe that circumventing classical simulation of RCS

by directly ‘spoofing’ these benchmarks should be hard. Here spoofing roughly means

producing outputs that have large probabilities in the ideal output distribution of the cir-

cuit with a greater frequency than those with a small probability, without implementing

the circuit directly. In the case that the noise is depolarising, scoring highly at Cross-

Entropy Benchmarking when using a classical computer to simulate RCS leads to a

contradiction of the Strong Exponential Time Hypothesis [60]. Without assumptions

about the noise, it seems that spoofing should be no easier than making a non-trivial
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estimate of the output amplitudes [85, 209], i.e. making a better guess than a uniform

distribution.30

Both Heavy Output Generation Benchmarking and Cross-Entropy Benchmarking can

be used to approximate the fidelity of an implementation of RCS [60].31 In the demon-

stration of quantum computational supremacy given in [60], Cross-Entropy Bench-

marking is used to calculate the average circuit fidelity of a large circuit by decoupling

two halves of the device,32 approximating the fidelity of the circuit built from gates in

the larger circuit which act only on each half respectively, and multiplying together the

results of both.33 When demonstrations of quantum computational supremacy are of

concern, calculating the cross-entropy difference of the larger circuit would otherwise

be too computationally costly, as producing output samples for this distribution is be-

lieved intractable. The fidelity of the implementation in [60] was only mildly better

than that which could be achieved by uniformly randomly outputting samples. As we

discuss further below, this provides a route to demonstrating quantum computational

supremacy that does not require we directly bound the ℓ1-norm distance.

Later, in Chapter 3, we will use these benchmarks as figures of merit when measuring

the suitability of a selection of quantum computing stacks for certain applications.

Hence, in this section we explore their properties in so far as this facilitates their use

and justify our choosing them. For both Cross-Entropy Benchmarking and Heavy

Output Generation Benchmarking, we detail: their definition, the continuous range of

values they can take, their dependence on noise, and the procedure for calculating their

value from samples produced by an implementation.

We will suppose a quantum computer runs an n qubit circuit C, on the input |0〉n.

Repeated runs produce a set of classical bitstrings x1, ...,xk (with k being the total

number of runs). Figures of merit compare pC

(
x j

)
= |〈x j|C|0n〉|2, the ideal output

probabilities of each x j in C, and DC

(
x j

)
, the probability that xi is produced by a real

implementation, which may be noisy. The ℓ1-norm distance can be seen trough this

lens, and indeed will be used as such throughout this thesis. Similar to the ℓ1-norm

distance is the Kullback-Leibler divergence (KL-divergence), defined as in equation

(1.27). The KL-divergence upper bounds the ℓ1-norm distance via Pinsker’s inequality,

and like the ℓ1-norm distance will be referenced throughout this work.

KL(pC,DC) = ∑
x∈{0,1}n

pC log

(
pC (x)

DC (x)

)
(1.27)

In practice, access to DC

(
x j

)
is impossible. Since the number of possible bitstrings x j

30The impossibility of making a non-trivial estimate is a strong but plausible assumption. How-

ever, for some circuit depths it may still be that spoofing Cross-Entropy Benchmarking is easier than

performing full state vector simulations [210].
31The standard deviation of the estimator if Heavy Output Generation Benchmarking is used to

approximate circuit fidelity is larger than that for Cross-Entropy Benchmarking [60].
32In the work of [60] both decoupled, partially coupled, and fully coupled circuits are investigated

to ensure the accuracy of this method of combining fidelities.
33This approach is feasible when it can be justified, through numerical simulations and experimental

implementations, that the average circuit fidelities do combine in this fashion. This is so when the errors

on each output are uncorrelated with the amplitude of that output in the ideal probability distribution.
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generally grows exponentially with the number of qubits, calculating DC

(
x j

)
for every

j would require an exponentially increasing number of samples. Therefore, instead of

using the KL-divergence, or indeed the ℓ1-norm distance, it is importatnt to focus on

figures of merit which can be approximated with a number of samples from DC which

is polynomial in the size of the circuit. This is the case for Heavy Output Generation

Benchmarking and Cross-Entropy Benchmarking. Note that if the number of qubits is

small and constant, it is possible to reasonably accurately approximate measures such

as the ℓ1-norm distance, and we will make use of this.

Unlike with access to DC

(
x j

)
, simulations can be used to calculate pC

(
x j

)
directly,

and both Heavy Output Generation Benchmarking and Cross-Entropy Benchmarking

make use of this. Importantly making use of pC

(
x j

)
, rather that the full state vector,

allows for the utilisation of Feynman simulators. This alleviates the memory storage

problem [85, 120], and allows for classical simulations of, and as a result benchmark-

ing of, larger systems than would otherwise be possible [60, 62].

Heavy Output Generation Benchmarking

Heavy Output Generation [85] (HOG) is the problem which demands that, given a

quantum circuit C as input, strings x1, ...,xk be generated which are predominantly

those that are the most likely in the output distribution of C. That is to say, outputs with

the highest probability in the ideal distribution should be produced most regularly. If

the ideal distribution is sufficiently far from uniform, this problem provides a means to

distinguish between samples from the ideal distribution and a trivial attempt to mimic

such a sampling procedure by producing uniformly random strings. Although a simple

problem to state, this task is conjectured to be hard for a classical computer [85].

Definitions and Related Results An output z ∈ {0,1}n is heavy for a quantum cir-

cuit C, if pC (z) is greater than the median of the set {pC (x) : x ∈ {0,1}n}. Intuitively

the heavy output probability of DC is the frequency with which the heavy outputs of

pC are produced when sampling from DC. More precisely, let δC (x) = 1 if x is heavy

for C, and 0 otherwise. Then the heavy output probability of DC is defined as:

HOG(DC, pC) = ∑
x∈{0,1}n

DC (x)δC (x) .

An important note is that while the ℓ1-norm distance bounds the heavy output proba-

bility, the reverse is not true [66]. This has important implications on the relationship

between the heavy output probability and results on quantum computational supremacy

which measure closeness in ℓ1-norm distance.

HOG(DC, pC) varies in value between 0, when outputs which are heavy in pC are

never produced by DC, and 1, when only the heavy outputs have non-zero probabil-

ity in DC. Consider now HOG(pC, pC), which corresponds to the total probability

of the heavy outputs of pC, or equally the heavy output probability if pC was imple-

mented ideally. In the case HOG(pC, pC)≈ 1/2, outputs which are heavy have similar

probabilities of occurring as outputs that are not heavy. Such distributions are well

approximated by the uniform distribution, where all outputs are equally likely. Hence,
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for HOG(DC, pC) to help us distinguish between an ideal implementation of C and a

trivial attempt to mimic it by generating random bitstrings, HOG(pC, pC) should be

greater than 1/2. In fact, HOG(pC, pC) is expected to be (1+ log2)/2 ≈ 0.846574

[85] for circuit classes whose distribution of measurement probabilities, p, is of the

exponential form Pr(p) = Ne−N p, where N = 2n.34 This is to say that heavy outputs

of an exponential distribution have a cumulative probability of ≈ 0.846574 of occur-

ring. When the output distributions of a class of circuits is shown to take this form it is

meaningful to define the Heavy Output Generation problem.

Problem 1 (Heavy Output Generation [85]). Given a measure µ over a class of circuits,

sample from a family of distributions {DC} satisfying:

EC←µ [HOG(DC, pC)]≥
2

3
. (1.28)

A popular measure of the performance of a programmable quantum computing device,

called quantum volume, is based on measuring the largest circuits for which Problem

1 can be solved [212]. In particular, quantum volume considers the heavy output prob-

ability of a class of circuits, which we refer to as quantum volume circuits, and which

have exponentially distributed output probabilities. Those circuits grow linearly in

depth as the number of qubits, n, grows. The impact of noise is greater for circuits Cn

using more qubits, since the number of gates is increased. This means that it is harder

to sample from distributions {DCn
} solving the HOG problem of Problem 1 for larger

n. The quantum volume of a device is 2N where N is the largest n for which distri-

butions {DCn
} which solve the HOG problem can be sampled from by the quantum

device. This reveals that ‘volume’ here refers to the size of the Hilbert space that can

be accurately sampled from. This gives a single value by which to assess the quality of

a device. The philosophy of quantum volume was since extended to volumetric bench-

marks [213, 214], which explore the trade-off between the depth and width of circuits

more generally. Indeed this is the approach we take in Chapter 3.

The motivation for the introduction of quantum volume, and the inequality of equation

(1.28) is the classical hardness of solving the HOG problem of Problem 1 for random

circuits, under the QUATH assumption of Assumption 1.

Assumption 1 (QUATH [85]). The QUAntum THreshold assumption (QUATH) is that

there is no polynomial time classical algorithm that takes as input the description of

an n qubit random circuit C← µ and which guesses whether |〈0n|C|0n〉|2 is greater

or less than the median value in {pC (x) : x ∈ {0,1}n} with success probability at least

1/2+Ω(1/2n) over the choices of C.

As opposed to the statement that HOG is hard, QUATH does not reference sampling,

and concerns only the difficulty of providing non-trivial approximations of output am-

plitudes. This assumption is strong compared to those used before, such as the non-

collapse of PH, but it can be be evidenced by observing the difficulties of calculating

output probability amplitudes [85].

34This is also commonly referred to as the Porter-Thomas distribution [211]. This is discussed at

length in Appendix B.1, where distributions of outputs from the circuits of Chapter 3 are studied.
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Empirical Estimation From Samples We approximate HOG(DC, pC) using only a

polynomial number of samples from the real distribution DC, by calculating the ideal

probabilities pC (x). Note that while this is sample efficient, calculating pc (x) requires

a number of operations which grows exponentially with the number of qubits. To

approximate HOG(DC, pC) we calculate the following expression, where x1, ...,xk are

samples drawn from DC.
1

k
∑

i=1,...,k

δC (xi)

By the law of large numbers, this converges to HOG(DC, pC) in the limit of increasing

sample size.

Ideal and Noisy Implementations HOG is solved efficiently by a quantum com-

puter, simply by implementing the circuit C. In the case of extreme noise, and the con-

vergence of the real distribution DC to the uniform distribution U, HOG(DC, pC) =
1/2. This is compared to the case where the output probabilities are exponen-

tially distributed, where DU = pU , when we would expect to have HOG(DC, pC) =
(1+ log2)/2. The continuum of values in between provides a valuable figure of merit

for a quantum computing stack. We refer to the calculation of this figure of merit as

Heavy Output Generation Benchmarking.

Cross-Entropy Benchmarking

The results of Cross-Entropy Benchmarking [62] relate to the average probability, in

the ideal distribution, pC, of the outputs which are sampled from the real distribution,

DC. For distributions which are far from uniform, and with a spread of probabilities of

outcomes, this measure can be used to distinguish an ideal from a real implementation.

Ideal implementations regularly produce the higher probability outputs, obtaining a

high benchmark value, while even a small shift in the distribution lowers the value.

Definitions and Related Results Intuitively, the entropy, H (D), of a distribution,

D , as defined in equation (1.29), measures the expectation of ones ‘surprise’ at observ-

ing samples from D . This is measured by fD (x) = − log(D (x)), which accordingly

decreases with increasing probability of the outcome occurring.35

H (D) = ∑
x∈{0,1}n

D (x) log

(
1

D (x)

)
(1.29)

The cross-entropy measures ones surprise when sampling from D when expecting D ′,
or the additional information required to describe D given a description of D ′.

35An alternate definition sets fD (x) = 2−n−D (x), in which case the related quantity is referred to

as linear cross-entropy [60]. The function fD (x) may be any which decreases with increasing outcome

probability. The choice depends on the relationship between the fidelity of the resulting state, and the

standard deviation of the estimator of the associated definition of cross-entropy difference. In this case

the connection to the average probability of the outputs sampled is clearer.
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Definition 1.6.3 (Cross-Entropy). The cross-entropy between two probability distribu-

tions D and D ′ is

CE
(
D,D ′

)
= ∑

x∈{0,1}n

D (x) log

(
1

D ′ (x)

)
.

The cross-entropy is notably similar in form to the KL-divergence, defined in equation

(1.27). However, while the KL-divergence upper bounds the ℓ1-norm distance via

Pinsker’s inequality, no such bound on the ℓ1-norm distance by the cross-entropy exists

[66]. As with the heavy output probability, the cross-entropy can be bounded by the

ℓ1-norm distance.

The cross-entropy difference is CE(U,D ′)−CE(D,D ′), where U is the uniform dis-

tribution.

Definition 1.6.4 (Cross-Entropy Difference). The cross-entropy difference between

two probability distributions D and D ′ is

CED
(
D,D ′

)
= ∑

x∈{0,1}n

(
1

2n
−D (x)

)
log

(
1

D ′ (x)

)
.

Therefore, the cross-entropy difference can be thought of intuitively as answering “is

the distribution D ′ best predicted by D or by the uniform distribution?”.

As with the connection between QUATH of Assumption 1 and Heavy Output Gener-

ation Benchmarking, the hardness of spoofing Cross-Entropy Benchmarking for some

classes of random circuits can be reduced to the hardness of making non-trivial esti-

mations of output probabilities.

Assumption 2 (XQUATH [209]). The Cross-Entropy QUAntum THreshold assump-

tion (XQUATH) is that there is no polynomial time classical algorithm that takes as

input the description of an n qubit random circuit C← µ and produces an estimate p

of pC (0) = |〈0n|C|0n〉|2 such that

E

[
(p− pC (0))

2
]
= E

[(
pC (0)−2−n

)2
]
−Ω

(
2−3n

)

where the expectation is taken over C and the internal randomness of the algorithm.

Empirical Estimation From Samples By the law of large numbers, the following

expression converges to CE(DC, pC), where x1, ...,xk are samples drawn from DC.

1

k
∑

i=1,...,k

log

(
1

pC (xi)

)
(1.30)

This can be used by a classical computer to approximate the value for CED(DC, pC).
While only a polynomial number of samples xi are required, the calculation of pC (xi)
takes exponential time.
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Ideal and Noisy Implementations The cross-entropy, CE(DC, pC), when DC re-

sults from an ideal implementation, reduces to the entropy of pC. In the case where the

probabilities pC (x) are approximately independent and identically distributed accord-

ing to the exponential distribution, we have that H (pC) = log2n + γ−1 [62], where γ
is Euler’s constant.

In the case where the probabilities D (x) are uncorrelated with those of pC (x) we arrive

at the following prediction of the cross-entropy [62].

EC [CE(DC, pC)] = log2n + γ

DC (x) and pC (x) are uncorrelated if, for example, DC is the uniform distribution, or,

in the case of demonstrations of quantum computational supremacy, if DC is the output

of an efficient classical algorithm [62].

These results allow us to identify the extreme values of the cross-entropy difference.

DC = pC: When the unitary is implemented perfectly CED(DC, pC) = 1.

DC = U: When samples are generated uniformly at random CED(DC, pC) = 0.

The cross-entropy difference gives a value between 0 and 1 which measures the accu-

racy of the implementation of a circuit, the calculation of which is called Cross-Entropy

Benchmarking.

1.7 Abstract Cryptography

The approach originally used to prove the security of early quantum key distribution

(QKD) protocols was to show the mutual information content, between the information

gained by the eavesdropper and the key produced, is ‘small’. The BB84 [5] and E91

protocols [8] were shown to satisfy this condition. However, this approach was shown

to be insufficient [215] as it neglected to consider the impact of incorporating protocols

into larger ones, or their parallel and repeated use. Indeed, even device independent

QKD, which guarantee security based only on the output statistics of components used,

is insecure if untrusted devices are used more than once [216].

Further, it is of concern to this work that, as discussed in Section 1.6.1, the definition

of blindness originally utilised is insufficient when a BQC scheme is to be composed

with, or utilised within, other protocols. Stronger notions of the security of BQC pro-

tocols have been introduced [194] which use tools from Abstract Cryptography36 [221,

222]. The Abstract Cryptography framework can also be used to prove the compos-

able security of QKD [222] while we will use it in Chapter 4 to prove the composable

security of a blind delegated implementation of IQP computations.

The intuition on which this technique is based is that the ideal functionality of a proto-

col, which will complete the task in mind perfectly, but without considering the details

36Abstract Cryptography forms part of a tradition of considering the composable security of both

classical and quantum protocols [217–220]. These different approaches all have in common that they

consider the ‘distance’ between the implementation of a protocol and some ideal behaviour.
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(a) Ideal Resource.

πA πBR

(b) Real Protocol.

Figure 1.13: A comparison of the real protocol and ideal resources. The proto-

cols πA and πB communicate via the resource R . The ideal resource, unlike the real

protocol, does not consider the details of the computation.

of the protocol, should be defined first. The real protocol, which must take these de-

tails into consideration, can then be introduced and compared. Showing the two to be

indistinguishable means they may be reasoned about interchangeably.37 For example,

the ideal functionality of a BQC protocol allows the Server to choose the output to the

Client, which would be the result of the computation if they behave honestly, but limits

the output to the Server to an upper bound on the size of the computation. The Client’s

input is a classical description of the computation and the input to the computation.

Some real protocols implementing this functionality are discussed in Section 1.6.1.

These functionalities and protocols are achieved using ‘resources’, and themselves

define resources for use in other protocols. By way of an example, QKD may be used

as a resource when implementing a one-time pad, while it itself requires resources such

as an authenticated classical channel and an insecure quantum channel [222].38

Definition 1.7.1 (I -resource). An I -resource is an abstract system with interfaces

specified by a set I . Each interface i ∈ I is accessible to a user i and provides them

with the ability to present inputs and read outputs. Resources are equipped with a

parallel composition operator, ||, that maps two resources to another.

A resource implementing the ideal functionality is called the ideal resource. The real

protocol is also a resource and consists of a set of other resources composed together

using protocols. We hope the real protocol approximates the ideal resource. We are

concerned with two-party DQC, introduced in Section 1.6, and so it is sufficient to

denote the communication and computation protocols of each player by πA and πB for

the Client and Server respectively, as Figure 1.13 exemplifies. There, the communica-

tion channel is a resource with an interface for each party. The Server is the adversary,

although there may be several in general.

37This real-world-ideal-world paradigm may alternatively be formalised in the language of category

theory. In this language objects correspond to resources, as defined in Definition 1.7.1, and morphisms

correspond to converters, as defined in Definition 1.7.2. An appropriate definition of attacks, and secu-

rity against them, allows one to show that protocols secure against attacks form a symmetric monoidal

category [223].
38The definitions that follow are based on those from [222] and we direct the reader to that work for

a thorough exposition of the Abstract Cryptography framework.
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Distinguisher

πA πB

0,1

Figure 1.14: Distinguisher interacting with the real protocol. The distinguisher has

control over both parties inputs and outputs, and implements the adversary’s protocol,

πB. The binary output indicates which of the ideal resource or real protocol the distin-

guisher believes itself to possess.

The approach of Abstract Cryptography is to consider the distinguisher, which cap-

tures all the parts of the protocol outside of the behaviour of the honest party. The

distinguisher picks the inputs of the honest player, collects their outputs, and plays the

role of the adversary. The distinguisher is given access to either the real protocol or

ideal resource and must decide which of the two it possesses. If they cannot, the real

protocol is compositionally secure.

Figure 1.14 illustrates the role of the distinguisher, and reveals that the interface of

the real protocol differs from those of the ideal resource. This difference may aid in

distinguishing them. For example, BQC protocols may involve the exchange of qubits,

which could be abstracted away by the ideal resource. To address this, a converter is

used to alter the interface with the ideal resource to mimic that of the real protocol. It

is also the case that the protocols πA and πB in Figure 1.13 constitute converters.

Definition 1.7.2 (Converter). A Converter is an abstract system with an inside and

outside interface. The inside interface connects to an interface of a resource and the

outside becomes the new interface of the constructed resource.

αiR denotes the new resource, with the converter αi connected to the interface i of the

resource R . Use the notation αR for a set of converters α = {αi}i when it is clear to

which interface they are connected. Serial and parallel composition of is defined by

(αβ)i R := αi (βiR )

(α||β)i (R ||S) := (αiR ) ||(βiS) .

Specifically, a simulator is introduced, which acts as an interface between the ideal

resource and the adversary. The simulator should produce outputs indistinguishable

from the communication of the real protocol.

Definition 1.7.3 (Simulator). A simulator, σ, is a converter connected to the adver-

sary’s interface to the ideal system. It is defined by a set of operations (σ1, ...,σt), one

for each step of the protocol. The simulator may call the ideal resource at any time.
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Distinguisher

Ideal

Resource
σ

0,1

Figure 1.15: Simulator σ addresses the difference between the interfaces of the

real protocol and the ideal resource. The dotted region should be interfaced with in

an equivalent way to the real protocol of Figure 1.14.

The simulator, visualised in Figure 1.15, only learns that which is outputted by the

ideal resource. As such it does not provide any additional information to the adversary,

as the adversary could reproduce the simulators behaviour on its own. If the ideal

resource along with the simulator is indistinguishable from the real protocol, the real

protocol is considered secure as it does not reveal anything more than the ideal resource

reveals.

A second converter of interest is the filter. This enforces honest behaviour by the

adversary by preventing deviation and interaction with the communications.

Definition 1.7.4 (Filter). A filter is a converter which, when placed over the adver-

sary’s interface, prevents access to controls necessary to act maliciously and to any-

thing other than the standard inputs and outputs. A pair, (R ,#), of a resource R and

a filter # together define a filtered resource which may be written R#.

If the filtered ideal resource and filtered real protocol are indistinguishable then the

real protocol is correct in the case the adversary behaves honestly. To model this, we

always assume that one of the adversary’s inputs is instructions on how to deviate from

honest behaviour. Blocking this interface then enforces honest behaviour.

To distinguish two resources is to adopt a measure of the differences between them.

That measure should assign 0 to the difference between a resource and itself, but

also assign 0 in the case of different but indistinguishable resources. As such a

pseudo-metric d (R ,S), where R and S are resources, is the correct measure. This

pseudo-metric should be non-increasing under composition with resources and con-

verters. This is because a converter should not be able to make it easier to distinguish

between two resources, as it would otherwise mean the converter has added some in-

formation that helps with distinguishing them. For such a pseudo-metric we can define

compositional security.

Definition 1.7.5. Let πAB = (πA,πB) be a protocol and R# = (R ,#) and S♦ = (S ,♦)
denote two filtered resources. We say that πAB constructs S♦ from R# within ε ∈ [0,1]
if the two following conditions hold.
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Correctness: We have

d (πABR #E ,S♦E)≤ ε

Security: There exists a simulator σE such that

d (πABR ,SσE)≤ ε

The correctness condition of Definition 1.7.5 gives, when the adversary behaves hon-

estly, a bound ε on the likelihood that the resources could be distinguished from each

other. The security condition gives such a bound in the case that the adversary behaves

maliciously.

We can now be more specific and define the pseudo-metric we will use.39

Definition 1.7.6. The distinguishing advantage that a computationally unbounded dis-

tinguisher, which can guess with probability pdistinguish whether it is interacting with

the resource R or S , is

d (R ,S) := 2pdistinguish (R ,S)−1.

Definition 1.7.6 presumes that the distinguisher uses the distinguishing strategy which

maximises the distinguishing advantage amongst all the strategies available. In par-

ticular the distinguisher can always distinguish between the resources with probability

pdistinguish =
1
2 by simply guessing at random which of the two resources they are in-

teracting with, giving the bound 0 ≤ d (R ,S) ≤ 1. This also demonstrates that when

the resources can be correctly identified with probability pdistinguish = 1
2 the distin-

guisher has no knowledge of the resource they are interacting with. In that case the

distinguishing advantage is d (R ,S) = 0, which we write as R ≡ S .

39One may choose to define a weaker distinguisher than that of Definition 1.7.6 by, for example,

bounding the computational power of the distinguisher. Here we are concerned with only information

theoretic security and so we do not consider this.
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Chapter 2

Methods for Classically Simulating

Noisy Networked Quantum

Architectures

The review of existing approaches to QCVV conducted in Section 1.6 reveals a trade-

off between the assurances that can be given by QCVV algorithms, and the power of

the quantum computing device tested. With large fault-tolerant quantum computers it

is possible to verify the correctness of any BQP computation, as discussed in Section

1.6.2, while for NISQ devices it may only be possible to perform verification in specific

cases, as discussed in Section 1.6.3 and Section 1.6.4. Before the development of

even NISQ devices, classical simulation is possible, and can be invaluable. However,

great care should be taken before extending performance assurances that can be given

for classically simulated devices, to larger devices. In this chapter we provide and

exemplify a methodology for performing meaningful extrapolations of this sort.

While classical simulation cannot reproduce large quantum computations, the tech-

nique can reproduce the behaviour of small instances. We can then compare these

simulations with experiments to confirm that the behaviour matches our predictions.

By scaling our simulations beyond what is experimentally possible we can predict and

prepare for the device’s behaviour as the technology scales.1 Our aims are therefore

twofold. Firstly, to use classical simulations to predict the performance of devices

larger than those currently available, but at a scale where classical simulation is possi-

ble. Secondly, to ground our simulation in theoretical results that allow us to predict

the performance of devices of which extensive classical simulation is not possible.

For us to make reasonable predictions, our simulations must mimic the limitations of

physical implementations. Arguably, chief among these limitations is noise, which we

discussed in Section 1.3.3. Here we explore the impact of noise on the shape of distri-

butions produced by quantum computers, but not if the noisy distributions are hard to

reproduce classically. Indeed, as discussed in Section 1.5.2, in some cases it is known

1In addition, by pushing classical simulations to their limit it is possible to understand what is

classically possible, giving a lower bound on the scale at which we would expect to observe quantum

computational supremacy for a given computation [120, 129, 130, 139].
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Architectures

that a small amount of noise can prevent demonstrations of quantum computational

supremacy. Even in this case, classical simulation can be valuable. By varying noise

levels in the simulations we can determine which types of imperfections lead to the

greatest deviation from the perfect output. We can then suggest experimental groups

prioritise improvements on those imperfections.

In quantum mechanics ‘the total is greater than the sum of its parts’ so testing small

components of a quantum system is not sufficient to make precise predictions about its

behaviour at larger scales. This applies to testing small problem instances too. That

being said, by simulating systems of size as close as possible to the classical limit we

may more assuredly extrapolate that the device functions as modelled in the quantum

computational supremacy regime. This is firstly because by testing, for example, 20-

qubit devices, we are more confident that the phenomena we identify will manifest in

larger systems than if we had tested single or two qubit modules. Secondly, since the

regime of quantum computational supremacy is by definition just beyond the realm of

classical simulation, it is reasonable to assume phenomena in the realm where classical

simulation is possible, but close to the quantum computational supremacy realm, exist

in some form in the quantum computational supremacy domain. Indeed, the transition

from a regime where classically simulation is possible, to the realm of quantum com-

putational supremacy, is one of scale, rather than the results of a paradigm shift in the

underlying model of the physical system. For our purposes, this corresponds to saying

that we do not expect noise sources which are significant when classical simulation

is possible to become insignificant for only slightly larger, but classically intractable,

computations. We proceed in this chapter under the assumption that there is no such

loss of significance.2

While we find classical simulation to be an invaluable tool, other complementary

benchmarking techniques have been explored. For example, randomised benchmark-

ing [19], which measures average error rates, and tests for quantum computational

supremacy both utilise the quantum technology directly. We regard the tools of this

chapter as intermediate between, and complementary to, these approaches. While it

is possible to consider more qubits using classical simulation in the way described

above than can be considered using randomised benchmarking, it is not possible to

consider as many as in the case of certifying demonstrations of quantum compu-

tational supremacy. Conversely, classical simulation will likely rely on the results

of randomised benchmarking to build noise models, and allows for more predic-

tive power and control than is accessible via certification of quantum computational

supremacy. This will become apparent in Chapter 3 where we imagine having access

to a NISQ device within reach of being capable of demonstrating quantum computa-

tional supremacy. In that case the insights we can gain are reduced as classical simu-

lation becomes incredibly resource intensive, and universal verification remains out of

reach. It is however possible to directly probe the performance of a device performing

quantum computational supremacy, which is only indirectly possible here.

2As there have been few demonstrations of quantum computational supremacy, assumptions such as

these are hard to justify. However, in the demonstration of quantum computational supremacy presented

in Ref.[60] they were able to demonstrate the related property that the noise of the device used was well

predicted by a function of the measured noise on each half of the device.
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In this work we give a methodology to follow when using classical simulation to both

predict the performance of small devices as they are scaled in size, and guide experi-

ments pursuing a demonstration of quantum computational supremacy. We exemplify

the methodology by considering IQP problems, discussed in Section 1.5, implemented

on the NQIT Q20:20 quantum device, which we introduce in Section 2.2.2 and Sec-

tion 2.2.3. Strong theoretical results exist for IQP problems, providing grounds for our

predictions, while the NQIT Q20:20 quantum device is designed with scalability in

mind. We show that the current size and noise-levels of the NQIT Q20:20 device make

a demonstration of quantum computational supremacy in the way considered here un-

likely. We further show that dephasing errors are the main source of degradation and

so recommend experimental labs prioritise reducing this type of error. We suggest,

and simulate, an error correction code, which corrects for these errors. Our results

indicate that this approach improves performance considerably and makes a demon-

stration of quantum computational supremacy by implementing IQP instances on the

NQIT Q20:20 device more likely.

Section 2.1 contains the aforementioned methodology, which is then illustrated with

examples in the following sections. In particular, in Section 2.2 we illustrate the tech-

nique, discussed in Section 2.1.1, for choosing the problems, architecture and simula-

tor for our purposes. In Section 2.3 we illustrate the principles for numerical experi-

ment design presented in Section 2.1.2 and: present simulations which can be used to

benchmark the NQIT Q20:20 device, vary the noise levels in order to identify the main

sources of error, and suggest steps to reduce these errors. We conclude in Section 2.4.

2.1 Methodology

Here we detail the methodology followed, addressing two areas. First, in Section 2.1.1,

we give principles to follow when choosing a computational problem, experimental

system, and classical simulator for the purpose of exploring quantum computational

supremacy in near-term devices. Second, in Section 2.1.2, we give a methodology for

designing numerical experiments, specifically when trying to assess the plausibility of

a quantum computational supremacy demonstration. We have two desired outcomes:

Outcome 1 - Benchmark Device: By choosing parameters such as noise and problem

size to be comparable with an actual experiment, we use the simulation to certify

the experiment/device and to predict its performance as the technology scales.

Outcome 2 - Feedback to Experimentalists: By altering the parameters we determine

which imperfections have the greatest negative impact and provide advice about

which are the most urgent and beneficial hardware improvements.

2.1.1 Problem, Architecture and Simulator Selection

Here we give the method utilised in selecting the problem, experimental setup, and

classical simulator used in achieving the above outcomes. We represent this method-

ology schematically in Figure 2.1.
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Hard Problem

Experimental Setup Gate SetArchitecture

Abstract Noise Model NoiseGate Times

Classical Simulator

Identify

Improvements

Benchmark Simulator Benchmark Device

Figure 2.1: The methodology proposed in this chapter. The consideration of each

step is preceded by its ancestor in the diagram, with feedback (dotted arrows) between

steps, and contributing factors indicated from the sides. Outcomes are detailed at the

base of the figure.

Step 1 - Hard Problem: Select a set of problems which: we know, or conjecture, to

be classically hard; despite their hardness, need not be BQP-complete (i.e. do

not exhibit the full power of quantum computation) and are easier to implement

than a universal quantum computation; and show indications of the advantage in

the quantum case persisting in the presence of noise.

It’s reasonable to assume that for some time the problems used to demonstrate quantum

computational supremacy will fit the above description, as they have so far [60, 176].

Step 2 - Experimental Setup: Select an experimental set-up which there exists reason

to believing could be built in the near-term. Examine architecture restrictions

including the quantum computation model (circuit, measurement-based, etc), the

connectivity of the qubits, and the operations which are natural to the setting.

Step 3 - Abstract Noise Model: Decide on a noise model to use, which should depend

on the experimental implementation studied and on experimental measurements

of the noise. For the quantum computation being considered, translate the noise

into abstract operations appropriate for simulation.

Step 4 - Classical Simulator: Select a classical simulator that is best suited for the

problem under consideration. This is not, in general, a brute-force simulation by

matrix multiplication, and the specific choice can be such that it performs better

for the problem, or instances there of, being considered.

While we consider each step in turn, we encourage feed-back between them. From the

conclusions drawn at each step we ‘tailor-make’ the construction of others.
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2.1.2 Numerical Experiment Design

Our analysis consists of three parts for each numerical experiment. In the first we

test the suitability of the classical simulator we plan to use, while in the second we

use the simulator and take into account realistic or projected noise. While the first

part benchmarks the simulator, the second allows us to achieve Outcome 1 listed in

the introduction to this section. The third part of the experiment involves altering the

parameters to achieve Outcome 2.

Part 1 - Simulator Benchmarking: Typically, the best classical simulators are proba-

bilistic with errors which scale with the size of the computation. Therefore one

must test the simulator chosen works as expected, specifically for the problem

considered. Do this by running smaller instances of the problem and comparing

the resulting distributions to a less efficient brute-force simulation. In particular:

• Generate random small instances of the problem.3

• Complete a brute-force simulation of the generated problem.

• Adapt our chosen simulator to solve those instances, and solve many times.

• Compare the brute-force and aggregated simulator outcomes.4

In this way we establish the simulator’s accuracy. We proceed to Part 2 only if the

simulator is indeed shown to be accurate in the case of the problem considered.

Here, as in Part 2 and Part 3, it is vital to clearly outline the random process by

which problem instances are generated. Firstly, the randomness with which problem

instances are generated can impact the applicability of results on quantum computa-

tional supremacy which often depend on this element of the circuit generation process.

Secondly, even when quantum computational supremacy results do not apply, we wish

to ensure the problem instances used for benchmarking are representative of practical

performance, as opposed to, for example, accidentally corresponding to a subset of all

circuits where the device performs particularly well. In the case of the problem classes

we select, namely IQP-MBQC and 2D-DQS, we give the circuit generation procedures

explicitly in Appendix A.2.1 and Protocol 1.5.1 respectively. In the constraints sections

of Section 2.3.1 and Section 2.3.2, we make clear if and how the resulting distribution

of circuits relates to the quantum computational supremacy results, and how it ensures

that the benchmarks are representative of practical performance.

Part 2 - Device Benchmarking: To address Outcome 1, impose constraints reflect-

ing the implementation, possibly at scales larger than those which have been

implemented. Where possible, compare these simulations with experiments to

determine the accuracy of any predictions made. Use the following steps:

• Generate random instances of the problem, restricted to the architecture.

• Generate many random instances of noise to generate many noisy circuits.

• Solve each noisy circuit and the original perfect circuit many times.

3Here the problem that we simulate need not be hard as we are simply benchmarking the simulator,

and not the prospect for quantum computational supremacy. The hard problem we consider should,

however, be a subset of the general class we simulate here.
4The simulator we use has a non-deterministic outcome so we take the average or ‘aggregated

simulator outcome’ as a means to compare.
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• Compare the aggregated simulations in the perfect case and the average of

the aggregated noisy simulations.

• Use suitable parameters and compare with actual experimental realisations.

In this way one can estimate the noise’s influence. Part 3 aims to understand

how the device can be improved to reduce the noise influence. As such it would

be beneficial in general to continue to Part 3. However, one may wish not to

proceed to Part 3 if it becomes apparent that the device is completely unsuited

to the problem being considered, or sufficiently well suited without reducing the

influence of the noise.

Part 3 - Guiding Future Experiments: Impose constraints coming from the realistic

setting to the simulation and compare results with exploratory simulations with

varying noise levels. This comparison is done to obtain an indication of the

speed at which the noise corrupts the computation. Use this as a tool to pro-

vide feedback to experimental groups about which aspects of their devices they

should prioritise improving. In so doing, we address Outcome 2.

• Proceed as in Part 2 but with a varied noise model.

• Compare these results with simulations using the original noise model to

understand the impact of the new noise model.

• If some change to the noise model is shown to result in a large improvement

of the quality of the computation:

1. Propose experimentalists prioritise reducing this type of noise.

2. Consider theoretical methods to mitigate this specific type of error and

test the performance in simulations. For example, introducing partial

error correction to deal with the single most important source of error.

While each part builds on from its predecessor, and so should follow it in the order of

experiments, we may stop at some part if, for the reasons outlined above, it becomes

apparent that proceeding would not be advantageous.

In this work we will not compare our results to those of experimentalists, as we de-

scribe above. We recognise this as an important step and hope to do so in future work.

Here we focus on using classical simulation to predict the impact of noise.

2.2 Exemplifying the Problem, Architecture, and Simu-

lator Selection Methodology

Following the methodology for selecting a problem, architecture and simulator, dis-

cussed in Section 2.1.1: in Section 2.2.1 we present the class of problems considered;

in Section 2.2.2 and Section 2.2.3, the physical system investigated; and in Section

2.2.4, the classical simulation technique used.

2.2.1 Step 1 : Instantaneous Quantum Polytime

Here we consider IQP circuits, as introduced in Section 1.5, for which results on the

hardness of weak simulation up to additive error exist. We do so as we regard such
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results as an indication that a class of problems is promising for an early demonstration

of quantum computational supremacy. This is because it seems plausible that noise

will have a similar impact on average case problems, which we simulate, and worst

case problems, for which hardness results exist. Thus we can draw conclusions about

the impact of noise on the hard cases from its impact on average cases.

In our work, we do not explore the impact of noise on theoretical results on demon-

strations of quantum computational supremacy, as was done in the work introduced in

Section 1.5.2, but suggest that numerical exploration be done in parallel with theoreti-

cal analysis. This would guide us in understanding which realistic experimental setting

is best to demonstrate quantum computational supremacy with IQP problems.

We will make use of the realisation of the IQP class in MBQC, as discussed in Sec-

tion 1.5.4. This is particularly useful since it explicitly parallelises the computation,

minimising the required circuit depth. We will also extensively explore 2D-DQS cir-

cuits defined in Protocol 1.5.1. We recall that this problem in particular seems a good

candidate for our purposes, as described in the hard problem selection methodology

of Step 1 in Section 2.1.1, since it is hard to simulate classically in general, and is

experimentally realisable in the near-term. A further advantage of this scheme is that

the authors of [24] provide an explicit means for a client with a simple measurement

device to verify the protocol. This is an important feature for extending the analysis

beyond the limits were classical simulation is possible.

2.2.2 Step 2 : NQIT Q20:20 Architecture

The second choice to make is the physical system that we consider (Step 2 of Section

2.1.1). We chose the Q20:20 device being developed by the Networked Quantum

Information Technologies Hub (NQIT) [13, 224]. In fact we will model this device as

closely as possible so it will also determine our choice of the noise model, as discussed

in Step 3 of Section 2.2.3.

Networked architectures like NQIT Q20:20, which combine matter degrees of free-

dom in modules which are entangled via photonic degrees of freedom, have two im-

portant advantages. Firstly, once the implementation of connections between modules

is perfected, this architecture can easily scale without significant extra challenges. The

second advantage is that this architecture can be combined easily with communica-

tion tasks. Many applications of quantum computation are likely to involve multiple

parties, a setting to which networked architectures are best suited.

Upon completion, the NQIT Q20:20 device would consists of N = 20 ion traps [46,

47] with K = 20 ions (physical qubits) in each. Traps are arranged on a 2D grid with

only nearest-neighbour interactions allowed, giving a maximum number of connec-

tions D = 4. Different ion-traps are connected via high-fidelity entanglement between

dedicated linking qubits. This high-fidelity entanglement is realised through entangle-

ment distillation [225, 226] and consumes some of the physical qubits of each ion-trap,

leaving K′ < K available qubits, before considering the cost of potential error correc-

tion. Two-qubit gates between ion-traps can be applied by teleporting the qubits into

the same trap. Single and two-qubit gates within a single ion-trap take place in special
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Nx

Ny

(a) Connectivity between ion traps.. The

dotted circles align with the ion traps that are

expanded in Figure 2.2b. Note that, in the

language of Section 2.2.2, N = NxNy.

K

K′

(b) Expanded view of individual ion traps.

Dotted lines between ions in different ion

traps indicate lower fidelity entanglement

which is used to distil a higher fidelity entan-

glement, indicated by the solid line.

Figure 2.2: Architecture of the NQIT Q20:20 device [224].

gate zones. A summary of this information can be seen in Figure 2.2.

These details are based on information obtained early in the NQIT project [224]. Since

the project is still underway, the system parameters N, K, K′, D, and others, may

change [226] and so we let them vary in our simulation toolbox. Like the architecture

itself, the operations that are possible on the NQIT Q20:20 device may vary. We elect

to use the following plausible set. While not certain to be the correct choice in the

long-term, it will at least result in compilation to circuits with a comparable gate count

and execution time to the final choice; both key factors in determining the effect of

noise.

Preparation and measurement: It is possible to prepare qubits in the Hadamard ba-

sis and measure qubits in the computational basis.

Single qubit operations: The possible single qubit operations consist of H and rota-

tions by arbitrary angles, about arbitrary axes in the X −Z plane. For practical

reasons the axes will likely be restricted to integer multiples of fractions of π.

Here we will choose π
4 giving us access to T gates.

Two qubit operations: Here the controlled Z gate, CZ, is permitted.

Operations between traps: It is possible to create a bell pair |φ〉 = 1√
2
(|01〉+ |10〉)

between traps.

2.2.3 Step 3 : NQIT Q20:20 Noise

Following Step 3 of Section 2.1.1, we give a brief summary of all types of noise, the

degree to which they impact computations in the case of NQIT Q20:20, and how we

will model them. We divide the noise into time-based, which we model as occurring
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randomly in time on each physical qubit independently, and operation-based, which

we model as occurring when an operator is applied, and is only applied to the qubits

on which the gate acts.

The values listed below are acquired through measurements of the NQIT Q20:20 de-

vice [224]. This is a subset of the errors described in Section 1.3.3, and a particular

modelling of these errors. However, the structure is general and other versions of the

NQIT Q20:20 device or other quantum devices are likely to have similar specifications.

Therefore the toolbox developed should be adaptable to other quantum computation

devices. Appendix A.1.2 contains a systematic description of the noise.

Time-based Noise

Depolarising Caused by scattering of amplitudes of the electron’s wave-function be-

tween different energy levels of the ion. Modelled by a random single-qubit

Pauli on each qubit at a rate of ≈ 9×10−4s−1.

Dephasing Entanglement reduction that destroys data not stored in the computational

basis. Modelled by Z gate on each qubit at a rate of ≈ (7.2±1.4)×10−3s−1.5

To simulate these noise channels we need the execution times of different operations:

• Preparation - 1−1.5ms

• Measurement - 2−2.5ms

• Single or two-qubit operation within a trap - 0.5ms 6

• Linking between traps - 1−2s 7

Operation-based Noise

Preparation Error in preparing a state. Modelled by bit flip error, simulated by Pauli

X at rate of ≈ 2×10−4.

Measurement As with preparation, measurement is also noisy. Rate of ≈ 5×10−4 to

measure any qubit incorrectly, which corresponds to bit flip and so an X gate.

Single-qubit gates Random Pauli operator applied with probability ≈ (1.5±0.45)×
10−6 after each single-qubit gate. This models depolarising noise.

Two-qubit gates Depolarising error, modelled by independent single-qubit random

Pauli errors, on both qubits, each with probability ≈ (5.5± 3.5)× 10−4 and a

further two-qubit error Z⊗Z with probability ≈ 6×10−5.

Linking operations This error is determined by the fidelity of the entanglement be-

tween traps, and so depending on the amount of entanglement distillation used

[226]. If 10-qubits are used for distillation, then the error in the linking opera-

tion between traps is approximately the same as the errors incurred by two-qubit

gates between qubits in the same trap [224]. Moreover, using more qubits for

5Using the language introduced in Section 1.3.3, the T2 time is ≈ (1/(7.2±1.4))×103s.
6This set of operations includes moving the qubits to the gate zone.
7This timing information is for the case of 10 distillation qubits.
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distillation would not improve the computation since the same ion-trap qubit

gates will still have higher errors.

2.2.4 Step 4 : Clifford + T simulator of Bravyi and Gosset

Here we will use the improved Clifford + T simulator of [134], introduced in Section

1.3.2 and referred to as the Bravyi-Gosset Simulator in this work, which produces the

probability of measuring a single outcome. This simulator has runtime exponential

in the number of T gates8 but polynomial in the number of qubits and Clifford gates.

This allows efficient simulation of circuits with a logarithmic number of T gates. Fur-

thermore, because of the small exponent, it enables the classical simulation of larger

instances than regular brute-force simulators. The size of the circuits we are able to

simulate therefore depends on a limit on the number of T gates, as imposed by the com-

putational cost of simulating them. In the case of the 2D-DQS problem, this limit on

the number of T gates will also limit the number of qubits. This is because, as shown in

Protocol 1.5.1, the circuits used require roughly half the number of T gates as qubits.

Importantly, this restriction on the number of T gates does not alter the structure of the

circuits, ensuring that our findings are representative across the whole circuit class. In

the case of IQP-MBQC circuits this limitation on the number of T gates corresponds

to limiting the number of rows of the corresponding X-program, and so the number of

ancillary qubits. This does not, however, limit the number of primary qubits, which

we vary depending on the size of the device being modelled. As such, this restriction

again does not limit the structure of the circuits; in principle allowing, for example, for

arbitrary connections between primary and ancillary qubits.

Using the Bravyi-Gosset Simulator, the authors of [134] simulate about 40 qubits and

50 T gates in what they quote as “several hours”. Here we require the simulation of

several thousand circuits and so we simulate fewer T gates in order to complete our

simulations in a reasonable time. The 2D-DQS problem is highly entangled, beyond

stabiliser simulation and conveniently represented in the Clifford + T gate set without

costly (in gate count) gate decomposition [227, 228]. This makes the Bravyi-Gosset

Simulator perfect for our purposes, and others mentioned in Section 1.3.2 less useful.9

2.3 Exemplifying the Numerical Experiment Design

Methodology

We present the results of two sets of numerical experiments, in accordance with the

numerical experiment design methodology introduced in Section 2.1.2, utilising dis-

cussions, in Section 2.2, regarding the problem, architecture and simulator to be used.

8The exact expression has 2βt , where β = 1
2

and t is the number of T gates.
9The Bravyi-Gosset Simulator is well suited to the types of IQP circuits which we simulate in this

chapter, but there is no reason to believe it is particularly well suited to simulating IQP circuits in general.

To the authors’ knowledge there is no classical simulation algorithm which consumes fewer resources

when simulating IQP circuits than when simulating comparable BQP circuits. The development of such

a scheme would certainly benefit the approach taken here.
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The first considers the 2D-DQS problem, the restricted class of IQP computations pre-

sented in Protocol 1.5.1, and is used to demonstrate the potential of classical simulators

as a tool to guide experimental research. In Section 2.3.2 and Section 2.3.3, where we

present results for this problem, we simplify NQIT Q20:20 architectural constraints to

focus on the impact of noise.

We embrace the full complexity of the NQIT Q20:20 architecture in a second numer-

ical experiment presented in Section 2.3.2. We restrict IQP-MBQC instances, seen

in Section 1.5.4, to the NQIT Q20:20 architecture. The hardness of the IQP problem

could, in principle, be destroyed by these restrictions. Here we focus on the effect of

architectural constraints on simulations, while the proof of hardness and detailed noise

analysis is left for future works.

For reference throughout this section, we summarise the settings explored by each fig-

ure in Table 2.1. Similarly, while we will reference the simulation details, architectural

constraints and figures of merit used in each of the experiments, we note some traits

which are common in all of our experiments.

Simulation To introduce some terminology, each numerical experiment consists of

several trials which are simulations of several different but related circuits. Often a trial

will consist of many runs, themselves involving several simulations of the same circuit.

For example, an experiment might have many trials, each containing a run simulating a

probability amplitude for an output of a perfect circuit and several runs each simulating

the same output probability amplitude, but with different noisy versions of that circuit.

Indeed, each trial will compare a perfect run and possibly several noisy runs, which

we will identify in each numerical experiment. In particular, in the case of numerical

experiments benchmarking the simulator itself the perfect run will be conducted using

a brute-force simulator while the noisy run will utilise the simulator of our choice. In

this case, the noisy simulation is noisy in the sense that the outcomes of the chosen

simulator are probabilistic. In the cases where the device is being benchmarked, the

perfect run will not consider the architectural noise model, while each noisy run will.

Constraints Within each numerical experiment we must identify the constraints on

the family of circuits we are considering in order to ensure that it is consistent with the

philosophy of this chapter. In particular, we must ensure that the perfect runs have the

necessary theoretical support, for which we will fall back on the IQP hardness results

detailed in Section 1.5.2.

A general restriction which is pervasive in our work concerns the degree to which

operations can be parallelised in the circuits we consider. While, in theory, IQP cir-

cuits are parallel by construction, qubits are physical systems and, in the circuit model,

one may be required to apply multiple gates on the same systems, which may not be

possible experimentally. To increase parallelisation of the computation, in our numer-

ical experiments we consider instances of IQP-MBQC, where all measurements can

be made simultaneously, allowing us to neglect the impact of time based noise during

measurement. If we used a less parallel realisation of IQP circuits, it would be prone to

the same type and size of noise as a general universal quantum computation and may
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Subject of Study Architectural Restrictions Noise Levels Circuits Run

Figure 2.3 Simulator Benchmarking None Noise results from prob-

abilistic nature of simula-

tor

Random unrestricted

IQP-MBQC

Figure 2.4 Device noise simulation 2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Table 2.2 Faithful device simula-

tion

Full NQIT Q20:20 as in Figure

2.2

NQIT Q20:20 as in Sec-

tion 2.2.3

Random IQP-MBQC re-

stricted as in Figure 2.5

Figure 2.6 Impact of operation-

based versus time-based

noise

2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Figure 2.7 Impact of depolarising

versus dephasing noise

2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Figure 2.8 Impact of error correc-

tion

2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Figure 2.9, Fig-

ure 2.10

Impact of continuous

noise reduction on fixed

output of many circuits

2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Figure 2.11, Fig-

ure 2.12

Impact of continuous

noise reduction on many

outputs of fixed circuit

2D lattice abstraction of NQIT

Q20:20 as in Figure 2.2a

NQIT Q20:20 as in Sec-

tion 2.2.3

Random 2D-DQS

Table 2.1: Summary of the subjects of interest of key figures presented in Section 2.3. Figure pairs indicate they present the same results

in alternate ways. Results and implications thereof are found in the relevant text.
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not be a better candidate for demonstrating quantum computational supremacy than a

universal quantum computation.

Similarly, as discussed in Section 2.2.2, while the NQIT Q20:20 device is universal,

to apply a 2-qubit gate on qubits which belong to ion-traps that are far apart on the

2D lattice, would require many SWAP gates, each consuming linking qubits. This can

result in a large overhead [173] and so a high noise level. Thus, we aim to minimise

the number of such gates when deriving our restrictions and we will see that very few

SWAP gates are required for our choices of problems.

Figures of Merit To compare perfect runs, which will be justified in their use by

the discussion on constraints, with noisy runs, we must consider what figures of merit

we will use to judge the quality of those noisy runs. When quantum computational

supremacy is not of concern, for example when benchmarking the classical simulator

we use, as is demanded by Part 1 of the numerical experiment design methodology

of Section 2.1.2, and as we do in Section 2.3.1, the figure of merit will relate to its

reliability in producing accurate outcomes.

Statistical test for model closeness In this case, the output of the simulations are sin-

gle values of probability amplitudes. A statistical test will be necessary to com-

pare the probability amplitudes from perfect runs to those of the noisy runs. We

will use the coefficient of determination to measure the quality of the noisy runs

as a model for the perfect runs. This is detailed further in Section 2.3.1.

In the case of simulator benchmarking we compare the probability amplitudes from

a brute-force simulation to those of the probabilistic simulator, which can be seen

as a model of the brute-force simulator. We use the same statistical test in Section

2.3.2 when we simulate restricted instances of the detailed NQIT Q20:20 architecture

as we are less concerned by exploring quantum computational supremacy when the

theoretical foundations have been weakened by this restriction. There we will focus on

the application of our work to restricted architectures, and study the implications for

more general architectures, but find the quantum computational supremacy motivated

figures of merit discussed below to be inappropriate in that case.

By comparison, when considering the prospect of a device demonstrating quantum

computational supremacy, the figure of merit will relate to the anticipated usefulness

of a larger scale real world implementation of the circuits we are simulating in such a

demonstration. Such a consideration is demanded by Part 2, device benchmarking, and

Part 3, guiding future experiments, of the numerical experiment design methodology

of Section 2.1.2, and is performed in Section 2.3.2 and Section 2.3.3.

In the case of the simulations of noisy circuits in Section 2.3.2 and Section 2.3.3, while

we do not formally consider their hardness, our measure will be the closeness of the

simulated probability amplitudes to the perfect simulations, for which the hardness re-

sults of Section 1.5.2 apply. The theoretical results regarding the hardness of noisy

distributions typically concern their ℓ1-norm distance from the perfect noise free dis-

tribution. In our case we do not have access to this information because, as discussed

in Section 2.2.4 where the simulator we use is introduced, we access only the am-

plitudes of a single output, rather than fully characterising the distribution. As such
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we will often use proxy measures of the ℓ1-norm distance between perfect and noisy

distributions.

While there are classical simulations which would give us access to a full characterisa-

tion of the distribution, here we forgo this option. This is because our aim is to explore

the impact of noise at the boundary between what can be simulated classically and

what cannot. To do so we have chosen to use a simulator which allows us access to a

higher number of qubits than can be implemented experimentally on the NQIT Q20:20

architecture, and than could be implemented using simulators which characterise the

full probability distribution.

With this in mind, we note the following figure of merit which will be used in Section

2.3.2 and Section 2.3.3.

Accuracy and far from uniformity of noisy runs: We will consider a numerical ex-

periment to have demonstrated that the current noise values are likely to bring

implementations within the reach of classical simulation if trials show either;

the noisy probability amplitudes to be within a standard deviation of the uniform

distribution, or greater than one standard deviation from the perfect amplitude.

These far from uniform points are of great importance for several theoretical reasons.

Their existence is shown to be indicative of quantum computational supremacy [62,

229] while their accuracy is also shown to be vital. For example, studies of the heavy

outputs of random circuits, as discussed in Section 1.6.4, show that a device could

demonstrate quantum computational supremacy by preserving those probabilities with

higher than median value. In addition, measures such as multiplicative error, on which

many quantum computational supremacy statements are based, as discussed in Sec-

tion 1.5.2, and cross-entropy difference, as discussed in Section 1.6.4, are particularly

sensitive to the effect noise has on outcomes with small probabilities.

Contradicting this accuracy and far from uniformity statement can therefore be seen

as an indication, but not proof, of the ability to demonstrate quantum computational

supremacy in the setting being considered. In particular, note that contradicting this

condition tells us that there are more outcomes with probability both far from the uni-

form value, which can be easily classically simulated by generating outputs at random,

and close to the ideal value, which the relevant theoretical results indicate should be

hard to achieve. As such, we will consider a demonstration of quantum computational

supremacy to be more likely if the noisy distribution more often contradicts the state-

ment. Note that contradicting this condition is not a proof of a demonstration of quan-

tum computational supremacy, but provides a lower bound on what must be achieved

for a demonstration of quantum computational supremacy to be deemed likely by us.

This accuracy and far from uniformity measure also implies that values close to uni-

form ones in the ideal distribution remain so in the noisy distribution. This follows as

such values would otherwise be ‘far from the perfect amplitude’. However, in many

cases noise has the effect of bringing probability values close to the uniform distri-

bution and so little information about the effect of noise can be obtained from these

outputs as they will be little changed. The noise types listed for the NQIT Q20:20 de-

vice in Section 2.2.3 are modelled by the action of random Pauli gates. The result is a
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flattening of the output distribution, and a convergence to the uniform one. While this

is not the case for noise channels such as amplitude damping, these errors would also

be captured by this figure of merit as it would have the effect of decreasing the prob-

ability of likely outputs towards the uniform distribution value. Further, it would be

impossible to distinguish close to uniform values which have been achieved through

accurate reproduction of the ideal distribution and those which have been achieved

through a naive approximation by a uniform distribution. While it is true that these

points are of value to the form of the distribution as discussed in Section 1.5.2, as we

cannot make this distinction we do not include them in our analysis.10 By isolating

outcomes which have far from the uniform probability in the ideal distribution we ob-

tain the additional advantage of being able to limit the outputs which we must study in

our experiments, allowing us to run larger circuits as a trade off.

It is valuable that contradicting this condition implies there are points which are further

than one standard deviation from the uniform distribution. It ensures points which are

far from uniform in the ideal distribution reliably remain this way in the noisy one.

This is to say that a large proportion of the points are not equal to the relevant uniform

distribution probability, which could be easily classically simulated. Further statistical

tests on the distribution of outputs would be needed to calculate the proportion of the

outputs which are within one standard deviation of the mean, and so away from the

uniform probability. However conjecturing a normal distribution allows for the major-

ity of points to be captured. One may wish to demand that a larger proportion of the

outputs are far from the uniform probability by increasing to 2 or higher standard de-

viations. Capturing the majority of points, as one standard deviation does, is sufficient

for our purposes.

That the mean noisy output probabilities be within one standard deviation of the ideal

is not strictly necessary as quantum computational supremacy statements typically al-

low for a constant deviation of the whole distribution. However, as we calculate the

probabilities of only single outputs, and so are unable to calculate the deviation of the

whole distribution, demanding mean output probabilities are within one standard de-

viation of the ideal seems like a reasonable substitute for the deviation of the whole

distribution. In fact, as we will see, in Section 2.3.3 there is a relationship between

this measure and more direct proxies for the ℓ1-norm distance, which provides further

justification for the use of this figure of merit. Indeed we are justified in saying that the

mean noisy output probability being one standard deviation away from the ideal sug-

gests the noisy distribution could be classically simulated as it suggests the majority of

noisy values are not equal to the ideal, to which theoretical results certainly apply.

However, as we focus on single amplitudes, it may be that this is a strong metric. While

it is shown to be hard for a classical device to sample from the output distribution of

arbitrary IQP circuits, which are subject to constant independent depolarising noise on

each qubit, up to a small multiplicative error in each probability [162], this is often

possible to do to within ℓ1-norm distance [64].

The previous two figures of merit have the advantage that they are the best utilisation of

10Due to the anticoncentration property of IQP distributions, this might result in considerable filtering

of our simulations.
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the simulator that we have chosen to use. In particular, they extract a significant amount

of information from the single probability values which we have access to. That being

said, as we mentioned before, theoretical results often refer to global properties of the

probability distributions. The following figure of merit addresses this disparity.

Close in ℓ1-norm distance: When the circuit considered in a numerical experiment is

considered to not be unlikely to demonstrate quantum computational supremacy,

as defined in the above condition, we will consider the closeness of the noisy and

perfect runs using proxies for the ℓ1-norm distance.

The paticular proxies for the ℓ1-norm distance which we make use of are introduced as

they arise in Section 2.3.3. Because of the relationship between this figure of merit and

the theoretical results for IQP in Section 1.5.2 and, in particular, 2D-DQS in Protocol

1.5.1, this figure of merit can more reasonably be expected to be a predictor of demon-

strations of quantum computational supremacy than in the previous case. Once again

we will often refer to the relative likelihood of a demonstration of quantum computa-

tional supremacy between noise settings as measured by the degree of improvement

in the ℓ1-norm distance. In this case we have the additional benefit of being able to

study the closeness of the measured value of the ℓ1-norm distance to the value speci-

fied in the relevant theoretical results of Section 2.2. However, as we do not provide

formal bounds on the ℓ1-norm distance by the proxies we introduce, these proxies do

not allow us to make formal claims about demonstrations of quantum computational

supremacy.

By encapsulating results related to those far from uniform outcome probability values

and proxies for the ℓ1-norm distance we cover a diverse set of theoretical results. We

believe there is great value in this diversified approach and as such we will combine

both the accuracy and far from uniformity condition and the close in ℓ1-norm distance

condition throughout our work.

For each numerical experiment we will use considerations of the simulation method,

the constraints of the architecture, and the appropriate figures of merit to draw conclu-

sions pertaining to the goals of this chapter.

2.3.1 Part 1 : Simulator Benchmarking

As we outlined in Section 2.1.2, Part 1 of the numerical experiment builds confidence

in our simulator by comparing the outputs to a brute-force simulation. Here we detail

the numerical experiment used to do so.

Constraints Here we do not consider the specifics of the architectural noise as we are

measuring the impact of using a probabilistic simulator as compared to a brute-force

one. It is sufficient to benchmark the probabilistic simulator by comparing the outputs

to those of a brute-force simulation of unrestricted IQP-MBQC instances of Section

1.5.4. We do not restrict to a particular architecture here but the generality we utilise

ensures the functioning of the simulator for restricted instances explored later. Note

that we are not concerned with results on quantum computational supremacy here, but
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instead with ensuring the distribution of circuits covers those of practical concern later,

as described.

Simulation As described in Appendix A.2.1, during each trial we will generate a

random unrestricted instance of IQP-MBQC, and simulate the circuit to obtain the

probability of measuring the |0n〉 state. The randomly generated circuits will have

between 5 and 12 qubits, and between 5 and 15 T gates. In the case of the perfect

run, the solution will be obtained by using the brute-force simulator, while in the case

of a noisy run it will be solved by taking the mean of several simulations using the

probabilistic simulator of Section 2.2.4. Together these two runs constitute a trial. The

resulting values for the runs in each trial are then compared to calculate the coefficient

of determination as described in the figures of merit section.

As discussed, while the brute-force simulation is deterministic, the simulator of Sec-

tion 2.2.4 which we are testing against it is probabilistic. As such, each noisy run will

consist of calculating the given probability distribution many times, and averaging.

The mean and standard deviation are plotted in Figure 2.3.

Here it is sufficient to consider only the probability of measuring the state |0n〉 as no

additional error is added by measuring other states. As measuring other basis states

requires only the appropriate X gates, which can be applied deterministically by the

simulator of Section 2.2.4, unlike T gates which are applied probabilistically, no addi-

tional error will result from considering only the |0n〉 state.

Figures of Merit The measure we will use to compare the perfect and noisy runs is

the coefficient of determination, which can be said to measure the correlation between

the outputs of a model and those from its target. Given outputs mi from a model, and

the corresponding target outputs di, with mean d̄, the coefficient of determination is

calculated using (2.1). In (2.1), r = ∑i (di−mi)
2 is the residual sum of squares and

v = ∑i

(
di− d̄

)2
is the total sum of squares.

R2 = 1− r

v
(2.1)

Here the model is the simulator of Section 2.2.4 and the target is the brute-force simu-

lation. The data, di and mi, are the values for the amplitudes of the |0n〉 state produced

by the brute-force and probabilistic simulator, respectively, during the ith trial.

Conclusion Results in Figure 2.3 show that the average of the simulator outputs

exhibits strong correlation with the true values from a brute-force simulation, giving

a coefficient of determination R2 = 0.9619. As such we can have confidence in our

choice of simulator for the problems we will tackle in the following sections.

2.3.2 Part 2 : Device Benchmarking

Continuing to follow the method of Section 2.1.2, Part 2 of each numerical experiment

is to impose the constraints that come from the experimental system used. In the fol-
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Figure 2.3: Comparison between brute-force outputs and probabilistic Bravyi-

Gosset Simulator outputs when calculating the probability of measuring the |0〉n
state for 20 random X-programs. Each point indicates the mean probability of mea-

suring the |0〉n state for one fixed X-program according to the simulator, with the error

bars indicating one standard deviation in the probabilistic simulator’s output. The num-

ber of qubits is in the range [5,12] and the T gate count is in the range [5,15]. Details

of this simulation can be found in Appendix A.2.1. Strong correlation is observed with

R2 = 0.9619. Here, unlike in later plots, the axes are not scaled as the probabilities are

of a reasonable magnitude due to the smaller circuit sizes.

lowing we restrict, with differing degrees of strictness, problems previously mentioned,

to the NQIT Q20:20 architecture.

NQIT Q20:20 Noise Restricted 2D-DQS

We consider the 2D-DQS problem as introduced in Protocol 1.5.1 and constrain it

according to the noise of NQIT Q20:20 as listed in Section 2.2.3. For simplicity, we

use a modified version of the NQIT Q20:20 architectural restraints of Section 2.2.2;

namely we assume a 2D square lattice connectivity between qubits, as detailed below.

Constraints By making the simplifying assumption that we use a single logical qubit

per ion-trap11 we can map every grid vertex of the 2D-DQS circuit onto a single NQIT

Q20:20 device ion trap. Figure 1.10 and Figure 2.2 then reveal that the 2D-DQS prob-

lem can be easily overlaid onto the NQIT Q20:20 architecture, which also permits the

necessary measurements, state preparations, and single and 2-qubit gates.

As the adapted NQIT Q20:20 architectural restraints, detailed above, adhere to those

required for the 2D-DQS problem seen in Protocol 1.5.1, the worst case additive error

hardness result of the 2D-DQS problem, as seen in Theorem 1.5.3, applies. While

we have agreed that this setting constitutes one that is worthy of investigation, as the

11Using more qubits per ion-trap could be possible, but then the connectivity of qubits would not be

identical to that of the problem considered. Since in this example we focus on the issue of noise, we

make this assumption and let non-trivial architectural constraints be considered in the next numerical

experiment.
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noise levels are independent for each qubit and not dependent on the problem size, the

additive error permitted by Theorem 1.5.3 is likely exceeded. Hence, we would expect

that in the noisy case the distribution becomes far from the perfect one and for the

quantum computational supremacy to diminish.

Simulation We consider 4× 5 grids, modelling 20 ion traps in total, and use them

to perform the 2D-DQS computation of Protocol 1.5.1. Note that this is more ion

traps than are currently available experimentally and so this experiment explores the

performance of the technology as it scales. Protocol 1.5.1 requires, on average, half as

many T gates as qubits; in this case 10 and 20 respectively. Details of the numerical

specifics of the experiments can be found in Appendix A.2.2. Here it suffices to say

that we use four steps to generate the entangled 2D cluster. The number of steps plays

a role in the amount of noise as it determines the duration of the computation.

We perform 20 trials, each concerning one perfect circuit and a random output string.

For each trial there are 20 noisy runs, each with their own random noisy version of the

trial’s circuit. This random noisy version of the perfect circuit is generated by consid-

ering the noise type and strength of the experiment as described in Appendix A.2.2.

We simulate all 21 circuits 20 times, calculating the mean probability of measuring

the corresponding bit string in each case. We will then take the mean and standard

deviation of the noisy runs.

While, as noted in [134], simulation of up to 40 qubits and 50 T gates is possible using

this simulator, as is also noted in that work, doing so takes several hours. In our case

we simulate 20 trials, each with 21 runs and 20 simulations per run and so we restrict

the number of qubits and T gates to a more manageable amount. Later in this work we

go further and perform many thousands of simulations in each numerical experiment,

justifying our restriction. Notice that this this is a relatively small number of output

strings to explore, especially considering that the distributions considered may have

support on up to 220 output values. However, as we discuss in the following ‘Figure of

Merit’ subsection, the outputs are selected to belong to a particularly important subset

of all outputs. In particular, by using the accuracy and far from uniformity condition

we restrict to a subset of outputs whose accuracy is indicative of the accuracy across

the whole distribution, as discussed in the introduction to Section 2.3.

Figure of Merit For this numerical experiment we will utilise the ‘accuracy and far

from uniformity of noisy runs’ condition from the introduction to Section 2.3. In

particular, we will consider a perfect run to be far from uniform when it is either greater

than twice the uniform value, or less than half. The outputs are randomly generated

but post-selected to be of this form. In this way we will identify if the noise level

reveals that, as we expect, the potential for a demonstration of quantum computational

supremacy should be dismissed, rather than if one could be achieved.

Conclusion The results are shown in Figure 2.4 where we have plotted the value

for the perfect run, and the mean value for the noisy runs. As expected, including

noise at the levels of the NQIT Q20:20 device leads to an outcome probability that is

between the ideal and the totally random output. However in most cases the noise that
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Figure 2.4: Comparison between ideal and noisy circuit results for a 4×5 ion trap

grid. The results referenced by this plot are the probability of measuring a randomly

chosen output string, where each trial has a different initial 2D-DQS circuit, and different

output string. Every consecutive pair is one trial and contains the perfect run (blue

diamond), and the mean of the noisy runs (red square). The error bars indicate one

standard deviation of the noisy runs. The means and standard deviations for each trial

have been normalised by the uniform distribution (dotted horizontal line).

we include leads to a result within one standard deviation of the uniform distribution,

or greater than one standard deviation from the perfect run. Referring to our figures of

merit, we regard this to be a sign that the 2D-DQS computation run on the simplified

NQIT Q20:20 architecture explored here is unsatisfactory for demonstrating quantum

computational supremacy with NQIT Q20:20 noise at its current levels.

In Section 2.3.3 we use the simulator as a tool to investigate which of the aspects of

our noise model are the main sources of this failure. To form a complete picture, and

to benchmark the device’s performance when implementing these problems, we must

compare our numerical experiments with actual experiments. This work concerns only

numerical experiments, while in the future we plan to collaborate with experimental

groups to provide these benchmarks.

NQIT Q20:20 Noise and Architecture Restricted IQP-MBQC

The second numerical experiment we perform takes the unrestricted IQP-MBQC of

Section 1.5.4 and imposes constraints equivalent to the architecture of NQIT Q20:20.

We consider the case where each ion-trap has multiple physical qubits, as discussed in

Section 2.2.2. We restrict to IQP instances involving gates acting on qubits belonging

to neighbouring ion-traps so as to further lower the circuit depth.

Constraints In principle different gates of an X-program may act on any subset of

qubits, or in the MBQC model, the ancillary qubits may be entangled with any subset of

the primary qubits. This is not realistically achieved in the NQIT Q20:20 setting, where

qubits belonging in different ion-traps cannot be connected arbitrarily with qubits of

other ion-traps. Since NQIT Q20:20 admits universal quantum computation, one could

achieve arbitrary connectivity by using SWAP gates between the qubits. However, by

using SWAP gates the advantage of smaller waiting times offered by IQP is destroyed.

We thus impose conditions on the connectivity, limiting the class of problems we use.
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We assume each ion-trap has K = 20 physical qubits, of which 10 are dedicated to

entanglement distillation, leaving K′ = 10 for use in computation. As discussed in

Section 2.2.3, this allows us to fix a constant two-qubits gate noise, whether the gate

involves qubits in the same or neighbouring ion-traps. This does not apply to the

waiting time, which is greater in the case of gates between ion-traps.

We will choose the minimum links between different ion-traps (while maintaining

full connectivity within each trap). This means a 1 dimensional configuration of ion-

traps.12 This, in itself, might not be a big restriction, since even considering two-qubit

gates that act on nearest neighbour qubits only, as discussed in Section 1.5.2, is still be-

lieved to be a hard problem. However, this configuration, while it is not 1 dimensional

as far as the qubits are concerned, is still likely to admit a classical efficient simula-

tion based on tensor networks. In contrast, in the first numerical experiment, there is

a complexity-theoretic proof of hardness. However, since our purpose in this section

is to illustrate how to implement architecture constraints, the issue of classical hard-

ness in comparison to the best classical methods, is not crucial. Indeed it is likely that

reasonable predictions can be made about the impact of noise on the 2 dimensional

architecture of NQIT Q20:20, outputs from which are less likely to be reproducible

on a classical computer, using results from these 1 dimensional simulations. It is in

this way that the distributions of problem instances explored provides insights into the

practical performance of the device.

In IQP-MBQC, applying gates between primary qubits corresponds to entangling them

with the same ancillary qubit. In the case that the primary qubits belong to different

ion-traps, the gate is applied using teleportation, with the help of entanglement links

distilled between neighbouring ion-traps. Protocol 2.3.1 shows how to achieve this

using only one entanglement link between the two ion-traps. Distilling entanglement

between multiple traps takes a longer time, which is why we restricted our attention to

X-programs that involve gates with qubits in at most two ion-traps.

In this setting, each ion-trap is connected by entanglement links to two neighbouring

ion-traps. Each ion-trap has one ancillary qubit (a in Protocol 2.3.1) and one qubit

reserved to receive the ancillary qubit coming from its neighbour (c in Protocol 2.3.1).

This leaves 8 primary qubits. This entanglement structure can be achieved in two time-

steps. First, all ion-traps at odd positions use their entanglement links to teleport the

qubit required using Protocol 2.3.1. This is repeated for all even positions. With these

restrictions X-programs can be mapped to the NQIT Q20:20 architecture. An example

of an MBQC graph for such restricted instances is given in Figure 2.5.

Simulations A full description of the simulation procedure can be seen in Appendix

A.2.1. In summary, we let each ancillary qubit act on a random subset of the primary

qubits in its own ion-trap before, after being teleported, acting on a random subset

of the qubits in the next ion-trap. We performed 20 trials, each involving a randomly

generated circuit of the form described above, along with a random output string. Each

12We could consider the 2 dimensional case too, as in the first numerical experiment, but our choice

is the simplest and within reach of our classical simulator. A 2 dimensional configuration would require

a larger number of traps, which is outside of our simulation capabilities.
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Protocol 2.3.1 This algorithm constructs part of the resource state for a given ancillary

qubit a in trap 1 according to its corresponding row p of the X-program QQQ. Q1 is the

set of all qubits in cell 1 with a, l1 ∈ Q1. Analogously, c, l2 ∈ Q2. c is the qubit that

will eventually be used for measurement after a’s value is teleported there.

1: function ENTANGLETWOTRAPS(p, a, c, l1, l2, Q1, Q2)

2: for all q ∈ Q1 : p(q) = 1 do

3: CZ (a, q)

4: end for

5: CZ (a, l1)

6: Distil a Bell pair between l1 and l2
7: Bell measurement on (a, l1) which teleports a to l2
8: SWAP (c, l2)

9: for all q ∈ Q2 : p(q) = 1 do

10: CZ (c, q)

11: end for

12: end function

trial has one noisy and one perfect run. A perfect run involves simulating the perfect

circuit several times and calculating the mean probability of measuring the selected

output string. A noisy run is equivalent but with a random noisy instance of the circuit.

In this case, at their largest, we simulate significantly more qubits than in the previous

and following sections. The largest circuit we simulate has 12×8 qubits but still only

10 T gates on average. This is because we have limited the probability that a T gate

will be required, which corresponds, as discussed in Appendix A.2.1, to limiting the

probability of creating connections between the ancillary and primary qubits. As the

computation time grows exponentially with the number of T gates, and polynomially

in the number of qubits, we can afford this increase in the qubit count. Again, the

number of qubits simulated is greater than the number available experimentally.

Figure of Merit In this case, as we expect that the architectural restrictions used

will make a demonstration of quantum computational supremacy using this scheme

unlikely, we will not consider the figures of merit as in Section 2.3.2. Instead we again

consider the coefficient of determination as in Section 2.3.1 to establish the impact of

noise models more broadly. Here the model outputs mi are the probability amplitudes

from the noisy run, while the target outputs di are those from the perfect run.

Conclusion We compared the two means of each run to calculate the coefficient

of determination. In the case of the maximum system (12 ion-traps, with 8 primary

qubits each) we noticed that, with the existing level of noise, the results corrupt fully

the output leading to R2 ≈ 0. We then ran similar experiments for smaller instances.

Lowering the number of qubits, we observed that the R2 value was increasing but still

remained extremely low with NQIT Q20:20 noise level. Decreasing the size yielded

the results seen in Table 2.2.

These R2 values, far below one, indicate that even for small system sizes, the noise
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Figure 2.5: An example of a restricted IQP-MBQC pattern for 3 traps, where pri-

mary qubits are on the bottom and ancillary qubits are on the top. Ancillary qubits

are still physically in the cells with the primary ones, although they are separated by a

horizontal dotted line here for clarity. We have one ancillary qubit for every two neigh-

bouring cells, with considerations made for boundary cases. Once an ancillary qubit is

entangled in its native trap it is moved. There is one less ancillary qubit than the number

of traps so that each is entangled to two traps. The dotted ancillary qubit indicates a

location which has been vacated when the ancillary qubits move between traps. The

reader may wish to return to Figure 2.2 where, like here, the dashed bubbles indicate

individual ion traps with a single qubit in each acting between them.

a×b 12×8 9×8 4×8 4×2

R2 0.0086 0.0237 0.0333 0.5561

Table 2.2: Coefficient of determination between ideal and noisy IQP-MBQC in-

stances, restricted to the noise and architecture of NQIT Q20:20. Here a×b means

a ion-traps with b primary qubits per trap
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is too high and there is little correlation between the perfect and noisy runs. For this

reason, and because theoretical results about quantum computational supremacy in

this case are not as strong, in the subsequent section where we examine the effects of

varying noise, we restricted attention to the numerical experiment of Section 2.3.1 only

and do not proceed to Part 3 of the numerical experiments in this case.

2.3.3 Part 3 : Guiding Future Experiments Using NQIT Q20:20

Noise Restricted 2D-DQS

To identify the main sources of error in the numerical experiment of Section 2.3.2 we

run experiments with varying noise levels. In this section, the protocol we implement

will be the 2D-DQS of Protocol 1.5.1 as detailed in Appendix A.2.2. We group the

different noise types of Section 2.2.3 together and identify which contributes most to

the corruption of the perfect output. We then “fine-grain” further by considering the

different types of noise within that group. Once we have identified the main source

of error, we will explore how the potential for a demonstration of quantum computa-

tional supremacy is affected by reducing this noise, both by known error correction

techniques, and hypothetical proposals.

In these numerical experiments we will use the same constraints and simulation design

as in the first 2D-DQS simulations of Section 2.3.2. The difference here is the noise

model used. In particular, we will be comparing random single output probabilities.

We will also use the same ‘accuracy and far from uniformity of noisy runs’ figure

of merit as in Section 2.3.2 in order to identify when a demonstration of quantum

computational supremacy is unlikely. As we identify cases where such a demonstration

is not unlikely, we will explore proxy measures for the ℓ1-norm distance and relate

these measures back to the theoretical results, in Section 1.5.2, on the conditions for a

demonstration of quantum computational supremacy using the 2D-DQS protocol.

Operation-Based Verses Time-Based Noise

At the coarsest level of detail, we divide the noise sources into what we call ‘time-

based noise’ , and ‘operation-based noise’ . Time-based noise consists of depolarising

and dephasing noise, both of which act at all points in the circuit with strength de-

pendent on the time for which they are applied. Operation-based noise includes noise

during state preparation, measurement, single and two qubit gates (including the noise

during distillation) and act only when an operation is enacted. In each run we elimi-

nate either the time-based noise or operation-based noise, while keeping the other at

the same level as in the NQIT Q20:20 device. Results for the behaviour of outputs with

far from uniform probability in the ideal output distribution can be seen in Figure 2.6.

We can see that the largest contribution to the corruption of the output appears to be

from the time-based noise. With reference to our figures of merit, including only time-

based noise almost always brings the output probability of the bit string in noisy runs

to within one standard deviation of the uniform value, or greater than one standard

deviation away from the perfect run amplitude value. As such we conclude that it

is a significant obstacle to demonstrating quantum computational supremacy. On the
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Figure 2.6: Results including either only gate based noise or only time based

noise rates for a 4×5 ion trap grid. The results referenced by this plot are the prob-

ability of measuring a randomly chosen output string, where each trial has a different

initial 2D-DQS circuit, and different output string. Every independent trial is described

by a 4-tuple of a perfect run (blue diamond), the mean of 20 noisy runs (red square), the

mean of 20 only time-based rates noisy runs (grey cross) and the mean of 20 only gate

rates noisy runs (violet circle). The error bars show one standard deviation. The means

and standard deviations have been normalised by the respective uniform distribution

(dotted horizontal line).
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other hand, as the randomly selected bit string amplitude, when only gate based noise

is considered, is in all but one case within one standard deviation of the perfect run,

and further than one standard deviation from the uniform distribution value, we do not

immediately conclude that it is a significant obstacle.

Below are values for a proxy for the ℓ1-norm distance between the ideal and noisy

distributions for the noise levels discussed above, calculated as follows. Here a trial

consists of an ideal run, measuring the probability of a random output of a random 2D-

DQS circuit of the form discussed in Protocol 1.5.1, and 20 noisy runs for each noise

type, considering noisy versions of the ideal circuit. The average difference between

the noisy and ideal runs within each trial are themselves averaged to give a proxy for

the ℓ1-norm distance, once scaled by the uniform distribution. Note that this proxy

does not provide a bound on the value of the ℓ1-norm distance between the noisy and

ideal distributions, but instead gives an approximation of this value. Each run is itself

the average of 20 simulations of the same circuit. A similar pattern is seen in this data

as was identified in the study of single outputs; namely that the largest contribution to

the deviation of the noisy distribution from the ideal is a result of the time based noise.

full noise levels only time base noise only gate based noise

0.286316488 0.276119941 0.033008605

As discussed in Section 2.3 our analysis of both far from uniform outputs and the ℓ1-

norm distance lead us to regard a system with reduced time-based noise as relatively

more likely to demonstrate quantum computational supremacy than a system with re-

duced gate-based noise. Removing time based noise results in a value below the 1
22

specified in Theorem 1.5.3 suggesting that a demonstration of quantum computational

supremacy may be possible here. We hope to identify the main source of error more

precisely, and as such we continue to explore the reduction of time-based noise.

Depolarising Versus Dephasing Noise

We now look more closely at the time-based noise and consider separately the contri-

bution from dephasing noise and from depolarising noise. The results for outputs with

far from uniform probability in the ideal output distribution are seen in Figure 2.7.

In this case, the amplitudes produced by runs considering only dephasing noise are

always either within one standard deviation of the uniform distribution, or greater than

one standard deviation from the perfect run. By comparison the runs considering only

depolarising errors are always within one standard deviation of the perfect run, and

greater than one standard deviation from the uniform distribution output.

Below are values for the same proxy for the ℓ1-norm distance between the ideal and

noisy distributions discussed above, but for the noise levels considered in this section.

A similar pattern is seen in this data as was identified when considering the accuracy

and far from uniformity figure of merit; namely that the largest contribution to the

deviation of the noisy distribution from the ideal is a result of the dephasing noise.
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Figure 2.7: Results including either only dephasing or only depolarising noise

rates for a 4× 5 ion trap grid. The results referenced by this plot are the probability

of measuring a randomly chosen output string, where each trial has a different initial

2D-DQS circuit, and different output string. Every independent trial is described by a

4-tuple of a perfect run (blue diamond), the mean of 20 noisy runs (red square), the

mean of 20 only depolarising rates noisy runs (grey cross) and the mean of 20 only

dephasing rates noisy runs (violet circle). The error bars show one standard deviation.

The means and standard deviations have been normalised by the respective uniform

distribution (dotted horizontal line).
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full noise levels only depolarising noise only dephasing noise

0.433746955 0.111777366 0.4555678

As as a result of the analysis of these two figures of merit, we identify dephasing error

as a larger obstacle to a demonstration of quantum computational supremacy than

depolarising noise.

The Impact of Noise Reduction by Error Correction

Having identified the main obstacle to a demonstration of quantum computational

supremacy to be dephasing errors, we examine the effect that reducing this type of

noise would have. Concretely, one could introduce a phase-flip code13 [28]. Recall

that in the numerical experiments of Section 2.3.1, we only used a single qubit from

each ion-trap. This means that we could use three qubits from the ion-trap to im-

plement one round of phase-flip code, which would reduce the dephasing noise. By

using such a simple phase-flip code we obtained an effective improved dephasing rate

of ≈ 2.3× 10−4 per second as compared to the one of the NQIT Q20:20 noise-level

≈ 7.2× 10−3 per second. The results for outputs with far from uniform probabilities

are found in Figure 2.8.

In this case, roughly half of the runs considering the error corrected dephasing pass

our test that the probabilities should be at least within one standard deviation of the

perfect run, and greater than one standard deviation of the uniform distribution. This

demonstrates partial improvement while being inconclusive as a demonstration of the

potential for quantum computational supremacy. In this case an analysis of the ℓ1-norm

distance is particularly valuable.

The readers will find the data required for such an analysis below. In this case, as in the

case of the previous figure of merit, a large improvement can be achieved by utilising

a simple repetition code. However this improvement might not be as significant as one

might expect having seen the results of Figure 2.8 with the ℓ1-norm distance still being

significantly far from the 1
22 value required by Theorem 1.5.3. Note that the particular

value of 1
22 appearing in Theorem 1.5.3 applies to asymptotically large circuits, but

remains of interest in the case of the small experiments conducted here. In particular,

we would expect the ℓ1-norm distance between noisy and ideal distributions to grow

as the computations grow larger, and so grow more vulnerable to noise. As such we

take as a guide that the noisy distributions of small circuits should be within at least an

ℓ1-norm distance of 1
22 of the ideal. Indeed even without dephasing noise the ℓ1-norm

distance its too high to expect a demonstration of quantum computational supremacy.

While potentially disappointing, this reveals the utility of our approach as we are able

to identify dominant noise sources and the effect of approaches to implementing them

without the need to construct real experiments. Indeed we are able to predict that both

improved error correction codes and error correction applied to other noise channels

are required for a demonstration of quantum computational supremacy.

13This idea was suggested earlier by Niel de Beaudrap when their initial analysis of the noise model

[224] showed dephasing to be the major source of error.

92



2.3. Exemplifying the Numerical Experiment Design Methodology

0

1

2

3

Independent trial 4-tuples

S
ca

le
d

av
er

ag
es

0

1

2

3

Independent trial 4-tuples

S
ca

le
d

av
er

ag
es

Figure 2.8: Results including reduced dephasing noise rates for a 4× 5 ion trap

grid. The results referenced by this plot are the probability of measuring a randomly

chosen output string, where each trial has a different initial 2D-DQS circuit, and different

output string. Every independent trial is described by a 4-tuple of a perfect run (blue

diamond), the mean of 20 noisy runs (red square), the mean of 20 dephasing rates re-

duced by repetition code noisy runs (grey cross) and the mean of 20 no dephasing rates

noisy runs (violet circle). The error bars show one standard deviation while. The means

and standard deviations have been normalised by the respective uniform distribution

(dotted horizontal line).
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full noise levels with repetition code without dephasing noise

0.321564704 0.270893212 0.0656717

This is a partial improvement relative to the uncorrected results. Hence we find

a demonstration of quantum computational supremacy using this error correction

scheme to be more likely than in the uncorrected case. However, further improvements

are required for such a demonstration.

The Impact of Continuous Noise Reduction

More generally than testing a single error correction code, we can understand how the

likelihood of a demonstration of quantum computational supremacy is affected with a

continuously varying noise parameter. Here we will consider dephasing errors, which

we have identified as the most damaging form of error. This continuous variation

corresponds to, for example, reductions in the gate application time, improvements in

the compilation methods or the improved storage of quantum states. The results of this

experiment are shown in Figure 2.9.

While Figure 2.9 appears to demonstrate the continuous improvement which can be

achieved by reducing the dephasing error, it seems that it cannot be said that the ampli-

tudes are regularly within one standard deviation of the perfect run until the dephasing

rate is reduced to 0. We do however see that, with regards to our accurate and far

from uniform condition, a demonstration of quantum computational supremacy does

become continuously more likely as the dephasing error rate is reduced.

This fact is reinforced by Figure 2.10 which shows the average difference between the

perfect and noisy runs for each of the values of dephasing error rate. We can use this

as a proxy measure for the ℓ1-norm distance, as discussed in the experimental design

methodology introduced in Section 2.3, and as was done earlier in Section 2.3.3. In

this case we can say that an experiment has a reasonable chance of demonstrating

quantum computational supremacy if we can be convinced that the ℓ1-norm distance

between the noisy and perfect implementations is bounded by 1
22 which is demanded

by the hardness result for the 2D-DQS algorithm as seen in Theorem 1.5.3. As we do

not have access to the full characterisation of the probability distributions, here we will

approximate the ℓ1-norm distance by taking the average difference and proposing that

it is representative of the full distribution by scaling it by the uniform distribution.

We see that even in the case of 0 dephasing error, the ℓ1-norm distance is not brought

within the 1
22 value. Instead the average difference in that case is approximately 0.155

which is significantly higher. However, by our figure of merit, a demonstration of

quantum computational supremacy is made continuously more likely by this fall in

dephasing error, showing the advantage in endeavouring to achieve such a fall.

An alternate proxy measure for the ℓ1-norm distance is to explore the differences be-

tween the noisy and perfect amplitudes for a selection of different output bit strings of

the same circuit. In Figure 2.11, every trial considers the same 2D-DQS circuit, but

measures the probability amplitude of a different output bit string.

This plot can again be examined further by studying the average difference between
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Figure 2.9: Results including reduced dephasing noise rates for a 4× 5 ion trap

grid. The results referenced by this plot are the probability of measuring a randomly

chosen output string, where each trial has a different initial 2D-DQS circuit, and different

output string. Every independent trial is described by a 6-tuple, from left to right, of

a perfect run (blue diamond), the mean of 20 noisy runs with no dephasing errors,

the mean of 20 noisy runs with 1
4 of the NQIT Q20:20 dephasing rate, the mean of

20 noisy runs with 1
2 of the NQIT Q20:20 dephasing rate, the mean of 20 noisy runs

with 3
4 of the NQIT Q20:20 dephasing rate, the mean of 20 noisy runs with the NQIT

Q20:20 dephasing rate. The error bars show one standard deviation. The means and

standard deviations have been normalised by the respective uniform distribution (dotted

horizontal line).
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Figure 2.10: Results for varying dephasing noise rates for a 4×5 ion trap grid. The

results referenced by this plot are the difference between the probability amplitudes in

noisy and perfect runs when measuring a randomly chosen output string of a random

2D-DQS circuit. The error bars show one standard deviation. The means and standard

deviations have been normalised by the uniform distribution.

the noisy and perfect runs. This proxy measure for the ℓ1-norm distance is plotted

in Figure 2.12 but once again the value of 0.135 is more than twice the 1
22 which is

demanded by the hardness result for the 2D-DQS algorithm as seen in Theorem 1.5.3.

In conclusion, while it seems that reducing, and indeed removing, dephasing er-

ror alone will not be enough to bring a demonstration of quantum computational

supremacy using this scheme within reach, we have seen that utilising a simple 3

qubit correction code would result in a significant improvement on the noise levels.

We recommend that this error correction technique is used in conjunction with other

techniques, correcting for other error types.

We expect, however, that as the system size grows the ℓ1-norm distance between the

perfect and noisy circuits will grow as the noise modelled is constant for each gate

and qubit. This would push a demonstration of quantum computational supremacy

further away. Indeed it is known [64], as discussed in Section 1.5.2, that samples can

be efficiently drawn by a classical computer from a distribution produced by an IQP

circuits subject to independent depolarising noise on each qubit at the end of the circuit.

In that case, however, error correction can be used to recover classical impossibility,

if one allows for more complex connectivity, or several rounds of SWAP gates. While

we have restricted the connectivity and circuit depth in our case, there may be gains to

be made by removing these restrictions.

2.4 Conclusion

We have examined classical simulation of small instances of realistic quantum com-

putational supremacy computations. The motivation is not to obtain solutions to the

problems considered, but to faithfully model the physical system and computation de-
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Figure 2.11: Results including reduced dephasing noise rates for a 4×5 ion trap

grid. The results referenced by this plot are the probability of measuring a randomly

chosen output string, where each trial has the same initial 2D-DQS circuit, and different

output string. Every independent trial is described by a 6-tuple, from left to right, of

a perfect run (blue diamond), the mean of 20 noisy runs with no dephasing errors,

the mean of 20 noisy runs with 1
4 of the NQIT Q20:20 dephasing rate, the mean of

20 noisy runs with 1
2 of the NQIT Q20:20 dephasing rate, the mean of 20 noisy runs

with 3
4 of the NQIT Q20:20 dephasing rate, the mean of 20 noisy runs with the NQIT

Q20:20 dephasing rate. The error bars show one standard deviation while. The means

and standard deviations have been normalised by the respective uniform distribution

(dotted horizontal line).
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Figure 2.12: Results for varying dephasing noise rates for a 4×5 ion trap grid. The

results referenced by this plot are the difference between the probability amplitudes in

noisy and perfect runs when measuring a randomly chosen output string from a single

2D-DQS circuit. The error bars show one standard deviation. The means and standard

deviations have been normalised by the uniform distribution.

vice. Having achieved a faithful modelling of the system, classical simulations can be

used as a tool in two ways. Firstly, we can use them to benchmark a given device by

confirming that the effect of the modelled noise scales correctly. If instances increase

in size and continue to match outcomes of real experiments, we extrapolate that the

same is true for the, non classically simulatable, quantum computational supremacy

regime. Secondly, we can examine the impact of varying the noise and other con-

straints and imperfections. By doing so one can identify which limitations contribute

most to the degradation of the results, compared to the perfect case. We can then

provide feedback to experimentalists as to which aspects of their system they should

prioritise in improving, in order to achieve the best results in the specific problem con-

sidered. Importantly the required improvements can be identified without partaking in

the resource intensive process of building larger devices.

We gave a methodology for using classical simulations in the way described above, and

exemplified this methodology with two examples. In both cases, we considered IQP

problems, one of the prominent candidates for demonstrating quantum computational

supremacy. The constraints we imposed were those from the NQIT Q20:20 device [13,

224], while the classical simulator used was the Bravyi-Gosset Simulator developed in

[134].

The first example used was a subclass of IQP instances, called the 2D-DQS problem,

defined in [24] and outlined in Section 1.5.2. The main focus when exploring this

example is the effect of noise. While current NQIT Q20:20 levels of noise are too high,

by using our technique we identified that dephasing noise is the most significant source

of errors. This led us to a potential solution to improve such computations, namely

to use a small phase-flip code to protect from precisely this type of errors, which we

showed provided improvements. We also showed that a continuous improvement in the

likelihood of a demonstration of quantum computational supremacy can be achieved
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by a continuous improvement in the dephasing noise levels. However, we also showed

that correcting dephasing error alone would not be sufficient to demonstrate quantum

computational supremacy using the 2D-DQS protocol on NQIT Q20:20 hardware.

In the second example, we considered an IQP-MBQC instance with constraints com-

ing, this time, from architectural limitations. This example was to illustrate how to

model different architectures in our framework. We noticed that the current level of

noise of NQIT Q20:20 was even more destructive than in the first example.

We give several directions for future research within the parameters of the motivations

of this chapter, both specific to the examples considered and more general involving

the methodology developed. In Section 2.3 we provide a tool for benchmarking NQIT

Q20:20, but to do such benchmarking, one needs to run these examples on the NQIT

Q20:20 device and compare with the modelling we obtained. This is naturally the

first next step complementing our work. A second direction is to derive theoretical

prediction for the effect of noise on our examples, for our problems and with our

constraints. This continues the work of [64] as discussed in Section 1.5.2 and reveals

what is required to achieve a demonstration of quantum computational supremacy.

Moreover, the use of these simulations as a tool for guiding future experiments should

be made more systematic. In Section 2.3.3 we varied the noise starting from coarser

grouping of the noise-sources and going to a ‘finer-graining’ in order to identify the

major source of errors. We recommend modelling the reduction of a mixture of differ-

ent noise sources as we have shown that removing only one, namely dephasing, would

not be sufficient. This could also be enhanced with other techniques, which may also

vary the architecture. Optimisation and machine learning techniques may be used to

minimise both errors and experimental resources.14

Finally, the choices made in Section 2.2 will be heavily influenced by the develop-

ment of classical simulation techniques and quantum technology. The methodology of

Section 2.1 was derived to be sufficiently general that they can be applied once such

advances have been made, and as models of devices and their noise change, and we

encourage this pursuit.

The domain of relevance of the work of this chapter is that in which the power of

the quantum devices of concern is less than that of available classical resources. We

have exploited the predictive power of classical computers in that domain to guide the

development of these smaller devices. Once the power of quantum devices approaches

or surpasses that of classical computers, the utility of classical devices as predictors

of the behaviour of quantum ones is limited.15 However classical devices are still of

use here, for example in assisting with the certification of demonstrations of quantum

computational supremacy, as introduced in Section 1.6.4. In Chapter 3 we further

extend the utility of classical computers once such quantum devices are developed.

In particular we develop benchmarks to inform users as to the devices which are best

suited for given applications.

14Indeed, since the completion of the work of this chapter, such approaches have been taken to assist

with the design of superconducting circuit [230]
15It may be necessary that smaller quantum devices begin to be utilised to predict the behaviour of

larger ones [231]
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Chapter 3

Application-Motivated, Holistic

Benchmarking of a Full Quantum

Computing Stack

In Chapter 2 we explored classical simulation as a tool for the development of quan-

tum technology. As shown there, classical simulation is enlightening as a means of

understanding the behaviour of small quantum computers, and as a means of predict-

ing the behaviour of larger ones. However, as these larger devices are developed, it

becomes necessary to measure their performance directly. These direct measures of

performance can be used to compare devices,1 assess the impact of changes to the

quantum technology, and hence establish routes to making improvements. For these

purposes, the performance of quantum computing devices is poorly described by sim-

ple, local noise models, such as those used in Chapter 2. For example, quantities such

as gate error rates, or T1 and T2 times, measure the form and magnitude of noise present

in the system, but are only proxy measures of the device’s practical performance (i.e.

when implementing computations).

In this chapter we will introduce a ‘benchmark suite’ to directly assess the performance

of quantum computing devices. The implications of the results of our benchmark suite

are sufficiently wide ranging for it to be adopted as a standard. In order to conduct

the most comprehensive study of the practical performance of real devices, we take the

view that the best benchmarks will encompass all possible influences on performance.

As such we utilise “holistic benchmarks” which are those that test the quantum com-

putational capabilities of the complete system. This captures the performance of the

system as an integrated unit, rather than the performance of individual components.

This philosophy leads us to benchmark the “full-stack” – qubits, compilation strategy,

classical control hardware, etc. – collectively. Indeed it can be misleading to consider

qubits in isolation of their control software, with performance depending heavily on

how a circuit is optimised and distributed before it is run.

To reveal how different combinations of the quantum computing stack’s components

1This should be compared to the benchmarking of classical computers, in which case the LINPACK

benchmarks are used to build the TOP500 ranking of supercomputers [10].
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change system performance, full-stack benchmarking should make explicit the variable

components of the stack, and systematically vary those components to isolate how a

particular one affects system-level performance.2 Focusing on systems made available

by IBM Quantum [83], we investigate two components of the stack3:

The compilation strategy used to map an abstract circuit onto one that is executable

on a quantum computer.

The device used to run the compiled circuit and return the results.

Problem instances requiring compilation, which are often more representative of real

world problems, typically show differing performance from those that do not [95]. As

such, the design of new compilers for quantum circuits is an active area of research

[114, 115, 234, 235]. The proliferation of compilers necessitates understanding how

the inclusion of particular compilation strategies in the quantum computing stack af-

fects performance. In particular, noise-aware compilation strategies, which use knowl-

edge of the physical properties of the system’s qubits to improve results, make assump-

tions about the influence of noise processes on overall system performance. Full-stack

benchmarking is necessary to verify those assumptions.

The benchmarks defined here have two parts:

A circuit class describing the type of circuit to be run.

A figure of merit quantifying how well the system performed when running circuits.

Because quantum computing systems are used for particular applications, the circuit

classes should test the performance of a system in those arenas. At least two notions

have been put forth as to how to define such classes. The first proposes benchmarks

based on often-used quantum algorithmic primitives [213], the examples given being

primitives of Grover iterations [34] and Trotterized Hamiltonian simulation [27]. An

alternative is to pick a particular instance of an application and check for the accu-

racy of the results returned by the system when running that instance. Naturally, to

measure the performance of near-term systems the applications and instances must be

well suited for these systems. Such benchmarks have been defined in the context of

quantum simulation [86–88], quantum machine learning [89–91], and discrete optimi-

sation [92–95]. The downside of this approach is that performance as measured by one

instance of an application may not be predictive of performance for the application

generically. Further, while the wide selection of circuits presented in the aforemen-

tioned literature covers an array of applications, deriving benchmarks independently

of each other may result in a lack of coverage, or unnecessary repeated coverage, of

circuit classes. This would be unsatifactory for a standard benchmark suite.

The “application-motivated” circuit classes defined here draw inspiration from both

approaches by focusing on computational primitives of near-term quantum computing

2The improvements that can be achieved by a well constructed quantum computing stack is exem-

plified in [232]. There a doubling of quantum volume is achieved by careful optimisation at each layer,

with only small improvements to the device itself.
3While the particular systems used here have other components, such as pulse synthesizers [233],

because control of these components are not exposed to us at the time of this work’s completion we do

not look at the impact of those pieces on full-stack performance.
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applications. This approach has the advantage that a system which does well on an

application-motivated benchmark should do well in running the application the bench-

mark was derived from. Further, by considering application primitives, the result of

the benchmarks apply to the application generally, and not only to a particular instance

of the application. In summary the circuits used are similar enough to instances of

applications to be predictive of their performance, while avoiding the risk that devices

might be engineered towards very particular instances.4

Three such application-motivated circuit classes are introduced here. Drawing inspi-

ration from the volumetric benchmarking approach, the classes cover varying depth

regimes, and are controllable in depth.5 The definitions and motivations for each class

are given in Section 3.2 but, in brief, the classes – as labelled by their depth regimes –

and the applications that motivate them, are:

Shallow: Inspired by ‘hardware-efficient ansatze’ [236, 237] (parametrised quantum

circuits chosen to account for restrictions imposed by the device, such as qubit

connectivity) which may be useful for near-term quantum machine learning and

chemistry applications [4, 164, 165]. The width of shallow circuits grow with a

minimal increase in depth, allowing the impact of including many qubits to be

explored.

Square: Inspired by the circuits used to calculate a system’s quantum volume [212].

These circuits utilise gates sampled uniformly at random from all SU(4) gates,

making them a test of general-purpose, programmable quantum computers.

Deep: Inspired by product formula circuits, including state preparation circuits used in

the Variational Quantum Eigensolver (VQE) algorithm [22, 23, 238–240]. The

depth of these circuits grows quickly with width, giving a thorough coverage of

depth regimes.

Importantly, as discussed in Section 3.2, these circuits are complementary; they cover

a wide selection of applications and circuit types. By covering many applications with

few circuit classes, we are able to concisely present far-reaching results, and minimise

the number of computations to be performed in deriving those results. Note that we

will not demand that a quantum computing stack performs well when implementing all

of these classes of circuits, instead hoping to identify the applications where a quantum

computing stack might be most fruitfully applied. Indeed, we may expect that devices

are tuned to particular applications.

How well a stack executes a circuit is assessed here via continuous figures of merit,

rather than binary ones which may only verify correctness. This is because the out-

comes from noisy devices will likely not be correct, while information about closeness

to the correct answer is still highly valuable. Note also that the techniques for the veri-

fication of universal quantum computation, as introduced in Section 1.6, require many

4Although we do not do so here, it is of interest to quantify the similarity of the benchmarking

circuits to the applications they represent, and their ‘coverage’ there of. We discuss this further in

Section 3.5.
5The circuit depth is the fewest number of time steps it would take to run a circuit if each gate took

one time step, and gates with common qubits could not be run in the same time step.
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qubits, or qubit communication, or both; none of which are accessible using present-

day noisy devices. This also discounts the use of the scheme we introduce in Chapter

4 which requires qubit communication. Indeed, to reflect the current state-of-the-art,

where devices are both few and poorly connected to one another, we will focus on

examples of how classical computers can be used to perform benchmarks.

The three figures of merit used in this chapter are: heavy output probability [85], cross-

entropy difference [62], and ℓ1-norm distance. As discussed in Section 1.6.4, scaling

this approach to tens or hundreds of qubits will be challenging in general. By consider-

ing circuits with few qubits we allow ourselves the ability to calculate these figures of

merit, and to gain an insight into the behaviour of larger devices [60, 241]. However,

significant improvements in the time needed to perform benchmarks can be made if the

circuits and figures of merit are developed jointly. Indeed, the calculation of the heavy

output probability and cross-entropy difference requires only a polynomial number of

samples from a quantum device for some circuit classes. Importantly, we show that

this is the case for deep circuits and square circuits. Therefore, deep circuits provide

the first instance of chemistry-motivated circuits, which are likely not possible to clas-

sically simulate in general, but which can be benchmarked using polynomially many

samples from the output distribution from a device implementing them.

We refer to a set of benchmarks as a benchmarking suite, each benchmark being de-

fined by unique combinations of circuit class and figure of merit. Using a benchmark-

ing suite enables the derivation of broad insights about the behaviour and performance

of a quantum computing system across a wide variety of possible applications. The

varying demands of each benchmark on the quantum computing resources allows for

the exploration of the best routes to extract the most utility from near-term quantum

computers. In sum, in order to predict the systems’ performance in practice, our bench-

marking approach is application-motivated, holistic and of the full quantum computing

stack. For the reasons stated above, we regard all of these properties to be necessary

of a standard benchmark suite.

In Section 3.1 we will reflect on why the figures of merit chosen are the correct ones

for our purpose. In Section 3.2 we detail the circuit classes used, including algorithms

for generating them. Section 3.3 introduces the software stack, as well as the devices

we will be benchmarking while in Section 3.4 we give the results of our benchmarks,

along with some analysis. We conclude in Section 3.5.

3.1 Figures of Merit

The figures of merit used in this work are the heavy output probability, the cross-

entropy difference and the ℓ1-norm distance. The formal definitions of Heavy Output

Generation Benchmarking, used to calculate the heavy output probability, and Cross-

Entropy Benchmarking, used to calculate the cross-entropy difference, are given in

Section 1.6.4. That of the ℓ1-norm distance is given in Section 1.3.1. Here we focus

on nuances to their use which are specific to our work. In particular in Section 3.1.1

we discuss our motivations for using these figures of merit, while in Section 3.1.2 we

detail how we calculate and evaluate them.
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3.1.1 Motivations

The circuits we investigate in Section 3.4 are small enough that DC, the distribution

of outcome probabilities from the real device implementing a circuit C, can be well

characterised by a reasonable absolute number of samples. This is to say that while

approximating D (x) for every output x requires a number of samples which grows

exponentially with the number of qubits, the number of qubits investigated here is

sufficiently small that the required computational resources remain reasonable. This

allows us to make use of the ℓ1-norm distance in this chapter.6 The ℓ1-norm distance is

a particularly powerful metric, and relates to several theoretical results, such as those

discussed in Section 1.5.2, motivating its use.

For larger numbers of qubits than are used in the results of Section 3.4, Heavy Output

Generation Benchmarking and Cross-Entropy Benchmarking are preferred over cal-

culating the ℓ1-norm distance. This is because they, unlike calculating the ℓ1-norm

distance, require only a polynomial number of samples from the real device. It is

therefore beneficial to explore these figures of merit, both to familiarise ourselves with

them, and to explore their relationship with the stronger ℓ1-norm distance.7

In addition Heavy Output Generation Benchmarking and Cross-Entropy Benchmark-

ing provide valuable insights of their own. The connections between Heavy Output

Generation Benchmarking and quantum computational supremacy allow us to extract

valuable insights into the ability of a quantum computing stack to demonstrate quan-

tum computational supremacy. Further, Heavy Output Generation Benchmarking pro-

vides a minimal, intuitively interpreted, single value with which to compare quantum

computing stacks. This is of great use in a standard benchmarking suite.

Similarly the comparison to the uniform distribution which the cross-entropy differ-

ence provides is valuable as, if an honest attempt is being made to recreate a distri-

bution, at worst the uniform distribution could be produced. Further while it is not

known if Cross-Entropy Benchmarking on its own can be used to distinguish error

channels, in combination with the techniques introduced here, it can provide insight

into this information, as we discuss in Section 3.4. Importantly, since HOG(DC, pC)
and CE(DC, pC) are expectations of different functions of ideal output probabilities,

δ(pC) and− log(pC) respectively, over the experimental output distribution, they cap-

ture different features of the outputs, and it is advantageous to consider both [66].

6In the case that sufficient samples can be obtained to characterise DC well, several other figures of

merit are accessible, such as the KL-divergence defined in equation (1.27). We limit our investigations

to the three discussed to remain thorough but concise, but invite further analysis of the data generated

by our experiments [242].
7The ℓ1-norm distance is stronger in the sense that it provides a lower bound for both the heavy

output generation probability and the cross-entropy difference. While Cross-Entropy Benchmarking and

Heavy Output Generation Benchmarking cannot be used to bound the ℓ1-norm distance, interestingly

our empirical results show a slight negative correlation between ℓ1-norm distance and the heavy output

generation probability found experimentally, as is discussed in Appendix B.4.
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3.1.2 Evaluating Stack Performance

Given samples s = {x1, ...,xm} from DC, let sx be the number of times x appears in

s. Define D̃C by D̃C (x) = sx/m. The approximation we will use for ℓ1 (DC, pC) is

ℓ1

(
D̃C, pC

)
, and so an ideal implementation of a unitary would result in ℓ1 (DC, pC)≈

0.8 As such, in the results of Section 3.4 we will say that a quantum computing stack

performs better the closer the value, averaged over a class of circuits, is to 0. However,

noise will likely make it incredibly difficult for even fault tolerant quantum computers

to achieve a ℓ1-norm distance of 0. Hence bounds, such as that discussed in Section

1.5.2, are often put on the value instead. For the circuit classes for which such results

are relevant, as we discuss in Section 3.2, we will use these results to define a value

below which a performance can be considered as good.

In the results of Section 3.4, we say a quantum computing stack has performed well

if, on average over the class of circuits, HOG(DC, pC) is between (1+ log2)/2 and

2/3, with (1+ log2)/2 being best of all. Recall from the discussion around Prob-

lem 1 that there are cases where sampling from a family of distributions {DC} with

HOG(DC, pc) ≥ 2/3 is thought to be hard to do classically. This is true in particular

when the ideal output distributions of the circuits C are distributed exponentially, in

which case heavy outputs have cumulative probability (1+ log2)/2. Such circuits are

relevant here, justifying the range of values of HOG(DC, pC) which we consider to

demonstrate a quantum computing stack performing well. A poorer performance is

indicated by average values between 2/3 and 1/2, with 1/2 being worst of all. In-

deed a value of 1/2 could be achieved by generating all possible output with equal

probability. For the circuit classes in Section 3.2 which have exponentially distributed

output probabilities, we will often consider the largest n for which distributions {DCn
}

solve Problem 1, which is to say the largest n for which heavy outputs are produced

with probability greater than 2/3. This approach is inspired by quantum volume and

is useful as an indicator of the largest Hilbert space accessible to a quantum comput-

ing stack [212]. For circuit classes with output probabilities that are not exponentially

distributed, we will explicitly calculate the ideal heavy output probability as a point of

comparison.

In the case of Cross-Entropy Benchmarking, we will say that better performance is

indicated by a value, averaged over the class of circuits, closer to 1, and worse by a

value closer to 0. Notice that values above 1, or below 0, are possible for individual

circuits if, for example, the ideal output distribution happens to be very skewed towards

heavy outputs, or if unlikely outcomes occur very often, respectively. Unlike in the

case of Heavy Output Generation Benchmarking, we do not give a value which a score

above would indicate good performance.9 Further, to avoid requiring the inverse of 0

in the approximation of equation (1.30), we chose to use

max
{

pC (x) ,2
−n2
}
.

8Note that unlike in Chapter 2, where we could access output probabilities, here we interact with

real devices, and so only samples are available.
9Where such a value has been defined, it is perhaps surprisingly close to 0, and so the uniform

distribution [60].
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in place of pC (x). This choice of an inverse exponential in the number of qubits is

inspired by, although not directly derived from, the average case supremacy results

related to random circuits [66, 186].

3.2 Circuit Classes

This section presents the formal definitions of the circuits used in this work, while also

identifying the motivations for their use in benchmarking. These motivations include

both the class of applications they represent and the properties of the quantum comput-

ing stacks that they probe. Collectively, this selection of circuit classes encompasses

an array of potential applications of quantum computing, covering circuits of varied

depth, connectivity, and gate types.

3.2.1 Shallow Circuits: IQP

As discussed in Section 1.5, IQP circuits [113] consist of commuting gates and, as well

as being simpler to implement than universal quantum circuits, are believed, even in

the presence of noise, to be impossible to simulate efficiently using classical computers

[63–65]. This has allowed for the fruitful application of noisy quantum technology in

areas such as machine learning [4, 164, 165], as discussed in Chapter 5, and interactive

two-player games, as discussed in Chapter 4. These applications, and the connection

between IQP and a demonstration of quantum computational supremacy on near-term

hardware, makes their implementation a pertinent benchmark of the performance of

these devices.

In Protocol 3.2.1 we introduce the shallow circuits class for benchmarking, which

is a subclass of IQP circuits. Indeed the close connection, through Theorem 1.5.2,

of quantum computational supremacy and shallow circuits10 provides a measure of a

quantum computing stack’s quality. Namely, this is by analysing the closeness of the

distributions it produces to the ideal ones, as measured by the ℓ1-norm distance, and

comparing this value to 1/192. The shallow circuits class is exemplified in Figure 3.1.

As discussed below, there is a constant bound on the depth of uncompiled shallow cir-

cuits, meaning that their compiled depth increases slowly with width. As such these

circuits probe the performance of a quantum computing stack in fine-grained detail

by measuring the impact of including more qubits (quasi-) independently of increas-

ing circuit depth. This is useful for understanding the performance of a device being

utilised for applications whose qubit requirement grows more quickly than the circuit

depth.

The uncompiled depth of shallow circuits may be arrived at by observing that finding

a valid order in which to apply the CZ gates in the circuit is equivalent to finding an

edge colouring of the graph Gn. By Vizing’s theorem, it is known that a colouring of

10Theorem 1.5.2 is a worst case hardness result, and may not apply to shallow circuits. However we

regard the performance of shallow circuits as indicative of the performance of those circuits to which

Theorem 1.5.2 does apply. Indeed, similar hardness results to Theorem 1.5.2 exist for other families of

sparse, constant depth IQP circuits [24].
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Protocol 3.2.1 The pattern for building shallow circuits. An example output can be

seen in Figure 3.1.

Input: Number of qubits, n ∈ Z

Worst case depth: 7

Output: Circuit, Cn

1: Initialise n qubits, labelled q1, ...,qn, in the state |0〉.
2:

3: for all i ∈ {1, ...,n} do

4: Enact H on qi

5: end for

6:

7: Let Gn be the graph indicating between which qubits a CZ gate can act. Let Gn

in this case be a random binomial graph, Gn, with n vertices and edge probability

0.5, post selecting on those that are connected and have degree less than 4.

8:

9: for all edges {i, j} in Gn do

10: Enact CZ between qi and q j

11: end for

12:

13: for all i ∈ {1, ...,n} do

14: Generate αi ∈ [0,2π] uniformly at random.

15: Enact RZαi on qi .

16: end for

17:

18: for all i ∈ {1, ...,n} do

19: Enact H on qi

20: end for

21:

22: Measure q1, ...,qn in the computational basis

qn = |0〉

...

q3 = |0〉

q2 = |0〉

q1 = |0〉

H

...

H

H

H

RZαn

...

RZα2

RZα1

RZα0

H

...

H

H

H

...

Figure 3.1: An example of shallow circuits, as generated by Protocol 3.2.1.
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undirected graphs using at most one more colour than the maximum vertex degree ex-

ists. Constructive proofs of Vizing’s theorem therefore demonstrate that a 4-colouring

can be found in polynomial time [243].11

Further, because Protocol 3.2.1 limits the connectivity allowed between the qubits, the

increase in circuit depth due to compilation onto limited-connectivity architectures is

minimised, while avoiding a choice of connectivity favouring one device in particular.

By bounding connectivity, but allowing all connections in principle, we avoid biasing

against architectures that allow all-to-all connectivity, which would still perform well.

Shallow circuits may be compared to other sparse IQP circuits [64], IQP circuits on

2D latices such as the 2D-DQS circuits of Protocol 1.5.1, and random 3-regular graphs

used for benchmarking [95]. In our case we aim to avoid favouring particular architec-

tures, and so avoid 2D lattices. In addition we avoid highly structured 3-regular graphs,

in favour of allowing reduced vertex connectivity.12 This avoids preferring very partic-

ular applications of low depth IQP circuits; instead exploring a variety of applications

simultaneously. In particular, in Section 1.6.3 it was outlined that a post-hoc verifica-

tion scheme can be used to test the ℓ1-norm distance of the ideal from the real output

distributions of 2D-DQS circuits. However the connectivity is too architecture-specific

for our purposes, with the verification scheme requiring limits to the measurement

noise which we cannot guarantee.

In the case of shallow circuits, the output probabilities are not exponentially dis-

tributed. As expanded on in Section 1.6.4, this property allows us to simplify calcula-

tions required when performing both Cross-Entropy Benchmarking and Heavy Output

Generation Benchmarking. In particular the theoretical value of heavy output prob-

ability for circuits with exponentially distributed output probabilities cannot be used

here. Instead, we use the empirical value of the ideal heavy output probability, in the

place of a theoretically derived one, as a point of comparison with the behaviour of

the quantum computing stack being benchmarked. This approach requires the calcula-

tion of all output probabilities and the summation of the probabilities of those that are

heavy. This can be done for the small circuits investigated here, but does not allow for

the benchmarking of as many qubits as would be accessible if a theoretical value was

known.

In summary, inspired by near-term applications of IQP circuits in machine learning [4,

165], we introduce shallow circuits in Protocol 3.2.1. Performance when implementing

these circuits is indicative of the performance when implementing those applications,

11It is possible that the chromatic index of a particular graph is lower than 4, either because: the

maximum degree in less than 3, as could be the case with these random graphs; or because a 3-colouring

exists, as is the lower bound on the chromatic index of an undirected graph of maximum vertex degree

3. However a 4-colouring certainly provide an upper bound and so it suffices for our discussion as we

are concerned with upper bounding the depth of the circuit.
12As n grows the probability that the maximum degree is at most 3 will tend to zero, and so Protocol

3.2.1 may become infeasible to implement. While for the number of qubits considered in this paper

Protocol 3.2.1 works well, for larger n it may become necessary to alter the graph generation step,

possibly to the use of 3-regular graphs, for which the fast random generation algorithms have been

extensively researched and developed. However, regular graphs are too few in number for graphs with

low numbers of qubits to provide a good benchmark set of many possible circuits, and so we avoid them

here.
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qn = |0〉

...

q3 = |0〉

q2 = |0〉

q1 = |0〉

U
0
,0

U
⌊n 2
⌋,0

U
0
,n

U
⌊n 2
⌋,n

...

Figure 3.2: An example of square circuits, as generated by Protocol 3.2.2. Note

that the Ui,t gates act between 2 randomly selected qubits.

but also, more generally, of applications requiring circuits which grow slowly in depth.

As a result, these circuits also probe the performance of a quantum computing stack in

fine-grained detail by measuring the impact of including more qubits (quasi-) indepen-

dently of increasing circuit depth.

3.2.2 Square Circuits: Random Circuit Sampling

Square circuits are generated according to Protocol 3.2.2 and consist of n layers of

random two-qubit gates acting between a bipartition of the qubits. The square circuits

class is exemplified in Figure 3.2. While circuits required for applications are typically

not random, by utilising uniformly random two-qubit unitaries, square circuits pro-

vides a benchmark at all layers of the quantum computing stack. In particular it tests

the ability of the device to implement a universal gate set, the diversity and quality of

the gates available, and the compilation strategy’s ability to decompose these gates to

the native architecture. Further, as quantum circuits can always be approximated up

to arbitrary precision using two-qubit unitary gates [28], square circuits can help us

understand the performance of quantum computing stacks when implementing com-

putations requiring a universal gate set. In addition to the advantages of using random

two-qubit unitary gates listed above, the particular distribution from which they are

samples, as specified on line 8 of Protocol 3.2.2, proves sufficient to allow us to apply

HOG, as defined in Problem 1. In particular , the distribution pC is sufficiently far

from uniform in the required sense, which we demonstrate in Appendix B.1.1. Sam-

pling 2-qubit unitaries according to the Haar measure has the additional advantage that

the resulting circuits are similar in structure to those used for RCS, as introduced in

Section 1.5.3, providing insights into the performance of a quantum computing stack

when addressing that application.

As mentioned in Section 1.5.3, sampling from the output distributions of random cir-

cuits on 2D latices using a classical computer is thought to be hard. While this archi-

tecture is relevant for devices built using superconducting technology [60], we wish to

avoid biasing in favour of this technology in particular. By allowing two-qubit gates to

act between any pair of qubits in the uncompiled circuit, square circuits avoid favour-

ing any device in particular [60, 62, 85]. In addition, assuming all-to-all connectivity
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Protocol 3.2.2 The pattern for building square circuits. An example output can be seen

in Figure 3.2.

Input: Number of qubits, n ∈ Z

Worst case depth: n

Output: Circuit, Cn

1: Initialise n qubits, labelled q1, ...,qn, in the state |0〉
2:

3: for each layer t up to depth n do

4: ⊲ The contents of this for loop constitutes a layer. The choice of the number

of layers used here is discussed in Appendix B.1.1.

5:

6: Divide the qubits into ⌊n
2⌋ pairs {qi,1,qi,2} at random.

7: for all i ∈ Z, 0≤ i≤ ⌊n
2⌋ do

8: Generate Ui,t ∈ SU(4) uniformly at random according to the Haar measure.

9: Enact Ui,t on qubits qi,1 and qi,2.

10: end for

11: end for

12:

13: Measure all qubits in the computational basis.

passes the burden of mapping the circuit onto the device to the compilation strategy,

which is in line with our wish to benchmark the full quantum computing stack. That

said, any architecture whose coupling map closely mirrors the uncompiled circuit will

be advantaged, as even a naı̈ve compilation strategy will perform well in that case.

In [212] almost identical circuits to those of Protocol 3.2.2 are used to perform quan-

tum volume benchmarking, but with all-to-all connectivity supplemented for nearest

neighbour connectivity on a line, and the addition of permutation layers. As this dis-

advantages devices with a completely connected coupling map,13 a property which

would typically be an advantage, we choose not to make this restriction here. Notice,

however, that a naı̈ve compilation of square circuits onto an architecture with nearest

neighbour connectivity on a line would create a permutation layer to move qubits to-

gether where necessary, recreating the quantum volume circuits. Indeed, compiling

square circuits to superconducting devices (where connectivity is low) will generally

result in a circuit similar to those used in the quantum volume benchmark, as many

SWAP operations are required regardless.

In summary, by allowing for the most general gate set and connectivity, square circuits

provide a means to thoroughly interrogate all layers of the quantum computing stack.

This class of circuits is inspired by quantum volume circuits [212] but are somewhat

generalised to avoid device bias. Because of this generality, and the linear increase in

13Note that some compilation strategies may identify that the SWAP gates in the permutation layer

may be removed for devices with all-to-all connectivity. We avoid this dependence on the compilation

strategy by fixing the connectivity in the uncompiled circuit to be all-to-all.
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qn = |0〉

...

q2 = |0〉

q1 = |0〉

Gn,1

...

G2,1

G1,1

RZα1 G
†
n,1

...

G
†
2,1

G
†
1,1

...

Figure 3.3: An example of deep circuits, as generated by Protocol 3.2.3. This gives

the structure of one Pauli gadget, with this structure repeated throughout the circuit.

Here G represents a single qubit gate, as described on line 11 of Protocol 3.2.3.

depth with number of qubits, square circuits are complementary to the other classes

introduced in this work.

3.2.3 Deep Circuits: Pauli Gadgets

Pauli gadgets [244] are quantum circuits implementing an operation corresponding

to exponentiating a Pauli tensor. Sequences of Pauli gadgets acting on qubits form

product formula circuits, commonly used in Hamiltonian simulation [238]. These

circuits are the basis of trial state preparation in many variational algorithms, which

are amongst the most promising applications of noisy quantum computers. A notable

example of this in quantum chemistry is the physically-motivated Unitary Coupled

Cluster family of trial states used in the VQE [239, 240]. As near-term quantum com-

puters hold promise as useful tools for studying quantum chemistry, we propose that

the quality of an implementation of these gadgets is a useful benchmark, and use them

to define the deep circuit class.

Deep circuits are built as in Protocol 3.2.3 and are constructed from several layers of

Pauli Gadgets, each acting on a random subset of n qubits. The deep circuits class is

exemplified in Figure 3.3. In the worst case each Pauli Gadget will demand 4n+ 1

gates: 2n Pauli gates, 2(n−1) CX gates, and one RZα gate. The number of layers

is chosen to ensure an exponential distribution of the output probabilities from deep

circuits, as we establish in Appendix B.1.2. This allows ourselves the capacity to use

Heavy Output Generation Benchmarking and Cross-Entropy Benchmarking. Doing so

constitutes a novel extension of those approaches to application motivated benchmark-

ing, and the unique ability for us to benchmark application-motivated circuits, using

polynomially many samples from a device.

The philosophy justifying the introduction of deep circuits is similar to that used in

[84] when the random phase gadgets circuit class is introduced. Random phase gadget

circuits are similar to quantum volume circuits, but with the Haar random two-qubit

unitary gates replaced by random two-qubit phase gadgets. While these circuits are

also motivated by applications in variational algorithms, they have the same drawback

as quantum volume circuits, as discussed in Section 3.2.2, and are further in form from

the application of concern than deep circuits. Note also that deep circuits differ from

running the VQE end-to-end. By focusing on the state preparation portion of a VQE
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Protocol 3.2.3 The pattern for building deep circuits. An example output is given in

Figure 3.3.

Input: Number of qubits, n ∈ Z

Worst case depth: (4n−1)(3n+1)
Output: Circuit, C

1: function PHASEGADGET(α,
{

q̃1, ..., q̃p

}
)

2: if p = 1 then

3: Enact RZ (α) on q̃1

4: else

5: Enact CX between q̃1 and q̃2

6: PHASEGADGET(α,
{

q̃2, ..., q̃p

}
)

7: Enact CX between q̃1 and q̃2

8: end if

9: end function

10:

11: function PAULI(
{

q̃1, ..., q̃p

}
, s)

12: if s1 = X then

13: Enact RX
(

π
2

)
on q̃1

14: else if s1 = Y then

15: Enact H on the q̃p

16: end if

17: PAULI(
{

q̃2, ..., q̃p

}
, s)

18: end function

19:

20: function PAULIGADGET(α, qubits, s)

21: PAULI(qubits, s)

22: PHASEGADGET(α, qubits)

23: Enact the inverse of PAULI(qubits, s)

24: end function

Protocol continues below...
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Protocol 3.2.3 Continued

25: Initialise n qubits, labelled q1, ...,qn, in the state |0〉.
26:

27: for each layer t up to depth 3n+1 do

28: ⊲ The contents of this for loop constitutes a layer. The choice of the number

of layers used here is discussed in Appendix B.1.2.

29:

30: Select a random string s ∈ {I,X,Y,Z}n

31: Generate random angle α ∈ [0,2π]
32: PAULIGADGET(α, {qi : si 6= I}, s)

33:

34: end for

35:

36: Measure all qubits in the computational basis

circuit, we might deduce performance of the quantum computing stack when running

the VQE on a number of molecules14. The intuition here is that if the state prepara-

tion sub-component is accurate, then the error in the expectation values of measured

observables will be due to errors in implementing those observables, or the readout

process itself.

In summary, we have introduced deep circuits to probe the performance of a quantum

computing stack when implementing common quantum chemistry applications. The

deep circuits circuit class is complimentary to the other classes featured in this work

by having a depth which grows quickly with the number of qubits.

3.3 Quantum Computing Stack

Each component of a quantum computing stack exerts an influence on overall perfor-

mance, and identifying the distinct impact of a particular component is often hard. To

disentangle these factors, we must clearly identify the components used during bench-

marking. Here we detail the components used to build the quantum computing stacks

explored in Section 3.4. This diverse selection of components allows us to investigate

a variety of ways of building a quantum computing stack.

3.3.1 Software Development Kits

We use a combination of tools available via pytket [235, 245] and Qiskit [114, 246].

pytket is a Python module which provides an environment for constructing and im-

plementing quantum circuits, as well as for interfacing with CQC’s t|ket〉, a retar-

getable compiler for near-term quantum devices featuring hardware-agnostic optimi-

sation. Qiskit is a open-source quantum computing software development framework

14Here we do not explore the relationship between the performance of a quantum computing stack

when implementing deep circuits and when implementing VQE but regard it as important for future

work.
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for programming, simulating, and interacting with quantum processors, which also

provides a compiler. Details of the versions of the software used are seen in Table B.1

of Appendix B.2.

We use three parts of Qiskit in this work. First is the transpiler architecture, which

enables users to define a custom compilation strategy by executing a series of passes

on the input circuit, as discussed in Section 3.3.2. The second part of Qiskit we use is

the library of predefined passes. Finally, a provider is used to access hardware made

available over the cloud by IBM Quantum. The provider enables users to send circuits

to hardware, retrieve results, and query the hardware for its properties.15

Similarly, we use pytket to generate and manipulate circuits in several ways. Firstly

we use the t|ket〉 compiler to construct compilation strategies which optimise the input

circuit for the target hardware, utilising predefined passes available in t|ket〉. Secondly

we use pytket to define abstract circuits and to convert t|ket〉’s native representation

of the circuit into a Qiskit QuantumCircuit object which is then dispatched to IBM

Quantum’s systems for execution.

3.3.2 Compilers

Compilers provide tools to construct executable quantum circuits from abstract circuit

models. This is done by defining passes which may manipulate a representation of a

quantum circuit, often by taking account of limited connectivity architectures, or min-

imising quantities such as gate depth, but need not perform any manipulation.16 These

passes are composed to form compilation strategies which should output executable

quantum circuits. Quantum compiling is an active area of research [141, 247–250],

and there are many pieces of software available for quantum compiling [114, 115, 234,

235]. For the purposes of this work, the problem of quantum compilation is divided

into three tasks.

Placement: Determine onto which physical qubits of a given device the virtual qubits

in the circuit’s representation should be initially mapped. This can influence

the performance of routing [251] and the impact of noise through noise aware

placement [250].

Routing: Modify a circuit to conform to the qubit layout of a specific architecture,

for example, by inserting SWAP gates to allow non-adjacent qubits to interact

[173]. Circuits are often designed without the qubit layout in mind, so this step

is important [95].

Optimisation: Work to minimise some property of a circuit. This may be gate count

or depth, which are targeted as proxies for noise.

Both pytket and Qiskit have multiple placement, optimisation, and routing passes. We

compare the performance of 5 compilation strategies built from these passes. Two

15These properties include the graph connectivity, single- and two-qubit error rates, and qubit T1 and

T2 times. Some of the noise-aware compilation strategies we use require knowledge of these properties.
16An example of this is a pass which counts the gates in the circuit.
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of them, noise-unaware pytket and noise-unaware Qiskit, compile the circuit with-

out knowledge of the device’s noise properties. Another two, noise-aware pytket and

noise-aware Qiskit, do take noise properties into account. As a baseline, we consider

a simple compilation strategy from pytket using only routing, without optimisation or

noise-awareness; we refer to this pass as only pytket routing. We detail these schemes

in Appendix B.2. The main difference between the noise-aware schemes is that, by the

design of pytket and Qiskit, noise-aware pytket prioritises the minimisation of gate er-

rors during placement,17 whereas noise-aware Qiskit prioritises readout and CX errors

[250].

3.3.3 Devices

We benchmark some of the devices made available over the cloud by IBM Quantum.

For reasons of accessibility, we do not utilise the Q20:20 device discussed in Chapter 2.

The devices we use are referred to by the unique names ibmqx2, ibmq 16 melbourne,

ibmq singapore and ibmq ourense. Each device has a set of native gates which all

gates in a given circuit must be decomposed to. For all the devices considered here,

the native gates are: an identity operation, I; 3 “u-gates”, as defined in equation (3.1);

and a controlled-NOT (CX) gate.

U3 (θ,φ,λ) =

(
cos
(

θ
2

)
−eiλ sin

(
θ
2

)

eiφ sin
(

θ
2

)
ei(λ+φ) cos

(
θ
2

)
)

U2 (φ,λ) = U3

(π

2
,φ,λ

)

U1 (λ) = U3 (0,0,λ)

(3.1)

Two of the device properties used by the noise-aware compilation strategies are their

connectivity and calibration data. Information about the connectivity of a device is

contained in its coupling map which, in the cases of the devices studied here, are

shown in Appendix B.3.1 and summarised in Table 3.1. A coupling map is a graph

with a vertex for each qubit, and edges between vertices when there exists coupling

between the corresponding qubits.

We expect the coupling map of a device will influence the device’s performance ac-

cording to our benchmarks. Coupling maps with a high average degree (mean number

of edges incident on each vertex) have more qubits directly connected to one another,

reducing the requirement for SWAP operations that would increase the circuit depth.

Coupling maps with low radius (minimax distance over all pairs of qubits) have qubits

which are closer to one another, again reducing the need for SWAP gates. Coupling

maps with a high number of vertices (i.e., qubits), enables higher-width circuits to be

run. Finally, coupling maps where the number of vertices equals the minimum cycle

length (smallest number of edges per cycle over all cycles) have the advantage that

any routing operation has more paths available to it, potentially allowing for some

parallelisation.

17This is true of pytket 0.3.0; as a result of this work, later versions of pytket take into account readout

error.
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Device Vertices Average

Degree

Radius Minimum Cycle

Length

ibmqx2 5 2.4 1 3

ibmq 16 melbourne 15 22
3 4 4

ibmq ourense 5 1.6 2 N/A

ibmq singapore 20 2.3 4 6

Table 3.1: Selected graph properties of the coupling maps of devices studied in

this work. See Appendix B.3.1 for full details of the coupling maps of the devices

explored here.
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Figure 3.4: Average error rates across devices used in this work. Bars show the

mean error rates across the whole device, while error bars give the standard devi-

ation. Devices shown here are: ibmqx2 [ ], ibmq ourense [ ], ibmq singapore [ ],

ibmq 16 melbourne [ ]. Further details can be found in Appendix B.3.2

Device calibration data includes information about single- and two-qubit error rates,

readout error, and qubit frequency, T1, and T2 times. The noise-aware compilation

strategies we investigate use the gate error rates and readout error. Full details of noise

levels can be found in Appendix B.3.2 with average values given in Figure 3.4. This

information is updated twice daily, with the data in Figure 3.4 averaged over the period

2020-01-29 to 2020-02-10 during which time our experiments were conducted. The

results of Section 3.4 depend heavily on the noise levels of the device at the time at

which the computation is implemented. This is doubly true in the case of the noise-

aware optimisation schemes as a circuit optimised at one time may not perform as

well over time as the noise levels of the devices change. To reduce this effect we

endeavoured to compile and run circuits within as short a time interval as possible.

3.4 Experimental Results

This section presents experimental results of running the circuit families defined in

Section 3.2 on various quantum computing systems. We present a sub-sample of all

our results in the figures which follow. We study these results in 3 contexts:
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Section 3.4.1: Full Stack Benchmarking – Incorporating and thoroughly investigat-

ing the compilation strategy helps develop an understanding of how circuit com-

pilation influences the performance of the quantum computing stack. For noise-

aware compilation strategies, our results show that the assumptions made by the

strategy about the importance of different kinds of noise impacts performance.

Section 3.4.2: Application Motivated Benchmarks – By including three quite dif-

ferent circuit classes in our benchmark suite, we explore how a quantum com-

puting stack may perform when implementing a wide array of applications.

Section 3.4.3: Insights from Classical Simulation – We explore how benchmarks

assist in developing new noise models. By identifying when benchmark values

for real implementations and those we expect from simulations using noise mod-

els differ, noise channels which should be added to the noise models to achieve

greater agreement with real devices can be identified. This is of particular im-

portance as noise-aware compilation strategies often utilise noise properties.

For each circuit class and fixed number of qubits, 200 circuits were generated accord-

ing to the algorithms of Section 3.2. Each circuit is compiled by a given compilation

strategy onto a particular device. The compiled circuits were then run on the device,

using 8192 repetitions (samples) from each compiled circuit, which generates 8192

bitstrings. The compiled circuits are also classically simulated using a noise model

built from the device calibration information at the time of the device run. See [242]

for access to the full experimental data set.

The resulting bitstrings are then processed according to the figures of merit given

in Section 3.1. The distribution of the figures of merit are compared by their mean

and distribution via a box-and-whisker plot. In particular boxes show quartiles of the

dataset, whiskers extend to 1.5 times the interquartile range past the low and high

quartiles, and white circles give the mean. Uncompiled circuits were also perfectly

simulated without noise in order to calculate the ideal heavy output probability. These

points are referred to as Noise-Free in the figures below. Note that, as discussed in

Section 1.6.4, we expect the mean of the ideal, Noise-Free, heavy output probability to

converge to (1+ log2)/2≈ 0.846574 as the number of qubits grows. However, as we

can see in the following results, there is some fluctuation around this value for smaller

circuits.

3.4.1 Full Stack Benchmarking

Impact of the Compilation Strategy

We study the compilation strategy and the device on which the compiled circuit is run.

Using a fixed device and comparing multiple strategies allows us to determine which

strategy tends to perform well. Further, aggregating performance over all compilation

strategies provides an estimate of the performance of a “generic” strategy. Similarly,

fixing the strategy, and comparing its performance on multiple devices, shows how

(possibly erroneous) assumptions made by the strategy about the devices impact per-

formance.
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Figure 3.5: Comparison of fixed compilation strategy to average of all strategies

using, the heavy output probability metric. Here we have run square circuits using

the real ibmq 16 melbourne device. Values above 2/3 (dotted blue line), and closer to

Noise Free, indicate better performance.

Figure 3.5 displays experimental results when implementing square circuits on

ibmq 16 melbourne, using heavy output probability as the figure of merit. The noise-

aware pytket compilation strategy performs somewhat better, on average, than a generic

strategy. Because the aggregated information (“All Strategies” in Figure 3.5) in-

cludes aggregation over noise-aware pytket, these results indicate that other compi-

lation strategies perform worse, since the performance of the aggregate is generally

lower than that of noise-aware pytket.18 This reveals the potential for compilation

strategy driven improvements in performance.

Aggregation over compilation strategies provides a way of identifying devices which

perform well, by “washing out” the effect of the compilation strategy on performance.

Figure 3.6 shows that by considering performance with a fixed compilation strategy

ibmq singapore would be considered to perform similarly, if not slightly better than

ibmq ourense, as measured by ℓ1-norm distance. However, aggregating over all strate-

gies (Figure 3.7) shows ibmq ourense to perform better, suggesting that ibmq ourense

might be a better device for a ‘generic’ compilation strategy to compile to.

An instance-by-instance comparison of different compilation strategies also reveals

their limitations and advantages. For example, Figure 3.8 shows noise-aware pytket

works best at reproducing the ideal distribution of heavy output probabilities of square

circuits on ibmq 16 melbourne. When compared to the strong performance of only

pytket routing, this suggests these results are due in part to the routing scheme.

Similarly, Figure 3.9 shows that noise-aware pytket is amongst the worst-performing

compilation strategies for lower numbers of qubits, while it is amongst the best-

performing for higher numbers. This could be a result of the way in which noise-aware

pytket prioritises noise in its routing scheme, with gate errors taking precedence.19

18Note that due to the fact we aggregate over all 5 compilation strategies, the distribution of heavy

output probabilities amongst the “All Strategies” category contains five times as many points as com-

pared to those for noise-aware pytket.
19For larger numbers of qubits and deeper circuits, gate errors become more impactful on the total

noise, and materialise as giving noise-aware pytket an advantage for larger numbers of qubits.
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Figure 3.6: Comparison of devices using the ℓ1-norm distance metric, when run-

ning shallow circuits compiled using noise-aware pytket. Values close to 0 indicate

better performance. Values below 1/192 (dotted blue line) can be regarded as perform-

ing very well. Both simulations using Qiskit noise models, and implementations on real

devices, are included.
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running shallow circuits compiled using all compilation strategies. Here we com-

pile onto each device using all compilation strategies, including all compiled circuits in

this plot. Values close to 0 indicate better performance. Values below 1/192 (dotted

blue line) can be regarded as performing very well.
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ability metric, when running square circuits on the real ibmq 16 melbourne de-

vice. Values above 2/3 (dotted blue line), and closer to Noise Free, indicate better

performance.
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Figure 3.10: Comparison of devices using the heavy output probability metric,

when running square circuits compiled using noise-aware pytket. Values above

2/3 (dotted blue line), and closer to Noise Free, indicate better performance. Both sim-

ulations using Qiskit noise models, and implementations on real devices, are included.

Noise Level, Connectivity Trade Off

More highly-connected architectures typically allow for shallower implementations of

a given circuit as compared to less-connected ones. However, the noise levels may

be higher due to crosstalk [252], resulting in a trade-off between connectivity and the

total amount of noise incurred when running a computation. Noise affects the accuracy

of the computation, so this trade-off has practical implications for the performance of

a device. Reducing the connectivity between superconducting qubits has been used

to reduce noise levels [252]. In superconducting qubits, this can also be counteracted

using tunable couplers [60], but this is not utilised in the devices studied here.20

Figure 3.10 shows that devices with lower noise levels (ibmq singapore and

ibmq ourense) typically outperform devices with higher noise levels (ibmqx2 and

ibmq 16 melbourne) despite the latter’s higher connectivity. An interesting exception

to this is for 4 qubits, where ibmq 16 melbourne performs best, likely because of the

4-qubit cycles in its connectivity graph, as mentioned in Table 3.1. This reduces the

SWAP operations necessary for implementing the circuit, reducing the overall circuit

depth. This reveals the increase in performance that can be expected when the con-

nectivity of the device and the problem instance are similar [95]. Similar results are

revealed by Cross-Entropy Benchmarking, as shown in Figure 3.11.

In general, we expect that circuits whose structure can naturally be mapped to the

20While we focus on the connectivity of superconducting architectures here, more generally the

comparison between the limited connectivity of superconducting devices, and the completely connected

coupling maps of ion trap devices is of interest [89–91].
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Figure 3.11: Comparison of devices using the cross entropy difference metric,

when running square circuits compiled using noise-aware pytket. Values close to

1 indicate better performance. Both simulations using Qiskit noise models, and imple-

mentations on real devices, are included.

connectivity of the device will generally perform well, whereas those which cannot,

will not. In general though, lower-noise devices will tend to perform best.

3.4.2 Application Motivated Benchmarks

The same quantum computing stack will perform differently when running different

applications, as the structure of the circuits they require will generally be different.

Differences in performance are seen in the context of our application-motivated bench-

marks. For example, consider Figure 3.12, which shows performance when imple-

menting sparsely connected circuits, and Figure 3.13, which shows performance when

implementing chemistry-motivated circuits. In the case of Figure 3.12, the ibmqx2 de-

vice outperforms ibmq singapore, while in the case of Figure 3.13 the reverse is true.

Quantum Chemistry

Figure 3.13 suggests ibmq ourense is best for quantum chemistry applications, because

it performs well when running deep circuits.21 In particular Figure 3.13 indicates that

the average circuit fidelity is highest for implementations on ibmq ourense.

In Figure 3.13, all devices converge to the minimum value of cross-entropy difference

at 4 qubits. To extend an investigation of this sort to more qubits would require lower

21This comes with the caveat, as mentioned in Section 3.2.3, that the connection between the quality

of an implementation of these computational primitives, as measured by this benchmark, and accurate

ground state energy calculations in VQE has not been demonstrated experimentally.
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Figure 3.12: Comparison of real devices, using the cross entropy difference met-

ric, when running shallow circuits compiled using noise-aware Qiskit. Values

close to 1 indicate better performance.
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Figure 3.13: Comparison of devices using the cross entropy difference metric,

when running deep circuits compiled using noise-aware Qiskit. Values close to

1 indicate better performance. Both simulations using Qiskit noise models, and imple-

mentations on real devices, are included.
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Figure 3.14: Comparison of real devices, using the heavy output probability met-

ric, when running shallow circuits compiled using noise-aware pytket. Values

close to Noise Free indicate better performance.

noise levels or chemistry motivated circuits which generate exponentially distributed

output probabilities at lower depth.

Shallow Circuits as a Benchmark

Figure 3.14 demonstrates that shallow circuits allow us to benchmark the behaviour

of a quantum computing stack for applications involving circuits with many qubits but

low circuit depth [3, 4, 113].

The results show ibmq singapore outperforms the comparably sized

ibmq 16 melbourne and has similar performance to ibmq ourense for smaller

numbers of qubits. ibmq singapore outperforms ibmq ourense by having more qubits

available. This superior performance of ibmq singapore is in comparison to the results

of Figure 3.10, where ibmq ourense was shown to perform well. This justifies our

suggestion that shallow circuits should be included in benchmarking suites. Doing so

enables exploring higher-width circuits, and in this setting devices that perform poorly

when implementing square circuits or deep circuits may perform well.

3.4.3 Insights from Classical Simulation

Noise in a non-fault-tolerant quantum computer results in discrepancies between re-

sults obtained from running on real hardware and those that would be obtained from

an ideal quantum computer. Noise models are utilised to help identify why these dis-

crepancies occur, as discussed in Chapter 2. However, a perfect model of the noise –

which could reproduce the results of real hardware (up to statistical error) – could re-

quire many parameters to completely specify it. Therefore, most noise models consider

only a small handful of physically- motivated noise sources. Consequently discrepan-

cies between the results of noisy simulation and running experiments on real hardware

always remain.

Historically, closing this gap required developing noise models of increasing sophis-

tication. Doing so typically requires a great deal of physics expertise to identify new

noise channels. Further, new experiments would have to be designed in order to es-
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timate the parameters in the noise model. Here, we show how application-motivated

benchmarks can be helpful in identifying whether new noise channels should be in-

corporated into a noise model. By isolating the circuit types and coupling maps for

which the discrepancies are greatest, we gain intuition about the possible causes of the

mismatch.

For the devices explored here, the noise models are built using Qiskit. They are derived

from a device’s properties, and include one- and two-qubit gate errors22 and single-

qubit readout errors. We find these noise models are inadequate to explain some of the

discrepancies observed in the data.

Noise Does Not Just Flatten Distributions

One discrepancy between experiments and noisy simulations is the spread of the data.

For example, Figure 3.10 shows that only in the experimental case do the whiskers of

the plot fall below the value 0.5, indicating the heavy outputs are less likely than they

would be in the uniform distribution. Some noise type, in particular one which shifts

the probability density, rather than uniformly flattening it, is not considered, or is under

appreciated, by the noise models used. Identifying that noise channel is left to future

work, though we speculate it may be related to a kind of amplitude damping.

Noise Models Under-Represent Some Noise Channels

The classical simulations in Figure 3.10 suggest ibmqx2 should perform similarly to

ibmq ourense in most cases. In fact, it quite consistently performs worse. This is

isolated in Figure 3.11, with the same phenomenon being observed in Figure 3.6 and

Figure 3.13, showing the behavior is consistent across all circuit types and figures

of merit. This difference between simulated and experimental results is pronounced

in the case of Figure 3.13, where deep circuits are used, suggesting the noise models

may be underestimating the error from time-dependent noises such as depolarising and

dephasing, or from two-qubit gates which are more prevalent in deep circuits.

Another such example of a two-qubit noise channel, which is explicitly not accounted

for in our noise models, is crosstalk. The results in Figure 3.11 are consistent with the

expectation that crosstalk should have the greatest impact on more highly connected

devices [252]. As such crosstalk may be the origin of the discrepancy. Of note is

the fact this benchmark wasn’t explicitly designed to capture the effects of crosstalk,

and yet those effects manifest themselves in its results. We anticipate that including

crosstalk-aware passes in compilation strategies [253] would reduce the discrepancy.

3.5 Conclusion

The performance of quantum computing devices is highly dependent on several fac-

tors. Amongst them are the noise levels of the device, the software used to construct

and manipulate the circuits implemented, and the applications for which the device is

used. The impacts of these factors on the performance of a quantum computing stack

22These are modelled to consist of a depolarising error followed by an amplitude damping errors.
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are intertwined, making the task of predicting its holistic performance from knowledge

of the performance of each component impossible. In order to understand and mea-

sure the performance of quantum computing stacks, benchmarks must take this into

consideration.

In this work we have addressed this problem by introducing a methodology for per-

forming application-motivated, holistic benchmarking of the full quantum computing

stack. To do so we provide a benchmark suite utilising differing circuit classes and

figures of merit to access a variety of properties of the device. This includes the use of

three circuit classes: deep circuits and shallow circuits, which are novel to this work;

and square circuits, which resemble random circuits used in other benchmarking ex-

periments [212]. In addition we make use of a diverse selection of figures of merit to

measure the performance of the quantum computing stacks considered, namely: Heavy

Output Generation Benchmarking, Cross-Entropy Benchmarking, and the ℓ1-norm dis-

tance.

In particular, in the form of deep circuits we present an alternative to previous ap-

proaches to application-motivated benchmarking. This is by considering circuits in-

spired by one of the primitives utilised in VQE, namely Pauli gadgets employed for

state preparation, rather than VQE itself. Further, we have found that the perfor-

mances of quantum computing stacks are indistinguishable when using square circuits

and Heavy Output Generation Benchmarking for a large number of qubits. However

shallow circuits extend the number of qubits for which detail can be observed.

We demonstrate this benchmark suite by employing it on ibmqx2, ibmq 16 melbourne,

ibmq ourense, and ibmq singapore. In doing so we justified our hypothesis that the

accuracy of a computation depends on several levels of the quantum computing stack,

and that each layer should not be considered in isolation. For example, identifying that

the increased connectivity of a device does not compensate for the increased noise,

as we do in Section 3.4.1, shows the impact of this layer of the stack, and justifies

investigating devices with a variety of coupling maps and noise levels. By showing

the differing performance between five compilation strategies, we are able to identify,

in Section 3.4.1, the dependence of the best compilation strategy to use on the device

and the dimension of the circuit. This illustrates the dependence of the performance

of the quantum computing stack on the compilation layer, and the interdependence

between the compilation strategy, device and application on the overall performance of

the quantum computing stack. In particular, noise-aware compilation strategies often

perform well, when the noise model used by the strategy is accurate, as discussed in

Section 3.4.3.

In Section 3.4.2, the wide selection of circuits within the proposed benchmark suite

reveals that the same device, evaluated according to a fixed figure of merit, will per-

form differently when running different applications, whose circuits are compiled by

the same compilation strategy. Indeed the comparative performance of (compilation

strategy, device) pairs is shown to vary between our circuit classes. This justifies our

inclusion of circuit classes which collectively cover a wide selection of applications in

the benchmark suite proposed here, and our full quantum computing stack approach.

We foresee the benchmarks conducted in this work providing a means to select the best
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Computing Stack

quantum computing stack, of those explored here, for a particular task, and vice versa.

As such we also anticipate that a variety of new quantum computing stacks could be

benchmarked in the way described in this work, empowering the user with knowledge

about the performance of current quantum technologies for particular tasks. Indeed,

these benchmarks may, in time, come to complement noise models and calibration in-

formation as a means to disseminate information about a device’s performance. This

parallels the use of the LINPACK benchmarks [10] alongside FLOPS to compare di-

verse classical computers. Recently, quantum volume, as defined in [212], has started

to be adopted as one such metric [84, 232, 254, 255], and we hope the benchmark suite

developed here will be incorporated similarly.

The work presented here could be extended in several directions. The first is to exam-

ine the impact of incorporating these benchmarks into a compilation strategy. While

noise-aware compilation strategies currently use properties of qubits to decide how

to compile a circuit, it would be interesting to explore if instead optimising for these

benchmarks would change the compilation. For example, performing these bench-

marks on two subgraphs of the device’s coupling map may help to decide which qubits

to use at the placement step of compilation. Such an approach is well suited to de-

terministic compilers, however with a sufficiently large sample of benchmark circuits,

the compiler’s performance on the benchmark suite would be indicative of its per-

formance in practice, even if the compiler is probabilistic. Second, the philosophy of

application-motivated benchmarking could be extended to circuits which are more eas-

ily classically simulable. Because of their reliance on classical simulation, the bench-

marks introduced here may be used up to, but not after, the point of demonstrating

quantum computational supremacy. To address this, while adhering to the volumetric

benchmarking philosophy utilised in this chapter, work following that of this chapter

introduced an approach to benchmarking using circuits built from structured cir-

cuits, followed by their inverse [214]. Third, as the results of Section 3.4.1 show that

changing the hardware can dramatically influence performance, we envision a need to

systematically study how properties of hardware, such as noise levels or connectiv-

ity, influence a given device’s performance. In future work, we hope to incorporate

more devices to advance our ability to perform such a systematic inquiry. Fourth,

our benchmarks may facilitate an understanding of how new, or hard-to-characterise,

noise affects the practical performance of quantum computers, as implied by the clas-

sical simulations of Section 3.4.3. Fifth, it would be valuable to quantitatively measure

the extent to which the circuit classes introduced cover the circuits which correspond

to instances of applications. This would provide some confidence that the possibil-

ity a quantum computing stack could be engineered to perform well at the benchmarks

introduced, but might perform less well when implementing an instance of the applica-

tion they represent, could be avoided. At present an appropriate measure is not known

to the authors, but notions of expressibility [236] might inspire the definition of such a

measure. Finally, there is a need to explicitly study the correlation between the results

of an application-motivated benchmark and the performance of a quantum computing

stack at running the application which motivated it. This would experimentally justify

that benchmarking application subroutines provides reliable predictors of performance

when running the application itself.
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Chapter 4

Blind IQP Computation, and an IQP

Hypothesis Test

In Chapter 2 and Chapter 3 we considered the verification, characterisation and bench-

marking of quantum devices of a size at which classical simulation is possible. This

allowed us to present useful measures and predictions of the performance of these de-

vices, which can be used to further develop and improve quantum technology. In this

chapter we consider NISQ devices of a size that, in principle, makes them impossible to

simulate on a classical device. We introduce a means for a server of this form to prove

its capacity to perform a demonstration of quantum computational supremacy to an

untrusting and computationally weak client. The resource consumption of our scheme

scales polynomially with the system size, which contrasts with the approaches taken

in previous chapters. As such, this also allows for the benchmarking of systems signif-

icantly larger than that needed to demonstrate quantum computational supremacy.

Tools for the verification of quantum computation, such as those discussed in Section

1.6.2, may be used to certify demonstrations of quantum computational supremacy.

Alternatively problems in NP∩BQP, but for which no algorithm in P is known, such

as factoring, may be used for this purpose. However, the cost of implementing these

methods on a quantum computer is high, and so they are likely to be inaccessible

by NISQ devices [58]. Instead we use only technology which it could reasonably

be believed will become available in the near-term. In this spirit, we assume that

the Server is capable of implementing at least IQP circuits, but not necessarily BQP

circuits. Further, we assume that the Client has access to a limited quantum network,

which may indeed be available in the near-term [187], on top of polynomial classical

computing resources.

We adapt the Shepherd-Bremner IQP Hypothesis Test, outlined in Section 1.6.3, which,

under some (since disproved) assumptions, can only be passed by a server that is capa-

ble of implementing IQP circuits. Our adaptation ensures the security of the protocol

against any malicious server wishing to impersonate the capability to implementing

IQP circuits. We require the Client is endowed with the ability to prepare and send

single qubits, on top of the polynomial classical resources demanded by the Shepherd-

Bremner IQP Hypothesis Test. Importantly, this increase in the Client’s resources does
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not include an increase in the classical computational power. This compares favourably

with Heavy Output Generation Benchmarking and Cross-Entropy Benchmarking used

in Chapter 3, which have a resource consumption that grows exponentially with circuit

size. The requirements our scheme demands from the Server are also mildly increased

upon those of the Shepherd-Bremner IQP Hypothesis Test. These requirements now

include the capacity to perform a two round adaptive MBQC computation, rather than

the one round non-adaptive computation that is typical for IQP computations.

The key to developing our IQP Hypothesis Test will be by incorporating blindness,

as discussed in Section 1.6.1, in place of the since broken hiding scheme used in the

Shepherd-Bremner IQP Hypothesis Test. We do so by utilising the implementation of

IQP computations in MBQC, as introduced in Section 1.4, to develop an information-

theoretically secure blind delegated protocol for IQP computations that keeps the de-

tails of the computation hidden from the device performing it. Our approach makes

use of tools introduced to perform DQC using MBQC as discussed in Section 1.6.1

and Section 1.6.2. However, the number of different states we require the Client to

produce is reduced as compared to VUBQC and UBQC.

Our information-theoretically secure blind delegated implementation of IQP circuits

is introduced in Section 4.1, and we use the Abstract Cryptography framework to

show that it is compositionally secure. The information-theoretic security of our

blind scheme prevents attacks on computational complexity assumptions such as those

which befell the Shepherd-Bremner IQP Hypothesis Test. This use of blindness allows

us to utilise known properties of the output, without the need for exponential classical

compute resources, as in Heavy Output Generation Benchmarking and Cross-Entropy

Benchmarking. In Section 4.2 we develop our IQP Hypothesis Test, which a limited

quantum client can run on an untrusted server, by utilising this functionality to imple-

ment a similar protocol to the Shepherd-Bremner IQP Hypothesis Test.

4.1 Blind Delegated IQP Computation

As mentioned when introducing verification in Section 1.6.2, ofttimes blindness is a

key component of verification schemes. We pursue this approach here and begin by

building a method for delegating an IQP computation without revealing the X-program

which defines it. The intuition behind the method used to perform this hiding is that

the Client will ask the Server to produce a quite general graph state, and then move

from that one to the state that is required for the computation. This movement will be

conducted using the bridge and break techniques of Section 1.4.2. If this is done in a

blind way then the Server only has some knowledge of the general starting state from

which any number of other quantum states may have been built. This may be broken

down into three key problems, which we address separately:

General Graph Selection: In Section 4.1.1 we introduce a graph which may be trans-

formed into any one of many IQP graphs, as they are defined in Definition 1.5.3.

We discuss the process of transforming this graph to a particular IQP graph.

Graph State Transformation: In Section 4.1.2 we discuss how these graph theoretic

operations are transformed into operations on graph states. The result of this
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a1 a2

p1

b1

p2 p3

b2

Q̃QQ =

(
−1 0 1

0 1 −1

)

Figure 4.1: An extended IQP graph. This extended IQP graph, as defined in Definition

4.1.1, is described by the matrix Q̃QQ with (na,np,nb) = (2,3,2), P = [p1, p2, p3], A =
[a1,a2], and B = [b1,b2]. It can be created by replacing QQQ1,1 and QQQ2,3 in the IQP graph

of Figure 1.12 with −1. The function g
Q̃QQ

: Zna×np
→ Znb

is defined as g
Q̃QQ
(1,1) = 1 and

g
Q̃QQ
(2,3) = 2.

will be a method for transforming a general quantum state into an IQP state, as

introduced in Definition 1.5.4.

Blind Graph Transformation: In Section 4.1.3 we present a proof that this transfor-

mation between graph states can be performed blindly by the Server when the

Client is endowed with the ability to prepare and send single qubits.

4.1.1 General Graph Selection

The extended IQP graph addresses the problem of general graph selection.

Definition 4.1.1 (Extended IQP Graph). An extended IQP graph is represented by Q̃QQ ∈
{−1,0,1}na×np . The vertex set contains A = {a1, . . . ,ana

} and P =
{

p1, . . . , pnp

}
. As

for IQP graphs in Definition 1.5.3, Q̃QQi j = 1 indicates an edge between vertices ai and

p j, while Q̃QQi j = 0 indicates no edge.

We interpret Q̃QQi j =−1 as the existence of an intermediary vertex bk between vertices p j

and ai, and denote with nb the number of -1s in Q̃QQ. As such the vertex set also includes

B = {b1, ...,bnb
}, which we henceforth refer to as the bridge and break vertices, and

the edge set includes edges between bk and ai as well as bk and p j when Q̃QQi j =−1. To

keep track of these connections, we define the surjective function g
Q̃QQ

, where g
Q̃QQ
(i, j)= k

when there is an intermediate vertex bk connected to ai and p j.

An extended IQP graph Q̃QQ can be built from an IQP graph QQQ by replacing any number

of the entries of QQQ with −1. Throughout the remainder of this work we will use the

tilde notation to represent an extended IQP graph Q̃QQ build from an IQP graph QQQ in

this way. By way of an example, the extended IQP graph of Figure 4.1 is created by

replacing QQQ1,1 and QQQ2,3 in the IQP graph of Figure 1.12 with−1. Equally, by applying

bridge operators to both b1 and b2 in Q̃QQ of Figure 4.1 we arrive at QQQ of Figure 1.12. In

general it is always possible to recover the IQP graph QQQ from the extended IQP graph

Q̃QQ in this way.
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4.1.2 Graph State Transformation

We can now state Lemma 4.1.1 which teaches us how to translate bridge and break

operations from graph theoretical ideas into practical operations on quantum states.

Lemma 4.1.1. Consider a quantum state EQQQ|φ〉, where we have used the graph state

circuit notation of Definition 1.4.2, and where |φ〉 is an arbitrary quantum state. If Q̃QQ

is an extended IQP graph built from QQQ then there exists a state E
Q̃QQ
|ψ〉, which can be

transformed into the state EQQQ|φ〉 through a sequence of Pauli-Y basis measurements on

qubits and local rotations around the Z axis of the unmeasured qubits through angles{
0, π

2 ,π,
3π
2

}
.

Lemma 4.1.1 is a restatement of Lemma 1.4.1 in the setting appropriate for this work,

and its proof is also similar. We provide the proof in this new setting in Appendix C.1.

Note that the state |ψ〉 is as yet unspecified in Lemma 4.1.1, ensuring only the existence

of such a state. However the proof in Appendix C.1 is constructive, providing us

with a process for generating the state |ψ〉. The process described in Appendix C.1

will be used throughout this chapter. In summary |ψ〉 is equivalent to |φ〉 but for the

addition of bridge and break qubits of the form |bk〉= Yrb
k

√
Y

db
k |0〉 when g

Q̃QQ
(i, j) = k.

Here rb
k ∈ {0,1} can be assigned without immediate consequence, although it will be

vital later. db
k is set to 0 in the case of break operations, and 1 in the case of bridge

operations. Measurements of the qubits corresponding to bridge and break vertices of

E
Q̃QQ
|ψ〉 in the Pauli-Y basis result in the state

nb

∏
k=1

(
S
(−1)

1−sb
k
+rb

k

p j ⊗S
(−1)

1−sb
k
+rb

k

ai

)db
k
(
Z

rb
k

p j ⊗Z
rb

k
a j

)1−db
k

EQQQ|φ〉

where the quantity sb
k is the outcome of this measurement on qubit bk.

It is possible to perform an IQP computation using this method. Although the quantum

state generated using this method would equal EQQQ

⊗na+np

1 |+〉 up to some S correc-

tions, these corrections may be accounted for by making corrections to the primary

and ancillary measurement bases. Protocol 4.1.1 uses the methods discussed to build

an IQP state and perform IQP computations.

4.1.3 Blind Graph Transformation

We can now present our scheme for blind graph transformation. To do so, we establish

that the procedure for building IQP graph states discussed in Section 4.1.2 can be

used to blindly create an IQP state at the Server side. Our wish is to construct the

Ideal Resource of Figure 4.2 which takes as input from the Client an IQP computation,

(QQQ,θ), and in return gives a classical output x̃. If the Server is honest, then x̃ comes

from the distribution corresponding to (QQQ,θ). If the Server is dishonest, then they can

input some quantum operation E and some quantum state ρB and force the output to

the Client into the classical state E (QQQ,θ,ρB). We would like for the Server to only

receive an extended IQP graph Q̃QQ which can be built from QQQ, the distribution Q over

132



4.1. Blind Delegated IQP Computation

Protocol 4.1.1 IQP computation, starting from an extended IQP graph. This adapts the

approach of Protocol 1.5.2 to account for this new graph state preparation step.

Input: Q̃QQ ∈ {−1,0,1}na×np , QQQ ∈ {0,1}na×np , θ ∈ [0,2π]
Output: x̃ ∈ {0,1}np

1: Generate the states |+〉= |p j〉 and |+〉= |ai〉 for j ∈
{

0, ...np

}
and i ∈ {0, ...na}

2: Create db ∈ {0,1}nb in the following way: For i = 1, . . . ,na and j = 1, . . . ,np, if

Q̃QQi j =−1 and QQQi j = 0, then db
k = 0 else if Q̃QQi j =−1 and QQQi j = 1 then db

k = 1. Keep

track of the relation between k and (i, j) via the surjective function g
Q̃QQ

: Zna×np
→

Znb
. This assignment of db

k corresponds to adding a break (db
k = 0) qubit when a

bridge or break qubit exists (Q̃QQi j = −1) but no edge is required in the final state

(QQQi j = 0), and adding a bridge qubit (db
k = 1) when a bridge or break qubit exists

and edge is required in the final state (QQQi j = 1).

3: Generate rb ∈ {0,1}nb at random and produce the states |bk〉= Yrb
k

(√
Y
)db

k |0〉 for

k ∈ {1, ...,nb}.
4: Implement E

Q̃QQ
.

5: Measure qubits b1, ...,bnb
in the basis

{
|+Y〉, |−Y〉

}
:= {|0〉+ i|1〉, |0〉− i|1〉}.

Take the outcome of measuring qubit bk to be sb
k ∈ {0,1} if the measurment

projects the output to the state |0〉+ i(−1)sb
k |1〉.

6: Calculate ΠΠΠz,ΠΠΠs ∈ {0,1}np and AAAz,AAAs ∈ {0,1}na using

Πz
j = ∑

i,k:g(i, j)=k

rb
k

(
1−db

k

)

Πs
j = ∑

i,k:g(i, j)=k

(−1)1−sb
k+rb

k db
k

Az
i = ∑

j,k:g(i, j)=k

rb
k

(
1−db

k

)

As
i = ∑

j,k:g(i, j)=k

(−1)1−sb
k+rb

k db
k

7: Calculate AAA ∈ {0,1,2,3}na and ΠΠΠ ∈ {0,1,2,3}np for the ancillary and primary

qubits respectively, where Ai = As
i +2Az

i (mod 4) and Π j = Πs
j +2Πz

j (mod 4).

Protocol continues below...
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Protocol 4.1.1 Continued

8: Measure qubits in the basis of equation (4.1), for the ancillary and primary qubits

respectively, producing measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na .

S−Ai {|02θ〉, |12θ〉} , S−Π j {|+〉, |−〉} (4.1)

Here we have used the notation |02θ〉, |12θ〉 introduced in equation (1.24).

9: Generate and output x̃ ∈ {0,1}np using equation (1.25).

x̃ =

{
x if honest

E (QQQ,ρB,θ) if dishonest

S
QQQ

x̃

E

ρB

Q̃QQ,Q ,θ

Figure 4.2: The ideal blind delegated IQP computation resource.

the possible QQQ from which Q̃QQ could be built (i.e. the distribution from which QQQ was

picked), and θ. Let us assume that Q̃QQ, Q and θ are public knowledge.

The proposed real communication protocol is described in detail by Protocol 4.1.2 and

graphically shown in Figure 4.3. One difference between Protocol 4.1.2 and Protocol

4.1.1 is that in the former case the operations have been distributed between the Server

and the Client. In particular the generation of all single qubit states is assigned to the

Client, and all entanglement and measurement is assigned to the Server. This allows

the Client to introduce blindness to Protocol 4.1.1 by randomly rotating the primary

and ancillary qubits. This introduction of randomness is the other main difference

between Protocol 4.1.2 and Protocol 4.1.1. This is a similar approach to other blind

DQC schemes implemented in MBQC, as discussed in Section 1.6.1, but differs from

those by using only eigenstates of single qubits Pauli operators.

Consider when the ideal resource and real protocols are filtered, in which case the dis-

tinguisher will have no inputs or outputs on the Server’s side. Correctness, as defined

in Definition 1.7.5, then follows if the output on the Client’s side is from the requested

IQP distribution. This is evidenced by observing that the transformations between Pro-

tocol 4.1.1 and Protocol 4.1.2 leave the output unchanged. Indeed the random rotations

are corrected by rotating the measurement bases of those qubits, therefore ensuring that

the original IQP computation is being performed.

During the execution of the real protocol of Protocol 4.1.2, the Server twice sends

classical bit strings to the Client which correspond to the measurement outcomes of

the sent qubits. These are used by the Client to correct later measurements angles,

which are dictated to the Server by the Client. If the Server wants to deviate from

the protocol, i.e. in the unfiltered case, they will use some quantum map E on the

information received so far, together with the state ρB in their own register. At the

final step of the protocol the Server may output some quantum state ρ′B. We would
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Protocol 4.1.2 Blind delegated IQP computation. This adapts the approach of Protocol

4.1.1 by randomly rotating the primary and ancillary qubits, making the necessary

corrections to the measurement angles, and distributing the operations between the

Server and the Client.

Public: Q̃QQ ∈ {−1,0,1}na×np , θ ∈ [0,2π], Q (the distribution from which QQQ is picked)

Client input: QQQ ∈ {0,1}na×np

Client output: x̃ ∈ {0,1}np

Client:

1: Randomly generate rp,dp ∈ {0,1}np and ra,da ∈ {0,1}na where np and na are the

numbers of primary and ancillary qubits respectively.

2: Generate the states |p j〉= Z
r

p
j S

d
p
j |+〉 and |ai〉= Zra

i Sda
i |+〉 for j ∈

{
1, . . . ,np

}
and

i ∈ {1, . . . ,na}
3: Create db ∈ {0,1}nb in the following way: For i = 1, . . . ,na and j = 1, . . . ,np, if

Q̃QQi j =−1 and QQQi j = 0, then db
k = 0 else if Q̃QQi j =−1 and QQQi j = 1 then db

k = 1. Keep

track of the relation between k and (i, j) via the surjective function g
Q̃QQ

: Zna×np
→

Znb
.

4: Generate rb ∈ {0,1}nb at random and produce the states |bk〉= Yrb
k

(√
Y
)db

k |0〉 for

k ∈ {1, ...,nb}.
5: State ρ comprising of all of the Client’s produced states is sent to the Server.

Server:

6: Implement E
Q̃QQ

.

7: Measure qubits b1, ...,bnb
in the basis

{
|+Y〉, |−Y〉

}
:= {|0〉+ i|1〉, |0〉− i|1〉}.

Take the outcome of measuring qubit bk to be sb
k ∈ {0,1} if the measurment

projects the output to the state |0〉+ i(−1)sb
k |1〉.

8: Send the outcome sb ∈ {0,1}nb to the Client.

Protocol continues below...

πA
QQQ

x̃

ρ

sb

AAA,ΠΠΠ

sa,sp

πB

E

ρB

ρ′B

Q̃QQ,Q ,θ

R

Figure 4.3: The real resource of Protocol 4.1.2.
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Protocol 4.1.2 Continued

Client:

9: Calculate ΠΠΠz,ΠΠΠs ∈ {0,1}np and AAAz,AAAs ∈ {0,1}na using: (4.2), (4.3), (4.4) and

(4.5).

Πz
j = ∑

i,k:g(i, j)=k

rb
k

(
1−db

k

)
− r

p
j (4.2)

Πs
j = ∑

i,k:g(i, j)=k

(−1)1−sb
k+rb

k db
k −d

p
j (4.3)

Az
i = ∑

j,k:g(i, j)=k

rb
k

(
1−db

k

)
− ra

i (4.4)

As
i = ∑

j,k:g(i, j)=k

(−1)1−sb
k+rb

k db
k −da

i (4.5)

10: Calculate AAA ∈ {0,1,2,3}na and ΠΠΠ ∈ {0,1,2,3}np for the ancillary and primary

qubits respectively, where Ai = As
i +2Az

i (mod 4) and Π j = Πs
j +2Πz

j (mod 4).
11: Send AAA and ΠΠΠ for the ancillary and primary qubits respectively, to the Server.

Server:

12: Measure qubits in the basis of equation (4.1), for the ancillary and primary qubits

respectively, producing measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na .

13: Send measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na to the Client.

Client:

14: Generate and output x̃ ∈ {0,1}np using equation (1.25).
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like to show that the classical strings sent by the Client, and the state ρ′B, contain no

information.

As discussed in Section 1.7, to prove Protocol 4.1.2 is compositionally secure we drop

the notion of a malicious server for that of a global distinguisher that has a view of

all inputs and outputs of the relevant resources. To recreate the view of a malicious

server, we develop a simulator σ interfacing between the ideal resource S of Figure 4.2

and the distinguisher. The simulator will provide the necessary resources to the ideal

resource, and alter the necessary outputs, in such a way that the ideal resource is able

to produce outputs that are indistinguishable from those from the real protocol. Since

the simulator adds no new information of its own, this shows that the ideal and real

resources are equally secure.

In particular we will use the teleportation techniques inspired by [194], to prove secu-

rity in the case of a malicious server. We will prove that

πAR ≡ Sσ,

where R is the quantum and classical communication channel used by the Client and

the Server in the protocol and πA is the Client’s protocol. Doing so constitutes a proof

of Theorem 4.1.1. We give only an intuitive proof here, supported by the figures in the

remainder of this chapter, and leave a thorough proof to Appendix C.2.

Theorem 4.1.1. The protocol described by Protocol 4.1.2 is information-theoretically

secure against a dishonest server.

Proof. The proof consists of a pattern of transformations of the real protocol of Proto-

col 4.1.2, into the ideal resource plus simulator setting of Protocol 4.1.3. These trans-

formations leave the computation unchanged, therefore ensuring the indistinguisha-

bility of the two settings and so the compositional security of Protocol 4.1.2. Where

there are transformations of the protocols required, we will detail which lines are trans-

formed, and in what way they are transformed.

The first set of transformations demonstrate an alternative state generation technique

that the Client might employ. Firstly, line 2 of Protocol 4.1.2 generates at random one

of the four states |+〉, |+Y〉, |−〉 and |−Y〉. The same effect is achieved by measur-

ing one qubit of an EPR pair, |Φ+〉 = 1√
2
(|00〉+ |11〉), with equal probability in one

of the bases {|+〉, |−〉} and
{
|+Y〉, |−Y〉

}
. The unmeasured qubit will be, with equal

probability, in one of the four aforementioned states. Secondly the application of the(√
Y
)db

k
operation in line 4 of Protocol 4.1.2 decides, according to the graph to be

created, if the bridge and break qubit will be drawn from the set {|+〉, |−〉} or from

the set {|0〉, |1〉}. Choosing to measure one half of an EPR pair in one of the bases

{|+〉, |−〉} or {|0〉, |1〉}, and taking the unmeasured half of the EPR pair as the bridge

and break qubit, has the same effect. The random rotation Yrb
k on line 4 of Protocol

4.1.2 has the same effect as the randomness that is intrinsic to the EPR pair measure-

ment, and so the overall effect is the same. These alternate state generation techniques

may be visualised in Figure 4.4 which presents a simple rearrangement of the Real
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Protocol 4.1.3 Blind delegated IQP computation with simulator. The proof of Theorem

4.1.1 outlines a transformation of Protocol 4.1.2 into this.

Public: Q̃QQ ∈ {−1,0,1}na×np , θ ∈ [0,2π], Q (the distribution from which QQQ is picked)

Client input: QQQ ∈ {0,1}na×np

Client output: x̃ ∈ {0,1}np

The simulator:

1: Generate np EPR pairs |Φ+〉pj , na EPR pairs |Φ+〉ai and a further nb EPR pairs

|Φ+〉bk .

2: Send half of each EPR pair to the ideal resource, through the interface ρB in Figure

4.2, and the other half to the distinguisher.

3: Receive the bitstring sb ∈ {0,1}nb from the distinguisher and forwards it to the

ideal resource through the interface E in Figure 4.2. In this way sb partially defines

the function E describing the Server’s deviation.

4: Randomly generate ΠΠΠ ∈ {0,1,2,3}np and AAA ∈ {0,1,2,3}na where np and na are

the numbers of primary and ancillary qubits respectively.

5: Send AAA and ΠΠΠ to the ideal resource, through the interface E in Figure 4.2, and to

the distinguisher.

6: Receive the bitstrings sp ∈ {0,1}np and sa ∈ {0,1}na from the distinguisher and

forward them to the ideal resource, through the interface E in Figure 4.2. Then sp

and sp form part of the defintion of the deviation E by the Server.

The ideal resource:

1: Create db ∈ {0,1}nb in the following way: For i = 1, . . . ,na and j = 1, . . . ,np, if

Q̃QQi j =−1 and QQQi j = 0, then db
k = 0 else if Q̃QQi j =−1 and QQQi j = 1 then db

k = 1. Keep

track of the relation between k and (i, j) via the surjective function g
Q̃QQ

: Zna×np
→

Znb
.

2: Measure one half of each of |Φ+〉bk in the basis
√
Y

db
k {|0〉, |1〉} to achieve outcome

rb
k , for k = 1, . . . ,nb.

Protocol continues below...
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4.2. An IQP Hypothesis Test

Protocol 4.1.3 Continued

3: Calculate d
p
j ∈ {0,1,2,3}

np and da
i ∈ {0,1,2,3}na using (4.6) and (4.7) respec-

tively.

d
p
j = ∑

i,k:g(i, j)=k

(−1)sb
k+rb

k db
k +2 ∑

i,k:g(i, j)=k

rb
k

(
1−db

k

)
−Π j (4.6)

da
i = ∑

j,k:g(i, j)=k

(−1)sb
k+rb

k db
k +2 ∑

j,k:g(i, j)=k

rb
k

(
1−db

k

)
−Ai (4.7)

4: Measure one half of each of |Φ+〉pj in the basis S
d

p
j {|+〉, |−〉} to achieve outcome

r
p
j and one half of each of |Φ+〉ai in the basis Sda

i {|+〉, |−〉} to achieve outcome ra
i .

5: Generate and outputs x̃ ∈ {0,1}np using equation (4.8).

x̃ j =
(

s
p
j + r

p
j

)
+ ∑

i:QQQi j=1

(sa
i + ra

i ) (4.8)

Resource of Figure 4.3 in order to isolate the state generation phase π1
A and to examine

an equivalent circuit based on teleportation.

The next transformation is to delay the first measurement of the EPR, pairs as implied

in Figure 4.5. Since information about the measurement outcome r is not yet available

to define ΠΠΠ and AAA, the Client chooses ΠΠΠ and AAA at random which will then be corrected

for by using these values to compute the measurement bases for the Client’s half of the

primary and ancillary EPR pairs.

Finally, Figure 4.6 simply involves a rearrangement of the players in Figure 4.5 to

match those in the simulator/distinguisher setting. The formal description of the pro-

tocol displayed by Figure 4.6 is seen in Protocol 4.1.3.

We can now be sure that our communication protocol is indistinguishable from an ideal

resource of Figure 4.2 which performs an IQP computation without communicating

any information to the Server which is not already public. Furthermore, this is proven

in a composable framework and so can be used as part of future protocols as we will

in Section 4.2. Notice also that Protocol 4.1.2 requires that the Client produce only

basis states of the three Pauli operators: X, Y, and Z. This set of six states is reduced as

compared to the eight required by the similar blind schemes in Section 1.6.1, of which

only half are basis states of Pauli operators.

4.2 An IQP Hypothesis Test

We now have all the tools to form our IQP Hypothesis Test. Specifically, we ask the

Server to sample from the output distributions of IQP circuits, and in so doing solve a

problem which cannot be solved by a classical computer. The solution can, however, be
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QQQ
π1

A
ρ

E

ρS

ρ′S

πB
sb

AAA,ΠΠΠ

sa,sp

π2
A

x̃

Q̃QQ,Q ,θ

(a) The real protocol with the state generation

phase of the protocol, π1
A, isolated

π1
A

QQQ f

|+〉
|0〉

...
... ...|+〉

|0〉

. . . ρ

... r

dp,a

(b) Expansion of state generation phase of

the protocol, π1
A. f represents the measure-

ment angle calculation on one half of the EPR

pairs.

Figure 4.4: State preparation using teleportation. See Protocol C.2.1 for details.

QQQ
f̂

|+〉
ρ

|0〉

ΠΠΠ,AAA
r

E

ρB

ρ′B

πB
sb

sa,sp

π2
A

x̃

Q̃QQ,Q , θ

Figure 4.5: Delayed state preparation measurement. The real protocol with only one

input qubit for simplicity. The Client sends random measurement instructions AAA,ΠΠΠ to

the Server and delays the teleportation measurement until after the Server has sent the

measurement outcomes s =
{

sa,sb,sp
}

. Here f̂ represents the process of calculating

measurement angles to be performed on one half of the EPR pair from equation (4.6)

and equation (4.7), with details seen in Protocol C.2.2.
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QQQ
f̂

|+〉
|0〉

ρ

σ E

ρB

ρ′B

πB

sb

ΠΠΠ,AAA

sa,sp

π2
A

x̃

S

r

Q̃QQ,Q , θ

Figure 4.6: The ideal resource S and the simulator σ for the malicious Server. The

simulator has no access to the private information QQQ. A global distinguisher cannot tell

the difference between this setting and the real protocol. Further details can be seen in

Protocol 4.1.3.

verified by a classical client augmented with the ability to generate single qubits. To do

so, we improve the security of the Shepherd-Bremner IQP Hypothesis Test discussed

in Section 1.6.3 to prevent the attack on that scheme. As such, using the breakdown of

the methodology used in Section 1.6.3, our approach is the following:

Hard Problem We ask the server to sample from the output distributions of X-

programs generated from quadratic residue code generator matrices as described

in Protocol 4.2.1. We conjecture that to do so with sufficient accuracy to produce

outputs with sufficiently high bias is impossible classically without knowing the

direction in which the bias is checked. We discuss the basis for this conjecture

below.

Known Structure We will once again use the bias, discussed in Section 1.6.3 as a

means to verify that the samples sent are from the desired distribution. Again

the Client knows in which direction this bias should be checked, and so is able

to do so efficiently.

Hidden Structure The direction in which the bias is checked is hidden using the blind

delegated IQP protocol of Section 4.1.

In Protocol 4.2.1 we provide our IQP Hypothesis Test. Protocol 4.2.1 makes K repeated

uses of the blind delegated IQP computation resource of Protocol 4.1.2, using it to run

similar computations to those of Shepherd-Bremner IQP Hypothesis Test. Here K need

not be any larger than is required by the Shepherd-Bremner IQP Hypothesis Test. In

particular this means that, like the Shepherd-Bremner IQP Hypothesis Test of Protocol

1.6.1, Protocol 4.1.2 is sample efficient. This repeated use of Protocol 4.1.2 reveals the

importance of proving its security in the Abstract Cryptography framework. Indeed

by design such a proof allows us to combine uses of the blind delegated computing
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Chapter 4. Blind IQP Computation, and an IQP Hypothesis Test

resource. In a slight deviation from the Shepherd-Bremner IQP Hypothesis Test, we

use a different X-program for each iteration, rather than K samples from the same

circuit. This is to ensure that the distribution over possible X-programs Q , which is

public, has a substantial support. By giving the Client limited quantum capabilities, we

remove the computational assumption used in the Shepherd-Bremner IQP Hypothesis

Test, and therefore provide unconditional security.

Our proof that Protocol 4.2.1 constitutes an information-theoretic security IQP Hy-

pothesis Test therefore amounts to showing two things. The first is to show that the

IQP computations implemented in Protocol 4.2.1 are essentially the same as those of

the Shepherd-Bremner IQP Hypothesis Test scheme. Then the conjecture of their hard-

ness made in [113] can be applied, while the output statistics, and namely the bias, can

again be used for certification. The second is to show that when these computations are

implemented blindly using Protocol 4.1.2, the distribution over possible X-programs,

Q , is sufficiently close to uniform so as not to reveal any information about the hidden

sss. We present our proof formally here.

Theorem 4.2.1. Protocol 4.2.1 presents an information-theoretically secure IQP hy-

pothesis test.

Proof. Let the matrix QQQsss, introduced on line 2 of Protocol 4.2.1, be the quadratic code

generator matrix QQQrrr with a column of all ones appended to it. Since the vector with

all elements set to one is in the quadratic residue code space, QQQsss also generates the

quadratic residue code. QQQrrr and QQQsss can be compared by considering the respective

figures, Figure 4.7 and Figure 4.8.

The vector sss ∈ {0,1}np with all zero entries, except the last which is set to one, is

non-orthogonal to all rows of QQQsss. Hence, adhering to the notation here and of Section

1.6.3, Csss is the quadratic residue code and equation (1.26), which we recall is

P
(
X · sssT = 0

)
= Eccc∈Csss

[
cos2 (θ(ns−2 ·#ccc))

]
,

is equal to cos2 π
8 .

Let ŝss
i ∈ {0,1}np−1 be chosen uniformly at random, as on line 7 of Protocol 4.2.1. AAA,

defined in line 8 of Protocol 4.2.1, is the operation which adds the ith column of QQQsss,

to the last column of QQQsss when ŝssi = 1. We know that the resulting matrix, QQQ = QQQsssAAA, is

also a generator matrix of the quadratic residue code as all the columns of QQQsss are in the

quadratic residue code space. We also know, from the discussion of Section 1.6.3, that

all the rows of QQQ are non-orthogonal to AAA−1sssT . As such C
AAA−1sssT , is the quadratic residue

code space. Hence the bias of the X-program QQQ in the direction AAA−1sssT is cos2 π
8 . This

matrix may be visualised in Figure 4.9 and this fact is exploited in line 13 of Protocol

4.2.1.

From any QQQ we can make the extended IQP graph Q̃QQ, which is the matrix QQQrrr with a

column of −1 appended to the end. Observing Figure 4.10 may help to visualise this.

We can now use the resource of Section 4.1.3 to perform a blind IQP computation.

This conceals the known structure with information-theoretic security. This is true

because, as a result of using the resource of Section 4.1.3, the Server learns only the
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a1

. . .
ana

p1 p2 . . .
pnp−1

QQQrrr

Figure 4.7: Quadratic residue code generator matrix, QQQrrr, and the graph that it

describes. This is illustrative and the connections in this image do not correspond to

an actual quadratic residue code. This is alluded to by the dotted edges connecting the

vertices.

a1

. . .
ana

p1 p2 . . .
pnp−1 pnp

QQQsss =




1

QQQrrr

...

1




Figure 4.8: Expanded matrix generating the quadratic residue code space. QQQsss is

the matrix QQQrrr seen in Figure 4.7 with a column of all one appended to the last column.

This corresponds to connecting all vertices ai to the vertex pnp
, which is alluded to by

the solid lines.

distribution Q over the possible set of graphs QQQ. By setting QQQ = QQQsssAAA, Protocol 4.2.1

develops a bijection mapping ŝss ∈ {0,1}np−1 to a unique matrix QQQ ∈ {0,1}na×np . So Q
is equivalent to the distribution from which ŝss is drawn. In this case it is the uniform

distribution over a set of size 2np−1.

Note that this approach improves upon the Shepherd-Bremner IQP Hypothesis Test in

two ways. Firstly it removes the conjecture they require in the case of hidden structure,

replacing it with provable blindness. Secondly we are able to strengthen our belief in

the very similar conjecture we make in the case of the hard problem. In particular,

the ‘best attempt’ they give to support the conjecture that the bias cannot be made

appropriately high without knowing the direction in which it will be checked requires

the X-program to be implemented be known. As we are using a blind implementation

a1

. . .
ana

p1 p2 . . .
pnp−1 pnp

QQQ =




1

QQQrrr

...
⊕np−1

j=1 ŝss jQQQrrr j

1




Figure 4.9: Quadratic residue code generator matrix with randomised additional

column. Here QQQrrr j is the jth column of QQQrrr. This correspond to potentially removing

some of the edges connecting the vertices ai and pnp
, as seen in Figure 4.8, which we

allude to with the dotted edges connected to pnp
.
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a1

. . .
ana

p1 p2 . . .
pnp−1 pnp

b1

bnb

Q̃ =




−1

Qr
...

−1




Figure 4.10: An extended IQP graph of all possible QQQ of Figure 4.9

Protocol 4.2.1 Information-theoretically secure IQP Hypothesis Test.

Client input: na prime such that na +1 is a multiple of 8, K ∈ Z.

Client output: o ∈ {0,1}

1: Set np =
na+1

2 +1

2: Take the quadratic residue code generator matrix QQQrrr ∈ {0,1}na×(np−1)

3: Let QQQsss ∈ {0,1}na×np be QQQrrr with a column of ones appended to the last column.

4: Set Q̃QQ to be the matrix QQQrrr with a column of −1 appended.

5: Let sss ∈ {0,1}np be the vector with entries all equal to zero with the exception of

the last which is set to one.

6: for all i up to K iterations do

7: Pick ŝss
i ∈ {0,1}np−1 chosen uniformly at random.

8: Define the matrix AAAi ∈ {0,1}np×np according to equation (4.9).

AAAi
l,m =





1 if l = m

0 if l 6= m and m < np

ŝss
i
l if m = np and l < np

(4.9)

9: Set QQQi = QQQsssAAA
i.

10: Set Q to be the uniform distribution over all possible QQQ j for different ŝss
j
.

11: Announce Q̃QQ, Q and θ = π
8 . This public information is the same for each

iteration, and so may also be announced at the beginning.

12: Perform the IQP computation QQQi using Protocol 4.1.2; receiving x̃i.

13: Test the orthogonality of the output x̃i against
(
AAAi
)−1

sssT , setting oi = 0 if it is

not orthogonal and oi = 1 if it is orthogonal.

14: end for

15: Return o = 1 if the fraction of i with oi = 1 is close to cos2
(

π
8

)
, and o = 0 other-

wise.
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4.3. Conclusion

of the X-program, even this best attempt is not possible in our case.

It should be the subject for future work to understand if this latter conjecture on the

hardness of sampling strings with a sufficiently high bias can be broken. It seems the

only attack on this conjecture which the Server could attempt would be to generate

bitstrings which have a high bias in as many directions as possible. However, to the

authors knowledge, no algorithm taking such an approach is known. Note that it is not

unreasonable for the Client to believe that the Server did not spoof the IQP Hypothesis

Test using a classical computer if no such spoofing technique has been published.

For the purpose of demonstrating quantum computational supremacy it is also of con-

cern to understand if the particular class of X-programs being implemented are hard to

sample from. Such hardness results are very rare, and it is not possible to say anything

concrete here. However, we know of no reason that the distributions sampled from in

Protocol 4.2.1 should be easier to sample from than general IQP distributions, and so

no reason that the results of Section 1.5.2 should not apply. Note that this is identical

to the argument made in the case of Shepherd-Bremner IQP Hypothesis Test in [113]

and we, like them, leave this open to future proof or disproof.

It is pertinent finally to compare the information-theoretically secure IQP Hypothesis

Test of Protocol 4.2.1, with Cross-Entropy Benchmarking and Heavy Output Gener-

ation Benchmarking as used in Chapter 3. While all three are sample efficient, the

classical compute resource requirements of Heavy Output Generation Benchmarking

and Cross-Entropy Benchmarking grow exponentially with the circuit size. While this

is not true for Protocol 4.2.1, it does require a means for the Client to send qubits to the

Server. This comes with the added advantage that it can be used to benchmark much

larger devices than can be benchmarked by Heavy Output Generation Benchmarking

or Cross-Entropy Benchmarking.

4.3 Conclusion

We have presented a protocol that can be used by a limited quantum client, which

is able to prepare single-qubit Pauli operator eigenstates, to delegate the implementa-

tion of IQP circuits to a powerful quantum server. By giving the Client these limited

quantum abilities, we are able to delegate an IQP computation blindly. Our scheme

is proven to be blind in the Abstract Cryptography framework, ensuring that it can be

used as a component of other algorithms.

Indeed, we have used this blind delegation scheme to replace the unjustified computa-

tional complexity assumption in the Shepherd-Bremner IQP Hypothesis Test of [113].

We are therefore able to provide an information-theoretically secure IQP Hypothesis

Test. This has the advantage of both repairing the fault in the Shepherd-Bremner IQP

Hypothesis Test, and making our scheme less susceptible to future attacks.

Our protocol requires two rounds of measurements in order to make the appropriate

corrections resulting from the blind creation of the state at the Server’s side. Note that

while the distributions being sampled from are IQP distributions, the resources required

to implement them via the blind resource introduced are greater than the minimum one
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would need if blindness was not of concern. Indeed, as described in Section 1.5, only

one round of measurements would typically be required. As such the hypothesis test

presented here may provide a benchmark of only a subset of the computations that

the device implementing them would be able to perform in theory. That said, for a

small number of qubits, and short distances, computations requiring two rounds of

measurements can be implemented even with present technology. However, at the

time of writing, the technology to send single qubits is not sufficiently well developed

to fully implement our scheme. In the meantime an interesting avenue of research

would be the study of this protocol under realistic experimental errors, in view of a

potential implementation. It would also be of interest to investigate the possibility of

using tools such as classical client random RSP, introduced in Section 1.6.1, in order

to reduce the Client to being purely classical. While implementations of random RSP

by a classical client are currently very costly, it may be that the resource costs can be

reduced in this specific case. This parallels the reduction in the number of different

states that the Client in our IQP Hypothesis Test must produce, as compared to those

required by VUBCQ.

Our information-theoretically secure IQP Hypothesis Test extends the reach of veri-

fication, characterisation and benchmarking of quantum technology into the regime

where classical simulation becomes impossible. In this sense it complements the work

of Chapter 2 and Chapter 3, which relied on classical simulation. In Chapter 5 we

will explore how IQP circuits of sizes large enough to outperform classical simulation,

which the work of this chapter allows us to benchmark, can be used to demonstrate

quantum computational supremacy via an application motivated task.
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Chapter 5

Quantum Learning Supremacy:

Quantum Computational Supremacy

with Computations of Practical

Concern

In the preceding chapters of this thesis we have considered the verification, character-

isation and benchmarking of NISQ technology. We have done so in order to facilitate

improvements that lead to both demonstrations of quantum computational supremacy,

and to the adoption of quantum technology to solve practical problems. However,

treating these two themes separately risks neglecting their overlap, which is where the

primary utility of NISQ technology will be found. This utility is namely in solving a

practical problem which could not be solved with purely classical resources.

For example, proposals for demonstrations of quantum computational supremacy on

NISQ technology typically involve sampling from the output distribution of random

quantum circuits [61–63]. Such demonstrations are of great importance, both as an

attestation of theoretical results, and as engineering milestones. However, it is not

immediately clear that generating random samples is independently interesting. Con-

versely, protocols such as VQE [22, 23] and the Quantum Approximate Optimization

Algorithm (QAOA) [16] use NISQ technology for practical tasks, but are less likely to

provide demonstrations of quantum computational supremacy in the near-term. Com-

bining these benefits, in this chapter we explore the utilisation of random samples in

an application which may be of practical interest. We investigate instances of such

applications where provable advantages of quantum computation can be exploited to

define protocols that may demonstrate quantum computational supremacy.

We consider Quantum Machine Learning (QML), and generative modelling in par-

ticular. Generative modelling is the task of producing new samples from a probabil-

ity distribution, called the target distribution, given a finite dataset
{

yyyi
}

consisting of

samples from said distribution. Data-Driven Quantum Circuit Learning is an approach

taken to achieve this [90, 97]. As outlined in Figure 5.1, Data-Driven Quantum Cir-

cuit Learning is a hybrid quantum-classical algorithm with features common to many
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Figure 5.1: Illustration of a Data-Driven Quantum Circuit Learning algorithm. This

is an instance of a hybrid quantum-classical algorithm, involving many rounds, called

epochs, of interaction between a CPU and QPU. In each epoch t the QPU produces

binary strings xxxt by measuring the output from a PQC. The CPU processes xxxt , com-

paring it to samples yyy from the target distribution, to produce new parameters θθθt+1
to

be used in the next epoch. This back and forth continues until xxxt is sufficiently close to

meeting some condition, or a maximum number of epochs is reached.

variational quantum algorithms. A parametrised quantum circuit (PQC) [14] is imple-

mented and measured by a Quantum processing Unit (QPU), with the parameters of the

circuit repeatedly updated over several epochs by an optimiser running on a Classical

Processing Unit (CPU). These repeated updates continue until the measurements re-

turned by the QPU meet some condition, or a maximum number of epochs is reached.

Data-Driven Quantum Circuit Learning is a modular framework, which we exploit by

choosing each component to suit our purpose.

Here we assume that the PQC in Figure 5.1 produces pure states, in which case mea-

surement statistics are generated according to Born’s measurement rule. This is to say,

for a state |ψ〉, a measurement produces a sample xxx with probability p(xxx) = |〈xxx|ψ〉|2.

Models of this form, where a pure state is produced by a circuit, are referred to as

Quantum Circuit Born Machines (QCBM) [90, 256, 257].

In this chapter we ask if it is possible to define a Data-Driven Quantum Circuit Learn-

ing algorithm which has a provably superior performance over all classical alterna-

tives. We formalise this question in Section 5.1 by defining a demonstration of quan-

tum learning supremacy as an algorithm which answers our question in the affirmative.

By adapting definitions from classical distribution learning [258], we can give a frame-

work within which to prove a Data-Driven Quantum Circuit Learning algorithm should

demonstrate quantum learning supremacy.1 While such proofs exist, for example for

the HHL linear equation solver [9] which is BQP-complete, a proven advantage for

near-term QML algorithms is as yet out of reach.

In this work we aim to define an algorithm that might demonstrate quantum learning

1Provable guarantees are particularly important given recent QML algorithm ‘dequantisations’

[259].
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supremacy specifically on NISQ technology. As such, in Section 5.2.1 we introduce the

Quantum Circuit Ising Born Machine (QCIBM), which is a restricted form of a QCBM.

In particular the PQC utilised by the QCIBM is sufficiently restricted to be suitable for

NISQ devices, but sufficiently general to allow us to apply results on the quantum

computational supremacy of IQP circuits, as discussed in Section 1.5. While QCBMs

have found applications in, for example, finance [260], the practical applicaitons of

QCIBMs are less well explored. However we regard their use in a demonstration of

quantum learning supremacy to be a valuable application in itself.

In Section 5.2.2 we improve the differentiable training of the model over previous

methods, which use the maximum mean discrepancy (MMD) [257], by using the

Sinkhorn-Divergence [261]. In Section 5.2.3 we justify our conjecture that the QCIBM

could be used to demonstrate quantum learning supremacy, leaving a formal proof for

future work. Our justification includes showing that sampling from this model can not

be simulated efficiently by any classical randomised algorithm, and that this holds for

many circuit families encountered during training.

5.1 Quantum Learning Supremacy and Generative

Modelling

The goal of a generative quantum machine learning algorithm is to efficiently mimic

sampling from distributions in a given family. Intuitively this is what it means to ‘learn’

a distribution. If a generative quantum machine learning algorithm achieves this goal

for some family of distributions, but it can be reasoned that there does not exist a

classical learning algorithm achieving the same end, then the quantum algorithm can be

said to have demonstrated quantum learning supremacy. We will use the terminology

quantum learner and classical learner to refer learning algorithms with access to the

corresponding computing power. Here we formalise quantum learning supremacy for

distribution learning; modelling our definitions on those used in the theory of classical

distribution learnability [258].

We consider learning classes of discrete distributions over binary vectors of length n.

A Generator makes rigorous the notion of efficiently sampling from these distributions.

Definition 5.1.1 (Generator [258]). A class of distributions, Dn has efficient Generators

if for every distribution D ∈ Dn, there is a generator GEND which produces samples

in {0,1}n
according to the distribution D , using polynomial resources. The generator

may take a string of uniformly random bits of a size which grows polynomially in n, as

input.

Definition 5.1.1 allows for a Generator to be a classical or quantum circuit. In the

case of a classical Generator a string of uniformly random bits is taken as input, and

transformed into the randomness of D [258]. A quantum Generator could produce its

own randomness and so may ignore the input string.

One may also wish to consider a generator producing quantum states [262]. We con-

sider only classical generators to allow for a fair comparison between quantum and

classical learners. However, one could imagine both a quantum device outputting a
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classical generator, and a classical device outputting the description of a quantum gen-

erator. Definition 5.1.1 may be generalised to this setting [263].

While we are predominately interested in efficient learning with a Generator, it is also

of interest to define an Evaluator.

Definition 5.1.2 (Evaluator [258]). A class of distributions, Dn has efficient Evalua-

tors if for every distribution D ∈ Dn, there is an evaluator EVALD which produces the

weight of an input yyy ∈ {0,1}n
under the distribution D . This is to say, the probabil-

ity of yyy according to D . The Evaluator is efficient if it consumes resources growing

polynomially with n.

In the classical case it is possible to construct classes of distributions for which a gener-

ator can be learnt, but not an evaluator [258]. This parallels the comparative hardness

of weak and strong simulation, discussed in Section 1.3.1. For example, the output

probabilities of IQP circuits are #P-hard to compute [63], yet the distributions they

produce can be sampled from efficiently by a quantum computer. In general an evalu-

ator for a quantum circuit would be a strong simulator of it, and a generator would be

a weak simulator.

As with the definitions of simulation in Section 1.3.1 it is useful to define the corre-

sponding approximate versions of the tools introduced. We define an ‘approximate

generator’, while an ‘approximate evaluator’ could be similarly defined.

Definition 5.1.3 ((d,ε)-Generator). Let d be a cost function, and ε > 0 a real number.

Let D and D ′ be distributions over {0,1}n
. We say GEND ′ is a (d,ε)-Generator for D

if d (D,D ′)≤ ε.

In contrast to [258], which was concerned with defining a ‘good’ generator to be one

which achieves closeness relative to the Kullback-Leibler divergence, we have ex-

tended this notion to general cost functions. This is due to our desire to relate these

ideas to the quantum circuit hardness results mentioned throughout this thesis, which

typically strive for closeness in ℓ1-norm distance.

We now have sufficient terminology to define a learnable class of distributions, illus-

trating the intuition in Figure 5.2.

Definition 5.1.4 ((d,ε,C)-Learnable). Take a metric d, a real number ε > 0, and a

complexity class C. A class of distributions Dn is called (d,ε,C)-learnable (with a

Generator) if there exists an algorithm A ∈ C which, given 0 < δ < 1 as input, and

given access to GEND for any distribution D ∈ Dn, outputs a (d,ε)-Generator for D
with probability at least 1−δ. This is to say that A outputs GEND ′ such that

P
(
d
(
D,D ′

)
≤ ε
)
≥ 1−δ.

A should run in time poly(1/ε,1/δ,n), and is called a learning algorithm for Dn

In Definition 5.1.4, ε may, for example, be a function of the inputs to the learning

algorithm. We may also wish to require a learnability definition which holds for all ε >
0. This would be too strong for our purposes as to claim quantum learning supremacy

we only need to achieve closeness up to a constant ℓ1-norm distance.
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rrr ∈ {0,1}r(n)

GEND

yyy←D A GEND ′
xxx←D ′

Figure 5.2: Illustration of distribution learning. The algorithm A is given access

to GEND , which provides samples, yyy← D , and must, with high probability, output an

approximate generator for D , GEND ′ . The target generator may take as input a string

of random bits of size r(n), a polynomial in n.

This framework is inspired by Probably Approximately Correct (PAC) learning [264,

265] but applies more closely to generative modelling. It is known that in certain cases,

the use of quantum computers can be beneficial in PAC learning, but not generically

[266]. It is therefore possible that there exist some classes of distributions which cannot

be efficiently learned by classical computers, but which could be learned by quantum

devices. In this spirit, we define what it would mean for a quantum algorithm to be

superior to any classical algorithm for the problem of distribution learning.

Definition 5.1.5 (Quantum Learning Supremacy). An algorithm A ∈ BQP is said to

have demonstrated the supremacy of quantum learning over classical learning if there

exists a class of distributions Dn for which there exists d,ε such that Dn is (d,ε,BQP)-
learnable, but Dn is not (d,ε,BPP)-learnable.

A typical choice for d would be ℓ1-norm distance, but one could imagine weaker defi-

nitions by using weaker cost functions. One may also be more restrictive and look for

a demonstration of quantum learning supremacy by a class which was efficiently IQP-

learnable, but not BPP-learnable, which may be more amenable for NISQ technology.

5.2 The Quantum Circuit Ising Born Machine

We now consider a special case of the formalism outlined in Section 5.1; namely gen-

erative modelling by a quantum learner with access to only NISQ technology. This

will influence both the model that we define, and the power of the generators that we

consider. Our choices with regards to these factors will also be guided by our desire to

present a model that might be used to demonstrate quantum learning supremacy.

We will assume that GEND in Figure 5.2, where D is the target distribution, is a quan-

tum generator. This follows the line of reasoning that a proposal for demonstrating

quantum learning supremacy should be built around a task that quantum computers

are intrinsically better than classical devices at performing; sampling from quantum

states.2 This as a promising approach to demonstrating quantum learning supremacy

with NISQ technology as sampling is particularly natural for these devices.3

2This is the same line of reasoning used when designing proposals for demonstrations of quantum

computational supremacy such as RCS.
3Classical generators of the target distribution have been proposed as a means to demonstrate quan-
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More specifically, our target distributions are a subset of the output distributions from

IQP circuits. This allows us to significantly restrict our learning model, bringing it

closer to realisation with NISQ technology. In particular, this section introduces the

Quantum Circuit Ising Born Machine as a means to perform generative modelling. As

with the Data-Driven Quantum Circuit Learning procedure outlined in Figure 5.1, a

generic QCIBM comprises a PQC, drawing samples by measuring the quantum state it

produces, with a classical optimisation loop used to learn a target distribution. In this

section we outline and justify the choices we make for each of these components.

In Section 5.2.1 we introduce the PQC used, from which both IQP circuits and the

shallowest depth version of QAOA circuits can be recovered. This is a particularly

shallow learning model, with O
(
n2
)

entangling gates, and particularly limited gate

set, as compared to more general purpose QCBMs [257], making it amenable NISQ

devices. In Section 5.2.2 we consider the optimisation loop, and propose the use of the

Sinkhorn-Divergence cost function to compare the target and model distributions. The

model distribution is that produced by the QCIBM. The Sinkhorn-Divergence upper

bounds the Maximum Mean Discrepancy (MMD), used to train QCBMs in the past,

and interpolates between the MMD and the ℓ1-norm distance. This means that it is at

least as strong as the MMD, and possibly closer in strength to the ℓ1-norm distance

than is the MMD. This is interesting as we regard the ℓ1-norm distance to be the

‘gold-standard’, due to its connection to results on quantum computational supremacy.

Importantly, for some parameter values the Sinkhorn-Divergence can, like the MMD,

but unlike the ℓ1-norm distance, be calculated efficiently from samples. In Section

5.2.3 we conjecture that the QCIBM could be used to demonstrate quantum learning

supremacy, outlining our reasoning. We discuss why this reasoning does not constitute

a formal proof, and consider some of the hurdles in constructing such a proof.

5.2.1 Definition

The parametrised circuits and measurements used, which is to say the QPU in Figure

5.1, have the form

|0〉 H

Uz(ααα)

U1
f (Γ1,∆1,Σ1) x1

|0〉 H U2
f (Γ2,∆2,Σ2) x2

...
...

...

|0〉 H Un
f (Γn,∆n,Σn) xn

where: xi ∈ {0,1}; measurements are in the computational basis; ααα=
{

α j

}
, ΓΓΓ= {Γk},

∆∆∆ = {∆k}, and ΣΣΣ = {Σk} are sets of parameters, either fixed or to be trained; and

Uz (ααα) and Uk
f (Γi,∆i,Σi) are defined in equation (5.1) and equation (5.2) respectively.

In equation (5.1) each S j is an element of the power set of {1, . . . ,n} and indicates the

tum learning supremacy on fault-tolerant devices [263], as we discuss in Section 5.3.
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subset of qubits on which the jth operator is applied.

Uz (ααα) := ∏
j

U j
z

(
α j,S j

)
= ∏

j

exp


iα j

⊗

k∈S j

Zk


 (5.1)

Uk
f (Γk,∆k,Σk) := exp(i(ΓkXk +∆kYk +ΣkZk)) (5.2)

We will use the notation U f (ΓΓΓ,∆∆∆,ΣΣΣ) :=
⊗n

k=1Uk
f (Γk,∆k,Σk).

When restricting to the case |S j| ≤ 2 the term in the exponential of equation (5.1)

becomes an Ising Hamiltonian:

i ∑
i< j

Ji jZiZ j + i
n

∑
k=1

bkZk (5.3)

where we have separated local and coupling terms into separate sums. This inspires

the name Quantum Circuit Ising Born Machine.

The samples xxx ∈ {0,1}n are drawn from the distribution, pθθθ(xxx), parametrised by the

set of angles, θθθ = {ααα,ΓΓΓ,∆∆∆,ΣΣΣ}, and given by

pθθθ (xxx) := |〈xxx|U f (ΓΓΓ,∆∆∆,ΣΣΣ)Uz (ααα) |+〉n|2. (5.4)

We denote the above model by QCIBM(θθθ) := QCIBM(ααα,ΓΓΓ,∆∆∆,ΣΣΣ).

We choose this structure in order to easily recover well known circuit classes. For

example, to recover IQP circuits, discussed in Section 1.5, we simply need to generate

the final layer of Hadamard gates (up to a global phase). To do so we set the angles of

U f to be

U IQP
f

({
π

2
√

2

}n

,000,

{
π

2
√

2

}n)
=

n⊗

k=1

exp

(
iπ

2
√

2
(Xk +Zk)

)
= iHn.

Then equation (5.1) defines the computation, and can be recognised as an X-program

as in Definition 1.5.2, but for the change to using the equivalent Z gates between layers

of H gates. It is similarly possible to recover the shallowest depth version of QAOA

[16]. Both of these classes of circuits are known to be routes to demonstrate quantum

computational supremacy [63–65, 267], which we utilise in this work.

5.2.2 Training

Here we consider training methods for the QCIBM. Recall, as illustrated in Figure

5.1, that the training procedure is a hybrid of classical and quantum computation. The

quantum component is limited to just the model itself, making the approach favourable

towards NISQ devices. The role of the CPU is to update parameters θθθ of the QCIBM,

in order to minimise the difference between pθθθ, the model distribution as defined in

equation (5.4), and π, the target distribution. This difference between distributions is

measured by a cost function, and the optimisation procedure we use to minimise a cost

function is stochastic gradient descent.
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Gradient-free [90, 268] and gradient-based [91, 97, 164, 257] methods have been used

to train QCBMs. Gradient based optimisers prove advantageous, both in the accuracy

they achieve, and in the sampling cost [257]. During such training procedures, param-

eters, θk, are updated at each epoch, t, according to the rule θt+1
k ← θt

k−η∂θk
LB.

Here ∂θk
LB is the gradient of a cost function LB with respect to θk. The parameter η is

the learning rate, which may be fixed or time and gradient dependent, and controls the

speed of the descent.

In this section we assess two existing cost functions, and discuss their application

to training the QCIBM. When assessing cost functions we are concerned with the

computational resources required to calculate and minimise them, and, uniquely to this

work, the implications of training using them on demonstrations of quantum learning

supremacy. At a practical level, a cost function is well suited for the task of training

the QCIBM via stochastic gradient descent if both the cost function and its gradient

can be efficiently computed from samples from pθθθ and π. Here efficiency is measured

both by sample and computational complexity. A good cost function would also be

sensitive to differences between pθθθ and π, which we will assess using the ℓ1-norm

distance, ℓ1 (pθθθ,π), as a benchmark. We do so as the ℓ1-norm distance is both highly

sensitive to differences between distributions, and because it relates to many theoretical

results pertaining to quantum computational supremacy. The ℓ1-norm distance cannot

be calculated efficiently from samples in general, and so it not used during training.4

The ideal cost function would be efficient to train with, while still being of a similar

sensitivity to the ℓ1-norm distance. Note that a cost function with this combination

of properties would provide a route towards a certifiable demonstration of quantum

learning supremacy. In particular if a cost function, sensitive in the way outlined,

can be efficiently calculated, then it can be used to certify if the model distribution is

closer to the target distribution than any model distribution that could be produced by

a classical computer.

MMD

The first efficient gradient-based method used to train a QCBM utilised the squared

maximum mean discrepancy (MMD) as a cost function [257, 269], which is given by

LMMD (pθθθ,π) := E
xxx←pθθθ
yyy←pθθθ

(κ(xxx,yyy))+ E
xxx←π
yyy←π

(κ(xxx,yyy))− 2E
xxx←pθθθ
yyy←π

(κ(xxx,yyy)) . (5.5)

κ is a kernel function which measures the similarity between points in the sample space

{0,1}n [270].5 A popular choice for κ is the Gaussian mixture kernel [257], given by

κG (xxx,yyy) :=
1

c

c

∑
i=1

exp

(
−‖xxx− yyy‖2

2

2σi

)
.

4Very often the KL-divergence, defined in equation (1.27), is used to compare distributions during

machine learning tasks. The KL-divergence upper bounds the ℓ1-norm distance and so it is similarly

sensitive to differences between distributions. Unfortunately neither its gradient, nor the KL-divergence

itself, can be evaluated efficiently when training parametrised circuits [257].
5Recent works on the near-term advantage of using quantum computers in QML have explored

quantum kernels, which can be evaluated on a quantum computer [4, 165, 271].
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The parameters, σi, are bandwidths which determine the scale at which the samples are

compared, and ‖·‖2 is the ℓ2-norm distance. The MMD with Gaussian kernels is zero

if and only if the model distribution matches the target distribution [269], guaranteeing

a faithful solution.

The gradient of the MMD is required in order to train the QCIBM. Given a PCQ

composed of unitary gates of the form Vk (θk) = exp(iθkΣk) where Σ2
k = I, as is the

case in for the QCIBM defined in Section 5.2.1, the gradient of the MMD with respect

to the kth parameter is given by [4, 257]

∂LMMD

∂θk

= 2E
aaa←pθθθ−
xxx←pθθθ

(κ(aaa,xxx))− 2E
bbb←pθθθ+
xxx←pθθθ

(κ(bbb,xxx))− 2E
aaa←pθθθ−

yyy←π

(κ(aaa,yyy))+ 2E
bbb←pθθθ+

yyy←π

(κ(bbb,yyy)) .

(5.6)

Here pθθθ± are output distributions generated by the same PQC with parameters θ±i =
θi± π

2 δi,k, where δi,k is the Kronecker delta and θθθ is the original set of parameters. This

approach to calculating derivatives is called the parameter shift rule [97, 272].

Using collections of samples
{

xxx1, . . . ,xxxN
}

and
{

yyy1, . . . ,yyyM
}

, where xxxi← pθθθ and yyy j←
π, the MMD can be estimated by

L̃MMD =
1

N(N−1)

N

∑
i 6= j

κ
(
xxxi,xxx j

)
+

1

M(M−1)

M

∑
i 6= j

κ
(
yyyi,yyy j

)
− 2

MN

M,N

∑
i, j

κ
(
xxxi,yyy j

)

which converges to equation (5.5) by the law of large numbers [4, 269]. The gradient

can similarly be estimated by replacing the expectations in equation (5.6) by their

empirical value [4, 257].

Importantly the rate of convergence of L̃MMD to LMMD depends inversely on the num-

ber of samples, and in particular [273]

|
√

L̃MMD(pθθθN ,πM)−
√

LMMD(pθθθ,π)| ≤ O

(
1√
N
+

1√
M

)
.

The independence of this difference on the number of qubits makes the calculation

of the MMD efficiently scalable. However, the MMD has the unfortunate drawback

that it only provides a lower bound on the ℓ1-norm distance [273]. As such minimis-

ing the MMD cannot be connected to many of the results on quantum computational

supremacy which we have discussed throughout.

Sinkhorn-Divergence

The second cost function we consider is the Sinkhorn-Divergence (SHD) [261, 274–

276] which has has not previously been used during gradient based training of QCBMs.

The SHD is defined as

Lε
SHD (pθθθ,π) := OTc

ε (pθθθ,π)−
1

2
OTc

ε (pθθθ, pθθθ)−
1

2
OTc

ε (π,π) (5.7)

where the regularised Optimal Transport (OT) is

OTc
ε (pθθθ,π) := min

U∈U(pθθθ,π)

(

∑
xxx∈{0,1}n

∑
yyy∈{0,1}n

c(xxx,yyy)U (xxx,yyy)+ εKL(U, pθθθ⊗π)

)
. (5.8)
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Here ε ≥ 0 is a regularisation parameter, c(xxx,yyy) is a Lipschitz function, and U(pθθθ,π)
is the set of all joint distributions whose marginals with respect to xxx,yyy are pθθθ (xxx) ,π(yyy)
respectively.

For the two extreme values of ε, we recover unregularised OT, and the MMD [261,

274, 275].

ε = 0 : L0
SHD (pθθθ,π) = OTc (pθθθ,π)

= min
U∈U(pθθθ,π)

(

∑
xxx∈{0,1}n

∑
yyy∈{0,1}n

c(xxx,yyy)U (xxx,yyy)

)
(5.9)

ε→ ∞ : Lε
SHD (pθθθ,π)→MMD(pθθθ,π) with κ(xxx,yyy) =−c(xxx,yyy)

Importantly for any value of ε, Lε
SHD (pθθθ,π) is positive, and equal to 0 if and only if

pθθθ = π [276]. Intuitively the solution of the ‘optimal transport problem’ of equation

(5.9) gives the optimal way to move, or transport, probability mass from one distribu-

tion to another. This gives a means of determining the similarity of distributions with

c(xxx,yyy) being the ‘cost’ of transporting an individual ‘point’, xxx, to another point yyy.

Ideally we would use OT itself to train generative models as it provides an upper bound

for the ℓ1-norm distance. Unfortunately, OT has high computational cost, and sample

complexity that grows exponentially in the number of qubits [277]. For this reason,

the SHD was proposed to interpolate between OT and the MMD [261, 274–276]. The

hope is that this allows for the exploitation of the advantages of both the MMD and the

OT, namely the low sample complexity and the greater power respectively.

Both the SHD [261] and its gradient [276] can be approximated from samples. In the

later case the process of doing so includes the use of the same shifted circuits used to

calculate the gradient of the MMD. The mean error between LSHD and its estimator

L̂SHD for n qubits, computed using M samples, depends on ε in general, while in the

special case that ε = O(n2), this error scales as [278]

E

(
|LO(n2)

SHD − L̂
O(n2)
SHD |

)
= O

(
1√
M

)
.

This is the same sample complexity as the MMD [273], but exponentially better than

that of unregularised OT, which scales as O
(

1

M
1
n

)
[277]. Therefore, we can choose an

optimal theoretical value for the regularisation, such that LSHD is far enough from OT

to be efficiently computable, but perhaps still retains its favourable properties. Unfortu-

nately while bounds on the ℓ1-norm distance by the Sinkhorn-Divergence can be found

these are only known for values of ε that require an exponential sample complexity.

5.2.3 Hardness

A demonstration of quantum learning supremacy, as outlined in Definition 5.1.5, re-

quires the existence of both a class of distributions which is not learnable by any algo-

rithm A ∈ BPP, and an algorithm B ∈ BQP which can learn the class of distributions.

We first intuitively show the existence of the former. Suppose that the class of dis-

tributions produced by IQP circuits is
(
ℓ1,

1
192 ,BPP

)
-learnable, and that A ∈ BPP is
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the algorithm which learns it. Notice that if a class of distributions is
(
ℓ1,

1
192 ,BPP

)
-

learnable by an algorithm A , then A can certainly weakly simulate this class of dis-

tributions within a ℓ1-norm distance of 1
192 by using the learnt generator. Recall from

Theorem 1.5.2 that if all IQP circuits could be weakly classically simulated to within a

ℓ1-norm distance of 1
192 by an algorithm A ∈ BPP then PH would collapse. Assuming

there is not such collapse of PH, we arrive at a contradiction, and conclude that the

class of distributions produced by IQP circuits is not
(
ℓ1,

1
192 ,BPP

)
-learnable.

For the purposes of demonstrating quantum learning supremacy, it remains to give

an algorithm B ∈ BQP by which the class of distributions produced by IQP circuits

is learnable. In particular we would like to show that the training procedure for the

QCIBM described in Section 5.2.1 and Section 5.2.2 is such an algorithm. Unfortu-

nately we are not able to formally show anything this strong.

In order to demonstrate that the output distributions of IQP circuits are
(
ℓ1,

1
192 ,BQP

)
-

learnable by the QCIBM trained via gradient descent we would have to both guarantee:

that an IQP distribution could be learnt to within a bound on the cost function used;

and that the cost function itself bounds the ℓ1-norm distance. The suggestion to use the

SHD rather than the MMD makes progress in this direction, and presents a promising

avenue of investigation. In particular it reveals the trade-off between sample complex-

ity and sensitivity to differences in distributions, which may be exploited to achieve

these objectives. However at present we can neither guarantee that the SHD will be

bounded at the end of the learning procedure, nor that the SHD for those values of ε
for which the SHD is efficient to compute will bound the ℓ1-norm distance.

This contrasts with the fact that IQP circuits to which the hardness results of Sec-

tion 1.5.2 are applicable can be constructed from particular parameter setting of the

QCIBM. Here lies the difference between showing that a model is more expressive

than any classical model [164], which is to say that it can in principle be used to sample

from a larger class of distributions, and showing that it could learn a hard distribution.

For the remainder of this section we will instead reason as to why the learning proce-

dure we have described for the QCIBM in Section 5.2.1 and Section 5.2.2 is likely to

be impossible to simulate using a classical device. This is to say that the circuits en-

countered during the gradient based training of the QCIBM would be hard to weakly

simulate.

Note that while the learning procedure being hard classically is not a sufficient con-

dition to demonstrate quantum learning supremacy, it is likely a necessary one. For

example take an algorithm B ∈BQP which demonstrates quantum learning supremacy

by learning all IQP distributions to within a bounded ℓ1-norm distance. Suppose that an

algorithm A ∈ BPP can reproduce the distributions produced by B to within a bounded

ℓ1-norm distance. This includes in particular the distributions learnt by B , and so all

IQP distributions. Then, if these bounds are sufficiently small, A could weakly sim-

ulate all IQP distributions to within ℓ1-norm distance of 1
192 . By Theorem 1.5.2 this

collapses the PH and so contradicts our supposition that a classical algorithm can re-

produce the learning procedure of B .

To demonstrate that the learning procedure is hard to simulate classically, we consider

the relation between the learning procedure for the QCIBM and hardness results for
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IQP as discussed in Section 1.5.2.6 It is clear from Theorem 1.5.1 that efficiently

weakly sampling with multiplicative error from the output distributions of all circuits

corresponding to some parameter setting of the QCIBM should be impossible for a

classical device. It remains to show that the circuits which are encountered during the

training procedure are also of this type. Without imposing restrictions on the parameter

values which may be used by the QCIBM this too is out of reach.

However, it can be shown that the set of parameters is sufficiently large that we can

be confident about the hardness of the training procedure. For example, recall from

Theorem 1.5.1 and its proof that IQP circuits, with Ji j = bk =
π
8 for all i, j,k in (5.3),

are hard to simulate in the worst case. This was shown by demonstrating that these

circuits are universal for BQP under post selection. This is insufficient for our purposes

as, if the training procedure encountered all parameter values with equal probability, it

would encounter such circuits with probability 0. If the remaining parameters resulted

in circuits which could be weakly classically simulated this would be of great concern.

In fact it is the case that for gates of the form eiJi jZ⊗Z, eibkZ with bk = Ji j of either of

the forms

(2l +1)π

8m
l,m integers

2νπ ν ∈ [0,1) irrational

(5.10)

the resulting gate set would be universal under post selection [170]. In the case of

parameters of the form
(2l+1)π

8m
it is clear that π

8 can be recovered from repeated ap-

plications of the gates. The result then follows from Theorem 1.5.1. In the case of

irrational parameter values, intuitively this follows since 2mνπ(mod2π) is distributed

uniformly in [0,2π), and so we can find an approximation of π
8 with an additive error

with some integer m = O
(

1
ε

)
number of repetitions of the gate [28]. While we have

discussed a homogeneous choice of angle here, if we chose inhomogeneous angles,

each one of the form of equation (5.10), circuits built from the resulting gate set would

also be hard in the worst case. This follows as any one of the gates eiJi jZ⊗Z and eibkZ

would be sufficient to recover ei π
8Z⊗Z and ei π

8Z using repeated applications.

Importantly, in the case of the irrational parameters, the set of values has measure 1

and so the probability of encountering them is high. This gives us confidence that a

large proportion of the circuits encountered during the training procedure will be hard

to weakly simulate with multiplicative error in the worst case.

5.3 Conclusion

In this chapter we have discussed the prospect of demonstrating quantum compu-

tational supremacy, via a practically motivated task, on NISQ technology. In par-

ticular we have considered generative modelling; formalising a demonstration of

quantum computational supremacy through generative modelling as quantum learn-

ing supremacy. In Section 5.2 we introduced the QCIBM. We proposed stochastic

6The relationship between the QCIBM and the shallowest depth version of QAOA, as discussed in

Section 5.2.1, also allows us to connect to yet further hardness results [4, 267].
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gradient descent using the SHD as a means by which to train it, and discussed the ad-

vantages of doing so over previous approaches. We argued this could be an approach

to demonstrating quantum learning supremacy on NISQ technology, but are only able

to show a weaker result. This is namely that, with high probability, the circuits en-

countered during the training of the QCIBM are impossible to weakly simulate with

a classical device up to multiplicative error in the worst case. While we are not able

to formally provide a proposal to demonstrate quantum learning supremacy on NISQ

technology, in other settings proposals for demonstrations of quantum computational

supremacy via machine learning are possible. Conversely, there are results that isolate

the difficulty in demonstrating quantum learning supremacy on NISQ technology. For

the remainder of this chapter we discuss and compare results in these two directions,

and consider the avenues of future research which they open up.

Using the framework introduced in Section 5.1, a route to demonstrating quantum

learning supremacy with fault-tolerant universal devices has been proposed [263].

Ref.[263] provides both a class of discrete probability distributions which is prov-

ably impossible to efficiently learn with a classical generative modelling algorithm,

and an efficient quantum learner of the class. This class of distributions is built from a

collection of pseudorandom functions (PRF), where a PRF is a deterministic function

of a key and an input which is indistinguishable from a truly random function of the

input [15]. That a PRF is indistinguishable from a random function is vital, and in the

case of the PRFs introduced in [263] is conditional on the Decisional Diffie-Hellman

assumption (DDH).7 From any collection of PRFs it is possible to construct a class of

probability distributions for which no efficient classical learner exists [258]. However,

given the key of the PRF these distributions admit an efficient classical generator. The

DDH assumption can be broken using the quantum algorithm for discrete logarithm

[7]. As a result the functions used to construct the class of distributions are not pseu-

dorandom from the point of view of a quantum learner. A quantum learner which can

learn the key using random samples can then be constructed [263]. As mentioned,

having the key is sufficient to produce a generator for the distributions.

It is noteworthy that the generator described in [263] is classical, which deviates from

our use of a quantum generator for the target distribution in Section 5.2. Further, the

generator outputted by the quantum learner at the end of the protocol is exact, and can

be found from one sample. This avoids the problem of finding a cost function that

can be reliably trained, and which bounds the ℓ1-norm distance. However, this also

suggests that there may be room to reduce the resource requirements towards those of

NISQ devices if only an approximate generator is required, and a polynomial number

of samples is made use of. This would be one interesting direction of future work.

Besides distribution learning, which itself has applications in finance [260], learning

boolean functions may also prove a beneficial application of quantum computers. In

the classical case one wishes to learn a function c : {0,1}n → {0,1} given random

example input output pairs (x,c(x)) [264]. Quantum learners instead receive copies of

7This assumption is roughly that the product of two elements of a cyclic group looks like a random

element of that group.
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Computations of Practical Concern

a superposition of labelled examples [262]:8

1√
2n ∑

x∈(0,1)n

|x〉|c(x)〉 (5.11)

This formalism does not adhere to our definition of quantum learning supremacy in

Section 5.1. However classes of boolean functions which can be learned from quantum

examples, but not classical ones are known [262, 279, 280].

In principle boolean function learning allows a quantum learner to perform complex

operations on many copies of the quantum example. This is not amenable to NISQ

technology. Quantum Statistical Query (QSQ) learning is a restriction of this model

[17]. In particular, a learner selects a set of observables to measure on the quantum

example, and receives expectation values of these measurements. In this sense the

learner receives ‘statistics’ of the quantum example. This setting is more representative

of cloud based NISQ technology as the state will not be held or manipulated by the

learner. Further, if there exists a QSQ learner of a class of functions, then there exists a

noisy QSQ learner for that class [17]. This is to say the class of functions can be learnt

even if the quantum example is subject to bit flip errors with some probability, further

aligning the model with the power of NISQ technology.

It is known that there are functions which can be learnt by a QSQ learner but which

provably cannot be learnt in the classical statistical query learning model [281]. For

some classes of these functions it is also the case that there is no known learning

algorithm even when given the classical examples directly, rather than statistics of the

distribution. The circuits implementing the boolean functions for which these results

are known appear less well suited to NISQ technology than random circuits, but it

should certainly be the subject of future work to understand if these results on learning

boolean functions can be transformed into the distribution learning setting of Section

5.1.

While these results present promising directions for further investigation, others reveal

the pitfalls to be avoided when doing so. For example it is known that it is impossible

to perform the seemingly related task of efficiently certifying that a distribution, from

which samples can be drawn, is equivalent to a known IQP distribution [282].9 More

precisely, suppose P is the output distribution from a randomly chosen IQP circuit, and

that a complete description of P is known. Then, with high probability, exponentially

many samples from a distribution Q would be required to determine if Q = P or

ℓ1 (P ,Q )> ε, for some given ε, irrespective of the computing power of the certifier.10

While the task of efficient certification and that of constructing an efficient learner for a

class of distributions appear related, the reduction of a learner to a means of performing

certification is not clear, but would be of great interest to uncover.

Finally, it is also known that in general training variational quantum algorithms is

NP-hard [284]. This is shown by encoding the NP-hard MaxCut problem into the

8The state in equation (5.11) is a uniform quantum example. In principle each term in the sum may

be weighted by
√

D (x) for some probability distribution D .
9This is not only true for IQP circuits, but for any anticoncentrating classes of distributions, which

includes the output distributions of BosonSampling circuits [61], and those of RCS [66].
10This task is referred to as identity testing [283].
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classical optimisation step of several variational quantum algorithms. It is not clear if

this encoding applies in the case of the approach outlined here, and this would be an

interesting avenue of exploration. However, worst case hardness results such as this

should not discourage the exploration of quantum learning supremacy, and indeed we

have seen that quantum learning supremacy is possible in particular cases [263].
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Chapter 6

Conclusion and Outlook

“Predictions are very difficult, especially about the future”

— Niels Bohr

At the outset, it was the goal of this thesis to:

Explore the QCVV protocols that are appropriate as quantum technology develops. In

doing so, understand which applications of quantum technology are the most fruitful

at each stage of the progress of technology.

In pursuing this goal we introduced schemes to guide the furtherance of quantum

technology, to identify the applications to which different quantum technologies are

best suited, and to both perform and certify demonstrations of quantum computational

supremacy. Starting with small devices with only a few qubits, in Chapter 2 we pro-

posed and exemplified a methodology for the use of classical simulation to predict the

behaviour of larger devices, and the impact of changes to their design. In Chapter 3

we presented and utilised a suite of benchmarks to measure the performance of ex-

isting multi-qubits devices, choosing circuits so as to assess the applications to which

the devices explored are well adapted. Once devices large enough to demonstrate

quantum computational supremacy are available, the scalable approach to certifying a

demonstration of quantum computational supremacy via IQP circuits given in Chapter

4 may be beneficially employed. Finally, by formalising and illustrating how quantum

computational supremacy could be achieved through generative modelling, Chapter 5

further explores the applications that NISQ devices are best put to use in.

When concluding each chapter we have considered the ways in which the correspond-

ing work could be fruitfully extended. Here it instead behoves us to contemplate and

speculate on the prospects for the field as a whole. At the time of writing, the surety

of supposed demonstrations of quantum computational supremacy is unclear. The two

most compelling experiments of this kind considered demonstrations of quantum com-

putational supremacy via RCS [60], and via a model similar to BosonSampling [176].

In the case of the former (as in time it will likely be for the latter) there has been

a concerted effort to reproduce these experimental results using classical computers.

There has been some success in doing so [120, 285], although it is understood that as

quantum devices continue to grow and improve, these classical techniques will not be
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able to keep up. It is likely that this back and forth between improvements in quantum

computers and classical simulation techniques will continue for some time until the

advantage of quantum computers becomes insurmountable.

As this to and fro continues, the techniques used for the certification of demonstrations

of quantum computational supremacy will have to adapt accordingly. This is especially

true if the spoofing of techniques such as Heavy Output Generation Benchmarking and

Cross-Entropy Benchmarking is achieved without the need to precisely calculate the

ideal output probabilities of a quantum computation. This may mean that in practice

it is more challenging to implement these certification techniques than it is to spoof

them. Perhaps then the greatest problem left open is that of scalable certification tech-

niques for NISQ technology by a classical client. It may be that the best approach to

tackling this will be to highly optimise classical client verification schemes, such as

those outlined in Section 1.6.2, specifically for a particular computation demonstrat-

ing quantum computational supremacy. Chapter 4 gives us some optimism that this

approach may be advantageous, and presents one example of how adapting existing

techniques to specific problems can be beneficial. Indeed, classical client techniques

optimised for the scheme of Chapter 4 may be fruitful.

On the matter of device benchmarking, we believe that in the form of the work of

Chapter 3 we have presented a highly informative standard benchmark suite. We are,

however, aware that this is far from a universally accepted sentiment, and in reality

many research groups use their own benchmark circuits. Such a situation makes it very

difficult to assess and compare the performance of devices and compilation strategies,

and so we regard it as a matter of some urgency that a consensus on the best suite of

benchmarks is arrived at. In the case of machine learning, a more mature field than, for

example, quantum software, there are such standard benchmark sets. These are used

to measure and compare the performance of such things as language models or image

recognition tools. These arose somewhat organically, and we hope, perhaps with some

encouragement from the larger groups in the field, that the same can be achieved for

benchmarking a quantum computing stack. Quantum volume provides a glimmer of

hope that this is possible, but falls short of what we would regard as a gold-standard

benchmark, as discussed in Chapter 3.

As perhaps all discussions on the prospects for quantum computing in the near-term

should, we give the last word to a consideration of the prospect for quantum computers

to outperform classical computers at a task of practical concern. As we have com-

mented throughout, there are several natural ways that this could be achieved, notably

through the simulation of physical systems, or via generative modelling as proposed in

Chapter 5. That these application are so native to quantum computing should provide

us with great confidence in the potential for these devices. That being said, it would be

a fool’s game to try to predict the timing of the first such demonstration. Unfortunately

the development of classical computers provides little guidance on this, and it is a mat-

ter of debate as to whether what we have available now constitutes a difference engine,

a parallel of Colossus, or something else. However, if I had to guess, I’d say the first

practically useful quantum computer is 5 years away... as it has been throughout my

PhD.
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Appendix A

Methods for Classically Simulating

Noisy Networked Quantum

Architectures

A.1 Expanded Circuit Descriptions

A.1.1 IQP-MBQC Circuit in NQIT Q20:20 Gate Set

As discussed in Section 1.5, for constant θ = π/8, each IQP instance is fully defined

by a binary matrix QQQ ∈ {0,1}na×np . For example, QQQ of Figure 1.12 corresponds to

C = exp
(

i
π

8
X1X3

)
exp
(

i
π

8
X2X3

)
.

To sample from 〈0⊗n|C|0⊗n〉 via MBQC, as described in Protocol 1.5.2, we must mea-

sure the ancillary qubits in the
{
|02 π

8
〉, |12 π

8
〉
}

basis of (1.24). Measurements in the

basis {|02θ〉, |12θ〉} can be simulated, when only measurements in the computational

basis are available, by first rotating the qubit to be measured by HXRZ2θXH. The

correct rotation for θ = π/8 is HXTXH

We can incorporate the classical corrections required by Protocol 1.5.2 into the circuit

by adding CX gates according to the same pattern used to produce the resource state

initially [286]. Since those corrections do not need to be physically executed, because

of their equivalence to classical post-processing, we do not add any noise to them. We

conclude that the corresponding MBQC pattern of Figure 1.12 can be written in circuit

form as in Figure A.1. This describes an implementation of IQP using the gate set

which is available to the NQIT Q20:20 device as discussed in Section 2.2.2, and is the

circuit we will implement in our simulator.

A.1.2 NQIT Q20:20 Noise Functions

In Protocol A.1.1 we give the necessary tools to implement the NQIT Q20:20 noise

model of Section 2.2.3 in the gate based model, which may be understood by the
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p1|0〉 H • H

p2|0〉 H • H

p3|0〉 H • • H

a1|0〉 H • • H X T X H • •

a2|0〉 H • • H X T X H • •

Figure A.1: Circuit which implements the MBQC pattern of Figure 1.12. Measure-

ments have been delayed until the end. The final CX gates perform the necessary

adaptive corrections.

simulator. Noise is added to a circuit as follows, and in accordance with the discussion

on simulations of noise using pure state simulators conducted in Section 1.3.3. All

operations are considered independently. Noise gates corresponding to operation based

errors are inserted at an operation’s position in the circuit at random, with type and

probability according to the rates of Section 2.2.3. For each of those operations, a

nested loop iterates over all qubits in the system and randomly applies the two time-

based errors. First the execution time needed for the current operation is calculated

by considering the times given in Section 2.2.3. Then, at each qubit in the loop, an

appropriate noise gate is added according to a Poisson process with the rates listed,

again, in Section 2.2.3.

A.2 Numerical Experiment Details

A.2.1 IQP-MBQC Experiments

Simulator Benchmarking Experiment of Section 2.3.1

Generating random unrestricted IQP-MBQC instances is equivalent to randomly pop-

ulating QQQ with zeros and ones. The description in Appendix A.1.1 of how to convert

a given X-program QQQ to a particular circuit lets us control the T gates count t. We

saw that every individual exponential (row in QQQ) corresponds exactly to t = 1, and the

number of primary qubits has no effect on t. We want T gate counts of no more than

20 in order to achieve feasible run-times.

One trial consists of generating a random IQP instance, obtaining the true probability

of measuring the |0〉n using brute-force, and solving them with the Bravyi-Gosset Sim-

ulator 20 times. Each instance is created by randomly populating with binary values

a matrix QQQ of randomly picked dimensions in [5,15]× [5,12]. This corresponds to
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Protocol A.1.1 Gate based description of the NQIT Q20:20 noise to be used by the

simulator. Here P(k;λ) is the probability that k events occur in a Poisson distribution

with mean λ. The variables listed here assume the current NQIT Q20:20 noise levels

but are altered in our experiments of Section 2.3.3 and can be set to 0 in the perfect

case.

1: TimeInTrapOperation = 0.5ms

2: TimeLinkingOperation = 1.5s

3: TimePreparation = 1.25ms

4: TimeMeasurement = 2.25ms

5:

6: ProbTwoQubitOperationSingleQubit = 5.5×10−5

7: ProbTwoQubitOperationTwoQubit = 6×10−5

8: ProbSingleQubitOperation = 1.5×10−6

9: ProbMeasurement = 5×10−4

10: ProbPreparation = 2×10−4

11: ProbDephasing = 7.2×10−3

12: ProbDepolarising = 9×10−3

Protocol continues below...

n ∈ [5,12] and t ∈ [5,15] where the complexity in the brute-force case is determined

by n, and in the case of the Bravyi-Gosset Simulator, by t.

The experiment consists of 20 trials, with the mean of the simulator output in each trial

compared to the brute-force case to give the coefficient of determination.

NQIT Q20:20 Noise and Architecture Restricted Experiment of Section 2.3.2

We again generate random IQP-MBQC circuits, but under the restrictions described

in Section 2.3.2. Rather than a full matrix, QQQ, it is now sufficient for each ancillary

qubit, ai, in an ion trap, i, to have corresponding bit strings, i0 and i1, indicating the

entanglement patterns between itself and qubits in it and its neighbouring ion trap.

Details of the circuit simulated can be seen in Protocol A.2.1. Once the circuit is

simulated, we calculate the probability that an NQIT Q20:20 implementation would

measure a random bit string b. One noisy run consists of simulating the circuit pro-

duced from Protocol A.2.1, using fixed i0, i1,b, 20 times to calculate the mean and

standard deviation. Then a new tuple i0, i1,b is generated and the process is repeated

for the next trial. A perfect run is equivalent but with the noise values set to 0, with the

perfect and noisy pair forming one trial. In total the experiment consists of 20 trials.

Notice that we are being pessimistic in Protocol A.2.1 by assuming that there is no

parallelism in the gate applications. As such we apply time based noise after each gate.

We have also simplified the operation of swapping to a single operation, rather than a

protocol as seen in Protocol 2.3.1. This reduces the simulation time while roughly

maintaining the noise impact, as the time based noise should dominate here.
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Architectures

Protocol A.1.1 Continued

13: function RANDOMPAULI(i,p)

14: Enact a Pauli gate, selected uniformly at random, on qubit i with probability p

15: end function

16:

17: function DEPHASINGNOISE(t, q)

18: Enact Zq with probability 1−P(0; tProbDephasing)
19: end function

20:

21: function DEPOLARISINGNOISE(t, q)

22: RANDOMPAULI(q, 1−P(0; tProbDepolarising))
23: end function

24:

25: function TIMEBASENOISE(t)

26: for all q ∈ qibits do ⊲ Noise acts on all qubits

27: DEPHASINGNOISE(t, q)

28: DEPOLARISINGNOISE(t, q)

29: end for

30: end function

31:

32: function TWOQUBITNOISE(i, j)

33: RANDOMPAULI(i, ProbTwoQubitOperationSingleQubit)

34: RANDOMPAULI( j, ProbTwoQubitOperationSingleQubit)

35: Enact Zi⊗Z j with probability ProbTwoQubitOperationTwoQubit

36: end function

37:

38: function SINGLEQUBITNOISE(q)

39: RANDOMPAULI(q, ProbSingleQubitOperation)

40: end function

41:

42: function PREPARATIONNOISE(q)

43: Enact Xq with probability ProbPreparation

44: end function

45:

46: function MEASUREMENTNOISE(q)

47: Enact Xq with probability ProbMeasurement

48: end function
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Protocol A.2.1 Code producing a noisy IQP-MBQC circuit, to be implemented by

the simulator, as discussed in Section 2.3.2. We use i to index the ion traps, and to

represent the set of K′−2 available primary qubits which each trap contains (K′ minus

1 qubit ci to receive the ancillary qubit from it’s neighbour, minus one ancillary qubit

ai).

Input: For every ion trap, i, two strings, i0, i1. Bit string b.

Output: Noisy circuit.

1: for all q ∈ qubits do

2: INITIALISE(q) ⊲ Recall, initialisation is in the |+〉 state

3: PREPARATIONNOISE(q)

4: end for

5:

6: for all i ∈ ion traps, except the last do

7: for all q ∈ i do

8: if i0q = 1 then

9: Enact CZ between ai and q

10: TWOQUBITNOISE(ai, q)

11: TIMEBASEDNOISE(TimeInTrapOperation)

12: end if

13: end for

14: end for

15:

16: for all i ∈ ion traps, except the last, such that i is even do

17: SWAP(ai, ci+1) ⊲ Move ancillary qubits to neighbouring ion trap

18: end for

19: TIMEBASEDNOISE(TimeLinkingOperation + TimeMeasurement)

20:

21: for all i ∈ ion traps, except the last, such that i is odd do

22: SWAP(ai, ci+1)

23: end for

24: TIMEBASEDNOISE(TimeLinkingOperation + TimeMeasurement)

25:

26: for all i ∈ ion traps, except the first do

27: for all q ∈ i do

28: if (i−1)1
q = 1 then

29: Enact CZ between ai−1 and q

30: TWOQUBITNOISE(ai−1, q)

31: TIMEBASEDNOISE(TimeInTrapOperation)

32: end if

33: end for

34: end for

Protocol continues below...
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Architectures

Protocol A.2.1 Continued

35: for all i ∈ ion traps, except the first do ⊲ Measurement basis correction

36: Enact Hai−1

37: SINGLEQUBITNOISE(ai−1)

38: TIMEBASEDNOISE(TimeInTrapOperation)

39: end for

40: for all i ∈ ion traps, except the first do

41: Enact Xai−1

42: SINGLEQUBITNOISE(ai−1)

43: TIMEBASEDNOISE(TimeInTrapOperation)

44: end for

45: for all i ∈ ion traps, except the first do

46: Enact Tai−1

47: SINGLEQUBITNOISE(ai−1)

48: TIMEBASEDNOISE(TimeInTrapOperation)

49: end for

50: for all i ∈ ion traps, except the first do

51: Enact Xai−1

52: SINGLEQUBITNOISE(ai−1)

53: TIMEBASEDNOISE(TimeInTrapOperation)

54: end for

55:

56: for all q ∈ qubits do

57: Enact Hq

58: SINGLEQUBITNOISE(q)

59: TIMEBASEDNOISE(TimeInTrapOperation)

60: end for

61:

62: for all i ∈ ion traps, except the last do ⊲ CX seen at end of Figure A.1

63: for all q ∈ i do

64: if i0q = 1 then

65: Enact CX between ai and q

66: end if

67: end for

68: end for

69:

70: for all i ∈ ion traps, except the first do

71: for all q ∈ i do

72: if (i−1)1
q = 1 then

73: Enact CX between ai−1 and q

74: end if

75: end for

76: end for

Protocol continues below...
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Protocol A.2.1 Continued

77: for all i ∈ ion traps do

78: for all q ∈ i and ai−1 for all but the first ion trap do

79: MEASUREMENTNOISE(q)

80: end for

81: end for

82: MEASURE(b) ⊲ Give the probability of measuring b in the Computational basis

A.2.2 2D-DQS Experiments of Section 2.3.2 and Section 2.3.3

Instead of only 2-steps, as it is in the 1D case, we need 4 steps to build a 2D grid

resource state. We achieve this by entangling sequentially:

• Even-indexed columns’ qubits to their right neighbours

• Odd-indexed columns’ qubits to their right neighbours

• Even-indexed rows’ qubits to their bottom neighbours

• Odd-indexed rows’ qubits to their bottom neighbours

Having performed the entanglement we are left to apply the T gates and measure. We

track the qubits on which we apply the T gates using the bit string τ which takes the

value 1 at the locations where a T gate is applied.

We calculate the amplitude of a randomly selected output, b, for each instance in order

to simulate sampling. We calculate several trials where for each we:

• Generate a uniformly random τ ∈ [0,1]20 to give a 4x5 circuit as in Protocol

1.5.1.

• Generate a random bit string, b, to calculate the amplitude of.

• Solve 20 times and take the mean and standard deviation. This is a perfect run.

• Generate 20 random noisy circuits, one per noisy run, based on the perfect one

by inputting τ into Protocol A.2.2. In the case of Section 2.3.3 we will use

different values for the variables of Protocol A.1.1, as discussed there.

• For each noisy run, solve the circuit 20 times and calculate the mean. The result

is a vector of length 20 containing these mean values.

Attempts to reduce the standard deviation of the noisy runs by increasing the number

of times the computation is performed during each run were not effective, suggesting

the deviation is a result of the noise.
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Protocol A.2.2 Code producing a noisy 2D-DQS circuit, to be implemented by the

simulator, as discussed in Section 2.3.2 and Section 2.3.3. We will index traps (and

equivalently, in this case, qubits) by the row, n, and column, m, where they appear in

the square grid.

Input: Bit strings τ and b.

Output: Noisy circuit.

1: for all q ∈ qubits do ⊲ Initialise |+〉 states

2: INITIALISE(q)

3: PREPARATIONNOISE(q)

4: end for

5:

6: for p ∈ {odd,even} do ⊲ Entangle columns of lattice

7: for {n,m : n ∈ p} do

8: Enact CZ between (n,m) and (n+1,m)
9: TWOQUBITNOISE((n,m) ,(n+1,m))

10: TIMEBASEDNOISE(TimeInTrapOperation)

11: end for

12: end for

13:

14: for p ∈ {odd,even} do ⊲ Entangle rows of lattice

15: for {n,m : m ∈ p} do

16: act CZ between (n,m) and (n,m+1)
17: TWOQUBITNOISE((n,m) ,(n,m+1))
18: TIMEBASEDNOISE(TimeInTrapOperation)

19: end for

20: end for

21:

22: for q ∈ qubits do ⊲ Enact T gate according to original circuit

23: if τi = 1 then

24: Enact Ti

25: SINGLEQUBITNOISE(i)

26: TIMEBASEDNOISE(TimeInTrapOperation)

27: end if

28: end for

29:

30: for q ∈ qubits do

31: Enact Hq ⊲ Ajust to measure in the Hadamard basis

32: SINGLEQUBITNOISE(q)

33: TIMEBASEDNOISE(TimeInTrapOperation)

34: end for

35:

36: for q ∈ qubits do

37: MEASUREMENTNOISE(q)

38: end for

39: MEASURE(b)
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Application-Motivated, Holistic

Benchmarking of a Full Quantum

Computing Stack

B.1 Exponential Distribution

The exponential distribution, with rate λ, is a probability distribution with the proba-

bility density function

Pr(x) = λe−λx.

This is the distribution of waiting times between events in a Poisson process. We

are concerned with showing that output probabilities of the circuits classes considered

here are exponentially distributed. Such a property is a signature of quantum chaos,

and that a class of circuits is approximately Haar random [62, 287]. It also allows for

the calculation of both the ideal value of the cross-entropy, and the ideal heavy output

probability as discussed in Section 1.6.4. This in turn allows us to fully exploit Cross-

Entropy Benchmarking and Heavy Output Generation Benchmarking. Here we will

argue numerically which of the circuits we introduce in Section 3.2 generate output

probabilities of this form,1 and discuss the implications when they do not.

We also demonstrate why the circuit depths used in Section 3.2 are necessary to gen-

erate output probabilities of this form. To do this we generate 100 circuits of each

type and number of layers, where a layer is as defined in the respective Algorithms of

Section 3.2. We then calculate the ideal output probabilities using classical simulation

and compare this distribution of output probabilities to the exponential distribution. In

the case of square circuits and deep circuits, we notice a better approximation of the

exponential distribution by the distribution of output probabilities, measured by the

ℓ1-norm distance between the two, as the number of layers increases. We can use this

to isolate the number of layers at which the difference approaches its minimum.

1This numerical approach to demonstrating properties of distributions of output probabilities from

particular circuit classes parallels that taken in other work on benchmarking [24, 61, 62, 85].

195



Appendix B. Application-Motivated, Holistic Benchmarking of a Full Quantum

Computing Stack

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30

pC

P
ro

b
ab

il
it

y
D

en
si

ty

(a) The distribution of output probabilities
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Figure B.1: Exponential distribution fitting data for square circuits.

B.1.1 Square Circuits

The exponential form of the distribution of the output probabilities from random cir-

cuits similar to square circuits has been established [62, 85]. As the procedure we use

to generate square circuits, seen in Protocol 3.2.2, differs slightly from that used for

other similar random circuits [62, 85, 212], we explore the distribution of its output

probabilities here.

The relevant results are seen in Figure B.1. In particular, it can be seen from Figure

B.1b that the minimum value of ℓ1-norm distance between the distribution of output

probabilities and the exponential distribution is approached at a number of layers equal

to the number of qubits, justifying our choice of layer numbers in Protocol 3.2.2. It

may be that asymptotically the number of layers required is sub-linear [62], although

for the circuit sizes used here a linear growth in depth is appropriate. Figure B.1a

illustrates the closeness of fit of the two distributions.

B.1.2 Deep Circuits

Unlike with square circuits, there is no precedent for utilising deep circuits to generate

exponentially distributed output probabilities, as we do here. This allows us to use

deep circuits as a uniquely insightful benchmark of the performance of quantum com-

puting stacks, grounded both in the theoretical results of Section 3.1, and in pertinent

applications.

The relevant results are seen in Figure B.2. In particular, it can be seen from Figure

B.2b that the minimum value of ℓ1-norm distance between the distribution of output

probabilities and the exponential distribution is approached at a number of layers equal

to three times the number of qubits, plus one, justifying our choice of layer numbers in

Protocol 3.2.3. Figure B.2a illustrates the closeness of fit of the two distributions.
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(a) The distribution of output probabilities

from a circuit C, where C is a 5 qubit circuit,

from the deep circuits class as defined in

Protocol 3.2.3.
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2ne−2nx, where n is the number of qubits.
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Figure B.2: Exponential distribution fitting data for deep circuits.

The depth required to achieve an exponential distribution of outcome probabilities with

deep circuits is greater than is the case for square circuits. Indeed, random circuits

were initially introduced as the shallowest circuits required to generate such output

probabilities [62]. This sacrifice in depth is made to achieve a benchmark which is

uniquely application motivated, as discussed in Section 3.2.

B.1.3 Shallow Circuits

Unlike in the case of square circuits and deep circuits, the output probabilities of shal-

low circuits are not exponentially distributed. This is unsurprising since random cir-

cuits with this limited connectivity are thought to require at least depth O (
√

n) to create

such a feature [24, 66, 288]. This has the unfortunate side effect that Cross-Entropy

Benchmarking cannot be used.

While it is also true that the predictions made about the ideal heavy output probability

also do not apply, a study of the heavy output probability is still of interest. In par-

ticular, while we cannot connect the benchmark to the HOG problem of Problem 1,

we can compare the probability of generating heavy outputs to the ideal probability of

producing heavy outputs, as calculated by classical simulation.

B.2 Compilation Strategies

This section details the compilation strategies explored in each of our experiments. For

the circuit families and figures of merit investigated here, the compilation strategies we

used were designed and empirically confirmed to perform well at the compilation tasks

at hand. The versions of each package used are listed in Table B.1.
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Package Version

Qiskit [114, 246] 0.12.0

pytket [235, 245] 0.3.0

Table B.1: Packages used in this work, and their corresponding versions.

noise-unaware pytket and noise-aware pytket The noise-unaware pytket and

noise-aware pytket compilation strategies are generated using Protocol B.2.1. noise-

unaware pytket is generated by passing False as input to Protocol B.2.1, and noise-

aware pytket by passing True.

Of particular interest are the following functions:

OptimiseCliffors: Simplifies Clifford gate sequences [289].

KAKDecomposition: Identifies two-qubit sub-circuits with more than 3 CXs and

reduces them via the KAK/Cartan decomposition [290].

route: Modifies the circuit to satisfy the architectural constraints [173]. This will

introduce SWAP gates.

noise aware placement: Selects initial qubit placement taking in to account re-

ported device gate error rates [235].

line placement: Attempts to place qubits next to those they interact with in the

first few time slices. This does not take device error rates into account.

noise-unaware Qiskit and noise-aware Qiskit The noise-unaware Qiskit and noise-

aware Qiskit compilation strategies, as defined in Protocol B.2.2, are heavily inspired

by level 3 passmanager, a preconfigured compilation strategy made available in

Qiskit. noise-unaware Qiskit is generated by passing noise aware as False in Pro-

tocol B.2.1, and noise-aware Qiskit by passing True.

Where possible we passed stochastic as True in order to use StochasticSwap in-

stead of BasicSwap during the swap mapping pass. In general, StochasticSwap

generates circuits with lower depth; however, for the versions listed in Table B.1,

it proved faulty for some circuit sizes and device coupling maps used in this work.

StochasticSwap may also result in repeated measurement of the same qubit, which

cannot be implement. Repeated compilation attempts may therefore be necessary, and

if this fails the circuit is not included in the plots of Section 3.4.

Of particular note are the following functions:

NoiseAdaptiveLayout: Selects initial qubit placement based on minimising

readout error rates [250].

DenseLayout: Chooses placement by finding the most connected subset of qubits.

Unroller: Decomposes unitary operation to desired gate set.
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Protocol B.2.1 pytket compilation strategies. The passes listed here are named as in the

documentation for pytket [245], where additional detail on their actions can be found.

Input: noise aware ∈ {True,False}

1: OptimiseCliffords

2: KAKDecomposition

3:

4: RebaseToRzRx ⊲ Convert to IBM gate set

5: CommuteRzRxThroughCX

6:

7: if noise aware then

8: noise aware placement

9: else

10: line placement

11: end if

12:

13: route

14: decompose SWAP to CX

15: redirect CX gates ⊲ Orientate CX to coupling map

16:

17: OptimisePostRouting ⊲ Optimisation preserving placement and orientation

StochasticSwap: Adds SWAP gates to adhere to coupling map using a ran-

domised algorithm.

BasicSwap: Produces a circuit adhering to coupling map using a simple rule: CX

gates in the circuit which are not supported by the hardware are preceded with

necessary SWAP gates.

only pytket routing In this case we perform, in the order as listed, the pytket opera-

tions: route, decompose SWAP to CX, and redirect CX gates. We then account for

the architecture gate set, without any further optimisation.

B.3 Device Data

Two device properties leveraged by our compilation strategies are the coupling maps,

describing the connectivity of the qubits and in which directions CX gates can be per-

formed, and the calibration information, describing the noise levels of the device.

These properties, and devices noise levels in particular, are considered valuable bench-

marks of the performance of the device in their own right.

These properties are collectively influential in noise-aware compiling, as detailed in

Appendix B.2. There circuits are compiled to adhere to the device’s coupling map,

while also aiming to minimise some function of the calibration information. Because

full quantum computing stack holistic benchmarking encompasses the circuit compi-
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Protocol B.2.2 Qiskit compilation strategies. The passes listed here are named as in the

documentation for Qiskit [246], where additional detail on their actions can be found.

Input:

noise aware ∈ {True,False}
stochastic ∈ {True,False}

1: Unroller

2:

3: if noise aware then

4: NoiseAdaptiveLayout

5: else

6: DenseLayout

7: end if

8: AncillaAllocation ⊲ Assign idle qubits as ancillas

9:

10: if stochastic then

11: StochasticSwap

12: else

13: BasicSwap

14: end if

15:

16: Decompose(SwapGate) ⊲ Decompose SWAP to CX

17: CXDirection ⊲ Orientate CX to coupling map

18:

19: ⊲ Gather 2 qubit blocks

20: Collect2qBlocks

21: ConsolidateBlocks

22:

23: Unroller ⊲ Unroll two-qubit blocks

24: Optimize1qGates ⊲ Combine chains of one-qubit gates

25: CXDirection
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(a) ibmqx2 (b) ibmq singapore

(c)

ibmq 16 melbourne (d) ibmq ourense

Figure B.3: Coupling maps of the devices studied in this work. Vertices, repre-

sented by blue circles, correspond to qubits, while edges are directed from the control

to the target qubits of permitted two-qubit gates.

lation strategies, it provides a novel way of using device information to benchmark an

entire system, instead of simply the physical qubits which comprise it.

B.3.1 Device Coupling Maps

A coupling map of a device is a graphical representation of how two-qubit gates can be

applied across the device. In this representation, each qubit is represented by a vertex,

with directed edges joining qubits between which a two-qubit gate can be applied.

For the devices considered here, this two-qubit gate is a CX gate, implemented using

the cross-resonance interaction of transmon qubits [291]. The direction of the edge is

from the control to the target qubit of the CX gate, with bi-directional edges indicating

that both qubits can be used as either the control or target. The coupling maps of the

devices investigated in this work are shown in Figure B.3. For those devices all edges

are bi-directional, although this is not typical when the asymmetric CX is employed.

As discussed in Section 3.3, a trade-off exists between the connectivity of the device

and the number of two-qubit gates necessary to implement a given circuit. More highly

connected coupling maps typically require fewer two-qubit gates to implement a fixed

unitary than less connected ones, owing to the reduced need for SWAP gates to account

for discrepancies between the coupling maps of the uncompiled circuit and the device.

While this reduced depth can reduce the impact of time based noise channels, this is

counterbalanced by the higher levels of crosstalk experienced by qubits corresponding

to vertices with high degree in the device’s coupling map [252].

B.3.2 Device Calibration Information

The noise-aware tools employed by the compilation strategies explored in this work

consider three kinds of errors which can occur, namely: readout error, single-qubit

gate error, and two-qubit gate error. For the devices provided through IBM Quantum,

this information is contained in calibration data which is accessible using tools in the

Qiskit library, and is updated twice daily. The experiments in this work were conducted

between 2020-01-29 and 2020-02-10 with the calibration data in Figure B.4 and Figure

B.5 aggregated over this time period.

Here we make the simplifying assumption, discussed in Section 1.3.3, that readout er-

ror acts independently on each qubit. As such, if readout error corresponds to returning
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“0” when the proper label is “1”, or vice-versa, then the readout error rate, denoted,

εa, is calculated as

εa =
Pr(“0”||1〉)+Pr(“1”||0〉)

2
.

εa is estimated by repeatedly preparing a qubit in a known state, immediately measur-

ing it, and then counting the number of times the measurement returns the wrong label.

This value, for the devices explored in this work, is reported in Figure B.4a.

Errors affecting the gates of the device correspond to an incorrect operation applied by

the device. There are many ways to quantify the effect of this error, with IBM Quan-

tum’s devices reporting randomised benchmarking (RB) numbers [18, 19].2 The RB

number, εC, is estimated by running many self-inverting Clifford circuits, consisting of

m layers of gates drawn from the n-qubit Clifford group, inverted at layer m+1. The

survival probability, which is the probability the input state is unchanged, can then be

estimated. Under a broad set of noise models and assumptions [18, 294], this survival

probability can be shown to decay exponentially with m. Consequently, it can be es-

timated by fitting a decay curve of the form Apm +B. The RB number is related to

p ∈ [0,1], called the depolarisation/decay rate, by

εC = (1− p)(1−1/D) ,

where D = 2n, and n is the number of qubits acted on by the Clifford gates. εC, which

is also referred to as the error per Clifford of the device, is minimised at p = 1, in

which case the survival probability is constant and set by the state preparation and

measurement errors.

The Clifford gates necessary for RB must be compiled to the native gate set of the

device. Using an estimate of εC, an estimate of the error per gate, ε
g
G, for a gate G, can

be obtained by multiplying εC by a factor related to the average number of uses of G

when implementing a random Clifford operation:

ε
g
G ∼ εC×# uses of G per Clifford.

Values for ε
g
U2

, the error per gate for U2 gates, can be found in Figure B.4b, and ε
g
CX

,

that for CX gates, in Figure B.5. The commonly reported average fidelity for U3 gates

is 1−
(

1− ε
g
U2

)2
.

Several important noise channels, most notably crosstalk, are not included in the device

calibration data. As shown in Section 3.4, the effects of this noise can be inferred

through the application-motivated benchmarks we introduce in this work, by showing

the trade-off between connectivity of the device and crosstalk [252].

2There are many variants of randomised benchmarking such as: direct RB [292], which scales better

to larger devices than does traditional Clifford RB; and Simultaneous RB [293], which can be used to

quantify crosstalk.
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B.3. Device Data
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(a) Average readout error. The readout error is the probability the state of a given qubit is

incorrectly labelled.
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(b) Average error per U2 gate. The error per gate is a measure of how accurately the U2 gate

is applied.

Figure B.4: Error per single qubit operations on the devices used in this

work. Bars indicate the average error rates; error bars are one standard deviation.

Data aggregated based on calibration data collected over the course of our experi-

ments. Devices shown here are: ibmqx2 [ ], ibmq ourense [ ], ibmq singapore [ ],

ibmq 16 melbourne [ ]. A logarithmic scale is used.
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(0
,1
)

(0
,1
4)

(2
,1
)

(2
,3
)

(2
,1
2)

(4
,3
)

(4
,5
)

(4
,1
0)

(6
,5
)

(6
,8
)

(8
,6
)

(8
,7
)

(8
,9
)

(1
0,
4)

(1
0,
9)

(1
0,
11

)
(1
2,
2)

(1
2,
11

)
(1
2,
13

)
(1
4,
0)

(1
4,
13

)
(0
,2
)

(2
,0
)

(2
,4
)

(4
,2
)

(6
,1
)

(6
,7
)

(8
,3
)

(1
0,
5)

(1
2,
7)

(1
4,
9)

(1
6,
11

)
(1
6,
15

)
(1
6,
17

)
(1
8,
13

)
(1
8,
17

)
(1
8,
19

)

10 2

10 1

E
rr

o
r

R
at

e

(1
,0
)

(1
,2
)

(1
,1
3)

(3
,2
)

(3
,4
)

(3
,1
1)

(5
,4
)

(5
,6
)

(5
,9
)

(7
,8
)

(9
,5
)

(9
,8
)

(9
,1
0)

(1
1,
3)

(1
1,
10

)
(1
1,
12

)
(1
3,
1)

(1
3,
12

)
(1
3,
14

)
(1
,3
)

(3
,1
)

(1
,6
)

(3
,8
)

(5
,1
0)

(7
,6
)

(7
,1
2)

(9
,1
4)

(1
1,
16

)
(1
3,
18

)
(1
5,
16

)
(1
7,
16

)
(1
7,
18

)
(1
9,
18

)

10 2

10 1

Qubits

Figure B.5: Average error per CX operation on the devices used in this work.

The error per CX gate is a measure of how accurately the CX gate is applied. Bars

indicate the average error rates; error bars are one standard deviation. Data aggregated

based on calibration data collected over the course of our experiments. Devices shown

here are: ibmqx2 [ ], ibmq ourense [ ], ibmq singapore [ ], ibmq 16 melbourne [ ]. A

logarithmic scale is used.
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B.4. Empirical Relationship Between Heavy Output Probability and L1-norm

Distance

B.4 Empirical Relationship Between Heavy Output

Probability and ℓ1-norm Distance

As discussed in Section 1.6.4, the theoretical foundations for believing that implement-

ing shallow circuits to within a fixed ℓ1-norm distance constitutes a demonstration of

quantum computational supremacy are stronger than for implementations with high

heavy output probability. That being said, Figure 3.6 and Figure 3.14 contain simi-

lar features. For example, ibmq 16 melbourne consistently performs the worst, with

ibmq singapore and ibmq ourense performing the best in both figures of merit. An

interesting question, then, is how these two figures of merit generally relate to one

another.

If the ℓ1-norm distance was 0, the experimental outcome frequencies would equal the

ideal outcome probabilities. Consequently, the heavy output probabilities would be the

same between the device and an ideal quantum computer. Because the heavy output

probability depends on the circuit in question, when examining the empirical relation-

ship between ℓ1-norm distance and heavy output probability, it is useful to normalise

the latter by the heavy output probability of an ideally-implemented circuit. We define

the normalised heavy output probability as the ratio of the heavy output probability of

the device and the heavy output probability from an ideal quantum computer. There-

fore if the ℓ1-norm distance was 0, the normalised heavy output probability would be

1.

As the ℓ1-norm distance increases, the experimental frequencies increasingly differ

from the ideal outcome probabilities. Two things then may happen: heavy outputs are

produced more regularly, in which case the normalised heavy output probability will

grow above 1; or less regularly, in which case the normalised heavy output probability

will fall below 1. In practice, we expect the distribution produced by the device to

converge to the uniform one over all bit strings as the noise increases, so we expect the

normalised heavy output probability to fall with increasing ℓ1-norm distance.

The empirical relationship between the normalised heavy output probability and ℓ1-

norm distance is shown in Figure B.6. For each circuit, Figure B.6 plots the ℓ1-norm

distance of the distribution produced by a real device against the normalised heavy

output probability. As expected, a negative correlation exists between these two figures

of merit. For the deepest circuits, and in particular the widest circuits from the deep

circuits class, the cluster of points can be seen to indicate that the normalised heavy

output probability falls more slowly as the ℓ1-norm distance becomes larger. This is

because the minimum value of heavy output probability is being reached, which is to

say that the output distribution from the real device has converged to the uniform one,

while more detail can be extracted by considering the ℓ1-norm distance.

This correlation is encouraging as, in the regime where it becomes impossible to calcu-

late the ℓ1-norm distance, we can be justified in believing that the correlation between

the features present in the plot throughout this section persists. This line of reasoning

is similar to that used when Cross-Entropy Benchmarking is used to predict demon-

strations of quantum computational supremacy in the regime when it too becomes

impossible to calculate [60].
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Figure B.6: Scatter plot and linear regression line comparing the normalised

heavy output probability and ℓ1-norm distance. Each point corresponds to one cir-

cuit of the class and width as labelled. Colours correspond to numbers of qubits in the

following way: 2 [ ], 3 [ ], 4 [ ], 5 [ ], 6 [ ], 7 [ ].
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Appendix C

Blind IQP Computation, and an IQP

Hypothesis Test

C.1 Proof of Lemma 4.1.1

Lemma (Restated from Lemma 4.1.1). Consider a quantum state EQQQ|φ〉, where we

have used the graph state circuit notation of Definition 1.4.2, and where |φ〉 is an

arbitrary quantum state. If Q̃QQ is an extended IQP graph built from QQQ then there exists

a state E
Q̃QQ
|ψ〉, which can be transformed into the state EQQQ|φ〉 through a sequence of

Pauli-Y basis measurements on qubits and local rotations around the Z axis of the

unmeasured qubits through angles
{

0, π
2 ,π,

3π
2

}
.

This proof is similar to that of Lemma 1.4.1 in [73].

Proof. We will define a scheme for building the state |ψ〉 and a corresponding extended

IQP graph Q̃QQ meeting the conditions of the lemma.

Consider the case where Q̃QQ was built from QQQ by replacing the entry (i, j) of QQQ with

−1. QQQ can be built from Q̃QQ either by applying a break operation to the vertex b1=g(i, j),

or by applying a bridge operation to this same vertex. We now move to consider these

two separate cases.

Break: QQQi j = 0. Define the state E
Q̃QQ
|ψ〉 as

E
Q̃QQ
|ψ〉= CZai,b1

CZp j,b1
EQQQ|φ〉|b1〉,

where we set |b1〉= |rb
1〉 with rb

1 ∈ {0,1}.

Notice then that CZai,b1
CZp j,b1

EQQQ indeed describes the same entanglement pat-

tern as E
Q̃QQ

. Indeed, applying the CZ operations is equivalent to applying the

operator Zrb
1 to each of the qubits ai and p j. We can conclude:

E
Q̃QQ
|ψ〉= Z

rb
1

aiZ
rb

1
p jEQQQ|φ〉|b1〉
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Appendix C. Blind IQP Computation, and an IQP Hypothesis Test

Measuring the qubit b1 in the Pauli-Y basis collapses it, with equal likelihood,

to either of the Pauli-Y basis states. As the qubit b1 is disentangled, this mea-

surement has no other effect on the state. We are therefore left with the state

Z
rb

1
aiZ

rb
1

p jEQQQ|φ〉 which differs by only local rotations from EQQQ|φ〉.
Bridge: QQQi j = 1. Define the state E

Q̃QQ
|ψ〉 as

E
Q̃QQ
|ψ〉= CZai,b1

CZp j,b1
CZai,p j

EQQQ|φ〉|b1〉, (C.1)

where |b1〉 = 1√
2

(
|0〉+(−1)rb

1 |1〉
)

with rb
1 ∈ {0,1} is a Hadamard basis state.

Notice that CZai,b1
CZp j,b1

CZai,p j
EQQQ describes the same operation as E

Q̃QQ
, since

CZai,p j
cancels the identical operation implicit in EQQQ.

Applying the operations, CZai,b1
and CZp j,b1

to the state CZai,p j
EQQQ|φ〉|b1〉 is

equivalent to applying

1√
2
|0〉⊗ Iai

⊗ Ip j
+(−1)rb

1
1√
2
|1〉⊗Zai

⊗Zp j

to the state CZai,p j
EQQQ|φ〉. Following this by a measurement of the qubit b1 in the

Pauli-Y basis is equivalent to applying

1√
2
Iai
⊗ Ip j

+(−1)1−sb
1 (−1)rb

1 i
1√
2
Zai
⊗Zp j

to CZai,p j
EQQQ|φ〉. Here we have used the notation that sb

1 = 0 when |+Y〉= |0〉+
i|1〉 is measured and sb

1 = 1 when |−Y〉= |0〉− i|1〉 is measured.

The original state of equation (C.1) is transformed, by this measurement, to the

state
(

1√
2
Iai
⊗ Ip j

+(−1)1−sb
1 (−1)rb

1 i
1√
2
Zai
⊗Zp j

)
CZai,p j

EQQQ|φ〉. (C.2)

Notice that the CZ operator can be written as

CZ1,2 =
1

2
(I1⊗ I2 +Z1⊗ I2 + I1⊗Z2−Z1⊗Z2) .

Using this fact, along with the knowledge that S= 1√
2
(I+ iZ), allows us to see

CZ1,2 = (S1⊗S2)

(
1√
2
I1⊗ I2− i

1√
2
Z1⊗Z2

)

CZ1,2 =
(
S−1

1 ⊗S−1
2

)( 1√
2
I1⊗ I2 + i

1√
2
Z1⊗Z2

)

In particular:

CZai,p j
=

(
S
(−1)1−sb

1(−1)rb
1

ai ⊗S
(−1)1−sb

1(−1)rb
1

p j

)

(
1√
2
Iai
⊗ Ip j

− (−1)1−sb
1 (−1)rb

1 i
1√
2
Zai
⊗Zp j

)
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C.2. Proof of Theorem 4.1.1

Substituting this into (C.2), and with some rearranging, we realise the resulting

state is (
S
(−1)1−sb

1
+rb

1

a1 ⊗S
(−1)1−sb

1
+rb

1

p j

)
EQQQ|φ〉.

Again, this differs from the state EQQQ|φ〉 only by local rotations around the Z axis.

We now turn to the case where the number of break and bridge operations needed to

move from Q̃QQ to QQQ is more than one. The state E
Q̃QQ
|ψ〉 can be built one step at a time

by repeating the steps above (i.e. entangling and measuring the appropriate bridge

and break qubits one at a time). We wish to show that all the necessary entanglement

operations, all the measurement operations and all the necessary corrections can be

done together, and in this order. This is to say that all entanglement is done together,

all measurements are done together, and all corrections are done together.

This can be done by demonstrating that these operations appropriately commute. Since

the qubits that might require corrections are never measured, and because the correc-

tions commute with the entanglement operators, the corrections may be moved to the

end of the computation. Those qubits that will be measured are not entangled after

they are measured. As such all entanglement may be commuted before all the mea-

surements. This established the appropriate order of operations.

C.2 Proof of Theorem 4.1.1

Theorem (Restated from Theorem 4.1.1). The protocol described by Protocol 4.1.2 is

information-theoretically secure against a dishonest server.

Proof. The proof consists of a pattern of transformations of the real protocol of Pro-

tocol 4.1.2, into the ideal resource of Protocol 4.1.3, which leaves the computation

unchanged, therefore ensuring the indistinguishability of the two settings.

The first transformation we perform is of the state generation phase of the Protocol

4.1.2. The new method we use for this phase is described in Protocol C.2.1 and relies

on the measurement of EPR pairs to produce qubits in the correct basis, with some

randomness resulting from the measurement. This may be visualised by the expansion

of π1
A seen in Figure 4.5. While lines 1, 2 and 4 of Protocol 4.1.2 and the lines 1, 2, 3

and 5 of Protocol C.2.1 differ, the remainder of both protocols is identical. We show

now that the protocols are indistinguishable.

• Firstly consider the generation of rp and ra. In Protocol 4.1.2 these terms are

picked uniformly at random from the set of all binary stings of the appropriate

length. In the case of Protocol C.2.1 they are generated by measurements on

EPR pairs, the result of which is entirely random. Similarly, in both cases, rb is

picked uniformly at random from the set of all binary strings of the appropriate

length.

• Line 2 of Algorithm 4.1.2 generates at random one of the four states |+〉, |+Y 〉,
|−〉 and |−Y 〉. Line 3 of Algorithm C.2.1 achieves the same effect by mea-
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Appendix C. Blind IQP Computation, and an IQP Hypothesis Test

suring an EPR pair with equal probability in one of the basis {|+〉, |−〉} and{
|+Y 〉, |−Y 〉

}
.

• Finally, the application of the
(√

Y
)db

j
operation in line 4 of Algorithm 4.1.2

decides, according the graph to be created, if the bridge and break qubit will

be drawn from the set {|+〉, |−〉} or {|0〉, |1〉}. Choosing between using the

measurement basis {|+〉, |−〉} or {|0〉, |1〉} on one half of an EPR pair has the

same effect. The random rotation Yrb

j then has the same effect of the randomness

that is intrinsic to the measurement performed in Protocol C.2.1.

Consider now the transformation from Protocol C.2.1 to Protocol C.2.2. The reader

may wish to refer to Figure 4.5 for a visualisation of this new resource.

• Notice that line 3 of Protocol C.2.1 is identical to that of line 9 of Protocol

C.2.2. This operation can be delayed without affecting the computation as the

qubit being measured is not acted upon in any other way during the protocol.

• Consider Π and A. In Protocol C.2.2 they are generated at random from the set

of all Π ∈ [0,1,2,3]np and A ∈ [0,1,2,3]na as stated in line 7. This is the case too

for Algorithm C.2.1 because Πz
i , Πs

i , Az
k and As

k are one time padded by r
p
i , d

p
i ,

ra
k and da

k respectively as seen in equations (4.2), (4.3), (4.4) and (4.5).

• It remains to show that Protocol C.2.2 results in the same computation as Proto-

col C.2.1. This can be achieved by noting a simple rearrangement of equations

(4.2), (4.3), (4.4) and (4.5) to make d
p
i and da

k the subject. In doing so we assume

the ri
p,r

k
a = 0 which is corrected for, if this is not the case, in equation (4.8).

Finally, Protocol 4.1.3 simply involves a relabeling of the players in Protocol C.2.2 to

match those in the simulator distinguisher setting. This amounts to the transformation

from Figure 4.5 to Figure 4.6.

This series of transformations convinces us that the following relationship is true and

that the resource of Protocol 4.1.2 is composably secure against a dishonest server.

πAR ≡ Sσ
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C.2. Proof of Theorem 4.1.1

Protocol C.2.1 Blind delegated IQP computation, adapting Protocol 4.1.2 by the addi-

tion of a teleportation technique for state preparation.

Public: Q̃QQ ∈ {−1,0,1}na×np , θ ∈ [0,2π], Q (the distribution from which QQQ is picked)

Client input: QQQ ∈ {0,1}na×np

Client output: x̃ ∈ {0,1}np

Client:

1: Randomly generate dp ∈{0,1}np and da ∈ [0,1]na where np and na are the numbers

of primary and ancillary qubits respectively.

2: Generate np EPR pairs |Φ+〉pj , na EPR pairs |Φ+〉ai and a further nb EPR pairs

|Φ+〉bk .

3: Measure one half of each of |Φ+〉pj in the basis S
d

p
j {|+〉, |−〉} to achieve outcome

r
p
j and one half of each of |Φ+〉ai in the basis Sda

i {|+〉, |−〉} to achieve outcome ra
i .

4: Create db ∈ {0,1}nb in the following way: For i = 1, . . . ,na and j = 1, . . . ,np, if

Q̃QQi j =−1 and QQQi j = 0, then db
k = 0 else if Q̃QQi j =−1 and QQQi j = 1 then db

k = 1. Keep

track of the relation between k and (i, j) via the surjective function g
Q̃QQ

: Zna×np
→

Znb
.

5: Measure one half of each of |Φ+〉bk in the basis
√
Y

db
k {|0〉, |1〉} to achieve outcome

rb
k , for k = 1, . . . ,nb.

6: State ρ comprising of all unmeasured states in the Client’s position is sent to the

Server.

Server:

7: Implement E
Q̃QQ

.

8: Measure qubits b1, ...,bnb
in the basis

{
|+Y〉, |−Y〉

}
:= {|0〉+ i|1〉, |0〉− i|1〉}.

Take the outcome of measuring qubit bk to be sb
k ∈ {0,1} if the measurment

projects the output to the state |0〉+ i(−1)sb
k |1〉.

9: Send the outcome sb ∈ {0,1}nb to the Client.

Client:

10: Calculate ΠΠΠz,ΠΠΠs ∈ {0,1}np and AAAz,AAAs ∈ {0,1}na using: (4.2), (4.3), (4.4) and

(4.5).

11: Calculate AAA ∈ {0,1,2,3}na and ΠΠΠ ∈ {0,1,2,3}np for the ancillary and primary

qubits respectively, where Ai = As
i +2Az

i (mod 4) and Π j = Πs
j +2Πz

j (mod 4).
12: Send AAA and ΠΠΠ for the ancillary and primary qubits respectively, to the Server.

Server:

13: Measure qubits in the basis of equation (4.1), for the ancillary and primary qubits

respectively, producing measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na .

14: Send measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na to the Client.

Client:

15: Generate and output x̃ ∈ {0,1}np using equation (1.25).
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Protocol C.2.2 Blind delegated IQP computation, adapting Protocol C.2.1 with the

transition to pre-made randomness.

Public: Q̃QQ ∈ {−1,0,1}na×np , θ ∈ [0,2π], Q (the distribution from which QQQ is picked)

Client input: QQQ ∈ {0,1}na×np

Client output: x̃ ∈ {0,1}np

Client:

1: Generate np EPR pairs |Φ+〉pj , na EPR pairs |Φ+〉ai and a further nb EPR pairs

|Φ+〉bk .

2: Create db ∈ {0,1}nb in the following way: For i = 1, . . . ,na and j = 1, . . . ,np, if

Q̃QQi j =−1 and QQQi j = 0, then db
k = 0 else if Q̃QQi j =−1 and QQQi j = 1 then db

k = 1. Keep

track of the relation between k and (i, j) via the surjective function g
Q̃QQ

: Zna×np
→

Znb
.

3: Measure one half of each of |Φ+〉bk in the basis
√
Y

db
k {|0〉, |1〉} to achieve outcome

rb
k , for k = 1, . . . ,nb.

Server:

4: Implement E
Q̃QQ

.

5: Measure qubits b1, ...,bnb
in the basis

{
|+Y〉, |−Y〉

}
:= {|0〉+ i|1〉, |0〉− i|1〉}.

Take the outcome of measuring qubit bk to be sb
k ∈ {0,1} if the measurment

projects the output to the state |0〉+ i(−1)sb
k |1〉.

6: Send the outcome sb ∈ {0,1}nb to the Client.

Client:

7: Randomly generate ΠΠΠ ∈ {0,1,2,3}np and AAA ∈ {0,1,2,3}na where np and na are

the numbers of primary and ancillary qubits respectively.

8: Calculate d
p
j ∈ {0,1,2,3}

np and da
i ∈ {0,1,2,3}na using (4.6) and (4.7) respec-

tively.

9: Measure one half of each of |Φ+〉pj in the basis S
d

p
j {|+〉, |−〉} to achieve outcome

r
p
j and one half of each of |Φ+〉ai in the basis Sda

i {|+〉, |−〉} to achieve outcome ra
i .

10: Send AAA and ΠΠΠ for the ancillary and primary qubits respectively, to the Server.

Server:

11: Measure qubits in the basis of equation (4.1), for the ancillary and primary qubits

respectively, producing measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na .

12: Send measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na to the Client.

Client:

13: Generate and outputs x̃ ∈ {0,1}np using equation (4.8).
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