
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Investigating Astrocyte Dysfunction in 

Mouse Models of Alzheimer’s Disease 

 

Monique Hooley 
A thesis submitted for the degree of Doctor of 

Philosophy  

2021 

 

Supervisors  
Professor Giles Hardingham  

Professor Tara Spires-Jones 

 
 
 

 

The Wellcome Trust Translational Neuroscience PhD 

Programme 

 The University of Edinburgh 



Declaration  
 

I declare that this thesis has been composed solely by myself and that it has not been 

submitted, in whole or in part, in any previous application for a degree. Except where stated 

otherwise by reference or acknowledgment, the work presented is entirely my own.  

 



Acknowledgements  
I am incredibly grateful for the support and guidance I have received from a number of people 

during my PhD.  

 
To my supervisors Professor Giles Hardingham, and Professor Tara Spires-Jones, I sincerely 
thank you for your mentorship throughout these years. I learnt a great deal from you both 
and thoroughly enjoyed being a member of your labs. I would not be the scientist I am today 
without your guidance and I’m extremely grateful I had the opportunity to join your labs.  
 
In the Hardingham lab, Zoeb Jiwaji, it was a pleasure working on complimentary projects with 
you. I really enjoyed getting to know you. Owen Dando, Katie Emelianova and Xin He, thank 
you for your bioinformatic skills, you are a dream team! Jing Qui, Paul Baxter, Alison Todd, 
Sean Mckay, Jamie McQueen, Philip Hasel, Jamie Loan, Ying Zhou and Lynsey Dunsmore, 
thank you for your support over the years, it was such a pleasure to work with you all.  
 
In the Spires-Jones lab, Caitlin Davies- my comrade-in-arms. I’ve been glad that I met you from 
the very first interview day. Couldn’t have asked for a better pal to spend hours talking about 
array tomography with, or dancing like fools dressed as retro space hoppers with. Jane 
Tulloch, I owe a huge debt of gratitude for all of your support throughout the years. I could 
not have done it without you. Marti Colom-Cadena, thank you for your friendship and your 
awesome array tomography tool! Jamie Rose, you brought a smile to my face every day, thank 
you for your support during my PhD. Declan King, thank you for your support and IPA 
tutelage! Anna, I feel very lucky to have gotten to know you, you are a brilliant scientist, thank 
you for all your support. Makis Tzorias, it was fun working alongside you, thanks for your 
support throughout the years. Helen Stirling, thank you for being such a brilliant student and 
person to work with. Hati Kurudzhu, Chaitra Sathyaprakash, James Catterson, Claire Durrant, 
Jamie Toombs, Tyler Saunders, Jie Yeap, Kris Holt, Rosie Jackson and Ellie Pickett, it was 
awesome getting to know you and being part of the spires-lab family. I always promised I 
would thank the mice as well, none of this would have been possible without them!  
 
I am very grateful to the Wellcome Trust for giving me the opportunity to do this research, as 
well as the 4 Year Wellcome Trust Translational Neuroscience organisers at Edinburgh 
University for organising such a brilliant course. The first year was a lot of fun dipping into the 
different subject areas and it was a great experience to visit the clinics. Most importantly, I 
want to thank my cohort. The power women Emily Wheater, Liv Hamilton, Tuula Ritakari and 
the already mentioned Caitlin Davies and Anna Stevenson. I feel very lucky to have been part 
of such a wonderful cohort. You are all fantastic scientists but most importantly fantastic 
people. I will cherish many fond memories with you all.  
 
I’d like to thank my parents for providing me with the opportunities they have in life, and for 
their love and support. My sister and brother, thank you for being the best cheerleaders a 
sister could wish for, your everlasting support is appreciated. Finally, a big thanks goes to 
my fiancée Deniz Kent, your belief in me over the years builds me up and encourages me to 
reach to do great things.  

Grandpa papa, this is for you “panya shway aoe luu mkhaoe”.  
 



 



 
 
 
 
 
 





 



 



 I 

Abbreviations 
 
  

A1  Lipopolysaccharide activated reactive astrocyte profile  
A2  Middle cerebral artery occlusion activated astrocyte profile 
ABCA1  ATP-binding Cassette Transporter 
AD Alzheimer’s disease 
AICD Amyloid Precursor Protein Intracellular Domain 
ALDH1L1 Aldehyde Dehydrogenase 1 Family Member L1 
ANOVA Analysis of variance 
APOE Apolipoprotein E  
APP Amyloid Precursor Protein 
APP/PS1 APPswePS1dE9 transgenic amyloidopathy model 
APPNLF  Knock-in amyloidopathy model 
AQP4  Aquaporin 4 
ARPC1B  Actin Related Protein 2/3 Complex Subunit 1B 
AT  Array tomography  
ATP6AP1  ATPase H+ Transporting Accessory Protein 1 
Aβ Amyloid-beta 
BACE1 β-site APP Cleaving Enzyme  
BBB Blood brain barrier 
C1Q Complement Component 1q  
C3 Complement Protein C3  
C4B Complement Component 4B  
CAP1  Cyclase Associated Actin Cytoskeleton Regulatory Protein 1 
CCL4 Carbon Tetrachloride 
CD109  CD109 Antigen 
CD44  CD44 Antigen 
cDNA Complementary deoxyribonucleic acid  
CLEC7A C-type Lectin Domain Family 7 Member A  
CLU  Clusterin 
CNS Central nervous system  
CO2 Carbon dioxide 
COX6C Cytochrome C Oxidase Subunit 6C 
Cp  Ceruloplasmin 
CSEA Cell type specific expression analysis  
CSF  Cerebrospinal fluid 
CST7  Cystatin F 
CTSD Cathepsin D 
CX3CR1 CX3C Chemokine Receptor 1 
DAA Disease associated astrocytes 



 II 

DAPI 4’-6-diamidino-2-phenylindole  
DHPC 1,2-diheptanoyl-sn-glycero-3-phosphocholine 
DPBS Dulbecco's phosphate-buffered saline  
DTT Dithiothreitol  
EAAT1/ 
GLAST  

Excitatory Amino Acid Transporter 1  

EAAT2/ GLT-1  Excitatory Amino Acid Transporter 2 
EIF2 Eukaryotic Initiation Factor 2  
ENO2 Enolase 2 
ER Endoplasmic reticulum  
F Female 
FACS Fluorescence activated cell sorting  
FAD  Familial Alzheimer's disease  
FC  Fold change  
FDG 18F-fluorodeoxyglucose 

FERMT2  Fermitin Family Member 2 
FPKM  Fragments per kilobase of transcript per million mapped reads 
FUCA1  Alpha-L-Fucosidase 1   
GABA Gamma-aminobutyric Acid  
GAD Glutamine Acid Decarboxylase 
GBP Guanylate-Binding Protein 
GEM Gel bead emulsions  
GFAP  Glial Fibrillary Acidic Protein  
GFP  Green fluorescent protein  
GJB5  Gap Junction Beta-5 Protein  
GLUL Glutamine Synthetase 
GO  Gene ontology  
GPC4 Glypican-4 
GPC6 Glypican-6 
GPX4 Glutathione Peroxidase 4 
GSTA4 Glutathione S-Transferase Alpha 4 
GULP1  PTB Domain-Containing Engulfment Adaptor Protein 1 
GWAS Genome wide association studies  
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HET  Heterozygote  
HOM Homozygote  
HSP90B1  Heat Shock Protein 90 Beta Family Member 1 
HSPA5  Heat Shock Protein Family A Member 5 
IBA1 Allograft Inflammatory Factor 1 
IFN Ɣ Interferon Gamma  
IHC Immunohistochemistry  
IL-1β Interleukin-1β 



 III 

IL-6  Interleukin-6 
iNOS Inducible nitric oxide  
IPA Ingenuity pathway analysis  
iPSC Induced pluripotent stem cell  
JAK Janus kinase  
KCL Potassium chloride 
KEGG Kyoto Encyclopedia of Genes and Genomes  
LCN2  Lipocalin-2  
LPS  Lipopolysaccharide  
LRP1  Lipoprotein receptor-related protein 1  
m Male 
MAN2B1  Mannosidase Alpha Class 2B Member 1 
MAPK Mitogen-Activated Protein Kinase  
MAPT Microtubule Associated Protein Tau 
MAPTP301S Tauopathy mouse model  
MBP Myelin Basic Protein 
MCAO  Middle cerebral artery occlusion 
MEGF10  Multiple EGF-like domains 10 
MgCl2 Magnesium chloride 
miRNAs Micro ribonucleic acid 
mRNA Messenger ribonucleic acid  
MT-RNR2 Mitochondrially encoded 16S RNA 
NDS Normal donkey serum 
NDUFA3  NADH:Ubiquinone Oxidoreductase Subunit A3 
NDUFA4  Cytochrome C Oxidase Subunit NDUFA4 
NF-!B Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells  
NFTs Neurofibrillary tangles 
NMDA  N-Methyl-D-Aspartic Acid (NMDA) 
NQO1  NAD(P)H Quinone Dehydrogenase 1 
NRF2 Nuclear Factor Erythroid 2-Related Factor 2  
NSAIDs Non-Steroidal Anti-Inflammatory Drugs  
OC  Amyloid-beta fibril antibody  
ORM2  Alpha-1-acid Glycoprotein 2 
P2Y1 receptor  P2Y Purinoceptor 1 Receptor  
PCA  Principle component analysis 
PDIA6  Protein Disulphide-Isomerase A6 Precursors 
PET Positron emission tomography 
PI3K/Akt Phosphoinositide 3 kinase/Akt 
PIGS Plaque induced genes  
PRDX5 Peroxiredoxin 5 
PSD95 Post-synaptic density 95 
PSEN1 Presenilin 1 



 IV 

PSEN2 Presenilin 2  
Q-q plot  Quantile-quantile plot 
qPCR quantitative Polymerase Chain Reaction  
RNA Ribonucleic acid 
RNA-seq Ribonucleic acid sequencing  
ROIs Regions of interest 
ROS  Reactive oxygen species 
RPL10a Ribosomal protein L10a 
RPL13A Ribosomal protein L13a 
RT  Reverse transcription  
RT-PCR Reverse Transcription Polymerase Chain Reaction  
S100B S100 Calcium-Binding Protein B  
sAAPβ Soluble Amyloid Precursor Protein β 
SAD Sporadic Alzheimer's disease  
sAPP⍺ Soluble Amyloid Precursor Protein ⍺  
SD Standard deviation 
SERPINA3N Serine Protease Inhibitor A3n 
SLC1A2 Excitatory Amino Acid Transporter 2  
SLC1A3 Excitatory Amino Acid Transporter 1  
SORL1 Sortilin-Related Receptor 1 
SPARCL1 SPARC-like Protein 1  
SPI1 Transcription factor PU.1  
STAR  Spliced transcripts alignment to a reference   
STAT3  Signal Transducer and Activator of Transcription 3  
SY38  Antibody against synaptophysin 
TBS Tris-buffered saline 
TGF-β3 Transforming Growth Factor-β3  
THBS1 Thrombospondin 1  
THBS2 Thrombospondin 2  
ThioS Thioflavin-S 
TNF ⍺ Tumor Necrosis Factor alpha 
TRAP  Translating ribososome affinity purification 
TREM2 Triggering Receptor Expressed on Myeloid Cells 2  
TYROBP TYRO Protein Tyrosine Kinase-Binding Protein 
UMAP Uniform manifold approximation and projection 
UMI  Unique molecular identifier  
UPR Unfolded Protein Response 
VIM Vimentin 
WT  Wild-type  

 



Declaration  
 

I declare that this thesis has been composed solely by myself and that it has not been 

submitted, in whole or in part, in any previous application for a degree. Except where stated 

otherwise by reference or acknowledgment, the work presented is entirely my own.  

 



Acknowledgements  

I am incredibly grateful for the support and guidance I have received from a number of people 

during my PhD.  

 
To my supervisors Professor Giles Hardingham, and Professor Tara Spires-Jones, I sincerely 
thank you for your mentorship throughout these years. I learnt a great deal from you both 
and thoroughly enjoyed being a member of your labs. I would not be the scientist I am today 
without your guidance and I’m extremely grateful I had the opportunity to join your labs.  
 
In the Hardingham lab, Zoeb Jiwaji, it was a pleasure working on complimentary projects with 
you. I really enjoyed getting to know you. Owen Dando, Katie Emelianova and Xin He, thank 
you for your bioinformatic skills, you are a dream team! Jing Qui, Paul Baxter, Alison Todd, 
Sean Mckay, Jamie McQueen, Philip Hasel, Jamie Loan, Ying Zhou and Lynsey Dunsmore, 
thank you for your support over the years, it was such a pleasure to work with you all.  
 
In the Spires-Jones lab, Caitlin Davies- my comrade-in-arms. I’ve been glad that I met you from 
the very first interview day. Couldn’t have asked for a better pal to spend hours talking about 
array tomography with, or dancing like fools dressed as retro space hoppers with. Jane 
Tulloch, I owe a huge debt of gratitude for all of your support throughout the years. I could 
not have done it without you. Marti Colom-Cadena, thank you for your friendship and your 
awesome array tomography tool! Jamie Rose, you brought a smile to my face every day, thank 
you for your support during my PhD. Declan King, thank you for your support and IPA 
tutelage! Anna, I feel very lucky to have gotten to know you, you are a brilliant scientist, thank 
you for all your support. Makis Tzorias, it was fun working alongside you, thanks for your 
support throughout the years. Helen Stirling, thank you for being such a brilliant student and 
person to work with. Hati Kurudzhu, Chaitra Sathyaprakash, James Catterson, Claire Durrant, 
Jamie Toombs, Tyler Saunders, Jie Yeap, Kris Holt, Rosie Jackson and Ellie Pickett, it was 
awesome getting to know you and being part of the spires-lab family. I always promised I 
would thank the mice as well, none of this would have been possible without them!  
 
I am very grateful to the Wellcome Trust for giving me the opportunity to do this research, as 
well as the 4 Year Wellcome Trust Translational Neuroscience organisers at Edinburgh 
University for organising such a brilliant course. The first year was a lot of fun dipping into the 
different subject areas and it was a great experience to visit the clinics. Most importantly, I 
want to thank my cohort. The power women Emily Wheater, Liv Hamilton, Tuula Ritakari and 
the already mentioned Caitlin Davies and Anna Stevenson. I feel very lucky to have been part 
of such a wonderful cohort. You are all fantastic scientists but most importantly fantastic 
people. I will cherish many fond memories with you all.  
 
I’d like to thank my parents for providing me with the opportunities they have in life, and for 
their love and support. My sister and brother, thank you for being the best cheerleaders a 
sister could wish for, your everlasting support is appreciated. Finally, a big thanks goes to 
my fiancée Deniz Kent, your belief in me over the years builds me up and encourages me to 
reach to do great things.  

Grandpa papa, this is for you “panya shway aoe luu mkhaoe”.  
 



 
 

 
 



 
 

 



 

 



 



 
 

 



 I 

Abbreviations 
 
  

A1  Lipopolysaccharide activated reactive astrocyte profile  
A2  Middle cerebral artery occlusion activated astrocyte profile 
ABCA1  ATP-binding Cassette Transporter 
AD Alzheimer’s disease 
AICD Amyloid Precursor Protein Intracellular Domain 
ALDH1L1 Aldehyde Dehydrogenase 1 Family Member L1 
ANOVA Analysis of variance 
APOE Apolipoprotein E  
APP Amyloid Precursor Protein 
APP/PS1 APPswePS1dE9 transgenic amyloidopathy model 
APPNLF  Knock-in amyloidopathy model 
AQP4  Aquaporin 4 
ARPC1B  Actin Related Protein 2/3 Complex Subunit 1B 
AT  Array tomography  
ATP6AP1  ATPase H+ Transporting Accessory Protein 1 
Aβ Amyloid-beta 
BACE1 β-site APP Cleaving Enzyme  
BBB Blood brain barrier 
C1Q Complement Component 1q  
C3 Complement Protein C3  
C4B Complement Component 4B  
CAP1  Cyclase Associated Actin Cytoskeleton Regulatory Protein 1 
CCL4 Carbon Tetrachloride 
CD109  CD109 Antigen 
CD44  CD44 Antigen 
cDNA Complementary deoxyribonucleic acid  
CLEC7A C-type Lectin Domain Family 7 Member A  
CLU  Clusterin 
CNS Central nervous system  
CO2 Carbon dioxide 
COX6C Cytochrome C Oxidase Subunit 6C 
Cp  Ceruloplasmin 
CSEA Cell type specific expression analysis  
CSF  Cerebrospinal fluid 
CST7  Cystatin F 
CTSD Cathepsin D 
CX3CR1 CX3C Chemokine Receptor 1 
DAA Disease associated astrocytes 



 II 

DAPI 4’-6-diamidino-2-phenylindole  
DHPC 1,2-diheptanoyl-sn-glycero-3-phosphocholine 
DPBS Dulbecco's phosphate-buffered saline  
DTT Dithiothreitol  
EAAT1/ 
GLAST  

Excitatory Amino Acid Transporter 1  

EAAT2/ GLT-1  Excitatory Amino Acid Transporter 2 
EIF2 Eukaryotic Initiation Factor 2  
ENO2 Enolase 2 
ER Endoplasmic reticulum  
F Female 
FACS Fluorescence activated cell sorting  
FAD  Familial Alzheimer's disease  
FC  Fold change  
FDG 18F-fluorodeoxyglucose 

FERMT2  Fermitin Family Member 2 
FPKM  Fragments per kilobase of transcript per million mapped reads 
FUCA1  Alpha-L-Fucosidase 1   
GABA Gamma-aminobutyric Acid  
GAD Glutamine Acid Decarboxylase 
GBP Guanylate-Binding Protein 
GEM Gel bead emulsions  
GFAP  Glial Fibrillary Acidic Protein  
GFP  Green fluorescent protein  
GJB5  Gap Junction Beta-5 Protein  
GLUL Glutamine Synthetase 
GO  Gene ontology  
GPC4 Glypican-4 
GPC6 Glypican-6 
GPX4 Glutathione Peroxidase 4 
GSTA4 Glutathione S-Transferase Alpha 4 
GULP1  PTB Domain-Containing Engulfment Adaptor Protein 1 
GWAS Genome wide association studies  
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HET  Heterozygote  
HOM Homozygote  
HSP90B1  Heat Shock Protein 90 Beta Family Member 1 
HSPA5  Heat Shock Protein Family A Member 5 
IBA1 Allograft Inflammatory Factor 1 
IFN Ɣ Interferon Gamma  
IHC Immunohistochemistry  
IL-1β Interleukin-1β 



 III 

IL-6  Interleukin-6 
iNOS Inducible nitric oxide  
IPA Ingenuity pathway analysis  
iPSC Induced pluripotent stem cell  
JAK Janus kinase  
KCL Potassium chloride 
KEGG Kyoto Encyclopedia of Genes and Genomes  
LCN2  Lipocalin-2  
LPS  Lipopolysaccharide  
LRP1  Lipoprotein receptor-related protein 1  
m Male 
MAN2B1  Mannosidase Alpha Class 2B Member 1 
MAPK Mitogen-Activated Protein Kinase  
MAPT Microtubule Associated Protein Tau 
MAPTP301S Tauopathy mouse model  
MBP Myelin Basic Protein 
MCAO  Middle cerebral artery occlusion 
MEGF10  Multiple EGF-like domains 10 
MgCl2 Magnesium chloride 
miRNAs Micro ribonucleic acid 
mRNA Messenger ribonucleic acid  
MT-RNR2 Mitochondrially encoded 16S RNA 
NDS Normal donkey serum 
NDUFA3  NADH:Ubiquinone Oxidoreductase Subunit A3 
NDUFA4  Cytochrome C Oxidase Subunit NDUFA4 
NF-𝜅B Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells  
NFTs Neurofibrillary tangles 
NMDA  N-Methyl-D-Aspartic Acid (NMDA) 
NQO1  NAD(P)H Quinone Dehydrogenase 1 
NRF2 Nuclear Factor Erythroid 2-Related Factor 2  
NSAIDs Non-Steroidal Anti-Inflammatory Drugs  
OC  Amyloid-beta fibril antibody  
ORM2  Alpha-1-acid Glycoprotein 2 
P2Y1 receptor  P2Y Purinoceptor 1 Receptor  
PCA  Principle component analysis 
PDIA6  Protein Disulphide-Isomerase A6 Precursors 
PET Positron emission tomography 
PI3K/Akt Phosphoinositide 3 kinase/Akt 
PIGS Plaque induced genes  
PRDX5 Peroxiredoxin 5 
PSD95 Post-synaptic density 95 
PSEN1 Presenilin 1 



 IV 

PSEN2 Presenilin 2  
Q-q plot  Quantile-quantile plot 
qPCR quantitative Polymerase Chain Reaction  
RNA Ribonucleic acid 
RNA-seq Ribonucleic acid sequencing  
ROIs Regions of interest 
ROS  Reactive oxygen species 
RPL10a Ribosomal protein L10a 
RPL13A Ribosomal protein L13a 
RT  Reverse transcription  
RT-PCR Reverse Transcription Polymerase Chain Reaction  
S100B S100 Calcium-Binding Protein B  
sAAPβ Soluble Amyloid Precursor Protein β 
SAD Sporadic Alzheimer's disease  
sAPP⍺ Soluble Amyloid Precursor Protein ⍺  
SD Standard deviation 
SERPINA3N Serine Protease Inhibitor A3n 
SLC1A2 Excitatory Amino Acid Transporter 2  
SLC1A3 Excitatory Amino Acid Transporter 1  
SORL1 Sortilin-Related Receptor 1 
SPARCL1 SPARC-like Protein 1  
SPI1 Transcription factor PU.1  
STAR  Spliced transcripts alignment to a reference   
STAT3  Signal Transducer and Activator of Transcription 3  
SY38  Antibody against synaptophysin 
TBS Tris-buffered saline 
TGF-β3 Transforming Growth Factor-β3  
THBS1 Thrombospondin 1  
THBS2 Thrombospondin 2  
ThioS Thioflavin-S 
TNF ⍺ Tumor Necrosis Factor alpha 
TRAP  Translating ribososome affinity purification 
TREM2 Triggering Receptor Expressed on Myeloid Cells 2  
TYROBP TYRO Protein Tyrosine Kinase-Binding Protein 
UMAP Uniform manifold approximation and projection 
UMI  Unique molecular identifier  
UPR Unfolded Protein Response 
VIM Vimentin 
WT  Wild-type  

 



 1 

Lay Summary  

Alzheimer’s disease is a neurodegenerative disease and is the most common form of 

dementia. Patients with dementia typically experience a loss of memory, language and 

problem-solving skills, leading to behaviour that can affect their ability to perform every day 

activities. Alzheimer’s disease is characterised by the build-up of two proteins in the brain, 

amyloid-beta (Aβ) and tau. Additional features include a reduction in the number of synapses, 

the connections between neurons, degeneration of neurons themselves, and alterations to 

other cell types in the brain such as astrocytes. Astrocytes are star shaped cells which have a 

number of roles in healthy brain function, such as aiding the formation of synapses and 

supporting the energy needs of neurons. However, in Alzheimer’s disease, it is thought that 

astrocytes lose the ability to perform a number of these functions and may also gain functions 

which contribute to the disease worsening. In this state, astrocytes are called ‘reactive’ 

astrocytes. In this thesis, I focus on the impact the protein Aβ has on astrocytes. In the hope 

that understanding how astrocytes are changed in Alzheimer’s disease may broaden the 

therapeutic approaches taken in future clinical trials.  

 

I have used 2 mouse models of Alzheimer’s disease which display an accumulation of Aβ. One 

of the mouse models has been used in Alzheimer’s disease research for many years and 

develops Aβ accumulation relatively quickly. The other mouse model is a newer model of 

Alzheimer’s disease, it develops Aβ accumulation more slowly than the first mouse model. 

However, the synapse loss and astrocyte reaction to Aβ in this newer mouse model was not 

well documented. Hence, I used imaging techniques to quantify the synapse loss and reactive 

astrocyte presence around Aβ aggregates called Aβ plaques. I found that reactive astrocyte 

burden and synapse loss increased with reduced distance from Aβ plaques.    

 

Next, I measured average gene expression changes occurring in astrocytes in each mouse 

model. Genes are units which carry information that determine traits. In this case, changes in 

gene expression were used as a proxy for changes in the functions of astrocytes exposed to 

Aβ. I found that Aβ exposed astrocytes upregulated genes involved in inflammation, protein 

processing and degradation, and the antioxidant response. However, genes involved in 

energy generation appeared to be downregulated. Hence, both protective and toxic changes 
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in astrocyte function appeared to occur. Interestingly, the gene changes in astrocytes exposed 

to Aβ were similar to those changed in astrocytes which had been exposed to toxic tau 

proteins. Hence, astrocytes share similar changes in gene expression when exposed to the 

two key toxic proteins in Alzheimer’s disease. I also found that genes upregulated in Aβ 

exposed astrocytes overlapped with genes upregulated in astrocytes due to ageing. 

Additionally, the genes upregulated in Aβ exposed astrocytes overlapped with genes 

upregulated in astrocytes in models of acute inflammation and stroke. Thus, astrocytes 

exposed to chronic and acute insults share some similarities in reaction. Notably, changes in 

astrocyte gene expression in mouse models of AD also showed similarities to genes which 

were changed in in human post-mortem Alzheimer’s disease astrocytes. Hence, the results 

found in these mice are somewhat translatable to the human condition. The results 

mentioned above were only found in one of the Alzheimer’s disease mouse models. 

Astrocytes from the newer mouse model showed few changes in gene expression. The slower 

accumulation of Aβ in this mouse might have led to astrocytes which were not dysfunctioning 

yet, or perhaps only a small number of astrocytes were dysfunctioning and so when looking 

at average gene expression across all astrocytes in the mouse model, alterations in gene 

expression were not found.   

 

In the last section of the thesis, I investigate gene expression changes in individual astrocytes 

from each mouse model of Alzheimer’s disease. This demonstrated that, in both models, 

astrocytes do not all express the same gene expression changes. Some astrocytes appeared 

to express genes at similar levels to non-diseased mice, whilst others expressed genes at 

levels which were distinctly different from non-diseased mice. These astrocytes were termed 

pathology associated astrocytes. Hence, in both mouse models dysfunctioning astrocytes 

were found when investigating gene expression at the single cell level. Just as in the previous 

section, the pathology associated astrocytes upregulated genes related to the antioxidant 

response in astrocytes, and also displayed changes in expression of genes involved in protein 

processing and energy support.  

 

These investigations add to our growing understanding of mouse models of Alzheimer’s 

disease and astrocyte dysfunction in Alzheimer’s disease. Astrocytes appear to take on both 

neuroprotective and neurotoxic functions when exposed to Aβ pathology. If given at an 
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appropriate time point, therapeutics which target dysfunctioning astrocytes and boost their 

neuroprotective functions, whilst reducing their neurotoxic functions, may prove to alter the 

course of Alzheimer’s disease, especially if given in combination with therapeutics targeting 

other aspects of the disease, such as the build-up of Aβ.  
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Abstract  

Every 3 seconds someone in the world is diagnosed with dementia. This staggering fact is 

compounded by another, 60-80% of these patients are suffering from the same disease, 

Alzheimer’s disease (AD). Despite this, we currently have no disease modifying treatments. 

AD is characterized by an accumulation of extracellular amyloid-beta (Aβ) plaques, 

intracellular tau neurofibrillary tangles and neuronal loss.  Additional pathological features 

include synapse loss and an increase in reactive astrocytes and microglia, particularly around 

Aβ plaques. Aβ accumulation is thought to occur early in the disease process and trigger 

downstream pathology. For this reason, many therapeutics in clinical trials have targeted Aβ 

accumulation. However, thus far there has been little success, highlighting that 

pharmaceutical companies need to explore new therapeutic strategies. Genome wide 

association studies have illustrated the importance of the innate immune system in AD. 

Astrocytes and microglia are the main cells in the brain involved in innate immunity. In this 

study, I investigate the impact of Aβ on astrocytes, in the hope that a better understanding 

of how these cells are affected may lead to novel therapeutic targets.  

 

We have used two mouse models of familial AD which develop amyloid plaque pathology 

similar to that seen in AD; the well characterized transgenic APPswe/PSEN1dE9 (APP/PS1) 

mouse model and the less well characterized knock-in APPNLF mouse model. Firstly, we used 

array tomography and immunohistochemistry to quantify the synapse loss and astrogliosis 

around plaques in 12-month APPNLF mice. This demonstrated that synapse loss and 

astrogliosis in the APPNLF mouse is comparable to other mouse models of AD, but is generally 

confined to within 10µm of the plaque core.  

 

Next, we used translating ribosome affinity purification (TRAP) followed by bulk ribonucleic 

acid-sequencing (RNA-seq) to assess how astrocytic gene expression changed with increasing 

Aβ pathology in 6, 12 and 18-month APP/PS1 and APPNLF neocortical astrocytes. 

Amyloidopathy in APP/PS1 astrocytes exacerbated age dependent gene changes in 

astrocytes, as well as inducing a profile which resembled acutely induced reactive astrocytes. 

Thus, highlighting an overlap of acute and chronic reactive astrocyte signatures. APP/PS1 

astrocytes also showed overlapping up and down regulation of genes with those changed in 
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astrocytes in the MAPTP301S tauopathy model, suggesting that the two core proteinopathies 

in AD induce elements of similar changes in astrocyte phenotype. Pathways related to protein 

degradation and inflammation appeared to be upregulated due to the AD proteinopathies, 

whilst pathways related to mitochondrial function and protein synthesis were 

downregulated. Notably, genes induced in APP/PS1 astrocytes were enriched for genes 

induced in human post-mortem AD astrocytes, indicating that the results obtained in this 

mouse model are somewhat translatable to the human condition. 

 

 The APPNLF astrocyte bulk RNA-seq showed few differentially expressed genes at the ages 

tested. However, genes that were upregulated in the APP/PS1 astrocytes demonstrated a 

positive fold change in the APPNLF astrocytes. This might indicate overlap of astrocytic 

response to amyloidopathy in both models, but that astrocyte pathology is slower to develop 

in the APPNLF mouse model, compared to the APP/PS1 mouse model, mirroring the slower 

development of plaque pathology. It is also possible that some APPNLF astrocytes displayed 

phenotypes similar to APP/PS1 astrocytes, but the gene expression was obscured when 

conducting bulk RNA-seq.  

 

To investigate the heterogeneity of astrocytic response to Aβ pathology, we conducted single 

cell RNA-seq on astrocytes from the neocortex of APP/PS1 and APPNLF mice. This revealed an 

astrocyte phenotypic state present in both mouse models of amyloidopathy, which was 

largely absent in 12-month WT mice, but which began to become apparent in 18-month WT 

astrocytes. Genes involved in oxidative phosphorylation, protein synthesis, the unfolded 

protein response, and nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative 

stress response were expressed higher in this pathology associated cluster of astrocytes, 

compared to astrocytes in other clusters. However, genes involved in synaptogenesis were 

lowly expressed in the pathology associated cluster of astrocytes compared to other 

astrocytes, potentially linking Aβ induced astrocyte dysfunction with the reduction in 

synapses seen in AD.  This analysis highlights the benefits of single cell gene expression 

analysis in identifying heterogeneity of astrocyte response to amyloidopathy, which was lost 

in the bulk translatome analysis of astrocytes from mouse models of AD.  
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These investigations add to our growing understanding of mouse models of AD and astrocyte 

dysfunction in AD.  Amyloidopathy appears to induce both neuroprotective and neurotoxic 

phenotypic alterations in astrocytes. Designing therapeutic strategies which enhance 

neuroprotective functions of astrocytes, such as NRF2-mediated antioxidant signaling, whilst 

reducing neurotoxic overactivation of inflammatory responses and the unfolded protein 

response, may improve AD pathogenesis. Further research defining phenotypic states of 

astrocytes in AD will enable the design of astrocyte-state targeted therapeutics, which will 

likely demonstrate superior results to broader astrocyte targeted therapeutics.  
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Chapter 1 

Introduction 
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1.1 Dementia 

Dementia is an urgent global health problem, with 50 million people diagnosed worldwide 

and a projection of 152 million people to be diagnosed by 2050 

(https://www.dementiastatistics.org/statistics-about-dementia). Dementia is a term for 

diseases characterized by a decline in memory, language, problem solving and other cognitive 

abilities (Duong et al. 2017). It is distinct from normal ageing, but most notably affects the 

ageing population (Irwin et al. 2018). The current global cost of dementia is thought to be 1 

trillion dollars per year, taking into account direct medical costs, direct social care costs, as 

well as informal care costs (https://www.alz.co.uk/research/world-report-2019). The impact 

of dementia does not stop at the staggering financial burden, it also causes profound 

emotional burden to patients and their families as a lack of independence and alterations in 

social behaviour develop as dementia progresses. For these reasons, academia, industry, the 

government and funding institutions have all agreed on making a concerted effort to translate 

dementia research into therapeutics.  

 

1.2 Alzheimer’s Disease  

Alzheimer’s disease (AD) is the most common form of dementia, affecting approximately 60-80% of 

dementia patients (Duong et al. 2017). There are two distinct forms of AD, familial AD (FAD) and 

sporadic AD (SAD). Autosomal dominant mutations in amyloid precursor protein (APP), presenilin 1 

(PSEN1) and presenilin 2 (PSEN2) genes are causative of FAD, which accounts for ~5% of AD cases 

(Wu et al. 2012; Johns 2014). Around 95% of AD cases are sporadic and are thought to develop due 

to a combination of genetic and environmental factors, in addition to aging (Piaceri et al. 2013; 

Guerreiro and Bras 2015). However, we do not fully understand the interplay between these 

contributing factors.  

 

The pathological hallmarks of AD include ‘positive’ lesions and ‘negative’ lesions.  Positive lesions 

include extracellular deposits of the protein amyloid-beta (Aβ) in plaques, intracellular aggregates of 

hyperphosphorylated tau protein in neurofibrillary tangles (NFTs), dystrophic neurites, reactive 

astrocytes and activated microglia. Characteristic ‘negative’ lesions include neuron loss and synapse 

loss (Serrano-Pozo et al. 2011). Currently AD is only definitively diagnosed after death, by linking 
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cognition scores with examination of brain tissue at autopsy. However, ante-mortem diagnosis 

integrating blood and cerebrospinal fluid (CSF) biomarkers, non-invasive neuroimaging, cognition 

scores and genetic background is a budding field of research (Khan 2018; Fisher et al. 2019).  

 

Rivastigmine, galantamine, donepezil and memantine are the medications used presently to treat AD 

(Yiannopoulou and Papageorgiou 2013). All of these medications reduce the symptoms of AD, but do 

not affect the underlying pathophysiology of the disease or alter the course of the disease, and so 

are not disease modifying therapies. A patient with AD lives on average 4-10 years after diagnosis 

(Zanetti et al. 2009). However, approximately 87% of dementia patients are in the mild-moderate 

stage of the disease (Prince, M et al. 2014) and could conceivably benefit from a disease modifying 

therapy, along with those who would benefit from a preventative therapy.  Hence, there is a need to 

better understand early mechanisms underpinning the disease in order to produce these novel 

disease modifying therapies.   

1.3 The Case for Amyloid  

There is strong genetic evidence to suggest that Aβ is involved in the pathogenesis of AD. The 

first piece of evidence is from APP, the protein from which Aβ is formed (figure 1). Mutations 

in APP have been shown to affect Aβ generation and have 100% penetrance in causing AD 

(Goate et al. 1991; Weggen and Beher 2012; Cruts et al. 2012; Mullan et al. 1992). 

Interestingly, a missense mutation in APP (A673T) has been shown to reduce the deposition 

of Aβ and reduce the risk of developing AD (Jonsson et al. 2012). Secondly, mutations in 

PSEN1 and PSEN2, which orchestrate the cleavage of APP to Aβ, also have a high degree of 

penetrance in the development of AD (Cruts et al. 2012; Sherrington et al. 1996; Rogaev et al. 

1995; Levy-Lahad et al. 1995; Sherrington et al. 1995). Thirdly, Down Syndrome patients who 

have an extra copy of the APP gene have an increased risk of developing AD (Wisniewski et 

al. 1985). It is worth noting that in these cases the genetic evidence has stemmed from FAD. 

Nevertheless, FAD and SAD share remarkably similar pathophysiology and clinical 

presentation. A convincing piece of evidence which is directly related to SAD and implicates 

Aβ in AD pathogenesis comes from SAD patients who possess the 𝞮4 versions of 

Apolipoprotein E (APOE). A single allele of APOE𝞮4 leads to a 47% chance of developing SAD, 

and having both alleles leads to a staggering 91% chance of developing SAD (Corder et al. 

1993). APOE𝞮4 is a protein which has been shown to increase Aβ deposition and reduce the 
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clearance of Aβ relative to the other isoforms of APOE (Schmechel et al. 1993; Head et al. 

2012; Verghese et al. 2013). Therefore, supporting the notion that Aβ pathology is important 

in SAD. 

 

Figure 1. Amyloid precursor protein (APP) cleavage. Cleavage of APP via the β and g secretase 

pathway leads to soluble amyloid precursor protein β (sAAPβ), amyloid β (Aβ), and amyloid 

precursor protein intracellular domain (AICD) formation. Whereas, cleavage of APP via the ⍺ 

and g secretase pathway leads to soluble amyloid precursor protein ⍺	(sAPP⍺), AICD, and p3 

peptide formation.  Cleavage sites of enzymes indicated by scissors. Made using 

Biorender.com. 

 

Along with genetic evidence, the buildup of amyloid pathology early in the disease, decades 

before symptoms emerge, led to the theory that amyloid pathology may be an important 

trigger in downstream dysfunction (Jack et al. 2013; Mormino and Papp 2018). The amyloid 

cascade hypothesis has dominated AD research for the past 30 years. The hypothesis 

originally postulated that the deposition of amyloid in plaques was the central disease-

causing mechanism in AD, with neurofibrillary tangle accumulation, inflammation, 

neurodegeneration and dementia following suite (Hardy and Higgins 1992; Selkoe 1991). 
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Studies have since indicated that Aβ plaques may not be pathological in and of themselves as 

plaque load does not correlate well with cognitive decline (Terry et al. 1991; Aizenstein et al. 

2008).  Nevertheless, enthusiasm for Aβ as a pathological protein in AD has remained, albeit 

the with a focus on the synaptotoxic effects of oligomeric Aβ  rather than fibrillar plaques 

(figure 2) (Koffie et al. 2012; Hong et al. 2018; Lambert et al. 1998). Ex-vivo studies have 

shown that Aβ oligomers reduce long term potentiation of synapses in hippocampal slices 

(Shankar et al. 2008; Lambert et al. 1998; Hong et al. 2018). In vivo studies using 

amyloidopathy mice have illustrated impairment of synaptic function prior to plaque 

deposition (Hsia et al. 1999), and Aβ oligomers injected into rat brains caused significant 

disruptions of complex learned behaviors (Cleary et al. 2005). Additionally, oligomer load has 

been correlated with the inflammatory response, memory impairment and 

neurodegeneration in an AD mouse model (DaRocha-Souto et al. 2011). Furthermore, the 

theory that soluble Aβ oligomers are the pathological culprit is supported by the fact that  

 oligomer load correlates with cognitive decline in humans (Savage et al. 2014; Esparza et al. 

2013; Wang et al. 1999), and the presence of Aβ dimers in post brain samples strongly 

distinguished post-mortem AD, demented non-AD and non-dementia brains(Mc Donald et al. 

2010).  Importantly, dysregulation of production and clearance of soluble Aβ is thought to be 

one of the earliest pathological mechanisms in AD (Ingelsson et al. 2004), and a trigger for 

downstream tau hyperphosphorylation (Ma et al. 2009), gliosis (Sondag et al. 2009; Dhawan 

et al. 2012; White et al. 2005) and synapse degeneration (Hong et al. 2018; Shankar et al. 

2007; Miñano-Molina et al. 2011). Figure 2 illustrates the current state of the amyloid cascade 

hypothesis.  
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 Figure 2. The sequence of major pathological events which leads to cognitive decline in 

Alzheimer’s disease.  
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1.4 Failure of Clinical Trials Targeting Aβ 

Enthusiasm for the amyloid cascade hypothesis has decreased in recent years, largely due to 

the numerous clinical trials of Aβ targeted therapies which have spectacularly failed (Mehta 

et al. 2017). Rather than simply writing off a target which has decades of research supporting 

its importance, it is prudent that we truly understand why these clinical trials failed. 

 

Bapinezumab, Solanezumab, Crenezumab and Gantenerumab are all anti-amyloid 

monoclonal antibodies designed against different epitopes and forms of amyloid (Mehta et 

al. 2017). It is now thought that oligomeric Aβ is the primary noxious form. Hence, it is feasible 

that these antibodies have not been efficacious due to not selectively targeting oligomeric 

Aβ. Additionally, monoclonal antibodies are relatively large molecules which have a limited 

ability to cross the blood brain barrier (BBB). It is possible that therapeutically relevant 

concentrations were not reaching the brain, especially as doses in clinical trials were chosen 

to limit the threat of vasogenic edema (Sperling et al. 2011). This certainly seemed to be the 

case in Biogen’s recent trial of Aducanumab, where a post-hoc analysis illustrated that there 

was a beneficial effect of Aducanumab on measured outcomes, but only in groups of patients 

who had received 10 or more uninterrupted doses of the highest dose of Aducanumab 

(10mg/kg) (Schneider 2020).  

 

In the case of Solanezumab and Crenezumab, the treatments demonstrated some efficacy in 

mild AD patients, highlighting a possible temporal issue in these clinical trials (Siemers et al. 

2016; Cummings et al. 2018). Perhaps targeting Aβ alone is only useful early in the disease 

when other pathological cascades have not yet begun. To this end, current clinical trials of Aβ 

targeted therapies are focusing on high risk currently undiagnosed, prodromal, or mild AD 

subjects (NCT03443973, NCT02008357). Since Aβ pathology begins  more than a decade 

before clinical presentation (Ingelsson et al. 2004; Villemagne et al. 2013), the challenge has 

become detecting candidates for therapeutics early enough for the therapies to be 

efficacious.  Companies such as Altoida are developing digital biomarkers which supposedly 

detect people at high risk of developing dementia 10 years prior to clinical onset and diagnosis 

(Tarnanas et al. 2015). Until then, it appears that Aβ therapeutics may only be useful years 

before clinical diagnosis, therefore it seems logical to move our efforts away from targeting 
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Aβ directly, and focus on the downstream consequences of Aβ pathology, such as the chronic 

activation of glial cells and the propagation of misfolded tau (Selkoe and Hardy 2016). Indeed, 

Alector and Abbvie are partnering to conduct phase 1 clinical trials of antibodies against CD33 

and TREM2 (Triggering receptor expressed on myeloid cells 2) (NCT03635047, NCT03822208), 

receptors on microglia which are involved in phagocytosis (Yao et al. 2019; Griciuc et al. 2013). 

AstronauTx and Astrocyte Pharmaceuticals are two early stage biotech companies focused on 

developing astrocyte targeted therapeutics, and TauRx is currently conducting a phase 3 

clinical trial of LMTX, a tau aggregation inhibitor on patients with mild Alzheimer’s disease 

(NCT03446001). 

1.5 Mouse Models of AD  

Mouse models of AD have been extremely useful tools for dissecting the molecular 

mechanisms of pathology in AD. However, the lack of translation of therapeutics from mouse 

to human led some to question their utility. The mouse models of AD which were first formed 

overexpress APP and contain autosomal dominant AD mutations (Hsiao et al. 1996; Games et 

al. 1995). Whilst it could be said that these mice simply model the rare autosomal dominant 

form of AD, the accumulation of Aβ plaques, gliosis and synapse loss all resemble the 

pathology in human sporadic AD. Notably, the accumulation of hyperphosphorylated tau 

aggregates in NFTs were not present in transgenic APP models and the mice often showed 

limited neurodegeneration.  To combat this, other mouse models, such as the 3xTg mouse 

model were created to investigate the effect of Aβ and tau aggregation (Oddo et al. 2003). 

Whilst there will be species differences between mouse and human brains, and no mouse 

model exhibits the full range of clinical and pathological features found in sporadic AD, mouse 

models can still be extremely helpful in investigating disease mechanisms. Hence, mouse 

models are best viewed as tools for understanding the effects of genes/proteins that have 

been implicated in AD, rather than as models which reflect the entire biology of the disease. 

Age is an additional factor to consider when using mice to model human disease. Many of the 

early studies conducted using transgenic mouse models used relatively young mice since 

pathology begins early (Oddo et al. 2003; Rockenstein et al. 1995; Games et al. 1995). 

However, evidence suggest that function of innate immune cells changes with aging(Boisvert 

et al. 2018; Clarke et al. 2018; Soreq et al. 2017). Hence, this might further explain the 
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discrepancies between therapeutics trialled in mice vs human. Mice aged >10 months are 

most likely to reflect middle aged and old human biology (Hagan.C 2017).     

In this study I used the APPswePS1dE9 (APP/PS1) (Jankowsky et al. 2004) and APPNLF mouse 

(Saito et al. 2014) models to investigate the impact of amyloidopathy on astrocytes. The 

APP/PS1 mouse model expresses a human/mouse chimeric APP. The APP was humanised by 

mutating 3 amino acids. The Swedish mutation (amino acids KM670/671NL) was also 

introduced to the APP gene. Additionally, the mouse has a deletion of exon 9 in PSEN1. 

Together, these mutations lead to increased Aβ generation and impaired Aβ clearance. 

APP/PS1 mice are transgenic and so the gene is inserted randomly into the genome. The 

overexpression of mutant APP is driven by the prion promoter rather than the endogenous 

promoter; hence, it could be argued that this model might lack a degree of physiological 

relevance in the timing and location of APP expression, as well as in the overexpression of 

other cleavage products of APP in addition to Aβ. However, the phenotype in this model is 

strong, with deposits and gliosis developing by 6 months,  and large plaques with more 

pronounced astrogliosis by 9 months (Kamphuis et al. 2015). Hence, this model provides the 

opportunity to investigate the impact of widespread Aβ pathology on astrocytic gene 

expression. Additionally, synapse loss, Aβ accumulation and gliosis in the mouse model is well 

documented, meaning alterations in astrocytic gene expression can be put in the context of 

pathology (Koffie et al. 2009; Kamphuis et al. 2015).  

 

The APPNLF mouse model avoids possible artifacts introduced by overexpression of APP in 

transgenic mouse models as a knock-in approach was used to target the construct to the 

correct location in the mouse genome using the endogenous mouse APP promoter (Saito et 

al. 2014). Hence, expression of APP occurs at a physiologically relevant time point, in the right 

cells, and at a level which is similar to wild-type mice. The introduction of the Swedish 

(KM670/671NL) mutation in APP increases the total amount of Aβ40 and Aβ42, isoforms of 

Aβ which are thought to be important in AD pathology. The Iberian (I716F) mutation was also 

introduced, and increases the ratio of Aβ42 to Aβ40. This ratiometric alteration mimics the 

relative abundance of isoforms found in the CSF of people with AD (Baiardi et al. 2019). Aβ 

plaque deposition in homozygote APPNLF mice was reported to begin at 6-months of age in 

the cortex and hippocampus, but are not widespread until 18-months. Glial fibrillary acidic 

protein (GFAP) positive astrocytes were shown to surround Aβ plaques in 18-month-old mice. 



 16 

However, quantitative measurements of synapse loss was not performed (Saito et al. 2014). 

Pathology in this mouse model is slower to progress than in the APP/PS1 mouse model. 

However, results may be more translatable to the human condition. Hence, investigating 

astrocyte dysfunction due to amyloidopathy using both models provides the benefits of each 

of the models and helps to validate results.  

 

The quest for a single ‘best’ model of AD is likely misguided. However, information from 

various models will incrementally add to and validate knowledge, moving research towards 

disease modifying therapeutics. Hence, the information gained from this study of astrocyte 

dysfunction in mouse models of FAD should be combined with information gained using other 

experimental methods such as brain organoids, examination of post-mortem tissue, use of 

novel sporadic AD animal models and non-human primate research.  

1.6 Astrocytes 

Astrocytes are a type of glial cell, named after their stellate shape under the microscope. They 

exhibit molecular and functional heterogeneity, particularly in a region and context 

dependent manner (Morel et al. 2017; Zamanian et al. 2012; Vasile et al. 2017). In humans, 

cortical astrocytes are broadly categorized into 4 types, interlaminar (layers 1/2), 

protoplasmic (layers 3/4), varicose-projection (layers 5/6) and fibrous astrocytes (white 

matter), depending on their location in the brain (Vasile et al. 2017). However, it is 

acknowledged that classification into 4 subtypes is likely an over-simplification and that 

astrocyte gene expression and function might exist on a continuum rather than in such 

distinct categories. In support of this, studies have shown that astrocytes which were located 

closer together had more similar gene expression profiles (Boisvert et al. 2018; Morel et al. 

2017). 

 

Protoplasmic astrocytes are some of the most widely studied astrocytes due to their 

abundance in the grey matter and their presence in rodent brains. They are thought to occupy 

non-overlapping domains (Halassa et al. 2007), with their endfeet in contact with synapses, 

glial cells or blood vessels. The literature around the functionality of these astrocytes is 

staggering, especially considering that they were once thought of as mere structural support. 

Nowadays, astrocytes are thought to be involved in the formation (Christopherson et al. 



 17 

2005), maturation (Risher et al. 2014) and elimination of synapses (Chung et al. 2013), the 

regulation of blood flow (Mulligan and MacVicar 2004),  blood brain barrier integrity (Yao et 

al. 2014), ion (Hertz and Chen 2016), neurotransmitter (Mahmoud et al. 2019) and water 

homeostasis (Potokar et al. 2016), clearance of toxic solutes (Iliff et al. 2012), as well as in 

providing metabolic support to tissues (Rouach et al. 2008) and influencing network activity 

(Poskanzer and Yuste 2016). Hence, the centrality of astrocytic health to overall brain health 

is unquestionable.  

 

1.6.1 Comparison of Mouse and Human Astrocytes  

 Mouse models are extremely useful tools for understanding the molecular mechanisms of 

astrocytic health and disease. However, it is important to bear in mind the limitations of using 

such models. Evidence exists to demonstrate that human astrocytes display morphological, 

transcriptional and functional features that are not present in murine astrocytes. Whilst 

protoplasmic and fibrous astrocytes have been described in both humans and rodents, 

interlaminar and varicose-projection astrocytes are thought to only be found in primates 

(Oberheim et al. 2009). Human protoplasmic astrocytes have a cell volume which is 16.5 times 

larger than their rodent counterparts, with processes that are longer and larger in number 

(Oberheim et al. 2009).  

 

Transcriptomic studies have illustrated an overlap in human and mouse astrocyte specific 

genes, for example, Gfap, Aldh1l1 (Aldehyde Dehydrogenase 1 Family Member L1), Aqp4 

(Aquaporin 4), Slc1a2 (Excitatory Amino Acid Transporter 2), Slc1a3 (Excitatory Amino Acid 

Transporter 2) and Glul (Glutamine Synthetase) (Zhang et al. 2016). Notably, Zhang et al 

(2016) found that only 30% of the most highly expressed genes in human astrocytes were also 

enriched in mouse astrocytes. The differences in species transcriptomes are in part accounted 

for by the differing subtypes, as was previously mentioned. Additionally, the difference may 

be due to the human samples originating from the temporal lobe, whereas the mouse 

samples were derived from the whole cortex. Interestingly, 52% of mouse astrocyte enriched 

genes were also enriched in human astrocytes. Hence, mouse models of astrocytic function 

do provide some valuable insight despite there being differences between the species.  
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As is to be expected, the transcriptomic differences in human and murine astrocytes also 

leads to functional differences. For example, both human and mouse astrocytes signal using 

calcium waves. However, the calcium waves in human astrocytes were shown to be 

approximately 5 times quicker than mouse astrocytic calcium waves (Oberheim et al. 2009). 

Additionally, the differences in human and mouse astrocytes appear to impact cognition, as 

human astrocytes transplanted into a mouse brain enhanced contextual learning (Han et al. 

2013). Despite these differences, mouse models remain a valuable tool for dissecting 

mechanisms of health and the consequences of specific disease pathologies.  

 1.7 Astrocytes in AD  

AD has long been associated with alterations in astrocyte morphology and function, with the 

literature containing suggestions of both neuroprotective and neurotoxic contributions of 

astrocytes to AD (Perez-Nievas and Serrano-Pozo 2018). Genome wide association studies 

(GWAS) have indicated that much of the risk for developing Alzheimer’s disease is associated 

with genes expressed in glial cells (Karch and Goate 2015). Among these, CLU (Clusterin), 

SORL1 (Sortilin-related Receptor 1), FERMT2 (Fermitin Family Member 2) and APOE, are 

mainly expressed by astrocytes (Arranz and De Strooper 2019; Zhang et al. 2014), suggesting 

that astrocyte functions not only alter as a consequence of AD pathology, but also play a 

causative role in the development of AD.  

 

Just as astrocytes in a healthy brain are thought to exhibit morphological, molecular and 

functional heterogeneity in a context dependent manner, so do astrocytes exposed to 

injury/disease. Astrocytes in AD have been broadly categorized into ‘reactive’ astrocytes, 

often located around plaques and ‘atrophic’ astrocytes which are often found distant from 

plaques (Verkhratsky, Parpura, et al. 2019). However, this is an oversimplification of the 

complex alterations occurring in astrocytes in AD. Thinking about astrocyte phenotype as a 

continuum seems more appropriate. For the purposes of therapeutically targeting astrocytes, 

it is important to understand the spectrum of changes occurring in astrocytes in a context 

dependent manner. Taking a systems biology approach, where by information from 

ribonucleic acid-sequencing (RNA-seq), proteomics, studies of morphology, proliferation, 

function and cellular interactions are combined in a context specific manner will be the best 

way to define therapeutically targetable subtypes/states of astrocytes in AD.  
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1.7.1 Morphology of Astrocytes in AD  

Alois Alzheimer documented an abundance of glia surrounding Aβ plaques. Since then, many 

studies of post-mortem Alzheimer’s disease patients, induced pluripotent stem cell (iPSC) 

derived astrocytes from human AD patients and mouse models of AD have corroborated this 

finding, demonstrating the presence of both reactive and atrophic astrocytes (Jones et al. 

2017; Olabarria et al. 2010; Verkhratsky, Parpura, et al. 2019). 

 

Reactive astrocytes classically overexpress two intermediate filament proteins, GFAP and 

vimentin (VIM) (Yamada et al. 1992; Olsen et al. 2018; Kamphuis et al. 2014). They are 

hypertrophic and have thick processes which encircle Aβ plaques, without substantially 

altering their distribution of cell bodies (Galea et al. 2015; Wilhelmsson et al. 2006). This 

indicates a reorientation of astrocyte processes, rather than migration of astrocytes towards 

plaques, or a proliferation of astrocytes near plaques.  This theory is supported by the fact 

that reactive astrocyte load does not correlate with plaque size  (Serrano-Pozo, Muzikansky, 

et al. 2013) and stereological quantification of astrocytes in AD and control brains, using the 

pan-astrocytic marker ALDH1L1, demonstrated no difference in abundance (Serrano-Pozo, 

Gómez-Isla, et al. 2013). Notably, reactive astrocytes have also been associated with the other 

core pathology in AD, tau NFTs. Astrocytic processes have been shown to penetrate ‘ghost’ 

NFTs present in the neuropil once the neuron has degenerated (Perez-Nievas and Serrano-

Pozo 2018). 

 

Astrocytes which display a reduced soma volume, and a decreased number of processes have 

been termed ‘atrophic astrocytes’ (Verkhratsky, Rodrigues, et al. 2019; Olabarria et al. 2010). 

It is possible that these astrocytes are senescent. Whilst reactive and atrophic astrocytes are 

not exclusive features of Alzheimer’s disease, evidence would suggest their presence begins 

early in the disease and contributes to disease pathogenesis (Ingelsson et al. 2004). 

Importantly, the classification of astrocytes into reactive and atrophic subtypes is likely an 

oversimplification of the cellular states that astrocytes adopt over the course of AD 

development.  
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1.7.2 Alterations to Astrocyte Function in AD 

Several lines of evidence suggest that astrocytes undergo functional changes in AD. Whilst 

some alterations have been attributed to enhancing neuroprotection, many indicate 

astrocytes are contributing to the neuropathology, either through neurotoxic gains of 

function or detrimental loss of functions.  

 

1.7.2.1 Neuroinflammation  

A sustained inflammatory response has become a cardinal, albeit non-exclusive, hallmark of 

AD (Gomez-Nicola and Boche 2015; Knezevic and Mizrahi 2018). Astrocytes and microglia are 

the two immune cell types in the brain which play pivotal roles in the neuroinflammatory 

response in AD. Aβ is thought to bind directly to astrocytes via receptors such as the N-

Methyl-D-aspartic acid (NMDA) receptor and the P2Y purinoceptor 1 (P2Y1) receptor 

(Delekate et al. 2014; Mota et al. 2014). Binding to these receptors alters downstream 

signaling through the calcium/calcineurin/nuclear factor of activated T cells pathway, leading 

to a reactive astrocyte phenotype and enhanced production of pro-inflammatory cytokines 

such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor ⍺	 (TNF⍺), 

inducible nitric oxide (iNOS) and complement protein C3 (C3), amongst other molecules 

(Liddelow et al. 2017; Lian et al. 2016; Perez-Nievas and Serrano-Pozo 2018; Norris et al. 2005; 

Abdul et al. 2009). This leads to a detrimental feed forward cycle of further glial activation 

and neuroinflammation.  

 

Reactive microglia have also been shown to exacerbate glial activation and 

neuroinflammation by secreting cytokines such as TNF-α, IL-1β, IL-6, which bind to receptors 

on astrocytes (Liddelow et al. 2017) and activate pathways such as the Janus kinase (JAK)-

signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-𝜅B) pathway, again leading a reactive astrocyte 

phenotype (Bales et al. 1998; Ben Haim et al. 2015; Perez-Nievas and Serrano-Pozo 2018).  

 

Importantly, glia driven inflammation has been proposed to be a link between the two core 

proteinopathies in AD (Yoshiyama et al. 2007; Meda et al. 2001). For example, Aβ binding to 

glia leads to enhanced production of pro-inflammatory cytokines. When IL-6 was exogenously 
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applied to rat to hippocampal neuronal cultures, this led to activation of cyclin dependent 

kinase 5 (CDK5), and hyperphosphorylation of tau, as measured by increased immunoreaction 

with the tau AT8 antibody (Quintanilla et al. 2004). Therefore, providing a possible 

mechanistic link between Aβ accumulation and tau hyperphosphorylation.  

 

1.7.2.2 Aβ clearance / plaque formation  

Astrocytes are thought to be providing a neuroprotective function against Aβ pathology in 

AD. Firstly, by secreting extracellular Aβ chaperones, such as apolipoproteins, 

⍺2macrogloblulin, and α1-antichymotrypsin, which facilitate the clearance of Aβ across the 

BBB. Secondly, by secreting Aβ proteases which degrade Aβ extracellularly. Thirdly, by 

internalizing Aβ either through phagocytosis or receptor mediated endocytosis and degrading 

Aβ intracellularly (Ries and Sastre 2016), and fourthly, by forming a physical barrier between 

the plaque and surrounding neuropil, limiting the damage of diffusible soluble oligomeric Aβ. 

This notion of a neuroprotective role of astrocytes  is strengthened by the demonstration that 

primary human adult astrocytes preferentially engulf the more neurotoxic oligomeric Aβ over 

fibrillar Aβ (Nielsen et al. 2010). However, questions have risen over the ability of astrocytes 

to effectively clear Aβ across the BBB in AD, since  AQP4, a water channel involved in the 

transport of soluble Aβ across the BBB, appears to lose its perivascular localization with 

increasing Aβ burden in post-mortem AD brains (Zeppenfeld et al. 2017). Additionally, 

APOE𝞮4, is thought to bind Aβ less efficiently than the 𝞮2 and 𝞮3 isoforms, which may 

influence clearance (Wildsmith et al. 2013). However, others believe APOE does not bind Aβ, 

but instead competes with Aβ for low density lipoprotein receptor-related protein 1 (LRP-1) 

binding in astrocytes. Nevertheless, this would still impact astrocyte mediated Aβ clearance. 

The capacity of astrocytes to phagocytose also appears to decrease  with progressive AD 

pathology (Iram et al. 2016). Hence, a loss of astrocytic functions may contribute to Aβ 

accumulation in AD.  

 

An alternative hypothesis is that astrocytes are actively contributing to Aβ production, 

secretion and aggregation. Primary cultures of mouse astrocytes exposed to Aβ42 and 

inflammatory stressors lipopolysaccharide (LPS), TNF-α, interferon γ (IFN-γ), and IL-1β have 

been shown to increase expression of APP and β-site APP cleaving enzyme (BACE1), two 
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essential components in the production of Aβ. Additionally, Aβ40 was increased in the culture 

medium, indicating enhanced secretion of Aβ from astrocytes (Zhao et al. 2011). These in 

vitro findings are supported by immunohistochemical studies in human AD patients which 

demonstrated enhanced astrocytic BACE1 immunoreactivity in proximity to Aβ plaques 

(Hartlage-Rübsamen et al. 2003). Furthermore, some studies have suggested that APOE, 

especially APOE𝞮4 may play a role in Aβ aggregation (Hashimoto et al. 2012; Cerf et al. 2011; 

Castano et al. 1995; Ma et al. 1994).  

 

The ground truth is likely that astrocytes are involved in both the production and clearance 

of Aβ. In AD the equilibrium appears disrupted in favour of a surplus of Aβ, which contributes 

to a detrimental feed forward cycle of activating astrocytes, further Aβ production, 

neuroinflammation and neurodegeneration.  

 

1.7.2.3 Metabolic Compromise 

Reduced brain glucose uptake as measured by 18F-fluorodeoxyglucose positron emission 

tomography (FDG-PET) is an early indication of AD (Bloudek et al. 2011). Since astrocytes are 

one of the most abundant cell types in the brain, a portion of the signal is likely caused by 

reduced astroglial glucose uptake (Zimmer et al. 2017). Indeed, a study in AD patients 

combining longitudinal PET data of astrocyte function using 11C-deuterium-L-deprenyl, and 

glucose metabolism using FDG uptake, showed significant association between astrocyte 

function and progressive hypometabolism (Carter et al. 2019). Reduced astroglial glucose 

uptake would impact the ability of astrocytes to perform the myriad of homeostatic functions 

attributed to them. In particular, their ability to metabolise glucose to lactate which is utilised 

by neurons as a fuel source.  

 

Astrocytes positioned at the BBB also contribute to energy availability in the brain by playing 

a critical role in sensing energy requirements and modulating cerebral blood flow and thus 

glucose availability accordingly (Howarth 2014). In an amyloid mouse model of AD, astrocytic 

endfeet surrounding parenchymal Aβ deposits were shown to swell and detach from the BBB, 

thus compromising their ability to regulate blood flow (Merlini et al. 2011).  
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1.7.2.4 Synaptic Formation Function and Elimination  

Astrocytes are thought to be intrinsically involved in synapse formation, function and 

elimination. Since synapse loss and reactive astrocytes around plaques are key pathological 

features of Alzheimer’s disease, this begs the question, what role do astrocytes play in 

synaptic pathology?  

 

Thrombospondin 1 and 2 (THBS1, THBS2) (Christopherson et al. 2005), Sparc-like protein 1 

(SPARCL1) (Kucukdereli et al. 2011), and glypican4 and 6 (GPC4 and GPC6) (Allen et al. 2012) 

are some of the astrocyte secreted factors known for their involvement in excitatory synapse 

formation. Liddelow et al. (2017) recently demonstrated that reactive astrocytes, exposed to 

LPS, exhibit reduced expression of Gpc6 and Sparcl1, whilst simultaneously showing increased 

expression of Thbs1 and Thbs2. Whilst one would expect enhanced expression of Thbs1 and 

2 to increase synapse formation, these reactive astrocytes promoted less synapse formation 

than resting astrocytes. Additionally, when neurons were cultured with resting astrocytes to 

induce synapse formation and were subsequently cultured with these reactive astrocytes, 

synapse number decreased by approximately 40% (Liddelow et al. 2017). Thus, indicating the 

reactive astrocytes were either unable to maintain the synapses or were actively toxic to the 

synapses. Culturing neurons with reactive astrocyte conditioned medium revealed that the 

reactive astrocytes secrete soluble toxin(s) which kill a subset of central nervous system (CNS) 

neurons and mature oligodendrocytes (Liddelow et al. 2017). Whilst the astrocytes in this 

study were acutely induced reactive astrocytes, the results highlight the potential for reactive 

astrocytes induced by chronic pathology to be contributing to synapse pathology via similar 

mechanisms of a reduced ability to form and maintain synapses, or secretion of molecules 

which lead to synapse and neuronal loss. Several studies have suggested that Aβ oligomers, 

which may be produced by activated astrocytes in Alzheimer’s disease, are directly 

synaptotoxic (Hong et al. 2018; Ferreira et al. 2015; Frost and Li 2017). Other  astrocyte 

secreted molecules, such as transforming growth factor-β3 (TGF-β3) (Bialas and Stevens 

2013) and C3 (Shi et al. 2017; Hong et al. 2016) may be indirectly synaptotoxic by increasing 

microglia mediated synapse engulfment.  

 

APOE is a cholesterol carrier predominantly synthesized and secreted by astrocytes. 

Cholesterol is thought to be important in synapse formation and function (Pfrieger 2003). The 
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presence of the APOE𝞮4 allele has been associated with increased risk of AD (Corder et al. 

1993). Intriguingly, Zhao et al. found that iPSC derived neurons cultured with APOE 𝞮4/𝞮4 

astrocytes demonstrated reduced synaptic protein abundance compared to 𝞮3/𝞮3 astrocytes. 

Therefore, suggesting that astrocyte derived APOE𝞮4 may contribute to AD pathology via a 

reduced capacity to support synaptogenesis or maintain synapses (Zhao et al. 2017). Another 

study investigating the effect of APOE isoform on astrocytic phagocytic ability revealed APOE 

𝞮4 was associated with a reduced rate of synaptic pruning by astrocytes compared to APOE 

𝞮2. Furthermore, complement component 1q (C1q) accumulation was higher in Apoe𝞮4 

knock-in animals compared to Apoe𝞮2 or 𝞮3. They proposed that AD susceptibility of APOE 

may in part be due to defective pruning of senescent synapses, which leads to an 

accumulation of C1q coated senescent synapses, and enhances susceptibility to complement 

cascade mediated degeneration (Chung et al. 2016). Further research will help to determine 

whether the phagocytic ability of astrocytes change in the context of AD and contribute to 

synapse pathology and neurodegeneration.   

 

In addition to synapse formation and elimination, astrocytes play a fundamental role in 

regulating excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) 

neurotransmission in the brain. Excitatory amino acid transporter 1 (EAAT1/GLAST) and 

excitatory amino acid transporter2 (EAAT2/GLT-1) are glutamate transporters present on 

astrocytes which facilitate removal of glutamate from the synaptic cleft (Anderson and 

Swanson 2000). However, in AD this critical astrocyte function appears to be disrupted. Aβ 

oligomers have been shown to reduce the expression of GLT-1 in primary rat astrocyte 

cultures (Abdul et al. 2009), additionally astrocytes surrounding plaques demonstrated 

reduced GLT-1 expression in the APP/PS1 amyloid mouse model, and finally this observation 

translated to the human condition, where EAAT2 expression was found to decrease with 

increasing amyloid pathology in post-mortem AD brains (Simpson et al. 2010). Impaired 

reuptake of glutamate likely contributes to neuronal excitotoxicity through excessive 

activation of extrasynaptic NMDA receptors, promoting pro-death and oxidative stress 

signaling and leading to neurodegeneration (Hardingham et al. 2002). Notably, astrocytes 

also express NMDA receptors (Verkhratsky and Kirchhoff 2007). Hence, it is conceivable that 

excessive glutamate also disrupts astrocytic NMDA receptor signaling and astrocytic function. 

However, this is a relatively understudied field. 
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Another mechanism by which astrocytes might contribute to glutamatergic excitotoxicity in 

AD is through the downregulation of glutamine synthetase. Glutamine synthetase is an 

enzyme located in astrocytes which converts glutamate to glutamine, so that glutamine can 

be recycled back to neurons for conversion into neurotransmitters. Studies conducted in the 

3xTg AD mouse model have shown reduced expression of glutamine synthetase in the 

hippocampus and medial prefrontal cortex, in particular in areas where Aβ deposits are 

abundant (Olabarria et al. 2011; Kulijewicz-Nawrot et al. 2013). Whether this observation 

translates to the human condition is unclear (Robinson 2000; Le Prince et al. 1995; Serrano-

Pozo, Gómez-Isla, et al. 2013). However, if it does, reduced glutamine synthetase expression 

would substantially inhibit astrocytes from performing glutamate recycling, which would 

contribute to glutamate excitotoxicity in AD. Notably, Robinson (2000) and Serrano-Pozo et 

al. (2013) have demonstrated expression of glutamine synthetase in pyramidal neurons in the 

cortex of AD patients, perhaps highlighting a compensatory mechanism (Serrano-Pozo, 

Gómez-Isla, et al. 2013; Robinson 2000).   

 

Astrocytes are also involved in the removal and recycling of the inhibitory neurotransmitter 

GABA from the synapse. Studies would suggest that reactive astrocytes may be contributing 

to neurotoxicity through an enhancement of GABAergic tone.  The activity of glutamate 

decarboxylase, an enzyme involved in GABA production, was found to be doubled in the 

cortex of Aβ plaque bearing APP/PS1 mice, compared to age matched control mice. 

Importantly, this increase in glutamine acid decarboxylase (GAD) activity was found to be 

predominantly of glial origin (Mitew et al. 2013). Similarly, GABA content of astrocytes has 

repeatedly been reported to be increased in other studies of mouse models of AD and in 

human post-mortem AD brains (Wu et al. 2014; Jo et al. 2014). Enhanced astrocyte derived 

GABAergic tone may contribute to memory impairment in AD.   

 

The ground truth is likely that astrocytes develop both neurotoxic and neuroprotective 

functions in AD. However, the equilibrium appears in favour of neurotoxic functions which 

contribute to a detrimental feed forward cycle of activating astrocytes, further Aβ production, 

neuroinflammation and neurodegeneration.  
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1.7.3 Transcriptomic Studies of Astrocytes in AD 

Whether reactive astrocytes in AD are the villain, displaying neurotoxic gains of functions, the 

hero, displaying neuroprotective gains of functions, or the damsel in distress, displaying loss 

of functions, is unclear. Transcriptomic studies provide an opportunity to assess alterations 

in astrocytic phenotype in AD in an unbiased and information rich manner.  

 

There have been two key investigations of laser captured astrocytes from human post-

mortem AD patients. Simpson et al. conducted a microarray analysis comparing astrocytes 

from early (I/II), mid (III-IV) and late (V/VI) Braak staged brains (Simpson et al. 2011). Genes 

involved with the cytoskeleton, immune response, apoptosis and ubiquitin-mediated 

proteolysis were dysregulated in mid compared to early Braak staged astrocytes. In late Braak 

staged astrocytes, genes involved in insulin, phosphoinositide 3 kinase/Akt (PI3K/Akt) and 

mitogen-activated protein kinase (MAPK) signalling pathways were downregulated. These 

results might indicate that astrocytes contribute to disease pathology and lose their ability to 

perform their usual functions, especially later in the disease. A caveat to this study is that 

GFAP is only expressed in a subset of astrocytes and is often not expressed at detectable 

levels in resting state astrocytes (Zhang et al. 2019). Hence, comparison of high pathology 

astrocytes to low pathology astrocytes is impeded. Additionally, microarrays require pre-

specified transcript probes and have a limited dynamic range compared to RNA-seq 

technologies, meaning investigations are inherently somewhat biased and genes with low 

expression may not be detected.  

 

Sekar et al. addressed the issues above by conducting RNA-seq analysis on astrocytes micro-

dissected using ALDH1L1 as a marker from the posterior cingulate of AD and control 

postmortem brains (Sekar et al. 2015). ALDH1L1 is thought to be a widely expressed astrocyte 

specific marker and so subtle differences in gene expression between diseased and control 

brains should be identified (Cahoy et al. 2008). Sekar et al. found that the most impacted 

pathway was the immune response, with 82.4% of significantly changed genes in this pathway 

demonstrating upregulated expression. These studies provide an excellent basis for our 

understanding of the phenotype of astrocytes in AD. However, it is difficult to dissect the 

impact of amyloid pathology on the astrocyte transcriptome due to there also being tau 

pathology in human AD, as well as the potential for co-morbidities in subjects. Additionally, 
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human transcriptomic studies may be affected by the period of disease prior to death, the 

cause of death and the post-mortem interval.  

 

Transcriptomic studies on transgenic mice provide a good method of gathering data to 

disentangle some of these questions. Amyloid pathology in mice can be studied in isolation, 

with tighter control on post-mortem interval. Orre et al. used a microarray to investigate 

transcriptomic alterations in GLT-1 fluorescence activated cell sorted (FACS) astrocytes from 

15-18-month APP/PS1 and control mice (Orre et al. 2014). APP/PS1 mice are transgenic mice 

which begin displaying amyloid plaque pathology at 6-months, with abundant plaques at 9-

months (Jankowsky et al. 2004). The top 5 upregulated genes in APP/PS1 mice were Cst7 

(Cystatin F), Ccl4 (Carbon Tetrachloride), Il-1β, Clec7a (C-type lectin-like domain) and Tyrobp 

(TYRO protein tyrosine kinase-binding protein), all of which are involved in immune signaling, 

highlighting the similarity of astrocyte responses in an amyloidopathy model as in human 

post-mortem AD astrocytes. Interestingly, 21% of the genes which the group had previously 

identified as highly enriched in astrocytes were downregulated in APP/PS1 astrocytes, which 

might indicate an impairment of normal astrocytic function. Notably, this included reduced 

expression of genes involved in cholesterol biosynthesis, synapse organization and synaptic 

transmission. The limitations of this study include the fact that transcript probes were pre-

specified and that the APP/PS1 mouse is a transgenic mouse model, meaning the mutated 

gene is inserted randomly into the genome which can affect the pattern and level of gene 

expression. Furthermore, it is difficult to untangle the effects of elevated Aβ from APP 

overexpression. Hence, it would be beneficial to investigate alterations in astrocyte gene 

expression in a knock-in mouse model of amyloidopathy.  

 

Finally, all of the aforementioned studies investigated transcriptomic alterations in astrocytes 

due to AD pathology. Whilst the transcriptome provides a good indication of genes which are 

being expressed under different conditions, the translating messenger RNA (mRNA) profile 

likely reflects the protein content and thus function of the cell more closely (Schwanhäusser 

et al. 2011). Hence, it would be beneficial to assess alterations in the astrocyte translatome 

due to amyloidopathy.   
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1.8 Overview:  

In this thesis I explore how astrocytes change in models of amyloidopathy. I use two 

amyloidopathy models, the transgenic APP/PS1 mouse model, and the knock-in APPNLF mouse 

model.  Whilst the APP/PS1 mouse model is very well characterized and widely used in 

Alzheimer’s disease research, the APPNLF model was relatively new and needed better 

characterization.  

1.8 Aims and Hypotheses:  

1) Characterize synapse pathology and astrogliosis in the knock-in APPNLF amyloidopathy 

model.  

I hypothesize that this knock-in model exhibits plaque associated synapse loss which is 

comparable to other models of Alzheimer’s disease.  

 

2) Investigate alterations in the astrocyte translatome in mouse models of 

amyloidopathy. 

I am testing the hypothesis that the astrocyte translatome changes temporally over the 

course of the progression of amyloidopathy models. 

 

3) Investigate heterogeneity of astrocytic gene expression in mouse models of 

amyloidopathy.  

I am testing the hypothesis that astrocytes display heterogeneous gene expression 

within models of amyloidopathy, which includes a cluster(s) of astrocytes associated 

with pathology.  
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2.1 Animals  

Mouse models were used throughout the experiments presented in this thesis.  

All animal experiments conformed to national and institutional guidelines including the 

Animals [Scientific Procedures Act] 1986 (UK), and the Council Directive 2010/63EU of the 

European Parliament and the Council of 22 September 2010 on the protection of animals 

used for scientific purposes, and had full Home Office ethical approval. Mice were group 

housed according to sex, in a 12h/12-hour light/dark cycle with ad libitum access to food and 

water. Here, I present an overview of the genetically engineered animals used.  

 

2.1.1 APPNLF Mice  

APPNLF mice obtained from Dr. Takaomi Saido were bred in house and maintained on a 

C57BL/6N background. These mice express a humanized Aβ region in the APP knock-in 

construct, along with two pathogenic mutations, the Swedish “NL” and the Iberian “F”, which 

lead to increased total Aβ and Aβ42 respectively. Aβ plaques and gliosis begin to accumulate 

in these animals around six months of age. However, they aren’t widespread until 18-24-

months (Saito et al. 2014). In this thesis we used mice at 6, 12 and 18-months in order to have 

sampled changes in astrocyte phenotype throughout pathology development.  

 

2.1.2 APP/PS1 Mice  

APP/PS1 mice carrying a chimeric mouse/human APP (Mo/HuAPP695swe), and a mutant 

human presenilin 1 (PS1-dE9) (Borchelt et al. 1997; Jankowsky et al. 2004), were purchased 

from The Jackson Laboratory (B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax; MMRRC Stock No: 

34832-JAX) and were bred onto a C57BL/6J background. APP/PS1 mice develop Aβ plaques 

around 6-months old, and pathology is widespread by 12-months. In this thesis we used mice 

at 6, 12 and 18-months in order to have sampled changes in astrocyte phenotype throughout 

pathology development, and to match APPNLF time points.  

 

2.1.3 MAPTP301S Mice  

Whilst I did not personally conduct experiments using the MAPTP301S mice, I did compare 

alterations in astrocytic gene expression in the amyloidopathy APP/PS1 mouse model with a 
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dataset collected by Zoeb Jiwaji on astrocytic gene expression changes in the MAPTP301S 

tauopathy mouse model. MAPTP301S mice accumulate hyperphosphorylated filamentous tau. 

This drives progressive neurodegeneration in the spinal cord and upper cortical layers. 

Pathology begins around 3-months, and is widespread by 5-months. The MAPTP301S mice are 

on a C57BL6J background. Zoeb had previously shown that substantial alterations in the spinal 

cord astrocyte translatome occur at 5-months. In the cortex, where degeneration only takes 

place in upper layers, numbers of significantly changed genes was lower than in the spinal 

cord, although, the fold-change (up and down) correlated well with the spinal cord data 

r=0.77 (data not shown). This is indicative of a similar qualitative response of cortical and 

spinal astrocytes to tau pathology, albeit weaker in the cortex. Hence, in this study I used the 

spinal cord data for enrichment analyses, since the larger numbers of significant genes 

provided greater power for these studies. 

 

2.1.4 Aldh1l1-eGFP-rpl10a (TRAP) Mice 

Aldh1l1-eGFP-Rpl10a (TRAP) mice which express eGFP tagged ribosomal protein L10a under 

the astrocyte-specific Aldh1l1  promoter were generated as previously described by the 

laboratory of Nathaniel Heintz (Doyle et al. 2008) and re-derived on a C57BL/6J background 

from frozen sperm imported from Jackson Laboratories (Mouse Strain Number – 030248). 

 

Reagents were obtained from Sigma (St. Louis, Missouri) unless stated otherwise.  

2.2 Characterization of Synapse Density, Plaque Load and 
Astrogliosis in 12-month APPNLF Mice  
 
2.2.1 Sample Size Estimation with Power Analysis 

A power analysis was conducted on a historical data set to determine group sizes for synapse 

density studies using G*Power 3.1. Data on synapse density in relation to distance from 

plaque in APP/PS1 mice revealed ~50% reduction in synapse density close to plaques (within 

the halo of Aβ surrounding the core), with a standard deviation (SD) of ~20%  (Koffie et al. 

2009). Hence, the effect size was 2.5. To detect this at high power (98%) a sample size (n) = 5 

is necessary. Since I was also investigating the impact of sex, I used n=10. This sample size was 

adequate to measure plaque burden and astrogliosis using immunohistochemistry, based on 



 
 
 

32 

the APPNLF immunohistochemical data collected by Saito et al (2014), where the difference in 

GFAP expression between HOM and WT mice was ~0.35%, with a SD of ~0.05% of the mean. 

To detect this at a power of 98% we would require n=4. Tissue from the same animals was 

used to detect synapse density, plaque burden and astrogliosis around plaques in order to 

reduce the number of experimental animals, in line with the 3Rs (replacement, reduction, 

refinement).	 

 

2.2.2 Animals  

10 APPNLF homozygote (HOM) mice, 10 heterozygote (HET) and 10 wild-type (WT) mice, 

balanced for sex (table 1), were aged to 12 months. One hemisphere was fixed in 4% 

paraformaldehyde, transferred to 15% glycerol and stored at 4oC for measurement of 

astrogliosis and plaque burden using immunohistochemistry (IHC). The other hemisphere was 

used to make tissue blocks for analysis of synaptic density by array tomography.  
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Table 1. Mice included in the array tomography (AT) and immunohistochemistry (IHC) study. 

Homozygote (HOM), Heterozygote (HET), wild-type (WT) mice. Studies were balanced for 

male (m) and female (f) mice.  
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2.2.3 Array Tomography Tissue Embedding 

Array tomography experiments were largely carried out as previously described (Kay et al. 

2013; Micheva and Smith 2007). Briefly, small blocks of somatosensory cortex tissue were 

fixed in 4% paraformaldehyde. Samples were then dehydrated in ascending concentrations 

of ethanol (50%, 70%, 95%,100%, 100%), each for 5 minutes. Following this, samples were 

incubated in 50:50 LRWhite resin, ethanol for 5 minutes. Finally, samples were incubated in 

100% LRWhite resin for 5 minutes, then covered with fresh LRWhite resin overnight 4oC. 

Blocks were embedded in LRWhite resin in gelatin capsules by baking at 56oC for 24 hours. 

Blocks were stored at room temperature. 

 

2.2.4 Array Tomography Ribbon Cutting  

Thickness No. 1 glass coverslips (VWR International, Randor, Pennsylvania) were coated with 

0.1% fish skin gelatin and 0.01% chromium potassium sulphate, and allowed to dry to 

facilitate adhesion of array tomography sections to coverslips.  Approximately 30 70nm serial 

sections from APPNLF somatosensory cortex blocks were cut using an Ultracut Ultramicrotome 

(Leica, Wetzlar, Germany) with a Histo Jumbo Diamond Knife (Diatome, Hatfield, 

Pennsylvania) and collected on the coverslips. Ribbons were stained and imaged within 3 

months of cutting, as previous members of the lab had found antigens appear to degrade 

with longer term storage.  

 

2.2.5 Staining Array Tomography Ribbons  

Ribbons were outlined in a hydrophobic pen, baked at 53oC for 30 minutes and then 

incubated with 50mM glycine in tris-buffered saline (TBS) for 5 minutes at room temperature. 

The tissue was washed with TBS and antigen retrieval was performed by pressure cooking the 

slides in citrate buffer (pH 6) for 2 minutes. Ribbons were washed again in TBS and incubated 

with 50mM glycine for a further 5 minutes at room temperature. Array tomography block 

buffer (0.1% fish skin gelatine, 0.05% tween in TBS) was then applied for 30 minutes at room 

temperature. Following this, ribbons were incubated with a solution of primary antibodies 

(table 2) diluted in AT block buffer overnight at 4°C. The next day ribbons were washed with 
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TBS and incubated in a solution of secondary antibodies (table 2) in AT block buffer for 30 

minutes at room temperature and in the dark. Ribbons were washed with TBS and stained 

with 0.001 mg/ml 4’-6-diamidino-2-phenylindole (DAPI) for 5 minutes at room temperature 

and in the dark. Finally, ribbons were washed with TBS and mounted on microscope slides 

(VWR international) using Immu-Mount media (Thermo Scientific, Waltham, Massachusetts). 

 

A negative control omitting the primary antibodies and a positive control from an APP/PS1 

mouse with known extensive plaque and synapse pathology were included to validate the 

experimental procedure.  
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Table 2. Primary and secondary antibodies used in array tomography and 

immunohistochemistry study.  

 

2.2.6 Array Tomography Image Acquisition and Analysis 

Tissue from HOM APPNLF and WT animals were stained and imaged in parallel. All staining, 

imaging and analysis was performed blind to genotype.  

 

A Zeiss Axio Imager Z2 epifluorescent microscope fitted with a Coolsnap digital camera and 

Axio Imager software was used to obtain the images (Carl Zeiss Ltd., Cambridge, UK). The 

same nuclei on consecutive slices of the ribbon were imaged using a 63X objective. A 

minimum of 16 slices within the ribbon were imaged. For ribbons which contained plaques, 

Target Antibody Species Supplier
Catalogue 

number Concentration 
Synaptophysin SY38 Mouse Abcam ab8049 1:50
Post-synaptic 

density 95 PSD95 Guinea-pig
Synaptic 
Systems 124014 1:50

Amyloid fibrils
OC 

(amyloid) Rabbit
Merck 

Millipore ab2286 1:1000
GFAP GFAP Rabbit Dako Z0334 1:3000

IgG H&L Cy3 
preadsorbe

d Goat anti-guinea pig Abcam ab102370 1:50

IgG (H+L) 
highly cross-

adsorbed 
secondary 
antibody, 

Alexa fluor 
488 Goat anti-rabbit Invitrogen A-11034 1:50

IgG, Alexa 
Fluor 647 Donkey anti-Rabbit Abcam ab150075 1:500

IgG (H+L) 
cross-

adsorbed 
secondary 
antibody, 

Alexa Fluor 
647 Goat anti-mouse

Thermo-
fisher 

scientific A-21235 1:50
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two image stacks near the plaque and one without a plaque in view were taken. For ribbons 

that did not contain plaques, two image stacks were taken.  

 

2.2.6.1 Aligning Images 

Consecutive images were aligned and segmented using a MATLAB script custom built by Dr. 

Marti Colom Cadena, a member of the Spires-Jones lab, and Jordi Pegueroles, a member of 

the Lleo lab 

(https://github.com/arraytomographyusers/Array_tomography_analysis_tool).  

The synaptophysin channels in each image stack were aligned first. This alignment was then 

used to align the other channels in the same image stack. The synaptophysin stain was chosen 

to set the alignment parameters since the small size of the puncta increased the accuracy of 

alignment. Additionally, the synaptophysin stain did not contain spurious nucleic staining, 

unlike the post-synaptic density 95 (PSD95) stain.  

 

2.2.6.2 Segmenting Images 

The array tomography analysis tool (link above) was used to segment the images.  

The auto local threshold function was used to isolate the SY38 and PSD95 staining. After 

optimization, the following parameters were chosen (see section 4.2.4 for details on 

optimization of image analysis):  

• Window size: 6 for both SY38 and PSD95 

• C factor:  3 for SY38, 2 for PSD95  

• Mean intensity measured 

• Minimum pixel size: 3 

• Maximum pixel size: 500 

 

Since synapses are larger than 70nm in depth, it was assumed that puncta which only appear 

in one slice was noise. Hence, puncta which were not found in consecutive slices were 

removed in the segmented images.  

 

Thresholds for plaque cores and whole plaques (core and halo) were determined manually 

using ImageJ. Dense staining at the centre of the plaque was defined as the plaque core.  
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Values for the plaque thresholds determined in ImageJ were used in the MATLAB tool fixed 

threshold function, and segmented images were output. The fixed threshold function is better 

for large irregular shaped objects, as the auto local threshold function tended to break the 

plaque into many small pieces, which would have affected the boundaries used to quantify 

synapses and the colocalisation of synaptic puncta and Aβ. 

 
2.2.6.3 Quantification and Statistical Analysis of Synaptic Density Over the Whole 

Image and Around the Aβ Plaque Core 

An in-house Python tool built by Dr. Lewis Wilkins (https://github.com/lewiswilkins/Array-

Tomography-Tool) was used to identify presynaptic SY38 puncta that were within 500µm of 

a PSD95 puncta and so were considered a synaptic pair. Unpaired and paired synaptic density 

were quantified using the MATLAB tool. A neuropil mask generated using the synaptophysin 

channel was applied in order to exclude nucleic staining.  

Statistical analysis was performed in R.  A linear mixed effects model was used to analyse 

unpaired SY38, unpaired PSD95 and paired synapse density in the neuropil. The fixed effects 

were image type (WT, HOM_Near (containing a plaque) and HOM_far (not containing a 

plaque)) and sex. The random effects accounted for the fact that multiple images were taken 

from the same mouse and that experiments were done in batches.  

Formula: MEPairedUnpaired<- 
lmer(Puncta_density~Image_type*Puncta_type*Sex+(1|Mouse_ID:stack_number) + 
(1|batch), data=paired_vs_unpaired_R) 
anova(MEPairedUnpaired) 

A type III analysis of variance (ANOVA) on the linear mixed effects model was run, which 

revealed there were no significant interactions between puncta type, image type or sex (table 

5A), so the model was re-run without interactions.  

Formula: MEPairedUnpaired <-
lmer(Puncta_density~Image_type+Puncta_type+Sex+(1|Mouse_ID:stack_number) + 
(1|batch), data=paired_vs_unpaired_R) 
anova(MEPairedUnpaired) 
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Qunatile-quantile (q-q) plot of the residuals of the linear mixed effects model (figure 3) 

indicated that most of the points lay within the 95% error intervals represented by the 

dashed lines. Hence, the data fit the model reasonably well.  

Figure 3. Q-Q plot of the residuals of the linear mixed effects model used to assess 

differences in synaptic protein density over the whole image between WT, HOM_near and 

HOM_far images.  

A type III ANOVA run on the revised linear mixed effects model revealed there was no main 

effect of image type (F=0.77, p=0.47) or sex (F=0.84, p=0.37) (table 5B), so a post-hoc Tukey 

corrected pairwise comparison was run to assess differences in synaptic puncta density 

between all the puncta types (table 5C).  

Formula: emmeans(MEPairedUnpaired, list(pairwise ~ Puncta_type ), adjust = "tukey") 

In image stacks which contained dense core plaques (APPNLF HOM), paired SY38 density was 

also measured in 2µm concentric rings, from the boundary of the plaque core to 40µm from 

the boundary of the plaque core using the MATLAB tool. The density of paired SY38 puncta 

was expressed as a percentage of paired SY38 puncta at 40µm from the plaque core 

boundary, the furthest measured distance from the plaque. The mixed model below was run:  

Formula: MM<- 

lmer(Percentage_paired_SY38~Dist+Sex+(1|Mouse_ID:stack_number)+(1|Batch), 

data=AT_HOM_PD_PairedSY38_R).  
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The fixed effects were distance and sex, the random effects accounted for the fact that 2 

images were taken from the same mouse and that experiments were done in batches. On 

inspection of the q-q plot of the residuals (figure 4A), several transformations of the data 

were trialed in order to better fit the assumptions of the model. Squaring the data appeared 

to improve the fit of the data to the model assumptions (figure 4B). Hence, the mixed model 

was re-run using the transformed data.  

Formula: MM<- 
lmer(Square_Percentage_paired_SY38~Dist+Sex+(1|Mouse_ID:stack_number)+(1|Batch), 
data=AT_HOM_PD_PairedSY38_R).  

A type III ANOVA on the linear mixed effects model (table 6A) revealed no main effect of sex. 

Hence, sex was removed from the model. Paired synapse density at each distance was 

compared to the paired synapse density measured furthest from the plaque (40µm).  

Formula: MM<-

lmer(Square_Percentage_paired_SY38~Dist+(1|Mouse_ID:stack_number)+(1|Batch), 

data=AT_HOM_PD_PairedSY38_R).  

 

Figure 4. Q-Q plots of the residuals of the linear mixed effects models run on the 

percentage of paired SY38 at different distances from the plaque core.  (A) The residuals of 

the mixed model using the untransformed data. (B) The residuals of the mixed model using 

the square transformed data. Square transforming the data appeared to better fit the 

assumptions of the model.  

 

Untransformed Square transformed A B
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2.2.6.4 Quantification and Statistical Analysis of Colocalisation of Paired Synapses 

with Aβ 
The python tool was used to isolate paired pre and/or post-synaptic puncta where 50% or 

more of the puncta overlapped with the OC stain for Aβ. The MATLAB script was then used 

to quantify the isolated puncta in 2µm concentric rings around the plaque core. The amount 

of paired synaptic puncta which colocalize with OC is expressed as a percentage of paired 

synaptic puncta in the ring. The linear mixed effects model below was run. The fixed effects 

were distance and sex. The random effects accounted for the fact that 2 images were taken 

from the same mouse and that experiments were done in batches.  

Formula:MM<-lmer(Density~Dist+Sex+(1|Mouse:Image_number)+(1|Batch), 

data=coloc_PSY38_OC or coloc_PSD95_OC)  

Anova(MM) 

On inspection of the q-q plots of the residuals (figure 5A, C), several transformations of the 

data were trialed in order to better fit the assumptions of the model. The Log(data+1) 

transformation appeared to improve the fit of the data to the model in both the SY38 and 

PSD95 colocalisation datasets (figure 5B, D). Hence, the linear mixed effects models were 

re-run using the transformed data.  

Formula: MM<-logdensityplusone~ Dist + Sex (1 | Mouse_ID:Image_number) + (1|Batch).  

The ANOVA results revealed that sex did not impact the model. Hence, sex was removed 

from the model when investigating the main effect of distance.  

Formula: MM<- logdensityplusone~ Dist + (1 | Mouse_ID:Image_number) + (1|Batch).  
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Figure 5. Q-Q plots of the residuals of the linear mixed effects models run on the percentage 

(%) of paired synaptic puncta which overlap with OC. (A) The residuals of the linear mixed 

effects model using the untransformed percentage of paired SY38 containing OC data. (B) The 

residuals of the linear mixed effects model using the log ((percentage of paired SY38 

containing OC)+1) data. (C) The residuals of the linear mixed effects model using the 

untransformed percentage of paired PSD95 containing OC data. (D) The residuals of the linear 

mixed effects model using the log ((percentage of paired PSD95 containing OC)+1) data. 

 

2.2.6.5 Visualization of Images  

ImageJ and Imaris 3D viewer were used to prepare representative images.  

 

Untransformed % of paired SY38 containing OC Log((% of paired SY38 containing OC)+1)
transformed

Untransformed % of paired PSD95 containing OC Log((% of paired PSD95 containing OC)+1)
transformed

A B

C D
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2.2.7 Immunohistochemical Staining of Plaque Load and Astrogliosis.  

Helen Stirling, an undergraduate student I supervised in the Spires-Jones lab conducted the 

immunohistochemistry experiments and aspects of the analysis. Fixed hemispheres were 

coronally sectioned using a sliding microtome (Leica SM 2010R) at 50µm and stored at -20oC 

until required. From each mouse, 3 sections were chosen at approximately -1mm, -2mm and -3mm 

from Bregma (figure 6) to sample throughout the cortex and hippocampus. In this study, Thioflavin-

S (ThioS) and GFAP (table 2) were used to measure Aβ plaque and reactive astrocyte burden 

respectively.  

Free floating sections were pre-treated with citrate buffer (95oC for 20 minutes) to retrieve 

antigens. Subsequently sections were permeabilised with 0.5% Triton X-100 at room 

temperature for 20 minutes. Sections were blocked with 5% normal donkey serum (NDS) for 

1 hour and the anti-GFAP primary antibody (table 2) was applied in 1% NDS (4oC overnight). 

The donkey anti-rabbit AlexaFluor 647 secondary antibody (table 2) was applied in 1% NDS at 

room temperature for 1.5 hours. Sections were counter-stained with 0.001 mg/mL DAPI in 

order to stain nuclei. Sections were mounted on polysine adhesion slides and stained with 

0.05% ThioS in 50% ethanol then differentiated in 80% ethanol before being coverslipped 

with Immu-Mount (Thermo Scientific). All washes were performed with TBS.  

A negative control omitting the primary anti-GFAP antibody and a positive control from an 

APP/PS1 mouse with known extensive plaque pathology and GFAP positive astrocytes were 

included to validate the experimental procedure.  
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Figure 6. Schematic illustrating approximate position of Bregma, and the 3 coronal sections 

used from each mouse for immunohistochemical study of plaque and GFAP load. Image 

made using Biorender.com.  

2.2.8 Imaging of Plaque Load and Astrogliosis.  

Images were obtained with a ZEISS Axio Scan.Z1 slide-scanner using a 20x objective lens. 

Slides were imaged at 465nm, 517nm and 668nm to capture the DAPI, ThioS and GFAP signals 

respectively. A single focus layer without Z stacking was applied with 6 coarse and 6 fine focal 

points set across the tissue. Exposure times for each channel were set automatically and 

remained constant for all images taken on that day. Images were manually inspected for 

focusing problems and re-imaged accordingly.  

 

2.2.9 Analysis of Plaque Load 

Regions of interest (ROIs) were defined by outlining cortical boundaries in all three sections 

and hippocampal boundaries in sections approximately -2mm and -3mm from Bregma in 

ImageJ using the Allen Mouse Brain Atlas as a guide (Atlas.brain- map.org). The ThioS channel 

was thresholded using the MaxEntropy algorithm in ImageJ. The ImageJ analyse particles 

function was used to calculate the percentage area of the ROI occupied by ThioS staining.  
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The mixed model below was used to investigate the impact of genotype, region and sex on 

the percent area covered by ThioS stain. The fixed effects were genotype, region and sex. The 

random effect accounted for the fact that multiple images were taken from the same mouse. 

Data on experimental batch was not collected. 

ThioS_MM<-lmer(ThioS~Genotype*Region+Sex+(1|Mouse:Image_number), 

data=ThioS_data_MH) 

Anova(ThioS_MM) 

On inspection of the q-q plot of the residuals (figure 7), several transformations of the data 

were trialed in order to better fit the assumptions of the model. The cube root transformation 

appeared to improve the fit of the data to the model. A type III ANOVA revealed no effect of 

sex and an interaction of genotype and region.  

Formula: transformed_ThioS_MM<-

lmer(cuberootthios~Genotype*Region+Sex+(1|Mouse:Image_number), 

data=ThioS_data_MH) 

Anova(transformed_ThioS_MM)  

Figure 7. Q-Q plots of the residuals of the mixed models run on the ThioS data (A) The 

residuals of the mixed model using the untransformed ThioS data. (B) The residuals of the 

mixed model using the cube root transformed ThioS data. Cube root transformation appeared 

to improve the fit of the data to the model assumptions.  

 

Untransformed Cube root transformed
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A post-hoc Tukey corrected pairwise comparison of the main effects of genotype and region 

was performed. The effects deemed to have biological relevance are shown. Differences 

found between WT/HET values in the cortex and hippocampus were removed since these 

values were thought to be noise as no plaques were present in these mice.   

 

Formula: emmeans(transformed_ThioS_MM, list(pairwise ~ Genotype*Region), adjust = 

"tukey") 

 
2.2.10 Analysis of Astrogliosis  

7 crops containing ThioS positive plaques and the surrounding neuropil per APPNLF HOM 

mouse cortex, and 7 crops per WT cortex were isolated. This enabled more accurate manual 

thresholding of the GFAP channel. ROIs were manually drawn around the boundary of the 

ThioS stain, marking the boundary of the core of the plaque. The percentage area covered by 

GFAP stain was measured in 20µm concentric circles around the ThioS positive plaque core, 

up to 200µm using a macro made in ImageJ. The linear mixed effects model below was run to 

investigate the impact of distance from plaque core on GFAP burden. The fixed effects were 

distance and sex. The random effect accounted for the fact that multiple image crops were 

taken from the same mouse.  

MEGFAPrings<-lmer(GFAP~Dist+Sex+(1|Mouse_ID:plaque_number), 

data=GFAP_in_concentric_rings_) 

Anova(MEGFAPrings) 

On inspection of the q-q plot of the residuals (figure 8), several transformations of the data 

were trialed in order to better fit the model assumptions. The cube root transformation 

appeared to improve the fit of the data to the model assumptions. Whilst not all the residuals 

in the q-q plot lay within the 95% error lines, most of the residuals did. Hence, the mixed 

model was re-run on the transformed data. A type III ANOVA revealed that sex did not impact 

the model, so sex was removed when interrogating the main effect of distance. 
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Formula: transformedMEGFAPrings<-lmer(cube_root~Dist+(1|Mouse_ID:plaque_number), 

data=GFAP_in_concentric_rings_) 

 GFAP burden at each distance was compared to the furthest distance from the plaque 

(200µm).  

Figure 8. Q-Q plots of the residuals of the linear mixed effects models run on the GFAP 

burden (percentage area) in concentric rings around plaque data (A) The residuals of the 

linear mixed effects model using the untransformed GFAP data. (B) The residuals of the linear 

mixed effects model using the cube root transformed GFAP data. Cube root transformation 

appeared to improve the fit of the data to the model assumptions.  

 

The linear mixed effects model below was used to compare the GFAP burden over the whole 

crop in APPNLF HOM cortex crops (which contained plaques), with crops taken from WT 

cortices.   The fixed effects were distance and sex. The random effects accounted for the fact 

that multiple image crops were taken from the same mouse.  

Formula: MM<-lmer(GFAP~Genotype+Sex+(1|Mouse_ID), 

data=GFAP_over_whole_image_R) 

anova(MM) 

Untransformed Cube root transformed
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On inspection of the q-q plot of the residuals (figure 9), several transformations of the data 

were trialed in order to better fit model assumptions. The cube root transformation appeared 

to improve the fit of the data to the model assumptions. 

Figure 9. Q-Q plots of the residuals of the linear mixed effects models run on the GFAP 

burden (percentage area) over the whole image crop data (A) The residuals of the linear 

mixed effects model using the untransformed GFAP data. (B) The residuals of the linear mixed 

effects model using the cube root transformed GFAP data. Cube root transformation 

appeared to improve the fit of the data to the model assumptions. 

2.3 Bulk RNA-Sequencing of Astrocytes in AD models 
 
2.3.1 Animals 

 TRAP mice (see section 2.1.4) were cross-bred with HET APP/PS1 mice (see section 2.1.2) 

and HOM APPNLF mice (see section 2.1.1) to form mice which were HET/HET for the TRAP and 

APP/PS1 genes and HET/HOM for the TRAP and APPNLF genes. Mice which were HET for the 

TRAP gene and WT for APP and PSEN1 genes were bred as controls. Genotypes were 

determined using real time PCR with specific probes (Transnetyx, Memphis, Tennessee). Mice 

were aged to 6,12 and 18 months for experimentation.  

 
The creators of the TRAP mice investigated gene expression in specific cell types using the 

TRAP methodology followed by microarray analysis. They detected 2 fold enrichment in gene 

expression in the purified cells vs the entire sample using 3-6 mice (Doyle et al. 2008). We 

intended to use TRAP followed by RNA-seq. The dynamic range of array technology is limited 

by background at low expression and signal saturation at high expression and was estimated 

Untransformed Cube root transformed
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to be ~103. Whereas, RNA-seq has a wider dynamic range (>105), with low background signal 

and discrete digital read count enabling highly expressed genes to be accurately counted 

(Wang et al. 2009). Hence, we decided n=3-6 mice per genotype per time point would allow 

us to detect alterations in astrocyte gene expression.  

 
2.3.2 Translating Ribosome Affinity Purification (TRAP)  

Isolation of astrocyte specific translating mRNA was carried out as previously described 

(Heiman et al. 2014). Briefly, 6, 12 or 18-month amyloidopathy and WT mice were subject to 

isoflurane followed by decapitation. Carbon dioxide (CO2) was not used in order to avoid 

confounding effects on gene expression. Neocortices were dissected and lysed in ice-cold lysis 

buffer (20mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 10mM 

magnesium chloride (MgCl2), 150mM potassium chloride (KCl), 0.5mM dithiothreitol (DTT), 

100 μg/mL cycloheximide, cOmplete ULTRA protease inhibitors and RNAse inhibitors 

Superasin (Life Technologies,Carlsbad, California) and RNAsin (Promega, Madison, 

Wisconsin). Cell lysates were centrifuged to clear debris and solubilised with 1% NP40 and 

30mM 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) (Avanti Polar Lipids, Alabaster, 

Alabama). Samples were further centrifuged, 50µl of the supernatants were taken as the 

input samples which represent the total RNA. The remainder of the supernatants were 

incubated with pre-prepared anti-GFP beads. Antibodies 19C8 and 19F7 (Sloan Kettering 

Memorial Centre, New York City, New York) coated Dynabeads MyOne Streptavadin T1 

magnetic beads (Life Technologies). Samples were kept at 4oC with continuous rotation 

overnight. Beads were washed 4 times with wash buffer (20mM HEPES, 5mM MgCl2, 350mM 

KCl, 1% NP40, 0.5mM DTT and 100 μg/mL cycloheximide). Cell-type specific mRNAs attached 

to immunoprecipitated GFP-tagged ribosomes were isolated and purified using the Agilent 

technologies Nanoprep kit, as per the manufacturer’s instructions. Briefly, samples were lysed 

in 100 μL of lysis buffer with β-mercaptoethanol. 80% sulfolane was mixed in equal volume 

with the sample and filtered with silica-based fibre filter columns. DNAse treatment was 

carried out for 15 minutes, columns were washed and dried, and RNA eluted in 20 μL of pre-

warmed RNase free water.  
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2.3.3 Reverse Transcription Polymerase Chain Reaction (RT-PCR)  

Complimentary deoxyribose nucleic acid (cDNA) was generated using the SuperScript Vilo 

cDNA Synthesis Kit (Thermofisher, Waltham, Massachusetts). 2µl of RNA was added to an 

enzyme and buffer mixture as per the manufacturer’s instructions. RT-PCR was carried out 

with the following programme: 10 minutes at 25°C, 30 minutes at 55°C and 5 minutes at 85°C.  

2.3.4 Quantitative Polymerase Chain Reaction (qPCR) 

Primers were designed for cell type specific genes and a gene translated on mitochondrial 

ribosomes (table 3). Genes were counted as cell type specific if they demonstrated >10-fold 

higher expression in a particular cell type vs other cell types as determined using 

https://www.brainrnaseq.org/ (Zhang et al. 2014). FastStart Universal SYBR Green qPCR 

Master Rox reagent (Roche, Basel, Switzerland), along with 6 ng of cDNA, the forward and 

reverse primers were used for each reaction. qPCR reactions were carried out in duplicate, 

along with no template controls and no RT controls where appropriate. qPCRs were 

performed on a Mx3000P qPCR machine (Agilent Technologies, Santa Clara) using the 

following cycling programme: 10 minutes at 95°C; 40 cycles of: 30 s at 95°C, 40 s at 60°C, 1 

minute at 72°C; ending with the dissociation curve: 1 minute at 95°C and 30 s at 55°C with a 

ramp up to 30s at 95°C. All data was normalised to house-keeping gene controls (ribosomal 

protein L13a (Rpl13a)).  

 

Table 3. Primer sequences of cell type specific genes and mitochondrial ribosome 

translated gene. Ribosomal Protein L13a (Rpl13a), CX3C Chemokine Receptor 1 (Cx3cr1), 

Enolase 2 (Eno2), Myelin Basic Protein (Mbp), Aldehyde Dehydrogenase 1 Family Member 

L1 (Aldh1l1), Mitochondrially Encoded 16S RNA (Mt-rnr2).  

Gene Forward Reverse
Rpl13a GATGAATACCAACCCCTCC CGAACAACCTTGAGAGCAG
Cx3cr1 CTGGTGGTCTTTGCCTTC GCACTTCCTATACAGGTGTCC
Eno2 GCCATCTCCTGTAACTCTCC ATTCTGTAAAGTTCCGAGCTTC
Mbp CCAGTCTAATAATGTCCATCGAC CAGATTAACAAGATGCAGTATTGG
Aldh1l1 GCCCTGAGTAATGTGAAGAAG ACTGGTCATGGATGGAGTC
Mt-rnr2 CGAGCTTGGTGATAGCTCGT GAGCTGTCCCTCTTTTGGCT
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2.3.5 Analysis of RNA Integrity 

The Agilent RNA 6000 Pico Kit was used to check the concentration and integrity of the RNA 

(RIN) (table 4), according to manufacturer’s protocol. Briefly, aliquots of the RNA were heat 

denatured at 70oC for 2 minutes and returned to ice. Gel/dye mix was loaded onto pico 

microfluidic chips along with a ladder and the RNA samples. The reaction was run on the 

Agilent Bioanalyzer. We were aiming for RINs above 7. However, the samples with RINs below 

7 did not appear abnormal when assessing the sequencing and so were kept in the analysis.  
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Table 4. Checking the concentration and integrity of the RNA being sent for sequencing. An 

Agilent 2100 Bioanalyser was used to quality check the TRAP and input samples being sent 

for sequencing.  

 

2.3.6 TRAP-Sequencing and Processing of Data  

6-month samples were prepped and sequenced by Edinburgh Genomics. The library was 

prepped using the SMARTer stranded pico input kit (Takara, Kyoto, Kyoto), and sequencing 

was performed on the Illumina NovaSeq 6000 platform (Illlumina, San Diego, California). 12 

and 18-month samples were prepped and sequenced by Cambridge Genomics using the 

Clonetech - SMART-Seq v4 Ultra Low input RNA library preparation (Takara), along with 

sequencing on the Illumina Nextseq 500 platform. All sequencing utilised 75 paired-end reads 

at approximate sequencing depths of 60 million reads per sample for mixed RNA samples 

(input) and 30 million reads per sample for TRAP-seq.  
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Dr Owen Dando and Dr Xin He, postdocs in the Hardingham lab, mapped RNA-seq reads and 

analysed using Spliced Transcripts Alignment to a Reference (STAR) version 2.5.3a. 

Subsequently, per-gene read counts were summarised using featureCounts version 1.5.2. For 

read-mapping and feature counting, genome sequences and gene annotations were 

downloaded from Ensembl version 94. Differential expression analysis was then performed 

using DESeq2 (R package version 1.18.1), with a significance threshold calculated at a 

Benjamini–Hochberg-adjusted P value of <0.05. 

2.3.7 TRAP-Sequencing Analysis 

An expression cut-off of 1 fragments per kilobase of transcript per million mapped reads 

(FPKM), and a filter for protein coding genes was applied to all the datasets. The EnrichR 

platform (Kuleshov et al. 2016) was used to conduct gene ontology (GO) and  Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis on selected gene sets. In order 

to identify potential transcription factors regulating gene expression, the ENCODE and ChEA 

consensus target genes from Chip-X database was interrogated using EnrichR, along with the 

TFEA.ChiP platform (https://www.iib.uam.es/TFEA.ChIP/).  Ingenuity pathway analysis (IPA) 

(Qiagen, Hilden, Germany) was also used to identify alterations in expression of pathways. 

Gene sets altered in these experiments were compared to previously collected/published 

data as described in chapter 4. Two-sided Fisher’s exact tests were used to assess enrichment 

of gene sets in candidate gene lists.  

 
2.3.7.1 Generation of Expanded Lipopolysaccharide (LPS), Middle Cerebral Artery 

Occlusion (MCAO) and Pan-reactive Gene Sets 

The original sets of A1 (LPS-specific), A2 (MCAO-specific) and pan-reactive gene sets 

comprised groups of 12-13 genes (Liddelow et al. 2017) and although they were derived from 

the microarray data previously published (Zamanian et al. 2012), the rationale behind their 

selection was not stated. To generate larger gene sets, the microarray data from GSE 

accession number GSE35338 previously published (Zamanian et al. 2012) was analysed in 

GEO2R and fold change gene expression for the acute-LPS and acute-MCAO sets were 

calculated. For both stimulation paradigms, fully annotated genes were ranked by fold change 

(highest fold change ranked highest). For genes featuring within the top 250 for either stimuli 

and for which there were multiple probe sets, the average fold-change for the probe sets was 
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taken as the final value. To generate LPS and MCAO gene sets, we required the gene be 

ranked in the top 100 genes for one stimulation paradigm, and ranked at least 50 places lower 

for the other stimulation paradigm. Using this approach 70 genes were obtained both for the 

LPS and MCAO sets. To generate pan-reactive gene sets we wanted robustly induced genes 

that were of similar ranking across both stimulation paradigms, so we required that genes be 

in the top 250 ranked genes, and no more than 50 ranking positions between the two 

stimulation paradigms. This yielded a pan-reactive set of 42 genes. Of the 37 ‘A1’ (LPS), ‘A2’ 

(MCAO) and pan-reactive genes previously employed (Liddelow et al. 2017), 8 were found in 

different categories using our method. For example, we classed one previously stated A1/LPS 

gene (Gbp - guanylate-binding protein) as a pan-reactive gene since it was ranked 8th in the 

LPS stimulation and 26th in the MCAO stimulation. Conversely, the gene Serpina3n (Serine 

Protease Inhibitor A3n) was previously classed as a pan-reactive gene, but we classed it as an 

A1 gene since it was ranked 6th in the LPS stimulation and 61st in the MCAO stimulation. Of 

note, when interrogating TRAP-seq data with these gene sets, only genes within these sets 

expressed >1 FPKM across all conditions were included in the analysis.  

 

2.4 Single Cell RNA Sequencing of Astrocytes in AD models 

2.4.1 Animals  

Mice which were HET/HET and HET/WT for the TRAP and APP/PS1 genes were grown to 12 

and 18-months.  Mice which were HET/HOM for the TRAP and APPNLF genes respectively were 

grown to 18-months. Keren-Shaul et al. (2017) had previously conducted a single-cell RNA 

sequencing experiment where they identified a disease associated population of microglia in 

a transgenic mouse model of AD using n=3 mice per genotype (Keren-Shaul et al. 2017). 

Hence, in this study 3-4 mice per genotype per age were used.  

 

2.4.2 Gentle Dissociation of Tissue 

Mice were anesthetised using isoflurane and decapitated. CO2 was not used in order to avoid 

confounding effects on gene expression. The neocortices were dissected and placed in ice 

cold Dulbecco's phosphate-buffered saline (DPBS) (ThermoFisher). Tissue was enzymatically 

and mechanically dissociated using the Adult Brain Tissue Dissociation Kit, as per the 
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manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). Briefly, tissue 

was combined with the enzyme cocktails. The gentleMACS Octo Dissociator with Heaters 

(Miltenyi Biotec) was used to mechanically dissociate the tissue at 37oC for 30 minutes 

(program 37C_ABDK_01).  The digested tissue was filtered (70 µm) with DPBS. Myelin and cell 

debris were removed using the Debris Removal Solution and centrifugation steps. 

Erythrocytes were removed using the Red Blood Cell Removal Solution and centrifugation 

steps. Cells were transported to the FACS facility in PBS containing 0.5% bovine serum 

albumin.  

 

2.4.3 Fluorescence Activated Cell Sorting (FACS) of Astrocytes  

FACS of astrocytes was carried out by the University of Edinburgh FACS facility on a BD Aria 

II. In collaboration with Lizzie Freyer, the facility manger, gates were set up to gate out debris 

and dead cells, along with clumps and auto fluorescent cells. GFP positive cells were collected.  

 

2.4.4 10x Genomics Single Cell Sequencing 

Lizzie Freyer conducted the 10x Genomics sample preparation using the 10x Genomics Single 

Cell 3’ Reagent kits V3 (10x Genomics, Pleasanton, California) according to the manufacturer’s 

instructions. Briefly, gel bead emulsions (GEMs) were generated by combining unique 

molecular identifier (UMI)-barcoded gel beads, cells, and partitioning oil onto a chromium 

chip. To achieve single cell resolution, cells were delivered at a limiting dilution, such that the 

majority (~90-99%) of generated GEMs contain no cell, while the remainder largely contain a 

single cell. The gel bead is subsequently dissolved, primers are released, along with a master 

mix containing RT reagents. Incubation of the GEMs produces barcoded cDNA from poly-

adenylated mRNA.  GEMs are then broken and pooled fractions are recovered. Silane 

magnetic beads are used to purify the first-strand cDNA from the post GEM-RT reaction 

mixture, which includes leftover biochemical reagents and primers. Barcoded, full-length 

cDNA is amplified via PCR to generate sufficient mass for library construction. The integrity 

and concentration of the DNA was checked using the Agilent High Sensitivity Kit and 

Bioanalyzer. Richard Clark at the Edinburgh Clinical Research Facility conducted the 

sequencing, which was performed on the NextSeq 550 (Illumina). Approximately 50,000 reads 

per cell we carried out.  
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2.4.5 Single Cell Sequencing Data Processing and Analysis  

Processing of the single cell sequencing data was conducted by Dr. Katie Emelianova, a 

postdoc in the Hardingham lab, except for the section on defining the population of cells 

which were likely astrocytes, which I performed. I also performed the preliminary analysis of 

the single cell data presented in this thesis.  

 

2.4.5.1 Cell calling 

 Cell Ranger, a set of 10x Genomics pipelines to process 10x Genomics single cell data, was 

used to demultiplex raw base call files to produce forward, reverse and index FASTQ files. 

Reads were aligned to a 10x formatted reference genome using STAR, a splice aware aligner. 

Reads which align to an exonic position on the correct strand uniquely were considered for 

downstream UMI counting. Reads were grouped by cell barcode, UMI and gene annotation, 

and after a process of error correction to resolve sequencing errors and barcode collisions, 

each cell barcode, UMI and gene annotation combination was recorded as a UMI count. The 

UMI counts were used to predict which cells were empty or ambient RNA containing cells, 

which were excluded from further analysis. Cells with expression profiles that strongly 

deviated from the background were deemed cell containing droplets that were used in 

downstream analysis.  

 

2.4.5.2 Normalisation  

Total UMI counts for each cell were normalised towards the median of UMI counts for all 

cells. The count matrices were log-transformed, mean centred and scaled. These normalised 

counts were used for clustering and uniform manifold approximation and projection (UMAP) 

dimensionality reduction. For differential expression, for larger count sizes, an asymptotic 

beta test was used to test for differential expression. This is based on the exactTest from 

edgeR. This equalizes library sizes prior to running the test for differential expression, thereby 

internally normalizing for library size (in this case each cell is a library). 
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2.4.5.3 Dimensionality reduction  

Principle component analysis (PCA) was run on the normalised and filtered feature-barcode 

matrices, computing the top 10 dimensions by default. Using this reduced representation of 

the matrices, UMAP was used to visualise the data in 2D space.  

 

2.4.5.4 Defining the Astrocyte Populations in the Single Cell RNA-Seq  

Using the UMAP representation of all cells sorted and sequenced, groups of cells were 

manually segmented based on position in UMAP space. Gene sets which were significantly 

enriched in each cluster of cells were imported into the cell type specific expression analysis 

tool produced by the Dougherty lab http://genetics.wustl.edu/jdlab/csea-tool-2/ (Dougherty 

et al. 2010),  in order to identify which populations of cells were likely astrocytes.  

 

2.4.5.5 Clustering  

Following selection of astrocyte populations, clustering was performed on the UMAP reduced 

points in PCA space. K-means clustering was performed, which generated K centroids and 

assigned each cell a cluster membership based on the nearest centroid. A clustering quality 

metric called the Davies-Bouldin Index was used to estimate the initial value of K.  

 
2.4.5.6 Ingenuity Pathway Analysis (IPA)  

Genes which were significantly enriched or de-enriched in each cluster relative to other 

clusters were imported into IPA. Pathways upregulated or downregulated in each cluster 

relative to other clusters were visualised using heatmaps.  

 

2.4.5.7 Visualisation of Featured Genes 

The 10x Genomics Loupe browser was used to visualise expression of featured genes.  
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3.1 Chapter Introduction  

Saito et al. generated the knock-in APPNLF mouse in order to combat the fact that studies of 

Alzheimer’s disease pathology had largely relied upon transgenic mice which overexpress APP 

(Saito et al. 2014). Initial characterization of the APPNLF model demonstrated plaque 

deposition beginning at 6-months of age, increased microgliosis and astrogliosis compared to 

WT mice, a qualitative reduction in pre-synaptic protein synaptophysin and PSD95 around 

plaques, and memory impairment in the y maze at 18-months. Quantitative examination of 

synapse pathology and astrogliosis in relation to plaque distance was not carried out.  

 

At the beginning of this chapter I investigate synapse pathology in 12-month APPNLF mice in a 

quantitative manner. Synapse pathology is the strongest correlate of cognitive decline and 

therefore is a central pathology in AD (Terry et al. 1991). Plaque- associated synapse loss and 

synaptic accumulation of oligomeric Aβ also occur in AD and are accurately modelled by many 

of the overexpressing transgenic FAD mouse models (Koffie et al. 2012; Koffie et al. 2009; 

Pickett et al. 2016; Spires et al. 2005). Quantifying pathology not only identifies how well the 

mouse model recapitulates aspects of human AD, but also allows other molecular, cellular 

and behavioural studies of the APPNLF mouse to be put in the context of pathology.  

 

3.1.1 Imaging the Synapse Using Array Tomography  

Typically, a confocal microscope achieves a resolution of approximately 800nm in the z-

direction and approximately 250nm in the x-y direction (Pawley 1995). This z resolution is 

inadequate to accurately quantify synaptic bouton density, since synaptic boutons have a 

diameter of approximately 400nm (Ballesteros-Yáñez et al. 2006). Additionally, the z 

resolution of a confocal microscope limits the ability to identify whether proteins such as Aβ 

are inside the pre/post-synaptic terminals or simply near them. In order to overcome this, 

Micheva and Smith developed the high-resolution imaging technique array tomography, 

which has since been adapted for use in mouse models of AD and human post-mortem tissue 

(Micheva and Smith 2007; Micheva et al. 2010; Kay et al. 2013).  

 

The process of array tomography (figure 10) involves embedding tissue into an acrylic resin 

and physically sectioning the tissue into ribbons of 70nm thick serial sections. These ribbons 
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are stained with antibodies and each section is imaged using a fluorescent light microscope. 

The images are processed and a 3D reconstruction of the tissue is formed, giving a resolution 

250nm in the x-y direction and 70nm in z direction. This allows for synaptic density and 

colocalization of synaptic puncta with Aβ to be conducted with greater confidence than 

standard confocal microscopy. There are several studies published using this technique to 

quantify synaptic proteins in mouse (Pickett et al. 2019; Koffie et al. 2009) and human 

(Henstridge et al. 2015; Kay et al. 2013; Colom-Cadena et al. 2017; Jackson et al. 2019).  

 

Due to limitations on time, I decided to only investigate synaptic density and colocalization of 

Aβ in synaptic terminals in 12-month APPNLF mice, since this was the middle time point for the 

TRAP-sequencing experiments described in chapter 4. I used the somatosensory cortex since 

Saito et al. had demonstrated cortical plaque deposition at 12 -months in APPNLF HOM mice 

(Saito et al. 2014) and because Koffie et al. had previously used array tomography to 

investigate synapse loss around plaques in the somatosensory cortex of APP/PS1 mice (Koffie 

et al. 2009), the other amyloidopathy model I used in chapters 4 and 5. Hence, a comparison 

of synapse loss in the two mouse models could be made. 
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Figure 10.  The process of array tomography.   
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3.1.2 Plaque and Reactive Astrocyte Load in 12-month APPNLF Mice 

This chapter also investigates plaque load and associated reactive astrocyte load in the 12-

month APPNLF mice. Enhanced expression of the intermediate filament protein GFAP is widely 

used as a marker of astroglial activation (Eng and Ghirnikar 1994; Kamphuis et al. 2014). 

However, the diversity of the reactive astrocyte phenotype is being realized (Zamanian et al. 

2012). Hence, GFAP alone is unlikely to mark all reactive astrocytes. Nevertheless, Saito et al. 

previously illustrated that GFAP occupied more cortical area in 18-month-old APPNLF HOM 

mice compared to WT mice. They also qualitatively show that GFAP load increases around 

plaques. However, they did not quantify the relationship between GFAP load and distance 

from plaque. Hence, the extent to which GFAP positive reactive astrocytes surround Aβ 

plaques in this model is not known.  

 

Whilst array tomography is very useful for visualising individual synaptic proteins, only a small 

portion of tissue is sampled. In order to get an idea of plaque load over the whole cortex and 

hippocampus, as well as the presence of activated astrocytes. I designed experiments 

conducted by Helen Stirling, an undergraduate student I supervised in the Spires-Jones lab. 

Analysis of plaque load and GFAP load was conducted by both Helen and myself.  

 

3 coronal sections approximately -1mm, -2mm and -3mm from Bregma were sampled from 

10 APPNLF HOM mice, 10 HET mice and 9 WT mice. The sections were stained for nuclei using 

DAPI, activated astrocytes using a GFAP antibody, and dense Aβ plaque cores were stained 

with ThioS (as described in section 2.1.7).  
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3.2 Results 

3.2.1 Optimisation of Array Tomography Stain – Choosing Markers of 

Synaptic Proteins and Aβ 

Synapsin-1 and synaptophysin are both considered markers of pre-synaptic terminals 

(Brachya et al. 2006). Trial staining experiments were carried out to decide which pre-synaptic 

marker to use (figure 11A). Synaptophysin was chosen since the stain appeared more 

punctate and therefore was thought to better label individual synaptic boutons. It is not 

surprising that the synaptophysin stain was better for distinguishing synaptic boutons, since 

synaptophysin is a synaptic vesicle glycoprotein thought to constitute part of the pore 

complex which forms when the vesicle fuses with the presynaptic membrane (Adams et al. 

2015). On the other hand, synapsin-1 is a phosphoprotein involved in axonogenesis as well as 

synaptogenesis (Chin et al. 1995).  

PSD95 is thought to be a good marker for excitatory post-synaptic terminals as it is involved 

in the formation of scaffolds for the clustering of receptors, ion channels and signaling 

proteins at post-synaptic terminals (Sheng and Kim 2011). Additionally, many other studies 

have used the expression of this protein as a proxy for post-synaptic density (Koffie et al. 

2009; Saito et al. 2014). The trial stains (figure 11B) showed that a guinea-pig PSD95 antibody 

labelled the nuclei of cells as well as what was thought to be post-synaptic terminals. Nuclear 

staining is a common artefact when using polyclonal antibodies for array tomography for 

unknown reasons (unpublished data). 

In order to determine whether the neuropil puncta staining was reliable, I co-stained mouse 

tissue with a guinea-pig PSD95 antibody and a rabbit PSD95 antibody (figure 11B). 78% of the 

rabbit PSD95 stain colocalized with the guinea-pig PSD95, n=2. On inspection of the images, 

it appeared that the non-nucleic puncta were the major source of colocalization. Hence, both 

PSD95 antibodies were thought to reliably label post-synaptic densities. The Aβ antibody 

needed in this study was raised in a rabbit, so experiments went ahead with the guinea-pig 

PSD95 antibody.  

 

In order to overcome the issue of nucleic PSD95 antibody staining affecting density 

measurements, I implemented 3 tools when analysing the data: 
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1) Only puncta which were present in adjacent images were included in the 

segmented image which was used to quantify puncta density. Synaptic puncta 

have a diameter of approximately 400nm, hence real puncta would be present in 

more than one 70nm slice; excluding puncta only present in one slice reduces the 

noise in the data.  

2) A neuropil mask which is based on the synaptophysin stain was applied to the 

PSD95 images. This excluded blood vessels and cell bodies, including nucleic 

staining, giving more accurate neuropil PSD95 density measurements.  

3) I decided to only measure the density of paired synaptic puncta, i.e. only measure 

PSD95 puncta that are within 500nm of a synaptophysin puncta.  

 

Previous studies which used array tomography to measure synaptic density around plaques 

in transgenic mice illustrated that a significant reduction in synapse density occurs in the core 

of the plaque, in the Aβ oligomer halo region around the plaque, and 20µm beyond the halo 

(Koffie et al. 2009). Hence, the OC antibody was chosen to mark plaques as it marks amyloid 

fibrils which constitute the plaque core and fibrillar oligomers which are often found in halos 

around the plaque core.  

 

3.2.2 Optimisation of Array Tomography Stain- Testing Antigen Retrieval 

Most of the array tomography studies carried out in the Spires-Jones lab use pressure cooking 

in citrate buffer (pH6) as a method of antigen retrieval. This is necessary due to the tissue 

embedding process masking epitopes. Before starting my study, I wanted to check whether 

this antigen retrieval method was affecting my PSD95 stain. Figure 11C shows that there was 

less PSD95 antibody bound to the plaque and nuclei with antigen retrieval compared to 

without antigen retrieval. Hence, I decided to keep the citrate buffer antigen retrieval step.  

 

 

 

 

 

 



 
 

66 
 

PSD-95 Guinea-Pig PSD-95 Rabbit

DAPI Merge

Synapsin-1 Synaptophysin 
A

B

C

W
ith

ou
t a

nt
ig

en
 re

tr
ie

va
l MergeDAPI OC

W
ith

 a
nt

ig
en

 re
tr

ie
va

l 

PSD-95



 
 

67 

 

Figure 11. Optimisation of array tomography stain. Array tomography ribbons from the 

cortex of spare mouse array tomography blocks were cut and stained. Images shown are 

maximum intensity z projections of 4 serial sections (aligned raw images). (A) Synapsin-1 and 

synaptophysin are labelled. Scale bar = 5µm. (B) The PDZ PSD95 domain was labelled using 

guinea-pig primary antibody (green), residues surrounding Gln53 of PSD95 was labelled using 

rabbit primary antibody (magenta) and nuclei were labelled with DAPI (blue). In the merged 

tile, white indicates colocalization of PSD95 antibodies. Scale bar = 10µm. (C) testing PSD95 

stain with and without citrate buffer pH6 antigen retrieval. DAPI labels nuclei (white), OC 

antibody labels amyloid fibrils and fibrillar oligomers (blue), PSD95 labelled with the guinea-

pig primary antibody (magenta). Scale bar = 10µm.  

 

3.2.3 Investigating Synaptic Density Around Plaques in 12-month APPNLF 

Somatosensory Cortex – Staining Tissue and Aligning Images.  

The array tomography procedure described in figure 10 was carried out, using an SY38 

antibody to mark presynaptic protein synaptophysin, PSD95 antibody to mark the post-

synaptic protein PSD95, OC to mark amyloid fibrils and fibrillar oligomers and DAPI to mark 

nuclei. 2 stacks of images were taken per WT mouse. For HOM mice, 2 stacks including a 

plaque in the field of view (classed as near plaque), plus 1 stack without a plaque in the field 

of view (classed as far from plaque) were taken per mouse. The z stacks were reconstructed 

and consecutive images were aligned using rigid body and affine transformations. Example 

images from the array tomography study are shown in figure 12.  Qualitatively, there appears 

to be less synaptophysin and PSD95 stain in the region of the plaque (indicated by white 

arrows). However, I wanted to assess this quantitatively.  

 

 

 

 

 

 



 
 

68 
 

SY38

PSD95

OC

DAPI

HOM far from plaqueHOM near plaqueWT

Merge



 
 

69 

 

Figure 12. Representative images of array tomography staining of 12-month WT and HOM 

APPNLF somatosensory cortex. Array tomography ribbons from WT and HOM APPNLF mice 

were stained with DAPI to mark nuclei (yellow), SY38 to mark presynaptic synaptophysin 

proteins (green), PSD95 to mark post-synaptic proteins (magenta). Orange arrow indicates 

SY38 positive dystrophic neurite, white arrow indicates reduced SY38 and PSD95 stain around 

the plaque. If the field of view contained a plaque, this was counted as being ‘near plaque’, if 

the field of view did not contain a plaque, this was counted as being ‘far from plaque’. 

Channels are shown separately, followed by the merged image. Images shown here are 

maximum intensity z projections of 5 slices of raw image. However, between 15-20 slices per 

mouse were imaged and used for quantification. Scale bar = 10µm.  

 

3.2.4 Investigating Synaptic Density Around Plaques in 12-month APPNLF 

Somatosensory Cortex – Image Segmentation.  

In order to quantitatively assess synaptic density around plaques, I first needed to segment 

the channels. This allows isolation of 3D objects to be counted. For the synaptic puncta I 

used the auto local threshold function in the MATLAB script (see section 2.1.6.2), which is 

ideal for segmenting small, regular shaped objects. There were 4 parameters which could be 

chosen: 

1)  window size - the sampling window, should be slightly bigger than the size of the 

object of interest, in this case a single synaptic punctum. Window size 6 was chosen 

for both pre and post synaptic puncta.  

2)  c factor - a correction factor, the higher it is, the more permissive the detection is of 

lower intensity objects. Figure 13A illustrates how I determined the c factor for each 

channel. I tried a range of c factors and decided whether the segmented image 

accurately represented the original image. I chose c factor 3 for synaptophysin as 

when zooming in on individual synaptic puncta that tracked through multiple images, 

c factor 2 was underrepresenting the synaptic puncta and c factor 4 was merging what 

I believed to be 2 individual puncta into one object. I chose c factor 2 for the PSD95 

puncta as c factor 3 was too permissive, detecting objects that were not in consecutive 

images, were low intensity and most likely noise.  
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3) Mean intensity- the mean or median intensity of the same object in different slices 

could be chosen, there did not appear to be a difference between the results of mean 

or median, so the default mean was chosen.  

4) Minimum and maximum pixel size- a filter to ensure only relevant objects are 

detected. I chose 3-500nm.  

 

Importantly, only objects that were in at least two consecutive images were segmented.  

The segmentation of synaptic puncta was checked by overlaying the original image with the 

segmented image and scrolling through the stack to check that puncta present in consecutive 

slices were segmented and vice versa (figure 13B).  

 

In order to segment the plaques, I used ImageJ to manually choose a threshold. This threshold 

value was then input into the fixed value threshold function in the MATLAB script. This 

function is better for large irregular shaped objects compared to the auto local threshold 

function. I segmented both the core of the plaque and the whole plaque (core and halo) by 

eye, based on the density of the stain. I checked the segmentation by overlaying the original 

image with the segmented image (figure 13B).  
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Figure 13. Image segmentation. Array tomography ribbons were stained with SY38 to mark 

presynaptic synaptophysin proteins, PSD95 to mark post-synaptic PSD95 proteins and OC to 

mark amyloid fibrils and fibrillar oligomers. Images were aligned, and maximum intensity z 

projections of 5 slices are presented. (A) The auto local threshold function in the MATLAB 

script was used to segment the SY38 and PSD95 stain. A variety of correction factors (c factors) 

were trialled. Yellow rings highlight the c factors chosen as they best represented the original 

images.  (B) Original images (magenta) and segmented images (cyan) were merged to 

investigate the how accurately the segmented channels represent the original image. Scale 

bar = 10µm.  

 

3.2.5 Investigating Synaptic Density Around Plaques in 12-month APPNLF 

Somatosensory Cortex – Quantifying Synaptic Density  

I used a custom-built python script (see section 2.1.6.2) to identify presynaptic SY38 puncta 

that were paired with post-synaptic PSD95 puncta, i.e. the puncta were within 500µm of each 

other. 500µm was chosen as it is slightly larger than the diameter of a synaptic bouton 

(Ballesteros-Yáñez et al. 2006). Following this I used the MATLAB script to quantify unpaired 

pre and post-synaptic protein density, as well as paired synaptic density in the segmented 

image stacks of WT and HOM mice (HOM images with plaques were labelled HOM_Near and 

without plaques were labelled HOM_Far (figure 14A)).  A neuropil mask based on the SY38 

segmented images was applied when quantifying synaptic protein density in order to exclude 

nucleic PSD95 staining.  

 

Pairing synaptic proteins reduced the mean synaptic density in all image types (WT, 

HOM_Near, HOM_Far), when compared to unpaired SY38. This could be because 

synaptophysin is thought to be present in all synapses, whether they are excitatory or 

inhibitory (Sarnat 2013). Whereas, PSD95 is thought to only be present in a portion of 

excitatory post-synaptic terminals, with other markers such as SAP102 also marking 

excitatory post-synaptic terminals (Zhu et al. 2018), hence only counting paired 

synaptophysin was likely to reduce the quantity measured. A linear mixed effects model was 

constructed to determine whether the density of different puncta type (unpaired SY38, 

unpaired PSD95 or paired puncta) differed with image type (WT, HOM_Near, HOM_Far), and 
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sex over the whole image. Image type, puncta type and sex were the fixed effects and the 

random effects accounted for the fact that multiple images were taken from the same mouse, 

and experiments were done in batches. A type III ANOVA on the linear mixed effects model 

revealed there were no significant interactions between puncta type, image type or sex (table 

5A), so the model was re-run without interactions. This revealed there was no main effect of 

image type (F=0.77, p=0.47) or sex (F=0.84, p=0.37) (table 5B). Post-hoc Tukey corrected 

pairwise comparisons revealed significant differences in synaptic puncta density between all 

the puncta types (table 5C).  

 

I focused on paired synaptic protein density when investigating synaptic density at various 

distances from the boundary of the core of the plaque as this was the most conservative way 

to measure synaptic density. Figure 14B illustrates the paired synaptic proteins in 2µm bins 

surrounding the plaque up to 40µm. Figure 14Ci and ii is the quantification of APPNLF HOM 

paired pre- and post-synaptic proteins as a percentage of the paired puncta measured at 

40µm from the core of the plaque. WT shaded bar represents the standard deviation of WT 

values which are also expressed as a percentage of the density at 40µm, but the 2µm bins 

were averaged over the area since distance from plaque did not apply. I chose to measure 

synaptic density from the edge of the core of the plaque as historically this is where a large 

proportion of the synapse loss occurs and it seemed to be true when qualitatively inspecting 

images with plaques. I used a linear mixed effects model to investigate the fixed effects of 

distance and sex on paired puncta density. The random effects accounted for the fact that 

multiple images were taken from the same mouse and experiments were done in batches. An 

ANOVA on the linear mixed effects model (table 6A) revealed no main effect of sex. Hence, 

sex was removed from the model. The linear mixed effects model revealed paired synaptic 

density was significantly lower within 10µm of the boundary of the plaque compared to 40µm 

from the plaque core boundary (p<2.0E-05, linear mixed effects model on square transformed 

data, see table 6B). A maximal paired synapse loss of 50% was reached 2µm from the edge 

of the core of the plaque. There was no significant difference in paired synaptic density 

between 12µm and 40µm from the plaque core boundary.   
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Figure 14. Quantifying synaptic density. Array tomography ribbons of somatosensory cortex 

of 12-month HOM APPNLF and WT mice were stained with SY38 to measure presynaptic 

synaptophysin, PSD95 to measure post-synaptic PSD95 and OC to measure amyloid fibrils and 

fibrillar amyloid oligomers. n= 10 WT (2 image stacks per mouse), 10 HOM (2 image stacks 

containing a plaque per mouse (HOM_Near), 1 image stack not containing a plaque, 

(HOM_Far). Female (f), male (m). (A) Density of different puncta type (unpaired presynaptic 

SY38 puncta, unpaired post-synaptic PSD95 puncta and SY38 puncta paired with PSD95 

puncta) were measured over the whole image. SY38 puncta were considered paired if within 

500nm of a PSD95 puncta. Upper and lower bounds of the box plot represent the 1st and 3rd 

quartile, median line shown. Whiskers illustrate 1.5x the interquartile range.  Each point 

represents the mean value from a mouse. Numbers indicate the number of observations. A 

linear mixed effects model was constructed to investigate the fixed effects of image type (WT, 

HOM_Near, HOM_Far), puncta type (unpaired SY38, unpaired PSD95, paired synaptic 

proteins) and sex on density of puncta. The random effects accounted for the fact that 

multiple images were taken from the same mouse and experimentation was done in batches. 

A type III ANOVA on the linear mixed effects model revealed were no significant interactions 

between puncta type, image type or sex (table 5A), so the model was re-run without 

interactions. This revealed there was no main effect of image type (F=0.77, p=0.47) or sex 

(F=0.84, p=0.37) (table 5B). Post-hoc Tukey corrected pairwise comparisons revealed 

significant differences in synaptic puncta density between all the puncta types (table 5C). (B) 

Example image of paired synaptic puncta in 2µm concentric circles around the edge of the 

core of the plaque (core was determined by eye). Scale bar = 10µm. (Ci) The density of paired 

SY38 puncta (expressed as a percentage of paired SY38 at 40µm from the plaque core), 

measured in 2µm bands around the edge of the plaque core. Each colour represents a 

different mouse and each dot represents a different image. Black dashed line represents the 

average density over all images. Grey shade represents the standard deviation of WT paired 

synaptic density averaged over 40µm and expressed as a percentage of paired SY38 at 40µm. 

(Cii) Square transforming the data appeared to improve the fit of the linear mixed effects 

model (see section 2.1.6.3). There is a significant reduction in paired synapses in HOM mice 

between 2-10µm from the plaque core boundary when compared to synaptic pairs 40µm 

from the plaque core (p<0.001, linear mixed effects model on square transformed data, see 

table 6B).  ‘***’p<0.001.  
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Table 5. Results from type III ANOVAs on linear mixed effects models investigating synaptic 

puncta density over the whole image. The fixed effects were image type, puncta type and 

sex. The random effects accounted for the fact that multiple images were taken from the 

same mouse and experiments were done in batches. (A) The results demonstrated no 

interaction between image type (WT, HOM_Near, HOM_Far), puncta type (Unpaired_SY38, 

Unpaired_PSD95, Paired_synaptic_proteins), or sex. Hence the model was re-run without the 

interactions. (B) The results demonstrated no significant main effects of image type or sex. 

(C) Post-hoc Tukey adjusted multiple comparisons test revealed significant differences 

between synaptic puncta density of all the different puncta types.  

Formula in A: MEPairedUnpaired<-

lmer(Puncta_density~Image_type*Puncta_type*Sex+(1|Mouse_ID:stack_number) + 

(1|batch), data=paired_vs_unpaired_R) 

anova(MEPairedUnpaired) 

Formula in B: MEPairedUnpaired<-

lmer(Puncta_density~Image_type+Puncta_type+Sex+(1|Mouse_ID:stack_number) + 

(1|batch), data=paired_vs_unpaired_R) 

anova(MEPairedUnpaired) 

Formula in C:emmeans(MEPairedUnpaired, list(pairwise ~ Puncta_type ), adjust = "tukey") 
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Table 6. The results of the linear mixed effects model comparing square transformed paired 

SY38 puncta in 12-month APPNLF HOM mice at different distances from the plaque core. (A) 

The fixed effects in the linear mixed effect model were distance and sex. The random effects 

accounted for the fact that multiple images were taken from the same mouse and 

experiments were done in batches. An ANOVA on the linear mixed effects model revealed 

that there was a main effect of distance on paired synaptic density. However, there was no 

effect of sex. Hence, sex was subsequently removed from the linear mixed effects model. (B) 

The linear mixed effects model revealed a significant reduction in paired synaptic density 

between 2-10µm from the plaque core when compared to 40µm from the plaque core.   

Formula in A: MM<-

lmer(Square_Percentage_paired_SY38~Dist+Sex+(1|Mouse_ID:stack_number)+(1|Batch), 

data=AT_HOM_PD_PairedSY38_R).  

Anova(MM) 

Formula in B: MM<-

lmer(Square_Percentage_paired_SY38~Dist+(1|Mouse_ID:stack_number)+(1|Batch), 

data=AT_HOM_PD_PairedSY38_R). 

 
3.2.6 Investigating the Colocalization of Aβ in Synaptic Puncta Around 

Plaques in 12-month APPNLF Somatosensory Cortex 

The presence of Aβ oligomers in synapses is thought to contribute to synapse dysfunction and 

loss. Hence, I wanted to investigate the proportion of paired synaptic puncta which contained 

Aβ surrounding the plaque. To do this, I used the segmented SY38, PSD95 and whole plaque 

images, along with the python script to isolate the paired synaptic puncta where 50% or more 

of the pre and/or post-synaptic puncta overlapped with OC. 50% was chosen in order to be 

relatively stringent with colocalisation parameters. However, it is acknowledged that varying 

this percentage would impact the data. In the future, more investigation of how varying this 

parameter affects the data could be carried out. I used the MATLAB script to quantify the 

colocalised objects in 2µm bins surrounding the boundary of the plaque core. The boundary 

was based upon the manually thresholded plaque core images. Figure 15A is an Imaris 3D 

rendering of an array tomography image stack taken of a 12-month APPNLF HOM mouse 

somatosensory cortex (5 slices visualised). The synapse loss around the plaque is clear. In 
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order to visually illustrate the colocalization of synaptic puncta and OC, I zoomed in further 

using Imaris viewer (figure 15B).  The bottom panels show synaptophysin (green), PSD95 

(magenta) and OC (blue) colocalising. I quantified the number of paired synapses containing 

OC (figure 16) and found that pre and post synaptic puncta show similar levels of 

colocalization with OC between 2-20µm from the plaque core, with both SY38 and PSD95 

displaying an average maximum of 20% of paired synapses within a 2µm bin colocalizing with 

OC. The colocalization of OC with pre and post paired synaptic puncta decreased with distance 

from the plaque core, with no synaptic pairs colocalising with OC beyond 12µm from the 

plaque core. Notably, OC only marks fibrillar Aβ oligomers and Aβ fibrils, hence it is 

conceivable that smaller Aβ oligomers are present in synaptic puncta prior to and beyond 

12µm from the plaque core. Furthermore, studies indicate that it is actually the smaller 

soluble oligomers which appear to be the most toxic form of Aβ (Hong et al. 2018; Ferreira et 

al. 2015; Shankar et al. 2007). Hence, in the future it would be useful to use an antibody to 

label soluble Aβ and assess its colocalisation with synaptic puncta over time.  

 

Linear mixed effects models were performed on log (data+1) transformed paired SY38 

colocalization with OC data, and log (data+1) transformed paired PSD95 colocalization with 

OC data. The fixed effects were distance and sex. The random effects accounted for the fact 

that multiple images were taken from the same mouse and experimentation was done in 

batches. An ANOVA was run on the linear mixed effects models to reveal the main effects. 

For both SY38 and PSD95, there was a significant main effect of distance (p<2e-16), but no 

effect of sex (F=0.95, p= 0.34 for SY38 table 7A, F=0.01, p=0.92 for PSD95 table 7C 

respectively). Hence, sex was removed from the linear mixed effects models. There was a 

significant increase in OC colocalising with synaptic puncta close to the plaque core, between 

2-6µm for SY38 (p<0.01 table 7B) and 2-8µm for PSD95 (p<0.05 table 7D), when compared to 

the colocalization at 20µm from the plaque core.   
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Figure 15. Investigating colocalization of Aβ in synapses. Array tomography ribbons were 

stained with SY38 to mark presynaptic synaptophysin, PSD95 to mark postsynaptic PSD95, 

and OC to mark fibrillar Aβ oligomers and Aβ fibrils. Images were segmented using ImageJ 

and the MATLAB script (A) a 3D rendering of an image stack taken from a HOM APPNLF mouse 

somatosensory cortex, 5 slices visualised. Scale bar = 10µm. (B) Separated channels and 

merged image illustrating colocalization of SY38, PSD95 and OC. White arrow indicates the 

zoomed section in the panel below. Scale bar of top panel = 10µm. Scale bar of bottom panel 

= 0.5µm.  
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Figure 16. Quantification of colocalization of OC with paired synaptic puncta in HOM APPNLF 

array tomography images. Each coloured point is an individual mouse, 2 images per mouse 

were analysed and are displayed. Female (f), male (m).  (A) The percentage of paired SY38 

puncta (SY38 puncta within 500nm of a PSD95 puncta) where 50% of the SY38 puncta area 

overlaps with OC. (B) A linear mixed effects model was constructed using the Log((data)+1) 

transformed data, since transformed data better fit the assumptions of the model. Distance 

and sex were the fixed effects and the random effects accounted for the fact that multiple 

images were taken from the same mouse, and experimentation was done in batches. An 

ANOVA on the linear mixed effects model revealed there was no main effect of sex. Hence, it 

was removed from the model. The subsequent linear mixed effects model identified 

significant differences in colocalization of OC with paired SY38 puncta between 2-6µm from 

the plaque core when compared to 20µm from the plaque core (p<0.01 See table 7B, C). The 

percentage of paired PSD95 puncta where 50% of the PSD95 puncta area overlaps with OC. 

D) The data in figure 16C was log(data+1) transformed and a linear mixed effects model was 

constructed as in figure 16B. The linear mixed effects model was used to identify significant 

differences in the colocalization of OC with paired PSD95 puncta between 2-8µm from the 

plaque core, when compared to 20µm from the plaque core. (p<0.05 See table 7D). ‘*’p<0.05, 

‘**’ p<0.01.  
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Table 7. Results from the linear mixed effects model log (data +1) transformed data 

comparing colocalisation of OC with paired SY38 or paired PSD95 puncta between 2-20µm 

from the plaque core. (A) A linear mixed effects model to investigate colocalisation of OC 

with paired SY38 puncta was constructed. The fixed effects were distance and sex. The 

random effects accounted for the fact that multiple images were taken from the same mouse, 

and experiments were done in batches. An ANOVA on the linear mixed effects model revealed 

a significant main effect of distance, and no main effect of sex. Consequently, sex was 

removed from the linear mixed effects model. (B) The subsequent linear mixed effects model 

demonstrated significant colocalisation of OC with paired SY38 puncta between 2-6µm from 

the plaque core, when compared to 20µm from the plaque core. (C) A linear mixed effects 

model to investigate colocalisation of OC with paired PSD95 puncta was constructed. The 

fixed effects were distance and sex. The random effects accounted for the fact that multiple 

images were taken from the same mouse, and experiments were done in batches. An ANOVA 

on the linear mixed effects model revealed a significant main effect of distance, and no main 

effect of sex. Consequently, sex was removed from the linear mixed effects model. (D) The 

D
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linear mixed effects model demonstrated significant colocalisation of OC with paired PSD95 

puncta between 2-8µm from the plaque core, when compared to 20µm from the plaque core.  

Formula in A and C: MM<-logdensityplusone~ Dist + Sex (1 | Mouse_ID:Image_number) + 

(1|Batch).  

Anova(MM) 

Formula in B and D: MM<-logdensityplusone~ Dist + (1 | Mouse_ID:Image_number) + 

(1|Batch).  

 

3.2.7 Diversity of Plaque Formations in the APPNLF Mouse  

Whilst analysing the array tomography images I noticed that the plaques I sampled were a 

range of shapes, sizes and densities (figure 17). This was interesting as diversity in plaque 

formation is also seen in human AD post-mortem brains (Liebmann et al. 2016), but was not 

found in the common transgenic APP/PS1 amyloidopathy model, where all the plaques 

sampled showed little deviation in ThioS positive plaque cores or AW7 positive halos (Jackson 

et al. 2016). Additionally, some studies have proposed a link between plaque morphology and 

disease pathogenesis (D’Andrea and Nagele 2010; Delaère et al. 1991). Thus, the APPNLF 

mouse may be more appropriate to use to investigate this further, compared to the APP/PS1 

mouse.  
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Figure 17. Diversity of plaque formations in 12-month HOM APPNLF mice. Somatosensory 

cortex tissue from 12-month HOM APPNLF mice was processed for array tomography. The OC 

antibody was used to label amyloid fibrils and fibrillar oligomers. Example images of the 

amyloid plaques sampled are shown here, illustrating diversity in size, shape and density of 

plaques. Scale bar = 10µm. 
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3.2.8 Plaque Burden Greatest in 12-month HOM APPNLF Mice  

Coronal sections approximately -1mm, -2mm and -3mm from Bregma were sampled from 10 

APPNLF HOM mice, 10 HET mice and 9 WT mice. The sections were stained for nuclei using 

DAPI, activated astrocytes using a GFAP antibody, and dense Aβ plaque cores were stained 

with ThioS. Figure 18 displays representative raw images of the plaque load in APPNLF HOM, 

HET and WT mice. HOM mice displayed dense core plaques in the cortex and hippocampus. 

HET and WT mice did not display any plaques. In order to quantify plaque burden, the regions 

of interest were manually outlined in 3 slices for the cortex and 2 slices for the hippocampus 

(figure 19A), the ThioS stains were thresholded using the max entropy algorithm in ImageJ 

and the percentage area covered by the stain was calculated. Figure 19Bi shows boxplots of 

the ThioS burden in the cortex and hippocampus of WT, APPNLF HET and APPNLF HOM brains. 

Upper and lower bounds of the boxplot represent the 1st and 3rd quartile of the data, the 

median line shown. Whiskers illustrate 1.5x the interquartile range.  Each point represents 

the median value from a mouse.   

 

A linear mixed effects model was constructed. The fixed effects were genotype, region and 

sex. The random effects accounted for the fact that multiple images were taken from the 

same mouse. Data was cube root transformed in order to better fit model assumptions. A 

type III ANOVA on cube root transformed ThioS data found a significant interaction between 

genotype and region (F=9.28, p<0.001), and no effect of sex (F=0.23, p=0.63) (table 8A). A 

post-hoc Tukey adjusted pairwise multiple comparisons test revealed significant differences 

between ThioS burden in HOM cortex and WT cortex (p=3.11e-14), HOM cortex and HET 

Cortex (p=2.66e-15), HOM hippocampus and WT hippocampus (p=6.27e-10), HOM 

hippocampus and HET hippocampus (p=1.65e-09), and HOM cortex and HOM hippocampus 

(p=4e-07) (table 8B). Hence, in all comparisons between genotypes, the HOM mice had higher 

plaque burdens than the other genotypes and the plaque burden in the cortex of the HOM 

mice was higher than in the hippocampus of the HOM mice. The ThioS burden values for WT 

and HET mice approach 0 and there are no differences in any comparisons between them, 

indicating negligible ThioS positive stain in these genotypes.  
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Figure 18. Representative images of plaque load in APPNLF HOM, HET and WT mice. 50µm 

coronal sections from mice were cut and stained with DAPI (blue) to mark nuclei, ThioS 

(green) to mark dense plaque cores and GFAP (not shown). Images were taken using a 20x 

objective on a ZEISS Axio Scan Z1 slide-scanner. (A) APPNLF HOM slices displayed dense cored 

Aβ plaques in the cortex and the hippocampus n=10. (i) and (ii) are zooms of the cortex and 

hippocampus respectively. (B) The APPNLF HET slices, n=10 and (C) the WT slices, n=9 displayed 

no plaques. Scale bar = 1mm, inset scale bar = 50µm.  
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Figure 19. Quantifying plaque load. (Ai) A representative image of a HOM mouse brain. (Aii) 

Thresholded version of the image in Ai, indicating the manually outlined regions of interest. 

(Bi) Quantification of the percentage of area containing ThioS in WT, HET and HOM mouse 

slices. Boxplots of the data are shown. The upper and lower bounds of the boxplot represent 

the 1st and 3rd quartile of the data, the median line is shown. Whiskers illustrate 1.5x the 

interquartile range.  Each point represents the median value from a mouse. Numbers denote 

number of observations. (Bii) A linear mixed effects model was constructed. The fixed effects 

were genotype, region and sex. The random effects accounted for the fact that multiple 

images were taken from the same mouse. The data was cube root transformed in order to 

meet the assumptions of the model. An ANOVA on the linear mixed effects model 

demonstrated a significant interaction between genotype and region (F=9.28, p<0.001), and 

no effect of sex (F=0.23, p=0.63). A post-hoc Tukey adjusted pairwise multiple comparisons 

test revealed significant differences between ThioS burden in HOM cortex and WT cortex 

(p=3.11e-14), HOM cortex and HET cortex (p=2.66e-15), HOM hippocampus and WT 

hippocampus (p=6.27e-10), HOM hippocampus and HET hippocampus (p=1.65e-09), and 

HOM cortex and HOM hippocampus (p=4e-07). Boxplots of the cube root transformed data 

are shown. The upper and lower bounds of the boxplot represent the 1st and 3rd quartile of 

the data, the median line is shown. Whiskers illustrate 1.5x the interquartile range.  Each point 

represents the median value from a mouse. Numbers denote number of observations.  

Female (f), male (m). Scale bar = 1mm. ‘**’ p<0.01, ‘***’ p<0.001.  
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Table 8. Results of the linear mixed effects model on cube root transformed ThioS burden 

in WT, APPNLF HET and HOM cortex and hippocampus. (A) A linear mixed effects model using 

the cube root transformed ThioS data was constructed. The fixed effects were genotype, 

region and sex. The random effects accounted for the fact that multiple images were taken 

from the same mouse. A type III ANOVA on the linear mixed effects model revealed a 

significant interaction between genotype and region, and no effect of sex. (B) A post-hoc 

Tukey adjusted pairwise comparison revealed significant differences between HOM ThioS 

burden and HET and WT ThioS burden, as well as HOM ThioS burden in the cortex vs HOM 

ThioS burden in the hippocampus.  

Formula in A: transformed_ThioS_MM<- 

lmer(cuberootthios~Genotype*Region+Sex+(1|Mouse:Image_number), 

data=ThioS_data_MH)  

Anova(transformed_ThioS_MM)  

Formula in B: emmeans(transformed_ThioS_MM, list(pairwise ~ Genotype*Region), adjust = 
"tukey")  

 

Untransformed Cube root transformed

Pairwise Differences of 
Genotype*Region Estimate SE df t.ratio p.value
WT Cortex - HET Cortex -0.0055784 0.023156813 137.9920011 -0.2409 0.999887
WT Cortex - HOM Cortex -0.3357962 0.023156813 137.9920011 -14.501 3.11E-14
HET Cortex - HOM Cortex -0.33021779 0.022525431 137.9941306 -14.6598 2.66E-15

WT Hippocampus - HET Hippocampus -0.01061867 0.028528124 137.9927469 -0.37222 0.999051
WT Hippocampus - HOM Hippocampus -0.20448964 0.028528124 137.9927469 -7.168 6.27E-10
HET Hippocampus - HOM Hippocampus -0.19387097 0.027756072 137.9941306 -6.98481 1.65E-09

WT Cortex - WT Hippocampus 0.02523588 0.026643684 76.73847409 0.947162 0.932742
HET Cortex - HET Hippocampus 0.02019561 0.025276418 76.73847409 0.79899 0.96686
HOM Cortex - HOM Hippocampus 0.15654243 0.025276418 76.73847409 6.193221 4E-07

A

B
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3.2.9 GFAP Load Increases Close to Plaques 

Since only HOM mice displayed plaques, analysis of GFAP positive astrocyte load in relation 

to distance from plaque was only measured in HOM cortices.  Figure 20A is a representative 

image of a 12-month APPNLF HOM mouse brain slice. 3 slices at approximately -1mm, -2mm 

and -3mm from Bregma were sampled. 

 

 It was difficult to threshold GFAP accurately over the whole slice. Therefore, cortical plaques 

were Isolated (figure 20Bi), thresholded and the percentage area covered by GFAP was 

measured in 20µm concentric rings, up to 200µm from the edge of the plaque core, measured 

by ThioS (figure 20Bii and figure 21A). 7 plaques per mouse were isolated. A linear mixed 

effects model was used to compare GFAP load at varying distances from the edge of the 

plaque core. The fixed effects were distance and sex. The random effects accounted for the 

fact that multiple images were taken from the same mouse. The data was cube root 

transformed in order to improve the fit of the data to the model (figure 21B). A type III ANOVA 

on the linear mixed effects model revealed there was a main effect of distance from the 

plaque core (F=390.41, p<2e-16), but no effect of sex (F=0.146, p=0.70) (table 9A). Hence, sex 

was removed from the model. There was a significant increase in GFAP load between 2-

180µm from the plaque core, when compared to 200µm from the plaque core (p<0.001, 

linear mixed effects model on transformed data, table 9B), indicating a concentration of GFAP 

positive astrocytes close to plaques. In the future, it would be beneficial to sample even 

further from the plaque in order to identify the distance from the plaque core where there is 

no significant difference in GFAP load.  

 

I also measured total GFAP load over the entire plaque containing crops from HOM mice and 

crops of the same size from WT mice (isolated whilst blind to the GFAP channel) (figure 21C). 

The GFAP load in HOM crops containing plaques was approximately 4 times larger than in WT 

crops. A linear mixed effects model was constructed using cube root transformed GFAP data 

in order to better fit the assumptions of the model. The fixed effects were genotype and sex. 

The random effects accounted for the fact that multiple images were taken from the same 

mouse. A type III ANOVA on the linear mixed effects model (table 10) demonstrated a 
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significant difference in GFAP load between genotypes (F= 209.91, p=1.28e-10), and no effect 

of sex (F=0.06, p=0.81).  
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Figure 20. Representative images illustrating GFAP load increases around plaques. Coronal 

sections of HOM APPNLF mouse brain were stained with ThioS to mark fibrillar Aβ plaques 

(green), DAPI to mark nuclei (blue), and GFAP to mark activated astrocytes (red). (A) a 

representative image. An example plaque that was isolated and analysed is marked by the 

white dashed box. Scale bar = 1mm. (Bi) An enlarged image of the example plaque highlighted 

by the white dashed line. Scale bar = 100µm.  (Bii) Manually thresholded GFAP in image in Bi 

(black). The innermost region of interest indicates the boundary of the plaque core which was 

manually defined. Percentage GFAP was measured in 20µm concentric rings around the 

boundary of the plaque core (green) using ImageJ.  
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Figure 21. Quantifying GFAP load in 12-month APPNLF HOM mice. (A) GFAP load was 

measured in 20µm concentric rings around the edge of plaque cores, manually outlined 

according to the ThioS stain, up to 200µm. Plaques were sampled from 3 coronal slices of 

mouse brain, at approximately -1mm, -2mm and -3mm from Bregma. Each coloured dot 

represents a different mouse. n=10 mice, 7 plaques per mouse. The black dashed line 

indicates the average percentage (%) area covered by GFAP at each distance. GFAP load 

decreased with distance from the plaque core. (B) A linear mixed effects model was 

performed on cube root transformed data from figure 21A in order to satisfy the assumptions 

of the model. The fixed effects were distance and sex. The random effects accounted for the 

fact that multiple images were taken from the same mouse. An ANOVA on the linear mixed 

effects model (table 9A) revealed there was no effect of sex (F=0.146, p=0.70). Hence, it was 

removed from the model. The linear mixed effects model revealed GFAP load significantly 

increased between 20-180µm from the plaque core when compared to 200µm from the 

plaque core (table 9B). (C) The total GFAP load over crops made from HOM and WT mice was 

measured. Upper and lower bounds of the boxplot represent the 1st and 3rd quartile of the 

data, the median line shown. Whiskers illustrate 1.5x the interquartile range.  Each point 

represents the median value from a mouse.  Numbers denote the number of observations. 

 HOM mice displayed more GFAP load than WT mice. (D) A linear mixed effects model was 

performed on cube root transformed data from figure 21C in order to satisfy the assumptions 

of the model. The fixed effects were genotype and sex. The random effects accounted for the 

fact that multiple images were taken from the same mouse. A type III ANOVA was performed 

on cube root transformed GFAP load over the whole image, GFAP load was significantly 

different between HOM and WT crops (F=209.91, p=1.28e-10). Boxplot as described in figure 

21C. Female (f), male (m).  
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Table 9. Results of the linear mixed effects model investigation of cube root transformed 

percentage (%) GFAP in concentric rings around a plaque. (A) A linear mixed effects model 

using the cube root transformed GFAP data was constructed. Fixed effects were distance and 

sex. The random effects accounted for the fact that multiple images were taken from the 

same mouse. A type III ANOVA on the linear mixed effects model revealed a main effect of 

distance and no effect of sex. Hence, sex was removed from the model. (B) The revised linear 

mixed effects model demonstrated significant increase in GFAP load between 20-180µm from 

the plaque core when compared to 200µm from the plaque core.  

Formula in A:  

transformedMEGFAPrings<-lmer(cube_root~Dist+Sex+(1|Mouse_ID:plaque_number), 

data=GFAP_in_concentric_rings_) 

Anova(transformedMEGFAPrings) 

Formula in in B: transformedMEGFAPrings<-

lmer(cube_root~Dist+(1|Mouse_ID:plaque_number), data=GFAP_in_concentric_rings_) 

Untransformed Cube root transformed

A

B
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Table 10.  Results from linear mixed effects model investigation of cube root transformed 

percentage GFAP over whole image crop. (A) A linear mixed effects model using the cube 

root transformed GFAP data was constructed. Fixed effects were distance and sex. The 

random effects accounted for the fact that multiple images were taken from the same mouse. 

A type III ANOVA on the linear mixed effects model revealed a main effect genotype and no 

effect of sex.  

Formula: transformedgfapwholeMM<-
lmer(cube_root_gfap_whole~Genotype+Sex+(1|Mouse_ID), 
data=GFAP_over_whole_image_R) 
Anova(transformedgfapwholeMM) 
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3.3 Discussion  

3.3.1 Summary of Findings  

This chapter characterised synapse pathology in 12-month APPNLF HOM and WT mice, and 

plaque load and astrogliosis in 12-month APPNLF HOM, HET and WT mice. Paired synaptic 

density in the somatosensory cortex of HOM and WT mice did not differ when measured over 

the whole image, irrespective of the presence of a plaque. However, paired synapse density 

did reduce close to the plaque core boundary. Aβ was found in paired pre and post synaptic 

puncta within 6µm and 8µm from the plaque core respectively. Plaques were present in many 

shapes, sizes and densities in APPNLF HOM mice. Finally, GFAP positive astrocyte load 

increased close to plaque cores in APPNLF HOM mice, and overall GFAP load was larger in 

APPNLF HOM cortical cropped images compared to WT cortical cropped images.  

 

3.3.2 Synapse Density in the APPNLF Mouse  

The APPNLF mouse model is a knock-in amyloidopathy model created by Saito et al. (Saito et 

al. 2014). The expression of APP is driven by the endogenous promoter; hence, the APP is 

expressed at a physiologically relevant concentration, location and timing, with increased Aβ 

expression due to the NLF mutations. This model of amyloidopathy can be seen as an 

improvement on previous transgenic mouse models, where the effects of Aβ pathology 

cannot be distinguished from inadvertent effects of overexpression of APP or other APP 

cleavage products. Saito et al. indicated that synaptic protein density reduces close to the 

plaque. However, no quantitative analysis was done. Since synapse pathology is the strongest 

correlate of cognitive decline (Terry et al. 1991) and is fundamental to AD pathology, we 

decided use array tomography to quantify synaptic density and Aβ colocalization with 

synaptic puncta.  

 

We found no difference in synaptic density over the whole image when comparing APPNLF 

HOM images with and without plaque and WT images (figure 14A). This is not surprising since 

previous studies using array tomography to analyse synaptic density have shown that the 

synapse loss is found in the plaque proximal region (Jackson et al. 2016; Koffie et al. 2009).  
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I showed that in 12-month APPNLF HOM somatosensory cortex, there is a significant reduction 

in paired synaptic density between 2-10µm from the plaque core boundary when compared 

to 40µm from the plaque core boundary, with a maximum density reduction of 50% 2µm from 

the plaque core (figure 14Ci). There was no significant difference in synaptic density between 

12µm from the plaque core boundary to 40µm from the boundary (figure 14Cii). These 

findings concur with the current hypothesis that oligomeric Aβ, which can be found close to 

plaque cores, is the most toxic form of Aβ and is a key driver of synapse loss (Shankar et al. 

2007; Ferreira and Klein 2011).  

 

Other array tomography studies conducted on 8-10-month APP/PS1 transgenic mice showed 

similar plaque proximal reduction in synaptic puncta (Koffie et al. 2009; Jackson et al. 2016). 

For example, Jackson et al., demonstrated a 1.5-fold reduction in synapsin-1 density and a 

1.2-fold reduction in PSD95 density from >50µm from the plaque to < 20 µm from the plaque 

(Jackson et al. 2016). Notably, the synapse loss in 8-10-month old APP/PS1 mice appears to 

extend further beyond the plaque than in 12-month APPNLF mice, where the synapse loss is 

confined to 10µm from the core of the plaque. This more extensive synapse loss could be 

explained by the APP/PS1 mice having greater Aβ pathology, with a quicker onset (Jankowsky 

et al. 2004). Alternatively, this could be due to the more conservative criteria for synapse 

density implemented in this study, since Koffie et al. and Jackson et al. both measure unpaired 

synaptic puncta. In this study, we chose to measure paired synapse density in order to avoid 

potential fluorescence artefacts, and also because a reduction in paired synapse density may 

be more indicative of functional deficits.  

 

Synapse loss proximal to plaques has also been observed in human array tomography studies. 

For example, Koffie et al. demonstrated a reduction in presynaptic synapsin-1 from 1.3x109 

puncta/mm3 at more than 50µm from the plaque to 8x108 puncta/mm3 at 20µm from than 

plaque and 6x108 puncta/mm3 next to the plaque core (Koffie et al. 2012). Notably, the 

magnitude of reduction in synapse density close to plaques were similar in the human AT 

study (2.2 fold), the aforementioned APP/PS1 AT study (1.5 fold) and this APPNLF AT study (1.9 

fold). Additionally, the WT and APPNLF HOM mice displayed similar densities of unpaired pre-

synaptic synaptophysin over the whole image as the presynaptic synapsin-1 measured far 

from plaque in human AT studies (Koffie et al. 2012; Jackson et al. 2019). This could indicate 
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that although humans have more synapses overall, the cortical pre-synaptic densities 

(puncta/mm2) over mouse and human cortex might be similar. A thorough examination of 

different areas of the human and mouse cortex, along with multiple markers of pre and post-

synapses would need to be carried out.  

 

Most interestingly, Sauerbeck et al. have just published a study where they used a super-

resolution imaging and analysis workflow called SEQUIN to investigate synapse density 

around plaques in 18-month APPNLF HOM mice (Sauerbeck et al. 2020). According to 

Sauerbeck et al., SEQUIN offers a similar resolution as array tomography. However, the 

process is somewhat more efficient. Rather than physically sectioning the tissue to achieve 

adequate resolution and later reconstructing the 3D image, SEQUIN uses an Airyscan unit on 

a confocal microscope to acquire data simultaneously on 32 detectors, achieving adequate 

resolution without ultra-thin sectioning. Sauerbeck et al.  found a reduction of synapse 

density within 25µm of the centre of the plaque, when compared to 100µm from the centre 

of the plaque, reaching a maximal reduction in synapse density of ~50% at 0µm from the 

plaque centre. This result is very similar to the synapse loss measured in this study, where 

significant synapse loss was seen within 10µm of the edge of the core of the plaque, and a 

maximal reduction in synapse density of ~50% was measured at 2µm from the edge of the 

plaque core. This might indicate that whilst plaque load has been shown to increase between 

12 and 18-month APPNLF mice (Saito et al. 2014), perhaps synapse loss around individual 

plaques does not advance.  

 

Plaque associated synapse loss is a common finding in all of these studies. This suggests that 

Aβ plaques are not simply inert structures, as some have suggested (Martins et al. 2008). In 

fact, it seems likely that Aβ plaques could be a source of synaptotoxic oligomeric species, 

resulting in vulnerable peri-plaque synapses. Additionally, the synapses around plaques may 

be subject to enhanced elimination by astrocytes and microglia. Indeed, Chen et al. 

demonstrated that astrocytes and microglia in the APPNLGF amyloidopathy model display 

plaque induced gene expression changes, upregulating genes such as C1q and C4b 

(Complement Component 4B) which are associated with synapse elimination, as well as genes 

associated with endocytosis and lysosomal function (Chen et al. 2019). Hence, I would argue 

the pathological effects of Aβ plaques warrants therapeutic consideration.  
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3.3.3 Colocalisation of Aβ in Synaptic Puncta 

Aβ colocalised with pre and post-synaptic puncta close to the plaque core, with a maximum 

of 20% colocalization of OC with paired pre or post-synaptic puncta. The colocalization 

reduced with distance from the plaque core boundary, and no significant increase in 

colocalization could be seen beyond 8µm when compared to 20µm from the plaque. 

Importantly, OC only marks Aβ fibrils and fibrillar oligomers, and so smaller soluble oligomer 

load was not identified. A halo of fibrillar oligomers usually surrounds dense core plaques and 

so this decrease in colocalization of OC with synaptic puncta is in accordance with the Aβ 

plaque halos becoming more diffuse. Whilst soluble oligomers are thought to be the most 

toxic form of Aβ, fibrillar oligomers are also thought to be toxic (Sengupta et al. 2016), hence 

it is possible that the synapses we have captured colocalising with OC would have been lost 

if the animal was given more time, certainly the region of the majority of synaptic loss and 

the region of colocalization of OC with synapses was the same.   

 

3.3.4 Plaques  

The APPNLF mouse displayed a variety of plaque shapes, sizes and densities.  

This finding is important as diversity in plaque formation is also seen in human AD post-

mortem brains (Liebmann et al. 2016), but was not found in the common transgenic APP/PS1 

amyloidopathy model, where all the plaques sampled showed little deviation in ThioS positive 

plaque cores or AW7 positive halos (Jackson et al. 2016). Hence, the knock-in APPNLF mouse 

might better model Aβ accumulation and downstream consequences. The events leading to, 

and the significance of, the diversity in plaque shape, size and density is not thoroughly 

understood. However, some studies have indicated that dense core plaques are likely to 

contain dystrophic neurites in their central mass, whereas diffuse plaques lack a 

morphologically identifiable substructure, mainly composed of extracellular aggregates of Aβ 

(Dickson and Vickers 2001). Additionally, dense core plaques are surrounded by reactive glia, 

whereas diffuse plaques are most often not (Serrano-Pozo et al. 2011), and have been 

associated with less severe disease pathogenesis compared to dense core plaques (D’Andrea 

and Nagele 2010; Delaère et al. 1991). Thus, perhaps neurodegeneration in AD leads to the 

formation of dense cores at the centre of plaques, encouraging Aβ sequestration, followed 

by enhanced presence of toxic soluble Aβ oligomers, reactive glia, more synapse loss around 
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dense core plaques and thus worse disease pathogenesis. Alternatively, perhaps diffuse 

plaques are simply early-stage dense core plaques, and with time both Aβ accumulation, the 

presence of reactive glia and synapse loss would progress. One could test this theory by 

staining for diffuse plaques using the OC antibody and dense core plaques using a 

combination of the OC antibody and ThioS in the APPNLF mouse at several early time points,  

identifying whether diffuse plaques appear first, whether there are intermediate stage 

plaques, and whether there appears to be a link between diffuse and dense core plaque 

number. Understanding the significance of diffuse and dense core plaques may prove to be 

important in designing more targeted Aβ therapeutics alongside other therapeutics which 

target other aspects of AD such as tauopathy and reactive gliosis.  

 

The dense core plaque burden measured in this study was approximately 0.1% in the cortex 

and 0.03% in the hippocampus. This is comparable to Saito’s original characterisation of this 

mouse model, where the mice exhibited <0.5% plaque burden in the cortex and 

hippocampus, with the hippocampus containing fewer plaques than the cortex (Saito et al. 

2014). Transgenic mouse models tend to have a much higher dense core plaque burden. For 

example, 12-month 5xFAD transgenic mice exhibit over 5% and 4% cortical and hippocampal 

plaque burden, and 11-month APP/PS1 transgenic mice exhibit over 2% and 1% cortical and 

hippocampal plaque burden. On the other hand, dense core plaque burden in human Braak 

Stage 5/6 AD cases has been reported to be between 0.03% and 0.5% depending on the 

location (Liu et al. 2017). Hence, the APPNLF mouse model, mimics amyloid deposition in 

humans.  

 

3.3.5 Astrogliosis  

Increased expression of the intermediate filament protein GFAP in astrocytes is widely 

acknowledged as a marker of astroglial activation (Eng and Ghirnikar 1994). GFAP positive 

astrocytes have been shown to surround Aβ plaques in the human brain (Kamphuis et al. 

2014) and in many mouse models of amyloidopathy (Ruan et al. 2009; Sakakibara et al. 2019). 

Saito et al had previously shown that GFAP positive astrocytes surround Aβ plaques in the 

APPNLF mouse model (Saito et al. 2014). However, a quantitative analysis of GFAP load in 

relation to plaque distance was not carried out. Here, I show that GFAP load significantly 
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increases between 20-180µm from the plaque core, when compared 200µm from the plaque 

core. Bouvier et al. found a similar result in human AD tissue,  where they measured how the 

number of GFAP positive astrocytes varied with distance from the centre of the plaque core, 

demonstrating a peak in GFAP positive astrocytes at 40µm (Bouvier et al. 2016). In the future 

it would be useful to quantify GFAP burden over the whole cortex, and quantify the number 

of GFAP positive astrocytes around the plaque so that GFAP load in the APPNLF mouse can be 

directly compared to other amyloidopathy mouse models and human AD.  

 

 Previous work has shown that the number of GFAP positive astrocytes around plaques does 

not correlate with plaque size in humans (Serrano-Pozo et al. 2013), and in mice the spatial 

distribution of astrocyte cell bodies was not altered by the presence of plaques (Galea et al. 

2015). Hence, it appears that astrocytes in the vicinity of a plaque most likely alter their 

phenotype, increasing expression of GFAP and re-orientating their processes towards 

plaques, rather than there being a migration of GFAP positive astrocytes. The function of this 

increase in GFAP expression remains unclear. Deletion of GFAP and vimentin in APP/PS1 mice 

increased amyloid plaque and dystrophic neurite load, suggesting a protective role in limiting 

neurite damage and plaque pathogenesis (Kraft et al. 2013). However, if you were to take the 

stance that plaques sequester the more toxic oligomers, then a reduced plaque load in the 

presence of GFAP positive astrocytes might be seen as harmful. The reality is that the 

phenotypic changes occurring in astrocytes around plaques are complex and many more 

factors beyond alterations in GFAP expression are important. Single cell RNA-seq analysis of 

astrocytes in the vicinity of plaques and far from plaques would help us identify the 

multifarious phenotypic changes occurring in astrocytes in AD.  

 

3.3.6 Limitations and Future Work  

This chapter characterises pathology in a knock-in mouse model of AD. Whilst the knock-in 

mouse models avoids some of the limitations associated with transgenic models, there are 

still inherent limitations mouse models. Firstly, the mice are genetically engineered and so 

are models of the rarer familial form of AD, rather than sporadic AD. Secondly, the APPNLF 

model is an amyloidopathy model, and so does not express tau pathology, the other major 

pathological hallmark of AD. Hence, even though the focus of this study is amyloidopathy, any 
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interaction between Aβ and tau pathology is not modelled. Thirdly, studies have indicated 

that mouse and human synapses and astrocytes exhibit elements of morphological, 

transcriptional and functional differences (Bayés et al. 2012; Oberheim et al. 2009; Zhang et 

al. 2016). Nevertheless, there are conserved features of synapses and astrocytes between 

mice and humans (Curran et al. 2020; Zhang et al. 2016). Hence, mouse models remain a 

valuable tool for dissecting mechanisms of health and disease.  

 

A technical limitation of this work is the core of plaques used to measure synapse density with 

distance were approximations manually chosen based on the density of signal. In the future, 

it would be useful to double stain tissue with ThioS and OC in order to measure dense core 

and halo size more accurately. Additionally, the slices used in the immunohistochemistry 

study were relatively thick (50µm), meaning it was difficult to image and threshold GFAP over 

the whole cortex. In the future, thinner sections will be cut in order to measure this.  

 

This chapter illustrated that there is a reduction in synapse density and an increase in GFAP 

positive astrocytes around plaques. However, the interaction of the two have not been 

investigated. Most studies attribute synapse pruning to microglia (Hong et al. 2016). 

However, some have indicated that astrocytes might have phagocytic properties and thus 

play an active role in synapse loss and Aβ clearance around plaques (Gomez-Arboledas et al. 

2018). Hence, it would be interesting to use immunohistochemistry and array tomography to 

investigate the colocalization of Aβ and synaptic puncta with astrocytes and microglia in 

mouse and human, e.g. by looking at ThioS, OC, SY38 and GFAP/ IBA1 (allograft inflammatory 

factor 1) colocalization.   

 

The studies in this chapter are descriptive experiments. Understanding the functional 

consequences of activated astrocytes will be fundamental to designing novel AD therapies.  

3.4 Chapter Conclusion  

The studies in this chapter illustrate a reduction in synapse density and an increase in GFAP 

positive astrocytes around morphologically identified dense core plaques in 12-month APPNLF 

mice. Quantifying synapse loss and GFAP positive astrogliosis around diffuse plaques was not 

in the scope of this study. Nevertheless, others have reported surprisingly little synapse loss 
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and reactive gliosis around diffuse plaques (Masliah et al. 1990; Serrano-Pozo et al. 2011). 

This indicates substantial pathological differences between diffuse and dense core plaques. 

Unlike previous reports of plaque morphology in the APP/PS1 transgenic amyloidopathy 

model (Jackson et al. 2016), the APPNLF mouse displayed a range of plaque shapes, sizes and 

densities, mirroring the diversity of plaque morphology seen in humans (Liebmann et al. 

2016). In the future, the APPNLF mouse model could be used to dissect how diffuse and dense 

core plaques form, why they display such pathological differences and how to best target 

amyloid therapeutics towards the more pathological dense form.  

 

Whilst this study found differences in plaque morphology between the APPNLF and APP/PS1 

amyloidopathy mouse models, the magnitude of maximal reduction in synapse density close 

to dense core plaques was similar in this APPNLF AT study (1.9 fold) as AT studies of APP/PS1 

cortex (1.5 fold) and human cortex (2.2 fold) (Koffie et al. 2012). This suggests that dense core 

plaque associated synapse loss is a robust finding and emphasises the fact that Aβ plaques 

are not simply inert structures, as some have suggested (Martins et al. 2008). The debate 

about which mouse model to use is more complex than simply understanding which model 

best mimics the human condition. Ultimately, it will depend on the question being asked and 

the resources (time and money) available. Whilst the APPNLF mouse model may better mimic 

the diversity of plaque formation seen in human AD, the trade-off compared to using the 

transgenic APP/PS1 mouse model is time and money. The APPNLF mouse takes considerably 

longer to develop plaque pathology than the APP/PS1 model, and given the end result of 

plaque associated synapse loss is similar between the two mouse lines, some may still favour 

the APP/PS1 mouse. However, if one was investigating plaque morphology or comparing 

synapse and dendrite vulnerability at the very early stages of AD, it may be more beneficial 

to use the APPNLF mouse model.   

 

In addition to Aβ load, synapse loss around plaques may be affected by astrocyte and 

microglia load, since both cell types have been implicated in phagocytosis of synapses. In this 

study I demonstrated that GFAP positive reactive astrocyte load was inversely proportional 

to distance from the plaque core boundary. Similar results have been shown in the APP/PS1 

mouse model (Ruan et al. 2009) and human AD brain (Kamphuis et al. 2014). Nevertheless, 

the diversity of the reactive astrocyte phenotype is being realized (Zamanian et al. 2012). 
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Hence, GFAP alone is unlikely to mark all reactive astrocytes. In the future, it will be useful to 

conduct similar IHC experiments, but stain for a range of reactive astrocyte markers which 

are identified later in this thesis, such as Nqo1 (NAD(P)H Quinone Dehydrogenase 1), Gsta4  

(Glutathione S-Transferase Alpha 4) and Prdx5 (Peroxiredoxin 5) - genes involved in the NRF2 

response and upregulated in pathology associated astrocytes in our study. Additionally, one 

could stain for Atp6ap1 (ATPase H+ Transporting Accessory Protein 1), Ctsd (Cathepsin D) and 

Fuca1 (Alpha-L-Fucosidase 1)- genes involved in autophagy, or Arpc1b (Actin Related Protein 

2/3 Complex Subunit 1B), Gpx4 (Glutathione Peroxidase 4), and Man2b1 (Mannosidase Alpha 

Class 2B Member 1) - genes reported to be expressed highly in plaque associated glia in Chen 

et al. (2020) and which are also highly expressed in pathology associated astrocytes in our 

study.  
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4.1 Chapter Introduction  

In the previous chapter I described the presence of GFAP positive astrocytes around plaques. 

However, GFAP expression is simply a marker protein, indicating activated astrocytes (Pekny 

and Pekna 2004). Previous research has shown that activated astrocytes encompass a 

spectrum of phenotypes, dependent on aspects such as stimuli (Zamanian et al. 2012), age 

(Clarke et al. 2018) and location (Tsai et al. 2012).  Hence, GFAP expression alone cannot 

predict astrocytic phenotype. RNA-seq analysis of gene expression in astrocytes provides a 

much richer understanding of activated astrocyte phenotypes.  

Microarray and RNA-seq analysis of human post-mortem AD astrocytes has indicated that 

genes involved in the immune response, proteolysis and mitochondria function  are 

dysregulated (Sekar et al. 2015; Simpson et al. 2011). Whilst these studies are useful, post-

mortem studies only reflect advanced AD stages and the molecular changes that occur in 

astrocytes after years of patho-progression. RNA-seq analysis of astrocytes from mouse 

models of AD offer the opportunity to understand earlier pathological mechanisms and have 

the potential to reveal therapeutic targets. In this chapter I compare gene expression changes 

in astrocytes in amyloidopathy models (APP/PS1 and APPNLF) and a tauopathy model 

(MAPTP301S), relating these gene changes to those seen in human AD. Extraction, sequencing 

and initial analysis of the astrocyte translatome from the MAPTP301S mice was carried by Dr 

Zoeb Jiwaji, a member of the Hardingham lab, I carried out the rest of the data collection and 

analysis.  

4.1.1 Translating Ribosome Affinity Purification (TRAP)  

The amyloidopathy and tauopathy gene expression datasets were obtained using a technique 

called TRAP (figure 22). TRAP enables cell type specific isolation of translating RNA (Heiman 

et al. 2014). The Aldh1l1 promoter drives expression of green fluorescent protein (GFP) 

tagged ribosomes in astrocytes, and immunoprecipitation of these ribosomes allows 

translating RNA to be extracted.  

TRAP offers a number of benefits over other methods of cell type specific isolation. For 

example, FACS involves the dissociation of cells into single cell suspension, and laser-capture 

microdissection involves excision of cells from tissue, both of which can introduce 
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experimental noise into gene/protein expression profiles and also only reflect the profile of 

the soma (Heiman et al. 2014). TRAP does not require a single cell suspension and allows 

profiling of mRNA from the entire cell (Heiman et al. 2014). This is particularly important in 

astrocytes, where local translation in the fine processes of astrocytes is fundamental to 

synapse modulation (Sakers et al. 2017). A further advantage of TRAP compared to whole cell 

RNA isolation is that the translating mRNA profile likely reflects the protein content of the cell 

more closely than the total mRNA content, since cellular abundance of proteins was found to 

be predominantly controlled at the level of translation (Schwanhäusser et al. 2011). Hence, 

translatome analysis may provide a more accurate picture of astrocyte function than 

transcriptome analysis, and offers the ability to extract cell type specific information without 

the harsh isolation procedures which would be necessary for proteomic analysis. A limitation 

of TRAP is that it requires genetic strategies to extract cell type specific information, hence, 

the technique cannot be used on human tissue (Heiman et al. 2014). For the purposes of 

these studies where we are using mouse models to dissect the impact of individual 

pathologies, TRAP is particularly useful.  
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1. Cross bred Aldh1l1-eGFP-rpl10a (TRAP) mice with 
APP/PS1 or APPNLF  mice, resulting in mice with GFP 
tagged ribosomes in astrocytes and amyloid pathology.

2. Homogenised the 
neocortex. Took RNA as 
‘input’ – RNA from all cells.

3. Ribosomal pulldown of 
astrocyte RNA

4. Purify RNA. Quality check using a 
bioanalyser and qPCR then RNA-seq.

A
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 Figure 22 (A) The process of TRAP. Made using Biorender.com (B) Immunohistochemical 

stain of Aldh1l1-eGFP-RPL10a TRAP cortical slices indicated eGFP did not co-localise with 

Neurochrom positive neurons, or IBA1 positive microglia, but did colocalise with ALDH1L1 

positive astrocytes, also confirmed by morphology. Scale bar = 100µm.  
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4.2 Results  

4.2.1 Quality Check of Astrocyte RNA-seq Samples 

TRAP was used to extract RNA from astrocytes, using a previously generated transgenic 

mouse line (Heiman et al. 2008) which was re-derived from frozen sperm on a C57BL/6 

background (see section 2.1). Expression of eGFP-RPL10a was driven by the Aldh1l1 promoter, 

an astrocyte specific marker, known to be enriched in astrocytes vs other CNS cell types 

(Srinivasan et al. 2016; Zhang et al. 2014). The Aldh1l1 promoter has previously demonstrated 

the best sensitivity and specificity for astrocytes, when compared to other astrocyte markers 

such as Gfap, S100β (S100 Calcium-Binding Protein B), Slc1a3 and Gjb6 (Gap Junction Protein 

Beta 6) (Srinivasan et al. 2016). Additionally, extensive validation of the expression profile of 

eGFP in the Aldh1l1-eGFP-RPL10a TRAP mice was carried out by Dr Zoeb Jiwaji, a member of 

the Hardingham lab. Briefly, immunohistochemical stains on cortical slices indicated eGFP did 

not co-localise with Neurochrom positive neurons, or IBA1 positive microglia, but did 

colocalise with ALDH1L1 positive astrocytes, also confirmed by morphology (figure 22B). 

Additionally, eGFP positive cells were FACS sorted and the gene expression profiles of GFP 

positive and GFP negative cells were determined by qPCR. Expression of astrocyte specific 

genes Aldh1l1, Gfap and Slc1a2 were all enriched to similar levels in GFP positive cells 

compared to GFP negative cells (data not shown).  

 

I carried out a similar qPCR validation of gene expression in all of the amyloidopathy TRAP 

samples (astrocyte specific RNA) and input samples (RNA from all cell types) that were sent 

for sequencing (figure 23). Cell type specific markers from Zhang et al (2014) were chosen. 

Genes were counted as highly selective if they demonstrated >10-fold higher expression in a 

particular cell type vs other cell types. The APP/PS1 TRAP RNA samples and the APPNLF TRAP 

RNA samples at all ages showed high expression of Aldh1l1 compared to input samples, and 

low expression of Eno2, Mbp and Cx3cr1, neuron, oligodendrocyte and microglial specific 

genes respectively, indicating isolation of astrocyte specific mRNA was successful. 

Mitochondrial encoded mRNAs are translated by mitochondrial ribosomes (not tagged with 

eGFP in this model) rather than cytoplasmic ribosomes (Greber and Ban 2016). Therefore, as 

an additional quality check I investigated the expression of the mitochondrial gene Mt-rnr2 in 
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the TRAP and input samples. As expected, expression of Mt-rnr2 in the TRAP samples was low 

compared to the input samples (figure 23). This indicated that even within astrocytes, which 

are densely packed with mitochondria (Agarwal et al. 2017), only the ribosomes tagged with 

eGFP were being isolated.  

 

To check the concentration and integrity of the RNA being sent for sequencing, I used an 

Agilent 2100 Bioanalyser (see section 2.3.5). One of the advantages of this microfluidics-

based automated electrophoresis system over traditional gel electrophoresis is that a 

dramatically smaller sample amount is needed, 1ng vs 200ng (Thermo Fisher Scientific - UK 

2020). This is especially important when conducting TRAP experiments, since the experiment 

yields low RNA concentrations.  
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Figure 23. qPCR validation of enrichment of astrocyte RNA in TRAP samples. RNA extracted 

from 6,12 and 18-month APP/PS1, APPNLF and corresponding WT astrocytes was sampled for 

expression of the cell type specific markers. The Zhang et al. (2014) dataset was used to select 

genes that demonstrated >10-fold higher expression in a particular cell type vs other cell 

types. All TRAP samples demonstrated enrichment for Aldh1l1 (astrocyte marker), and low 

expression of Eno2 (neuronal marker), Mbp (oligodendrocyte marker), and Cx3cr1(microglia 

marker), compared to input samples which contained RNA from all cell types. As expected, 

Mt-rnr2 (mitochondrial gene translated on mitochondrial ribosomes) also demonstrated a 

low expression in TRAP samples compared to input samples. Rpl13a was used as the house-

keeping gene. Bars represent average fold change in amyloidopathy and WT samples, points 

represent expression in individual mice.   
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4.2.2 Summary of Alterations to the Astrocyte Translatome in APP/PS1 Mice 

TRAP-seq was conducted on 6, 12 and 18-month APP/PS1 mice. The 6-month APP/PS1 

translatome only displayed 10 significantly induced genes and 12 significantly repressed 

genes compared to WT littermate controls (FPKM>1, p_adj<0.05) (figure 24A). This is to be 

expected if changes are associated with plaque formation as plaque deposition is reported to 

only begin at 6-months (Ruan et al. 2009) and astrocytic GFAP immunoreactivity, a marker of 

activated astrocytes (Eng and Ghirnikar 1994; Kamphuis et al. 2014), becomes evident around 

9-months (Kamphuis et al. 2012). However, one might expect pre-plaque gene expression 

changes in the astrocytes with rising oligomer load, perhaps these not captured when 

conducting bulk RNA-seq. By 12-months there were 1704 significantly induced (red) and 1151 

significantly repressed (blue) genes in the APP/PS1 astrocyte translatome (FPKM>1, 

p_adj<0.05) (figure 24B), which is consistent with the known progression of amyloid 

pathology, reactive gliosis and cognitive decline in these mice (Kamphuis et al. 2012; Fu et al. 

2018; Garcia-Alloza et al. 2006). At 18-months (figure 24C), there were 861 significantly 

induced genes and 525 significantly repressed genes (FPKM>1, p_adj<0.05). A possible 

explanation for the reduction in significantly changed genes at 18-months compared to 12-

months is that genotype dependent effects may be occluded by age dependent changes in 

WT translatomes at 18-months. Indeed, the sample-by-sample heatmap of genes induced 

(red) or repressed (blue) >1.5 fold (p_adj<0.05) in 12-month (figure 24D) and 18-month 

(figure 24E) APP/PS1 astrocytes indicates that WT gene expression may be slightly more 

variable at 18-months compared to 12-months.  
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Figure 24. The APP/PS1 astrocyte translatome. Astrocyte TRAP-seq was performed on 

APP/PS1 vs WT mice (both carrying the Aldh1l1_eGFP-RPL10a allele) at 6-months (A), 12-

months (B), and 18-months (C) in the neocortex. Genes induced (red), genes repressed (blue) 

and genes not significantly changed (grey) are shown (expression cut-off 1FPKM, p_adj<0.05, 

protein coding); n=4 mice per age and genotype, except 18-month HET mice where n=3. (D) 

Sample-by-sample heat map of genes induced (red) or repressed (blue) >1.5 fold (FPKM>1, 

p_adj<0.05) in 12-month APP/PS1 astrocytes. (E) Sample-by-sample heat map of genes 

induced (red) or repressed (blue) >1.5 fold (FPKM>1, p_adj<0.05) in 18-month APP/PS1 

astrocytes. 

 

Investigating the genes which are induced in both the 12 and 18-month APP/PS1 astrocytes 

enhances the reliability of the gene changes attributed to amyloidopathy. 400 genes were 

significantly induced in both the 12 and 18-month APP/PS1 astrocytes, and 144 genes were 

significantly repressed in both the 12 and 18-month APP/PS1 astrocytes (p_adj<0.05). Orre 

et. al (2014) had previously conducted a microarray analysis of genes induced/repressed in 

15-18-month FACS isolated APP/PS1 astrocytes. Their full dataset was not published. 

However, they did publish lists of the top 50 induced and top 50 repressed genes. The genes 

significantly induced/repressed in 12 and 18-month APP/PS1 astrocytes demonstrated 

enrichment for the top induced/repressed gene sets from the Orre et al. paper respectively 

(figure 25). This indicates somewhat robust gene expression changes due to amyloidopathy 

across different studies, isolation and sequencing methods.  
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Figure 25. Comparing genes induced/repressed in 12 and 18-month APP/PS1 astrocytes 

with Orre et al. 2014 top 50 induced/repressed genes. Enrichment of genes 

induced/repressed in 12 and 18-month APP/PS1 astrocytes for genes in the top 50 

induced/repressed in the Orre et al. 2014 dataset. P value <0.0001 (two-sided Fisher’s exact 

test).  
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I performed GO and KEGG pathway analyses on the genes which were significantly induced 

(figure 26A) or repressed (figure 26B) in both the 12-month and 18-month APP/PS1 

astrocytes (p_adj<0.05). When investigating the gene set induced by amyloidopathy, the top 

KEGG pathways enriched were phagosome and lysosome, indicating astrocytes are 

upregulating pathways involved in protein degradation, potentially a protective mechanism 

in response to Aβ pathology. Alternatively, perhaps increased astrocyte phagocytosis is 

contributing to synapse loss in AD (Chung et al. 2015; Chung et al. 2013; Chung et al. 2016). 

Notably, pathways involved in immune responses such as antigen processing and 

presentation, and natural killer cell mediated cytotoxicity were also enriched. Interestingly, a 

number of terms related to synaptic transmission and neuron development were enriched in 

the KEGG and GO analysis of genes induced by amyloidopathy, suggesting an upregulation of 

mechanisms to sustain synaptic transmission at a stage when synapse degeneration around 

plaques has been found (Koffie et al. 2009).  

 

When investigating the KEGG and GO terms enriched by genes repressed in both 12 and 18-

month APP/PS1 astrocytes, there appears to be a repression of negative regulation of 

neurogenesis and differentiation, which may indicate that astrocytes are attempting to aid 

the production of new neurons in response to the neurodegeneration caused by increasing 

amyloidopathy. However, one should exercise caution when interpreting this analysis, since 

only 144 genes were repressed, meaning terms may not be very reliable if the number of 

genes in each category are low.  

 

Ingenuity pathway analysis is an alternative knowledge base of curated literature. A positive 

activation z-score >2 (orange) indicates pathways are significantly upregulated in that sample, 

a negative activation z-score <-2 (blue) indicates pathways are significantly downregulated in 

that sample. I analysed the genes that were induced/repressed >1.5 fold (p_adj<0.05) in the 

6, 12, or 18-month APP/PS1 astrocytes (figure 27). This revealed an upregulation of pathways 

related to synaptogenesis and synaptic transmission in the 12 and 18-month APP/PS1 

astrocytes, but not the 6-month astrocytes. Therefore, this analysis mirrored aspects of the 

terms enriched in the set of genes upregulated in both the 12 and 18-month astrocytes. 

Analysing the data via two methods increased the reliability of results. Interestingly, the 

insulin secretion pathway and opioid signalling pathway were highlighted in the IPA analysis, 
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both of which have been implicated in Alzheimer’s disease (Salarinasab et al. 2020; Stanley et 

al. 2016; Gabbouj et al. 2019; Hölscher 2019).  
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Figure 26. Ontological analysis of genes induced or repressed in both 12 and 18-month 

APP/PS1 astrocytes (p_adj<0.05). (A) Ontological analysis of genes induced, or (B) repressed 

in both 12 and 18-month APP/PS1 astrocytes. For KEGG pathway analysis, the number of 

genes required was ≥5, disease pathways were removed. For KEGG and GO ontology analysis 

the top 10 pathways are shown, unless fewer than 10 satisfied the criteria (p_adj<0.05). 

 

 

 

Figure 27. Ingenuity Pathway Analysis of genes induced >1.5 fold (p_adj<0.05) in the 6, 12 

or 18- month APP/PS1 astrocytes. A positive activation z-score >2 (orange) indicates 

pathways are significantly upregulated in that sample, a negative activation z-score <-2 (blue) 

indicates pathways are significantly downregulated in that sample. The top 10 pathways are 

shown.  
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4.2.3 Summary of Alterations to the Astrocyte Translatome in APPNLF Mice 

TRAP-seq was conducted on 6, 12 and 18-month APPNLF mice.  The 6-month APPNLF astrocyte 

translatome displayed no significant differentially expressed genes compared to the WT 

astrocyte translatome (FPKM>1, p_adj<0.05) (figure 28A). At 12 months, only 1 gene (Cap1 

(Cyclase Associated Actin Cytoskeleton Regulatory Protein 1)) was significantly changed in the 

APPNLF mouse (FPKM>1, p_adj<0.05) (figure 28B). This is not that surprising since plaque load 

in APPNLF mice is still relatively low at these ages (Saito et al. 2014). By 18 months, 71 genes 

were significantly upregulated and no genes were significantly downregulated in APPNLF 

astrocytes (figure 28C). Plaque load is much more substantial at this age (Saito et al. 2014), 

hence, this increase in genes induced in APPNLF astrocytes may be due to increases in reactive 

astrocytes surrounding plaques. Nevertheless, 71 differentially expressed genes is still not a 

large number of genes. It is likely that if astrocytes were sampled from APPNLF mice at later 

time points, when plaques are even more abundant, there would be more differentially 

expressed genes. Additionally, single cell RNA-seq analysis may illuminate alterations in 

astrocytic gene expression that are lost due to bulk sequencing of astrocytes close to and far 

from plaques. Figure 28D illustrates a sample-by-sample heatmap of genes significantly 

induced >1.5 fold (FPKM>1, p_adj<0.05). No genes were significantly repressed.   
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Figure 28. The APPNLF astrocyte translatome. Astrocyte TRAP-seq was performed on APPNLF 

vs WT mice (both carrying the Aldh1l1_eGFP-RPL10a allele) at (A) 6-months (n=4 HOM, 4 WT), 

(B) 12-months (n=4 HOM, 6 WT), and (C) 18-months (n=4 HOM, 3 WT) in the neocortex. 1 

gene was significantly induced at 12 months and 71 genes were significantly induced at 18 

months (red). Genes in grey were not significantly changed and no genes were significantly 

repressed at any of the time points (expression cut-off 1FPKM, p_adj<0.05); (D) Sample-by-

sample heatmap of genes significantly induced >1.5 fold at 18-months (FPKM>1, p_adj<0.05). 

No genes were significantly repressed.  

 

  

2-2 20 22 24 26 28 210
2-2

20

22

24

26

28

210

WT (FPKM)

A
P

P
N

L
F

 (F
P

K
M

)

Astrocyte TRAP-seq 6 months

2-2 20 22 24 26 28 210
2-2

20

22

24

26

28

210

WT (FPKM)

A
P

P
N

L
F

 (F
P

K
M

)

Astrocyte TRAP-seq 12 months

2-2 20 22 24 26 28 210
2-2

20

22

24

26

28

210

Wildtype (FPKM)

A
P

P
N

LF
 (F

P
K

M
)

Astrocyte TRAP-seq 18 months

Induced (p_adj<0.05)

not significant

A B C

Rep_1 Rep_2 Rep_3 Rep_1 Rep_2 Rep_3 Rep_4

WT 
APPNLF

D



 130 

Since there were only 71 genes significantly induced in 18 month-APPNLF astrocytes, I did not 

use any fold change cut off when exploring the dataset. GO analysis was performed on the 71 

genes induced (figure 29). Only one biological process (copper ion transport) and one 

molecular function term (oxidoreductase activity) was significant, no cellular component 

terms were significant (p_adj<0.05).  KEGG pathway analysis was also performed, however 

no pathways were significant (p_adj<0.05). This is understandable as 71 genes is a small gene 

set, and so GO/ KEGG analysis is not that powerful. Genes related to astrocytic phagocytosis 

such as Abca1 (ATP-Binding Cassette Transporter), Megf10 (Multiple EGF-like Domains 10) 

and Gulp1 (PTB Domain-Containing Engulfment Adaptor Protein 1) (Morizawa et al. 2017) 

were not present in the significantly induced gene set, nor were genes related to microglia-

astrocyte cross talk, such as Orm2 (Alpha-1-acid Glycoprotein 2), Lcn2 (Lipocalin-2) and C3 

(Jha et al. 2019).  

Figure 29. Ontological analysis of genes significantly induced (FPKM>1, p_adj<0.05) in 

astrocytes in 18-month APPNLF. No GO Cellular Compartment terms were significant, nor 

were any KEGG Pathway terms (p_adj<0.05).  
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4.2.4 Examining Differential Expression Associated with Amyloid Pathology in Older 

Animals in Young Animals 

To determine whether the gene changes evident in 12-month APP/PS1 astrocytes were 

beginning to occur earlier in the APP/PS1 model, I examined the genes that were significantly 

induced or repressed >1.5-fold in 12-month APP/PS1 astrocytes (FPKM>1, p_adj<0.05) and 

determined the fold change in 6-month APP/PS1 astrocytes (figure 30A, B). The majority of 

the genes that were significantly induced at 12-months demonstrated a positive fold change 

at 6-months, and the majority of genes that were repressed at 12-months demonstrated a 

negative fold change at 6-months. I then repeated this analysis, examining the genes that 

were significantly induced or repressed >1.5-fold in 12-month and 18-month APP/PS1 

astrocytes (FPKM>1, p_adj<0.05) and determining the fold change in 6-month APP/PS1 

astrocytes (figure 30C, D). The relationship held. Whilst most of these gene expression 

changes were not significantly changed at 6-months, the directionality is the same for most.  

Hence, gene expression changes due to chronic amyloid pathology appear to begin early in 

disease pathogenesis in APP/PS1 mice.  
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Figure 30. Investigating whether gene expression changes which occur late in pathology begin 

earlier in APP/PS1 mouse. (A) Log2-fold change (FC) of the genes induced > 1.5-fold in 12-month 

APP/PS1 astrocytes when examined at 6-months in APP/PS1 astrocytes. t=24.88, df=850, p<0.0001 

(ratio paired t-test of FPKM (WT) vs FPKM (APP/PS1). (B) Log2 FC of the genes repressed > 1.5-fold in 

12-month APP/PS1 astrocytes when examined at 6-months in APP/PS1 astrocytes. t=6.884, df=177, 

p<0.0001 (ratio paired t-test of FPKM (WT) vs FPKM (APP/PS1). (C) Log2 FC of the genes induced > 1.5-

fold in 12 and 18-month APP/PS1 astrocytes when examined at 6-months in APP/PS1 astrocytes. 

t=14.66, df=387, p<0.0001 (ratio paired t-test of FPKM (WT) vs FPKM (APP/PS1). (D) Log2 FC of the 

genes repressed > 1.5-fold in 12 and 18-month APP/PS1 astrocytes when examined at 6-months in 

APP/PS1 astrocytes. t=6.927, df=42, p<0.0001 (ratio paired t-test of FPKM (WT) vs FPKM (APP/PS1).  

 

I conducted a similar analysis in the APPNLF astrocytes, investigating the expression of genes 

which were induced >1.5 fold in 18-month APPNLF astrocytes at 12-months (figure 31). The 

genes induced in the later staged APPNLF astrocytes did not appear to be induced in the earlier 

staged astrocytes. A reasonable deduction is that these genes begin to be induced post 12-

months, whilst pathology is worsening. It is likely that if one was to compare genes 

induced/repressed in 24-month APPNLF astrocytes with gene expression changes occurring in 

18-month APPNLF astrocytes, that the same pattern of earlier indications of gene expression 

alterations would be found. Notably, when comparing gene expression changes across time 

points in either model, it is impossible to dissect batch effects from age group effects as the 

experiments were not done concurrently.  
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Figure 31. Investigating whether gene expression changes which occur later in pathology 

begin earlier in APPNLF astrocytes.  Log2-fold change (FC) of the genes induced > 1.5-fold in 

18-month APPNLF astrocytes when examined at 12-months in APPNLF astrocytes. t=7.912, 

df=52, p<0.0001 (ratio paired t-test of FPKM (WT) vs FPKM (APPNLF). 
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showed a trend for increasing expression in the 6, 12 and 18-month APPNLF astrocytes. Figure 

32 demonstrates that most of the genes which are induced in 12 and 18-month APP/PS1 

astrocytes are non-significantly downregulated in 6-month APPNLF astrocytes. However, as 

the APPNLF mouse ages, the expression of this gene set increases, and by 18-months, the 

majority are showing a positive fold change. This indicates that the two mouse models display 

similarities in alterations of gene expression with increasing Aβ pathology.  
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Figure 32. Examining the expression of genes which are induced >1.5 fold in 12 and 18-

month APP/PS1 mice in APPNLF mice.  Log2-fold change (FC) of the genes induced >1.5-fold in 

12 and 18-month APP/PS1 astrocytes when examined at 6-months in APPNLF astrocytes. 

t=13.20, df=339, p<0.0001 (ratio paired t-test of FPKM (WT) vs FPKM (APPNLF). (B) Log2 FC of 

the genes induced >1.5-fold in 12 and 18-month APP/PS1 astrocytes when examined at 12-

months in APPNLF astrocytes. t=6.010, df=340, p<0.0001 (ratio paired t-test of FPKM (WT) vs 

FPKM (APPNLF). (C) Log2 FC of the genes induced >1.5-fold in 12 and 18-month APP/PS1 

astrocytes when examined at 18-months in APPNLF astrocytes. t=12.15, df=340, p<0.0001 

(ratio paired t-test of FPKM (WT) vs FPKM (APPNLF). 
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In order to dig deeper into the differences and similarities of genes expressed in the APP/PS1 

and APPNLF mouse models of amyloidopathy, I split the genes in the graph in figure 32C (which 

examines the expression of genes induced >1.5 fold in 12 and 18-month APP/PS1 mice in 18-

month APPNLF mice) into quartiles (figure 33A), and performed ontological analysis on the 

bottom (figure 33B) and top quartiles (figure 33C). The top KEGG pathways in the bottom 

quartile were antigen processing and presentation, and phagosome. This indicates that the 

whilst the APP/PS1 astrocytes upregulate immune pathways in response to increased amyloid 

load, the APPNLF astrocytes did not. This is likely due to the slower pathological progression in 

the APPNLF mouse. It would be interesting to see if these immune related pathways were 

induced later in pathology, e.g. in 24-month-old APPNLF mice. Ontological analysis of the top 

quartile indicated that both models are upregulating a number of processes related to ion 

transport, an important astrocytic homeostatic function.  
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Figure 33. Investigating similarities and differences in gene expression in APP/PS1 and 

APPNLF astrocytes. (A) Log2-fold change (FC) of the genes induced >1.5-fold in 12 and 18-

month APP/PS1 astrocytes when examined in 18-months APPNLF astrocytes, the upper and 

lower quartiles are marked by dotted lines. (B) Ontological analysis of genes in the lower 

quartile of figure 33A. (C) Ontological analysis of genes in the upper quartile of figure 33A.  

I focused the remainder of my analysis on alterations to the 12-month APP/PS1 astrocyte 

translatome and 18-month APPNLF translatome since these datasets displayed the most 

differentially expressed genes and so were best powered to investigate the alterations to the 

astrocyte translatome due to Aβ pathology.  

4.2.5 Amyloidopathy Exacerbates Age-Dependent Reactive Changes in Astrocytes 

Since the greatest known risk factor for developing Alzheimer’s disease is age, I exploited the 

published dataset of the ageing astrocyte translatome (10 weeks vs 24 months) (Clarke et al. 

2018) to discern whether astrocyte gene changes induced by amyloidopathy are enriched in 

genes which change during normal mouse ageing. I used the gene sets which were induced 

in the ageing cortex, hippocampus and striatum, as well as the set of genes common to all 

three regional sets. Figure 34 illustrates that there was an enrichment in all regional age-

dependent gene sets when interrogating the gene set induced >1.5 fold in the 12-month 

APP/PS1 astrocytes (expression cut-off 1FPKM, p_adj<0.05). This suggests that 

amyloidopathy prematurely induces astrocytic gene signatures that are normally found in old 

mice. Thus, supporting the proposal that the reduced number of differentially expressed 

genes in 18-month APP/PS1 vs WT dataset may be due to overlap with age-dependent 

changes in mice (figure 24). Since only 71 genes were induced in APPNLF astrocytes 

(p_adj<0.05), no fold change cut off was used when assessing for enrichment of age-

dependent genes, nevertheless, this gene set was not enriched in age-dependent genes from 

any region. This is understandable since this gene set is very small. In the future, it would be 

interesting to do a similar analysis of age-dependent genes using our 6,12,18-month WT 

datasets. Additionally, it would be informative to compare genes which were repressed due 

to amyloidopathy with genes repressed due to ageing.  
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Figure 34. Enrichment analysis of genes induced in (A) 12-month APP/PS1 astrocytes (B) 18-

month APP/PS1 astrocytes with ageing gene sets. Genes induced >1.5 fold in 12-month 

APP/PS1 astrocytes (expression cut-off 1FPKM, p_adj<0.05) or induced (without a fold change 

cut off, p_adj<0.05) in APPNLF astrocytes were taken and enrichment analysis performed using 

the ageing translatome gene sets in the Clarke et al. (2018) published paper. Fold enrichment 

is shown. Error bars depict 95% confidence intervals of the fold enrichment. P values (left-to-

right): <0.0001, <0.0001, <0.0001, <0.0001, 0.2164, >0.9999,0.2173,0.3625 (two-sided 

Fisher’s exact test). 
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4.2.6 Changes in Astrocytes Due to Chronic Amyloidopathy Resemble Acutely 

Induced Reactive Profiles  

Whilst reactive astrogliosis can be a product of chronic disease, it can also be induced very 

rapidly (<24 hours) by acute insults such as inflammatory stimuli or stroke (Zamanian et al. 

2012). Recent studies have suggested that the expression profile of astrocytes in 

neurodegenerative disease more closely resemble a reactive profile induced by acute 

inflammation (LPS-activated microglia) rather than stroke (MCAO) (Liddelow et al. 2017). 

However, these conclusions were based on a putative marker gene C3 in end-stage disease. I 

wanted to investigate whether the expression profiles of astrocytes chronically exposed to 

amyloidopathy resembled the profiles of acutely induced reactive astrocytes.  I initially 

carried out enrichment analysis of genes induced in the 12-month APP/PS1 astrocytes or 18-

month APPNLF astrocytes for genes which were defined as LPS-induced, MCAO-induced or 

pan-reactive in Liddelow et al (2017). Notably, these gene sets were small (12-13 genes) and 

when conducting the enrichment analysis, some genes were discarded due to low expression 

(<1FPKM). 8/11 (LPS/A1), 1/5 (MCAO/A2) and 7/10 (pan-reactive) genes were upregulated in 

APP/PS1 astrocytes. This meant that the APP/PS1 astrocytes were significantly enriched in A1 

and pan-reactive genes (p≤0.015) (figure 35A). None of the genes in these sets were present 

in the set of genes induced in 18-month APPNLF astrocytes (figure 35B). However, the gene 

sets defined in Liddelow et al. (2017) are very small and the rationale behind their inclusion 

was not stated. Therefore, we exploited the full transcriptional characterisation of these two 

reactive astrocyte phenotypes to define larger gene sets (Zamanian et al. 2012) (see section 

2.3.7.1 for in depth method)  

 

Briefly, gene expression in each stimulation paradigm was ranked by fold-change. In order to 

be classed as LPS or MCAO induced, the gene had to be ranked in the top 100 genes for one 

stimulation paradigm, and at least 50 places lower for the other stimulation paradigm. In 

order to be classed as pan-reactive, we required the gene be ranked in the top 250 genes, 

and no more than 50 ranking positions between the two stimulation paradigms. Figure 35C 

is a representation of the expanded MCAO, LPS and pan-reactive gene sets.  
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Using the expanded gene sets, Aβ pathology in APP/PS1 astrocytes induced changes in 

astrocytic gene expression which were enriched in LPS-induced, MCAO-induced and pan-

reactive gene sets (figure 35D). Hence, the gene expression changes in astrocytes due to 

chronic amyloidopathy resemble both acutely induced reactive profiles. This finding is 

contrary to previous suggestions that AD pathology induces a reactive astrocyte profile that 

more closely resembles LPS-induced astrocytes. Genes induced in 18-month APPNLF astrocytes 

were not enriched for the expanded LPS, MCAO or pan gene sets (figure 35E).  
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Figure 35. Enrichment of the small A1, A2 and pan-reactive gene sets described in Liddelow 

et al. (2017) in (A) 12-month APP/PS1 (B) 18-month APPNLF astrocytes. Genes induced in 12-

month APP/PS1 or 18-month APPNLF astrocytes (expression cut-off 1FPKM, p_adj<0.05) were 

assessed for enrichment in A1, A2, and pan-reactive gene sets from Liddelow et al. (2017). 

Fold enrichment is shown. Error bars depict 95% confidence intervals of the fold enrichment. 

P values (left to right): <0.0001, 0.5471, 0.0001, >0.9999, >0.9999, >0.9999 (two-sided Fisher’s 

exact test). (C) Expanded LPS-induced, MCAO-induced and pan-reactive gene sets. The 

microarray dataset from Zamanian et al. (2012) was used to curate expanded acute insult 

gene sets, see section 2.3.7.1 for method of curation.  The acute MCAO genes ranked in the 

top 100 MCAO-induced genes, median rank 49, and ranked >50 places lower in the ‘acute 

LPS’ gene set, median rank 41. The acute LPS genes ranked in the top 100 LPS-induced genes, 

median rank 47, and ranked >50 places lower in the ‘acute MCAO’ gene set, median rank 291.  

The pan-reactive genes were in the top 250 in both gene sets and had <50 ranking places 

between them, median ‘acute LPS’ ranking 66, median ‘acute MCAO’ ranking 92. The exact 

ranking position of each gene is shown. Enrichment analysis using expanded A1/A2/pan 

reactive gene sets. (D) Genes induced >1.5 fold in 12-month APP/PS1 astrocytes (expression 

cut-off 1FPKM, p_adj<0.05) or (E) induced in 18-month APPNLF astrocytes (expression cut-off 

1FPKM, p_adj<0.05) were taken and enrichment analysis performed using the expanded gene 

sets curated from the Zamanian et al (2012) paper (see figure 34C).  Fold enrichment is 

shown. Error bars depict 95% confidence intervals of the fold enrichment. P values (left-to-

right): <0.0001, 0.0006, <0.0001, >0.9999, >0.9999, 0.1569 (two-sided Fisher’s exact test).  
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4.2.7 A Core Signature of Astrocytic Genes Regulated by Both Aβ and Tau 

Pathology  

Amyloid pathology and reactive glia are not the only ‘positive’ pathological hallmarks of AD. 

The accumulation of hyperphosphorylated tau into neurofibrillary tangles is also considered 

a fundamental characteristic of AD and is thought to also induce reactive glia (Braak et al. 

2006; Serrano-Pozo et al. 2011). Dr Zoeb Jiwaji, a member of the Hardingham lab, had 

previously curated a similar data set, investigating astrocyte translatome changes 

concomitant with tau pathology in MAPTP301S mice vs WT mice (both carrying the 

Aldh1l1_eGFP-RPL10a allele).  

 

The MAPTP301S mice accumulate hyperphosphorylated filamentous tau, which drives 

progressive neurodegeneration in the spinal cord and upper cortical layers. Pathology begins 

around 3 months, and by 5 months mice physically deteriorate due to neurodegeneration 

(Allen et al. 2002; Yoshiyama et al. 2007). Dr Zoeb Jiwaji had shown that that substantial 

changes in gene expression occur in 5-month spinal cord MAPTP301S vs WT astrocytes. In the 

MAPTP301S cortex, where degeneration only takes place in upper layers, the number of 

significantly changed genes was lower, although, the fold-change (up and down) correlated 

well with the spinal cord data r=0.77 (Pearson correlation coefficient - data not shown). 

Hence, I decided to use the 5-month MAPTP301S spinal cord astrocyte dataset to compare with 

12-month APP/PS1 neocortex astrocyte dataset.  

 

The gene sets showed significant overlap of induced and repressed genes, p<0.0001 (Two 

sided Fisher’s exact test). A ‘core’ set of 203 genes were significantly upregulated in both the 

APP/PS1 and MAPTP301S astrocytes, and a core set of 151 genes were significantly 

downregulated in both models (figure 36A). As expected, the core induced gene set was 

strongly enriched in age-dependent genes and acutely-induced reactive astrocyte genes 

(figure 37A).  

 

Ontological analysis of the core upregulated genes revealed that GO Biological Processes 

were dominated by those associated with cytokine and inflammatory responses, as well as 

protein degradation (figure 36B). GO Molecular Functions were dominated by proteases, 
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peptidases and protein binding classes (figure 36B), while GO Cellular Components included 

lysosomal and luminal compartments of several types (figure 36B). High ranking KEGG 

pathways included Lysosome, Apoptosis, and a number of inflammatory-associated pathways 

(figure 36B, D).  

 

Studying the core repressed genes overlapping the APP/PS1 and MAPTP301S astrocytes 

revealed GO Biological Processes were dominated by mitochondrial oxidative 

phosphorylation and general protein synthesis (figure 36C), GO Molecular Functions 

comprised mitochondrial enzymic activities (figure 36C), and GO Cellular Components 

included mitochondrial protein classes and subclasses, as well as ribosomal proteins (notably 

Rpl10a was not one of the genes included in this category) (figure 36C). KEGG pathways 

enriched in the downregulated genes included oxidative phosphorylation and ribosome 

(Figure 36C, E). Collectively, these analyses suggest that both Aβ and tau induce potentially 

harmful alterations to astrocytes, such as mitochondrial and protein synthesis deficits, 

however, they also induce genes within pathways associated with protein degradation and 

clearance, which may represent a beneficial/protective response of astrocytes to 

proteinopathy. Alternatively, perhaps increased astrocyte phagocytosis/degradative 

pathways contribute to synapse loss in AD (Chung et al. 2015; Chung et al. 2013; Chung et al. 

2016). 

A
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Figure 36. Aβ and tau pathology trigger a core set of gene expression changes in astrocytes. 

(A) heat map of genes induced (red) and repressed (blue) in both MAPTP301S and APP/PS1 

mice. (B, C) Ontological analysis of genes induced (B) or repressed (C) in astrocytes in both 

APP/PS1 and MAPTP301S mice. For KEGG pathway analysis, disease pathways were omitted 

and number of genes required was ≥5. For KEGG and GO analysis the top 10 pathways are 

shown, unless fewer than 10 achieved an adjusted p-value cut-off of 0.05. (D, E) 

Reproductions of the top KEGG Pathways induced and repressed by Aβ and tau pathology 

in astrocytes. (D) The KEGG lysosome pathway with lysosomal genes induced in astrocytes in 

both the APP/PS1 and MAPTP301S models shaded in red. (E) The KEGG oxidative 

phosphorylation pathway, with genes repressed in astrocytes in both the APP/PS1 and 

MAPTP301S models shaded in blue.  

 

4.2.8 Transcription Factor Analysis of Core Genes Induced by Aβ and Tau Pathology  

I next wanted to understand whether the core genes changed by Aβ and tau pathology were 

enriched for genes regulated by a certain transcription factor, since a putative common 

regulator could pose as a druggable target. When interrogating the TFEA.ChiP platform 

(https://www.iib.uam.es/TFEA.ChIP/) and the ENCODE and ChEA consensus target genes 

from Chip-X database on the Enrichr platform (https://maayanlab.cloud/Enrichr/), 

transcription factor PU.1 (SPI1), a known inflammatory mediator (Prinz and Priller 2014), and 

Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2/NRF2), a master regulator of 

antioxidant, detoxification and proteostasis genes (Pajares et al. 2017; Shih et al. 2005; 

Nguyen et al. 2009), were enriched in both datasets (figure 37B).  

 

 

 

 

 

 



 152 

Figure 37. Enrichment analysis of genes induced by both Aβ and tau pathology. (A) Genes 

induced in astrocytes in APP/PS1 and MAPTP301S astrocytes (expression cut off FPKM<1, 

p_adj<0.05) were subjected to enrichment analysis against the indicated gene sets. 

*p<0.0001 in all cases, (two-sided Fisher’s exact test). (B) Enrichment analysis of genes 

induced in both MAPTP301S and APP/PS1 mice for transcription factor targets using a survey of 

the TFEA.ChiP platform (left) and the ENCODE and ChEA Consensus target genes from ChIP-X 

performed in the Enrichr platform. SPI1 and NFE2L2/NRF2 were transcription factors 

highlighted in both enrichment analyses.  

Genes induced by Aβ and tau pathology in astrocytesA

Transcription factor  analysis of genes induced by Aβ and tau pathology in astrocytes B



 153 

4.2.9 Comparison of Genes Induced by Aβ and Tau Pathology in Mouse Astrocytes 

to Human AD Astrocytes  

Mouse models have proven invaluable for studying biological processes and the 

consequences of pathology found in humans. That being said, experimental findings in mouse 

models do not always translate to the human condition, as whilst the species are 

phylogenetically similar, mice and humans have evolved and adapted differently.  

 

I wanted to compare the core gene set induced by Aβ and tau pathology in our mouse 

datasets to a human post-mortem dataset where both pathologies are present. I used the 

data from the Grubman et al. (2019) single nucleus RNA-seq study, looking at genes induced 

in astrocytes in AD relative to control. I performed an enrichment analysis on those genes 

with 1:1 orthologs in mouse, expressed > 10 FPKM (a higher than normal threshold since 

highly expressed genes are more likely to be detected in single cell RNA-seq).  

 

Genes up-regulated in the translatome of both APP/PS1 and MAPTP301S astrocytes were 

enriched in genes induced in human AD astrocytes (figure 38A). Furthermore, the core set of 

genes induced by both Aβ and tau pathology was also enriched (p<0.0001 in all cases, two-

sided Fisher’s exact test) (figure 38A). Of the 126 genes expressed >10FPKM in either or both 

models, 68/126 were induced by Aβ pathology, 86/126 were induced by tau pathology and 

28/126 were induced by both (p_adj<0.05), (figure 38B). Hence, there is significant 

association of genes induced in astrocytes by Aβ and tau pathology in mice over months, with 

those elevated in human astrocytes post-mortem after many years of patho-progression.  
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Figure 38. Comparison of genes induced in astrocytes in AD mouse models with genes 

induced in human AD astrocytes (A) Enrichment analysis of genes induced in human AD 

astrocytes (Grubman et al. 2019) for which a 1:1 ortholog exists (and >10FPKM cut off) for 

genes induced in APP/PS1 astrocytes, and MAPTP301S astrocytes, or those induced in both 

models *p<0.0001 in all cases, (two-sided Fisher’s exact test). (B) Genes induced in human AD 

astrocytes for which a 1:1 mouse ortholog exists and that are expressed >10 FPKM in APP/PS1 

and MAPTP301S astrocytes. Log2-fold change in each gene is shown for both models (x-axis: 

APP/PS1 vs. WT; y-axis: MAPTP301S vs. WT). For each gene, an indication of whether it is 

significantly (p_adj<0.05) induced in either, both or neither model is shown. 
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4.2.10 Astrocytes in Amyloidopathy and Tauopathy Mice Show Differential 

Enrichment in AD Risk Genes 

Finally, GWAS have provided an understanding of genetic risk variants associated with human 

AD, and are somewhat responsible for the enthusiasm in glia research in AD, since many of 

the risk genes are expressed in glia (Karch and Goate 2015; Bertram and Tanzi 2009). Sierksma 

et al. (2020) recently published a paper where they looked at the enrichment of Aβ and tau-

induced changes in gene expression in microglia for AD risk genes and sub-threshold risk loci, 

using the Marioni et al (2018) GWAS dataset (Marioni et al. 2018; Sierksma et al. 2020). I 

decided to deploy a similar technique looking at enrichment of AD risk genes in the 

amyloidopathy and tauopathy induced astrocyte translatome datasets.  

 

There were 9938 genes expressed ≥ 1 FPKM, induced >1.5 fold (p_adj<0.05) in the TRAP-seq 

datasets for which a gene-level GWAS p-value was available.  Using a Bonferroni-corrected 

cut-off of 0.05/9938 (i.e. 5.03E-06), induced genes in the APP/PS1 TRAP-seq data were 

significantly enriched in AD risk genes (figure 39A). Furthermore, sequential relaxing of the p-

value cut-offs to include more subthreshold risk genes maintained significant enrichment 

down to p=5E-03, with enrichment disappearing at the p=5E-02 cut-off. In contrast, a similar 

analysis of genes induced in MAPTP301S astrocytes did not achieve significance at any p-value 

cut-off (figure 39B). However, despite not reaching significance the overlap at p=5.03E-06 for 

the MAPTP301S dataset (7/666) was similar to the APP/PS1 dataset (9/756). Hence, one should 

not read too much into the differences between Aβ and tau pathology. Nevertheless,  this 

finding raises the possibility that astrocyte-centred genetic risk may influence their response 

to Aβ pathology, just as has been suggested for microglia (Sierksma et al. 2020).  
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Figure 39. Enrichment analysis of Aβ and tau-induced changes in astrocytes for AD risk 

genes and sub-threshold risk loci. Genes induced >1.5 fold at 12 months in the APP/PS1 

astrocytes (A), and 5-month MAPTP301S astrocytes (B) (expression cut-off 1FPKM, p_adj<0.05) 

were taken and enrichment analysis for human genes associated with late-onset AD was 

conducted. The analysis was conducted using the Marioni et al. (2018) GWAS dataset with 

differing p-value cut-offs. p-values (left to right): 0.011, 0.028, 0.017, 0.020, 

0.0815,0.1943,0.2918,0.0748,0.8988 (two-sided Fisher’s exact test).  
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4.3 Discussion  

4.3.1 Summary of Findings  

This chapter focused on investigating the effect of Aβ pathology on the astrocyte translatome. 

The APPNLF and APP/PS1 amyloidopathy mouse models were subject to TRAP-seq. The 6 and 

12-month APPNLF and 6-month APP/PS1 astrocytes demonstrated none or few significant 

differentially expressed genes compared to corresponding WT astrocytes. However, there 

were non-significant indications of changes to astrocyte gene expression beginning early in 

amyloidopathy. Ontological analysis of genes changed concurrent with amyloidopathy 

revealed upregulation of genes involved in neuron and synaptic transmission maintenance, 

as well as pathways involved in protein degradation and the inflammatory response. Age-

dependent genes and acutely-induced reactive astrocyte genes were induced concomitant 

with Aβ pathology. Comparison of astrocytic gene expression changes concurrent with 

amyloidopathy and tauopathy was performed using a previously curated MAPTP301S TRAP-seq 

dataset. The core genes upregulated by both pathologies revealed similar signatures to the 

amyloidopathy alone, with terms associated with proteolysis and the immune response being 

upregulated. Some of the genes induced by both pathologies may be regulated by NRF2, a 

master regulator of antioxidant, detoxification and proteostasis genes. Notably, the genes 

induced by Aβ, tau or both pathologies were enriched for genes changed in astrocytes 

extracted from human post-mortem AD, indicating translational relevance of results. An 

intriguing difference between the amyloidopathy and tauopathy datasets was that only the 

astrocytes exposed to amyloidopathy were significantly enriched for AD risk genes.  

 

4.3.2 Amyloidopathy Induced Alterations in Astrocytes  

The APP/PS1 astrocytes displayed more differentially expressed genes at all ages compared 

to the APPNLF astrocytes. This was to be expected since the pathology in the transgenic 

APP/PS1 mouse develops quicker than in the knock-in APPNLF model. Nevertheless, given 

synapse loss was significant around dense core plaques in 12-month APPNLF mice, one might 

have expected to have seen more alterations in astrocyte phenotype at this age. Perhaps the 

relatively low plaque load in the APPNLF mouse at this age meant that alterations in astrocytic 

gene expression in astrocytes surrounding plaques were lost when bulk sequencing 
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neocortical astrocytes. Future work where astrocytes surrounding plaques are laser capture 

microdissected and sequenced would identify if this is the case.  

 

Interestingly, genes which are significantly induced >1.5 fold (p_adj<0.05) in 12 and 18-month 

astrocytes appear to increase in expression with age in APPNLF astrocytes, indicating that 

although pathology in the APPNLF mouse is slower to develop, directionality of gene 

expression alterations due to amyloid pathology appear somewhat conserved between the 

two models. Ontological analysis of genes changed due to chronic amyloidopathy indicate the 

astrocytes are upregulating protein degradative mechanisms, a potential protective 

mechanism in response to increased Aβ load. Additionally, the genes induced by 

amyloidopathy were enriched for processes involved in neuron development and synaptic 

transmission, again suggesting induction of protective mechanisms against the well 

documented amyloidopathy induced neurodegeneration (Liu et al. 2008) and synapse 

degeneration (Koffie et al. 2009). The presence of terms related to immune response 

activation may either be interpreted as protective or damaging, depending on the extent of 

activation and targets of phagocytosis. Whilst astrocytes appear to play an important role in 

mitigating aspects of pathology induced by Aβ, these protective mechanisms are not 

efficacious enough or are upregulated too late to halt disease progression. Astrocyte targeted 

therapeutics, which further bolster protein degradative pathways or support synaptic 

function, may provide meaningful improvements in AD, if given at an appropriate time point 

in the disease progression.  

 

4.3.3 Astrocyte Responses to Aβ Pathology Overlap with Ageing 

In this study, I found that genes induced in 12-month APP/PS1 astrocytes were significantly 

enriched in genes induced in 24-month WT mouse astrocytes, indicating an overlap of genes 

induced in amyloidopathy and ageing. This was further supported by comparison of the 12-

month and 18-month APP/PS1 astrocyte TRAP-seq, where the 18-month APP/PS1 vs WT 

TRAP-seq demonstrated fewer differentially expressed genes compared to the 12-month 

APP/PS1 vs WT TRAP-seq, perhaps due to alterations in astrocyte gene expression induced by 

amyloidopathy overlapping with those changed due to ageing. Both ageing and AD are 
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associated with changes in cognition, functional connectivity, neurotransmission, as well as 

grey and white matter loss (Toepper 2017). However, there are clear differences in the details 

of these neurocognitive changes. For example, AD is characterised by an accentuated 

cholinergic dysfunction (Teipel et al. 2011), whereas ageing is associated with dopaminergic 

dysfunction (Li et al. 2010). This suggests that AD is not simply accelerated ageing. 

Nevertheless, both the ageing brain and AD involve compromised environments, be it 

metabolic, inflammatory, or other homeostatic functions. This could explain the overlapping 

molecular response of astrocytes to ageing and Aβ pathology, and is consistent with 

increasing age being the main risk factor for AD (Hou et al. 2019).  

 

4.3.4 Aβ Pathology Induces Astrocytes to Adopt a Profile that Does Not Fit the 

Discrete A1/A2 Astrocyte Profiles 

Defining the heterogeneity of astrocyte responses to different conditions has become a 

fundamental area of glia research. Liddelow et al (2017) described two reactive astrocyte 

profiles, derived from an earlier microarray study (Zamanian et al. 2012; Liddelow et al. 2017).  

One profile, made up of 12 genes, was induced acutely by LPS-activated inflammatory 

microglia (so-called A1) and was deemed neurotoxic. The other profile, also made up of 12 

genes, was induced acutely by ischemia (so-called A2), and was proposed to be 

neuroprotective. 13 genes were reported to be expressed in both LPS-induced and MCAO-

induced astrocytes, and were termed ‘pan-reactive genes’.  

 

The 12-month APP/PS1 astrocytes were significantly enriched in the Liddelow A1 and pan-

reactive gene sets (figure 35). However, these gene sets are small and the rationale behind 

their choice was not stated, and in some cases appeared unjustified. For example, Cp 

(Ceruloplasmin) was included in the pan-reactive set despite being the 12th highest induced 

gene by LPS and only 75th by MCAO, whereas Gbp was included in the A1 set even though it 

was the 26th highest induced gene in the MCAO set (and 8th in the LPS set). In a similar vein, 

Cd44 (CD44 Antigen) was included in the pan-reactive set despite being only ranked 234th in 

the LPS set and 32nd in the MCAO set, whereas Cd109 (CD109 Antigen) was included in the A2 

set even though it was the 36th highest induced gene in the LPS set (and 15th in the MCAO 

set). We therefore exploited the full transcriptional characterisation of these two reactive 



 160 

astrocyte phenotypes to define larger gene sets (figure 35C). The expanded analyses showed 

significant enrichment in 12-month APP/PS1 astrocytes for all gene sets curated (figure 35D), 

with no evidence of preferential enrichment in the acute-LPS gene set. These results 

challenge the hypothesis made by Liddelow et al. that the majority of astrocytes in AD display 

A1 reactive profiles. Notably, their hypothesis was only based upon C3 immunoreactivity in 

end-stage disease (Liddelow et al. 2017).  

 

The binary classification of reactive astrocytes into LPS-like (“A1”) or stroke-like (“A2”) 

appears to be unhelpful when investigating chronic disease pathology. Just as categorising 

microglia into M1 and M2 has fallen out of favour following routine use of genome-wide 

characterisation of transcriptomes (Nahrendorf and Swirski 2016), categorising astrocytes in 

such a manner is likely an over-simplification which will fall out of use. Nevertheless, defining 

the continuum of astrocyte profiles whilst considering stimulus, location, time, heterogeneity 

and the surrounding cell type reactions, will be invaluable when developing astrocyte 

targeted therapeutics. The analyses presented here highlight the reactive profiles of 

astrocytes when chronically exposed to Aβ pathology at early and later stages.  Notably, the 

TRAP-seq was conducted on pooled astrocyte RNA, and so information on the heterogeneity 

and location of astrocytes was lost. In-situ single cell RNA-seq of astrocytes would provide 

valuable complementary information.  

 

4.3.5 A Common Astrocyte Response Signature to Aβ and Tau Pathology 

There was a substantial number of genes that were induced or repressed by both pathologies 

(figure 36). Gene ontology analysis pointed towards activation of inflammatory pathways and 

upregulation of genes involved in protein degradation, potentially an adaptive/protective 

response to increased protein aggregates and/or debris in the extracellular milieu. In the 

context of genes downregulated by both Aβ and tau pathology, gene ontology analysis 

pointed to the repression of protein translation and mitochondrial oxidative phosphorylation. 

Defective translation could affect the ability of astrocytes to carry out their fundamental 

functions, leading to poor homeostatic support of neurons. Impaired astrocytic mitochondrial 

oxidative phosphorylation likely contributes to the overproduction of reactive oxygen species 

(ROS) which is found in AD and AD models (González-Reyes et al. 2017; Huang et al. 2016; 
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Hamel et al. 2008). Additionally, dysfunctional mitochondrial oxidative phosphorylation could 

lead to the inhibition of synaptic transmission, as it has been shown that use of fluoroacetate 

to selectively inhibit glial oxidative metabolism causes astrocytes to secrete adenosine, 

leading to synaptic inhibition (Canals et al. 2008). Whilst this mechanism was postulated to 

represent an energy-conserving neuroprotective response to prevent lethal depolarization, 

one can envisage that it would nevertheless alter circuit function and cognitive performance 

if maintained over a long period of time.  

 

4.3.6 Therapeutically Targeting NRF2 in Astrocytes Early in AD.  

The core gene set induced by Aβ and tau pathology in astrocytes was enriched in target genes 

of the transcription factors SPI1 and NRF2. The NRF2 pathway can be activated by conditions 

such as oxidative stress and is fundamental for antioxidant production, inflammatory 

regulation, xenobiotic detoxification, metabolic reprogramming, and proteostasis (Nguyen et 

al. 2009). Upregulation of genes downstream of NRF2 is likely an adaptive protective 

mechanism to the pathological insult. However, given the continued development of 

pathology in mouse and human, NRF2 activation appears to be too little, too late, to 

substantially alter disease trajectory. Indeed, this study shows that gene changes in astrocytes 

due to late-stage amyloidopathy begin much earlier in the course of pathology (figure 30). 

Nevertheless, given the broad protective functions attributed to NRF2 activation, 

pharmacologically enhancing NRF2 activation at a suitably early time-point has the potential 

to mitigates some of the harmful components of AD. 

 

NRF2 expression is thought to be epigenetically repressed in mature neurons (Bell et al. 2015). 

This emphasises the importance of this pathway in astrocytes to provide cell autonomous and 

non-cell-autonomous cytoprotection. An example benefit of enhancing astrocytic NRF2 

includes promoting glutathione production and release into the extracellular space (Steele et 

al. 2013). This would enhance interstitial redox buffering, and provide cysteine-based 

precursors for non-astrocytic cells to use to enhance their own glutathione production and 

antioxidant capacity. In turn, fortified intraneuronal redox buffering could reduce tau 

phosphorylation and aggregation (Su et al. 2010), as well as repress ROS induced endoplasmic 

reticulum (ER) stress and unfolded protein response (UPR) over-activation (Uddin et al. 2020). 
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Additionally, ROS have been implicated in both causing chronic microglial and astrocytic 

activation, and being a product of chronic glial activation (Sheng et al. 2013; Ishii et al. 2017; 

Su et al. 2008). Hence, enhancing astrocytic NRF2 could suppress this self-amplifying cascade.  

 

Therapies specifically targeting astrocytic NRF2 have yet to be investigated clinically. 

However, there is considerable pre-clinical research to suggest that NRF2 is an attractive 

therapeutic target. For example, Shih et al. (2005) demonstrated that dietary 

supplementation with the NRF2 inducer tert-butyl hydroquinone conferred neuroprotection 

to mice during mitochondrial stress (Shih et al. 2005). Additionally, Oksanen et al (2020) have 

shown that activation of NRF2 in Presenilin-1-mutated AD patient astrocytes reduced amyloid 

secretion, normalised cytokine release, increased secretion of the antioxidant glutathione, 

and finally increased the utilisation of glycolysis (Oksanen et al. 2020). Activation of NRF2 

specifically in astrocytes in AD mouse models has yet to be published. However, this data 

supports trial of such strategies.   

4.3.7 Relating Mouse Astrocyte Responses to Aβ and Tau Pathology to Human AD 

The utility of mouse models is largely dependent on how well the findings translate to the 

human condition. Recently, there have been several papers highlighting the differences 

between mouse and human astrocytes, emphasising the smaller, less structurally complex 

nature of rodent astrocytes (Oberheim et al. 2009; Zhang et al. 2016). Hence, it was important 

to compare the responses of APP/PS1 and MAPTP301S astrocytes to human end-stage AD 

astrocytes. We utilised the largest reported gene set to date of differentially induced genes 

in human astrocytes from post-mortem AD brains (Grubman et al. 2019). Both pathologies in 

mice induced changes enriched in genes changed in human AD astrocytes (figure 38). Whilst 

some genes induced in human AD were enriched in both the APP/PS1 and MAPTP301S 

astrocytes, other genes were only enriched in one of the models (figure 38B). This is 

consistent with human AD being a combination of Aβ and tau pathology. Of note, there were 

genes that were induced in human AD that were not induced in either of the animal models. 

This could be due to species differences, different isolation methods impacting gene 

expression, or due to post-mortem astrocytes reflecting end-stage disease.  
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GWAS have identified several genes which are associated with increased risk of developing 

AD in humans. Many of these genes, such as APOE, CLU and SORL1 are expressed in astrocytes 

(Karch and Goate 2015). An interesting distinction between the mouse astrocytes exposed to 

amyloidopathy and tauopathy was that only the amyloidopathy-induced astrocyte 

translatome was enriched in AD risk genes and subthreshold risk loci (figure 39).  A similar 

finding was reported to occur in mouse microglia exposed to amyloidopathy and tauopathy 

(Sierksma et al. 2020). These results could suggest that cumulative genetic risk is involved in 

determining the response of astrocytes to Aβ (direct or indirect e.g. via microglia). It remains 

to be seen how individual single nucleotide polymorphisms influence responses of genes to 

Aβ, and what the functional consequences are for astrocytes and microglia. However, it is 

possible that the glial response to Aβ is fundamental in determining the spectrum of 

outcomes of high Aβ load, ranging from aggressive AD to apparent tolerance of a high Aβ 

burden in the absence of cognitive symptoms.  
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4.3.8 Limitations and future work  

The TRAP method used to isolate cell type specific mRNA has some limitations. Astrocyte 

ribosomes and translating mRNA were isolated by driving expression of an eGFP tagged 

ribosomal subunit using the Aldh1l1 promoter. Whilst Aldh1l1 is considered to be the best 

marker for distinguishing astrocytes from other cell types in the CNS (Srinivasan et al. 2016), 

Aldh1l1 is lowly expressed in neurons, oligodendrocyte precursor cells, oligodendrocytes and 

microglia (Zhang et al. 2014). Hence, there is potential for off-target isolation and gene expression 

detection. We tried to mitigate this by checking the expression of genes that are considered to be 

cell type specific using qPCR and RNA-seq.  

 

A second limitation of the TRAP method used was that astrocyte RNA from all over the 

neocortex was pooled. This would have masked any regional differences in the response of 

astrocytes to Aβ (or tau). Indeed, Bayrakartar et al (2020) has shown that even within one 

area of the brain, the somatosensory cortex, astrocyte gene expression can change 

dependent on the cortical layer (Bayraktar et al. 2020). Future work where astrocytes near to 

and further from the plaque are laser capture microdissected and single cell transcriptomic 

studies are conducted would not only help identify whether pathological alterations in 

astrocyte gene expression are occurring in a small subset of APPNLF astrocytes near the 

plaques, it would also illuminate heterogeneity of astrocyte response to AD pathology.  

 

An important limitation to consider with all transcriptomic studies is that mRNA levels may 

not correlate with protein levels. However, the TRAP methodology extracts actively 

translating mRNA, which we expect would correlate more closely with protein levels, and 

therefore the function of the astrocyte, when compared to total mRNA levels. In fact, the 

cellular abundance of proteins has been shown to be controlled at the level of translation 

(Schwanhäusser et al. 2011). A study comparing the astrocyte translatome and proteome in 

health and disease would illuminate how closely function can be inferred from the translatome 

and help to validate suggested alterations in pathways found in this research.   

 

Another aspect to consider when assessing this research is that both the APP/PS1 and MAPTP301S 

mouse models are overexpression models. In the APP/PS1 mouse model, we cannot rule out the 

effect of high expression of APP cleavage products other than Aβ on differential astrocytic gene 
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expression. Furthermore,  the MAPTP301S mouse model contains a mutation that is not found in 

familial or sporadic AD, but in frontotemporal dementia. Despite this, the area most affected in 

the MAPTP301S model is the spinal cord. This contrasts with human AD, where tau pathology 

develops from the entorhinal cortex to the rest of the brain. Despite the weaknesses in these 

transgenic mouse models, they are both useful tools to understand the impact of pathology on 

astrocytes. The enrichment of genes changed in human AD post-mortem astrocytes gives 

confidence in the models being somewhat useful to investigate the impact of Aβ and tau 

pathology on astrocytic gene expression. Nevertheless, in future studies it may be beneficial to 

use newer models of AD, such as the knock-in MAPT tauopathy model recently developed by Saito 

et al. (Saito et al. 2019), or the a model which contains both pathologies, and where pathology is 

found in similar areas of the mouse brain as in human AD.  

 

Much of the analysis conducted involved ontological analysis of genes induced/repressed in 

each mouse model. Important aspects to consider when conducting ontological analyses are 

the fact that the data produced are only as good as the data that is entered, cut off thresholds 

are somewhat arbitrarily set and may not reflect biological significance, there are many 

different versions of ontological analyses, which may produce varying results, thus it may be 

useful to conduct analyses across multiple platforms to compare the output. Additionally, 

genes induced and repressed are often input separately into GO analyses to infer pathways 

induced and repressed. However, this may not accurately represent pathway dynamics where 

the balance of genes induced and repressed should ideally be considered together. To 

somewhat mitigate this, I also conducted IPA which does consider genes induced and 

repressed together in order to infer pathway dynamics. A further aspect to consider is  sample 

source bias. This is where many of the terms returned by gene set enrichment analysis 

describes the sample rather than the condition, i.e. highlighting brain related GO/KEGG terms 

simply due to the sample being from the brain. I attempted to mitigate some of this risk by 

being stringent about the genes included in the GO analysis i.e. performing ontological 

analysis on genes robustly changed by amyloidopathy by looking at the intersection of genes 

changed in the 12 and 18-month APP/PS1 astrocytes. However, in the future it would be 

useful to select an astrocytic background set of genes against which to test for over-

representation rather than all the genes annotated on the mouse genome.  
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Whilst time did not permit qPCR confirmation of select genes induced and repressed in each 

model, this will be an important step in validating results. Additionally, western blot analysis 

of protein expression would help to validate alterations to astrocyte phenotype. Conducting 

functional analysis such as a glutathione assay would validate functional consequences of 

alterations in gene expression.   

 

Many of the gene set enrichment analyses presented here focused on the genes that were 

induced by Aβ pathology. However, there was also a substantial number of genes repressed. 

Analysis of this repressed dataset would further illuminate aspects of astrocyte dysfunction. In a 

similar vein, I focused on the similarities between astrocytic gene expression in an amyloidopathy 

and tauopathy model, in the future it would be informative to investigate the differences in 

astrocytic gene expression between the two models. This would help to dissect the impact of each 

pathology on astrocytic function and better target future therapeutics. Additionally, future work 

comparing genes induced in amyloidopathy and tauopathy astrocytes with those induced in 

astrocytes from other disease models would help to identify whether the similarities in 

altered gene expression in the amyloidopathy and tauopathy exposed astrocytes are simply 

markers of a stressed and pathological brain or whether they are common signatures specific 

to amyloidopathy and  tauopathy exposed astrocytes.  Irrespective of whether the gene 

alterations are specific to AD, this work contributes to our understanding pathology 

associated astrocytes and the development of future therapeutic targets. Experiments 

designed to bolster astrocyte expression of NRF2 in mouse models of AD and measure gene 

expression/pathological load/behaviour would develop our understanding of whether astrocytic 

NRF2 is a viable therapeutic target for AD.  

 

4.4 Chapter Conclusion  

In this chapter I have investigated alterations in the astrocyte translatome due to Aβ 

pathology. I used a dataset curated by Dr Zoeb Jiwaji on alterations in the astrocyte 

translatome due to tau pathology to address how astrocytes are affected by the two cardinal 

pathologies of AD. The APP/PS1 and APPNLF mouse models of amyloidopathy were used, along 

with the MAPTP301S tauopathy mouse model. Amyloidopathy appeared to exacerbate age 



 167 

dependent gene changes in astrocytes, as well as inducing a profile which resembled acutely 

induced reactive astrocytes. This highlighted an overlap of acute and chronic reactive 

astrocyte signatures. Both Aβ and tau pathology seemed to induce dysfunction of 

mitochondria and protein synthesis, and encourage an upregulation of inflammation and 

protein degradation.  Interestingly, only astrocytes exposed to amyloidopathy were enriched 

in AD risk genes and subthreshold risk loci, which might indicate that the astrocyte response 

to Aβ is particularly involved in the development of AD. Finally, NRF2 emerged as a putative 

therapeutic target. However, more studies would need to be done to thoroughly investigate 

this.   
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5.1 Chapter Introduction  

In the last chapter, I used bulk RNA-sequencing of astrocytes from mouse models of AD and 

WT mice to identify pathways up and downregulated when exposed to amyloid pathology. 

Whilst this approach is powerful in identifying broad differences in astrocyte gene expression 

between sample conditions, information about the heterogeneity of gene expression in 

astrocytes is lost. Several studies have highlighted that astrocyte gene expression and 

therefore function is heterogenous, and can differ based on location in the brain (Batiuk et 

al. 2020), age (Clarke et al. 2018; Boisvert et al. 2018) and type of insult (Zamanian et al. 2012; 

Liddelow et al. 2017). Therefore, it seems likely that astrocytes exhibit heterogeneous gene 

expression in these AD models. Additionally, if any other cell types are pulled down in the 

TRAP experiments along with the astrocytes, they would influence the gene expression 

attributed to astrocytes. Single cell RNA-seq is a technique which allows us to address both 

of these issues.  

 

Notably, single cell RNA-seq does have limitations, such as a dropout/low capture efficiency 

effect, whereby a transcript is expressed, but is not detected in the sequencing data due to a 

failure to capture or amplify it. Additionally, single cell RNA-seq data tends to be noisier/more 

variable compared to bulk RNA-seq data (Chen et al. 2019; Haque et al. 2017). Quality control 

measures can be implemented to mitigate technical noise, such as removing data likely 

originating from damaged cells with low amounts of ambient RNA, and normalisation of single 

cell sequencing data to remove non-biological variation such as differences in sequencing 

depth of the cell (Chen et al. 2019). Imputation methods to compensate for the dropout effect 

are being developed. The rationale behind imputation is that genes in the same 

subpopulation should have similar expression levels within a certain range of variability 

(Zhang and Zhang 2020). However, these were not implemented in this study as there is still 

uncertainty around the best method, and one must be conscious of the consequences on 

non-zero data.  Bearing these limitations in mind, single cell sequencing of the astrocytes in 

mouse models of AD has the potential to meaningfully add to our understanding of the 

heterogeneity of amyloidopathy induced astrocyte dysfunction.  
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Grubman et al. (2019) published a study where they conducted single-nucleus RNA 

sequencing on entorhinal cortex samples from control and AD brains. They found that 

astrocytes separated into 8 sub-clusters. 2/8 were comprised of astrocytes from AD brains, 

and 6/8 were largely comprised of astrocytes form control brains. This demonstrates that 

within AD and control brains there is heterogeneity of astrocyte gene expression, and that 

there appears to be strong disease associated transcriptional changes in AD astrocytes.  One 

AD astrocyte sub-cluster (termed a1) was enriched for genes related to the ribosome, 

mitochondria and neuron differentiation compared to other sub-clusters. Whereas the other 

AD sub-cluster (termed a2) was de-enriched for these processes, and was instead enriched 

for TGFβ signalling and immune responses (Grubman et al. 2019). This highlights a benefit of 

single cell RNA-seq in identifying heterogeneity in astrocyte response which might otherwise 

be missed in bulk RNA-seq due to alterations in these populations cancelling each other out. 

Notably, the a2 sub-cluster demonstrated an upregulation of C3, a proposed marker gene of 

neurotoxic astrocytes (Liddelow et al. 2017).   

 

Habib et al. (2020) conducted single nucleus RNA-seq in the hippocampi from 7-month-old 

WT mice and 5xFAD mice.  5xFAD mice are a transgenic model of AD which overexpress APP 

and PSEN1, with 5 AD linked mutations. Amyloid pathology and gliosis begin around 2-

months, and synapse loss around 4-months.  Habib et al. identified 6 transcriptional sub-

clusters of astrocytes (Habib et al. 2020). 5 of the sub-clusters contained both WT and AD 

astrocytes. However, sub-clusters 1 & 2 contained more WT astrocytes than AD astrocytes, 

and were found to lowly express Gfap. Sub-cluster 6 contained similar amounts of AD and WT 

astrocytes, and was found to highly express Gfap. This cluster was enriched for genes involved 

in metabolic pathways and inflammation, indicating the presence of activated astrocytes with 

and without AD pathology. Astrocytes in sub-cluster 4 were termed disease associated 

astrocytes (DAAs), since this cluster was only found in AD mice. DAAs expressed genes which 

were enriched for pathways involved in endocytosis, the complement cascade, ageing and 

the lysosome.  The authors devised a computational procedure to infer transitions between 

cell states, which suggested that that cells in cluster 1 and 2 were the origin for cells in cluster 

3, cells in cluster 3 & 5 undergo a transcription shift toward DAAs in cluster 4.  Interestingly, 

Habib et al. noted that there was a reduction in the proportion of astrocytes in sub-clusters 1 

& 2 and an increase in the proportion of DAAs at 4 months of age in the AD mouse model, 
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before manifestation of cognitive decline. Thus, indicating DAAs may contribute to the 

pathological progression of AD. Additionally, Habib et al. demonstrated DAA like cells begin 

to emerge in 13-14-month old mice, with increased abundance in 20-month mice. This 

supports our finding in the previous chapter of an overlap of amyloidopathy induced genes 

and age-dependent changes in astrocyte gene expression. Importantly, Habib et al. found 

astrocyte populations similar to the mouse low Gfap, intermediate and high Gfap 

transcriptional states in human astrocyte datasets, with more DAA like cells in individuals with 

AD.  Therefore, suggesting that their results may be relevant to human physiology and 

disease.  

 

 

Single cell RNA-sequencing currently involves the preparation of cells into a single cell 

suspension. Hence, a caveat to this technique is the loss of spatial resolution. Chen et al. 

(2020) used spatial transcriptomics (a technique which measures transcriptomic changes in 

hundreds of small tissue domains) in the APPNLGF amyloidopathy mouse model, to identify 54 

Aβ plaque induced genes (Chen et al. 2020).  They attributed the plaque induced gene 

changes to cell types using in situ sequencing, which visualises select transcripts with cellular 

resolution. However, the authors note that currently, spatial transcriptomics does not provide 

single cell resolution and in-situ sequencing has low sensitivity. Computational approaches, 

such as Seurat (Satija et al. 2015), which integrates in situ hybridization data of ‘landmark’ 

genes that guide spatial assignment with single-cell RNA-sequencing data, may facilitate 

spatial reconstruction of single cell RNA-seq datasets and provide invaluable information in 

health and disease research.  

 

In collaboration with the University of Edinburgh FACS facility, we conducted 10x Genomics 

single cell sequencing (figure 40) to investigate the heterogeneity of astrocyte phenotype in 

the knock-in APPNLF and transgenic APP/PS1 amyloidopathy mouse models. This approach 

was chosen to shed light on whether the few differentially expressed genes found in the bulk 

RNA-sequencing of APPNLF astrocytes is truly due to the astrocytes displaying few differences 

from WT astrocytes, or whether there are simply a small proportion of astrocytes with altered 

gene expression profiles. Additionally, preliminary comparison of responses in the transgenic 
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and knock-in models could be made. Perhaps in the future this dataset will be combined with 

in situ hybridization data in order to spatially reconstruct astrocyte gene expression.  

 

 
 

Figure 40. The process of 10x Genomics single cell sequencing. The neocortex from 12-month 

APP/PS1 and WT mice, 18-month APP/PS1, APPNLF and WT mice (all carrying the 

Aldh1l1_eGFP-Rpl10a allele) were dissected out of 3-4 mice per genotype. The samples 

underwent gentle dissociation using the Miltenyi Biotec genleMACS Octo Dissociator. Green 

fluorescent protein (GFP) positive cells were isolated by fluorescence-activated cell sorting 

(FACS). Approximately 20,000 cells per genotype were isolated. Using the 10x Genomics 

microfluidic chip, cells were labelled with a barcoded gel bead.  A gel bead emulsion was 

formed.  Gel beads were then dissolved and the cells lysed, releasing mRNAs into solution. 

Reverse transcription within emulsion occured, leading to barcoded cDNA generation. Finally, 

library constructs were sequenced on an Illumina NextSeq 550.  
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5.2 Results  

5.2.1 FACS Sorting GFP Positive Cells  

Figure 41 illustrates an example of the gates set up to sort GFP positive cells. Figure 41A 

shows the gate set up to filter out debris. Figure 41B illustrates that DAPI positive cells were 

excluded and DAPI negative cells were carried forward. DAPI only permeates dead cells where 

the membrane has begun to breakdown. Hence, the gate allows live cells to be carried 

forward. Pulse width over area allows us to gate out cell clumps, and carry single cells forward 

with a 1:1 of width/area as in figure 41C.  Gates in figure 41D and E are to gate on GFP positive 

cells and gate out autoflourescent cells and GFP negative cells. These gates were set using a 

control tissue sample without GFP positive cells, as well as a tissue sample with GFP positive 

cells.   

 

Figure 41. Fluorescence activated cell sorting of green fluorescent protein (GFP) positive 

cells. (A) Debris was gated out, (B) along with dead cells using DAPI, (C) clumps of cells and 

(D, E) auto-fluorescent cells, finally, selecting for GFP positive cells.  
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5.2.2 Defining the Astrocyte Population in 12-month APP/PS1 and WT Cells  
 
Principle component analysis was run on the normalised and filtered feature-barcode 

matrices, computing the top 10 dimensions by default. Using this reduced representation of 

the matrices, the uniform manifold approximation and projection (UMAP) method was used 

to visualise the data in 2D space, each dot represents a cell. UMAP is a non-linear graph-based 

dimension reduction method. Unlike with t-SNE plots, UMAP defines local and global 

distances based on global data structure. Hence, the representation of the groups of cells 

remains the same when UMAP is re-run. Groups of cells were manually segmented based on 

position in UMAP space (figure 42).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42. Uniform manifold approximation and projection (UMAP) method was used to 

visualise 12-month APP/PS1 and WT data in 2D space. Each dot represents a cell.  Clusters 

were manually segmented based on position in UMAP space.  

12-month APP/PS1 & WT Cells  
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Differential gene expression revealed genes which were significantly enriched in each cluster 

vs the other clusters. Gene sets which were significantly enriched in each cluster were 

imported into the cell type specific expression analysis (CSEA) tool produced by the Dougherty 

lab in order to identify whether all of the clusters were likely to be astrocytes or whether 

other cell types had been sorted along with astrocytes, either due to GFP being lowly 

expressed by other cell types, or stray cells from FACS http://genetics.wustl.edu/jdlab/csea-

tool-2/ (Dougherty et al. 2010). Using this tool was thought to be a quick and less biased 

method of identifying astrocyte clusters, compared to manually examining expression of 

genes of interest. However, there are several methods to identify cell types and future work 

will explore the most appropriate method for this dataset (Abdelaal et al. 2019). I remained 

blinded to whether clusters were present in both genotypes at this stage.  

 

To produce the CSEA tool, the Dougherty lab performed TRAP on a number of different cell 

types by driving expression of eGFP-RPL10a with a cell type specific promoter. 

Immunohistochemistry was used to confirm specificity of eGFP expression. Microarray 

analysis was performed on mRNA extracted using the TRAP methodology. Gene lists which 

were enriched in each cell type/ region were constructed. Varying stringencies for enrichment 

were implemented, the least specific larger lists are represented by the largest hexagon in 

figure 43, the inner hexagons represent increasingly specific gene lists, constructed by varying 

the specificity threshold. The hexagons size is scaled to the size of the gene lists. I entered the 

set of genes significantly enriched in each cluster (p_adj<0.05) relative to the other clusters 

into the tool. The tool uses Fisher’s exact tests with Benjamini Hochberg corrected p values 

to indicate overlap of candidate gene list with cell type enrichment lists, and the results are 

represented by the varying colours of the hexagons. Notably, the tool included cell types 

originating outside of the brain, such as rods and cones, as well as cell types found inside the 

brain. Highlighting of the outer hexagons of these non-brain cell types was thought to occur 

due to non-specific gene overlap with cell types in the brain.  

 

The tool revealed that in the 12-month APP/PS1 and WT sample, clusters 1 and 2 were 

enriched for astrocyte specific genes (figure 43A, B). Notably, the tool indicated that 

astrocytes may be of cortical and cerebellar origin, even though they were only cortical 
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astrocytes. However, Dougherty et al. (2010) describe the considerable overlap of gene 

expression between astrocytes in these regions, hence region was ignored for the purposes 

of our analyses.  

 

Cluster 3 appeared enriched for oligodendrocyte progenitor, oligodendrocyte and neuron 

specific genes (figure 43C). Since this cluster is relatively large, this might indicate that some 

eGFP is expressed in these cells, rather than stray cells having been sorted. Indeed, the RNA 

transcriptome database https://www.brainrnaseq.org/ indicates that Aldh1l1 is lowly 

expressed in oligodendrocyte progenitor cells and neurons (Zhang et al. 2014). In retrospect, 

this is something to bear in mind when assessing the bulk translatome data presented in the 

previous chapter. Alternatively, perhaps astrocytes are expressing genes normally associated 

with other cell types. Cluster 4 appeared enriched for oligodendrocyte transcripts, cluster 5 

for immune cell transcripts (likely microglia), cluster 6 neuronal and oligodendrocyte 

progenitor transcripts, and cluster 7 for a mixture of cell type specific genes, in particular 

neuron and immune cell related genes. Hence, only clusters 1 and 2 were carried forward for 

downstream analysis. However, future work will investigate whether other clusters should be 

included in downstream analysis, for example by staining for oligodendrocyte progenitor cells 

and examining if markers colocalise with eGFP, as well as conducting more in-depth analysis 

of the genes which define each cluster and methods of cell type identification.  
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Figure 43. Investigating clusters enriched for astrocyte specific genes in the 12-month 

APP/PS1 and WT cells. The cell-type specific expression analysis tool (CSEA) provided by the 

Dougherty lab was used to identify whether clusters in figure 42 were enriched for cell-type 

specific transcripts. This information allowed us to select clusters we believed to be 

astrocytes, so that we could investigate the heterogeneity of astrocyte gene expression with 

enhanced confidence of the cells included in the analysis. The Dougherty lab constructed gene 

lists which were enriched in each cell type/region. The least specific but largest gene list for 

that cell type is represented by the largest hexagon, the inner hexagons represent increasingly 

specific gene lists, constructed by varying a metric they coined as the specificity threshold 

(Dougherty et al. 2010). Genes which were significantly enriched (p_adj<0.05) in each cluster 

were entered as the candidate gene list. The tool uses Fisher’s exact tests with Benjamini 

Hochberg corrected p values to indicate overlap of candidate gene list with cell type 

enrichment lists, and the results are represented by the varying colours of the hexagons. 

Clusters 1 and 2 appear enriched for astrocyte specific genes (figure 43A, B), cluster 3 was 

enriched for oligodendrocyte progenitor, oligodendrocyte and neuronal genes (figure 43C), 

cluster 4 for oligodendrocyte genes (figure 43D), cluster 5 for immune cell related genes 

(likely microglia) (figure 43E), cluster 6 for neuron and oligodendrocyte progenitor related 

genes (figure 43F),  and finally cluster 7 was enriched for genes from a mixture of cell types, 

in particular neuron and immune cell related genes.  
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5.2.3 Defining the Astrocyte Population in 18-month APP/PS1 and WT Cells  

A similar workflow was performed on 18-month APP/PS1 and WT cells. Figure 44 illustrates 

the UMAP representation of the data.  

 
 
Figure 44. Uniform manifold approximation and projection (UMAP) method was used to 

visualise 18-month APP/PS1 and WT data in 2D space. Each dot represents a cell.  Clusters 

were manually segmented based on position in UMAP space.  

 

The CSEA tool was again used to identify clusters which were enriched for astrocyte specific 

genes. Clusters 1 and 7 appeared enriched for astrocyte specific genes (figure 45A, G). Cluster 

2 appeared enriched for oligodendrocyte progenitor and oligodendrocyte genes (figure 45B). 

Cluster 3, for oligodendrocyte genes (figure 45C). Clusters 4,5,6 and 8 for neuron and immune 

cell transcripts (figure 45D, E, F, H). Hence, only clusters 1 and 7 were carried forward for 

downstream analysis. 
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Figure 45. Investigating clusters enriched for astrocyte specific genes in 18-month APP/PS1 

and WT cells. The cell type specific expression analysis tool (CSEA) provided by the Dougherty 

lab was used to identify whether clusters in figure 44 were enriched for cell type specific 

transcripts. This information allowed us to select clusters we believed to be astrocytes, so 

that we could investigate the heterogeneity of astrocyte phenotype with enhanced 

confidence of the cells included in the analysis. The Dougherty lab constructed gene lists 

which were enriched in each cell type/region. The least specific but largest gene list for that 

cell type is represented by the largest hexagon, the inner hexagons represent increasingly 

specific gene lists, constructed by varying a metric they coined as the specificity threshold 

(Dougherty et al. 2010). Genes which were significantly enriched (p_adj<0.05) in each cluster 

were entered as the candidate gene list. The tool uses Fisher’s exact tests with Benjamini 
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Hochberg corrected p values to indicate overlap of candidate gene list with cell type 

enrichment lists, and the results are represented by the varying colours of the hexagons. (A, 

G) Clusters 1 and 7 appear enriched for astrocyte specific genes. (B) Cluster 2 appeared 

enriched for oligodendrocyte progenitor and oligodendrocyte genes. (C) Cluster 3, for 

oligodendrocyte genes. (D, E, F, H) Clusters 4,5,6 and 8 for neuron and immune cell 

transcripts.  

 
5.2.4 Defining the Astrocyte Population in 18-month APPNLF and WT Cells  
 
Finally, a similar workflow was conducted for analysing the 18-month APPNLF and WT single 

cell sequencing data. Figure 46 illustrates the UMAP representation of the data.   

 
Figure 46. Uniform manifold approximation and projection (UMAP) method was used to 

visualise 18-month APPNLF and WT data in 2D space. Each dot represents a cell.  Clusters 

were manually segmented based on position in UMAP space.  

 

Using the CSEA tool, it appeared that clusters 1,3 and 7 (figure 47A, C, G) were enriched in 

astrocyte specific genes and were not significantly enriched in genes related to other cell 

types. Cluster 2 was enriched in oligodendrocyte progenitor and oligodendrocyte genes 

(figure 47B). Cluster 4 was enriched in oligodendrocyte genes (figure 47D). Clusters 5,6 8 and 

18-month APPNLF & WT Cells 
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9 were enriched in a number of different cell types, including neuron and immune cell specific 

genes, as well as less specific oligodendrocyte and astrocyte genes (figure 47E, F, H and I). 

Hence, only clusters 1,3 and 7 were carried forward for downstream analysis.  
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Figure 47. Investigating clusters enriched for astrocyte specific genes in 18-month APPNLF 

and WT cells. The cell-type specific expression analysis tool (CSEA) provided by the Dougherty 

lab was used to identify whether clusters in figure 46 were enriched for cell-type specific 

transcripts. This information allowed us to select clusters we believed to be astrocytes, so 

that we could investigate the heterogeneity of astrocyte phenotype with enhanced 

confidence of the cells included in the analysis. The Dougherty lab constructed gene lists 

which were enriched in each cell type/ region. The least specific but largest gene list for that 

cell type is represented by the largest hexagon, the inner hexagons represent increasingly 

specific gene lists, constructed by varying a metric they coined as the specificity threshold 

(Dougherty et al. 2010). Genes which were significantly enriched (p_adj<0.05) in each cluster 

were entered as the candidate gene list. The tool uses Fisher’s exact tests with Benjamini 

Hochberg corrected p values to indicate overlap of candidate gene list with cell type 

enrichment lists, and the results are represented by the varying colours of the hexagons. (A, 

C, G) Clusters 1 3 and 7 appear enriched for astrocyte specific genes. (B) Cluster 2 was 

enriched in oligodendrocyte progenitor and oligodendrocyte genes. (D) Cluster 4 was 

enriched in oligodendrocyte genes. (E, F, H and I) Clusters 5,6 8 and 9 were enriched in a 

number of different cell types, including neuron and immune cell specific genes, as well as 

less specific oligodendrocyte and astrocyte genes.  

 

5.2.5 Investigating Heterogeneity of Astrocyte Gene Expression in Amyloidopathy 
Models  
 
The groups of cells identified as likely being astrocytes using the CSEA tool were subject to K-

means clustering, performed by Dr. Katie Emelianova, a post-doc in the Hardingham lab. K-

means clustering generates K centroids and assigns each cell a cluster membership based on 

the nearest centroid (Mannor et al. 2010). The clustering quality metric termed the Davies-

Bouldin Index, which calculates the ratio of ‘within cluster’ and ‘between cluster’ distances, 

was used to estimate the initial value of K (Petrovic 2006).  
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5.2.5.1 Pathology Associated Cluster in 12-month APP/PS1 and WT Astrocyte 

Sample 

Using the Davies-Bouldin Index, the initial value of K in the 12-month APP/PS1 and WT 

astrocyte sample was set at 5. However, clusters 4 and 5 contained only 4 cells each, 

representing less than 0.1% of APP/PS1 or WT cells, and so K was set at 3 for downstream 

analysis. Figure 48A illustrates the UMAP visualisation of the 12-month APP/PS1 and WT cells. 

Figure 48B shows the proportion of APP/PS1 and WT cells in each cluster, data is represented 

in this way to account for genotype differences in the number of cells selected as astrocytes. 

A similar proportion of the WT and APP/PS1 astrocytes were present in cluster 1. A higher 

proportion of the WT astrocytes were in cluster 2 compared to APP/PS1 astrocytes. This is 

due to the fact that around 30% APP/PS1 astrocytes were in cluster 3, which only contained 

around 1.4% of WT astrocytes. Hence, cluster 3 could be seen as a pathology associated 

cluster of astrocytes.  
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Figure 48. 12-month APP/PS1 and WT astrocytes - single cell sequencing analysis. (A) 

Uniform manifold approximation and projection (UMAP) method was used to visualise the 

data in 2D space. K-means clustering of the data was performed, with K set at 3. (B) The 

percentage of cells in each sample in each cluster. (C) Ingenuity pathway analysis was 

performed on genes significantly enriched or de-enriched in each cluster relative to the other 

clusters. The top 30 pathways altered are shown. A positive activation z-score >2 (orange) 

indicates pathways are significantly enriched in that cluster relative to other clusters, a 

negative activation z-score <-2 (blue) indicates pathways are significantly de-enriched in that 

cluster relative to other clusters.  
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5.2.5.2 Pathology Associated Cluster in 18-month APP/PS1 and WT Astrocyte 
Sample 
 
Using the Davies-Bouldin Index, the initial value of K was set at 4 for the 18-month APP/PS1 

and WT astrocyte dataset.  Figure 49A illustrates the UMAP visualisation of the 18-month 

APP/PS1 and WT cells. The immediately noticeable feature is that there were fewer cells in 

the APP/PS1 astrocyte sample than in the WT astrocyte sample (2751 vs 7747 cells 

respectively). Possible reasons for this discrepancy include fewer viable cells being sorted in 

the APP/PS1 model, or a larger number of sorted cells being discarded in clusters which were 

not enriched in astrocyte specific transcripts. Hence, it is useful to compare the proportion of 

cells in the sample in each cluster (Figure 49B).  Clusters 1 and 2 collectively contain 95.5% of 

WT astrocytes and 88.5% of APP/PS1 cells. Intriguingly, just as in the 12-month APP/PS1 

sample, cluster 3 was separated from the main body of astrocytes in the 18-month APP/PS1 

and WT sample. The proportion of APP/PS1 astrocytes in cluster 3 was approximately double 

the proportion of WT astrocytes (11% vs 4.4% respectively), once again suggesting that this 

may be a pathology associated cluster. The proportion of WT astrocytes in the pathology 

associated cluster 3 is around 3 times larger in the 18-month astrocyte sample than in the 12-

month astrocyte sample (4.4% vs 1.4% respectively). Whilst this is still a low percentage, it 

might indicate an upward trend of an ageing astrocyte phenotype overlapping with an 

amyloidopathy induced phenotype. It would be informative to conduct single cell RNA-seq 

analysis on 24-month astrocytes to confirm this trend, as well as to conduct clustering on all 

of the age groups together. Interestingly, the proportion of APP/PS1 astrocytes in this 

pathology associated cluster 3 is around 1/3 of that in the 12-month APP/PS1 sample (11.1% 

vs 28.8% respectively). It is unclear why this might be the case. However, perhaps astrocytes 

in this cluster are more vulnerable to dying when confronted with the effects of amyloid 

pathology and ageing. The proportion of APP/PS1 cells in cluster 4 is 10-fold higher than the 

proportion of WT cells in cluster 4 (0.4% vs 0.04% respectively). Since cluster 4 represented 

>0.1% of APP/PS1 cells, it was kept in the analysis.  
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Figure 49. 18-month APP/PS1 and WT astrocytes - single cell sequencing analysis. (A) 

Uniform manifold approximation and projection (UMAP) method was used to visualise the 

data in 2D. K-means clustering of the data was performed, with K set at 4. (B) The percentage 

of cells in each sample in each cluster. (C) Ingenuity pathway analysis was performed on genes 

significantly enriched or de-enriched in each cluster relative to the other clusters. The top 30 

pathways altered are shown. A positive activation z-score >2 (orange) indicates pathways are 

significantly enriched in that cluster relative to other clusters, a negative activation z-score <-

2 (blue) indicates pathways are significantly de-enriched in that cluster relative to other 

clusters.  

 

5.2.5.3 Pathology Associated Cluster in 18-month APPNLF and WT Astrocyte Sample 
 
Using the Davies-Bouldin Index, the initial value of K was set at 2.  Figure 50A illustrates the 

UMAP visualisation of the 18-month APPNLF and WT cells. It should be noted that the WT cells 

in the 18-month APP/PS1 comparison were re-used in this APPNLF comparison due to a failure 

of the 10x Genomics Chromium platform during experimentation.  Once again, there 

appeared to be a cluster of astrocytes separated from the main body of astrocytes which 

contained more pathology exposed cells. Cluster 2 contained 14.5% of APPNLF cells and 4.4% 

of WT cells, demonstrating ~3.5 times higher proportion of pathology exposed astrocytes 

than WT astrocytes. This is particularly noteworthy since few gene expression changes were 

found in the bulk RNA-seq analysis of 18-month APPNLF astrocytes, nevertheless genes 

significantly induced >1.5 fold in 12 and 18-month APP/PS1 astrocytes vs WT astrocytes 

appeared to be changing in the same direction in the bulk translatomes of 18-month APPNLF 

astrocytes. The single cell analysis presented here might indicate that these changes in gene 

expression were significant, but were lost due to the bulk of astrocytes in the APPNLF model 

not displaying differences from the WT cells.  
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Figure 50. 18-month APPNLF and WT astrocytes - single cell sequencing analysis. (A) Uniform 

manifold approximation and projection (UMAP) method was used to visualise the data in 2D 

space. K-means clustering of the data was performed, with K set at 2, chosen using the Davies-

Bouldin Index. (B) The percentage of cells in each sample in each cluster. (C) Ingenuity 

pathway analysis was performed on genes significantly enriched or de-enriched in each 

cluster relative to the other clusters. The top 30 pathways altered are shown. A positive 

activation z-score (orange) indicates pathways are enriched in that cluster relative to other 

clusters, a negative activation z-score (blue) indicates pathways are de-enriched in that 

cluster relative to other clusters.  

 

 5.2.5.4 Robust Pathway Expression in Pathology Associated Clusters of Astrocytes  
 
The presence of a pathology associated cluster across both age groups in the APP/PS1 model 

and in the APPNLF model was particularly striking. In order to delve further into the pathways 

which were enriched in these pathology associated clusters relative to the other clusters in 

each dataset, IPA of the genes significantly enriched/de-enriched in each cluster relative to 

the other clusters was performed. Results were exported as heatmaps (figure 48C, figure 49C 

and figure 50C). The top 30 pathways which were significantly enriched/de-enriched in the 

data are shown. IPA determines how many genes in each pathway demonstrate a positive or 

negative fold change and produces an activation z-score. An activation z-score of >2 indicates 

the pathway in question is significantly enriched in that cluster of astrocytes relative to the 

other clusters (orange), and an activation z score of < -2 indicates the pathway in question is 

significantly de-enriched in that cluster relative to other clusters.  

 

IPA revealed a seemingly robust phenotype of the pathology associated cluster in all of the 

samples. In comparison to the other clusters in each sample, the pathology associated cluster 

was enriched for genes related to oxidative phosphorylation, eukaryotic initiation factor 2 

(eIF2) signalling, the unfolded protein response, glycolysis and NRF2-mediated oxidative 

stress response, amongst other pathways. Additionally, in all the samples the pathology 

associated cluster was de-enriched for pathways such as the synaptogenesis signalling 

pathway relative to the other clusters in each sample. The magnitude of pathway 

enrichment/de-enrichment (activation z-score) in the pathology associated cluster relative to 
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the other clusters in each sample was also very similar. It would be interesting to re-cluster 

all of the samples in the same dataset to investigate this effect further.  

 

5.2.5.5 Similar Genes Expressed in Pathology Associated Clusters of Astrocytes 
 

In order to investigate whether similar genes were enriched/de-enriched in the pathology 

associated cluster in each of the samples, candidate genes involved in pathways of interest 

were highlighted using the 10x Genomics Loupe Browser.  In the future, a broader and more 

in-depth analysis of the gene expression in each sample will be beneficial.  

 

Figure 51 illustrates all of the clusters in all three samples express typical astrocytic genes Clu 

and Apoe, thus providing support for the selection of cells as being astrocytic. Gfap and Vim 

are genes typically associated with reactive astrocytes (Kamphuis et al. 2015). However, cells 

in all three samples showed low (or no) expression of these genes, even in the pathology 

associated cluster (figure 52). The 10x Genomics kit involves 3’sequencing methods. Some 

have reported that full-length single cell RNA-seq approaches could be better for detecting 

lowly expressed transcripts, although they incur higher sequencing costs (Ziegenhain et al. 

2017). Nevertheless, one would expect Gfap and Vim to be highly expressed in a portion of 

astrocytes compared to the rest of the astrocytes. This might indicate a technical issue with 

the single cell sequencing. 

 

Figure 53 demonstrates that genes Cox6c (Cytochrome C Oxidase Subunit 6C), Ndufa3 

(NADH:ubiquinone Oxidoreductase Subunit A3), Ndufa4 (Cytochrome C Oxidase Subunit 

NDUFA4), which are involved in oxidative phosphorylation, are all highly expressed in the 

pathology associated cluster in each of the samples (indicated by the black arrows). Whilst a 

thorough comparison of gene lists contributing to the pathways highlighted in each pathology 

associated cluster is necessary, this would suggest robust gene expression changes underlie 

the upregulation of oxidative phosphorylation in a subset of astrocytes in response to 

amyloidopathy. This finding is particularly interesting because genes Cox6c, Ndufa3, and 

Ndufa4, as well as the oxidative phosphorylation pathway in general, were shown to be 

downregulated in the 12-month APP/PS1 bulk astrocyte translatome analysis (figure 36). 

Potential discrepancies between the bulk and single cell analysis may be due to the 
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differences between the transcriptome and translatome. Additionally, optimising the 

clustering of the cells may reveal a cluster which contains a higher proportion of the APP/PS1 

cells than WT cells and which is de-enriched for oxidative phosphorylation. Oxidative 

phosphorylation is fundamental metabolic pathway for energy generation. Downregulation 

of genes related to oxidative phosphorylation, as indicated in the TRAP results, may cause 

metabolic stress and mitochondrial dysfunction. At the same time, overactivation of oxidative 

phosphorylation, which appears to be occurring in the pathology associated cluster of cells, 

can lead to excessive ROS generation. Hence, these pathology associated astrocytes may be 

contributing to neurodegeneration in AD through excessive ROS generation, or may be 

upregulating oxidative phosphorylation due to an energy demand caused by other astrocytes 

downregulating oxidative phosphorylation. In any case, this study highlights the benefit of 

single cell sequencing in identifying a subset of astrocytes with a different phenotype from 

the bulk analysis. 

 

Genes induced in the bulk APP/PS1 translatome were enriched for GO Biological Process and 

KEGG pathway terms relating to protein degradation, lysosome and phagosome. Figure 54 

displays the expression of 3 genes involved in phagosome/lysosome processes, Atp6ap1, 

Ctsd, and Fuca1.  The pathology associated clusters all appeared to express these genes highly 

in comparison to the other clusters of astrocytes. Additionally, the pathology associated 

clusters all highly expressed Hsp90b1 (Heat Shock Protein 90 Beta Family Member 1), Hspa5 

(Heat Shock Protein Family A Member 5) and Pdia6 (Protein Disulphide-Isomerase A6), 

proteins involved in the unfolded protein response (figure 55).  Interestingly, the pathology 

associated clusters did not express glutamate transporters Slc1a2 and Slc1a3 very highly 

(figure 56). In fact, many of the cells appeared grey, either indicating an issue with the single 

cell sequencing, or indicating the expression was so low that it was not picked up by the single 

cell sequencing. Notably, impaired expression of glutamate transporters has been reported 

in a post-mortem study of human AD brains (Jacob et al. 2007), and human AD astrocytes 

(Grubman et al. 2019). Low astrocytic expression of glutamate transporters may contribute 

to excitotoxicity and synapse loss seen in AD.   

 

The transcription factor analysis in the previous chapter indicated that genes induced in both 

the APP/PS1 and MAPTP301S mouse models were enriched for target genes of NRF2. Nqo1, 
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Gsta4 and Prdx5 are all thought to be NRF2 target genes involved in antioxidant responses. 

These genes are all highly expressed in the pathology associated clusters and less so in the 

other clusters (figure 57).  These observations support the hypothesis that the pathology 

associated clusters are not only showing similar expression of genes in pathways enriched in 

those clusters, but also demonstrate similar reduced expression of genes in de-enriched 

pathways.  A thorough comparison of the gene lists contributing to each pathway in the 

pathology associated clusters would help to prove this.  
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Figure 51. Typical astrocyte genes expressed by all cells. Uniform manifold approximation 

and projection (UMAP) representation of K-means clustered 12-month APP/PS1 and WT 

astrocytes, 18-month APP/PS1 and WT astrocytes, and 18-month APPNLF and WT astrocytes. 

The 10x Genomics loupe browser in split view was used to visualise the amyloidopathy cells 

(left) and the WT cells (right). The normalised expression of candidate astrocyte expressed 

genes is shown. Total unique molecular identifier (UMI) counts for each cell were normalised 

towards the median of UMI counts for all cells. Then the count matrices were log-

transformed, mean centred and scaled. All cells appear to express clusterin (Clu) and 

apolipoprotein E (Apoe).  
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Figure 52. Reactive astrocyte genes lowly expressed in this single cell RNA-seq analysis. 

Uniform manifold approximation and projection (UMAP) representation of K-means clustered 
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12-month APP/PS1 and WT astrocytes, 18-month APP/PS1 and WT astrocytes, and 18-month 

APPNLF and WT astrocytes. The 10x Genomics loupe browser in split view was used to visualise 

the amyloidopathy cells (left) and the WT cells (right). The normalised expression of candidate 

astrocyte expressed genes is shown. Total unique molecular identifier (UMI) counts for each 

cell were normalised towards the median of UMI counts for all cells. Then the count matrices 

were log-transformed, mean centred and scaled. The pathology associated cluster of 

astrocytes is indicated by black arrows. The astrocytes in this single cell RNA-seq analysis 

appear to not express or lowly express Gfap and Vim, genes classically associated with 

reactive astrocytes.  Potentially highlighting technical issues with the single cell sequencing.  
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Figure 53. Genes involved in oxidative phosphorylation are highly expressed in the 

pathology associated cluster. Uniform manifold approximation and projection (UMAP) 

representation of K-means clustered 12-month APP/PS1 and WT astrocytes, 18-month 

APP/PS1 and WT astrocytes, and 18-month APPNLF and WT astrocytes. The 10x Genomics 

loupe browser in split view was used to visualise the amyloidopathy cells (left) and the WT 

cells (right). The normalised expression of candidate astrocyte expressed genes is shown. 

Total unique molecular identifier (UMI) counts for each cell were normalised towards the 

median of UMI counts for all cells. Then the count matrices were log-transformed, mean 

centred and scaled. The pathology associated clusters of astrocytes (indicated by black 

arrows) appear to highly express Cox6c, Ndufa3 and Ndufa4, genes involved in oxidative 

phosphorylation.  
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Figure 54. Genes involved in phagosome/lysosomal degradation are highly expressed in the 

pathology associated cluster. Uniform manifold approximation and projection (UMAP) 

representation of K-means clustered 12-month APP/PS1 and WT astrocytes, 18-month 

APP/PS1 and WT astrocytes, and 18-month APPNLF and WT astrocytes. The 10x Genomics 

loupe browser in split view was used to visualise the amyloidopathy cells (left) and the WT 

cells (right). The normalised expression of candidate astrocyte expressed genes is shown. 

Total unique molecular identifier (UMI) counts for each cell were normalised towards the 

median of UMI counts for all cells. Then the count matrices were log-transformed, mean 

centred and scaled. The pathology associated clusters of astrocytes (indicated by black 

arrows) appear to highly express Atp6ap1, Ctsd and Fuca1, genes involved in autophagy.  

  

12m 
APP/PS1 

Fuca1

18m 
APP/PS1 

18m 
APPNLF

WT Amyloidopathy 
0 Max



 209 

 

Hsp90b1

18m 
APP/PS1 

18m 
APPNLF

Hspa5

12m 
APP/PS1 

12m 
APP/PS1 

18m 
APP/PS1 

18m 
APPNLF

0 Max
WT Amyloidopathy 



 210 

 
Figure 55. Genes involved in the unfolded protein response are highly expressed in the 

pathology associated cluster. Uniform manifold approximation and projection (UMAP) 

representation of K-means clustered 12-month APP/PS1 and WT astrocytes, 18-month 

APP/PS1 and WT astrocytes, and 18-month APPNLF and WT astrocytes. The 10x Genomics 

loupe browser in split view was used to visualise the amyloidopathy cells (left) and the WT 

cells (right). The normalised expression of candidate astrocyte expressed genes is shown. 

Total unique molecular identifier (UMI) counts for each cell were normalised towards the 

median of UMI counts for all cells. Then the count matrices were log-transformed, mean 

centred and scaled. The pathology associated clusters of astrocytes (indicated by black 

arrows) appear to highly express Hsp90b1, Hspa5 and Pdia6, genes involved in the unfolded 

protein response.  
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Figure 56. Glutamate transporter genes are lowly expressed in the pathology associated 

cluster. Uniform manifold approximation and projection (UMAP) representation of K-means 

clustered 12-month APP/PS1 and WT astrocytes, 18-month APP/PS1 and WT astrocytes, and 

18-month APPNLF and WT astrocytes. The 10x Genomics loupe browser in split view was used 

to visualise the amyloidopathy cells (left) and the WT cells (right). The normalised expression 

of candidate astrocyte expressed genes is shown. Total unique molecular identifier (UMI) 

counts for each cell were normalised towards the median of UMI counts for all cells. Then the 

count matrices were log-transformed, mean centred and scaled. The pathology associated 

clusters of astrocytes (indicated by black arrows) appear to lowly express glutamate 

transporter genes Slc1a2 and Slc1a3 compared to the rest of the astrocytes in each sample.  
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Figure 57. NRF2 target genes are highly expressed in the pathology associated cluster. 

Uniform manifold approximation and projection (UMAP) representation of K-means clustered 

12-month APP/PS1 and WT astrocytes, 18-month APP/PS1 and WT astrocytes, and 18-month 

APPNLF and WT astrocytes. The 10x Genomics loupe browser in split view was used to visualise 

the amyloidopathy cells (left) and the WT cells (right). The normalised expression of candidate 

astrocyte expressed genes is shown. Total unique molecular identifier (UMI) counts for each 

cell were normalised towards the median of UMI counts for all cells. Then the count matrices 

were log-transformed, mean centred and scaled. The pathology associated clusters of 

astrocytes (indicated by black arrows) appear to highly express NRF2 target genes Nqo1, 

Gsta4 and Prdx5, compared to the rest of the astrocytes in each sample.  
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5.2.5.6 Clues as to the Location of the Pathology Associated Cluster of Astrocytes   

Whilst the spatial information is lost when conducting single cell RNA-seq, Chen et al. (2020) 

had used spatial transcriptomics and in-situ sequencing to identify genes induced in cells in 

the immediate neighbourhood of Aβ plaques in APPNLGF mice (i.e. in a ring with a radius of 

50µm). Chen et al. report 57 plaque induced genes (coined PIGs), expressed in a coordinated 

manner between cell types (Chen et al. 2020). Figure 58 illustrates that the pathology 

associated cluster of astrocytes in all three samples highly express candidate PIGs Arpc1b, 

Man2b1, and Gpx4, relative to other clusters in each sample, which might indicate that these 

pathology associated astrocytes are located around plaques. Notably, the pathology 

associated astrocytes were not enriched in Gfap or C3 (figure 52) which are thought to be 

markers of reactive astrocytes, particularly around plaques (Liddelow et al. 2017; Kamphuis 

et al. 2015). Future experiments staining for Aβ plaques, astrocyte markers and markers of 

the pathology associated cluster would help to identify their location in proximity to plaques.  
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Figure 58. Plaque induced genes identified by Chen et al. (2020) are highly expressed in the 

pathology associated cluster. Chen et al. (2020) used spatial transcriptomics and in-situ 

sequencing to identify genes induced in cells in the immediate neighbourhood of Aβ plaques 

in APPNLGF mice. Arpc1b, Gpx4, and Man2b1 are candidate plaque induced genes from this 

study. Uniform manifold approximation and projection (UMAP) representation of K-means 

clustered 12-month APP/PS1 and WT astrocytes, 18-month APP/PS1 and WT astrocytes, and 

18-month APPNLF and WT astrocytes. The 10x Genomics loupe browser in split view was used 

to visualise the amyloidopathy cells (left) and the WT cells (right). The normalised expression 

of candidate astrocyte expressed genes is shown. Total unique molecular identifier (UMI) 

counts for each cell were normalised towards the median of UMI counts for all cells. Then the 

count matrices were log-transformed, mean centred and scaled. The pathology associated 

clusters of astrocytes (indicated by black arrows) appear to highly express plaque induced 

genes Arpc1b, Gpx4, and Man2b1 compared to the rest of the astrocytes in each sample.  
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5.3 Discussion  
 

5.3.1 Summary of Findings  

This chapter investigated the heterogeneity of astrocyte response to amyloidopathy by 

performing K-means clustering on 12-month APP/PS1 and WT astrocytes, 18-month APP/PS1 

and WT astrocytes, and 18-month APPNLF and WT astrocytes. In all cases, a cluster of 

astrocytes which contained a higher proportion of the amyloidopathy exposed astrocytes 

than the WT astrocytes appeared separated from the larger body of astrocytes. This cluster 

was termed the ‘pathology associated cluster’. IPA revealed robust pathway enrichment/de-

enrichment in the pathology associated clusters of the different samples. Pathways related 

to oxidative phosphorylation, protein processing/degradation and NRF2-mediated oxidative 

stress response appeared enriched in the pathology associated cluster of astrocytes. 

Pathways related to synaptogenesis and synaptic function were downregulated in the 

pathology associated cluster relative to the other clusters in the samples.   Investigation of 

candidate genes involved in pathways of interest revealed the pathology associated clusters 

demonstrated similar gene expression patterns irrespective of age or amyloidopathy model, 

suggesting a robust response to amyloidopathy in these astrocytes.  High expression of plaque 

induced genes (taken from Chen et al. 2019) in the pathology associated cluster of astrocytes 

suggested that these astrocytes may be located around plaques.   

 

5.3.2 A Preliminary Definition of the Astrocyte Population and Cluster Assignment 

For the purposes of this initial exploration of the single cell datasets, manual segmentation of 

clusters based on position in UMAP space and the CSEA tool were used to identify clusters of 

cells likely to be astrocytes. Genes which were significantly enriched in each cluster, relative 

to the other clusters in the sample were input into the tool, which provided an easy way to 

identify the cell type enrichment in that cluster. Notably, Dougherty et al. (2010) had not 

included all of the cell types in the brain in their tool. Nevertheless, the main cell-types which 

we wanted to distinguish between, astrocytes, oligodendrocyte progenitors, 

oligodendrocytes, neurons and immunes cells were present.  Using the tool was thought to 

provide a more unbiased method of cluster selection than looking for expression of candidate 

genes. Several automated methods to identify cell types in single cell RNA-seq have been 
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developed (Peyvandipour et al. 2020; Abdelaal et al. 2019). Hence, more sophisticated 

methods of defining the boundaries of clusters and assigning cell-types will be explored in the 

future.  

 

In a similar vein, K-means clustering using the Davies-Bouldin Index to estimate the initial 

value of K was used in this first exploration of the single cell data. However, it is recognised 

that there are other methods of clustering (e.g. graph-based or hierarchical clustering) or 

other methods of estimating the optimal value of K (e.g. the elbow method, silhouette 

analysis). Future work exploring the most appropriate clustering of the data to avoid over or 

under clustering will be necessary.  

 

5.3.3 Robust Phenotype of Pathology Associated Cluster of Astrocytes Across Time-
Points and Models of Amyloidopathy   
 
In all 3 astrocyte samples (12-month APP/PS1 and WT, 18-month APP/PS1 and WT, and 18-

month APPNLF and WT) there appeared to be a cluster of astrocytes, separated from the main 

body of astrocytes, which contained a higher proportion of the amyloidopathy exposed 

astrocytes than the WT astrocytes. IPA analysis revealed that the pathology associated cluster 

in each sample was enriched/de-enriched in remarkably similar pathways, and displayed a 

similar magnitude of enrichment/de-enrichment relative to the other clusters in each sample. 

Preliminary exploration of the data revealed all the pathology associated clusters highly 

expressed candidate genes involved in oxidative phosphorylation, phagosome/lysosomal 

degradation, the unfolded protein response and NRF2-mediated oxidative stress response, 

whilst showing low expression of glutamate transporters. Hence, it appears that similar 

alterations in gene expression underlie the similar pathway alterations of the pathology 

associated clusters in the 3 samples. Whilst a more thorough comparison of gene lists 

contributing to pathway enrichment in each sample, as well as assessment of expression 

values of genes in each sample is necessary, this preliminary analysis would suggest a robust 

phenotype of astrocytes in response to amyloidopathy, even across a transgenic and knock-

in amyloidopathy model containing different genetic modifications.  In the future, the data 

from both mouse models will be clustered together to investigate this further.  
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5.3.4 Comparison of the Bulk Translatome Sequencing and Single Cell 
Transcriptome Sequencing 
 

Single cell RNA-seq is a powerful technique to identify heterogeneity of cellular responses, 

which are lost when assessing bulk transcriptomes/translatomes. Few gene expression 

changes were found in the bulk translatome analysis of 18-month APPNLF astrocytes, 

nevertheless genes significantly induced >1.5 fold in 12-month APP/PS1 astrocytes appeared 

to be changing in the same direction in the 18-month APPNLF astrocytes. The single cell 

analysis presented here might indicate that these changes in gene expression were 

significant, but were lost due to the bulk of astrocytes in the APPNLF model not displaying 

differences from the WT cells. Perhaps in the 18-month APPNLF model only astrocytes in the 

immediate vicinity of plaques display significant transcriptomic differences from WT 

astrocytes. Indeed, the pathology associated cluster highly expressed candidate PIGs chosen 

from Chen et al. (2020) compared to the other clusters of astrocytes (figure 58), which might 

indicate they are located around Aβ plaques. Immunohistochemical staining of amyloid 

plaques, markers genes expressed in this pathology associated cluster and an astrocyte 

specific gene would help to provide information on the location of these astrocytes to prove 

this hypothesis. 

 

IPA and GO analysis of the 12-month APP/PS1 bulk translatome indicated an upregulation of 

genes involved in synaptogenesis signalling (figure 27), and a downregulation of genes 

involved in oxidative phosphorylation (figure 36). Whereas, the phenotype of the pathology 

associated cluster in the single cell analysis appears to be enriched for genes related to 

oxidative phosphorylation and de-enriched for the synaptogenesis signalling pathway. More 

in-depth analysis of the genes which contribute to these pathways in the two experiments 

will be useful to understand these results.  

 

A possible explanation for some of the contradictory phenotypes is that TRAP experiments 

assess the translatome, whereas single cell experiments assess the transcriptome. Perhaps 

genes involved in oxidative phosphorylation are upregulated in response to a metabolically 

compromised situation. However, they are not being actively translated, possibly due to a 

down regulation of translation machinery, as shown in figure 36. Alternatively, microRNAs 
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(miRNAs) are small regulatory RNAs which can bind to specific mRNAs and either cause them 

to not be translated or to be broken down (O’Brien et al. 2018).  Perhaps miRNAs against 

oxidative phosphorylation genes such as Cox6c, Ndufa3, and Ndufa4, which overlapped 

between the two analyses, cause a downregulation of these genes in amyloidopathy exposed 

translatomes.  Notably, the bulk translatome analysis does not include mitochondrial 

encoded genes. This might account for some discrepancy between the directionality of the 

oxidative phosphorylation pathways in the bulk translatome analysis and the pathology 

associated cluster in the single cell analysis. In the future, once could test this hypothesis by 

removing the mitochondrial encoded genes from the single cell pathway analysis.  

 

Another possible explanation for the contradictory phenotypes between the TRAP and single 

cell data is that our current cell type selection/clustering method is masking amyloidopathy 

induced phenotypes found in the bulk RNA-seq dataset, and that the phenotype of the 

pathology associated cluster of astrocytes was diluted and not identified in the bulk analysis. 

Additionally, technical factors such as fewer than anticipated astrocytes sequenced, 

sequencing depth and dropout number (i.e. transcripts not detected in the sequencing data 

due to a failure to capture or amplify them) may be affecting the phenotypes found in the 

single cell RNA-seq. Future work defining the astrocyte population and clustering may prove 

to be insightful.  

 

Notably, the bulk translatome analysis and single cell transcriptome analysis also 

demonstrated overlap of response to amyloidopathy. Genes induced in the bulk translatome 

of 12-month APP/PS1 astrocytes appeared enriched for NRF2 target genes (figure 37). 

Likewise, the pathology associated clusters in the single cell transcriptome analyses highly 

expressed candidate NRF2 target genes (figure 57). Transcription factor analysis of the genes 

highly expressed in the pathology associated clusters would help to illuminate if this cluster 

is enriched for NRF2 target gene expression.  

 

Another similarity between the APP/PS1 bulk translatome analysis and the pathology 

associated clusters in the single cell transcriptome analysis is that terms related to protein 

processing and degradation were enriched in both. KEGG pathway analysis of the genes 

induced in the 12-month APP/PS1 astrocytes revealed enrichment for the terms lysosome, 
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phagosome and protein processing in the endoplasmic reticulum. The pathology associated 

clusters in the single cell analysis were enriched for genes involved in the unfolded protein 

response, and displayed high expression of candidate lysosome and phagosome genes. 

Upregulation of these genes is perhaps an adaptive protective response to the increased Aβ 

load in these animal models, but may also be contributing to the phagocytosis and loss of 

synapses around plaques in AD (Lee and Chung 2020). Interestingly, overactivation of the 

unfolded protein response in astrocytes has been shown to reduce astrocyte secretion of 

synaptogenic factors, leading to a failure to support synaptogenesis in vitro (Smith et al. 

2020). Thus, providing an additional potential link between astrocyte dysfunction and the 

reduction in synapses seen in AD.  Low expression of glutamate transporters in the pathology 

associated clusters of astrocytes likely also contributes to the excitotoxicity, synapse loss and 

neurodegeneration seen in AD.  

 

5.3.5 Comparison of the Single Cell Transcriptome in AD Mouse Models and Human 
AD.  
 

Grubman et al. (2019) conducted single-nucleus RNA sequencing on entorhinal cortex 

samples from control and Braak stages V-VI AD brains. In contrast to our results where there 

were a number of clusters which contained both WT and amyloidopathy exposed astrocytes, 

they found that AD and control astrocytes largely segregated into distinct clusters. This could 

be due to Grubman et al. focusing on the entorhinal cortex, whereas in this study we utilised 

astrocytes across the neocortex. Additionally, the fact that the astrocytes in human studies 

reflect end-stage disease, or that tau pathology in the human AD brains may also be impacting 

astrocyte phenotype, may be causing more distinction of clusters between the genotypes. 

Indeed, Habib et al. (2020) published a single nucleus sequencing study of astrocytes in the 

5xFAD amyloidopathy mouse model where several clusters contained a mixed population of 

WT and pathology exposed astrocytes.  

 

Grubman et al. reported 2 AD associated clusters of astrocytes. One of the AD astrocyte sub-

clusters was enriched for genes related to the ribosome, mitochondria and neuron 

differentiation. This bears some similarity to the pathology associated clusters in our analysis 

which were enriched for eIF2a signalling and oxidative phosphorylation.  Notably, the other 
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AD sub-cluster in the Grubman et al.  study demonstrated high expression of the putative 

neurotoxic astrocyte marker gene C3, whereas this gene was not detected in our analysis, 

perhaps due to technical limitations.  

 

Just as in this investigation, Habib et al. found a disease associated cluster of astrocytes in the 

5xFAD mouse. This cluster expressed genes which were enriched for pathways involved in 

endocytosis, complement cascade, ageing and the lysosome. Hence the upregulation of 

lysosome related genes appears to robustly occur across 3 amyloidopathy mouse models, and 

both investigations suggest that amyloidopathy may exacerbate age dependent gene changes 

in astrocytes. Habib et al. reported an increase in the proportion of disease associated 

astrocytes at 4 months of age, before manifestation of cognitive decline, indicating the 

disease associated astrocytes may contribute to the pathological progression of AD. 

Conducting further single cell RNA-sequencing of APPNLF and WT astrocytes at 6, 12 and 24 

months would allow us to see if this effect replicates, and to test if an increasing proportion 

of WT astrocytes are present in the pathology associated cluster at 24-months. Furthermore, 

we would be able to perform single cell near-neighbour network embedding to identify 

astrocyte populations in pseudo time (Marques et al. 2018; Jäkel et al. 2019).  

 
5.3.6 Limitations and Future Work  
 
In this study, astrocytes were FACS sorted based on eGFP expression, which was driven by the 

Aldh1l1 promoter. Whilst Aldh1l1 is thought to be highly astrocyte specific, there might have 

been other cell types in the sequenced cells, although further investigation is needed. For 

example, immunohistochemical stains to investigate colocalisation of GFP with 

oligodendrocyte progenitor markers may help to identify whether these cells were 

erroneously sequenced. Further  investigation of the best method to identify cell types in this 

dataset will also be conducted (Abdelaal et al. 2019; Peyvandipour et al. 2020). If a 

considerable amount of spurious cell types were sorted, in the future, using a combination of 

antibodies to gate in astrocytes and out other cell types, will allow more astrocytes to be 

sequenced and thus provide an improved understanding of astrocyte populations.   
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Capture efficiency can be a problem in single cell RNA-sequencing, whereby a transcript is 

expressed, however, it is not detected in the sequencing data due to a failure to capture or 

amplify it (Haque et al. 2017). Widespread capture inefficiencies would limit a comprehensive 

view of the population, especially given the reduced number of cells included in single cell 

sequencing compared to bulk RNA-sequencing. As the price of single cell sequencing reduces, 

it will be possible to sample more cells and at an increased depth, and thus further ensure 

samples are well represented.  

 

The cell type selection tool created by Dougherty et al. (2010) was used in this study. Whilst 

this method provided a quick and easy way of identifying cells likely to be astrocytes. The tool 

highlighted that some of the clusters were somewhat enriched in non-brain cells or cells from 

non-cortical regions of the brain. This could be explained by there being common genes 

expressed in these cell types, or could indicate the tool is perhaps less useful than intended. 

Notably, the tool suggested large clusters of the GFP positive FACS sorted cells were closely 

related to oligodendrocytes (cluster 3 in figures 42 & 43, cluster 2 in figures 44 and 45 and 

cluster 2 in figures 46 and 47). However, it is possible that these clusters were in fact cells 

with a phenotype in between those typically associated with astrocytes or oligodendrocytes. 

Hence, we may have lost exciting information about astrocyte phenotypes by removing these 

cells from analysis. Nevertheless, the tool did provide a more unbiased means of determining 

cell type compared to the often-used method of picking favourite ‘representable’ gene(s). 

Additionally, upon pathology development, expression of genes which are associated with 

one cell type may change in another, such as the upregulation of TREM2 (a usually microglia 

associated gene) in astrocytes in response to amyloidopathy. Hence, to negate these issues it 

seemed wise to use the Dougherty tool which considers large lists of genes when assigning a 

likely cell type. In the future, it would be useful to use more widely used tools such as SingleR 

or Seurat to identify cell type. However, these tools require some programming expertise and 

so were not implemented in this analysis.  

 

Additional limitations regarding the analysis include the need to further investigate the 

appropriate clustering for this data, and the need to validate that clusters are biologically 

meaningful. In particular, it will be necessary to cluster all of the cells together so that a 

meaningful comparison between genotypes and age groups can be conducted.  
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Additionally, a more in-depth analysis of genes highly expressed in each cluster will be 

conducted. This will be particularly interesting in the APP/PS1 samples, where at both 12 and 

18-months, cluster 2 contained a lower proportion of the captured astrocytes.  

 

Other technical limitations to bear in mind when conducting single cell sequencing include 

the possibility that tissue dissociation and FACS can cause alterations in the transcriptome of 

cells (Heiman et al. 2014). Whilst APPNLF astrocytes displayed few differentially expressed 

genes compared to WT in the bulk TRAP-seq, in the single cell data there appeared to be a 

pathology associated cluster of astrocytes. The astrocytes in this cluster highly expressed 

candidate PIGs, which might indicate that this astrocyte profile was not found in the bulk 

TRAP-seq due to the relatively low plaque burden and surrounding reactive glial burden. 

However, an alternative explanation might be that FACS caused stress related gene 

expression artifacts. In order to investigate this further, it would be useful to conduct staining 

experiments with antibodies against astrocyte markers, marker genes of the pathology 

associated cluster, and plaques, in order to investigate whether these pathology associated 

astrocytes are present in the APPNLF mouse, the location these astrocytes in relation to plaque 

pathology in both mouse models, and to confirm protein expression of marker genes. Finally, 

it would be interesting to further explore alterations in mitochondria in astrocytes exposed 

to Aβ. One could investigate the number of mitochondrial genes significantly up and down in 

pathology associated astrocytes as a proxy for whether mitochondrial function or density has 

altered, or perhaps conduct electron microscopy.  

 

5.4 Chapter Conclusion  
 
Whilst the single cell transcriptome analysis presented in this chapter is simply a preliminary 

exploration of the data, some interesting observations were made. Namely, there appeared 

to be a pathology associated cluster of astrocytes present in the 12 and 18-month APP/PS1 

and WT sample, as well as the 18-month APPNLF and WT sample. This pathology associated 

cluster appeared to be enriched/de-enriched in similar pathways compared to other 

pathology associated clusters in each sample, and similar genes appeared to underlie these 

pathway alterations. The pathology associated cluster was associated with increased 
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expression of the NRF2-mediated stress response, but also reduced expression of genes 

involved in synaptogenesis and synaptic function. Genes related to lysosome, phagosome, 

oxidative phosphorylation and the unfolded protein response were also enriched in the 

pathology associated cluster. These pathways are fundamental to healthy astrocyte function. 

However, if over activated can be damaging. Hence, the pathology associated cluster of 

astrocytes appeared to exhibit both beneficial and harmful phenotypes. The information 

gained in this study, along with further research defining pathology associated subsets of 

astrocytes could be used to specifically target pathological astrocytes with therapeutics to 

restore a healthy phenotype. If the therapeutic is given at an appropriate time-point, 

potentially prior to cognitive decline, this could provide a mechanism to alter the trajectory 

of Alzheimer’s disease.  
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Chapter 6 

General Discussion 
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6.1 Overview of Research Findings 

In this thesis I investigate astrocyte dysfunction due to exposure to amyloidopathy using 

mouse models of AD. I utilised two amyloidopathy mouse models, the transgenic APP/PS1 

and the knock-in APPNLF mouse model (see section 1.5 on details of these models). Figure 59 

displays an overview of the research findings.  

 
Figure 59. Overview of research findings. Created with BioRender.com.  

 

Aβ plaques, synapse loss and astrogliosis are some of the major pathological hallmarks of AD 

and are thought to all contribute to, or be a consequence of astrocyte dysfunction in AD. 

Hence, I first investigated the extent to which the knock-in APPNLF mouse model displayed 

these characteristics, since using the APPNLF mouse to model AD would avoid potential 

artefacts caused by APP overexpression in other transgenic mouse models of AD. I used a 

high-resolution imaging technique to demonstrate synapse loss in the immediate vicinity 

(<10µm from the boundary of the plaque core) of Aβ plaques in the somatosensory cortex of 

HOM APPNLF mice.  I also showed that Aβ colocalisation with pre and post-synaptic puncta, 

and reactive astrocyte load (measured by GFAP staining) increased with reducing distance 

from the plaque core. These features had been documented before in other mouse models 
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of AD and in human post-mortem AD (Kamphuis et al. 2014; Ruan et al. 2009; Jackson et al. 

2019; Koffie et al. 2012; Jackson et al. 2016; Koffie et al. 2009). However, this body of work 

helped confirm the utility of the APPNLF mouse as a model of AD, and demonstrate that in the 

vicinity of plaques, a similar magnitude of synapse loss and astrogliosis occurs in the APPNLF 

mouse as in other mouse models of AD and human AD.  

 

Next, I investigated the impact of AD pathology on bulk astrocyte translatomes. I showed that 

few differences between WT and amyloidopathy exposed astrocytes could be found early in 

the disease pathology using bulk translatome sequencing. However, there were clear 

differences once Aβ pathology was widespread in the APP/PS1 mouse model. Amyloidopathy 

in the APP/PS1 mouse appeared to exacerbate age-dependent gene changes in astrocytes, 

and there was an overlap of acute reactive signatures with gene signatures caused by chronic 

exposure to amyloidopathy. However, astrocytes exposed to amyloidopathy did not display 

gene expression which fit distinctly into the A1/A2 astrocyte categories, suggesting that it 

may be more useful to think about astrocytes states as a continuum, with profiles beyond the 

A1/A2 categories. I utilised a MAPTP301S astrocyte translatome dataset, collected by a previous 

lab member, to show that Aβ and tau pathology cause some similar gene expression changes 

in astrocytes, namely an upregulation of genes related to protein processing and degradation, 

inflammation, and genes which appeared to be targets of the antioxidant master regulator 

NRF2. Additionally, Aβ and tau pathology appeared to both cause dysfunction of 

mitochondria and protein synthesis. Furthermore, both amyloidopathy and tauopathy 

exposed astrocytes demonstrated enrichment for genes changed in human post-mortem AD 

astrocytes, indicating some level of translatability of results in the mouse models to the 

human condition. An intriguing difference between amyloidopathy and tauopathy exposed 

astrocytes was that only astrocytes exposed to amyloidopathy were enriched for AD risk 

genes.  

 

Few differences were seen in the APPNLF astrocyte translatomes. Perhaps since the APPNLF 

mouse takes longer to develop plaque pathology than the APP/PS1 mouse, and reactive 

astrocytes are often found encircling plaques, the reactive astrocyte load is also reduced in 

the APPNLF mouse model. This could have led to translatome difference from WT being lost in 

the bulk sequencing. Nevertheless, genes induced in the APP/PS1 model also displayed a 
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positive fold change in the APPNLF model, which might indicate overlap of response to 

amyloidopathy.  

 

Preliminary analysis of single cell sequencing of astrocytes from APP/PS1 and APPNLF mouse 

models revealed a pathology associated cluster of astrocytes in all of the samples. These 

astrocytes were significantly enriched for genes related to oxidative phosphorylation, protein 

processing/degradation and the NRF2-mediated stress response.  Genes related to 

synaptogenesis and synaptic function were significantly de-enriched in these astrocytes, 

relative to the other astrocytes in the samples.  Hence, there appeared to be a robust 

response of astrocytes to amyloidopathy, irrespective of mouse model. Thus, highlighting the 

benefit of single cell sequencing in identifying changes gene expression in small proportions 

of cells in the APPNLF mouse.  

 

Taken together, this study indicates that astrocyte phenotype is robustly perturbed by 

amyloidopathy in both of these mouse models. Astrocytes present both neuroprotective and 

neurotoxic alterations in gene expression in response to amyloidopathy. On the one hand, 

astrocyte upregulation of genes involved in protein processing and degradation could be 

viewed as adaptive protective responses to the build-up of amyloidopathy. However, 

excessive activation of the unfolded protein response has been associated with a reduced 

ability of astrocytes to support synaptogenesis (Smith et al. 2020), as well as increased 

apoptosis (Fribley et al. 2009). Additionally, enhanced astrocytic phagocytosis and lysosomal 

degradation may be involved in synapse loss in AD (Chung et al. 2013; Chung et al. 2015), 

indicating some of these adaptive protective responses may in fact be contributing to the 

pathology in AD. Mitochondrial dysfunction was also apparent in amyloidopathy exposed 

astrocytes. However, they appeared to also upregulate NRF2-mediated responses, perhaps 

to combat the increase in toxic free radicals caused by this mitochondrial dysfunction.  

 

6.2 Contribution to Existing Knowledge  

The studies outlined in this thesis add to our growing understanding of both animal models 

of AD and astrocyte dysfunction in AD. Saito et al. (2014) created the APPNLF mouse model of 

AD to eliminate potential confounding effects of APP overexpression. However, they did not 
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quantify synapse pathology and astrogliosis around plaques. The initial body of work 

presented in this thesis filled that knowledge gap. Additionally, synapse loss results presented 

in this study were similar to those recently published by Sauerbeck et al. (2020), where they 

used a super-resolution imaging technique to quantify synapse pathology around plaques in 

APPNLF mice. Replicability of results using different techniques and in different laboratories 

enhances the validity of the results presented here.  

 

Orre et al. (2014) had conducted transcriptomic analysis of astrocytes from 15-18-month 

APP/PS1 mice. However, they had FACS isolated astrocytes and used a microarray to 

investigate gene expression. The TRAP-sequencing and single cell sequencing of APP/PS1 

astrocytes presented in this study adds to this knowledge, illustrating alterations in astrocyte 

gene expression can be detected at 6 and 12-months. Additionally, TRAP-sequencing offers a 

number of benefits over FACS isolation and microarray analysis. TRAP is thought to cause 

fewer confounding alterations in astrocyte gene expression than dissociation of cells into 

single cell suspension. Additionally, RNA-sequencing offered the opportunity for improved 

sensitivity to detect alterations in genes expression, as well as the ability to detect changes in 

gene expression without pre-specification of the genes we were interested in. Notably, both 

studies illustrated upregulation of pathways involved in lysosome and phagosome processing, 

as well as inflammation. However, our study highlighted a mitochondrial dysfunction 

signature which was not highlighted in the Orre et al. study.  

 

In this study, we also present translatome and transcriptome data for APPNLF astrocytes, 

which to the best of our knowledge has not yet been published. The results of this 

investigation indicated that whilst there were significant alterations in APPNLF astrocyte 

translatomes at 18-months, these were likely restricted to a subset of astrocytes, meaning 

few differences from WT were detected when bulk-sequencing. This work will help to inform 

researchers about the time points and experimental strategies to use for future experiments.  

 

When comparing the APPNLF and APP/PS1 amyloidopathy models, we showed that the APPNLF 

mouse displayed a similar magnitude of plaque associated synapse loss as that found in the 

somatosensory cortex of APP/PS1 mice (Jackson et al. 2016).  Furthermore, we demonstrated 

using single cell sequencing that astrocytes in the knock-in APPNLF mouse model display similar 
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alterations in gene expression as transgenic APP/PS1 astrocytes, and similar directionality of 

genes induced when examining bulk translatomes. Notably, a thorough analysis of the 

differences between the two mouse models was not in the scope of this study, but is being 

conducted. Taken together, the knock-in APPNLF mouse model bore resemblances to the 

transgenic APP/PS1 mouse model both in terms of synapse pathology and the response of 

astrocytes to amyloidopathy. This is important as there is a large resource difference (time 

and financial) between using the transgenic mouse model and the slower progressing knock-

in mouse model.  Additionally, there has been a lot of scientific data collected using transgenic 

mouse models, hence validation of results is encouraging. Future work investigating the 

differences between the two mouse models will help elucidate whether APP overexpression 

meaningfully impacts the results. Additionally, further examination of the single cell dataset 

is necessary to ensure that similarities between the APP/PS1 and APPNLF astrocytes were not 

due to stress induced by FACS.  Knock-in mouse models were created because disentangling 

the effects of Aβ from APP overexpression in the transgenic mouse models has not been 

possible. Even if our future analyses of astrocyte reaction in APP/PS1 and APPNLF mice yield 

few differences, we would not be able to conclusively say that APP overexpression isn’t 

affecting an aspect not measured. Hence, given unlimited resources, it is likely still better to 

use the knock-in APPNLF mouse.  

6.3 Limitations of Study and Future Directions of Research  
 

A key limitation of the work carried out in the APPNLF mouse model is that due to time 

restraints and the resources available, pathology was only quantified at 12-months, whereas 

bulk-translatome sequencing was carried out at 6, 12 and 18-months, and single cell 

sequencing was conducted at 18-months. In the future, it would be beneficial to quantify 

pathology at all of the time points used, so that alterations in astrocyte gene expression can 

be put in the context of pathology. To this point, astrogliosis was not quantified over the 

whole cortex, only in cropped images due to the thickness of tissue sections and imaging 

technique making it difficult to threshold. In future studies, tissue would be sectioned more 

thinly so that astrogliosis burden over the entire cortex can be measured and compared to 

other models of amyloidopathy.  
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The data gathered in this thesis suggests that astrocytes exhibit similar alterations in gene 

expression in the APP/PS1 and APPNLF mouse models, however with different speeds of 

progression. 24-month old APPNLF mice have more extensive plaque pathology, and thus one 

would hypothesise have more extensive reactive astrocyte load. Hence, conducting additional 

bulk translatome sequencing of 24- month old APPNLF mice and comparing the data to the 12-

month APP/PS1 translatome collected in this study would help to prove this point. 

Additionally, combining the APP/PS1 and APPNLF single cell datasets and conducting more 

analysis of the pathology associated cluster could support this hypothesis. Due to time 

restraints, only a preliminary analysis of the single cell sequencing data is presented here. 

Future work will involve examining more sophisticated methods to identify cell types, cluster 

cells and assess gene enrichment. Subsequently, qPCR validation of genes highly expressed in 

the bulk and single cell sequencing experiments will be conducted. Immunohistochemistry 

experiments using antibodies against genes which define the pathology associated cluster of 

astrocytes, astrocyte specific genes and Aβ plaques would allow spatial information of these 

altered astrocytes to be collected. Furthermore, confirming the presence of this subset of 

astrocytes in human tissue would be extremely beneficial in demonstrating translatability of 

results.  

 

Another intriguing result which has been suggested in this thesis and in other published work 

is that amyloidopathy exacerbates age dependent changes in astrocyte gene expression. 

Clustering the 12 and 18-month APP/PS1 and WT astrocytes together will be the first step in 

assessing this. Additionally, conducting single cell analysis on 24-month old mice may indicate 

further increases in the proportion of WT astrocytes in the pathology associated cluster and 

thus support this hypothesis.  

 

Genes related to phagosome and lysosome function were upregulated in response to 

amyloidopathy and tauopathy. It would be interesting to conduct a functionnal synapse 

phagocytosis assays on AD patient stem cell derived astrocytes (or human astrocytes exposed 

to Aβ derived from human brains) in order to investigate whether these pathologically 

burdened astrocytes enhance phagocytosis of synapses as well as Aβ.  Immunohistochemical 

staining using an astrocytes specific marker, a lysosomal marker and a synaptic protein 

marker might further indicate that enhanced astrocytic phagocytosis and lysosomal 
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processing is partially responsible for synapse loss in AD. An intriguing difference between 

the response of astrocytes to amyloidopathy and tauopathy was that only astrocytes exposed 

to amyloidopathy were enriched for AD risk genes. Further investigation of the link between 

AD risk genes and astrocyte response to amyloidopathy may highlight opportunities for 

astrocyte targeted preventative medicine.   

 

The work carried out in this study has focused on the effects of amyloidopathy on astrocytic 

gene expression. However, it is possible that amyloidopathy affects the astrocyte phenotype 

indirectly, for example via microglia.  Using the Sargasso method (Dando et al. 2016; Hasel et 

al. 2017), it is possible to identify which species RNA originated from. Hence, in vitro double 

cultures of mouse neurons and human astrocytes exposed to human derived Aβ oligomers, 

as well as triple cultures of mouse neurons, human astrocytes and rat microglia exposed 

human derived Aβ oligomers, may help to uncover the extent to which the alterations in 

astrocyte phenotype are due to the direct influence of Aβ on astrocytes, or due to the 

influence of Aβ on microglia which subsequently influences astrocyte phenotype.  

 

The ultimate purpose of the investigations conducted in this thesis was to contribute to our 

understanding of AD pathogenesis and support the design of disease modifying therapeutics. 

In this study, I highlighted similarities between astrocyte response to amyloidopathy and 

tauopathy, the two cardinal pathological proteins in AD. In particular, there appeared to be 

an upregulation of NRF2 mediated antioxidant response in astrocytes exposed to both 

pathologies. However, the response is either too little and/or too late since pathology 

continues in both models. It would be interesting to investigate if boosting the astrocytic 

NRF2 mediated stress response further, at an earlier time point, or in conjunction with an Aβ-

targeted therapeutic and an anti-inflammatory therapeutic, could alter the trajectory of 

pathology. Crossing conditional knock-in GFAP-NRF2 mice with amyloidopathy mice would 

facilitate this. Alternatively, creating an antibody-drug conjugate which binds to a marker of 

the pathology associated astrocytes, is engulfed and releases a drug combination which 

reduces neurotoxic phenotypes and increases neuroprotective phenotypes (e.g. with an 

antisense oligonucleotide against pro-inflammatory cytokines and mRNA for NRF2) would be 

an exciting research avenue.  It may also be beneficial to investigate whether targeting other 

astrocytic dysfunctions uncovered in this study, such as the overactivation of the unfolded 
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protein response or mitochondrial dysfunction, can substantially alter the progression of 

pathology.  

 

Taking these limitations and experimental ideas into consideration, whilst also considering 

resource limitations, the next steps in this project will be to:  

- Re-examine the appropriate cells to include in the single cell analysis using more 

sophisticated methods such as Seurat, followed by clustering of the APP/PS1 and 

APPNLF astrocytes together. Conduct differential gene expression analysis to re-

determine the similarities and importantly examine the differences in gene expression 

in the two mouse models.  

- Identify candidate pathology associate genes and stain for the proteins along with Aβ 

plaques using IHC in order to gain information of the location of astrocytes expressing 

these pathology associated genes and to verify that the pathology associated genes 

are not simply an artifact of cell sorting.  

- Write a paper comparing synapse pathology and reactive astrocytes in the knock-in 

APPNLF  vs transgenic APP/PS1 mouse model, highlighting the appropriate time point 

to utilise the APPNLF mouse model and examining the benefits and disadvantages of 

each mouse model.   

 

6.4 Therapeutic Implications  

The majority of clinical trials of disease modifying therapies for AD have failed (Mehta et al. 

2017). These trials have included a wide variety of treatments, from anti-Aβ antibodies 

(Spencer and Masliah 2014), to antioxidants (Mecocci and Polidori 2012) and non-steroidal 

anti-inflammatory drugs (Wang et al. 2015). However, all showed little effect in altering the 

course of AD. Indeed, the overwhelming Aβ-targeted therapeutic failure has led some to 

believe the strategy should be abandoned (Herrup 2015). In this study, I highlight the 

consequences of Aβ pathology on astrocyte gene expression. However, it is clear that many 

cell types in the brain are affected by the gradual build-up of Aβ pathology over decades prior 

to clinical representation (Quintela-López et al. 2019; Navarro et al. 2018). Hence, it does not 

seem wise to disregard the wealth of research pointing at a central role of Aβ in AD.  
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Efforts to understand why the Aβ targeted therapeutics failed indicate that several 

therapeutics were either not selective enough for the noxious oligomeric form of Aβ, or were 

given too late in the disease pathology, such that downstream neuroinflammation and 

synapse loss had already begun. In some cases, it was found that participants without Aβ 

pathology were enrolled in the trial (Mehta et al. 2017; Cummings 2018). These failures have 

led to improvements in clinical trial design, placing emphasis on biomarker tracking, and the 

need to enrol patients in the earlier stages of the disease (Cummings 2018). Nevertheless, it 

may improve success of anti-Aβ treatments if they are combined with alternative therapeutic 

strategies which target some of the downstream consequences of Aβ.  

 

In this study, I have highlighted a number of ways that astrocyte function appears to be 

altered (at least at the gene expression level) by exposure to Aβ. Designing therapeutics to 

correct each of those functions individually seems like an unlikely prospect, especially 

because other cell types in the brain are also dysfunctioning. However, altering the cellular 

environment to encourage proper functioning of glia may prove beneficial. In this study, and 

in other studies, astrocytes exposed to Aβ display pro-inflammatory and oxidative stress 

responses (Orre et al. 2014; Grubman et al. 2019; González-Reyes et al. 2017). This leads to a 

chronic feedforward cycle of reactive astrocytes releasing mediators of inflammation and 

oxidative stress, leading to further reactive astrocytes. Chronic inflammation and oxidative 

stress appear to also negatively impact the functioning of other cell types in the brain, such 

as microglia (Orre et al. 2014; Lue et al. 2001; McDonald et al. 1997; Meda et al. 1999) and 

oligodendrocytes (Lee et al. 2004; Cai and Xiao 2016; Jantaratnotai et al. 2003). Hence, the 

feedforward cycle of cellular dysfunction, inflammation and oxidative stress appear to be 

crucial elements of AD, in addition to the build-up of pathological proteins.  Perhaps if anti-

inflammatory, antioxidant and pathological protein-targeted therapeutics were given in 

combination, and at an early enough time point, this could alter the course of the disease.  

 

Non-steroidal anti-inflammatory drugs (NSAIDs) are thought to modulate Aβ production, as 

well as microglial and astrocyte reaction (Lim et al. 2000; Weggen et al. 2001).  Whilst meta-

analyses of epidemiological studies indicate a reduced risk of developing AD with NSAID use 

(McGeer et al. 1996; Wang et al. 2015), meta-analyses of clinical trials have shown no 

statistical or clinical significance of the drugs  (Miguel-Álvarez et al. 2015; Gupta et al. 2015). 
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However, these anti-inflammatory agents were given alone and many included AD patients 

with moderate disease (Aisen et al. 2003; Pasqualetti et al. 2009; Miguel-Álvarez et al. 2015). 

Hence, it is possible that the abundance of Aβ oligomers in the brain meant treatments were 

ineffective. Other anti-inflammatory agents such as the antibiotic minocycline and TNF⍺ 

inhibitors have also been suggested  as potential future therapeutics of AD (Chang et al. 2017; 

Sadick and Liddelow 2019).  The previous clinical trials of antioxidants were beset by the same 

issues as the clinical trials of NSAIDs. Treatments were either given alone, or in combination 

with a symptomatic treatment  and included patients with moderate AD (Mecocci and 

Polidori 2012).  

 

 The data presented in this thesis suggests that in response to amyloidopathy, a portion of 

astrocytes upregulate NRF2 mediated oxidative stress response. However, despite this, 

pathology continues. This information in conjunction with the previously failed clinical trials 

of anti-inflammatory and antioxidant treatments might suggest that antioxidant/anti-

inflammatory approaches are not sufficient to alter disease progression. Alternatively, the 

data in this thesis might highlight once again the importance of amplifying these responses 

further in AD. Hence, a clinical trial of a combinatorial treatment targeting pathological 

proteins Aβ and tau, neuroinflammation, oxidative stress, and given at an early time point in 

the disease may prove to be disease altering.  

 

Another aspect to consider is that the single cell sequencing in this study and other studies 

have revealed heterogeneity of cellular phenotypes in AD (Grubman et al. 2019; Mathys et al. 

2019; Habib et al. 2020; Rangaraju et al. 2018). Just as targeting specific forms of noxious Aβ 

will likely improve therapeutic outcome due to increased target engagement with a specific 

dose, perhaps specifically targeting dysfunctioning glia will substantially improve therapeutic 

outcome. To do this, it will be necessary to identify the expression of marker proteins on 

dysfunctioning cell types. This will allow antibody-drug conjugates to be formulated to 

specifically target the dysfunctioning cell. Deciphering the appropriate drug/drug 

combination to enhance neuroprotective functions whilst diminishing neurotoxic functions 

of each cell type is an area in need of more research. However, for astrocytes, perhaps 

antisense oligonucleotides targeting pro-inflammatory cytokine mRNA, along with mRNA to 

boost antioxidant responses will prove beneficial, especially if given in addition to an Aβ-
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targeted therapeutic. If the increase in phagosome and lysosome related genes which were 

identified in this study is an adaptive protective response to Aβ load, then perhaps targeting 

plaque proximal astrocytes and further boosting their phagocytic and protein degrative 

abilities will be useful.  

 

Finally, it is imperative that we learn from previous clinical trial failures, ensuring therapeutics 

have good brain penetrance, are given at an appropriate time point, on biomarker confirmed 

patients and target a combination of the complex feedforward pathologies associated with 

AD. Furthermore, improved strategies to measure disease progression, for example using 

machine learning to develop digital biomarkers of AD, may help to diagnose patients earlier, 

enroll patients in clinical trials earlier, and track improvement with increased sensitivity, all of 

which will contribute to the development of a disease modifying AD therapeutic.  
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6.5 Thesis Conclusion  

In this thesis, I have characterised pathology in the APPNLF amyloidopathy mouse model, and 

investigated alterations in astrocyte gene expression due to amyloidopathy. These gene 

expression changes include both neuroprotective and neurotoxic astrocyte pathways. AD 

therapeutics have traditionally focused on targeting pathological proteins in AD. However, 

this has not yet led to disease modifying treatments, perhaps due to cell types in the brain 

already manifesting pathological alterations by the time patients are diagnosed. The work 

presented here will add to the body of research around the dysfunction of different cell types 

in the brain, and aid the design of astrocyte targeted therapeutics which boost 

neuroprotective pathways and reduce neurotoxic alterations in astrocyte function.   
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