

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Electronic voting in the classical and
quantum settings: modelling, design and

analysis

Nikolaos Lamprou

Thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy
to the

University of Edinburgh — 2021

Declaration

I declare that this thesis has been composed solely by myself and that it has
not been submitted, either in whole or in part, in any previous application for a
degree. Except where otherwise acknowledged, the work presented is entirely my
own.

Nikolaos Lamprou
August 2021

iii

iv

Abstract

This thesis explores the cryptographic field of electronic voting both in the
classical and quantum regime. In the classical setting, we look at the problem of
self-tallying elections, while in the quantum setting we initiate the formal study
of quantum voting according to the principles of modern cryptography.

The concept of a self-tallying election (STE) scheme was first introduced by
Kiayias and Yung [PKC 2002] and captures electronic voting schemes in which
the tallying authorities are the voters of the election themselves. This type of
electronic voting is particularly compatible with and suitable for (but not only)
Blockchain governance, where governance is expected to be maintained in a fully
distributed manner. In this thesis, we formalize the requirements for secure STE
schemes in the Universal Composability (UC) framework. Our model captures
the standard voting properties of eligibility, fairness, vote-privacy, and one voter-
one vote. We present E-cclesia, a new family of STE schemes, and prove that
it securely UC realizes the STE functionality. We propose E-cclesia 1.0 , the
first concrete instantiation of E-cclesia using RSA accumulators in combination
with a novel time-lock encryption scheme, name Astrolabous, that surpasses
the limitations of previous ones. In addition, we provide a concrete security
definition of TLE schemes and we formally abstract the concept of TLE into an
ideal functionality following the real/ideal paradigm introduced by Canetti [IEEE
FOCS 2001]. On top of that, we show that a protocol that uses a pair of TLE
algorithms that satisfy these properties UC realises our ideal TLE functionality.
Finally, we provide a novel TLE construction and we show that it satisfies our
security definition making our whole argumentation of a fully-fledged E-cclesia
protocol sound.

All practical e-voting constructions rely on computational assumption to
satisfy various properties such as privacy and verifiability.

A milestone work published by Shor [IEEE SFCS 1994] indicates that well
known mathematical problems can be solved efficiently if we have at our disposal a
quantum computer. Recent advances indicate that quantum computers will soon
be a reality. Motivated by this ever more realistic threat for existing classical
cryptographic protocols, researchers have developed several schemes to resist
quantum attacks. In particular, several e-voting schemes relying on the properties
of quantum mechanics have been proposed for electronic voting. However, each of
these proposals comes with a different and often not well-articulated corruption

v

vi

model, has different objectives, and is accompanied by security claims that are
never formalized and justified only against specific attacks. To address this, we
propose the first formal security definitions for quantum e-voting protocols.

With these at hand, we systematize and evaluate the security of previously
proposed quantum e-voting protocols; we examine the claims of these works con-
cerning privacy, correctness and verifiability, and if they are correctly attributed
to the proposed protocols. In all non-trivial cases, we identify specific quantum
attacks that violate these properties. We argue that the cause of these failures
lies in the absence of formal security models and references to the existing cryp-
tographic literature.

Acknowledgements

I would like to genuinely thank my Supervisor Dr Myrto Arapinis for her
continuous support and patience with me, giving me the chance to further
continue my studies and evolve as a cryptographer. Except our technical
discussions, I also sincerely thank her for teaching me not only how to be a
technically sound scientist, but also one with moral principles. Her ethics and
values will be a life lesson and inspiration for me.

I would also like to thank Dr Thomas Zacharias for our wonderful collaboration
and for introducing me to the fascinating world of UC. His unique attitude
and solid cryptographic knowledge made each of our discussions interesting and
profitable in terms of knowledge.

Also, I would like to thank my examiners Prof Dominique Unruh and Dr
Markulf Kohlweiss for their productive and insightful comments. My examination
was not the easiest one but in the end, the quality and completeness of my thesis
improved drastically.

I would like to thank all my friends from “Cinderella” for their support and
the good times we have together. There were tough years and they were always
there for me. Especially, I would like to thank my beloved friend (and upcoming
doctor!) Giannis Stasinopoulos. He is one of the very rare people in terms of
kindness, wisdom and character ethic.

Moreover, I would like to thank my professors back in Athens for introducing
me to the magnificent world of cryptography.

In addition, I would like to thank my colleague Dr Aikaterini-Panagiota Stouka
for all this journey in academia. Her morality, values and understanding will be
always with me.

Last but not least, I would like to thank my family for all of their support all
of these years, without them nothing of these would be possible.

vii

viii ACKNOWLEDGEMENTS

Contents

Declaration iii

Abstract v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Contributions . 4

2 Preliminaries 9
2.1 Basic mathematical background and security notions 9

2.1.1 Mathematical background 9
2.1.2 Cryptographic notions . 11

2.2 Quantum information . 13
2.2.1 Unitary operations . 14
2.2.2 Continuous & discrete measurement 15
2.2.3 The cut-and-choose method 15

2.3 E-voting . 16
2.3.1 Protocol description . 16
2.3.2 Security definitions . 17

2.4 Protocol security . 17
2.4.1 Game-based definitions . 18
2.4.2 Universal composability 19
2.4.3 Setup functionalities . 21

3 Literature review 27
3.1 Classical e-voting . 27

3.1.1 Centralized e-voting . 27
3.1.2 Self-tallying protocols . 29
3.1.3 Cryptographic primitives in e-voting 30
3.1.4 Comparison with Baum et al. (2021) and Baum et al. (2020) 34

3.2 Quantum e-voting . 38
3.2.1 Quantum e-voting definitions 39

ix

x CONTENTS

4 Time-lock encryption 41
4.1 Definition of Fleak,delay

TLE . 42

4.2 Realization of Fleak,delay
TLE via time-lock puzzles 46

4.2.1 Security definitions of time-lock puzzles 57
4.2.2 Proof of UC realizing F

leak,delay
TLE 60

4.3 Astrolabous: a UC-secure TLE construction 64
4.3.1 The (AST.encE,H,AST.decE,H) scheme 66
4.3.2 Equivocable (EAST.encE,H,G,EAST.decE,H,G) scheme 70
4.3.3 IND-CPA-TLE security 71

5 E-cclesia: a self-tallying classical e-voting protocol 75
5.1 The STE functionality F

delay
STE . 78

5.2 Decomposing F
delay
STE into Felig and Fdelay

vm 83
5.2.1 Eligibility functionality Felig 84
5.2.2 Vote management funtionality Fdelay

vm 87
5.3 The E-cclesia family: relalization of Fdelay

STE in the (Felig,F
delay
vm ,Gclock)-

hybrid model . 90
5.3.1 Description of the E-cclesia family 90
5.3.2 Realization of Fdelay

STE via Felig and Fdelay
vm 92

5.4 Realizing Felig via accumulators 94
5.4.1 Definition of Facc . 94
5.4.2 A protocol that realizes Facc 102
5.4.3 A protocol that realizes Felig 102

5.5 Realizing Fdelay
vm via time-lock puzzles 105

5.5.1 A protocol Π
F

leak,delay
TLE

vm that realizes Fdelay
vm 106

6 Quantum e-voting & limitations 111
6.1 Dual basis measurement based protocols 113

6.1.1 Protocol specification . 113
6.1.2 Vulnerabilities of dual basis measurement Protocols 115

6.2 Travelling ballot based protocols 118
6.2.1 Protocol specification . 118
6.2.2 Vulnerabilities of travelling ballot based protocols 119

6.3 Distributed ballot based protocols 120
6.3.1 Protocol specification . 121
6.3.2 Vulnerabilities of distributed ballot based protocols 122

6.4 Quantum voting based on conjugate coding 128
6.4.1 Protocol specification . 129
6.4.2 Vulnerabilities of conjugate coding protocols 130

6.5 Other protocols . 131
6.6 Discussion: definitions for secure quantum e-voting 132

6.6.1 Game based definition for quantum privacy 136
6.6.2 Game based definition for quantum integrity 138

CONTENTS xi

7 Discussion 141
7.1 Summary . 141
7.2 Limitations . 142
7.3 Future directions . 144

A Supplementary material for Section 5.4 147

B Supplementary material for Section 6.3 155
B.1 Proof of attack on distributed ballot protocols 155

References 163

xii CONTENTS

Chapter 1

Introduction

Voting has been a fundamental component of democratic societies for over 2500
years. We can derive the term democracy from the Greek words “Demos”
which means “people”, and “Kratos” which means “government”. Democracy
is vital because a wider spectrum of people based on their social background,
e.g. minorities, can affect decisions that hold the future of their state in a
representative way. There are two main types of democratic societies, the first
one is called direct democracy Tangian (2020b); where the eligible citizens vote
for a decision, and the second one is called representative democracy Tangian
(2020a); where the eligible citizens vote for a representative to decide for them
for future matters related to the state. A combination of both is called liquid
democracy Ramos (2015); whereby citizens vote for a representative but if they
do not agree with the way he acts they can remove their vote from him at any
time, in contrast with representative democracy where voters must wait until the
service of the representative ends.

With the technological advancements of the computer era electronic voting,
known as e-voting has been introduced. E-voting refers to any voting procedure
that involves computer systems to support one (or more) stages, e.g. casting
and/or tallying. The aspiration being that electronic voting systems could offer
elections with higher voter participation and better accuracy, while also providing
enhanced security guarantees such as privacy and verifiability, even in the face
of dishonest election authorities compared to previous manual procedures. As a
result, a direct benefit from the transition from paper ballot elections to e-voting
is that voters will be more confident that their vote has been counted correctly
while maintaining their privacy regarding their voting choice. Keeping that in
mind, a potential other benefit is the increase of the participation rate in the
elections; because enhanced security facilitates integrity and thus confidence in
taking part in the elections. Another advantage would be the reduction of costs in
comparison with paper ballot elections, making e-voting a more profitable choice
in the long run Roberts (2007). With this drive, electronic voting has interested
the research community and governments all over the globe for the last three
decades.

1

2

Several cryptographic protocols have been proposed, implemented, and de-
ployed for electronic voting Adida (2008); Cortier et al. (2016); Juels et al. (2005);
Kiayias et al. (2015); Ryan and Schneider (2006); Okamoto (1998); Kiayias and
Yung (2002); Szepieniec and Preneel (2015); Groth (2004); Chaum et al. (2009);
Cortier et al. (2019). For example, Estonia deployed its own online e-voting sys-
tem for national elections and other decision-making aspects Wikipedia (2020),
albeit several security issues were raised Arthur (2014). Estonia’s case was one of
our motivations for defining and analysing a new e-voting protocol that tries to fill
the gap in terms of security and efficiency concerning all the previous decentral-
ized proposals. The existing electronic voting schemes vary and can be classified
per their underlying trust assumptions and cryptographic tools. For example,
zero knowledge proofs (ZKP) is a key cryptographic primitive that is used widely
in e-voting. For example, with ZKP we can prove to the auditors, external entities
of the protocol, that a ballot generated by a voter is well-formed without reveal-
ing the disclosed voting choice of the voter. Another key cryptographic primitive
are mix-nets Sako and Kilian (1995), that are used to shuffle the contents of the
bulletin board Kiayias et al. (2018), a distributed database where everyone can
both read the contents and write in it but none can delete or tamper with infor-
mation. The shuffling is important because it facilitates the unlinkability of the
ballots with the sender’s identity and thus preserves the anonymity of voters when
the election result is announced. Another important cryptographic primitive is
homomorphic encryption Yi et al. (2014), which allows a user to re-encrypt data
without corrupting the initial plaintext. A common use of this primitive is in
mix-nets, where the tallying authorities re-encrypt the ballots before the shuffling
occurs so that the anonymity of the voters can be preserved.

On one end, one finds fully centralized schemes which are often vulnerable
to large-scale attacks on robustness or privacy because of their centralized
nature Bannet et al. (2004); Wolchok et al. (2012); Estehghari and Desmedt
(2010). More relaxed variations of such systems Adida (2008) ground their
security by trusting a server responsible for the collection of the ballots and the
production of the election outcome. Of course, this procedure is publicly verifiable
by external entities, which are called auditors.

On the other end, schemes that are fully decentralized except maybe from
setting up the election, where the (tallying) authorities are the voters of the
election themselves, are called self-tallying Okamoto (1998); Kiayias and Yung
(2002); Szepieniec and Preneel (2015); Groth (2004). In between the two ends, and
to avoid the difficulties of self-tallying elections (STE) and dangers of centralized
elections, a range of e-voting schemes that distribute the trust among a small set
of authorities have also been proposed. Such systems achieve security as long as
a subset of those authorities is honest. For instance, in mix-net based schemes, at
least one authority needs to be honest Adida (2008); Ryan and Schneider (2006),
and in threshold encryption schemes, at most, a fraction ε of the authorities
can be corrupt and collude Kiayias et al. (2015); Juels et al. (2005). Of course,

CHAPTER 1. Introduction 3

other things being equal, electronic voting schemes at the decentralized end of
the spectrum are preferable as they can withstand more powerful adversaries.
Self-tallying election schemes are a step forward in this direction and move us
one step closer to real democracy. With the recent developments of Blockchain
technologies and the appeal for on-chain distributed governance, such mechanisms
are all the more topical. However, they present major challenges, which explains
why full decentralization often needs to be abandoned in favour of achieving all
the conflicting requirements that an electronic voting scheme should ensure. The
main challenges of self-tallying elections (STE) are in guaranteeing that no one (or
no coalition of) voter(s) can boycott the election, no intermediate results are being
leaked during the casting phase (fairness), and no vote can be linked back to the
voter that cast it (vote-privacy). Because of the mentioned challenges, this type
of e-voting has drawn less attention than its predecessor, centralized e-voting.
In this thesis, we are working towards this direction, modelling and defining
security properties and analysing STE protocols against standard cryptographic
approaches such as the universal decomposable (UC) framework Canetti (2001b).
For that task, we define intermediate functionalities from scratch, like the time-
lock encryption (TLE) functionality and security definitions in a game-based style
that every TLE construction must satisfy to be proven UC secure. The necessity of
using TLE in our protocol is important to solve the fairness issue all previous STE
proposals in the literature were vulnerable. However, no TLE construction in the
literature can be proven UC secure. The reason behind this limitation is related to
the UC framework itself. Intuitively, to capture semantic security, no information
should be leaked regarding the plaintext in the ideal world, on the other hand,
all ciphertexts will eventually open to the correct plaintext, resulting in a trivial
distinction of the real from the ideal setting. We go against this intuition and we
define such a scheme in the random oracle model, showing that it satisfies our
game-based definition and in turn, UC realizes our ideal functionality.

The second part of this thesis turn to the problem of e-voting against quantum
adversaries. Ideally, the security of the most promising e-voting systems we
mention above relies on computational assumptions such as the hardness of integer
factorization and the discrete logarithm problem (see Chapter 2). But, these
are easy to solve with quantum computers using Shor’s algorithm Shor (1994).
Although not yet available, recent technological advances indicate that quantum
computers will soon be threatening existing cryptographic protocols Gibney
(2020); IBM (2019). In this context, researchers have proposed to use quantum
communication to implement primitives like key distribution Diffie and Hellman
(2006), bit commitment Brassard et al. (1988) and oblivious transfer Rabin
(2005). Unfortunately, perfect security without assumptions has proven to be
challenging in the quantum setting Lo and Chau (1998); Mayers (1997), and
the need to study different corruption models has emerged. This includes
limiting the number of dishonest parties and introducing different non-colluding
authorities. This is precisely what we set to address in the second part of

4 1.1 Contributions

this thesis. We first give formal definitions for verifiability, integrity and vote
privacy in the quantum setting considering adaptive corruption. Subsequently,
we systematize and assess the security of existing e-voting protocols based on
quantum technology. We specifically examine the claims of each of these solutions
concerning the above-mentioned well-defined properties. Unfortunately, our
analyses uncover vulnerabilities in all the proposed schemes. While some of them
suffer from trivial attacks due to inconsistencies in the security definitions, one
of the contributions of this thesis is to argue that sophisticated attacks can exist
even in protocols that “seem secure” if the security is proven ad hoc, and not in
a formal framework. We argue that the cause of these failures is the absence of
an appropriate security framework in which to establish formal security proofs,
which we have now introduced.

Therefore, this thesis follows previous works Barnum et al. (2002); Portmann
(2017); Unruh (2010) in their effort to highlight the importance of formally
defining and proving security in the relatively new field of quantum cryptography.

1.1 Contributions

We present our findings in the next Chapters.

Chapter 4: Our contributions are summarized as follows:

• We present a UC definition of secure TLE via an ideal functionality FTLE

that captures naturally the concept of TLE as it provides the necessary
security guarantees a TLE scheme should provide. Specifically, it captures
semantic security as the encryption of a message is not correlated with the
message itself. Instead, it is correlated only with the length of the message
similar to the standard encryption functionality in Canetti (2001b). In
addition, it captures correctness Goldreich (1999); Kościelny et al. (2013),
i.e., if FTLE finds two different messages with the same ciphertext in its
record, then it aborts. Finally, we note that in the literature, there are TLE
constructions Liu et al. (2018) where the adversary holds an advantage in
comparison with the other parties and which might allow him to decrypt
a message earlier than the intended time. To cater for such constructions,
we parameterise FTLE with a leakage function leak which specifies the exact
advantage (in decryption time) of the adversary compared to the honest
parties. Ideally, the leak function offers no advantage to the adversary. It is
worth mentioning that TLE constructions in which the adversary holds an
advantage in comparison with the honest parties in the decryption time are
still useful to study in the UC framework because the computational burden
for solving the puzzle can be transferred to external entities of the protocol
(e.g., Bitcoin miners), making the decryption more client friendly Liu et al.
(2018). Naturally, the encryption takes some time, depends on the actual

CHAPTER 1. Introduction 5

construction. For that task, we introduce a variable delay that captures the
time encryption time of a message.

• We define a hybrid TLE protocol and a standalone basic security definition
in a game-based fashion. We show that if the pair of TLE algorithms that
our protocol uses satisfies our basic security definition then we have a UC
realization of FTLE.

Our TLE protocol does not use the vanilla version of a TLE algorithm (e.g.
a TLE algorithm as defined in Liu et al. (2018)). Instead, it relies on an
extended one based on techniques introduced in Nielsen (2002); Camenisch
et al. (2017) in the random oracle model. Our extension was necessary for
the proof of UC realization. Specifically, in both the real and ideal world,
all the messages eventually can be decrypted by any party. To avoid trivial
distinctions1, the simulator must be able to equivocate so that the ciphertext
opens to the correct message. As a result, the simulator programs the
random oracle so that the ciphertext opens to the target message, something
that is not feasible with the vanilla version of a TLE scheme without the
equivocation feature which our extension provides.

In our hybrid protocol, we defined both a functionality wrapper Wq and an
evaluation functionality Feval, to model the computation that is necessary
for solving the time-lock puzzle. In our case, this computation is a random
oracle query, thus Feval is the random oracle. Like in Badertscher et al.
(2017), the main function of the functionality wrapper is to restrict the
access to Feval and thus to model the limited computational resources a
party has at her disposal in each round. In our case, the limited amount of
computation a party has to solve the time-lock puzzle through queries to
Feval.

Our basic security definition of TLE schemes consists of two properties,
named Correctness and qSecurity. The Correctness property states
that the decryption of an encrypted message m leads to the message m again
with high probability, similar to the definition of correctness in the standard
encryption’s case. We define the qSecurity property in a game-based style,
between a challenger and an adversary where the latter tries to guess the
challenged message with less than the required oracle queries. A TLE
scheme satisfies the qSecurity property if the above happens with negligible
probability, capturing the fact that a message can only be decrypted when
“the time comes”.

• We provide a novel construction, named Astrolabous, and we show that it
satisfies our basic security definition, thus it supports the UC realisation of

1Recall that in the ideal world, to capture semantic security, ciphertexts do not contain any
information about the actual message except its length

6 1.1 Contributions

FTLE (in the random oracle model). Astrolabous combines ideas from both
the constructions in Rivest et al. (1996) and in Mahmoody et al. (2011).
Nevertheless, we did not use either of them for the following reasons. A
critical drawback of Mahmoody et al. (2011) is that parts of the plaintext
are revealed through the process of solving the time-lock puzzle, which is
based on a hash evaluation, as the message is hidden in the puzzle itself. On
the other hand, the construction in Rivest et al. (1996) encrypts a message
with a symmetric encryption scheme Kościelny et al. (2013) and then hides
the encryption key into the time-lock puzzle which is based on repeated
squaring. The first problem with the latter construction was that the
procedure for solving the puzzle is deterministic (repeated squaring) and
thus a party can bypass the functionality wrapper and solve any time-lock
puzzle in a single round, in contrast with the construction in Mahmoody
et al. (2011) where the procedure for solving the puzzle is randomized (hash
evaluation which is modelled as random oracle). The second problem with
the construction in Rivest et al. (1996) was that even if a party provides the
solution of the puzzle but the puzzle issuer does not provide the trapdoor
information that is used by the time the time-lock puzzle was created (in this
case, the factorization of a composite number N) then, to verify the validity
of the provided solution, all the verifying parties must resolve the time-
lock puzzle. Thus, the optimal complexity scenario is hard to achieve. In
contrast, the time-lock puzzle in Mahmoody et al. (2011) is easily verifiable
without the need for any trapdoor information from the puzzle issuer.

These were our motivations for defining Astrolabous that tackles all of the
above-mentioned limitations. Specifically, Astrolabous uses an asymmetric
key encryption scheme to hide the message like in Rivest et al. (1996) and
then “hides” the symmetric key in a time-lock puzzle similar to the one
in Mahmoody et al. (2011).

• We introduce an additional stronger game-based definition, named IND-
CPA-TLE, to capture semantic security of TLE schemes in the spirit of IND-
CPA security. Our stronger definition may serve as a standard for analysing
TLE schemes in the standalone setting. To demonstrate the usefulness of
our stronger definition and constructions, we prove that Astrolabous and
an enhanced version of the construction in Mahmoody et al. (2011) achieve
IND-CPA-TLE security.

Chapter 5: We formalize the concept of self-tallying elections by defining
the ideal functionality FSTE. The functionality captures the standard e-voting
properties such as one-voter-one-vote, eligibility and privacy. Specifically, if a
voter votes more than once and her vote passes the verification test algorithm
provided by the simulator in previous steps, the functionality outputs bottom,
guarding the one-voter-one-vote property. Similarly works the eligibility check, if

CHAPTER 1. Introduction 7

the ballot of a non-eligible voter passes the verification test algorithm provided
by the simulator then functionality outputs bottom. Last, privacy is defined in
the same lines as FTLE captures semantic security.

Moreover, we provide a protocol, namely E-cclesia, that UC realizes FSTE.
We separate two of the main functions of FSTE, which are the vote management
and the eligibility check, into two sub-functionalities namely Fvm and Felig

respectively. Specifically, Fvm handles the ballot generation and the ballot casting,
capturing the privacy of the FSTE. Next, Felig handles the credential generation
and the ballot authentication of the eligible voters, capturing the eligibility
property of the FSTE. Take these two functionalities into account, we provide
a proof of UC realization of FSTE. This modular approach allows modifications
to our protocol, E-cclesia, without re-proving the whole construction making
it more accessible for future development. Precisely, changing one cryptographic
primitive affects only the proof of UC realization in that level, leaving intact the
rest of the proof. This leads us to define a family of protocols that UC realize
FSTE. Finally we provide a UC realization of Fvm via FTLE.

Chapter 6: We review the state-of-the-art of quantum e-voting protocols by
systematizing them base on their special features. Unfortunately, we have
discovered concrete attacks against all proposals. That means that quantum e-
voting protocols fail to meet the cryptographic standards to be considered secure
like innovative quantum key distribution (QKD) protocol Bennett and Brassard
(1984).

Specifically, we have constructed an adversary that violates the claimed
properties, making the protocols insecure for future deployment without first
addressing the security issues we raised.

8 1.1 Contributions

Chapter 2

Preliminaries

In this chapter we present the general background information so that the reader
is comfortable enough to understand: i) the nature and the unique features
of quantum information; ii) the general concept of e-voting; iii) the security
requirements/definitions of an e-voting protocol that should satisfy if we are to
argue about its security.

2.1 Basic mathematical background and secu-

rity notions

Overview: In this section we give the necessary mathematical background and
cryptographic notions that are required for the understanding of this work. We
distinguish the background to mathematical (which is related closely to quantum
information) and cryptographic definitions (which is related to both classical and
quantum information) to help the reader to have a better understanding of which
mathematical tools are necessary for each part of this work (although that some
notions are common both in classical and quantum).

2.1.1 Mathematical background

Definition 2.1.1. We define the field F to be a non empty close set that satisfies
all the field axioms regarding two operations, that we denote as addition and
multiplication, specifically ∀a, b, c ∈ F it holds:

name addition multiplication
associativity (a+ b) + c = a+ (b+ c) (ab)c = a(bc)

commutativity a+ b = b+ a ab = ba
distributivity a(b+ c) = ab+ ac (a+ b)c = ac+ bc

identity a+ 0 = a = 0 + a a · 1 = a = 1 · a
inverses a+ (−a) = 0 = (−a) + a aa−1 = 0 = a−1a for a 6= 0

9

10 2.1 Basic mathematical background and security notions

where the 1 and 0 are the identity elements of addition and multiplication
respectively.

In this work, we consider F to be either the set of complex or real numbers
(it will be clear from the context). A finite field is a field with finite number of
elements. The most common example is the class of integers modulo n, where
n is a big prime number. Moreover, a group is a finite field equipped only with
multiplication that satisfies all of the field axioms except the commutativity one.
Last, a group generator g is an element of the group G such that:

∀y ∈ G,∃α ∈ N s.t gα = y

This states that every element of the group can be created if we multiply the
group generator with itself a certain amount of times.

Definition 2.1.2. We define the vector space V over a field F to be any set that
is closed under addition and scalar multiplication, with scalar factor from the field
F.

For example, x = (x1, x2, . . . , xn) is an element of V ⊆ Rn. In this work we
consider that each element of the vector is either a complex or real number. We
will use the vector, row, column representations interchangeably in this work.

Definition 2.1.3. The inner product between vectors x,y in vector space V over
field F is an additional structure of vector space V that associates x and y with
an element of the field F denoted < x,y >. A vector space with such a structure
is called inner product space.

In this work, we consider the Euclidean inner product, specifically for vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) we define:

〈x, y〉 =
n∑
j=1

xj ȳj ∈ F

Definition 2.1.4. The outer product between two vector spaces V1 and V2 over
the same field F of dimensions n and m respectively1 is a new vector space V3

over F with dimension nm.

For example the outer product of x = (x1, . . . , xn) and y = (y1, . . . , ym) is:

x⊗ y = (x1y, . . . , xny)

1The dimension of a finite vector space V over a field F is an integer number that shows the
number of elements of V that forms a base of V.

CHAPTER 2. Preliminaries 11

Similarly, in quantum’s case as we see, the outer product of x =

x1
...
xn

 and

y =

y1
...
yn

 is:

x⊗ y = x(y)t = (y1x, . . . , ymx)

.

Definition 2.1.5. The norm of a vector space V over a field F is a function
‖ · ‖ : V → R where R is the set of real numbers with the following properties:
For every x,y ∈ V and α ∈ F it holds that:

1. ‖x + y‖ ≤ ‖x‖+‖y‖

2. ‖αx‖ = |α|‖x‖

3. ‖x‖ = 0⇒ x = 0

where | · | is the absolute value if F is the real numbers or the norm of a complex
number.

In this work we use only the Euclidean norm for complex vector spaces. For
example, the norm of vector x = (x1, . . . , xn) is:

‖x‖ =

√√√√ n∑
j=1

xjx∗j

where x∗j is the complex conjugate of xj.

2.1.2 Cryptographic notions

Negligible function Goldreich (1999): The definition of negligible function
is widely used in the context of cryptography when we want to argue about the
security of a protocol. More precisely, we will required the probability a malicious
entity, called the adversary, to violate some of the desired properties to be very
small, formalized as negligible. Formally:

Definition 2.1.6. A negligible function negl : N → R is function such that, for
every c > 0 there exists n0 ∈ N such that ∀n ≥ n0 it holds:

negl(n) < 1/nc

Intuitively, as the value n gets bigger, the negligible function negl becomes
very small (in fact smaller than any polynomial function).

12 2.1 Basic mathematical background and security notions

Security parameter Goldreich (1999): The security parameter of a proto-
col, usually symbolized by λ, is a number that defines the space and time com-
plexity of the protocol and the level of security we want to achieve. Ideally, the
time complexity of a protocol is polynomial to the security parameter; and the
probability the adversary deviate from the protocol is negligible to the security
parameter as well.

Hardness assumptions Goldreich (1999): In classical cryptography, in
many cases the protocol’s security relies on computational assumptions or in other
words on the hardness of solving certain problems efficiently. A problem that is
very useful in classical cryptography is the discrete logarithm problem which can
be stated as follows:

Definition 2.1.7. Given a group G, a group generator g and a random element
of the group y, find the value x such that gx = y.

Another established hard problem in the literature is the factorization of a
big composite number. Specifically:

Definition 2.1.8. Given a composite number n = pq, where p, q are big primes,
find the factorization of n.

The underline assumption for both of these problems is that no polynomial-
time machine to the security parameter can find the value x or the factors p, q,
except with negligible probability to the security parameter. Most fundamental
cryptographic primitives rely for their security on these assumptions. For example
commitments schemes Pedersen (1992), encryption systems ElGamal (1985) to
name just a few.

Cryptographical hash function Goldreich (1999): A hash function is a
very important building block in cryptography for many applications Nakamoto
(2008); Nielsen (2002); Merkle (1979). It takes as input an arbitrary in size
bit string and outputs a bit string polynomial in size to a security parameter.
Specifically:

Definition 2.1.9. A hash function with respect to a security parameter λ is a
function H : {0, 1}∗ → {0, 1}poly(λ) where poly is a polynomial function.

Every hash function should satisfy the following security properties:

• Pre-image resistance: Given a random value y ∈ {0, 1}poly(λ) the
probability of finding a value x ∈ {0, 1}∗ such that H(x) = y in polynomial
time with respect to λ is negl(λ).

• Second pre-image resistance: Given a random value x1 ∈ {0, 1}∗, the
probability of finding a value x2 ∈ {0, 1}∗ such that H(x1) = H(x2) in
polynomial time with respect to λ is negl(λ).

CHAPTER 2. Preliminaries 13

• Collision resistance: The probability of finding x1, x2 ∈ {0, 1}∗ such that
H(x1) = H(x2) in polynomial time with respect to λ is negl(λ).

2.2 Quantum information

Overview: We use the term quantum bit or qubit Nielsen and Chuang (2011)
to denote the simplest quantum mechanical object we will use. We say that a
qubit is in a pure state if it can be expressed as a linear combination of other
pure states:

|x〉 = α |0〉+ β |1〉 , where |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
where |α|2 + |β|2 = 1 for some α, β ∈ C. The states |0〉 and |1〉 are called the
computational basis vectors. Sometimes it is also helpful to think of a qubit
as a vector in the two-dimensional Hilbert space H.2 A mixed state cannot be
described as a linear combination of pure states. Instead, it can be described
by a density matrix. The density matrix of a quantum state, usually denoted
by ρ, is a linear combination of outer products between pure states where the
squared amplitudes sum up to 1. For example, ρ = 1/2 |0〉 〈0| + 1/2 |1〉 〈1|. It
is worth mentioning that with density matrices we can describe both pure and
mixed states.

The generalization of a qubit to an m-dimensional quantum system is called
qudit :

|y〉 =
m−1∑
j=0

aj |j〉 , where
m−1∑
j=0

|aj|2 = 1

Let us now suppose that we have two qubits; we can write the state vector as:

|ψ〉 =
∑

i,j∈{0,1}

αij |ij〉

where
∑

i,j∈{0,1}
|αij|2 = 1. If the total state vector |ψ〉 cannot be written as a tensor

product of two qubits (i.e. |x1〉 ⊗ |x2〉), then we say that qubits |x1〉 and |x2〉 are
entangled. An example of two-qubit entangled states, are the four Bell states,
which form a basis of the two-dimensional Hilbert space:

|Φ±〉 = 1√
2
(|00〉 ± |11〉), |Ψ±〉 =

1√
2

(|01〉 ± |10〉)

A quantum system that is in one of the above states is also called an EPR
(EinsteinPodolskyRosen) pair Einstein et al. (1935).

2A Hilbert space is an inner product space with norm that is associated with the inner
product as ‖ |x〉 ‖ =

√
〈x| |x〉,∀ |x〉 ∈ H.

14 2.2 Quantum information

The no-cloning theorem: A very important difference between quantum and
classical information, is that there is no mechanism to create a copy of an unknown
quantum state Nielsen and Chuang (2011). This result, known as the no-cloning
theorem, is one of the fundamental advantages and at the same time limitations
of quantum information. Specifically, it states that there is no way to clone an
unknown quantum state. It becomes extremely relevant for cryptography since
brute-force types of attacks cannot be applied on quantum channels that carry
unknown information.

In the following Figure we summarize the most standart Nielsen and Chuang
(2011) quantum notations that we use.

Notation Description
z∗ Complex conjugate of the complex number z, e.g. (1 + i)∗ = 1− i.
|φ〉 Vector, also known as ket.
〈φ| The dual vector of |φ〉, also known as bra.
〈φ| |ψ〉 The inner product between vectors |φ〉 and |ψ〉.
|φ〉 ⊗ |ψ〉 Tensor product of |φ〉 and |ψ〉.
|φ〉 |ψ〉 Abbreviated notation for tensor product of |φ〉 and |ψ〉.
A∗ Complex conjugate of matrix A.
AT Transpose of matrix A.
A† Hermitian conjugate or adjoint of matrix A, A† = (A∗)T.

〈φ|A |ψ〉 Inner product between |φ〉 and A |ψ〉.

2.2.1 Unitary operations

The evolution of a closed quantum system can be described by the application
of a unitary operator. Unitary operators can be described by unitary matrices
which are reversible and preserve the inner product3. Specifically, we say that a
square matrix U is unitary if its conjugate transpose matrix U† (a matrix that can
be obtained from U by taking the transpose and then the conjugate complex of
each entry) is also its inverse matrix, specifically:

U†U = UU† = I

where I is the identity matrix. Recall our first example, and let us say we would
like to swap the amplitudes on state |x〉, then we can apply the operator X (known
as NOT-gate):

X |x〉 = β |0〉+ α |1〉 , where X =

[
0 1
1 0

]
The X-gate is one of the Pauli operators, which together with Z and Y , as well
as the identity operator I, form a basis for the vector space of 2 × 2 Hermitian
matrices. The fact that these form a basis means that every possible computation

3This is true only for finite dimension spaces, which is the case in this thesis.

CHAPTER 2. Preliminaries 15

is achievable as long as we have at our disposal these operators. These operators
are unitaries, and as such preserve the inner product. Specifically,

Z =

[
1 0
0 −1

]
, Y =

[
0 i
−i 0

]
As a result, the inner product of the quantum state after we applied the unitary

operator, in our example X, with itself should be equal to one. In our example4

〈x|X†X |x〉 = 〈x| I |x〉 = |α|2 + |β|2 = 1

2.2.2 Continuous & discrete measurement

The way we obtain information about a quantum system is by performing a
measurement using a family of linear operators {Mj} acting on the state space of
the system, where j denotes the different outcomes of the measurement. It holds
for the discrete and the continuous case respectively that:∑

j

M †
jMj =

∫
M †

jMjdj = I

where M †
j is the conjugate transpose of matrix Mj, I the identity operator and

the integral of the matrix M †
jMj is the matrix of the indefinite integral of each

element of M †
jMj. For qudit |y〉, the probability that the measurement outcome

is w is: Pr(w) = 〈y|M †
wMw |y〉 and in the continuous case Pr(w ∈ [w1, w2]) =∫ w2

w1
〈y|M †

jMj |y〉 dj.
For a single qubit |x〉 = α |0〉+β |1〉, measurement in the computational basis

will give outcome zero with probability |α|2 and outcome one with probability
|β|2. If our state is entangled, a partial measurement (i.e. a measurement in
one of the entangled qudits), not only reveals information about the measured
qudit but possibly about the remaining state. For example, let us recall the Bell
state |Φ+〉. A measurement of the first qubit in the computational basis will give
measurement outcome 0 or 1 with equal probability and the remaining qubit will
collapse to the state |0〉 or |1〉 respectively.

2.2.3 The cut-and-choose method

When verifying quantum resources (e.g. when we want to verify if a quantum state
is sampled from a specific distribution), it is necessary to apply a cut-and-choose
technique to test that the received quantum states are produced correctly. The
quantum source would therefore need to send exponentially many copies of the
quantum state Kashefi et al. (2017), for the verifier to measure most of them and

4This also shows that in whatever base we measure our state the probabilities of all possible
outcomes will sum to one, as expected.

16 2.3 E-voting

deduce that with high probability, the remaining ones are correct. Specifically, a
cut-and-choose protocol is an interactive protocol between a source and a verifier.
The source samples many quantum states |x〉 from the distribution D and sends
them to the verifier. The verifier after an interaction with the source (which
involves the exchange of either classical or quantum information) decides if the
state |x〉 is sampled from D indeed or not. The first classical instance of a cut-
and-choose protocol Rabin (1978) involves a source that tries to convince the
verifier that the received number n is a product of two primes p and q. This
can be done without the source sending many times the value n, in contrast with
the quantum case where the state |x〉 must be sent multiple times. The reason
behind this is that after the verifier measures the state |x〉, the state collapses in a
specific eigenspace. As a result, the state cannot be reversed to its initial state and
the verifier to repeat the verification procedure needs a new copy. On the other
hand, the verifier cannot clone the state |x〉 because of the no-cloning theorem.
The source needs to send exponentially many states to the protocol’s security
parameter for the following reasons: i) After each verification test the state is
destroyed because usually, the verification procedure involves a measurement. So
the verifying party needs another copy of the initial state if it wants to repeat the
procedure on the initial state. ii) To achieve a negligible probability of cheating
to the protocol’s parameter, exponentially many states must be sent, else there is
a non-negligible probability that the corrupted state remains unchecked.

2.3 E-voting

In this section, we present what an e-voting protocol is by describing the special
roles of each party. Moreover, we outline the security requirements an e-voting
protocol should satisfy to be considered secure according to today’s cryptographic
standards Cortier et al. (2016); Bernhard et al. (2015); Canetti and Krawczyk
(2002); Canetti (2001a); Unruh (2010).

2.3.1 Protocol description

An e-voting protocol Adida (2008); Chevallier-Mames et al. (2010); Delaune et al.
(2006); Okamoto (1998); Kiayias et al. (2015) is a protocol with the participating
parties being the voters, denoted by V, the talliers, denoted by T, a setup
authority, denoted by SA and a trusted bulletin board, denoted by BB. Any
party can write and read on BB, but no data can be deleted on BB. In other
words, BB is a read-write append-only structure. The role of SA is to set up the
protocol parameters and give the participation token, usually called a credential,
to the eligible voters5. The voters generate and cast their ballot and the talliers
gather the ballots and produce the election outcome based on a tally function

5The eligible voters is a subset of the set of all voters

CHAPTER 2. Preliminaries 17

specified by the protocol (e.g. a majority function). So an e-voting protocol
consists of the following phases:

1. Setup phase: The SA generates the protocol parameters and distributes
them accordingly to the participating parties. This generation could require
interaction with some of the other parties.

2. Casting phase: The eligible voters V complete locally their ballot and cast it
over some channel to T directly or to the BB, depending on the specification
of the protocol.

3. Tally phase: The Ts collect the ballots either from BB or directly from the
voters and produce the election outcome.

Note that there are special types of e-voting protocols where the special role of
the talliers is played by the voters themselves. This type of protocol is called
self-tallying Kiayias and Yung (2002); Fujioka et al. (1993).

2.3.2 Security definitions

Every e-voting protocol in order to be considered secure by today’s cryptographic
standards Szepieniec and Preneel (2015); Cortier et al. (2016); Groth (2004);
Bernhard et al. (2015); Canetti (2001a) should satisfy various properties. The
most important are:

1. Correctness: Only eligible voters are allowed to vote (eligibility) and at
most once (one-voter-one-vote) Arapinis et al. (2018). In addition, no voter
can alter the votes of other voters.

2. Privacy: The vote of a voter remains confidential even after the end of the
election procedure Bernhard et al. (2015).

3. Coercion resistance/receipt freeness: Voters cannot prove the way
they voted to a passive coercer (receipt freeness) or an active one (coercion
resistance) Delaune et al. (2006); Okamoto (1998); Juels et al. (2005).

4. Verifiability: A voter should be able to verify that their vote has been
counted (individual verifiability), the election outcome is produced based
on the collected ballots (universal verifiability), the counted ballots are
originated only from eligible voters (eligibility verifiability) Kiayias et al.
(2015); Cortier et al. (2016).

2.4 Protocol security

So far we mentioned which security requirements an e-voting protocol should
satisfy but without formally defining them. In this section, we present two
approaches towards defining security rigorously.

18 2.4 Protocol security

2.4.1 Game-based definitions

Overview: The first approach is known as the game-based approach. In this
paradigm, a security definition is formalised as an experiment between a challenger
Ch and an adversary B and sometimes an oracle O. Both Ch and B are
instantiated with the security parameter λ. Throughout the experiment, B can
issue queries to both Ch and the oracle. At some point, B requests a challenge
from Ch, to which Ch responds. B tries to solve the challenge and supplies his
response to Ch. If the answer to the challenge is correct, the experiment outputs
the bit 1, else it outputs 0. We say that the protocol satisfies the game-based
definition if the adversary wins the game with negligible probability in λ (or
probability equal to 1/2 + negl(λ) if B has to choose between only two possible
answers for the challenge).

In a nutshell, such an experiment tries to capture the interaction a malicious
entity has with the real protocol but in terms of an experiment/game. Of course,
if an experiment really captures the intended property is a subtle modelling task
and an active research area Bernhard et al. (2015) where new definitions try to
improve the older ones in terms of completeness and security. Specifically, the
game-based Definition 1 in Bernhard et al. (2015) for privacy does not capture
protocols where the voters vote with weights for the candidate of their choice
(weighed tally function). That means that even if a protocol satisfies this game-
based definition there might still be attacks that intuitively violate privacy and
that the formal definition does not capture. We present Definition 1 of privacy
as it appears in Bernhard et al. (2015) below:

Definition 2.4.1 (IND-BB). Let I be the list of voters identity, V the candidate
slate and BB0,BB1 are lists initialized at empty. The challenger starts by picking
a random bit β

and the adversary B = (B1,B2) is given access to the lists I and BB
. The challenger runs the setup algorithm and the keys (pk, sk) are created.

The adversary B1 for voter {id, id0, id1} ⊆ V can repeatedly query the oracle Ocast

as follows:

- Ocast(id, b): It runs bb→ bb||b on ballot boxes BB0 and BB1. (The expression
bb||b appends b to bb.)

The adversary can also query once the oracle OVoteIND as follows:

- OVoteIND(id0, id1, v0, v1) : If vδ ∈ V for δ = 0, 1, it halts. Else,
it runs BB0 ← BB0||{Vote(id0, v0),Vote(id1, v1)|} as well as BB1 ←
BB1||{Vote(id0, v1),Vote(id1, v0)}, where Vote is the ballot generation func-
tion that accepts as input the voters id and her voting choice.

At some point, the adversary B1 asks to see the result along with the proof of
correct tallying. The challenger computes (r,Π) ← Tally(BBβ, sk), and handles
the tally Π and the proof r to B1. Finally the IND-BB adversary B2 outputs β

′

CHAPTER 2. Preliminaries 19

as the guess for β. Formally, we say that a voting scheme V is IND-BB secure if
no probabilistic polynomial time (PPT) algorithm B can distinguish between the
outputs in the experiment just described for β = 0 and β = 1, i.e. for any PPT
adversary B it holds that:

|Pr[EXP indbb,0
B (λ) = 1]− Pr[EXP indbb,1

B (λ) = 1]| = negl(λ)

where EXP indbb,β is the experiment defined above.

The problem that rises with the above definition is that for tally functions
where the result does not define the set of votes in a unique way attacks can be
missed. For instance, an adversary might not be able to distinguish the case
((V1, v1), (V2, v2)) from ((V1, v2), (V2, v1)) but she might be able to distinguish
((V1, 3v2), (V2, v2)) from ((V1, 2v2), (V2, 2v2)) where each voter can include a weight
in their choice. The above definition does not capture this attack.

2.4.2 Universal composability

Overview: The second approach is called Universal Composability (UC)
paradigm introduced by Canetti in Canetti (2001b), which is the state-of-the-
art cryptographic model for arguing about the security of protocols when run
under concurrent sessions. In the UC framework, the parties engage in a proto-
col session (labelled by a unique session ID, sid) modelled as interactive Turing
Machines (ITMs) that communicate in the presence of an adversary ITM A that
may control some of the parties. The protocol execution is scheduled by an en-
vironment ITM Z that provides parties with inputs and may interact arbitrarily
with A. The intuition here is that: i) Z captures the external “observer” that
aims to break security by interacting with the protocol interface during session
sid, while ii) A plays the role of the “insider” that helps Z via any possible in-
formation it can obtain by engaging in the session in the back-end of the current
execution.

The UC security of a protocol Π follows the real-world/ideal-world indistin-
guishability approach. Namely, security is captured via a special ideal protocol
that has the same interface as Π that Z interacts with, but now the parties are
“dummy”, in the sense that they only forward their inputs provided by Z to
an ideal functionality F, which is in the centre of the back-end (i.e., the ideal
protocol has a star topology) and does not interact with Z directly. The ideal
functionality F formalizes a trusted party carrying out the task that Π intends
to realize (e.g. secure communication, key agreement, authentication, etc.). The
functionality F interacts with the adversary present in the ideal protocol, usually
called a simulator S, and this interaction results in a “minimum leakage of in-
formation” that determines the ideal level of security that any protocol realizing
said task should satisfy (not only Π). E.g. if F formalizes an ideal secure channel,
then the minimum leakage could be the ciphertext length. In case that Z gives
input to a corrupted party P in the ideal world, the functionality F passes that

20 2.4 Protocol security

message to S and returns to P whatever it receives from S. In both executions,
if a party has the token and halts, then by convention the token is passed to the
environment. We say that the real-world protocol is UC-secure if no environment
Z can distinguish its execution from one of the ideal protocols managed by F.

More formally, let EXECΠ
Z,A denote an execution of a real-world protocol Π in

the presence of the adversary A scheduled by an environment Z, and EXECF
Z,S

denote an execution of the ideal protocol managed by F in the presence of a
simulator S, again scheduled by Z. The UC security of Π is defined as follows.

Definition 2.4.2 (UC realization Canetti (2001b)). The protocol Π is said to
UC-realize the ideal functionality F if for any PPT adversary A, there exists a
PPT simulator S such that for any PPT environment Z, the random variables
EXECΠ

Z,A and EXECF
Z,S are computationally indistinguishable.

Composition and modularity: Perhaps the most prominent feature of the
UC paradigm is the preservation of the security of a protocol that runs concur-
rently with other protocol instances, or as a subroutine of another (often more
complex) execution. In particular, assume a protocol Π that UC-realizes an ideal
functionality F according to Definition 2.4.2, and is used as a subroutine of a
“larger” protocol Π̃. Then, UC guarantees that if we replace any instance of Π
with F, we obtain a “hybrid” protocol, denoted by Π̃Π→F, that enjoys the same
security as Π̃. Namely, if Π̃ UC-realizes some ideal functionality F̃, then so does
Π̃Π→F.

The power of composition facilitates the design and analysis of complex cryp-
tographic schemes with a high-degree of modularity. Namely, the scheme’s formal
description can be over the composition of ideal modules that are concurrently
executed as subroutines. When a protocol Π using the functionalities F1, . . . ,Fk
UC-realizes a functionality F, we say that it does so in the {F1, . . . ,Fk}-hybrid
model and we write ΠF1,...,Fk to clearly denote the hybrid functionalities. For in-
stance, an e-voting system Πvote can be described using the ideal functionalities
Fsc, Fauth and FBB that formalize the notions of a secure channel, an authenticated
channel, and a Bulletin Board, respectively. In this case, we say that Πvote is UC-
secure in the {Fsc,Fauth,FBB}-hybrid model and we write ΠFsc,Fauth,FBB

vote to clearly
denote the hybrid functionalities. Furthermore, composition allows us to extend
the secure modular design into multiple (poly(λ) many) layers, since a protocol
that uses a hybrid functionality as a subroutine may itself be the subroutine of
another protocol of an “upper layer” until we reach the level of the root ideal
protocol (in our example, an ideal e-voting functionality Fvote).

A major advantage of the modular design in UC is that we can describe the
cryptographic scheme in a partially abstract black-box manner by simply using
the hybrid functionalities instead of the associated real-world subroutines, and
then prove security in the corresponding hybrid model. Henceforth, whenever the
designer wishes to improve the scheme by implementing a more efficient version
of some subroutine, they just need to prove the security of the new subroutine

CHAPTER 2. Preliminaries 21

w.r.t. the associated hybrid functionality, which will directly imply the overall
security of the improved scheme.

Party corruption: In UC the environment informs the adversary which parties
to corrupt by sending him the corruption vector. One problem addressed in the
current version of Canetti (2000), is that the simulator corrupts all the parties,
despite the instructions received from the environment, making the UC realisation
always possible, even for an obviously insecure protocol. Canetti tackled this flaw
by allowing the environment to gain some partial information about the corrupted
parties. So, if the simulator decides to corrupt a different set of parties than the
one instructed by the environment, then Z can trivially distinct the real from the
ideal execution. In this thesis, we assume this model. We do not refer to it for
simplicity and should be clear for the context. It is worth mentioning that the
composition theorem does not preserve receipt freeness/incoercibility Alwen et al.
(2015).

2.4.3 Setup functionalities

In the UC literature, hybrid functionalities do not only play the role of abstracting
some UC-secure real-world subroutine (e.g. a secure channel), but also formalize
possible setup assumptions that are required to prove security when this is not
done (and in many cases even impossible to achieve) in the “standard model”. For
example, this type of setup functionalities may capture the concept of a trusted
source of randomness, a clock, or a Public Key Infrastructure (PKI). Moreover,
these setup functionalities can be global, i.e. they act as shared states across mul-
tiple protocol instances and they can be accessed by other functionalities and even
the environment that is external to the current session (recall that standard ideal
functionalities do not directly interact with the environment). The extension of
the UC framework in the presence of global setups has been introduced by Canetti
et al. in Canetti et al. (2007a). Below, we present the setup functionalities that
we consider across this work.

– The global clock functionality Gclock similar to Badertscher et al. (2017) (see
Figure 2.1).

– The random oracle functionality FRO, as defined in Nielsen (2002) (see
Figure 2.2).

– The common reference string functionality FCRS, as given by Canetti
(2001b) (see Figure 2.3).

– The anonymous broadcast functionality Fan.BC. To guarantee the privacy of
our STE scheme we assume that voters communicate via an anonymous

22 2.4 Protocol security

broadcast channel. This communication interface is formalized via the
functionality Fan.BC in Figure 2.5.

– The certification functionality Fcert, as defined in Canetti (2001b) (see
Figure 2.6).

The global clock functionality Gclock: In Figure 2.1, we provide the defi-
nition of a global clock functionality Gclock similar to Badertscher et al. (2017).
Time advances only when the environment has allowed all involved parties to
advance Katz et al. (2013); Badertscher et al. (2017).

The Global Clock functionality Gclock(P,F).

For each session sid, the functionality initializes the global clock variable Cl← 0 and
the set of advanced parties per round as Ladv ← ∅.
� Upon receiving (sid,Advance Clock) from P ∈ P, if P /∈ Ladv, then it adds P
to Ladv. If Ladv = P ∪ F, then it updates as Cl ← Cl + 1 and resets Ladv ← ∅. It
notifies A by forwarding (sid,Advance Clock, P).

� Upon receiving (sid,Advance Clock) from F ∈ F, if F /∈ Ladv, then it adds F to
Ladv and sends the message (sid,Advance Clock) to F. If Ladv = P ∪ F, then it
updates as Cl← Cl + 1 and resets Ladv ← ∅.
� Upon receiving (sid,Read Clock) from X ∈ P ∪ F ∪ {Z,A}, then it sends
(sid,Read Clock,Cl) to X.

Figure 2.1: The global clock functionality Gclock(P,F) interacting with the parties
in P, the functionalities in F, the environment Z and the adversary A.

That is the standard way of capturing synchronicity in the UC model.
Namely, Gclock is publicly accessible by all entities, and time advances only when
the environment has allowed all involved parties to advance. Intuitively, UC
synchronicity suggests that the environment must respect the synchronization
reference points, yet between consecutive points the protocol flow may be
adversarially scheduled.

CHAPTER 2. Preliminaries 23

The Random Oracle functionality FRO(P, A,B).

The functionality initializes a list LH ← ∅.
� Upon receiving (sid,Query, x) from P ∈ P, if x ∈ A, then

1. If there exists a pair (x, h) ∈ LH, it returns (sid,Random Oracle, x, h) to
P .

2. Else it picks h
$← B, and it inserts the pair to the list LH ← (x, h). Then it

returns (sid,Random Oracle, x, h) to P .

Figure 2.2: The random oracle functionality FRO w.r.t. domain A and range B
interacting with the parties in P.

The random oracle functionality FRO: In Figure 2.2, we define a UC ran-
dom oracle (RO) as in Nielsen (2002), a setup assumption widely used in the
security analysis of efficient protocols. Like an RO, FRO behaves like a truly ran-
dom function, by providing random yet consistent responses to evaluation queries
(i.e. multiple queries for the same pre-image x from domain set A result in the
same response h from the range set B).

The common reference string functionality FCRS: Another setup assump-
tion is the common random string model, where a single random string is drawn
from a uniform distribution over strings. Figure 2.3 formally defines FCRS as
given by Canetti (2001b). Note that FCRS requests permission from the simula-
tor S before returning the value, disclosing the identity of the requesting party.
This action is often called (public) delayed output in the literature. The common
reference string (CRS) model generalizes to arbitrary distributions, which can be
over parameters that need to be shared in some multi-party protocol. Realizing
FCRS is by itself not a trivial task, so we do not choose a specific protocol. How-
ever, there have been efforts to relax the definition to allow for more practical
implementations, e.g. Canetti et al. (2007b).

The anonymous broadcast functionality Fan.BC: To guarantee the privacy
of our STE scheme we assume that the users communicate via an anonymous
broadcast channel, i.e. every user transmits her messages to all other users
without disclosing anything more than her eligibility to participate in the election
and the validity of her ballot. This communication interface is formalized via
the functionality Fan.BC described in Figure 2.5. We stress that as in FCRS,
our formalization captures adversaries that can block communication at will via
private delayed output, i.e. here S does not learn the identities of the parties

24 2.4 Protocol security

who send the messages. With this, we capture the control of the adversary over
the network to block messages without learning the identity of the party. For
example, the adversary might control some routing nodes, and thus be able to
stop the transmission of any message. Providing a provably UC-secure realization
of either Fan.BC or FBC is out of the scope of this work. However, intuitively, one
can instantiate an anonymous broadcast channel by deploying a bulletin board or
a Blockchain (or any transaction ledger) where the users access the Blockchain via
an anonymous communications channel such as Tor or any mix-network routing
protocol.

The broadcast functionality FBC: We make use of a broadcast channel to
broadcast to the other parties the resulting ciphertext that includes the time-lock
puzzle. The reason behind this design decision was that the parties need to start
solving immediately the puzzle by the time of its creation. The communication
interface is formalized via the functionality FBC described in Figure 2.5. We
stress that our formalization captures adversaries that can block communication
at will via public delayed output, i.e., the simulator S learns the identities of the
parties who send the messages. Providing a provably UC-secure realization of
FBC is out of the scope of this work. However, there are works that present
constructions Khisti et al. (2008); Hirt and Zikas (2010) and provide simulation
security Hirt and Zikas (2010) in the secure channel model.

The broadcast functionality is parameterized by a set of parties P and it is
along the lines of Goldwasser and Lindell (2005).

The common reference string functionality FCRS(P, D).

The functionality initializes a waiting list Lwait ← ∅.
� Upon receiving (sid,CRS) from Pi ∈ P it does:

1. If no value r is recorded then it picks r
$← D.

2. Adds Pi to Lwait and sends (sid, Allow, Pi) to S.

� Upon receiving (sid, Allowed, Pi) from S, if Pi ∈ Lwait, it sends (sid,CRS, r) to
Pi and S and removes Pi from Lwait.

Figure 2.3: The CRS functionality FCRS interacting with the parties in P and the
simulator S, parameterized by distribution D.

CHAPTER 2. Preliminaries 25

The Anonymous Broadcast functionality Fan.BC(P).

The functionality initializes a list Lpend ← ∅ of messages pending to be broadcast.

� Upon receiving (sid,Broadcast,M) from Pi ∈ P, it adds (M,Pi) to Lpend and
sends (sid,Allow,M) to S.

� Upon receiving (sid,Allowed,M) from S, if (M,Pi) ∈ Lpend, then it sends
(sid,Broadcast,M) to P1, . . . , Pn, and S. Then, it removes (M,Pi) from Lpend.

Figure 2.4: The anonymous broadcast functionality Fan.BC interacting with the
parties in P = {P1, . . . , Pn} and the simulator S.

The Broadcast functionality FBC(P).

� Upon receiving (sid,Broadcast,M) from P ∈ P, it sends
(sid,Broadcast, P,M) to S.
� Upon receiving (sid,Allow Broadcast, P,M) from S, it sends
(sid,Broadcast,M) to all P ∗ ∈ P \ P and S and (sid,Broadcasted,M)
to P .

Figure 2.5: The broadcast functionality FBC interacting with the parties in P =
{P1, . . . , Pn}.

The certification functionality Fcert(P,V).

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V∪P , it fixes Vcorr as the
set of corrupted parties.

� Upon receiving (sid,Setup) from P , if sid = (P, sid′) for some sid′, it sends
(sid,Setup) to S.

� Upon receiving (sid,Algorithms, Verify, Sign) from S, it stores the algorithms
and sends (sid,Setup) to P .

� Upon receiving (sid,Sign,m) from P , it sets σ ← Sign(m). If Verify(m,σ) 6= 1,
it aborts. Otherwise it records (m,σ) and sends (sid,Signature,m, σ) to P .

� Upon receiving (sid,Verify,m, σ) from V ∈ V, if Verify(m,σ) = 1, the signer
is not corrupted and no entry (m,σ′) for any σ′ is recorded, it aborts. Otherwise it
sends (sid,Verified,m, Verify(m,σ)) to V .

Figure 2.6: The certification functionality Fcert interacting with a prover P , a set
of verifiers V and the simulator S.

The certification functionality Fcert: The registration process for voting
traditionally makes use of a channel through which the voters can identify

26 2.4 Protocol security

themselves to the election authority. It would be natural to utilize a form of public
key infrastructure, but modelling it in UC is not straightforward, and turns out
to not be necessary for the protocol that will be introduced in Subsection 5.4.3.
Instead, we will use a certification scheme that provides signatures not bound
to keys, but identities. Fcert, shown in Figure 2.6 as defined by Canetti (2001b)
(2005), provides commands for signature generation and verification and is tied
to a single party (so each party requires a separate instance). It can be realized
as in Canetti (2003) by a EUF-CMA secure signature scheme combined with a
party acting as a trusted certificate authority.

In this thesis, to make the notation simpler sometimes we refer to an ideal
functionality without all of its inputs (e.g Ftest instead of Fxtest(V)). In the full
description of the functionality, we refer to it with all of its input.

Chapter 3

Literature review

In this section, we present the state-of-the-art both for classical and quantum
protocols. Specifically, in both classical and quantum e-voting we present
solutions and we mention some of their limitations in terms of security and
efficiency.

3.1 Classical e-voting

In the next subsections, we present the two main types of e-voting and the
necessary cryptographic tools that are essential for the design of these systems.

3.1.1 Centralized e-voting

In centralized e-voting, tasks such as the computation of tally and the generation
of the protocol’s parameters are assigned to the talliers and the election authority
respectively. The approach of having a variety of parties except the voters
facilitates efficiency and usually results in less complicated protocols. Moreover,
centralized e-voting is the most well-studied type of e-voting in the literature
which makes us draw safe enough conclusions regarding the expectations and the
actual features it could provide. Centralized e-voting can be divided into two
categories. The first one is called On-line e-voting which the majority of the
procedure, if not all, happens remotely from a personal computer. The second
one is called Code-based e-voting which combines elements from both the classical
paper ballot and electronic elections.

On-line e-voting: In on-line e-voting systems usually the voters receive their
login details in a trusted manner Adida (2008); Juels et al. (2005); Clarkson
et al. (2008); Cortier et al. (2019), e.g. in person by an authorized entity. One
of the greatest advantages of online e-voting is the fact that the voters can
participate remotely without the need to physically be in a specific location.
This is very important as it can increase the participation rate in the election

27

28 3.1 Classical e-voting

from sensitive groups, where the access otherwise would be restrictive, and
for under-representative groups, as it is more convenient for them. In Adida
(2008) the authors have introduced Helios, a fully-fledged on-line e-voting system
based on well studied cryptographic primitives such as mix-nets Sako and Kilian
(1995) and El-Gamal encryption ElGamal (1985). Although their construction
is very efficient, security exploits have been demonstrated on the first version of
Helios Cortier and Smyth (2013) such as ballot stuffing and replay attacks. In
principle, a ballot stuffing attack means that non-eligible voters have voted and
their votes have been included in the outcome of the election (violation of eligibility
verifiability) or that eligible voters have voted more than once. Moreover, Helios
is insecure in high coercion environments where a coercer actively coerces a
voter Delaune et al. (2006), e.g. by being over the voter’s shoulder throughout the
whole election period. The authors in Cortier et al. (2019) develop a new voting
system, namely Belenios, where it surpasses many of the previous limitations
like the ballot stuffing attack. Still, Belenios is vulnerable in high coercion
environments like Helios. Another online e-voting protocol is proposed in Juels
et al. (2005); Clarkson et al. (2008) that tackles these limitations. The novelty
of these systems is the use of the plaintext equivalence test (PET) method which
allows a party to verify if the underline plaintext of two ciphertexts is the same
without opening the ciphertexts. The authors argue about the security of their
protocol by presenting two game-based definitions, one for the correctness and the
other for the coercion resistance property. The authors show that their protocol
satisfies both of them. The biggest drawback with their construction is the fact
that it is inefficient for large scale elections as the time complexity depends on
the number of voters in a more than linear way.

Code based e-voting: A code-based e-voting scheme Chaum et al. (2009);
Ryan and Schneider (2006); Kiayias et al. (2015) is a semi-electronic e-voting
setting in the sense that voters still need to use a voting booth to vote but
with electronic means, such that optical scanners. Still, even if not clearly fully
electronic it shares many of the advantages of pure digital systems such as low
election costs, enhanced security guarantees compared to the paper ballot voting
system and efficient tallying. In Chaum et al. (2009); Ryan and Schneider (2006)
the authors use optical scanners Chaum et al. (2009) and invisible ink Ryan and
Schneider (2006) so that: i) a voter can participate in the election procedure;
ii) their construction satisfies essential security guarantees. Besides the security
claims, none of these works come with rigorous security definitions and a well-
articulated security model. The construction of Kiayias et al. (2015) is based
on previous constructions Chaum (2001, 2004). One very important novelty
of Kiayias et al. (2015) is the fact that their construction is in the standard
model. This means that the security of their protocol does not rely on the random
oracle (RO), which can be instantiated by a cryptographic hash function, or
a common reference sting (CRS), where a special party provides a string from

CHAPTER 3. Literature review 29

a specific probability distribution in a trusted manner. Moreover, the authors
establish their protocol’s security against game-based definitions. Specifically,
they introduced the notion of end-to-end (E2E) verifiability, a novel security
definition for universal verifiability showing that their construction satisfies it.
Despite that, their protocol is insecure in high coercion environments.

3.1.2 Self-tallying protocols

The first self-tallying protocol was from Fujioka et al. (1993) (although the authors
do not state it explicitly as self-tallying). This protocol consists of an election
authority EA, that is responsible only for providing a certificate to each voter V
eligible to participate in the election procedure. In the setup phase each voter
V interacts with the EA so that they can obtain their credential without EA
knowing the link between the credential and the voter’s identity. This is possible
with blind signatures Chaum (1983). Specifically, V chooses a unique bit-string
at random then blinds it and gives it to EA to sign it. After receiving the signed
blind bit-string back from EA, V unblinds it and keeps it. In this way, EA does not
know what she actually signs. As a result, the link between that string and the
voter’s identity is hidden from EA. Next, at the casting phase of the protocol,
V commits via a commitment scheme Camenisch et al. (2016) their vote padded
with their unique bit-string along with the signature of EA and broadcasts it
via an anonymous channel to the other voters. Finally, during the tally phase
each voter broadcasts their de-commit key to all other voters via an anonymous
channel. As a result, each voter can open the committed values with the de-
committed keys, check that the signature is issued from EA and then include that
vote to the final tally given that is the first one related with that bit-string. One
security issue with the previous protocol is the fact that intermediate results are
leaked during the tally phase. As a result, malicious voters observe how the
election result is created progressively and they may change their mind and don’t
cast their de-commit key so that they can favour one candidate over the other.
So the fairness condition is not satisfied by the protocol. Another security issue
is the fact that there is not any agreement between protocols phases. As a result,
a voter does not know when the, e.g. casting phase ends.

In Kiayias and Yung (2002), which is the first to introduce the term self
tallying protocol in the literature, the authors tried to address the violation of
fairness condition in the self-tallying elections. This protocol consists of EA which
provides the protocol parameters, a set of voters V, a trusted bulletin board BB
along with a trusted dummy party PD. The presence of the dummy party is
essential as it guarantees that the fairness condition is satisfied. In the setup

phase of the protocol, the parameters are given to the voters by EA and each
voter posts their public parameters to BB. Initially, all voters create a pre-voting
matrix with the property that the multiplication of each row element is equal to
the generator of the group which is given as a public parameter by EA. Next,
in the casting phase each voter generates their ballot based on the pre-voting

30 3.1 Classical e-voting

matrix and posts it to the BB. The party PD votes last so that the fairness
condition be satisfied else intermediate results will be leaked to the other voters.
Specifically, PD can learn the election result without even post his empty ballot
to BB, leading him to an obvious advantage over the other voters. However, by
assumption PD is a dummy party, meaning that he will not take advantage of that
knowledge. Finally, in the tally phase the election outcome can be derived from
the final matrix based on the property of each row we mentioned before. The
security flaws here are i) to guarantee fairness the authors introduced the trusted
party PD which leads to a weaker threat model as it re-introduces a trusted party
in the STE setting; ii) a single party can cause the protocol to abort. Specifically,
if a party does not cast their ballot in the casting phase the tally cannot be
produced. The authors mention that their protocol can handle such attacks if
the protocol runs one extra round, as they call a recovery round. But if a new
party deviates again during the recovery round, the protocol aborts completely
making it impractical, especially in large scale elections where a new execution of
the protocol is very costly in terms of time.

In Szepieniec and Preneel (2015); Groth (2004); Li et al. (2019) the authors
suggest self tallying protocol based on Kiayias and Yung (2002) but with some
of the limitations as mentioned above. One big difference in Li et al. (2019) is
that there is not a dummy party to guarantee fairness, instead, in the setup

phase the voters additionally commit their vote before generating and casting
their ballot. If the last voter refuses to cast their ballot then similarly to the
recovery round of Kiayias and Yung (2002) the other voters can reconstruct the
vote based on the commitment from the setup phase, a feature that did not exist
in Kiayias and Yung (2002). On the other hand, if another voter aborts then the
protocol is terminated. Moreover, the authors proved their protocol’s security
against a new game based definition, namely maximun ballot secrency (MBS),
which is pretty similar to Definition 2 in Bernhard et al. (2015). That means
that it shares the same limitations as well; for instance, this definition does
not capture vote privacy for protocols where the election result, produced by
a tally function specified by the protocol, does not uniquely define the set of
votes (e.g. weight elections). In Szepieniec and Preneel (2015), the authors define
an ideal functionality for e-voting, name FVS, that captures correctness and
privacy. The authors provide a separate definition for universal verifiability as
their functionality does not capture it. The main limitation in this work is that
it allows a single voter to cause the whole election to abort. Similar, in Groth
(2004) they define a voting ideal functionality and they provide a hybrid protocol
that UC realises it. Both the ideal functionality and the hybrid protocol allow
the adversary to decide if the voting parties will receive the election result or not.

3.1.3 Cryptographic primitives in e-voting

A common security flaw for every self-tallying protocol we mentioned is the fact
that the fairness condition is not satisfied. One novelty of our work was to

CHAPTER 3. Literature review 31

search what cryptographic primitive we can use to surpass this difficulty without
sacrificing the decentralized nature a self-tallying protocol provides to us. Another
novelty of our work was to search for a cryptographic primitive that make our
protocol satisfy privacy but at the same time to make it suitable for large scale
elections.

For fairness: Although the commitment scheme in Okamoto (1998) guarantees
that a voter cannot change their vote, after the de-commit phase a malicious
voter can decide to not open its committed value and affect the final result of the
election based on the intermediate results. For example, let us suppose that there
are two candidates, a, b respectively, and a voting party which initially prefers
the candidate a over b. During the casting phase, that party commits to the
candidate a. During the tally phase, where each ballot is handled and opened
in an individuality manner, the voter observes how the election result is formed.
As a result, he might change his mind regarding his initial voting choice and
refuse to open his ballot by providing his de-commitment key. As can be seen,
commitment schemes guarantee that the vote of a voter remains committed to
his initial choice but we can not guarantee that his ballot will eventually open. A
solution for that task seems to be closer to encryption rather than commitments
to achieve fairness. On the other hand, maintaining the decentralized character of
the self-tallying approach is equally important, thus we need to seek cryptographic
primitives in the literature so that we can handle the decryption of each ballot in
a distributed manner.

Distributed key generation: Our first attempt was to use a distributed
key generation (DKG) Gennaro et al. (2007) protocol so that the parties can
generate the parameters of a threshold encryption scheme. Specifically, in a DKG
protocol some parties, in our case, the voters, need to agree on a public key
that is sampled from a specific distribution with integrity. Moreover, the secret
key that is related to this public key should not appear explicitly anywhere.
Instead, each party holds a share of it such that if m out of n parties (voters
in our case) contribute their share, decryption of ciphertexts encrypted with the
public key produced through a DKG session. The DKG protocol assumes that
the communication between players is secure, this can be achieved with pairs
of keys each voter is registered with to encrypt and sign messages. Finally, a
commitment scheme is necessary to avoid trivial attacks. For example, if we do
not use a commitment scheme the adversary has partial control over the newly
created public key, thus the public key will be not generated uniformly at random
but with some adversarial influence. So after such a public key is agreed between
voters the violation of fairness can be countered by using a threshold encryption
scheme Gennaro et al. (2007). Regarding the security of such a protocol, there are
ideal functionalities in the literature and realizations as well. Specifically, there

32 3.1 Classical e-voting

are works which have proved UC security for DKG protocols based on discrete
logarithm assumption, such as:

1. In Abe and Fehr (2004) the authors define the FDKG functionality and prove
that their protocol special inconsistent party (SIP) UC realizes it. The SIP
model is a little weaker than the general UC model as it considers that
in all executions of the protocol a specific party remains uncorrupted. On
the other hand, this party does not have any special role, it is sampled
at random from the set of all parties at the beginning of the protocol.
In Canetti et al. (1999) if this party is corrupted (both models consider
an adaptive adversary) the simulator rewinds and picks another party.
Essentially in Abe and Fehr (2004) the authors use the same proof technique
of Canetti et al. (1999) but without using the rewinding technique as they
assume that this special party remains uncorrupted and thus the simulator
always succeeds. On the other hand, if we consider a static adversary the
proof of Abe and Fehr (2004) holds for the standard UC as well.

2. Finally in Wikström (2005) the authors consider a static corruption. As a
result, their protocol is more efficient. Is proven UC secure in the random
string model (a specific instance of the CRS model).

In Abe and Fehr (2004) we can omit the SIP if we consider a static corruption.
In their model, a simulator fails if the adversary sends a corruption message to
the special party (SIP). This is happening because the simulator can not simulate
that party’s internal storage. So if we assume that the adversary corrupt parties
at the beginning of the protocol, if the simulator picks a party outside of the
corruption set defined by the adversary at the beginning of the protocol, then
proof of UC realization is possible. Despite all this literature to back up our
construction, we didn’t choose this approach to solve the fairness problem for
efficiency/practical reasons. For the voters to produce such a public key, the
communication complexity is polynomial to the voters (at least quadratic). As a
result, on large scale elections, this is computationally unrealistic. Moreover, an
honest fraction of the voters would need to stay online until the end of the election
procedure. The percentage of the fraction is a trade-off between practicality and
security. If we require a “big” fraction to be needed to decrypt the ballots then
this approach is secure (e.g the adversary needs to corrupt many voters to decrypt
a ballot earlier and thus violate fairness) but it is not practical (e.g. many voters
should remain on-line even after they cast their ballot). On the other hand, if
we require a “small” fraction of voters to remain online, this approach will be
practical but not secure (e.g. an adversary with a small percentage of voters
under its possession can open the ballots earlier and thus violate fairness).

Time-lock encryption: All of these limitations lead us to our second
approach for solving the fairness problem which is the time-lock encryption (TLE).

CHAPTER 3. Literature review 33

TLE is a cryptographic primitive that allows a ciphertext to be decrypted only
after a specific time period has elapsed. This is possible by “hiding” the decryption
key in a puzzle so that after a specific time period can be solved. The reward for
solving the puzzle is the decryption key of the corresponding ciphertext. So the
main purpose of the puzzle is to delay the party from opening the message before a
specific amount of computation has been done. In some proposals, decryption can
further be performed without requiring knowledge of any secret information Liu
et al. (2018); Rivest et al. (1996). Previously proposed constructions are based
either on witness encryption Garg et al. (2013) or symmetric encryption Kościelny
et al. (2013). The authors of these works provide game-based definitions to argue
about the security of their constructions. Unfortunately, game-based definitions
do not capture the variety of adversarial behaviour the UC framework Canetti
(2001b) does. Moreover, the task of transferring these definitions to the UC
setting is quite challenging due to some incompatibilities between the two settings
(concrete vs asymptotic adversary). More precisely, in Liu et al. (2018) the
authors define a computational reference clock (CRC) which after specific time
periods produces the secret key so that a message with the corresponding time
labelling can be decrypted. In their construction, the authors instantiate the
CRC with the Bitcoin ledger Badertscher et al. (2017); Garay et al. (2015);
Nakamoto (2008). Specifically, they use a witness encryption scheme Liu et al.
(2018) with the witness to be a length τ of Bitcoin’s chain. So, every message
that was encrypted with label τ can be decrypted with that part of the chain.
So the CRC in that case is the Bitcoin ecosystem that is maintained by Bitcoin
miners Nakamoto (2008). Moreover, they provide security arguments of their
construction in a game based style in the sense that an adversary that executes
t-steps cannot win the game except with small probability. If we want to argue in
UC about the security of this scheme we have to consider adversaries that execute
not a concrete number of steps (in this case t-steps) but instead asymptomatically
polynomially many steps for arbitrary polynomials, which leads us to a completely
new definition. Another TLE construction proposed in Rivest et al. (1996) which
is based on a block cipher, e.g. advanced encryption system (AES) Daemen and
Rijmen (2002), and the repeated squaring. Specifically, first, a party encrypts a
message m by using AES and a secret key sampled from a keyspace uniformly at
random. Then the party chooses the time that it will be needed for that key to
be found and creates a “puzzle”. The ciphertext is the encrypted message with
the AES and the time puzzle. In Rivest et al. (1996) the authors claim that their
construction is secure under the computational problem they have introduced (the
repeated squaring). In their work, they have not provided any formal treatment
of security. Another drawback with their construction is the fact that a party
to solve the puzzle must be engaged in mathematical computations in contrast
with the construction in Liu et al. (2018) where the solution of the puzzle is
announced after a specific time. The only way that these computations could be
avoided for the puzzles to be solved is for the issuer of the puzzle to announce

34 3.1 Classical e-voting

the solution (the solution is verifiable). This is the optimal case. A similar TLE
construction is Mahmoody et al. (2011) where the time-lock puzzle is based on
hash function evaluations. Specifically, the solver of the puzzle is engaged in serial
hash evaluations until solving the puzzle. Similar to Rivest et al. (1996), if some
party presents the solution of the puzzle any other party can verify it efficiently
by doing all the hash evaluations in parallel. A drawback of this construction is
that parts of the plaintext are revealed before the completion of the puzzle. There
are TLE constructions Cheon et al. (2006); May (1993) where instead of relying
on computational puzzles there is a trusted third party (TTP) who is responsible
for announcing the witnesses. Most of these constructions are based on public
key infrastructure (PKI). An obvious drawback with this type of TLE scheme is
the fact that we ground a big part of security in the TTP, which in turn leads to
weaker threat models. We distinguish these three categories of TLE schemes as
client free Liu et al. (2018); where the computational burden of solving the time
lock puzzle is not part of the description of the client, client optimal free Rivest
et al. (1996); Mahmoody et al. (2011); where the computational burden of solving
the time lock puzzle is part of the description of the client but if the solution is
revealed then it can be verified efficiently, and trusted agent Cheon et al. (2006);
May (1993); where a trusted party announces secret keys after some period of
time. Last, the client free and client optimal free constructions are subject to
malleability.

Although there are formal treatments of TLE in the literature Liu et al. (2018),
these mainly provide standalone models of security while our work aims to provide
a composable treatment of the TLE primitive. The only other such attempt to
our knowledge is a recently published paper Baum et al. (2021). We present a
detailed comparison in the next Subsection.

3.1.4 Comparison with Baum et al. (2021) and Baum et al.
(2020)

A concurrent and independent work closely related to ours was very recently
published at EUROCRYPT 2021 Baum et al. (2021), with a subsequent work
seemingly in preparation Baum et al. (2020). In particular, Baum et al. (2021)
proposes a composable treatment in the UC framework of time-lock puzzles
whose security is captured by the ideal functionality Ftlp. It further proves
how the scheme proposed by Rivest et al. in Rivest et al. (1996) can be used
to UC realise Ftlp in both the random oracle and generic group models. Their
realisation, like ours, relies on techniques for equivocation borrowed from Nielsen
(2002) and Camenisch et al. (2017). They further show that no time-lock puzzle is
UC realizable outside the random oracle model. Finally, they show that time-lock
puzzles can be used to ensure fairness in coin-flipping protocols.

The time-lock scheme proposed in Baum et al. (2021) is not verifiable. This
is addressed in the subsequent pre-print Baum et al. (2020) where they adapt the

CHAPTER 3. Literature review 35

scheme to include the trapdoor information along the message to be time-lock
encrypted, rendering it verifiable. There are some key differences between these
two works and ours, rendering the proposed treatments of time-lock primitives
orthogonal. The premises and assumptions are intrinsically different and capture
different concepts and security notions. We discuss these differences here and
argue why our formal treatment of time-lock encryption, and our proposed TLE
scheme, namely Astrolabous, are preferable in some respects and more suited to
many scenarios.

Apprehending time with computational puzzles

In Baum et al. (2021) and Baum et al. (2020), a resolutely different approach to
ours is taken, when it comes to real-time. In particular, they introduce the global
Gticker functionality to capture delays without referring to a global “wall clock”,
and thus without referring to real-time.

We, on the other hand, insist on the importance of closely relating computa-
tional time and real-time and propose an alternative treatment in the global clock
model (Gclock). Our approach is directly motivated by the seminal paper Rivest
et al. (1996), in which R. L. Rivest, A. Shamir, and D. Wagner introduce the very
concept of time-release cryptography to capture encryption schemes that ensure
encrypted messages cannot be decrypted until a set amount of time has elapsed.
The goal is to, as they put it, “send information into the future [...] by making
CPU time and real-time agree as closely as possible”.

This is key to explaining why and how time-release cryptography is used in an
increasing number of distributed applications, and in particular, schemes hinged
on computational puzzles, i.e. puzzles that can only be solved if certain compu-
tations are performed continuously for at least a set amount of time. Indeed, the
cryptographic protocols underlying these applications often rely on temporally
disjoint phases. Time-release cryptographic primitives, as primitives apprehend-
ing real-time through computations, allow thus these temporally disjoint stages
of the protocol to be enforced yet in an asynchronous manner.

This is reflected in our protocol realising the proposed ideal TLE functionality
F

leak,delay
TLE . Parties only read the time from the global clock Gclock to compute the

amount of time the ciphertext needs to be protected for, and infer the correspond-
ing puzzle difficulty. Decryption however requires continuous computations being
performed until the set opening time is reached, and no read command being
ever issued to Gclock. This protocol clearly demonstrates how time-lock puzzles
apprehend real-time through computations.

In contrast, the protocol πtlp realising the ideal time lock-puzzle functionality
Ftlp proposed in Baum et al. (2021) does not instruct parties to continuously work
towards solving received puzzles (the scheduling of each step for solving a puzzle
is left to the environment). So the treatment proposed in Baum et al. (2021)
and Baum et al. (2020) leaves it to the protocol using πtlp or Ftlp as a subroutine to
correctly takes care of appropriately enforcing relative delays between key events.

36 3.1 Classical e-voting

Ideal functionality and realisation

F
leak,delay
TLE is more general than Ftlp. Ftlp only captures constructions that rely

on computational puzzles for “hiding” a message. In contrast, our time-lock
encryption functionality F

leak,delay
TLE does not. As such it can cater for TLE schemes

that do not rely on time-lock puzzles at all, such as the centralized solutions
proposed in Cheon et al. (2006); May (1993) where a Trusted Third Party realises
the solution in specific time-slots.

Moreover, some constructions such as Liu et al. (2018) allow the adversary an
unavoidable advantage in solving TLE puzzles (e.g., the adversary synchronizes
faster than the honest parties in the Bitcoin network Garay et al. (2015);
Badertscher et al. (2017)). Ftlp does not capture such constructions. Our Fleak,delay

TLE

functionality is parameterized with a leakage function, which specifies exactly the
advantage of the adversary in each case.

Turning now to the realisations of UC secure time-lock primitives, the
realisation of Ftlp proposed in Baum et al. (2021) relies on stronger assumptions
as it relies both on the random oracle model and the generic group model. In
contrast, our realisation of Fleak,delay

TLE only relies on the random oracle model.

On public verifiability

While the time-lock encryption scheme proposed in Baum et al. (2020) is publicly
verifiable in the sense that given a puzzle, the verifying party does not need to
solve the puzzle for themselves to verify that an announced solution for that
puzzle is valid. This is not enough in some scenarios. For instance, consider the
scenario with a dedicated server to be the puzzle solver and all other parties to
be “lite” verifiers. This is very realistic given the computational requirements for
solving puzzles. For efficiency, one would let a server solve the puzzles and only
check that the solutions it provided are valid ones. Now in such a scenario parties
i) would not trust the server, ii) would not trust the issuer of the puzzle either,
but iii) are also not willing to solve the puzzle themselves.

Now, in Baum et al. (2020) public verifiability is achieved because the issuer
of the puzzle concatenates the message and the trapdoor information, which is
the factorization of N . Given the trapdoor, one can efficiently verify that the
announced solution to the puzzle is valid. However, the trapdoor announced
(dishonest server) or the trapdoor included (dishonestly generated ciphertext)
might not be valid for the puzzle. The only way to identify the dishonest party
is to solve the puzzle for oneself and check it against the solution to the puzzle
announced by the server. If they match, then the ciphertext was dishonestly
generated, otherwise, the server is dishonest.

This is reflected in the public verifiability notion that Ftlp captures that is
one-sided: if an announced solution to a puzzle is valid, then the verification is
successful. But if the verification fails, then some party has deviated from the
protocol but it could either be the server or the issuer of the ciphertext.

CHAPTER 3. Literature review 37

In contrast, the solution of our puzzle is publicly verifiable as it does not rely on
any trapdoor information from the puzzle issuer being included in the ciphertext
for fast verification. So dishonestly generated ciphertexts are not meaningful
anymore, and only dishonest servers need to be considered. Now if the server
announces an invalid solution to a given puzzle, it gets detected.

Standalone security

Along with the composable definition of secure time lock encryption schemes
provided by our ideal functionality F

leak,delay
TLE , we further provide two game-based

definitions of security. A weaker one, capturing the one-way hardness of a TLE
scheme; and a stronger one captures the semantic security of a TLE scheme, in
the spirit of IND-CPA security. We show that a TLE scheme that satisfies the
weaker definition suffices for UC realising the F

leak,delay
TLE functionality through our

protocol πTLW. The stronger game-based definition serves as a standard for the
security analysis of TLE schemes in the stand-alone setting. To demonstrate the
usefulness of our stronger definition, we show that Astrolabous and an enhanced
version of Mahmoody et al ’s construction Mahmoody et al. (2011) satisfy the
said security standard. This result further validates our UC treatment and in
particular our ideal functionality of time-lock encryption schemes.

For privacy/efficiency: As we have seen before, the self-tallying protocol
in Okamoto (1998) for guaranteeing the eligibility of each voter and at the
same time maintaining their privacy, uses blind signatures Chaum (1983). One
drawback with this approach is the fact that these signatures are not reusable,
which means that after the end of the election they cannot be used for future
elections. Another novelty of our work was to search for alternative solutions
that solve this problem. One way to achieve re-usability is to use signatures of
knowledge Chase and Lysyanskaya (2006) for maintaining the privacy of each
voter and dynamic accumulators Papamanthou et al. (2016); Fazio and Nicolosi
(2002); Derler et al. (2015b); Zhang et al. (2017); Goodrich et al. (2002); Tremel
(2013); Camenisch and Lysyanskaya (2002); Derler et al. (2015a); Baldimtsi
et al. (2018), a very well studied cryptographic primitive, for efficiency. This
idea was introduced in zerocoin Miers et al. (2013) but for a different purpose.
Specifically, each party commits its locally generated serial number and announces
the committed value to the other parties via the public ledger. This number shows
that the party is the owner of a coin. All of the committed values are accumulated
to just a single value via a dynamic accumulator. Next, when a party wants to
“spend” their coin, they make a signature of knowledge over their serial number
with the statement “I know the committed value of this serial number which
is part of the accumulator” without revealing any further information. Then,
the party sends the serial number along with the signature to the other parties
via an anonymous channel Miers et al. (2013); Dingledine et al. (2004). In the
voting case, the serial number is the voter’s private part of the credential and the

38 3.2 Quantum e-voting

commitment of that part is the public part of the credential. A drawback with this
approach is the strong setup assumptions. Specifically, to set up the accumulator
that is used in Miers et al. (2013) it requires an RSA number Goldreich (1999).
The entity that knows the factorization of the RSA number can provide fake proof
of membership and it can thus violate the eligibility property of the protocol. A
potential solution is an multi party computation (MPC) type of protocol where
this RSA number can be produced in a distributed manner without any party to
know explicitly the factorization of that number. A protocol has been proposed
for that task, calling the produced RSA numbers RSA UFOS Sander (1999).
No security argumentation is provided in Sander (1999) in terms of a game-
based Bernhard et al. (2015) or UC definition Canetti (2001b) for their scheme,
making the protocol not secure based on today’s cryptographic standards. A
simpler construction than the one in Miers et al. (2013) was proposed in Groth and
Kohlweiss (2015) without the existence of accumulators. Moreover, the authors
provided better security argumentation for their scheme (they provided a game-
based definition) but with worse time complexity, making their protocol hard to
be used in large scale elections. Specifically, the verification of the signature of
knowledge (SOK) is proportional (in fact more than linear) to the size of the
voting parties. In contrast, the verification time of SOK in Miers et al. (2013) is
constant.

3.2 Quantum e-voting

More than a decade of studies on quantum electronic voting has resulted in several
protocols that use the properties of quantum mechanical systems. However, all
these new protocols Huang et al. (2014); Wang et al. (2016); Vaccaro et al.
(2007); Bonanome et al. (2011); Hillery et al. (2006); Li and Zeng (2008); Dolev
et al. (2006); Okamoto et al. (2008); Zhou and Yang (2013); Thapliyal et al.
(2017); Xue and Zhang (2017); Horoshko and Kilin (2011) are studied against
different and not well-articulated corruption models and claim security using ad-
hoc proofs that are not formalized and backed only against limited classes of
quantum attacks. In particular, none of the proposed schemes provides rigorous
definitions of privacy and verifiability, nor formal security proofs against
specific, well-defined (quantum) attacker models. When it comes to electronic
voting schemes, it is particularly hard to ensure that all the, somehow conflicting,
properties hold Chevallier-Mames et al. (2010); it is therefore important that
these new quantum protocols be rigorously and mathematically studied and the
necessary assumptions and limitations formally established. Moreover, all of these
protocols are not written in a common framework as they assume a different set
of participating parties and a different protocol flow between the parties (e.g.
protocol phases are not the same). As a result, it is hard for future researchers
to study and improve these protocols both in terms of security and efficiency. On
the other hand, there are classical e-voting protocols that claim security against

CHAPTER 3. Literature review 39

unbounded adversaries Broadbent and Tapp (2007), as well as ones based on
problems believed to be hard even for quantum computers e.g. lattice-based
Chillotti et al. (2016). Finally, we note that there exist protocols that consider
elections with quantum input, see e.g. Bao and Yunger Halpern (2017). This
type of protocol is more relevant to quantum game theory and less to election
schemes with classical input/voting choice, and we have not considered them in
this study.

3.2.1 Quantum e-voting definitions

As we mentioned, we can argue about the security of a protocol by either using
a game-based definition and show that the protocol satisfies it or by defining an
ideal functionality and prove that the protocol UC realizes it.

In the field of quantum cryptography, there are some works in which the
authors provide a formal security treatment such as Barnum et al. (2002);
Portmann (2017). In Barnum et al. (2002) the authors give a security definition
and construction of a quantum authentication channel. In Portmann (2017)
the authors present a more efficient construction of a quantum authentication
channel in comparison with Barnum et al. (2002). Moreover, the authors argue
about the security of their protocol by using abstract cryptography Maurer and
Renner (2011), a relatively new framework in comparison with Canetti (2001b),
that provides similar security guarantees as in Canetti (2001b)1. Specifically,
they implement a quantum secure channel with the only set-up assumption to
be a shared key among the communicating parties. Additionally, they capture
the adversarial influence over the network by assuming that the communication
channels are noisy.

In Moran and Naor (2006) the authors extend the ideal functionality of Canetti
and Gennaro (1996) so that it can capture the receipt-freeness security
property. It is worth mentioning that their functionality is more in the spirit
of MPC rather than e-voting, as it does not capture the different protocol phases
(e.g. casting phase, tally phase etc.) an e-voting protocol includes. Moreover,
the corruption model is closely related to the one for MPC rather than e-voting
(e.g. corruption of the tallier or the election authority) as it considers that
the participating parties all play the same role, without any designated role
among them. Despite these limitations to e-voting, the authors have shown a
realization of a classical protocol of which the security holds against unbounded
adversaries. As mentioned in Unruh (2013), UC realization of classical protocols
against unbounded classical adversaries/environments can be extended to UC
realization against unbound quantum adversaries/environments. In Unruh (2010)
the authors present the first UC definition in the quantum setting for MPC.

1Further study needs to be conducted so that the security framework in Maurer and Renner
(2011) be mature enough and can be used as widely as the ones in Canetti (2001b). This is
something that the authors in Maurer and Renner (2011) mentioned as well.

40 3.2 Quantum e-voting

A natural question is if we can extend every ideal functionality in classical e-
voting to the quantum setting by using frameworks like the one in Unruh (2010).
Unfortunately, the answer is not straightforward as the way the function handles
the incoming information changes due to the fundamental principles of quantum
mechanisms. For example, if we consider the public key encryption functionality
appears in Camenisch et al. (2017), it cannot compare that two ciphertexts are
the same so that it checks if the correctness property holds without measuring
the ciphertexts, and thus destroying them. Another issue is that functionality
cannot return the ciphertext to the requested party and at the same time hold a
copy of that in its date base (no-cloning theorem).

As a result, there is no security definition in the literature to quantum
electronic voting: neither in UC, where it can be illustrated via an ideal
functionality nor in a game-based style, where it can be illustrated with an
experiment/game between a quantum challenger and a quantum adversary.

Chapter 4

Time-lock encryption

We define one of our main building blocks, the FTLE functionality that captures
the security properties of a time-lock encryption (TLE) scheme. In this work we
focus on decentralized solutions which rely on computational puzzles rather than
trusted third parties. Our ideal functionality is general to capture both settings
but we focus here only on the decentralized solutions and present our work in
these terms. The concept of TLE involves a party that initiates the encryption
of a message that can only be decrypted only after a certain amount of time has
elapsed. This can be achieved in two ways.

In the first approach Cheon et al. (2006); May (1993), a party, called the
manager, releases the decryption keys on specific dates. For example, there are
public and private keys for each day of the week. If a party wants to encrypt a
message so that it will open on Wednesday 9/12/2020, she will use Wednesday’s
public key. The manager will on Wednesday announce Wednesday’s private key,
allowing the decryption of the message.

In the second approach Rivest et al. (1996); Mahmoody et al. (2011); Liu
et al. (2018) a computational puzzle, which is a mathematical problem, needs
be solved so that the message can be revealed. Let us consider again the
example where a message needs to be opened on Wednesday 9/12/2020. The
encryptor of the message creates a puzzle that once solved allows the message
to be revealed. What the encryptor must be sure of is that the puzzle will be
solved on Wednesday 9/12/2020, neither sooner nor later. The puzzle can differ
from message to message, even if all messages are intended to open on Wednesday
9/12/2020. These relativistic time constructions Rivest et al. (1996); Mahmoody
et al. (2011) are designed so that a puzzle can be solved only after a certain
amount of computations have been performed. Such computations are enough
so that the puzzle can be solved on 9/12/2020. Last, the puzzle can be the
same for messages that are intended to open on 9/12/2020. These absolute time
constructions Liu et al. (2018) are designed so that the solution of the puzzle can
be delegated to external entities which try to solve the puzzle independently of
the TLE protocol (e.g. Bitcoin miners in Liu et al. (2018)), giving an essence of
absolute time. In either case, the message can be decrypted only after a puzzle

41

42 4.1 Definition of Fleak,delay
TLE

has been solved or its solution has been published. The solution of the puzzle
is used as the secret key in the decryption algorithm so that the message can
be revealed. The solution of the puzzle is used as the “secret” in the decryption
algorithm so that the message can be revealed.

More precisely, a TLE scheme is a pair of algorithms (e, d) that a party P
can use in order to encrypt a message m with time label τdec such that everyone
can decrypt that message after the current time exceeds τdec. The decryption is
possible because after the time τdec a witness wτdec

is available (the solution to the
puzzle), which acts as the secret key for algorithm d.

In the context of e-voting, specifically in self tallying elections, as we discussed
all the proposed schemes suffer from fairness issues. This is where the TLE offer a
viable solution. If a vote is encrypted by using a TLE scheme we are certain that
it cannot be opened before the tallying phase, and thus the adversary changes
his mind and vote for something else Kiayias and Yung (2002), or not open it at
all Fujioka et al. (1993).

In Section 4.1, we provide a definition of the ideal TLE functionality FTLE. In
Section 4.2, we demonstrate a realization of FTLE via a new TLE scheme, which
is called Astrolabous. Our TLE construction is based on Mahmoody et al. (2011)
and Rivest et al. (1996).

4.1 Definition of F
leak,delay
TLE

We provide our UC treatment of TLE in the Gclock model by defining the
functionality FTLE, following the approach of Canetti (2001b). The functionality is
described in Figure 4.1, and at a high level operates as follows. The functionality
is parameterized by a delay variable delay. This variable shows the time that
a ciphertext needs to be created. There are settings where the ciphertetext
generation needs some time, in some cases this time is very small or zero
(delay = 0) or noticeable (delay = 1). The simulator S initially provides FTLE with
the set of corrupted parties. Each time an encryption query issued by an honest
party is handled to FTLE, the functionality forwards the request to S without
any information about the actual message except the size of the message and
the party’s identity. The simulator returns the token back to FTLE which replies
with the message Encrypting to the dummy party. This illustrates both the
fact that the ciphertext does not contain any information about the message and
that encryption might require some time to be completed. The environment can
access the ciphertexts that this party has generated so far by issuing the command
Retrieve, where FTLE returns all the ciphertexts that are created by that party
back to it. It is worth mentioning, that the time labelling that is used in the
encryption command refers to an absolute time rather than relative. On the other
hand, the construction that we propose for realising FTLE is relative. That is why,
as we see in detail in Section 4.2, the algorithm accepts the difference between the
current time Cl and the time labelling τ as an input. In this way, the algorithm

CHAPTER 4. Time-lock encryption 43

computes the difficulty for the puzzle such that the message can be decrypted
when time τ has been reached. In addition, FTLE handles the decryption queries in
the usual way, unless it finds two messages recorded along the same ciphertext, in
which case it outputs ⊥. This enforces that the encryption/decryption algorithms
used by S should satisfy Correctness. In addition, if FTLE finds the requested
ciphertext in its database, the recorded time is smaller than the current one (which
means that the ciphertext can be decrypted), but the party that requested the
decryption of that ciphertext provided an invalid time labelling (labelling smaller
than the one recorded in FTLE’s database), it returns the message Invalid Time
to that party. In the case where the encryption/decryption queries are issued by
corrupted parties, FTLE responds according to the instructions of S. When a party
receives a decryption request from Z, except from the ciphertext c, it receives as
input a time labelling τ . Ideally, τ is the time when c can be decrypted. Of course,
the labelling τ can also be different to then the decryption time of c. Nevertheless,
this does not affect the soundness of FTLE. Without the labelling, the FTLE or
the engaging party in the real protocol would have to find the decryption time
of c which is registered either in the functionality’s database (ideal case) or in
the party’s list of received ciphertexts (real case) and then compare it with the
current time Cl.

When a party P advances the Gclock, the simulator S is informed. Then, S can
generate ciphertexts for each tag received from FTLE from P and send them to
FTLE issuing the Update. Later, FTLE will return these to P . This illustrates the
fact that after some time ciphertexts are created. The specific delay is specified
by S. In TLE constructions where the encryption and decryption time is equal,
S will force a delay on the ciphertext generation equal to the number of rounds
that the ciphertext needs to be decrypted. Thus, the way we model FTLE allows
us to capture a broader spectrum of TLE constructions (not necessary efficient)
in the context of the Global Clock (GC) model.

Naturally, after some time, ciphertexts are eventually opened and every party,
including S, can retrieve the underlying plaintext. For that task, we include the
command Leakage. In the vanilla case, S can retrieve all the messages that can
be opened by the current time Cl. However, there are cases where S can retrieve
messages before their time comes. This advantage of S can be described by the
function leak. This function accepts as input an integer (e.g., the current time Cl)
and outputs a progressive integer (e.g., the time that the adversary can decrypt
ciphertexts, which is the same or greater than Cl). For example, if leak(x) = x+1,
this means that at current time Cl the adversary S can retrieve messages that are
supposed to be opened at time Cl + 1, meaning that the honest parties will gain
access to these messages at the next clock advancement. Specifically, on demand,
FTLE gives the record of all messages with encryption up to leak(Cl) to S, where Cl
is the current time provided by Gclock, and leak a leakage function that takes the
current time as input and returns a later time. This function leak captures the
fact that in some cases the adversary can decrypt messages before their opening

44 4.1 Definition of Fleak,delay
TLE

time has come. The ideal leak function with respect to security is the identity one,
the one that gives no real advantage to the adversary in comparison to all other
parties. There are however some time-lock encryption schemes which allow the
adversary to decrypt a little bit earlier than the honest parties. For example, the
Bitcoin based time-lock encryption scheme proposed in Liu et al. (2018). In this
scheme, the adversary can locally compute some witness (e.g selfish mining Eyal
and Sirer (2014)) without announcing them to the rest of the parties, providing
him with an advantage with respect to decryption.

CHAPTER 4. Time-lock encryption 45

The time-lock encryption functionality F
leak,delay
TLE .

It initializes the list of recorded messages/ciphertexts Lrec as empty and defines the
tag space TAG.

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Enc,m, τ) from P 6∈ Pcorr, it reads the time Cl and does:

1. If τ < 0, it returns (sid,Enc,m, τ,⊥) to P .

2. It picks tag
$← TAG and it inserts the tuple (m,Null, τ, tag,Cl, P)→ Lrec.

3. It sends (sid,Enc, τ, tag,Cl, 0|m|, P) to S. Upon receiving the token back from
S it returns (sid,Encrypting) to P .

� Upon receiving (sid,Update, {(cj , tagj)}
p(λ)
j=1) from S, for all cj 6= Null it updates

each tuple (mj ,Null, τj , tagj ,Clj , P) to (mj , cj , τj , tagj ,Clj , P)

� Upon receiving (sid,Retrieve) from P , it reads the time Cl from Gclock and it
returns (sid,Encrypted, {(m, c 6= Null, τ)}∀(m,c,τ,·,Cl′,P)∈Lrec:Cl−Cl′≥delay) to P .

� Upon receiving (sid,Dec, c, τ) from P 6∈ Pcorr:

1. If τ < 0, it returns (sid,Dec, c, τ,⊥) to P . Else, it reads the time Cl from
Gclock and:

(a) If Cl < τ , it sends (sid,Dec, c, τ,More Time) to P .

(b) If Cl ≥ τ , then

– If there are two tuples (m1, c, τ1, ·, ·, ·), (m2, c, τ2, ·, ·, ·) in Lrec such
that m1 6= m2 and c 6= Null where τ ≥ max{τ1, τ2}, it returns to P
(sid,Dec, c, τ,⊥).

– If no tuple (·, c, ·, ·, ·, ·) is recorded in Lrec, it sends (sid,Dec, c, τ) to S

and returns to P whatever it receives from S.

– If there is a unique tuple (m, c, τdec, ·, ·, ·) in Lrec, then if τ ≥ τdec, it
returns (sid, Dec, c, τ , m) to P . Else, if Cl < τdec, it returns (sid, Dec,
c, τ , More Time) to P . Else, if Cl ≥ τdec > τ , it returns (sid, Dec, c,
τ , Invalid Time) to P .

� Upon receiving (sid,Leakage) from S, it reads the time Cl from Gclock and returns
(sid,Leakage, {(m, c, τ)}∀(m,c,τ≤leak(Cl),·,·,·)∈Lrec

) to S.

� Whatever message it receives from P ∈ Pcorr, it forwards it to S and vice versa.

Figure 4.1: Functionality F
leak,delay
TLE parameterized by λ, a leakage function leak, a

delay variable delay ,interacting with simulator S, parties in P, and global clock Gclock.

46 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

4.2 Realization of F
leak,delay
TLE via time-lock puzzles

In this section, we present the realization of FTLE via a protocol that uses a pair
of encryption/decryption algorithms that satisfy a specific security notion that
we formally define in Definition 4.2.1. We prove that our construction which is
based on Mahmoody et al. (2011) and Rivest et al. (1996) is secure with respect
to the required security notion.

The general idea of a time-lock puzzle scheme is that the parties have restricted
access to a specific computation in any given period of time for solving a
puzzle. In Rivest et al. (1996)’s case that computation is repeated squaring,
and in Mahmoody et al. (2011) the computation is sequential hash evaluations.
Of course, the underlying assumption here is that there is no “better” way
to solve that puzzle except for sequentially applying the specific computation.
Some of the most prominent proposed time-lock constructions are based on such
assumption Rivest et al. (1996); Liu et al. (2018); Badertscher et al. (2017);
Mahmoody et al. (2011).

In the UC framework, to construct a time-lock protocol we need to abstract
such computations through an oracle FOeval

. The reasoning behind this modelling
is simple. In the UC framework, all the parties are allowed to run polynomial time
with respect to the protocol’s parameter. As a result, it is impossible to impose
on a party the restriction that in a specific period of time they can only execute
a constant number of computations. This is why we abstract such computations
as a functionality/oracle and wrap the oracle with a functionality wrapper that
restricts the access to the oracle. The approach is similar to the one proposed
in Badertscher et al. (2017), for modelling proof-of-work in the Bitcoin protocol.

In the following paragraphs, we present the evaluation oracle FOeval
, the

functionality wrapper Wq(FOeval
) and the protocol ΠTLE. We provide a security

definition that captures both correctness and one-wayness of TLE constructions.
The latter is illustrated via an experiment in a game-based style described in
Figure 4.5. We prove that ΠTLE UC realises FTLE given that the underlying TLE
construction satisfies our security definition. Having at hand a UC realisation and
given that our ideal functionality FTLE captures accurately the concept of what
we expect from a TLE scheme, this validates the definition of security of TLE
algorithms.

In the following section, we propose a new TLE construction and prove it
satisfies our security definition, completing our construction argument. Finally,
we provide a stand-alone security definition in the same spirit as IND-CPA
security, named IND-CPA-TLE, which is captured via an experiment. We prove
that Astrolabous satisfies this as well.

Our security definition that captures the one-wayness of a TLE construction
was enough for having a UC realization. Although one-wayness as a property
is very weak when arguing about the security of an encryption scheme, in our
case was enough as we do not use the actual construction but we extend it in

CHAPTER 4. Time-lock encryption 47

the random oracle model. On the other hand, such definition in the stand alone
model is weak. That was the reason of why we introduced IND-CPA-TLE.

The evaluation functionality FOeval
The evaluation functionality captures the

computation that is needed for a time-lock puzzle to be solved by the designated
parties. An explanatory example can be found bellow.

Initially, the functionality FOeval
, as described in Figure 4.2, creates the list

Leval for keeping a record of the queries received so far. Then, upon receiving a
query from a party in P, FOeval

checks if this query has been issued before. If this
is the case, it returns the recorded pair. If not, then for the query x it samples
the value y from the distribution Dx and returns to that party the pair (x, y).

The distribution Dx in cases such as in Liu et al. (2018); Badertscher et al.
(2017); Mahmoody et al. (2011) is a random value over a specific domain. Thus,
FOeval

is the random oracle in these cases. More precisely, Dx = U{0, 2n − 1}
where U is the uniform distribution and [0, 2n − 1] is its domain, in our example
the domain of the random oracle. In that case, the parametrization of D with
x is unnecessary. On the other hand, if we study other time-lock puzzles such
as the one in Rivest et al. (1996), where the computation to solve a puzzle is
the repeated squaring, the parametrization of D with x becomes necessary. An
example of distribution D follows.

Example 4.2.1. In our modelling approach, for a random value b ∈ Zn, where n
is a composite number, the k-repeated squaring of b is the value b2k . In that case,
the oracle queries are of the form x = b2k and the oracle response is y = b2k+1

.
Thus, the distribution D

b2k
is equal to the constant distribution C{b2k+1} where

the probability to sample the value b2k+1
is equal to 1.

If FOeval
is instantiated by the random oracle, then the distribution Dx is the

uniform distribution for every x over the domain (0, 2n − 1). Similarly in Rivest
et al. (1996), the distribution is constant as argued above (accepts as input x and
returns b2x).

Example 4.2.2. Adapting the relative time-lock puzzle of Mahmoody et al.
(2011) to our modelling approach, the evaluation functionality is instantiated
by the random oracle. Let us consider that the solution of the puzzle is the
value r. The creator of the puzzle P chooses the desired difficulty of the
puzzle, τ . Then, P splits the puzzle r into qτ equal pieces r0, . . . , rqτ such that
r = r0|| . . . ||rqτ . Here, q is the maximum number of evaluation queries that the
party can make to the oracle in one round. Remember that the essence of round
can be defined with respect to the functionality Gclock. Next, P makes one call to
the random oracle functionality with the values (r0, . . . , rqτ−1) and receives back
(yr0 , . . . , yrqτ−1). Note that this call is counted as one. Finally, P creates the puzzle
(r0, y0⊕r1, . . . , yrqτ−1⊕rqτ) for the secret r. Now, if some party P ∗ wants to solve
the puzzle, it needs to send the query r0 to the random oracle functionality. Upon
receiving the value y0 back from the random oracle functionality, P ∗ computes

48 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

r1 = y0 ⊕ (y0 ⊕ r1). Next, it repeats the procedure with the value r1. Note
that, the maximum number of evaluation queries to the functionality oracle in
one round is q and thus the puzzle to be solved needs τ rounds. It is worth
mentioning that for capturing the limited access to the functionality in the UC
framework, a functionality wrapper needs to be defined as it is described in a
dedicated Paragraph below.

The evaluation functionality FOeval
(D,P).

Initializes an empty evaluation query list Leval.

� Upon receiving (sid,Evaluate, x) from a party P ∈ P, it does:

1. It checks if (x, y) ∈ Leval for some y. If no such entry exists, it samples y
from the distribution Dx and inserts the pair (x, y) to Leval. Then, it returns
(sid,Evaluated, x, y) to P . Else, it returns the recorded pair.

Figure 4.2: Functionality FOeval
parameterized by λ, a family of distributions

D = {Dx|x ∈ X} and a set of parties P.

The functionality wrapper Wq(FOeval
) Our wrapper is defined along the lines

of Badertscher et al. (2017). The functionality wrapper is an ideal functionality
parameterized by another ideal functionality, mediating the access to the latter
functionality only possible through the wrapper. Moreover, the wrapper restricts
the access to the parameter functionality allowing parties to access it only a certain
number of times per round. Here, the notion of round is defined with respect to
the Gclock functionality defined in Figure 2.1. In a nutshell, the wrapper models in
the UC setting the limited resources a party has at their disposal for solving the
underlying puzzle. Because in UC every party is a PPT ITM, the same holds for
the adversary. So, the adversary can interact with any functionality polynomially
many times in each round. There are several protocols that hinge their security on
the limited computational capabilities of the participants. For example, the whole
security argument for the Bitcoin protocol Nakamoto (2008) goes as follows: if
the adversary does not maintain more than 50% of the network’s hashing power,
then some desired properties hold. Modelling this in the UC framework would
mean that the parties try to extend the ledger by engaging in a series of hash
evaluations Garay et al. (2015). If the parties and the adversary have unlimited
access to the random oracle functionality (the modelling of the hash function in
UC) that would mean that an adversary with less than 50% of hashing power can
violate the common prefix property in Garay et al. (2015). For that reason, we
need to restrict the access to the random oracle functionality, as in Badertscher
et al. (2017). The same holds for our case. We need to restrict the access each
party has to FOeval

, else the time-lock puzzle can be solved in just one round,
making the whole modelling of TLE in UC defective. Next, follows the description
of Wq(FOeval

).

CHAPTER 4. Time-lock encryption 49

The functionality wrapper as described in Figure 4.3 is parameterized by the
evaluation oracle FOeval

as described in Figure 4.2, the global clock Gclock, a set of
parties P, and the function fstate.

When Wq(FOeval
) receives an evaluation query from a party P , it reads the

time Cl from Gclock. If this is the first time that this party issued a query, then
it creates the list LP to keep track of how many queries that party does in one
round. Else, Wq(FOeval

) checks if the number of queries the party issued that round
does not exceed q, modelling in this way the limited computational resources a
party has in every round. Last, if the party was activated in previous rounds, then
the counter of issued oracle queries resets to 1, modelling that unused queries in
previous rounds are lost if not made.

When Wq(FOeval
) receives the answer from the functionality oracle FOeval

, it
returns the oracle’s answer to party P .

Adversary can issue q queries in total: The wrapper handles independently
queries issued by corrupted parties. Specifically, it allows q queries in total for
all corrupted parties instead of q for every corrupted party. With that, we model
that the adversary does not possess any advantage for sequential computation
despite the fact how many parties are corrupt, in comparison with each party
individually. Specifically, in reality, a computation can be either parallelized
or not. Each computational task is carried away from a single CPU core at
a time. For example, a 10-core CPU can parallelize a 10-step computation at
once. On the other hand, in the UC framework, all parties can parallelize any
arbitrary polynomial-step computation, assuming that the number of CPU cores
they possess is arbitrary polynomial many. When the computation cannot be
parallelized, despite how many cores a party has at their disposal, they can process
one computation at a time, leaving aside any advantage of the number of CPU
cores they possess. For example, if the adversary corrupts two parties or ten with
10-CPU each (twenty and one hundred in each case respectively) it is the same
for sequential computation. This is exactly what we illustrate in our functionality
wrapper, and thus giving to the adversary q queries in total despite the number
of the corrupted parties.

In some settings, the interaction with the oracle is necessary even for the
creation of the time-lock puzzle and not just for solving it. In reality, the creator
of the puzzle can parallelize this computation, and this is what happens here. In
a single oracle query, the party can both ask the oracle queries for puzzle creation
and puzzle solving. Recall the example: 4.2.2. In order to create a puzzle for time
labelling τdec, the party needs to engage with the oracle just a single time with
qτdec values in total to create the puzzle c = (r0, y0⊕r1, . . . , yrqτdec−1⊕rqτdec

), where
the secret is the value r0|| . . . ||rqτdec

. Note that the solver of the puzzle cannot
parallelize the computation for solving the puzzle, because she does not know the
secret.

The functionality wrapper is parameterized by q the number of oracle queries

50 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

per round that are allowed from each party, the oracle FOeval
, which evaluates

these queries, the global clock Gclock and a set of parties P that are allowed to
engage with the oracle. The total number of queries q per round captures the
fact that the parties have limited resources per round. In addition, we allow
multiple value evaluation in a single query. With that we illustrate the fact that
the computation can be parallelized (e.g. hash evaluation is parallelizable if the
queries are stateless). The number of evaluations in a single oracle query is upper
bounded by an arbitrary polynomial (like a UC execution). This in turn means
that we assume that the parties have access to an arbitrary polynomial number of
CPU cores that can handle independent computations. In the rest of this work we
use the abbreviation Wq(FOeval

) instead of Wq(FOeval
,Gclock,P) when it is obvious

from the context.

Functionality wrapper Wq(FOeval
,Gclock,P).

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ P \Pcorr it reads the time
Cl from Gclock and does:

1. If there is not a list LP it creates one, initially as empty. Then it does:

(a) For every k in {1, . . . , j}, it forwards the message (sid,Evaluate, xk) to
FOeval

.

(b) When it receives back all oracle queries, it inserts the tuple-(Cl, 1) ∈ LP .

(c) It returns (sid,Evaluate, ((x1, y1), . . . , (xj , yj))) to P .

2. Else if there is a tuple-(Cl, jc) ∈ LP with jc < q, then it changes the tuple to
(Cl, jc + 1), and repeats the above steps 1a,1c.

3. Else if there is a tuple-(Cl∗, jc) ∈ LP such that Cl∗ < Cl, it updates the tuple
as (Cl, 1), and repeats the above steps 1a,1c.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ Pcorr it reads the time Cl
from Gclock and repeats steps 1,3 except that it keeps the same list, named Lcorr, for
all the corrupted parties.

Figure 4.3: The Functionality wrapper Wq(FOeval
) parameterized by λ, a number of

queries q, functionality FOeval
, Gclock and parties in P.

The protocol ΠTLE: We are now ready to present the protocol ΠTLE which is
proved in later Sections that it UC realises the FTLE functionality. The protocol
consists of the functionality wrapper Wq(FOeval

) as described in Figure 4.3, the
global clock Gclock, the random oracle FRO, the broadcast functionality FBC and a
set of parties P.

CHAPTER 4. Time-lock encryption 51

Example 4.2.3. Recall Example 4.2.2 and assume the time-lock puzzle c =
(r0, y0 ⊕ r1, . . . , yrqτdec−1 ⊕ rqτdec

). If the function wit con is given less than qτdec

oracle responses (e.g. (y0, . . . , yqτdec−3)) for the puzzle c, it returns ⊥ else it returns
wdec = (r0, y0, . . . , yrqτdec−1 , c). Note that here, the ciphertext and the puzzle
coincide as there is no actual encryption of a message. Thus, fpuzzle is simply
the identity function.

Necessity of extending the TLE algorithms: In order to realise FTLE

with some TLE construction we need to extend a given TLE algorithm in the
random oracle model. Recall that in FTLE all the ciphertexts eventually open.
To capture semantic security, the ciphertext contains no information about the
actual message, in contrast to the real protocol that contains the encryption of
the actual message. So, for the simulator to simulate this difference when the
messages are opened, S must be able to equivocate the opening of the ciphertext,
else the environment Z can trivially distinguish the real from the ideal execution
of the protocol. When we say that S equivocates the opening of the ciphertext,
it means that S can open a ciphertext to whatever plaintext message needs to be
opened. Equivocation is also used for other cryptographic primitives, such as bit
commitments, where the simulator can equivocate because it knows the trapdoor
information related to the common reference string (CRS) Lindell (2011). Our
extension, that can be applied in any TLE construction, offers the feature of
equivocation but at the expense of assuming the random oracle model. For
example, consider a TLE scheme (eFOeval

, dFOeval
) with respect to oracle FOeval

. In
the ideal world, when a party wants to encrypt a message m with time labelling τ ,
the functionality FTLE informs S about this request without revealing the identity
of the party and the message m. The simulator creates a ciphertext c without
knowing the message m and returns it back to FTLE. After the current time Cl
exceeds τ , Z can compute the underlying message to the ciphertext c, which in
the ideal world does not contain any information about the message m. This
allows Z to distinguish the real from the ideal execution of the protocol. For that
reason, we extend the (eFOeval

, dFOeval
) to (e∗FOeval

, d∗FOeval
) by borrowing techniques

from Nielsen (2002); Camenisch et al. (2017) as follows: the ciphertext for a
message m and time τ is the tuple e∗FOeval

(m, τ) = (c1, c2, c3), where c1 results from

the encryption of a random string r, i.e., c1 = eFOeval
(r, τ); c2 is the XOR between

the message m and the random oracle call H(r) on r, i.e., c2 = m⊕H(r); and c3 is
a random oracle call on the concatenation r||m, i.e., c3 = H(r||m). The c3 makes
the encryption scheme non-malleable Nielsen (2002). This extension allows S to
equivocate when needed. We informally explain why this holds and formalize this
in the proof of Theorem 1.

When S receives an encryption request from FTLE for time labelling τ , he
returns the ciphertext c = (eFOeval

(r1, τ), r2, r3) where r1, r2, r3 are random values.
Observe that, in the ideal world, neither the evaluation functionality FOeval

nor the
random oracle FORO

exist. Instead, both of them are emulated by S. As a result,

52 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

when the time Cl exceeds τ , Z can retrieve r1 but in order to retrieve the message
m he must issue a random oracle query on r1 through a corrupted party. In that
case, S can retrieve the message m from FTLE, because the time Cl exceeded τ ,
programme the FRO so that H(r1) = m⊕ r2 (equivocate) and return the answer
back to Z.

Table 4.1: Functions and list each party holds in ΠTLE.

Functions/Lists Description

P,N,Q,R,C,M,W
The space of time-lock puzzles, integers, oracle queries
and responses to/from FOeval

, ciphertexts, plaintexts and witnesses.

eFOeval
: M× N×Q/R→ C

The encryption algorithm takes as input the plaintext, the
puzzle difficulty and the pair of oracle queries/responses so
that the puzzle can be created.

dFOeval
: C×W→M

The decryption algorithm takes as input the ciphertext and the
secret key.

fstate : P× N×Q/R→ Q

It prepares the next oracle query to FOeval
. Specifically, it

accepts a puzzle, the number of query that needs to be prepared
and all the previous queries and responses from the oracle.

fpuzzle : C→ P It extracts the time-puzzle from a ciphertext.

puz cr : M× N→ Q

The puzzle creation function takes as input the plaintext and
the desired difficulty and creates the oracle queries so that a
puzzle for that plaintext of that difficulty can be created.

wit con : Q/R× N×P→W
The witness construction function that returns the solution
of the puzzle or the witness if that is possible.

LPrec The list of the generated ciphertexts.

(z, τ, {(statezk, yk)}
jt
k=0, jc, jt)

The tuple contains a puzzle z, the difficulty of the puzzle τ ,
the pairs of oracle queries/responses to solve puzzle z, the
current number jc of oracle queries in that round and the
total number of oracle queries jt.

Description of protocol ΠTLE: Each party P ∈ P is parameterized/maintains
the following:

• She maintains the list of recorded messages/ciphertexts LPrec, in which the
requested messages for encryption by Z are stored along with the ciphertext
of that message (initially stored as Null), a random identifier of the message
tag, the time τ that the message should open, the time Cl that is recorded
for the first time and a flag which shows if that message has been broadcast
or not to the other parties. Broadcast is necessary, as the construction that
UC realises our FTLE is relativistic. More precisely, it is based on a time-lock
puzzle. So, for that message to be opened by any honest party when the

CHAPTER 4. Time-lock encryption 53

time comes, that party should start to solve the puzzle as soon as it can.
So the transmission of the ciphertext (and thus the puzzle) is necessary.

• She parameterized by The tag space TAG and a pair of TLE algorithms
(eFOeval

, dFOeval
) are hard-coded in each party.

• A function fstate which prepares the next oracle query to FOeval
for a puzzle

to be solved.

• A function fpuzzle which extracts from a TLE ciphertext c∗ the underlying
time-lock puzzle.

• A function puz cr which generates the oracle queries to FOeval
so that a puzzle

of the desired difficulty can be created.

• A function wit con which computes witnesses by performing the necessary
sequential computations. More precisely, given oracle queries/responses
to/from the functionality FOeval

, time labelling τ and the time-lock puzzle,
it returns a witness wτ or ⊥ if the computation fails.

When a party receives Encryption from Z for a message m with difficulty τ ,
it picks a random tag for future reference of that message, reads the current time
Cl from Gclock, and stores the tuple (m,Null, τ, tagm,Cl, 0) to LPrec. Then, it returns
the message Encrypting to Z. That means that the encryption is going to take some
time, in our case one turn. When the party receives from Z Advance Clock,
she reads time Cl from Gclock and checks if a decryption command has been issued
in this turn. If this is the case, that means that the party, before attempting to
decrypt, she depletes all her oracle queries for both solving puzzles and creating
puzzles for encrypting a message in this turn by executing the procedure Puzzle.
This is necessary, as the party attempts to decrypt after her witness is updated for
that turn and this is possible only by querying the oracle FOeval

. If no decryption
command has been issued in this turn, the party executes both the procedures
Puzzle, for puzzle solving and puzzle creation, and Encrypt, for encrypting the
messages issiued by Z in the current round. Then she broadcasts the ciphertexts
that correspond to messages received by Z in this round (after the end of the turn
encryption ends). Finally, the party changes the flags from 0 to 1 in the tuples
that the broadcast ciphertexts are stored in LPrec and informs the global clock that
she was activated in that round by sending a clock advancement command.

Broadcast: The broadcast is necessary because the TLE constructions we
study are relativistic Rivest et al. (1996); Mahmoody et al. (2011), and thus
the message can be opened only when a certain amount of computations has
been spent by the parties to solve the puzzle. In contrast, with absolute time-
lock constructions such as in Liu et al. (2018), the broadcast of the ciphertext is
unnecessary because the message will be opened once the current time reaches the
decryption time of the time puzzle. That is why we require that the ciphertext
must be sent to the designated parties upon its creation. In this work, we realise

54 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

FTLE only with relativistic based constructions. When the party receives the
broadcast ciphertexts, she creates a tuple that contains the time-lock puzzle of
the ciphertext, the difficulty, the queries for solving the puzzle and the responses
and two counters that show how many oracle queries she has issued both this
round and in total. The time-lock puzzle can be extracted from a ciphertext with
the help of the function fpuzzle.

Flag that distinguishes broadcast from non-broadcast messages:
When a message is created but is not allowed to be broadcast by A, it means
that the other parties will not receive it. Thus, they cannot solve the underlying
puzzle so it can be opened when the time comes. In a nutshell, it is like that
message did not exist. So, when the environment issues a Retrieve command
to retrieve the ciphertexts created in this turn, the non-broadcast ciphertexts are
not returned. The only ciphertexts returned to Z are the ones that will eventually
be opened by all parties, which is the ones that are broadcast. If we allow the non-
broadcast ciphertexts to be returned to Z then we will have a trivial distinction
between the ideal and the real setting for the reasons explained above.

When a party receives a decryption command from Z for a ciphertext c it
uses the function wit con to construct the decryption key. The input of wit con
is the collection of states that the party received so far from the FOeval

through
the functionality wrapper Wq(FOeval

). Next, the party returns to Z either the
message m, if the decryption was successful, or ⊥, otherwise. Note that, as in
the construction of Nielsen (2002); Camenisch et al. (2017), the third argument
in the ciphertext renders the scheme non-malleable Dwork (2011). In trivial cases
where the difference τdec − Cl is negative or zero, decryption can occur instantly.

Observe that the witness an honest party uses for decrypting a message before
receiving a clock advancement command is not the most updated one. Specifically,
the most updated witness in the current round is the one obtained after the honest
party uses all of her q oracle queries. A natural question is, can the party use
all of her queries when receiving a decryption command? If the party uses all of
her oracle queries when receiving a decryption command from Z for updating her
witness then, there will not be any queries left for encrypting the messages of the
current round. This is why the honest parties both generate and solve puzzles at
the end of the round (e.g. when receiving a clock advancement command). On
the contrary, the adversary can use all of his q queries whenever he wants. Thus,
he possesses an advantage in the decryption time by one round compared to the
honest parties. This is why in our proof of realization we assume that the leakage
function leak is equal with x+ 1 where x is the time Cl of the clock.

As mentioned, there are two procedures, named Puzzle and Encrypt that
each party executes one or both either when she receives a clock advancement
or decryption command from Z. Specifically, in Puzzle the party issues q oracle
queries in total both for puzzle creation and for puzzle solving. This is achievable
since the computation can be parallelized. Specifically, the last oracle query
to Wq(FOeval

) contains both the queries that are needed for the creations of the

CHAPTER 4. Time-lock encryption 55

ciphertexts and the queries for solving the puzzles. When chose the last one to
illustrate that puzzle creation needs some time and thus is the last computation for
that round. The next procedure called Encrypt, and uses the puzzles created from
Puzzle to create the new ciphertexts. Specifically, it uses the puzzles to encrypt a
random string by using the TLE scheme (Time-lock encryption). Then, encrypts
the actual message by XORed the message with the random oracle response of the
random string (Extended encryption). Thus, the first argument of the ciphertext
is the TLE encryption of the random string, the second argument is the XORed
message with the random oracle responce on the random string, and the third
and final argument is the random oracle response on the concatenation of the
message and the random string.

56 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

ΠTLE(Wq(FOeval
), eFOeval

, dFOeval
, fstate,wit con, fpuzzle, puz cr,Gclock,FRO,FBC,P).

Each party maintains the list of recorded messages/ciphertexts LPrec, initially as
empty, a tag space TAG and the algorithms (eFOeval

, dFOeval
) . Moreover, she follows

the procedure described below:

Puzzle:

1. Preparing queries for puzzle creation: She collects all tuples

{(mj ,Null, τj , tagj ,Clj , 0) ∈ LPrec}
p1(λ)
j=1 for Clj = Cl. She picks {rj1

$←
{0, 1}p∗(λ)}p1(λ)

j=1 . For each j she computes puz cr(rj1, τj− (Cl+1))→ {xk}
p2(λ)
k=1 .

2. Puzzle solving: For (jl = 0, jl < q, jl++) she collects all {stateznjt }
p3(λ)
n=1 , such

that (zn, τdec, {(stateznk , yk)}
jt
k=0,Cl, 0, jt) is recorded.

(a) Parallelize puzzle creation queries and puzzle solve: If jl = q − 1,

she sends (sid,Evaluate, {stateznjt }
p3(λ)
n=1 ∪ {xk}

p2(λ)
k=1) to Wq(FOeval

) and

receives back (sid,Evaluate, {(stateznjt , y
∗
jt

)}p3(λ)
n=1 ∪ {(xk, yk)}

p2(λ)
k=1). Else

she sends (sid,Evaluate, {stateznjt }
p3(λ)
n=1) to Wq(FOeval

).

(b) Update the record: In each case, she updates each tuple as
(zn, τdec, {(stateznk , yk)}

jt+1
k=0 ,Cl, jl + +, jt + +) where stateznjt+1 =

fstate(zn, jt, {(stateznk , yk)}
jt
k=0), yjt+1 = Null and yjt ← y∗jt . In case that

jl = q, she changes the Cl in the tuple to Cl + 1 and jl = 0.

Encryption:

1. Time-lock encryption: She computes {cj1 ← eFOeval
(rj1, {(xk, yk)}

p2(λ)
k=1 , τj−(Cl+

1))}p1(λ)
j=1 .

2. Extended encryption: For each rj1, she sends (sid,Query, rj1) to FRO. Upon re-

ceiving (sid,Random Oracle, rj1, h
j) from FRO, P sends (sid,Query, rj1||mj)

to FRO. Upon receiving (sid,Random Oracle, rj1||mj , c
j
3) from FRO, she

computes cj ← (cj1, h⊕m, c
j
3) and updates the tuple (mj , cj , τj , tagj ,Clj , 0)→

LPrec.

� Upon receiving (sid,Enc,m, τ) from Z, P reads the time Cl from Gclock and if τ < 0
she returns (sid,Enc,m, τ,⊥) to Z. Else, it does:

1. She picks tag
$← TAG and she inserts the tuple (m,Null, τ, tag,Cl, 0)→ LPrec.

2. She returns (sid,Encrypting) to Z.

� Upon receiving (sid,Advance Clock) from Z, P reads the time Cl
from Gclock. She executes both Puzzle and Encryption procedure.

Then, she sends (sid,Broadcast, {(cj , τj)}
p1(λ)
j=1) to FBC. Upon receiving

(sid,Broadcasted, {(cj , τj)}
p1(λ)
j=1) from FBC, for each j she updates each tuple

(mj ,Null, τj , tagj ,Clj , 1) to (mj , cj , τj , tagj ,Clj , 1) and sends (sid,Advance Clock)
to Gclock.

� Upon receiving (sid,Retrieve) from Z, P reads the time Cl from Gclock and re-
turns (sid,Encrypted, {(mj , cj , τj) : (mj , cj , τj , ·,Clj , 1) ∈ LPrec : Cl − Clj ≥ 1}) to
Z.

CHAPTER 4. Time-lock encryption 57

� Upon receiving (sid,Broadcast, {(cj , τj)}
p1(λ)
j=1) from FBC where cj = (cj1, c

j
2, c

j
3),

P reads the time Cl from Gclock and does for every j:

1. She computes state
fpuzzle(cj1)
0 ← fstate(fpuzzle(c

j
1), 0,Null).

2. She records the tuple-(fpuzzle(c
j
1), τdec, {(state

fpuzzle(cj1)
0 ,Null)},Cl, 0, 0).

� Upon receiving (sid,Dec, c := (c1, c2, c3), τdec) from Z, P reads the time Cl from
Gclock. Then she does:

1. If τdec < 0, she returns (sid,Dec, c, τdec,⊥) to Z.

2. If Cl < τdec, she returns (sid,Dec, c, τdec,More Time).

3. She searches for a tuple (fpuzzle(c1), τ, {(statefpuzzle(c1)
k , yk)}jtk=0,Cl, q, jt). If

τdec < τ ≤ Cl then she returns (sid,Dec, c, τdec, Invalid time) to Z.

4. She computes wτdec
← wit con({(statefpuzzle(c1)

k , yk)}jtk=0, τdec, fpuzzle(c1)).

5. She runs x ← dFOeval
(c1, wτdec

) and she sends (sid,Query, x) to FRO.

Upon receiving (sid,Random Oracle, x, h) from FRO, she computes
m ← h ⊕ c2. She sends (sid,Query, x||m) to FRO. Upon receiving
(sid,Random Oracle, x||m, c∗3) from FRO: If c3 6= c∗3, she returns to Z

(sid,Dec, c, τdec,⊥). Else, she returns to Z (sid,Dec, c, τdec,m).

6. If such tuple does not exist then she returns (sid,Dec, c, τdec,⊥) to Z.

Figure 4.4: The Protocol ΠTLE in the presence of a functionality wrapper Wq, an
evaluation functionality FOeval

, a random oracle FRO, a broadcast functionality FBC,
a global clock Gclock, where eFOeval

, dFOeval
, fstate, wit con and fpuzzle are hard-coded in

each party in P.

4.2.1 Security definitions of time-lock puzzles

In this Subsection, we provide security definitions that a TLE scheme (e.g a pair
((eO, dO)) must satisfy to provide a UC realization of our FTLE functionality. Our
security definition captures two properties, namely Correctness and qSecurity. A
TLE scheme that satisfies both properties is considered one-way secure based on
Definition 4.2.1.

Intuitively, the Correctness property states that the decryption of the ci-
phertext with underlying plaintext m results in the message m itself with high
probability provided that the underlying time-lock puzzle has been solved. The
qSecurity property is described in a game-based style via the experiment in Fig-
ure 4.5 and states that an adversary can win the experiment only with a very small
probability. Specifically, the experiment captures the one-way security of a TLE

58 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

scheme as in the concept of one-way functions security ?Goldreich (1999). Al-
though indistinguishability, like in IND-CPA security Goldreich (1999); Kościelny
et al. (2013), is stronger than the hardness to reverse a function, for our purpose
of achieving UC realization (Theorem 1) it is enough. This is possible because we
extend our TLE construction into a bigger one in the random oracle model and
we rely on the hardness of inverting the underlying TLE construction. Because
of that, in Subsection 4.3.3, we provide an indistinguishability game-based defini-
tion, similar to IND-CPA but in the context of TLE so that we can argue about
the security of a TLE construction even in the standalone model.

In Figure 4.5, we present the experiment EXPTLE in the presence of a
challenger Ch and an adversary B. This experiment illustrates the security of
a TLE scheme in the sense that no adversary can open a message before a certain
number of computations has been performed. Specifically, we allow access to the
adversary to the evaluation oracle Oeval. It is worth mentioning that the time
τ in encryption requests refers to a relativistic notion of time (the time that
the puzzle needs to be solved) rather than an absolute one (the time that the
puzzle will eventually be decrypted). If the adversary queries the oracle q times
for a ciphertext c, the challenger, which maintains a counter for that ciphertext,
increases that counter by one, allowing him to keep track of the number of queries
the adversary made for that particular ciphertext. With this, we model the essence
of the round and the limited resources the adversary has at his disposal but in a
game-based style (without Gclock and Wq(FOeval

)). The oracle queries are formed
with the help of the state function fstate and puzzle function fpuzzle, as described
in Table 4.1 and in a dedicated paragraph on page 52, with the initial query for
ciphertext c being fstate(fpuzzle(c), 0,Null). Again, the state function fstate takes as
an input the time puzzle of the ciphertext c, the number oracle query issued so
far in the current round and the previous response of the oracle (e.g., for the
initial query it is Null). The state function fstate illustrates the sequential oracle
queries a party does in order to solve the time-lock puzzle. Moreover, fstate gives
a precise description (and enforcement) of how each oracle query must be formed
before being issued to the oracle. In that way, we “enforce” the property that
the time-lock puzzle cannot be parallelized. Although the adversary can issue
encryption and decryption queries on his own because he knows the description
of the encryption and decryption algorithms, the challenger only records the
encryption and decryption requests that are issued through him. The reason
behind this modelling choice is that we only care only to keep track of legitimate
encryption and decryption queries, similar to 4.1. In other words, we cannot
guarantee that the adversary uses the correct algorithm to encrypt a message and
thus we cannot argue about the security of these ciphertexts. Moreover, a valid
witness wt for time label τ with τ ≤ t, can be constructed from the responses of
the oracle Oeval with the help of the function wit con as described in Table 4.1 and
in a dedicated paragraph on page 52. Again, the function wit con takes as input

CHAPTER 4. Time-lock encryption 59

oracle queries, a time labelling and a time puzzle and outputs either a witness,
if it can be constructed from the provided oracle queries, or ⊥ otherwise. Upon
request, the adversary receives a challenge ciphertext from the challenger. If the
adversary can guess correctly the underlying plaintext with less than the expected
computations, then he wins the game. For example, if the challenge queried by
the adversary is formed with time label τ (e.g. following experiment’s glossary, he
sends (Challenge, τ) to the challenger) but the adversary manages to retrieve
the message with less then qτ oracle queries, then he wins the game. In this
game the description of the oracle Oeval in Figure 4.5, is exactly that of the ideal
functionality in Figure 4.2 without the UC interface.

The experiment EXPTLE(B,Oeval, eOeval
, dOeval

, fstate, fpuzzle, q)

Initialization Phase.

�Ch is initialized with eOeval
, dOeval

and sends them to B. In addition it creates a local
time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, (x1, . . . , xj)) to Oeval through the Ch, he gets
back (Evaluate, ((x1, y1), . . . , (xj , yj))).

�B can request the encryption of a message m ∈Mλ with time label τdec by sending
(Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval

(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 for every q queries B issues to Oeval.

� B can request the decryption of a ciphertext c by sending (Dec, c, wτ) to Ch.
Then, Ch just runs the algorithm dOeval

(c, wτ) → y ∈ {m,⊥} and returns to B

(Dec, c, wτ , y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending (Challenge, τ).

Then, Ch picks a value r
$←Mλ and sends (Challenge, τ, cr ← eOeval

(r, τ − Clexp))
to B. Then, B is free to repeat the Learning Phase.

� B sends as the answer of the challenge the message (Challenge, τ, cr, r
∗) to Ch.

� If (r∗ = r) ∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption time
comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Figure 4.5: Experiment EXPTLE for a number of queries q, function fstate, message
domain Mλ, algorithms eOeval

, dOeval
in the presence of an adversary B, oracle Oeval

and a challenger Ch all parameterized by 1λ.

Definition 4.2.1. A one-way secure time-lock encryption scheme with respect to
an evaluation oracle Oeval, a relation ROeval

, a state function fstate, puzzle function
fpuzzle and a witness construction function wit con for message space M and a
security parameter λ is a pair of PPT algorithms (eOeval

, dOeval
) such that:

60 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

• eOeval
(m, τdec): The encryption algorithm takes as input message a m ∈M,

an integer τdec ∈ N and outputs a ciphertext c.

• dOeval
(c, wτdec

): The decryption algorithm takes as input wτdec
∈ {0, 1}∗ and

a ciphertext c, and outputs a message m ∈M or ⊥.

The pair (eOeval
, dOeval

) satisfies the following properties:

1. Correctness: For every λ, τdec ∈ N,m ∈M and wτdec
, it holds that

Pr
[
m′ ← dOeval

(eOeval
(m, τdec), wτdec

)∧ROeval
(wτdec

, (fpuzzle(c), τdec)) : m′ = m
]
> 1−negl(λ)

where wτdec
can be constructed from the received responses of Oeval and

function wit con as it is described in both Table 4.1 and Figure 4.4.

2. qSecurity: For every PPT adversary B with access to oracle Oeval, the
probability to win the experiment EXPTLE and thus output 1 in Figure 4.5
is negl(λ).

4.2.2 Proof of UC realizing F
leak,delay
TLE

In this Subsection we show that if the TLE scheme used in protocol ΠTLE in
Figure 4.4 is a secure time-lock encryption scheme according to Definition 4.2.1
then the protocol ΠTLE UC realizes FTLE.

Theorem 1. Let (eOeval
, dOeval

) be a pair of encryption/decryption algorithms
that satisfies Definition 4.2.1. Then, the protocol ΠTLE in Figure 4.4 UC-realizes
functionality F

leak,delay
TLE in the (Wq(F

∗
RO),Gclock,FRO,FBC)-hybrid model with leakage

function leak(x) = x+ 1, delay = 1, where FRO and F∗RO are two distinct random
oracles.

Proof. Let us suppose that protocol ΠTLE does not UC-realize FTLE. Then, by
Definition 2.4.2, there is an adversary A s.t. for every simulator S there is an
environment Z s.t.:

|Pr[EXECΠTLE
Z,A = 0]− Pr[EXECFTLE

Z,S = 0]| > α(λ) (4.1)

where α() is a non negligible function.
Now consider the specific simulator S below: At the beginning, S receives

the corruption vector from Z and informs A as if it was Z. When S gets the
token back from A, he sends the corruption vector to FTLE. Moreover, S registers
the encryption/decryption algorithms (eS, dS), which are the same as in protocol
ΠTLE, namely (eFOeval

, dFOeval
). However, the Extended encryption is not the same,

specifically the created cipher texts c2, c3 are equal to a random value. Observe
that still the distribution of both (c2, c3) in both executions are still the same as
both c2, c3 in the real protocol are random. If S receives an encryption request
(sid,Enc, τ, tag,Cl, 0|m|, P) from FTLE on behalf of an honest party P , he stores

CHAPTER 4. Time-lock encryption 61

the tuple (τdec, tagm,Cl, 0|m
∗|, c, nobroadcast, P), where c is the encryption of 0|m

∗|

by using the algorithm eS, he updates his list, named LS
RO∗ (initially empty), for

the generation of that ciphertext. Moreover, he updates his list for the second
and the third argument of the encryption as if it was FRO (e.g c2 and c3). Then,
he returns the token back to FTLE.

Upon receiving (sid,Advance Clock, P) from Gclock from an honest
party P , S reads the time Cl from Gclock. Then, for every stored tuple
(τj, tagj,Clj, 0

|mj |, cj, broadcast, ·), he updates his list, named LS
RO∗ , with q eval-

uation queries for solving the ciphertexts issued by honest parties on previ-
ous rounds, as if it was F∗RO in the real protocol. Then, he seeks the per-
mission for broadcasting the ciphertetext created for P in this round from
A as if it was FBC. If A allows the broadcast, he updates the tuples
(τdec, tagm,Cl, 0|m

∗|, c, nobroadcast, P) to (τdec, tagm,Cl, 0|m
∗|, c, broadcast, P) and

returns back to FTLE the resulting ciphertexts along with their difficulty issued
by P in this round. When S receives an encryption request from FTLE on behalf
of a corrupted party he reads the time Cl from Gclock, he forwards the message to
A as if it was from that party and keeps record both corrupted party’s identity,
message and the current time Cl (e.g. (P,m,Cl)). Then, S returns whatever he
receives from A to FTLE after updating his record with that response. In any of
these cases, S keeps the randomness that he used for that task. In case S receives
a decryption request from FTLE with ciphertext c and time label τ on behalf of
an honest party, he does: If c was recorded as a ciphertext of a corrupted party
as above, then S generates the witness wτdec

similar to protocol ΠTLE as if it was
an honest party and updates his list LS

RO∗ exactly as F∗RO in protocol ΠTLE for
consistency between the witness and the oracle queries. Specifically, S reads the
time Cl from Gclock and records to LS

RO∗ as many queries as the honest party in
ΠTLE should do between the time that c was recorded from S and the current time
Cl. Next, S generates the witness based on these queries exactly as in the real
protocol. Then, S returns to FTLE the message {m,⊥} ← dS(c, wτdec

). The only
way for S to be asked the opening of such a ciphertext is that the ciphertext is
not legitimate (e.g. not issued through FTLE). This can be easily observed by the
FTLE’s command interface. The ⊥ occurs in the case that the algorithm detects
no knowledge over the plaintext (recall the check c3 = H(r1||m) in Figure 4.4).
If S receives a decryption request for a ciphertext c with time label τ from FTLE

on behalf of a corrupted party, he forwards the message to A as if it was from
that party. S returns whatever he receives from A as if it was the corrupted party
back to FTLE. In case S receives a random oracle query request (FRO) from FTLE

on behalf of a corrupted party, he forwards the message to A as if it was from
that party. When S receives this request from A playing the role of FRO, he sends
the command Leakage to FTLE. Then S checks if the received record from FTLE

contains any relation between a message m and the random oracle query that S

received initially from the corrupted party. If S finds such relation, he programs
the oracle so that ciphertext can be opened to message m. Then, he responds

62 4.2 Realization of Fleak,delay
TLE via time-lock puzzles

to A as if it was the FRO. For example, let us suppose that the oracle query is
the value r1. Remember that S issues all the ciphertexts, so he knows the ran-
domness that it was used in each one of them. As a result, he can check if r1

used for the production of a ciphertext. In case that he founds that r1 was used
for the production ciphertext c, he sends the command Leakage to FTLE. In
the fortunate scenario where he finds in the received list a tuple that contains a
message m and the ciphertext c = (c1, c2, c3), he registers and returns as if it was
FRO the response H(r1) = c2 ⊕m to A (equivocation).

In the case S founds the oracle query but the list does not contain the message,
he outputs “⊥” (meaning that the adversary was lucky enough to guess a plaintext
before the time comes, or the adversary “broke” the security of the encryption
scheme). Specifically, when S receives (sid,Query, x) from FTLE on behalf of a
corrupted party he forwards the message to A as if it was from that party. When
S receives the same message from A as if it was FRO, he sends (sid,Leakage)
to FTLE. Upon receiving (sid,Leakage, {(m, c, τdec) ∈ Lrec}τdec:τdec≤leak(Cl)) from
FTLE, S searches into his database (S generates all the ciphertexts so he knows
the randomness of each) for a ciphertext c1 on message x. If such ciphertext
does not exist, he behaves exactly like the FRO. If it does, he searches the
set {(m, c, τdec) ∈ Lrec}τdec:τdec≤leak(Cl) to find a c such that c[1] = c1. If S

does not find such ciphertext, he outputs ⊥, else he retrieves the corresponding
message m and returns as the answer to the random oracle query the message
(sid,Query, x, y = c[2] ⊕ m) to A as if it was from FRO. In any other case
he behaves just like a random oracle. Finally, when S receives the command
Evaluate from FTLE on behalf of a corrupted party, he forwards the message to
A as if it was that party. When S receives the Evaluate command from A on
behalf of the corrupted party as if it was Wq(F

∗
RO), he behaves exactly as Wq(F

∗
RO)

in protocol ΠTLE.

By the assumption of A for S defined above there is an ZS such that
Equation 4.1 holds. There are two possible ways for Z to distinguish the real
from the ideal execution of the protocol based on the syntax of FTLE.

Distinction when FTLE outputs ⊥: The first way for Z to distinguish the
two executions is when FTLE outputs the special ⊥ symbol. This happens when
FTLE detects the same ciphertext for two different messages, meaning that the
Correctness property has been violated. In all other cases when FTLE returns
⊥ the same occurs in the real execution, thus the Z can not distinct the two
execution in such cases.

Distinction when leak is not “enough”: Last, Z can distinct the two
executions when S cannot retrieve the message m via the command Leakage
and Z managed to solve the puzzle that correspond to that message. Note that
the puzzle is created by S. As a result, S cannot equivocate the message correctly
and Z can distinguish the real from the ideal execution. For example, if we have

CHAPTER 4. Time-lock encryption 63

a protocol that uses a TLE scheme such that it is not necessary for a party to
ask all the oracle queries so that she can solve the puzzle at the desired time,
instead she can solve it much faster (broken by design). In such cases, FTLE is not
realizable.

Lets us suppose that the pair (eOeval
, dOeval

) satisfies the Correctness property.
We construct an adversary B that can break the qSecurity with probability at
least α̃(λ), where α̃() a non negligible function.

The only way for ZS to distinguish the real from the ideal execution with non-
negligible probability based on the argumentation of Paragraphs 4.2.2 and 4.2.2 is
to decrypt/solve the first argument of a ciphertext/puzzle, namely c1, generated
by an honest party before the time comes and issues a random oracle query on
it so that Z retrieves the message. This is possible if ZS is able to construct
a witness wτdec

for an honest generated ciphertext c1 via the queries issued by
a corrupted party to WF∗RO

in the real execution of the protocol or in S in the
ideal execution given that the global time Cl provided by Gclock is strictly smaller
than τdec. Next, ZS will request a random oracle query from a corrupted party
with the query value to be the plaintext of the ciphertext c1. Next, S in order
to equivocate correctly, he needs the corresponding message. But if the time of
that message has not come yet (e.g. Cl < τdec), the recorded table that S will
request from FTLE via the Leakage command, it will not contain that message.
As a result, S will fail to equivocate correctly and ZS can distinguish the two
executions. Now B takes advantage of that environment, and uses it in order
to win the experiment EXPTLE with non negligible probability in the following
way: B simulates the interface to the environment as in the ideal execution of the
protocol in the presence of the global clock. Specifically, B runs every procedure
locally simulating every role in the ideal execution, without engaging Ch at all.
Every time B receives q queries (sid,Evaluate, {xj}pl(λ)

j=0) where pl a polynomial
function, from Z as if it was a corrupted party, he increases by 1 the local counter
Cl, (similar to the one Ch has) and forwards (sid,Evaluate, {xj}pl(λ)

j=0) to the oracle
Oeval through the challenger in EXPTLE. Then returns to Z whatever it receives.
After that point if Z does not send a clock advancement command, B does not
allow Z to issue more queries. Now, B knows that the environment will make
at most pH(λ), penc(λ) random oracle and encryption queries respectively, where
pH(), penc() are polynomial functions. At least one of these random oracle queries
made by ZS, from the observation at the beginning of the Paragraph, will contain
the plaintext (namely the value r1 as described in Figure 4.4) of one of the penc(λ)
ciphertexts that has been decrypted by ZS before its decryption time with non

negligible probability α(λ). Therefore, B picks j1
$← {1, . . . , penc(λ)}. When ZS

issues the j1-th encryption query (sid,Enc,m, τdec) to an honest party simulated
by B, B proceeds as follows: If τdec > Cl (B simulates Gclock), then he sends
(Challenge, τdec−Cl) to Ch. When B receives (Challenge, τdec−Cl, c1) from
Ch, B picks c2, c3 exactly as FTLE and returns (sid,Enc,m, τ, c ← (c1, c2, c3)) to

ZS. Then, B picks j2
$← {1, . . . , pH(λ)}. When ZS issues the j2-th random oracle

64 4.3 Astrolabous: a UC-secure TLE construction

query (sid,Query, x) to a corrupted party, B sends x to Ch as the answer to the
challenge. It can be seen that the probability x to be the answer of the challenge
is at least 1/(penc(λ)pH(λ)) · α̃(λ). Note that, although that the ciphertexts of
the honest parties simulated by B are created based on the FOeval

simulated by B

as well in contrast with the challenged one that is created from Ch trough Oeval

the distribution are exactly the same and the probability for collision on inputs
in negligible.

On the importance of instantiating FOeval
with F∗RO: In our proof, we in-

stantiate the functionality FOeval
with F∗RO, so that Z cannot bypass the interaction

with the functionality wrapper and thus breaches the security argument of our
proof. Let us suppose for instance that FOeval

was not instantiated with F∗RO, in-
stead it was instantiated by any other functionality parameterized by a constant
distribution Dx. In that case, Z could simply sample values from that distribu-
tion locally, solve the puzzle, and encrypt/decrypt any messages in a single round.
Specifically, in Rivest et al. (1996), the procedure for solving a time-lock puzzle
consists in repeatedly squaring a base a specific polynomial number of times.
However, this computation is deterministic. So any PPT Turing machine, in-
cluding Z, can produce identical results if they engaged in the same computation
without necessarily interacting with the functionality wrapper at all, breaching
the security argument of our proof.

A promising way to tackle such deterministic FOeval
could be to allow the en-

cryption/decryption algorithms to interact with the oracle through the function-
ality wrapper, verifying that the provided solution for the puzzle was constructed
through the evaluation oracle. Of course, this would require more modelling as-
sumptions such as the definition of the encryption/decryption algorithms as ITMs
so that they could interact with the oracle. On the other hand, if we instantiate
FOeval

with F∗RO then the modelling is more natural. We address the limitations
of Rivest et al. (1996) by defining a new construction, namely Astolabous, de-
fined in the Section 4.3. It is worth mentioning that both random oracles in the
protocol ΠTLE are local and thus programmable.

4.3 Astrolabous: a UC-secure TLE construction

We present and prove that our relative TLE construction is a secure time-
lock encryption scheme according to Definition 4.2.1. Our scheme combines the
construction of Mahmoody et al. (2011) and Rivest et al. (1996).

First, we present our TLE construction, namely Astrolabous, and the proof
of security, i.e. Astrolabous satisfies Definition 4.2.1. Finally, for the sake of
completeness, we present the equivocable Astrolabous algorithm, which is the
algorithm that is used in the hybrid protocol in Figure 4.4.

We did not adopt any of the TLE constructions provided in Rivest et al.
(1996) and Mahmoody et al. (2011) because they can not provide us with the

CHAPTER 4. Time-lock encryption 65

necessary security properties we are seeking in our theoretical framework so that
we can UC realise FTLE, as we explain in detail in the next paragraph.

Neccesity for defining Astrolabous: The construction in Rivest et al. (1996)
is very simple and easily implementable, which is not the case in our theoretical
framework (e.g. UC framework). The security of the construction is based on the
repeated squaring problem, which states that: “Given a composite number n and
an element b ∈ Zn it is hard to compute b2τ with less than τ repeated squaring”.
To define this construction in UC, we have to introduce this new hardness
assumption and we have to correlate it with the pair of encryption/decryption
algorithms. Specifically, we would have to define an oracle, like the FOeval

, that
is responsible for that computation. The algorithms must communicate with the
oracle to ensure that a provided witness is created only from queries through
the oracle rather than local computations, where we can not restrict the access
via a functionality wrapper and thus can not capture the whole concept of
TLE in UC framework. If we want to formulate the communication of the
encryption/decryption algorithms with the functionality oracle, we have to define
them as ITMs rather than just plain algorithms. This approach is rather new
to UC and out of the scope of this work. Instead, we searched solutions where
the functionality oracle is the random oracle, such as in Mahmoody et al. (2011).
With that approach, the algorithm need not communicate with the oracle because
the computations to solve the time-lock puzzle are not deterministic (e.g. like
in Rivest et al. (1996)), in fact, they are probabilistic. So, even if the adversary
knows the distribution where the oracle responses to the queries, he can not
predict the actual outcome. As a result, when the adversary tries to decrypt the
message that is created based on the random oracle functionality, it is impossible
to do so without interacting with the oracle first. However, we can not adapt
directly the construction from Mahmoody et al. (2011) because the adversary
can learn parts of the plaintext before the desired decryption time, leading to
a weak encryption scheme concerning cryptographic standards Kościelny et al.
(2013). That is why we use the construction from Mahmoody et al. (2011) to
encrypt not the actual message but the key that is used to encrypt our message
with some symmetric encryption scheme, like AES, in the same spirit as Rivest
et al. (1996). Although that this construction without the extension presented
previously is enough if we want to stress the security of Astrolabous against a
standalone definition, like the one in Subsection 4.3.3, for a UC realization is not
enough as we have already discussed.

Description of the Astrolabous scheme Initially, we provide the necessary
glossary in Table 4.2. We name our construction Astrolabous from the ancient
Greek clock device Astrolabe, which was used by the astronomers of that era to
perform different types of calculations including the measurement of the altitude

66 4.3 Astrolabous: a UC-secure TLE construction

above the horizon of a celestial body, identification of stars and the determination
of the local time.

We refer to the encryption/decryption algorithms of the Astrolabous
scheme in Subsection 4.3.1 as AST.enc,AST.dec where AST is the abbrevia-
tion of Astrolabous. In Subsection 4.3.2, we refer to the equivocable encryp-
tion/decryption algorithms as EAST.enc,EAST.dec where the letter E indicates
the extended algorithms of the Astrolabous scheme.

Table 4.2: The glossary of Astrolabous scheme.

Notation Description
E = (enc, dec) a symmetric key encryption scheme

H,G two hash functions (modelled as random oracles)

b
$← D b is sampled uniformly at random from D

X.enc,X.dec
encryption and decryption algorithm respectively
of scheme X

⊕ the XOR bit operation, e.g. 0⊕ 1 = 1, 1⊕ 1 = 0
x||y the concatenation of two bit strings x and y

4.3.1 The (AST.encE,H,AST.decE,H) scheme

AST.encE,H(m, τdec): The algorithm accepts as input the message m and the time-
lock’s puzzle difficulty τdec

1 and does:

• Picks kE
$← KE, where KE is the key space of the symmetric encryption

scheme E and the size of the key is equal to the domain of the hash function
H equal to p1(λ). Then compute cm,kE

← enc(m, kE).

• It picks r0||r1|| . . . ||rqτdec−1
$← {0, 1}p2(λ) and computes ckE,τdec

← (r0, r1 ⊕
H(r0), r2 ⊕H(r1), . . . , kE ⊕H(rqτdec−1)2.

• It outputs c = (τdec, cm,kE
, ckE,τdec

) as the ciphertext.

AST.decE,H(c, wτdec
): The algorithm accepts as input the ciphertext c of the form

(τdec, cm,kE
, ckE,τdec

) and the witness wτdec
= (r0,H(r0),H(r1), . . . ,H(rqτdec−1), c)

that can be computed by issuing qτdec random oracle queries. Specifically, to
solve the puzzle the first oracle query is r0 and the response H(r0). Then,
the decryptor computes the value r1 from ckE

by using the XOR operation
such as r1 ← ckE,τdec

[1] ⊕ H(r0). Similarly, it computes the pair of values
(r2,H(r2)), . . . , (rqτdec−1,H(rqτdec−1)). Then it does:

1Note that this time difficulty is relative, that means that it specifies the duration for solving
the puzzle rather than the specific date at which the puzzle should be solved.

2To do this efficiently all the hash queries can be performed simultaneously as kE and
r0||r1|| . . . ||rqτdec−1 are known. In the UC setting, the party sends (sid,Evaluate, τdec) to

Wq and receives back (sid,Evaluate, τdec, {(rj , yj)}qτdec−1
j=0).

CHAPTER 4. Time-lock encryption 67

• It computes kE = H(rqτdec−1) ⊕ ckE,τdec
[qτdec], where ckE,τdec

[j] indicates the
jth element in vector ckE,τdec

.

• It computes and outputs m← dec(cm,kE
, kE).

In Table 4.3, we summarize the oracle, algorithms, functions and relation that
define a TLE scheme as in Definition 4.2.1. We instantiate these to specify our
TLE construction.

Table 4.3: Oracle, algorithms, functions and relation that define a TLE construction.

TLE items Description

Oeval

the oracle to which the parties issue queries for
solving/creating time-lock puzzles

(eOeval
, dOeval

)
the pair of encryption/decryption algorithms with
respect to the oracle Oeval

fstate

the state function that prepares the next oracle query
to Oeval

fpuzzle

the puzzle function that extracts the time-lock puzzle
from a given ciphertext

wit con
the witness construction function that returns the
solution of the puzzle or the witness if that is possible

ROeval

the relation that specifies when a witness w is a solution
to a puzzle c with difficulty τ

We instantiate the items from Table 4.3 based on our construction as shown
below.

1. The oracle Oeval is the random oracle RO.

2. The encryption and decryption algorithms (eOeval
, dOeval

) are described as
AST.encE,H,AST.decE,H. Our algorithm is relative, meaning that we define
the difficulty of the time-lock puzzle rather than the specific time that the
message will eventually open. For our algorithms to be compatible with the
UC setting, for a given time τdec we must define the difficulty of the puzzle.
In that case, given the current time is Cl, the puzzle complexity is τdec−Cl.
The time τdec gives us the essence of absolute time that a ciphertext should
be opened. On the other hand, both constructions in Mahmoody et al.
(2011); Rivest et al. (1996) function in relative time. To compute relative
time, both values Cl and τdec are provided to eFOeval

.

3. The state function fstate for a ciphertext c = (τdec, cm,kE
, ckE,τdec

) as described
previously, is defined as:

fstate(c, 0,Null) = ckE,τdec
[0] (4.2)

68 4.3 Astrolabous: a UC-secure TLE construction

and ∀j ∈ {1, . . . , q(τdec − Cl)− 1} it holds that:

fstate(c, j, y = H(rj−1)) = y ⊕ ckE,τdec
[j] (4.3)

4. The puzzle function fpuzzle for a ciphertext c = (τdec, cm,kE
, ckE,τdec

) is defined
as:

fpuzzle(c) = ckE,τdec
(4.4)

5. The witness construction function wit con accepts the input described in
Figure 4.4 and outputs the witness described in the same figure.

6. A pair (wτdec
= (r0,H(r0),H(r1), . . . ,H(rq(τdec−Cl)−1)), (fpuzzle(c), τ)) is in

RFOeval
, where wτdec

and c have the same form as in the description of
AST.decE,H, if |wτdec

| = |fpuzzle(c)| and w[j] = ckE,τdec
[j] ⊕ H(w[j − 1]) for

all j ∈ [0, q(τdec − Cl)− 2], where w[−1] = 1.

The following theorem states that our TLE construction satisfies Definition 4.2.1.

Theorem 2. Let AST.encE,H,AST.decE,H be the pair of encryption/decryption al-
gorithms just described. If the underlying symmetric encryption scheme E satisfies
IND− CPA security and correctness, then the pair (AST.encE,H,AST.decE,H) is a
secure TLE scheme according to Definition 4.2.1 in the random oracle model.

Proof. In order to prove that the pair AST.encE,H,AST.decE,H satisfies Defini-
tion 4.2.1 we need to prove that it satisfies both Correctness and qSecurity.

Proving Correctness: We know that the decryption algorithm of the symmetric
scheme E returns the correct plaintext with probability 1 Daemen and Rijmen
(2002). Specifically it holds ∀m ∈ M:

Pr[kE
$← KE;m′ ← dec(enc(m, kE), kE) : m = m′] = 1

where KE and M is the key space and message space of the E respectively.

Let RH be the relation as defined in Subsection 4.3.1 with FOeval
instantiated

by the random oracle, abbreviating here as H, that correlates the time τdec

and the puzzle c with the correct witness for decryption wτdec
. Because the

correct decryption of AST.decE,H is solely based on the correct decryption of the
underlying symmetric scheme E, ∀m ∈ M and τdec ← N it holds that:

Pr

[
m′ ← AST.decE,H(AST.encE,H(m, τdec), wτdec

)
RH(wτdec

, fpuzzle((AST.encE,H(m, τdec)), τdec))
: m′ = m

]
= 1

CHAPTER 4. Time-lock encryption 69

Proving qSecurity: We argue about qSecurity by defining a new experiment,
similar to the one in Figure 4.5, where the decryption key used in the symmetric
encryption scheme E does not appear at all but still the distribution of messages
the adversary sees in both experiments are statistically close based on the security
parameter λ. Thus, there is no way for the adversary to learn the real key with
less queries than the maximum allowed number and as long as E is secure, the
adversary can retrieve the plaintext only with negligible probability.

First, let us define the event that the adversary B wins in the experiment
EXPTLE as WinEXPTLE

and the event to make less oracle queries than the expected
ones for the challenged ciphertext (e.g. τ > Clexp, see Figure 4.5) as Bad. Note
that it holds that WinEXPTLE

⊆ Bad because the necessary requirements for the
adversary to win the EXPTLE is by making less oracle queries than the expected
ones for the challenged ciphertext. Thus, it holds that

Pr[WinEXPTLE
] = Pr[WinEXPTLE

∧ Bad] (4.5)

Thus, we need to show that Pr[WinEXPTLE
∧ Bad] is negligible with respect to

λ. Let us define the experiment EXP∗TLE which is the same as EXPTLE except
that the challenged ciphertext does not contain the key that is used to encrypt
the message with the symmetric encryption scheme. Specifically, the last part of
the time-lock puzzle in the challenged ciphertext in EXPTLE is kE ⊕H(rqτdec−1),
whereas in EXP∗TLE it is H(rqτdec−1) instead. Observe that the distribution of
messages that B receives in the two experiments are exactly the same, in the case
the adversary did less oracle queries for the challenged ciphertext (the event Bad),
because we are in the random oracle model. So we have:

Pr[WinEXPTLE
∧ Bad] = Pr[WinEXP∗TLE

∧ Bad] (4.6)

In the case event Bad does not happen, B can retrieve the key of the challenged
ciphertext from the puzzle. As a result, the distributions of messages in the two
experiments are no longer the same because the key that the challenged ciphertext
was created with and the key that B retrieved from the puzzle in EXP∗TLE do not
match.

We argue that the event WinEXP∗TLE
∧Bad happens with negligible probability.

Let us assume that:
Pr[WinEXP∗TLE

∧ Bad] > α(λ) (4.7)

where α is a non-negligible function. We construct an adversary BIND−CPA that
uses the adversary B to win in the IND− CPA game of the symmetric scheme E
with non-negligible probability. Specifically, BIND−CPA works as follows:

He initializes the algorithms eOeval
, dOeval

, responds to B and keeps the same
counters/database as if it was Ch and Oeval in the experiment EXP∗TLE except
when he receives the challenged query from B for a labelling τ . When the

latter happens, BIND−CPA chooses two random messages m0,m1
$←Mλ and sends

them to the challenger of the IND− CPA game. Upon receiving the ciphertext

70 4.3 Astrolabous: a UC-secure TLE construction

c back from the challenger, BIND−CPA picks (r0||r1|| . . . ||rqτ−1)
$← {0, 1}p2(λ)(see

description: 4.3.1) and computes cτ ← (r0, r1 ⊕H(r0), r2 ⊕H(r1), . . . ,H(rqτ−1))
where the random oracle calls H(·) are simulated by BIND−CPA. Then, he returns
(τ, c, cτ) to B as if it was Ch. Observe that, BIND−CPA does not know the key
that it is used for the production of the ciphertext c and thus the probability to
create a time puzzle cτ where the actual key appears in the last XOR operation
would be negligible. For that reason it was necessary to define the intermediate
experiment EXP∗TLE.

At some point, BIND−CPA receives the answer for the challenged ciphertext,
namely m̃, from B. If m̃ = m0 ∨ m̃ = m1, BIND−CPA returns m̃ to the challenger
of IND− CPA as the answer to the challenged ciphertext, else it returns mb where

b
$← {0, 1}.
Let us define the event BIND−CPA to win the experiment IND− CPA as

WinIND−CPA. Observe that, if B correctly finds the message in experiment EXP∗TLE

and the event Bad holds then BIND−CPA wins as well in the experiment IND− CPA.
Specifically:

Pr[WinIND−CPA] = Pr[WinIND−CPA|ABad] Pr[ABad]+Pr[WinIND−CPA|ABad] Pr[ABad]
(4.8)

where ABad is the abbreviation for the event WinEXP∗TLE
∧ Bad.

By the description of the adversary BIND−CPA, we have that Pr[WinIND−CPA|ABad] =
1 and Pr[WinIND−CPA|ABad] ≥ 1/2. Therefore, by Equation (4.8), it holds that:

Pr[WinIND−CPA] ≥ 1/2 + 1/2 Pr[ABad] (4.9)

By Equations (4.7),(4.9) it holds that:

Pr[WinIND−CPA] > 1/2 + α(λ)/2 (4.10)

which is a contradiction. As a result it holds that:

Pr[WinEXP∗TLE
∧ Bad] = negl(λ) (4.11)

Finally, by Equations (4.5),(4.6),(4.11) we have:

Pr[WinEXPTLE
] = negl(λ) (4.12)

which completes the proof.

4.3.2 Equivocable (EAST.encE,H,G,EAST.decE,H,G) scheme

For our purposes, it is not enough to adopt directly a TLE construction and
make security claims in the UC framework because we cannot equivocate, which is
essential. For that reason, we have shown in our hybrid protocol in Figure 4.4 how
to extend any TLE construction in order for our security claims to be compatible
with the UC framework. We provide the description below. EAST.encE,H,G: The
algorithm accepts as input the message m and the time-lock puzzle difficulty τdec

and does the following:

CHAPTER 4. Time-lock encryption 71

• It picks r1
$← {0, 1}p3(λ) and computes c1 ← AST.encE,H(r1, τdec).

• It computes c2 ← G(r1)⊕m and c3 ← G(r1||m).

• It outputs c = (c1, c2, c3).

EAST.decE,H,G(c, wτdec
): The algorithm accepts as input the ciphertext c and the

witness wτdec
:

• It computes r1 ← AST.decE,H(c1, wτdec
) and m← G(r1)⊕ c2.

• If c3 6= G(r1||m) it outputs ⊥, else it outputs m.

4.3.3 IND-CPA-TLE security

Game-based definitions are often natural and easy to use. Unfortunately, the
experiment EXPTLE presented in Figure: 4.5 is not enough to argue about the
security of a TLE scheme on its own, and is only useful in the context of the
Theorem: 1. The reason is that EXPTLE argues about only the onewayness of
a TLE scheme, leaving aside any semantic security. On the other hand, it is
enough for the proof of Theorem: 1 as we use an extension of the TLE scheme in
the random oracle model and not the scheme as it is.

Below, we present the analogous experiment of the IND-CPA security notion
in the time-lock setting. In a nutshell, this experiment is the same as the one
in Figure: 4.5 except that the adversary in the Challenge command specifies
two messages (m0,m1) as in the classical IND-CPA game. Again, in order to
win the game, the adversary B must guess correctly which of the two messages is
encrypted by the challenger Ch without engaging with the oracle more than the
desired amount of times. In case he wins, that would mean that he managed to
“break” the TLE scheme in the sense that he decrypted the message before its
decryption time.

72 4.3 Astrolabous: a UC-secure TLE construction

The experiment EXPIND−CPA−TLE(B,Oeval, eOeval
, dOeval

, fstate, fpuzzle, q)

Initialization Phase.

� Ch is initialized with eOeval
, dOeval

and sends them to B. In addition, it creates a
local time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, x) to Oeval through the Ch, he gets back
(Evaluate, x, y).

�B can request the encryption of a message m ∈Mλ with time label τdec by sending
(Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval

(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 every time B queries Oeval q times.

� B can request the decryption of a ciphertext c by sending (Dec, c, w) to Ch. Then,
Ch just runs the algorithm dOeval

(c, w)→ y ∈ {m,⊥} and returns to B (Dec, c, w, y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending

(Challenge, (m0,m1), τ). Then, Ch picks a value b
$← {0, 1} and sends

(Challenge, τ, c← eOeval
(mb, τ −Clexp)) to B. Then, B is free to repeat the Learn-

ing Phase.

� B sends as the answer of the challenge the message (Challenge, τ, c,mb∗) to Ch.

� If (mb∗ = mb) ∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption
time comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Figure 4.6: Experiment EXPIND−CPA−TLE for a number of queries q, function fstate,
message domain Mλ, algorithms eOeval

, dOeval
in the presence of an adversary B, oracle

Oeval and a challenger Ch all parameterized by 1λ.

Definition 4.3.1. A pair of TLE algorithms (eOeval
, dOeval

) as described in Defini-
tion 4.2.1 is IND-CPA-TLE, if for every PPT adversary B the probability to win
the experiment described in Figure 4.5 is 1/2 + negl(λ).

Mahmoody et al.’s construction is not IND-CPA-TLE: Recall the
construction in Mahmoody et al. (2011) for encrypting a message m or a secret
in general. It can be easily seen that it does not satisfy Definition 4.3.1, as the
secret is spread across the puzzle, and thus part of it is leaked as the puzzle is
solved. Specifically, the encryption eMM0.1(m, τ) for a message m and difficulty τ
works as follows:

1. It uses an encoding function Fe to divide m into τq + 1 bit-blocks,
Fe(m, τ, q)→ (m0, . . . ,mτq).

2. Then it computes c = (m0,m1 ⊕ H(m0), . . . ,mτq ⊕ H(mτq−1) as the
ciphertext of the plaintext m.

CHAPTER 4. Time-lock encryption 73

The decryption algorithm dMM0.1(c, (m0,H(m0), . . . ,H(mτq−1)) for a ciphertext
c and witness (m0,H(m0), . . . ,H(mτq−1) which acts as the secret key, works as
follows:

1. It computes the τq + 1 blocks of message m as mj = cj ⊕Hj−1.

2. It computes the message m with the decoding function Fd((m0, . . . ,mτq))→
m

It is worth mentioning that this algorithm as presented in Mahmoody et al.
(2011) , it was not intended to be used as an encryption algorithm rather than a
puzzle creation one. Observe that the message is spread all over the puzzle. As a
result, the adversary B can easily win the IND-CPA-TLE game with probability
1. Specifically, he chooses the messages m0 and m1 such that the leading bit
is different. Next he starts to solve the puzzle. As the message is revealed in
a progressive way, when he finds either the bit 0 or 1 first he will know with
probability 1 which of the two messages is without depleting all the available
oracle queries and thus wins the game.

Next, we show both Astrolabous and an enhanced version of the construction
in Mahmoody et al. (2011), we call it MMV 2.0 from the first letter of each author,
are IND-CPA-TLE.

MMV 2.0: As we explained above, the construction in Mahmoody et al. (2011)
does not satisfy IND-CPA-TLE security because it spreads the message all over
the puzzle. A natural question is if it satisfies our game based definition when the
message is not spread across all over the puzzle, but instead, it is XORed in the last
hash evaluation. Specifically, eMM0.1(m, τ) → (r0, r1 ⊕H(r0), . . . ,m ⊕H(rτq−1),
where r = r0|| . . . ||rτq−1 is a random string. In that case, as we see next, the
MMV 2.0 satisfies IND-CPA-TLE.

Theorem 3. The construction MMV 2.0 as described above is IND-CPA-TLE
secure.

Proof. The reasoning of the proof is very similar with the one in Theorem 2.
Specifically, we define a second experiment where the last XOR instead of
containing the message it is just a random hash evaluation. Again, with exactly
the same reasoning we argue that:

Pr[WinEXPIND−CPA−TLE
∧ Bad] = Pr[WinEXP∗IND−CPA−TLE

∧ Bad] (4.13)

In EXP∗IND−CPA−TLE the challenged message it does not appear at all (in contrast
with Astrolabous where it appears in the symmetric encryption scheme), so the
probability to win there is 1/2 exactly. This completes the proof.

Next we show that Astrolabous is also IND-CPA-TLE secure. The reasoning
again is exactly the same as the one in theorem 2 except that the IND-CPA

74 4.3 Astrolabous: a UC-secure TLE construction

adversary sends the messages m0,m1 received from the IND-CPA-TLE adversary
to the challenger instead of choosing his own. The rest are exactly the same and
thus we omit the proof.

Theorem 4. Astrolabous is IND-CPA-TLE secure.

Even if both Astrolabous and MMV 2.0 are IND-CPA-TLE secure, Astro-
labous has a potential advantage in terms of efficiency. Namely, Astrolabous
hides the key of the symmetric cryptosystem that it uses into the puzzle, instead
of the message itself as in MMV 2.0. As a result, many messages can be encrypted
under the same key and be opened at the same time solving just one puzzle. In
contrast, with MMV 2.0, for every message, a new puzzle must be generated,
making the encryption more time-consuming. For example, for a puzzle with dif-
ficulty that should last 24-hours, an 8-core CPU can generate it in 3 hours (24/8).
The total time for encrypting two messages with MMV 2.0 with the above diffi-
culty is 3 hours for the first message and 2.625 hours (24-1.5/8) for the second, in
total 5.625 hours. With Astrolabous one puzzle can be used for both messages,
making the total encryption time just 3 hours. The gap becomes even bigger if
we consider several encryptions instead of just two. In both examples with did
not consider the time to perform AES, as in practice is very efficient.

Asymmetry of puzzle generation and puzzle solving time with As-
trolabous: A natural question is if the puzzle generation time is significantly
smaller than the time that is required for solving the puzzle. The answer is posi-
tive. Specifically, there are hash functions that are not meant to have an efficient
evaluation, such as Argon2 Biryukov et al. (2016). Equipped with such function
we can create puzzles that are small (in terms of space) and fast, but at the same
time difficult enough. For example, Argon2 can be parameterized in such a way
that a single hash evaluation can take roughly 60 seconds Toponce (2016), mean-
ing that an 8-core processor can generate a puzzle that meant to be solved in 4
hours (equably 14.400 seconds or 14.400/60 = 240 hash evaluations) in just 30
minutes (puzzle generation is parallelizable so an 8-core processor can do 8 hash
evaluation simultaneously which each one of them takes 60 seconds. So 240 hash
evaluations can be done in 30 minutes.). As the number of CPU cores increases
the puzzle generation can become even smaller but at the same time, the time for
solving the puzzle remains unchanged (no parallelization for puzzle solving).

Chapter 5

E-cclesia: a self-tallying classical
e-voting protocol

In general, an e-voting protocol consists of a set of parties, namely an election
authority responsible for generating the protocol parameters, a set of voters
generating and cast their ballot and a set of talliers responsible for producing
the election result. The key properties that an e-voting protocol should satisfy as
a minimum standard are: i) Verifiability: there is an auditing mechanism that
verifies if the election has been tempered; ii) Privacy: the link between the votes
and the voters remains unknown even after the end of the election procedure;
iii) Fairness: partial results should not be leaked before all the voters have cast
their ballot. One drawback of many e-voting constructions is the existence of
talliers, which are responsible for the task of tallying. Ideally, we want to keep
the trust and the number of dedicated participating parties as low as possible to
withstand stronger threat models that capture the adversarial influence Canetti
(2001b) over a protocol. To this end, special instances of e-voting protocols with
not talliers involved proposed. Such protocols are called self-tallying protocols.

As explained in Chapter 3, the most prominent self-tallying proposals suffer
from fairness issues. Specifically, the adversary can obtain some partial result
before casting his ballot thus allowing him to change his vote based on that
leakage. To tackle this issue, we need a cryptographic primitive that provides us
semantic security of the encrypted ballot for the whole duration of the casting
phase. In addition, we need to be sure that the ballots will eventually open at
the tallying phase. These concerns can be addressed in a decentralized setting by
a special type of encryption which is called time-lock encryption, as explained in
the previous Chapter.

Our goal in this Chapter is to further investigate the self-tallying paradigm,
in light of the recent developments in distributed systems that we have been wit-
nessing with the development of Blockchain technologies. Indeed, Nakamoto’s
Bitcoin protocol Nakamoto (2008) for a decentralized banking system has paved
a new way for a decentralized future. With this as our credo too, we develop
E-cclesia, a new family of self-tallying election schemes that satisfy the stan-

75

76

dard eligibility, fairness, vote-privacy, and one-voter-one-vote require-
ments for electronic voting. We formally prove that E-cclesia satisfies these
properties in the Universal Composability paradigm proposed by Canetti Canetti
(2001b), which is a state-of-the-art framework for specifying and analyzing cryp-
tographic protocols, especially when these are run under concurrent sessions. E-
cclesia further satisfies individual, universal verifiability and eligibility verifiabil-
ity as a direct consequence of its decentralized nature, its reliance on a broadcast
channel, and ballot authentication, albeit our functionality does not capture these
properties. Finally, we provide the first provably secure concrete instance of E-
cclesia, which we call E-cclesia 1.0 . In particular, inspired by Zerocoin Miers
et al. (2013), we rely on RSA dynamic accumulators for unlinking cast votes from
the voters who cast them. For fairness, we rely on Astrolabous, the time-lock
encryption (TLE) scheme that we developed based on ideas from Rivest et al.
(1996) and Mahmoody et al. (2011) and presented in Subsection 4.3.

We formalize security of self-tallying election (STE) schemes and provide
an abstract description of the E-cclesia family along the lines of modular
UC design described in Subsection 2.4.2. Subsequently, we provide a specific
instantiation, namely E-cclesia 1.0 , that UC-realises our FSTE functionality by
providing sub-protocols that in turn UC-realise the smaller module functionalities.
Our approach to formally describing the E-cclesia family is to first capture
eligibility, fairness, and vote-privacy via two main ideal modules, namely
Felig and Fvm as they are presented in Section 5.2.

In Figure 5.1 we provide the roadmap of our UC treatment of STE schemes, en-
hancing the readability of the Chapter before entering the actual technical devel-
opment of our protocol. It can be inferred from the Figure that the E-cclesia 1.0
protocol UC realizes FSTE in the (FSoK,FNIC,Fan.BC,FRO,F

Gen
Crs ,Wq(FOeval

), {FPcert})-
hybrid model. For the functionalities (FOeval

,Wq,FRO,F
Gen
Crs) there is not a UC

treatment in the literature as they capture modelling assumptions (e.g. the func-
tionality wrapper captures the limited computational resourcesa party has at its
disposal in each round). However, for the functionalities (FSoK,FNIC, {FPcert}) there
are UC treatments where available in the literature Camenisch et al. (2016); Chase
and Lysyanskaya (2006); Canetti (2001b) but not in the standard model Naccache
(2011). Finally, for the functionality Fan.BC, currently, there is no UC realization
in the literature. Nevertheless, there are many protocols for anonymous broadcast
that have been deployed and used in applications Dingledine et al. (2004); Garay
et al. (2014); Kobusiska et al. (01 Jun. 2016).

A brief description of E-cclesia 1.0 : In E-cclesia 1.0 the participating
parties are the setup authority SA and the voters in the set V = {V1, . . . , Vn}.
Each voter Vj has hard-coded algorithms that are required in different phases
of E-cclesia. Specifically, the required algorithms are GenCred, the credential
generation algorithm, AuthBallot, the ballot authentication algorithm, UpState,
the function that updates the current state (accumulated value) of voter’s

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 77

Π_{acc}

Figure 5.1: The UC roadmap of our UC treatment of our STE schemes. With “≈”
we indicate the UC realization of an ideal functionality from a protocol. With “←”
we indicate the inclusion of the ideal functionalities (start of the arrow) in the hybrid
protocol (end of the arrow).

78 5.1 The STE functionality F
delay
STE

credential and the initial state Stgen, the GenBallot, the generation ballot
algorithm, and the OpenBallot, the ballot open algorithm.

The E-cclesia 1.0 protocol consists of four disjoint consecutive phases,
namely Setup, Credential generation, Cast and Tally phase.

In the Setup phase, the SA sets the duration of the election and the list of
eligible voters. SA then sends this information to the voters via a broadcast
channel. In the Credential generation phase, the voters generate the public and a
private part of their credential with algorithm GenCred. Specifically, the private
part is just a random number and the public part is the commitment over that
number. Then, voters broadcast the public part of the credential to each other.
After all, voters have broadcast their public credential, each voter can “compress”
the list of credentials into a single value Stfin by using the function UpState which
is the update algorithm of a dynamic accumulator scheme. In the Cast phase, each
voter generates their ballot by using the algorithm GenBallot which is a time-
lock encryption scheme and authenticates it by using the algorithm AuthBallot

which is a signature of knowledge over the statement that “I know the committed
value of a commitment that is part of the accumulated value Stfin”. Observe that
only eligible voters can generate such signatures. Then, the voter broadcasts the
ballot along with the signature to the other voters via an anonymous broadcast
channel. Finally, in the Tally phase, the voters drop the non-valid received ballots
(e.g. with a non-valid signature). This check is done by using the function
AuthBallot. They then decrypt the ballots with the OpenBallot which is the
time-lock decryption algorithm of our scheme and produce the election result.
Such decryption is possible since the time-lock encryption scheme enables each
voter to decrypt the message when the tally phase comes.

In order to avoid repetition and excessive formalization, this Chapter is organized
as follows. In Section 5.1, we present the general ideal STE functionality FSTE

that captures eligibility, fairness, vote-privacy, one-voter-one-vote,
properties. To provide intuition, we describe FSTE in a complete yet not
strictly formal manner. The functionalities Fvm and Felig are defined formally
in Subsections 5.2.2 and 5.2.1, respectively, with precise references to FSTE’s steps
that are essentially handled by Fvm and Felig. Finally, in Subsection 5.3.1, we

present the E-cclesia family as a protocol Π
Felig,Fvm,Gclock

E-cclesia that UC-realizes FSTE in
the {Felig,Fvm,Gclock}-hybrid model in a straightforward manner. We note that in
Sections 5.4 and 5.5, we provide two instantiations of Felig and Fvm, respectively,
that specify the first version of E-cclesia, namely E-cclesia 1.0, as a provably
secure STE scheme.

5.1 The STE functionality F
delay
STE

In this Section, we describe the functionality FSTE which captures our secu-
rity requirements for STE elections (eligibility, fairness, vote-privacy,

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 79

one-voter-one-vote). The functionality FSTE interacts with the setup authority
SA, the voters in the set V = {V1, . . ., Vn} and the simulator S. The functionality
operates as described in the next Subsection and formally presented in Figure 5.2.

In addition, it forwards all (sid, Advance Clock) and (sid, Read Clock)
commands to Gclock (see Figure 2.1) on behalf of the (dummy) voters, while it
also reads the time Cl from Gclock whenever necessary. In the spirit of Canetti
(2001b), we allow S to provide FSTE with the election algorithms, noting that this
is only for consistency of the output format that FSTE sends to the voters. As it
will be clear in the description, the main security properties of eligibility, fairness,
voter privacy and one-voter-one vote are preserved by FSTE, independently of the
security of the algorithms provided by S.

The functionality is parameterized by the set of voters V, the function that
defines the concrete time-points of the election define time, a delay variable
that shows the ballot’s generation time and the predicate that shows the current
phase of the election Status. The function define time accepts as input the
times tcast, topen that define the duration of the election procedure, and outputs
a vector t. The vector t includes various time-points that are important for the
distinction of the phases of the elections, where the latter is achieved with the
function Status. For example, in protocol E-cclesia the vector t = (tcast, topen)
wherein other protocols more time points needs to be introduced. The reason
of why not just two distinct times (in our case tcast, topen) were not enough
to capture a broader spectrum of FTLE realizations is that we use time-lock
encryption (see Chapter 4) in order to guarantee that the fairness condition
is satisfied. Specifically, there are TLE constructions, such as in Liu et al. (2018),
where the adversary might decrypt the ballots before the tally phase, learn the
election outcome and change its vote (violation of fairness) and thus making
the realization of FTLE impossible.

Fortunately, even these time-lock encryption schemes are useful in voting if
we introduce a time-wait period, that’s it, a period where no one can cast a
ballot and ballots can not be opened either. In that period, the adversary can
open the ballot but it can not change its vote because the casting period is over.
This is why we defined the function define time, Status. As we see next, this
function and predicate respectively are instantiated with the leakage function in
order for FTLE to be able to realise Fvm in Section 5.5. Finally, in reality, the
ballot generation time also takes some time. There are settings which this time
is zero or very small (delay = 0), or it might take a unit of time (delay = 1). We
capture these settings with the delay variable.

Setup: The functionality initializes as empty the lists of: eligible voters’
credentials Lelig, generated ballots Lgball, cast ballots Lcast, algorithms Lvm, and
ballots included in the tally set Ltally. It also initializes state Stfin as 0 and stores
the set Vcorr ⊆ V of corrupted voters provided by S. Then, it operates as follows:

Upon receiving (sid,Election Info,Velig, tcast, topen) from SA, where i) Velig

80 5.1 The STE functionality F
delay
STE

is the list of eligible voters and ii) tcast < topen are moments that determine the
beginning of the Cast and Tally phases (see below), it acts as follows:

Upon receiving (sid,Eligible) from SA, it informs S, which replies with the
eligibility algorithms and an initial credential state. Then it provides 〈Vi〉i∈[n] and
S with the registration parameters reg.par.

Credential generation: This phase is active if Status(Cl, t,Cred) = >. The
predicate Status shows us in which phase of the protocol we are based on the
current time Cl. It takes as input the current time Cl, the time vector t and
the phase we want to check if it is active at the moment (all the phases are
Credential, Cast and Tally and can be checked with the acronym Cred,Cast and
Tally respectively.). If this phase is active, Status outputs the special symbol
>, else it outputs ⊥. The predicate is instantiated according to the protocol we
realize. For example, this predicate might perform the check tcast < Cl < topen,
concluding if we are in the Cast phase or not. Moreover all phases are disjointed,
e.g if Status(Cl, t,Cast) = > then Status(Cl, t,Cred) = ⊥.

When FSTE receives the Gen Cred command message from V ∈ Velig \Vcorr

for the first time and after permission from S via public delayed output, it
runs (cr, rc) ← GenCred(1λ, reg.par) and adds (V, cr, rc, 1) to Lelig. Here, cr, rc
play the role of the private and public part of the credential, respectively. If
there are already tuples (·, cr, ·, ·) or (·, ·, rc, ·) in Lelig or (cr, rc) = ⊥, it sends
(sid,Gen Cred,⊥) to V and halts. Else, it adds (V, cr, rc, 1) to Lelig. If FSTE

receives some credential pair (sid,Gen Cred, cr, rc, V) from S on behalf of a
corrupted yet eligible voter V for the first time, if there are no tuples (·, cr, ·, 1) or
(·, ·, rc, 1) in Lelig, then FSTE adds (V, cr, rc, 0) to Lelig. In any case, if a new record
(V, cr, rc, ·) is included in Lelig then it sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and
S after permission of S via public delayed output.

Cast: This phase is active if Status(Cl, t,Cast) = > and manages ballot
generation, authentication and broadcasting. For ballot authentication, FSTE once
computes the final credential state Stfin by running UpState on input Stgen and
the set of public credentials rc included in Lelig.

Upon receiving a message
(
sid,Cast, o

)
from an honest and eligible voter

V for the first time such that (V, cr, rc, 1) ∈ Lelig, it handles the request to S

without revealing the message. This step captures the semantic security of the
encryption algorithm. If the delay of generating the ciphertext is zero, it executes
step Cast (as described below), else informs Z that the ballot is preparing to
be cast by sending the message (sid,Casting). When the voter advances the
clock, the simulator can send the ballot of the preparing message. Observe that
the simulator might not give the ballot when receives the token from FSTE for the
first time and might decide to give it when receives a clock advancement command
from Gclock. For that reason, a tag is necessary to be given to S at first place,
when S receives the token from Fvm. As a result, S can specify for which message

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 81

generated a ballot by presenting the tag. Upon receiving (sid,Cast?) from an
honest and eligible voter, the functionality checks if the ballot has been received
by S and that the delay has been passed (e.g that the ballot has been created
and can be cast). Then it checks if it is already cast. If yes, it returns Cast.
Else it executes step Cast : (i) It generates the authentication receipt σ for the
ballot v. (ii) It asks the permission of S via public delayed output. Finally, FSTE

broadcasts the ballot “anonymously”, e.g. without revealing V ’s identity.

In addition, FSTE allows S to cast ballots arbitrarily on behalf of a corrupted
voter V : when it receives

(
sid, Cast, o, v, σ, V

)
from S, if there is a tuple (V ,

cr, rc, 0) in Lelig, it adds (V , o, v, cr, σ, 0) to Lcast, else it adds (V , o, v, ⊥,σ ,0)
to Lcast. In any case, it sends

(
sid, Cast, v, σ

)
to 〈Vj〉j∈[n] and S.

Tally: This phase is active if Status(Cl, t,Tally) = > and manages the opening
of all the valid ballots that should be included in the tally (thus, capturing
fairness). When FSTE receives the command message Tally from a voter or
the adversary, it performs the security check-steps (i),(ii) for all the accepted
ballots using the verification algorithm provided by the adversary in previous
steps. Step (i) checks if eligibility has been breached. Step (ii) checks if
forgery of some honest ballot has occurred. Note that this check implies that
the ballot generation algorithm should satisfy unforgeability Rabin (1978);
Canetti (2003). As a result, at the end of these steps, the list of recorded ballots
contains successfully verified ballots cast only by the eligible voters. Note that
multiple valid ballots coming from corrupted eligible voters may still exist after
the end of steps (i),(ii), something which is handled at the next step, which
is important to ensure the one-voter-one-vote property. Thus, after the end of
steps (i),(ii) the Ltally contains valid tuples in one-to-one correspondence with
the eligible voters that participated in the election. FSTE allows S to open the
ballot of any corrupted voter to an alternative opening. Then, it checks the
correctness of the honest voters’ ballot generation, which implies the correctness
of the ballot opening algorithm. Finally, it outputs the election result in the form
of a multi-set of eligible voters’ tallied options. The command message Leakage
models the fact that in the “wait” time period, the period where the protocol
is between the Cast and Tally phase, the adversary might be able to open the
ballots depending on the cryptographic primitives that it is used in a real-world
protocol. On the other hand, this information at that point is not very useful (the
adversary cannot break fairness) because the adversary cannot change its ballot,
as the Cast phase is over. In protocols where no such waiting periods exist the
condition Status(Cl, t,Cred) = Status(Cl, t,Cast) = Status(Cl, t,Open) = ⊥ is
never satisfied.

82 5.1 The STE functionality F
delay
STE

The self-tallying election functionality F
delay
STE (V, define time, Status).

The functionality initializes as empty the lists of: eligible voters’ credentials Lelig,
generated ballots Lgball, cast ballots Lcast, algorithms Lvm, state Stfin as 0, and
ballots included in the tally set Ltally.

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V, it fixes Vcorr as the set
of corrupted voters.

� Upon receiving (sid,Election Info,Velig, tcast, topen) from SA, it computes t ←
define time(tcast, topen) and if t 6= ⊥, it sends (sid,Setup Ok, Velig, tcast, topen, t)
to SA after the permission of S via a public delayed output.

� Upon receiving (sid,Eligible) from SA, it forwards the message to S. Upon
receiving (sid,Eligible, GenCred, AuthBallot, VrfyBallot, UpState, Stgen), it sets
reg.par := ({Velig, tcast, topen, t}, Stgen). Then it sends (sid,Elig Par, reg.par) to
〈Vj〉j∈[n] and S.

� Upon receiving (sid,Gen Cred) from V ∈ Velig \ Vcorr for the first time and
after permission from S via public delayed output, it reads the time Cl from
Gclock. If Status(Cl, t,Cred) = >, it runs (cr, rc) ← GenCred(1λ, reg.par) and adds
(V, cr, rc, 1) → Lelig. If there are already tuples (·, cr, ·, ·) or (·, ·, rc, ·) in Lelig or
(cr, rc) = ⊥, it sends (sid,Gen Cred,⊥) to V . Else, it adds (V, cr, rc, 1) to Lelig.

� Upon receiving (sid,Gen Cred, cr, rc, V) from S for V ∈ Vcorr ∩Velig for the first
time, it reads the time Cl from Gclock. If Status(Cl, t,Cred) = >, it checks if there
are no tuples (·, cr, ·, 1) or (·, ·, rc, 1) in Lelig. In these cases, it adds (V, cr, rc, 0) to
Lelig and sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and S after permission of S via
public delayed output.

� Upon receiving (sid,Cast, o) from V ∈ Velig \ Vcorr for the first time such that
(V, cr, rc, 1) ∈ Lelig, it reads the time Cl from Gclock. If Status(Cl, t,Cast) = >, it

(a) picks tag
$← TAG and it adds the tuple

(
V,Null, o, tag,Cl, 1

)
to Lgball, (b) sends

(sid,Gen Ballot, tag,Cl, 0|o|) to S. Upon receives the token back from from S, if
delay = 0 it executes step Cast as described bellow, else it returns (sid,Casting) to
V . In any other case, it returns (sid,Cast, o,⊥) to V .

� Upon receiving (sid,Update, {(vj , tagj)}
p(λ)
j=1) from S, for all vj 6= Null it updates

each tuple (V,Null, oj , τj , tagj ,Clj , 1) to (V, vj , oj , τj , tagj ,Clj , 1)

� Upon receiving (sid,Cast?) from V ∈ Velig \Vcorr such that (V, cr, rc, 1) ∈ Lelig,
it reads the time Cl from Gclock. If Status(Cl, t,Cast) = >, it executes the following
steps:

1. It searches for a unique tuple (V, v, o, tag,Cl′, 1) ∈ Lgball such that Cl − Cl′ ≥
delay. If does not find one, it returns (sid,No Cast) to V .

2. If (V, o, v, cr, σ, 1) ∈ Lcast, it returns (sid,Cast) to V .

3. Cast: Else, It generates σ ← AuthBallot(v, cr, rc, Stfin) for ballot v. If
VrfyBallot(v, σ, Stfin, reg.par) = 0, it sends (sid, Auth Ballot, ⊥) to V .
It sends (sid,Cast, v, σ) to S. Upon receiving (sid,Cast Allowed) from S,
it adds (V, o, v, cr, σ, 1) to Lcast as the authenticated ballot tuple for V . It
sends (sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 83

� Upon receiving (sid,Cast, o, v, σ, V) from S, it reads the time Cl from Gclock. If
Status(Cl, t,Cast) = > it does:

1. If there is a tuple (V, cr, rc, 0) ∈ Lelig, it adds (V, o, v, cr, σ, 0) to Lcast.

2. Else it adds (V, o, v,⊥, σ, 0) to Lcast.

3. It sends (sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.

� Upon receiving (sid,Tally) from a voter V or S, FSTE, if Status(Cl, t,Tally) = >
it executes the following steps:

1. For all (V, o, v, cr, σ, b) ∈ Lcast, it runs x ← VrfyBallot(v, σ, Stfin). If x = 1,
then it does:

(i). If there is no tuple (V, cr, rc, ·) in Lelig, it returns
(
sid,Tally,⊥

)
to V or

S.

(ii). If there is a tuple (V, cr, rc, 1) in Lelig and there is a tuple (·, o′, v′, cr′,
σ′, 1) in Lcast such that (cr′ = cr) ∧ (v′ 6= v), it returns (sid,Tally,⊥)
to V or S.

(iii). Otherwise, it adds (V, o, v, b) to Ltally.

2. For every tuple (V, cr, rc, ·) in Lelig such that there are multiple tuples (V , o1,
v1, ·), . . ., (V , on, vn, ·) in Ltally, it removes all multiple tuples from Ltally

except the first one it recorded.

3. For every tuple (V, o, v, ·) in Ltally it does:

(a) If the tuple is of the form (V, o, v, 0) it forwards the message
(sid,Tally, (V, o, v, 0)) to S. Upon receiving (sid,Tally, (V, o, v, 0), õ),
it updates the tuple (V, o, v, 0) to (V, õ, v, 0).

(b) If there are two tuples (V, o, v, 1), (V ′, o′, v′, 1) in Ltally such that
(v′ = v) ∧ (o 6= o′), it returns (sid,Tally,⊥) to V . Else it returns(
sid,Tally, {(o, v)|(V, o, v, ·) ∈ Ltally}

)
to V or S.

� Upon receiving (sid,Leakage) from S, it reads the time Cl from GClock. If
Status(Cl, t,Cred) = Status(Cl, t,Cast) = Status(Cl, t,Open) = ⊥, it returns to
S all the tuples (v, o, 1) such that (V, v, o, 1) ∈ Lgball ∧ (V, 0, v, cr, σ, 1) ∈ Lcast.

Figure 5.2: The self-tallying election functionality F
delay
STE interacting with voters V,

SA, and the simulator S.

5.2 Decomposing F
delay
STE into Felig and Fdelay

vm

In this section we decompose FSTE into two modules, namely Felig and Fvm. Our
modular approach makes the development of the E-cclesia protocol presented

84 5.2 Decomposing F
delay
STE into Felig and Fdelay

vm

in Section 5.3 easily accessible for future developments as the substitution of
one cryptographic primitive related to one of the two functionalities modules
does not lead to reproving the whole security of our protocol. Instead, only the
functionality module that is related to that cryptographic primitive needs a new
proof of security.

Morally we decompose FSTE as follows: i) a vote management functionality Fvm

that handles ballot encryption, anonymous broadcast and opening. We stress
that ballot encryption and opening run by Fvm ensure fairness; ii) an eligibility
functionality Felig that is responsible for generating anonymous credentials and
authenticating the ballots of the eligible voters. The functionality can also
link two ballots originating from the same (corrupted) voter. The credential
generation and ballot authentication run by Felig guarantee eligibility. Note that
both functionalities combined safeguard voter privacy by implicitly featuring
anonymous ballot authentication and casting. In addition, one-voter-one-vote
is achieved through Felig for discarding multiple ballots that are linked to the
same (corrupted) voter. Given the aforementioned approach, the major technical
challenge in designing E-cclesia instantiations is to devise real-world protocols
that UC-realize Fvm and Felig. Upon completion of this task, the step towards full
STE security is merely a careful composition in terms of the interface by specifying
how the STE entities interact with Fvm and Felig and check the information they
obtain from their engagement in the overall execution so that the four security
properties are preserved.

In the following Subsections we describe the functionalities Felig and Fvm.

5.2.1 Eligibility functionality Felig

The eligibility functionality Felig takes over the following parts of the FSTE

execution: i) in Setup the eligibility algorithms and the initial credential state; ii)
the entire (private and public) Credential generation; iii) in Cast the creation
of ballot authentication receipts, (iv) in Tally the ballot verification step, so that
unforgeability is preserved (see Step 1. in FSTE’s description for (sid,Tally)
messages), and v) the linkability of two ballots to the same voter, so that one-
voter-one-vote is preserved. The functionality is presented in Figure 5.3.

Felig ensures that each voter receives at most one credential and that the
signatures that are issued from Felig on behalf of a voter always pass the
verification procedure.

The functionality Felig is instantiated with the functions define time, Status
similar to FSTE.

In the beginning, Felig initializes as empty the list of eligible voters Lelig, that
stores the voters’ identities and the public and private part of their credential,
the list of authenticated ballots Lauth that stores the voters’ identities with the
ballot and their private part of their credential given that the voter is honest and

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 85

eligible. Moreover, it initializes the state value Stfin as 0, that is a state that can
describe all the private parts of the credential that S allowed to be broadcast.

At the beginning, S provides the corruption vector to Felig. Next, Felig

receives the eligibility list Velig accompanied with the times tcast, topen that
define the duration of the election procedure. Then, Felig requests from S the
credential generation algorithm, GenCred, the authentication ballot algorithm,
AuthBallot, the verification ballot algorithm, VrfyBallot, the state update
algorithm, UpState, and the initial state, Stgen. Then, it computes the vector
t with the function define time, sets as the registration parameters reg.par :=
(Velig, tcast, topen, t, Stgen) and sends them to all parties. When receiving a
credential generation request from an honest and eligible voter it reads the time Cl
from Gclock. If the status of the protocol is in credential generation phase given by
function Status), then it checks if that voter made such request for the first time.
If yes, then Felig generates both the public and the private part of the credential for
that voter after permission of S via public delayed output. Then, Felig sends the
public part of the credential to the other parties again after the permission of S. In
applications where such distinction of the credential, e.g. public and private part,
does not exist the missing part is the Null value. In case a corrupted voter requests
a credential generation then Felig forwards the message to S. Then, after receiving
back the credential values from S on behalf of that voter it records them with a
distinct flag 0 and sends again the public part of the credential to the other voters
only if it was the first time that corrupted voter made such request. Note that the
credential returned by S does not comply necessarily with the algorithms that S

provided Felig with at the beginning of the protocol; capturing the fact that S can
deviate from the description of the credential generation algorithm. Finally, when
an honest and eligible voter requests to authenticate a ballot, Felig checks if the
status of the protocol is cast by reading the current time Cl and using the function
Status. If yes, then it computes the final state Stfin with the function UpState

and all the public parts of the credentials. This value in a sense represents all the
public parts of the credential. In protocols where such a feature does not exist
then this state is equal to the Null value. Then, Felig checks if there is a signature
for that ballot. If not, it signs the ballot with the algorithm AuthBallot and
checks if the signature is valid by running the algorithm VrfyBallot. If this is
the case then it adds the voter’s identity with the ballot, the private part of the
voter’s credential and the signature to the list of the authenticated ballots Lauth.
This captures the fact that the algorithms provided by S are consistent, meaning
that signatures generated with algorithm AuthBallot must pass the verification
test with the algorithm VrfyBallot, else Felig returns ⊥ to that voter.

86 5.2 Decomposing F
delay
STE into Felig and Fdelay

vm

The eligibility functionality Felig(V, define time, Status).

The functionality initializes the lists of eligible voters Lelig ← ∅, of authenticated
ballots of eligible voters Lauth ← ∅, the value Stfin = 0, and its status to ‘init’.

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V and status=init, it fixes
Vcorr as the set of corrupted voters.

� Upon receiving (sid,Eligible,Velig, tcast, topen) from SA, if Velig ⊆ V and sta-
tus=init, it sends (sid, Setup Elig) to S. Upon receiving (sid, Setup Elig,
GenCred, AuthBallot, VrfyBallot, UpState, Stgen) from S, if status=init, then:

1. It computes t ← define time(tcast, topen). If t 6= ⊥, it sets reg.par :=
(Velig, tcast, topen, t, Stgen) as registration parameters.

2. It sets its status to ‘credential’ and sends (sid,Elig Par, reg.par) to 〈Vj〉j∈[n]

and S.

� Upon receiving (sid,Gen Cred) from V ∈ Velig \Vcorr, if status=credential, then
it reads the time Cl from Gclock. If Status(Cl, t,Cast) = >, it sets its status to ‘cast’.
Otherwise, if Status(Cl, t,Cred) = >, it executes the following steps:

1. If there is no tuple (V , cr′, rc′, 1) in Lelig, it runs (cr, rc) ← GenCred(1λ,
reg.par). If there are tuples (·, cr, ·, ·) or (·, ·, rc, ·) in Lelig or (cr, rc) = ⊥, it
sends (sid, Gen Cred, ⊥) to V and halts. Else, it adds (V , cr, rc, 1) to Lelig

after permission of S via public delayed output.

2. It sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and S after permission of S via
public delayed output.

� Upon receiving (sid,Gen Cred) from V ∈ Vcorr, it forwards the message
(sid,Gen Cred, V) to S.

� Upon receiving (sid,Gen Cred, V, cr, rc) from S, if V ∈ Vcorr, then:

1. If Velig and there are no tuples (V, cr′, rc′, 0), (·, cr, ·, 1) or (·, ·, rc, 1) in Lelig,
then it adds (V, cr, rc, 0) to Lelig.

2. It sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and S.

� Upon receiving (sid,Auth Ballot, v) from V ∈ Velig \Vcorr, if status=cast, then
it reads the time Cl from Gclock. If Status(Cl, t,Open) = >, it sets its status to
‘open’. Otherwise, if Status(Cl, t,Cast) = >, it executes the following steps:

1. If Stfin = 0, then it runs Stfin ← UpState(Stgen, {rc|(·, ·, rc, ·) ∈ Lelig}).

2. If there is a tuple (V , cr, rc, 1) ∈ Lelig but no (V , v′, cr, σ′,
1) ∈ Lauth, then it runs σ ← AuthBallot(v, cr, rc, Stfin, reg.par). If
VrfyBallot(v, σ, Stfin, reg.par) = 0, it sends (sid, Auth Ballot, ⊥) to V
and halts. Else, it (a) adds (V , v, cr, σ, 1) to Lauth, and (b) returns (sid,
Auth Ballot, v, σ) to V .

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 87

� Upon receiving (sid,Auth Ballot) from V ∈ Vcorr, it forwards the message
(sid,Auth Ballot, V) to S.

� Upon receiving (sid,Auth Ballot, V, v, σ) from S, if there is a tuple (V , cr, rc,
0) ∈ Lelig, then it adds (V, v, cr, σ, 0) to Lauth. It returns (sid,Auth Ballot, V, v, σ)
to V .

� Upon receiving (sid,Ver Ballot, v, σ) from V ∈ V:

1. It computes x← VrfyBallot(v, σ, Stfin, reg.par).

2. If x = 1 and there is no cr such that there are tuples (·, cr, ·, ·) ∈ Lelig and
(·, v, cr, σ, ·) ∈ Lauth, it sends (sid,Ver Ballot, v, σ,⊥) to V and halts.

3. If x = 1 and there are tuples (·, v, cr, σ, ·), (·, v′, cr′, σ′, 1) ∈ Lauth such that
cr = cr′ and v 6= v′, it sends (sid,Ver Ballot, v, σ,⊥) to V and halts.

4. Else, it sends (sid,Ver Ballot, v, σ, x) to V .

� Upon receiving
(
sid,Link Ballots, (v, σ), (v′, σ′)

)
from V ∈ V, if there are tuples

(·, v, cr, σ, ·), (·, v′, cr′, σ′, ·) ∈ Lauth such that cr = cr′, then it sets x = 1, else x = 0.
Then, it sends

(
sid,Link Ballots, (v, σ), (v′, σ′), x

)
to V .

Figure 5.3: The eligibility functionality Felig(V) interacting with voters V, SA, and
the simulator S.

5.2.2 Vote management funtionality Fdelay
vm

The vote management functionality Fvm takes over the following parts of the FSTE

execution: i) in Setup the configuration of the vote management algorithms; ii)
in Cast the secure ballot generation and casting and iv) in Tally the ballot
opening step, so that fairness and ballot correctness is preserved (see Step 3. in
FSTE’s description for (sid,Tally) messages). The functionality is presented in
Figure 5.4.

This functionality captures the privacy of each voter (identities and votes are
not leaked), the ballot casting (we allow an adversary to drop ballots), and the
fairness of the outcome (votes are not revealed unless the status is ‘open’). The
functionality is parameterized by the variable delay which shows how much time
a ballot needs to be generated, similar as it appears in FTLE. In the beginning,
the functionality initializes as empty the lists Lgball, the list of generated ballots
from honest parties through Fvm, Lcast, the list of the cast ballots from honest
parties, Lvm, the list of ballot generation and open algorithms received by S.
The simulator provides the corruption vector and the setup authority provides
the eligibility list. Moreover, Fvm requests from S to generate ballots for honest
voters only one time. Similarly to FSTE, the simulator returns the ballot either
when the honest voter sends a ballot generation command to Fvm or at some
point after that voter advances the clock. Again, the ballot becomes available to

88 5.2 Decomposing F
delay
STE into Felig and Fdelay

vm

the voter only after delay number of rounds has been passed by the time of the
creation of the ballot. Similar to FSTE, the simulator along with the request for
ballot generation, receives an identification tag.

Next, Fvm anonymously broadcasts a ballot with a signature of honest voters
to other parties after asking the simulator if it allows such an action. Similarly,
generation ballot requests from corrupted voters are passed to S, and Fvm returns
to that voter whatever received from S. Again, the provided ballot from S does
not have to be produced by using the algorithm provided by S in the previous
steps, capturing the fact that the adversary might use arbitrary code to generate
a ballot. Next, when receiving a cast request on behalf of an uncorrupted voter,
it checks if the status is not open by reading the time Cl from Gclock and using the
function Status. Then, if this is the first time that this voter made a cast request,
Fvm broadcasts the received values to all parties; upon permission of S. Here we
capture the fact that S controls the network and can decide to either block or
allow a message. It is worth noting that the identity of the voter is kept hidden
from S, meaning that we assume a level of anonymity. Finally, when Fvm receives
Open from voters and the status is ‘open’, it opens the ballot or returns ⊥ in
the case that the provided algorithm by the adversary does not satisfy correction,
e.g. the same ballot for two different votes.

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 89

The vote management functionality F
delay
vm (V, define time, Status).

The functionality initializes the lists of generated ballots Lgball, cast ballots Lcast as
empty. Then it sets its status to ‘exec’.

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V and status=exec, it
fixes Vcorr as the set of corrupted voters.

� Upon receiving (sid,Setup Info,Velig, tcast, topen) from SA it computes t ←
define time(tcast, topen). If status=exec and t 6= ⊥, it sets vote.par :=
(Velig, tcast, topen, t) as voting parameters and sends (sid,Setup OK, vote.par) to SA,
after permission from S via public delayed output.

� Upon receiving (sid,Gen Ballot, o) from V 6∈ Vcorr, it reads the time Cl and
does:

1. If there is no
(
V, v′, o′, tag′,Cl′, 1

)
6∈ Lgball, it (a) picks tag

$←
TAG and it inserts the tuple

(
V,Null, o, tag,Cl, 1

)
→ Lgball, (b) sends

(sid,Gen Ballot, tag,Cl, 0|o|) to S. Upon receives the token back from S

it returns (sid,Generating) to V .

2. Else it returns (sid,Gen Ballot, o,⊥) to V .

� Upon receiving (sid,Gen Ballot) from V ∈ Vcorr, it sends the message
(sid,Gen Ballot, V) to S.

� Upon receiving (sid,Gen Ballot, o, v, V) from S, it sends (sid,Gen Ballot, o, v)
to V .

� Upon receiving (sid,Update, {(vj , tagj)}
p(λ)
j=1) from S, for all vj 6= Null it updates

each tuple (V,Null, oj , τj , tagj ,Clj , 1) to (V, vj , oj , τj , tagj ,Clj , 1)

� Upon receiving (sid,Retrieve) from V 6∈ Vcorr it reads the time Cl from Gclock and
it searches for a tuple

(
V, v, o, tag,Cl′, 1

)
∈ Lgball with v 6= Null and Cl− Cl′ ≥ delay.

It returns (sid,Retrieve, (o, v)) to V .

� Upon receiving
(
sid,Cast, v, σ

)
from V , if V 6∈ Vcorr and status=exec, it reads

the time Cl from Gclock. If Status(Cl, t,Open) = >, it sets the status to ‘open’,
otherwise:

1. If (V, v, o′, tag,Cl′, 1) 6∈ Lgball or Cl− Cl′ < delay, it returns (sid,Cast, v, σ,⊥)
to V .

2. If there is no (V, v′, σ′, 1) 6∈ Lcast, it sends (sid,Allow Cast, v, σ) to S. Upon
receiving (sid,Cast Allowed) from S, it adds (V, v, σ, 1) to Lcast and sends
(sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.

3. If there is a tuple (V, v′, σ′, 1) in Lcast, it returns (sid,Cast, v, σ,⊥) to V .

� Upon receiving
(
sid,Cast

)
from V ∈ Vcorr, it sends

(
sid,Cast, V

)
to S.

� Upon receiving
(
sid,Cast, v, σ, V

)
from S, if V ∈ Vcorr and status=exec, it reads

the time Cl from Gclock. If Status(Cl, t,Open) = > it sets status to ‘open’, otherwise
it adds (V, v, σ, 0) to Lcast and sends (sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.

90
5.3 The E-cclesia family: relalization of Fdelay

STE in the
(Felig,F

delay
vm ,Gclock)-hybrid model

� Upon receiving (sid,Open, v) from any party P ∈ V ∪ {S}, it reads the time Cl
from Gclock. If Status(Cl, t,Open) = >, it sets the status to ‘open’ and executes the
following steps:

1. If there is a tuple (V, v, σ, ·) ∈ Lcast, and a unique (V, v, o, 1) ∈ Lgball, it sends
(sid,Open, v, o) to P .

2. Else, if there is a tuple (V, v, σ, ·) ∈ Lcast and at least two tuples
(V, v, o, 1), (V ′, v′, o′, 1) ∈ Lgball such that (v = v′) ∧ (o 6= o′), it sends
(sid,Open, v,⊥) to P .

3. Else, if there is a tuple (V, v, σ, ·) ∈ Lcast but there is no tuple (V, v, o, 1) ∈
Lgball, it sends (sid,Open, v) to S. Then it sends the reply it gets from S to
P .

� Upon receiving (sid,Leakage) from S, it reads the time Cl from GClock. If
Status(Cl, t,Cred) = Status(Cl, t,Cast) = Status(Cl, t,Open) = ⊥ then it returns
to S all the triples (v, o, 1) such that (V, v, o, 1) ∈ Lgball ∧ (V, v, σ, 1) ∈ Lcast.

Figure 5.4: The vote management functionality Fdelay
vm (V) interacting with voters

V, SA and the simulator S.

5.3 The E-cclesia family: relalization of F
delay
STE in

the (Felig,F
delay
vm ,Gclock)-hybrid model

5.3.1 Description of the E-cclesia family

We provide a description of the E-cclesia family Π
Felig,Fvm,Gclock

E-cclesia of STE schemes
as a hybrid protocol that makes use of the main modules Felig,Fvm. Any pair
of real-world protocols Πelig,Πvm that UC-realize Felig,Fvm respectively, specifies

a member of the family. The description of Π
Felig,Fvm,Gclock

E-cclesia follows the phases and
command interface of FSTE in Section 5.1 as described below:

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 91

The protocol ΠE-cclesia(Felig,F
delay
vm ,Gclock).

Setup.

� Upon receiving (sid,Election Info,Velig, tcast, topen) from Z, if Velig ⊆ V and
tcast < topen, SA sends (sid,Setup Info,Velig, tcast, topen) to Fvm.

� Upon receiving (sid,Eligible) from the environment Z, if SA has received
(Velig, tcast, topen), it sends (sid,Eligible,Velig, tcast, topen) to Felig which sends
reg.par := (Velig, tcast, topen, t, Stgen) to 〈Vi〉i∈[n]. Upon receiving reg.par from Felig,
each voter V ∈ V stores it as the registration parameters reg.par.

Credential generation. This phase is completely managed by Felig.

� Upon receiving (sid,Gen Cred) from Z, V sends (sid,Gen Cred) to Felig, which
in turn sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] (or sends (sid,Gen Cred,⊥) to V
and halts).

Cast. Here, Fvm and Felig combined carry out the ballot generation, authentication
and broadcasting tasks.

� Upon receiving
(
sid,Cast, o

)
from Z, V executes the following steps:

1. She sends (sid,Gen Ballot, o) to Fvm which replies either with
(sid,Generating) or (sid,Gen Ballot, o,⊥), which in the second case she
forwards the message to Z.

2. If delay = 0 she sends (sid,Retrieve) to Fvm. Upon receiving
(sid,Retrieve, (o, v)) from Fvm she does the Cast step as described below.

3. In any other case, she returns (sid,Casting) to Z.

� Upon receiving (sid,Cast?) from Z, V sends (sid,Retrieve) from Fvm. Upon
receiving (sid,Retrieve, (o, v)) from Fvm she does:

• Cast: She sends (sid, Auth Ballot, v) to Felig which replies with the
authentication receipt for v as (sid, Auth Ballot, v, σ) (or sends (sid,
Auth Ballot, ⊥) to V and halts). Finally, she sends

(
sid,Cast, v, σ

)
to

Fvm which broadcasts the message to 〈Vj〉j∈[n]. In turn, the voters store the
received pair (v, σ).

92
5.3 The E-cclesia family: relalization of Fdelay

STE in the
(Felig,F

delay
vm ,Gclock)-hybrid model

Tally. In order for the voter to perform self-tallying, she accesses Felig for ballot
verification and linkability and Fvm for ballot opening.

� Upon receiving a message
(
sid,Tally

)
from Z, V executes the following steps:

1. For every tuple
(
sid, Cast, v, σ

)
she has obtained from Fvm, V sends (sid,

Ver Ballot, v, σ) to Felig which replies with (sid, Ver Ballot, v, σ, x),
where x ∈ {0, 1,⊥}.
If there is any ballot verification request such that Felig replied with x = ⊥,
then V sets tally to ⊥. Otherwise, she includes in her tally set all pairs (v, σ)
such that Felig replied with x = 1.

2. V discards multiple ballots as follows: for every pair (v, σ), (v′, σ′) in her
tally set, she sends

(
sid, Link Ballots, (v, σ), (v′, σ′)

)
to Felig. If she gets(

sid, Link Ballots, (v, σ), (v′, σ′), 1
)

as a response, then she discards the
ballot she received the last out of those two. Clearly, after this pairwise check
is completed, all except one of ballots that are linked will be removed from
the tally set, so that one-voter-one vote is guaranteed.

3. For every pair (v, σ) in the tally set, V sends (sid, Open, v) to Fvm, which
replies with the opening (sid, Open, v, o). Then, V adds o to the multi-set of
all opened options (initialized as empty). If at any time Fvm replies with (sid,
Open, v, ⊥), then V sets tally to ⊥.

4. Finally, she sets the tally result as the multi-set of all opened options.

Figure 5.5: Description of the protocol ΠE-cclesia in (Felig,F
delay
vm ,Gclock)-hybrid

model.

Observe that the voters discard the same ballots after the pairwise check-in
Tally phase. Specifically, they receive the ballots in the same order because of the
way Fvm works (either the adversary allows a ballot to reach everyone or blocks
it). Thus, the tally for all voters is identical.

5.3.2 Realization of F
delay
STE via Felig and Fdelay

vm

Security: As already mentioned in the introduction of Section 5.2, proving

that Π
Felig,Fvm,Gclock

E-cclesia UC-realizes FSTE in the {Felig,Fvm,Gclock}-hybrid model is
straightforward given the description of FSTE, Felig and Fvm. Below, we provide
the theorem statement and the proof. The proof idea is that for any real-world

adversary A against Π
Felig,Fvm,Gclock

E-cclesia and environment Z, we can construct a simulator

S that interacts with FSTE and emulates an execution of Π
Felig,Fvm,Gclock

E-cclesia in the
presence of A by playing the role of the honest parties, Felig and Fvm. In addition,
S acts as a proxy between the interaction of A and Z.

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 93

Theorem 5. The protocol Π
Felig,F

delay
vm ,Gclock

E-cclesia described in Subsection 5.3.1 UC-realizes
F

delay
STE in the {Felig,F

delay
vm ,Gclock}-hybrid model.

Proof. We define a simulator S as follows: In the cases of public delayed outputs,
we assume that S forwards the message to the adversary A as if it was from either
Felig or Fvm and responds to FSTE in the same way as A. Moreover, whatever
command FSTE receives on behalf of a corrupted voter, we assume that FSTE

forwards that message to S. Then S forwards that message to A as if it was
from either Felig or Fvm and he returns to FSTE whatever he receives from A. We
describe the details below.

During the Setup phase, when S receives the corruption set Vcorr from Z,
he forwards it to A as if it was from Z. Then S plays the role of Felig and Fvm

and receives back the corruption set from A. Next, S forwards the corruption
set to FSTE. Upon receiving (sid, Election Info, Velig, tcast, topen) from FSTE,
S stores the parameters and he sends the message (sid, Setup Info, Velig, tcast,
topen) to A as if it was from Fvm. Then, S returns to FSTE whatever he receives
from A. After S receives (sid, Eligible) from FSTE, he plays the role of Felig and
he sends (sid,Setup Elig) to A. Then, upon receiving the eligibility algorithms
(sid, Setup Elig, GenCred, AuthBallot, VrfyBallot, UpState, Stgen) from A,
S forwards the message to FSTE.

During the Credential generation phase, when S receives a credential
generation request from FSTE on behalf of a corrupted voter V , S forwards the
request to A as if it was from Felig. Then, upon receiving (sid, Gen Cred, V , cr,
rc) from A, S forwards the message to FSTE.

During the Cast phase, when S receives (sid,Gen Ballot, tag,Cl, 0|o|) from
FSTE, he forwards the message to A as if it was Fvm and returns to FSTE whatever
receives from A. Upon receiving a Clock Advance command from Gclock on
behalf of a voter V , he forwards the message to A as if he was Gclock. Upon
receiving an Update command from A as if he was Fvm, S forwards the message
to FSTE. When S receives (sid,Cast, v, σ) from FSTE, he forwards the message
to A as if it was from Fvm. Then S returns whatever he receives from A. Upon
receiving a cast ballot request from FSTE on behalf of a corrupted voter V , S

forwards the message to A as if it was from Fvm. After S receives
(
sid, Cast, ṽ,

σ̃, V
)

from A, he returns the message
(
sid, Cast, o, ṽ, σ̃, V

)
to FSTE for some

o. The choice of o is irrelevant because during the Tally phase S will be asked
by FSTE for a new opening of ṽ. This happens because every time FSTE (Fvm as
well) receives a request for opening a malicious ballot, it gives the token to the
simulator and it answers according to what S provides.

During the Tally phase, when S is asked by FSTE for an alternative ballot
opening of the tuple (V, o, v, ·) ∈ Ltally where V ∈ Vcorr, S sends the message
(sid,Open, v) to A as if it was from Fvm and he returns to FSTE the alternative
opening received from A. Upon receiving (sid,Open, v) from Z for the first time,
S sends (sid, Tally) to FSTE. Upon receiving

(
sid,Tally, {(o, v)|(V, o, v, ·) ∈

Ltally}
)

from FSTE, S records the tally. Next, S forwards the message (sid,Open, v)

94 5.4 Realizing Felig via accumulators

to A as if it was from Z. Upon receiving (sid,Open, v), S playing the role of Fvm

returns the plaintext for that ballot to A. If the message does not exist in the
list previously provided by FSTE, then S asks A for the opening of that message
as before.

The distribution of messages is the same in both settings since the algorithms
that are used are the same. As a result, the simulation is perfect.

5.4 Realizing Felig via accumulators

This section describes the primitives needed to build a real protocol that realizes
the eligibility functionality. Since cryptographic accumulators do not have a
suitable UC treatment in the literature that would fit our purpose, Subsections
5.4.1 and 5.4.2 provide an ideal accumulator functionality and link it to a standard
game-based definition. 1

Note that recently, Baldimtsi et al. (2018) provided a UC functionality for
accumulators, however, it requires the accumulation operation to be managed
centrally by some authority. Subsection 5.4.3 presents the Πelig protocol, which
is not suitable for our purpose as we require the accumulation operation to be
managed by every party and not only the accumulation manager. The authors
in Baldimtsi et al. (2018) remarked in a dedicated Paragraph in Subsection 3.1 how
they can capture such cases by allowing every party to invoke the accumulation
operation in their functionality without filling up the details. Moreover, their
functionality captures a broader spectrum of accumulators (e.g. accumulators
that support proof of non-membership Li et al. (2007)) but at the expense of
being complicated. On the other hand, our functionality fills up the details of
the decentralized accumulation operations. Moreover, our functionality is simpler
than the one of Baldimtsi et al. (2018), but it captures a more limited spectrum
of protocols; which is sufficient for our purpose.

5.4.1 Definition of Facc

The purpose of secure accumulators is to provide an object representing a set
and create witnesses for specific items being in the set. Our starting point for
this functionality is the property-based definition by Camenisch and Lysyanskaya
(2002) provided below. In this model, it is assumed that a trusted accumulator
manager runs Gen to generate both the public parameters and the secret trapdoor.

Definition 5.4.1 (Accumulator). AC = (Xλ, Gen) is an accumulator scheme for
a family of inputs {Xλ} if it has the following properties:

1The definition of the ideal functionality Facc, the protocol Πacc and the proof of UC-
realization is also presented in Lenka Marekova’s honours thesis that I co-supervised Marekova
(2018).

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 95

1. Efficient generation

Gen is an efficient probabilistic algorithm such that Gen(1λ)→ (f, aux f) for
random f ∈ Fλ, where Fλ is a family of functions and aux f some auxiliary
information with respect to f (e.g a secret key skf that is required for the
generation of the accumulated value after the deletion of an element from
the accumulation set.)

2. Efficient evaluation

f ∈ Fλ is a polynomial-size circuit such that f(w, x) → a for (w, x) ∈
Uf × Xλ and a ∈ Uf where Uf is an efficiently samplable domain for f .

3. Correctness

w ∈ Uf is a witness for x ∈ Xλ in the accumulator a ∈ Uf under f if
Verifyf (w, x, a)→ > where Verifyf (w, x, a) := f(w, x) = a.

4. Quasi-commutativity

For all f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ: f(f(u, x1), x2) = f(f(u, x2), x1). So
for X = {x1, . . . , xm} ⊂ Xλ, f(u,X) := f(f(. . . (u, x1), . . .), xm).

5. Witness unforgeability

Let U′f ×X′λ denote the domains for which the computational procedure for
function f ∈ Fλ is defined (so Uf ⊆ U′f ,Xλ ⊆ X′λ).

AC is secure if for all PPT adversaries Aλ:
Pr[f ← Gen(1λ);u← Uf ; (x,w,X)← Aλ(f,Uf , u) :

X ⊂ Xλ;w, a ∈ U′f ;x ∈ X′λ;x 6∈ X;

Verifyf (u,X, a) = Verifyf (w, x, a) = >] = negl(λ) .

6. Efficient deletion

AC is dynamic if there exist efficient algorithms Delete, Update such that
if x, x′ ∈ X and Verifyf (u, X, a) = Verifyf (w, x, a) = >, then:
Delete(aux f , a, x

′)→ a′ such that Verifyf (u, X\{x′}, a′) = >,
and Update(f, a, a′, x, x′)→ w′ such that Verifyf (w

′, x, a′) = >.

Remark 1. Definition 5.4.1 is well known, but it is not the only definition
of accumulators in the standard model Derler et al. (2015a). The reason
for matching our functionality to this particular definition is that it suits the
public setting that we wanted to model the best. As opposed to the more
common definitions which involve a central authority responding to requests for
accumulation, here the accumulator is a public function which any party can use.

This is not without caveats, as we still rely on trusted setup, and efficient
deletions require the manager to use his secret trapdoor. Coming up with a better
definition for our use-case (and constructions that satisfy it) is an interesting
problem, but out of the scope of this thesis. We also note that quasi-commutativity

96 5.4 Realizing Felig via accumulators

is often handled as an optional property, but it is implicitly embedded in the
way Camenisch and Lysyanskaya (2002) defines witnesses. Extending to non-
commutative constructions would hence also require a new definition.

The definition of the ideal functionality Facc is shown in Figure 5.6. Facc,
parameterized by the input set Xλ, stores a list Lacc of (a, X, w) entries where a
is the accumulator value, X is the set of accumulated items and w is either another
accumulator or the basis u, a fixed value representing the empty set. Since Facc

is not producing the witnesses itself, to ensure correctness it needs to keep some
auxiliary information. Lsets is a list of (a, [S1, S2, . . .]) entries for each a in Lacc,
where [S1, S2, . . .] is a list of all known representations of the contents of the set
accumulated in a. Lref is a list of (a,Ar) entries which represents references to
accumulators that have not been expanded yet. We call an accumulator expanded
if it has an entry in Lsets, i.e. there exists some representation of its contents. If it
is not expanded, there is no such entry, but Ar may appear (syntactically) as part
of some list Si for another entry. We denote all such unexpanded references in
capitals and with the r suffix. We call a set fully-expanded if it does not contain
references to any unexpanded accumulators.

To illustrate the use of these lists, we give an example execution for the
accumulation of items x1, x2, x3:

1. Accumulate {x2, x3} with witness a: Facc computes f(a, {x2, x3}) = b, adds
(b, {x2, x3}, a) to Lacc, (b, [Ar ∪ {x2, x3}]) to Lsets and (a,Ar) to Lref .

2. Accumulate x1 with witness u: Facc computes f(u, x1) = a and adds (a,
{x1}, u) to Lacc and (a, [{x1}]) to Lsets. Since (a,Ar) is in Lref , the first
entry in Lsets expands to (b, [{x1, x2, x3}]) and (a,Ar) is removed from Lref .

3. Accumulate {x1, x2, x3} with witness u: Facc computes f(u, {x1, x2, x3})
= c. If c = b, it adds (c, {x1, x2, x3}, u) to Lacc, otherwise it aborts.

We can now describe the individual command interface of Facc. When Facc receives
(sid,Setup) from the accumulation manager M for the first time it requests
from S the accumulation value space Uf the initial seed accumulation value u,
the accumulation function f , the auxiliary information aux f ,the verification
algorithm Verify and the deletion algorithm Delete, Update and returns them
to M .

Upon receiving (sid,Accum, w,X) from any party P ∈ P, Facc checks if the
pair (w,X) are from the correct sampling space and if the value X has been
accumulated before on w. If the latter is the case; it returns the recorded value,
else Facc computes with the function f the accumulated value a. In case that a
does not belong to the correct sampling space or the verification check that w
is a valid witness that the set X is accumulated in value a is false, Facc returns
the special abort symbol ⊥ to party P . If the value w is the initial seed u of the
accumulator then Facc creates the list La and inserts the set X to keep track of

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 97

which set the value a represents. Similarly, if there exists already a list Lw for the
value w, Facc updates the list La with the set X and the contents of the list Lw.
Note that there might be many representations for one accumulated value, that
is why a list instead of a set is the correct mathematical object to keep track of
which sets this value represents. The case that neither the value w is equal to the
initial seed u nor it exists a recorded set that w is the accumulated value means
that w is not a legitimate accumulated value (e.g an accumulation value which
is not issued through Facc and specifically via the function f). In that case, Facc

creates the set Wr, which is associated with the value w, for reference reasons (e.g
contains only the value “unknown”), and updates the list La as the union of Wr

and X.

Next, Facc checks if the value a has already representation sets and if that is
the case it updates the existing list with these sets. If Facc detects that there exists
a representative set with two different accumulated values (in this case the value a
and a value a′, such that a 6= a′), it returns ⊥ to P . If the value a was previously
appeared in a pair (a,Ar) in the list Lref , Facc updates all entries in Lsets. If some
of these updated entries have different accumulated values, it returns ⊥. Else, it
removes the entry (a,Ar) from the list Lref and adds the entry (a, La) to the list
Lsets. In case that the value a did not appear in the list Lref , Facc simply adds the
pair (a, La) to Lsets. Finally, Facc adds the triple (a,X,w) to Lacc and returns a
to P . This step ensures the consistency of output with the previous values, and
that incomplete set references updated correctly.

Upon receiving (sid,Delete, a, x, A) from M , Facc checks if the set A and the
accumulated value a are from the correct sampling space and if x belongs to the
set A and returns ⊥ if the check fails. Next, it checks if indeed x belongs to a
set X such that the representative value is a and if the value a represents the set
A and returns ⊥ if the check fails. After that, it computes the new accumulated
value a′ by using the Delete function and verifies if a′ is the accumulation value
of set A\{x}. Next, it checks if the value a′ appearing in the list Lref and does
the necessary steps as mentioned previously in the update operation. Finally, it
returns the value a′ to M .

Upon receiving (sid,Update, a, a′, x, x′, A) from any party P ∈ P, Facc checks
again if all values are from the correct sampling space, then it follows a similar
procedure as when it receives the DELETE command. Next, it computes the new
witness w′ by using the function Update and verifies with the algorithm Verify

if w′ is a witness that the value x has been accumulated in a′. Finally, Facc

updates all the existing lists based on w′ and a′ for consistency, similar to steps
we described when Facc receives the ACCUM command and returns the witness
w′ to P . In a nutshell, the command Update subtracts from the accumulator
the value x′ and inserts the value x instead.

Upon receiving (sid,Verify, w,X, a) from P ∈ P, Facc checks if the w is a
witness that the set X has been accumulated in a. If there is a recorded triple-
(a,X,w) ∈ Lacc, Facc returns > to P . Else, the functionality checks if forgery has

98 5.4 Realizing Felig via accumulators

occurred. Specifically, if the result of the verification is > but: i) the accumulated
ordered set X is not a subset of a fully expanded set A for value a, then adversary
managed to forge at least one element into the value a; ii) in case that the value
a had not a fully expanded set, which means that Facc is not fully aware which
elements it accumulates, Facc checks if there exists a fully expanded set (e.g. a
complete track history of the accumulated elements) but for the set V = A−W
where W ∈ Lw. If there exists, Facc checks if the ordered sets V and X represent
the same elements. If not, then a forgery has occurred in the sense that the
adversary provided a “fake” witness.

In both cases security has been breached (violation of correctness) and Facc

returns ⊥.

In order to capture various settings, where command lines could be omitted, we
indicate with red the command lines that can be totally omitted from Facc. We
can re-define our Facc depending if we choose to omit from its description the red
command lines or not (e.g F∗acc is the same as Facc but the command lines in red
are omitted from the description of Facc) depending on the actual protocol we
prefer to realize. We stress that in E-cclesia deletion commands never occur,
so the manager is not required after the Setup phase.

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 99

The accumulator functionality Facc(M,P,Xλ))

The functionality initializes the lists of accumulated values Lacc, of relation between
accumulation values and ordered sets Lsets and the list of accumulators that are not
expanded Lref as empty.

� Upon receiving (sid, Setup) from the manager M for the first time, it sends (sid,
Setup, Xλ) to S. Upon receiving (sid, Algs, (Uf , u), f , aux f , Verify, Delete,
Update) from S, it sets params = (Xλ, Uf , u) and sends (sid, Algs, params, f , aux f ,
Verify, Delete, Update) to M .

� Upon receiving (sid, Params) from any party P , it returns (sid, Params, params,
f , Verify, Update) to P .

� Upon receiving (sid, Accum, w, X) from party P ∈ P:

1. If X 6⊆ Xλ or w 6∈ Uf , it returns (sid, Accum, w, X,⊥) to P .

2. If there is (a, X, w) ∈ Lacc for some a, it returns (sid, Accum, a) to P .

3. It computes a← f(w,X). If a 6∈ Uf or Verify(w, X, a) 6= >, it returns (sid,
Accum, w, X,⊥) to P .

4. If w = u, it creates La ← [X]. Else if there is (w,Lw) ∈ Lsets for some Lw, it
creates La ← [W ∪X : W ∈ Lw].
Else it adds (w, Wr) to Lref , and creates La ← [Wr ∪X].

5. If there is (a, L′a) ∈ Lsets for some L′a, it replaces the pair with (a, L′a ||La)
(i.e. it appends La to L′a) unless L′a = La. Else if for any A ∈ La, there is (a′,
L′a) ∈ Lsets for some a′ 6= a and A ∈ L′a, it returns (sid, Accum, w, X,⊥) to
P . Else if (a,Ar) ∈ Lref for some Ar:

(a) For every (a′, L′a) ∈ Lsets, it replaces each occurrence of Ar in L′a with
items from La (so each A′ = Ar ∪ . . . can expand into multiple E =
A ∪ . . .). For any E, if there is (a′′, L′′a) ∈ Lsets for some a′′ 6= a′ such
that E ∈ L′′a, it returns (sid, Accum, w, X,⊥) to P .

(b) It removes (a,Ar) from Lref and it adds (a, La) to Lsets.

Else, it adds (a, La) to Lsets.

6. It adds (a,X,w) to Lacc and returns (sid, Accum, a) to P .

100 5.4 Realizing Felig via accumulators

� Upon receiving (sid, Delete, a, x, A) from manager M :

1. If A 6⊆ Xλ, a 6∈ Uf or x 6∈ A, it returns (sid, Delete, a, x, A,⊥) to M .

2. If there is no (a,X,w) ∈ Lacc for some w such that x ∈ X, and no (a, La) ∈
Lsets such that A ∈ La, it returns (sid, Delete, a, x, A,⊥) to M .

3. It computes a′ ← Delete(a, x, aux f).

4. If a′ = u and A = {x}, it skips to Step 7.

5. If Verify(u, A\{x}, a′) 6= >, it returns (sid, Delete, a, x, A,⊥) to M .

6. It runs Step 6 of Accum for a′ and La = [A\{x}].

7. It returns (sid, Deleted, a′) to M .

� Upon receiving (sid, Update, a, a′, x, x′, A) from P ∈ P:

1. If A 6⊆ X′λ, a, a′ 6∈ Uf or x, x′ 6∈ A, it returns (sid, Update, a, a′, x, x′, A,⊥)
to P .

2. It runs Step 2 of Delete.

3. It computes w′ ← Update(a, a′, x, x′). If Verify(w′, {x}, a′) 6= >, it returns
(sid, Update, a, a′, x, x′, A,⊥) to P .

4. It runs Steps 5 to 7 of Accum for w′ and a′.

5. It returns (sid, Updated, w′) to P .

� Upon receiving (sid, Verify, w, X, a) from party P ∈ P:

1. If X 6⊆ X′λ, a 6∈ Uf or w 6∈ U′f , it returns (sid, Verify, w, X, a,⊥) to P .

2. If (a, X, w) ∈ Lacc, it returns (sid, Verified, >) to P .

3. If Verify(w, X, a) = > and (a) or (b) holds, it returns (sid, Verify, w, X,
a,⊥) to P .:

(a) There is (a, La) ∈ Lsets such that for some fully-expanded A ∈ La we
have X 6⊆ A.

(b) There are (w,Lw), (a, La) ∈ Lsets such that for some W ∈ Lw and A ∈ La
we have A = W ∪ V where V is a fully-expanded set with V 6⊆ X.

4. It returns (sid, Verified, Verify(w, X, a)) to P .

Figure 5.6: The accumulator functionality Facc(M,P) interacting with an accumu-
lation manager M and a set of parties P.

Next, we describe the protocol ΠAC. When M receives from Z (sid,Setup)

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 101

for the first time it sends (sid,Crs) to FGenCrs so that the initial parameters for
the accumulator can be generated (e.g accumulator’s seed, trapdoor information
etc.). Then, M returns the parameters along with the hard-coded algorithms
f, Verify, Delete, Update to Z. Similarly, when a party P receives the command
message Params from Z it gets the accumulator parameters that has been either
already generated from a previous invocation by other party or are generated
by this invocation, in any case the parameters are consistent between the
parties. Then, P returns the parameters along with the hard-coded algorithms
f, Verify, Update to Z. When P receives the command (sid,Accum, w,X)
from Z it returns the accumulated value f(w,X) after the necessary checks(e.g
checks if w,X are sampled from the correct domain). In a similar manner
M acts when it receives a delete command message from Z. Upon receiving
(sid,Update, a, a′, x, x′, A) from Z, P checks again if the values are sampled from
the correct domain and if a is the accumulated value of the ordered set A. If the
checks fails, P returns ⊥ to Z else it returns the updated witness to Z. Finally,
when P receives a Verify command message from Z it does the necessary checks
and returns the result of the verification function Verify to Z.

The accumulation protocol ΠAC for AC = (Xλ, Gen).

� Upon receiving (sid, Setup) for the first time from Z, M sends (sid, CRS) to FGen
CRS.

Upon receiving (sid, CRS, (f , Uf , u, auxf)) from FGen
CRS, M sets params = (Xλ,Uf , u)

and returns (sid, Algs, params, f , Verify, Delete(aux f , ·, ·), Update(f, ·, ·, ·, ·)) to
Z.

� Upon receiving (sid, Params) for the first time from Z, P sends (sid, CRS) to
FGen

CRS. Upon receiving (CRS, sid, (f , Uf , u)) from FGen
CRS, P sets params = (Xλ,Uf , u)

and returns (sid, Params, params, f , Verify, Update) to Z.

� Upon receiving (sid, Accum, w, X) for the first time from Z if X 6⊆ X′λ or w 6∈ U′f ,
P returns (sid, Accum, w, X,⊥) to Z. Otherwise it returns (sid, Accum, f(w,X))
to Z.
� Upon receiving (sid, Delete, a, x′, A) for the first time from Z, if A 6⊆ X′λ, a 6∈
U′f , x′ 6∈ A or if Verify(u, A, a) 6= >, M returns (sid, Delete, a, x′, A,⊥) to Z.
Otherwise it returns (sid, Deleted, Delete(aux f , a, x′)) to Z.
� Upon receiving (sid, Update, a, a′, x, x′, A) from Z, if A 6⊆ X′λ, a, a′ 6∈ U′f , x,
x′ 6∈ A or if Verify(u, A, a) 6= >, P returns (sid, Update, a, a′, x, x′, A),⊥ to Z.
Otherwise it returns (sid, Updated, Update(a, a′, x, x′)).
� Upon receiving (sid, Verify, w, X, a) from Z, if X 6⊆ X′λ, w 6∈ U′f , P returns (sid,
Verify, w, X, a,⊥) to Z. Else it returns (sid, Verified, Verify(w, X, a)) to Z.

Figure 5.7: Definition of ΠAC in the FGen
CRS-hybrid model.

102 5.4 Realizing Felig via accumulators

5.4.2 A protocol that realizes Facc

In Figure 5.7, we define a real protocol ΠAC that uses an accumulator scheme in the
CRS model. Theorem 6 captures the equivalence between our functionality and
secure accumulator schemes, and in particular, implies that Facc can be realized
by a strong RSA accumulator construction Camenisch and Lysyanskaya (2002).
The proof can be found in Marekova (2018).

Theorem 6. ΠAC UC-realizes Facc in the FGen
CRS-hybrid model if and only if

AC = (Xλ, Gen) is a secure dynamic accumulator scheme.

Commitment functionality FNIC.

(sid,Setup) → (sid, Params, params, Verify) delayed output.
(sid,Comm,m) → (sid, Comm, c, o).
(sid,Verify, c,m, o) → (sid, Verified, b).

Signature of knowledge functionality FSoK(Facc,FNIC).

(sid,Setup) → (sid, Algs, Sign, Verify).
(sid,Sign,m, (a, S), (c, w, r)) → (sid, Sign, m, (a, S), σ).
(sid,Verify,m, (a, S), σ) → (sid, Verified, b).

Figure 5.8: Interfaces provided by FNIC and FSoK(Facc,FNIC).

5.4.3 A protocol that realizes Felig

To realize Felig, we need two other primitives besides accumulators, both of which
have UC formulations in the literature: non-interactive commitments Camenisch
et al. (2016) and (non-interactive zero-knowledge) signatures of knowledge Chase
and Lysyanskaya (2006).

We note the command interfaces that they provide in Figure 5.8. Note
that Figure 5.8 does not fully describe FNIC and FSoK instead, it presents only
the command lines that are necessary for our purpose. FNIC allows a party
to commit to a message m via a commitment c that can be verified using the
opening o, and FSoK allows a party to produce a signature σ on message m if
they know the opening r to some commitment c (which commits to some value
S) which has been accumulated in a with witness w. FSoK can internally use
any functionality that represents a language of statements on which signatures
of knowledge can be made. In our case, it uses both F∗acc and FNIC. The
model of Chase and Lysyanskaya (2006) is easily extended to the case of two
“internal” functionalities, since we can define the language that our FSoK accepts
as L = {(a, S, c, w, r) : (w, {c}, a) ∈ Lacc ∧ (c, S, r) ∈ LNIC}, where Lacc, LNIC

are the languages accepted by F∗acc and FNIC, respectively. Figure 5.9 defines an

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 103

eligibility protocol that realizes Felig according to Theorem 7 where the proof can
be found in Supplementary Material A.1. For ease of notation, when we say P
calls F∗acc or FNIC, we mean that the communication goes through FSoK since the
functionalities are embedded within. Chase and Lysyanskaya (2006) describes
formally how this is achieved. The full description of FSOK and FNIC can be found
in Appendix A.

The eligibility protocol Π
FSoK(F∗acc,FNIC),Fan.BC,{FPcert},Gclock

elig .

All parties initialize the set C ← ∅. Moreover, all parties have hard coded the
pair (define time, Status) If at any point a hybrid functionality aborts, the party
returns ⊥ to Z.
� Upon receiving (sid,Eligible,Velig, tcast, topen) from Z, if Velig ⊆ V and SA’s
status=init, SA runs:

1. It sets its status to ‘credential’.

2. It computes t← define time(tcast, topen).

3. It sends (sid,Setup) to F∗acc to get (sid, Algs, paramsacc, f , Verifyacc,
Delete, Update). It parses paramsacc as (Xλ, Uf , u). It sends (sid,Setup)
to FNIC to get (sid, Params, paramsNIC, VerifyNIC). It parses paramsNIC as
(M, R). It sends (sid,Setup) to FSoK to get (sid, Algs, Sign, VerifySoK). It
saves all algorithms and parameters except Delete in Stgen.

4. It sets reg.par := (Velig, tcast, topen, t,Stgen).

5. It sends ((SA, sid), Setup) to FSA
cert, waits for confirmation and then sends

((SA, sid), Sign, (SA, reg.par)) back to receive ((SA, sid), Signature, (SA,
reg.par), s). Then it sends (sid, Broadcast, (SA, reg.par, s)) to Fan.BC

a.

6. It returns (sid,Elig Par, reg.par) to Z.

� Upon receiving (sid,Broadcast, (SA, reg.par, s)) from Fan.BC, V sends ((SA, sid),
Verify, (SA, reg.par), s) to FSA

cert. If it returns 1, V stores reg.par and sets status to
‘credential’.

aA simple anonymous channel is enough as at that point the voter needs to state
its identity. In order to keep the format simple, we use only the anonymous broadcast
functionality in our protocol (instead of both simple and anonymous broadcast) but we leak
the identity of the voter at that point.

104 5.4 Realizing Felig via accumulators

� Upon receiving (sid,Gen Cred) from Z, if V ’s status=credential, V reads Cl
from Gclock. If Status(Cl, t,Cast) = >, V sets status to ‘cast’. Otherwise, if
Status(Cl, t,Cred) = >, then V does:

1. She computes S
$←M and sends (sid,Comm, S) to FNIC to get (sid, Comm, c,

r). If c 6∈ Xλ, she repeats this step until it does.

2. She sends ((V, sid),Setup) to FVcert, waits for confirmation and then sends
((V, sid),Sign, (V, c)) back to receive ((V, sid),Signature, (V, c), s). Then she
sends (sid,Broadcast, (V, (c, s))) to Fan.BC.

� Upon receiving (sid, Broadcast, (V ′, (c′, s′))) from Fan.BC, V sends ((V ′, sid),
Verify, (V ′, c′), s′) to FV

′
cert. If it returns 1, she adds c′ to C and returns

(sid,Gen Cred, V ′, c′) to Z. � Upon receiving (sid,Auth Ballot, v) from Z, if
V ’s status=cast, she reads Cl from Gclock. If Status(Cl, t,Open) = >, she sets its
status to ‘open’. Otherwise, if Status(Cl, t,Cast) = >, then V does:

1. She sends (sid,Accum, u, C\{c}) to F∗acc to get (sid, Accum, w), and (sid,
Accum, w, {c}) to get (sid, Accum, a).

2. She sends (sid,Sign, v, (a, S), (c, w, r)) to FSoK to get (sid, Sign, v, (a, S), φ).
She sets σ := (φ, S).

3. She returns (sid,Auth Ballot, v, σ) to Z.

� Upon receiving (sid,Ver Ballot, v, σ) from Z, V :

1. She parses σ as (φ, S) and sends (sid,Accum, u, C) to F∗acc to get (sid, Accum,
a) and (sid,Verify, v, (a, S), φ) to FSoK to get (sid, Verified, x).

2. She returns (sid,Ver Ballot, v, σ, x) to Z.

� Upon receiving (sid,Link Ballots, (v, σ), (v′, σ′)) from Z, V :

1. She parses σ as (φ, S) and σ′ as (φ′, S′). If S = S′, She sets x = 1, otherwise
x = 0.

2. She returns (sid,Link Ballots, (v, σ), (v′, σ′), x) to Z.

Figure 5.9: Definition of Πelig in the {FSoK(F∗acc, FNIC), Fan.BC, {FPcert}, Gclock}-
hybrid model in the presence of V and SA.

Πelig also uses the functionalities for anonymous broadcast, the global clock
and the certification functionality instantiated for SA and all V which we denote
by {FPcert}, where P ∈ {V, SA}. Note that when we write FPcert we mean
Fcert(P,V ∪ SA).

Remark 2. Note that in the definitions of Felig and Πelig, we implicitly assume
that the commands with which the environment can activate the corrupted parties

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 105

are the same as for the honest parties. However, for corrupted parties, Felig will
first reach out to the simulator to request their internal state, which the simulator
will provide (this part is captured explicitly), and then Felig will output as usual
based on what S provides.

Theorem 7. Πelig UC-realizes Felig in the {FSoK(F∗acc, FNIC), Fan.BC, {FPcert},
Gclock}-hybrid model.

5.5 Realizing Fdelay
vm via time-lock puzzles

In this section we construct a real-world protocol that UC-realizes the vote
management functionality Fvm (cf. Subsection 5.2.2) via FTLE.

We present the description of the protocol Π
FTLE,{FPcert},Fan.BC,Gclock
vm and we provide

a proof that it UC-realizes Fvm in the {FTLE, {FPcert},Fan.BC,Gclock}-hybrid model.

The description of Π
FTLE,{FPcert},Fan.BC,Gclock
vm shown in Figure 5.10 follows the phases

and the command interface of Fvm in Subsection 5.2.2.

It is worth mentioning that we use the same FTLE introduced in the previous
chapter, except that the simulator does not learn the identity of the party that
encrypts a message. This small tweak is necessary to guaranty the unlinkability
between the ballot and the voter, and thus realizing Fvm. On the other hand, this
was not necessary to capture the general concept of TLE, that is why we did not
include it as a leakage to the simulator. Despite that, the proof of realization of
this “new” FTLE is the same as in the previous chapter except that, in the hybrid
protocol, instead of using a plain broadcast channel we need to use an anonymous
one. The proof is obvious and thus omitted. For the rest of this section, we refer
to FTLE as the one described before.

Definition 5.5.1. Let leak be a leakage function and tcast, topen be time points.
We say that the pair of functions Statusleak, define timeleak with respect to a
leakage function leak is phase preserving if there is no time s.t. the Cast and
Tally phases are simultaneously active. Formally, ∀Cl s.t Statusleak(Cl, t,Cast) =
> ⇒ Statusleak(leak(Cl), t,Open) = ⊥, where t← define timeleak(tcast, topen).

106 5.5 Realizing Fdelay
vm via time-lock puzzles

5.5.1 A protocol Π
F

leak,delay
TLE

vm that realizes Fdelay
vm

The vote management protocol Π
F

leak,delay
TLE ,Fan.BC,{Ficert},Gclock

vm .

Each voter V maintains a list of the cast ballots LVcast initially as empty. Each voter
initializes its status to ’exec’.

� Upon receiving (sid,Setup Info, tcast, topen,Velig) for the first time from Z, SA
sends ((SA, sid), Setup) to FSA

cert, and waits to receive ((SA, sid), Setup) from FSA
cert.

Then SA computes t← define timeleak(tcast, topen) and if t 6= ⊥ it sends ((SA, sid),
Sign, (SA, tcast, topen,t,Velig)) to FSA

cert. Upon receiving ((SA, sid), Signature, (SA,
tcast, topen,t,Velig), s) from FSA

cert, it sends (sid, Broadcast, (SA, tcast, topen,t,Velig,
s)) to Fan.BC.

� Upon receiving (sid,Broadcast, (SA, tcast, topen,t,Velig, s)) from Fan.BC, V sends
((SA, sid), Verify, (SA, tcast, topen,t,Velig), s) to FSA

cert. If it returns 1, she stores
(tcast, topen, t,Velig).

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 107

� Upon receiving (sid,Gen Ballot, o) from Z, V does:

1. If this is the first time receiving this command-message and V ∈ Velig, V sends
to FTLE (sid,Enc, o, topen). Upon receiving (sid,Encrypting) from FTLE, V
returns (sid,Generating) to Z.

2. Else, V returns to Z (sid,Gen Ballot, o,⊥).

� Upon receiving (sid,Retrieve) from Z, V sends (sid,Retrieve) to FTLE. Upon
receiving (sid,Retrieve, (o, v, topen)) from FTLE, she records the tuple (V, v, o, 1)
and sends (sid,Retrieve, (o, v)) to Z.

� Upon receiving (sid,Cast, v, σ) from Z, if her status is ‘exec’, V reads the time Cl
from Gclock. If Statusleak(Cl, t,Open) = >, V sets the status to ‘open’. Otherwise V
does:

1. She sends (sid,Retrieve) to FTLE. Upon receiving
(sid,Retrieve, (o′, v′, topen)) she records the tuple (V, v′, o′, 1).

2. If there is a tuple of the form (V, v, ·, 1) stored and it is the first time receiving
this command-message, V sends (sid,Cast, v, σ) to Fan.BC. Upon receiving
(sid,Cast, v, σ) from Fan.BC, V ∗ stores the tuple (v, σ) to LV

∗
cast.

3. Else, V returns (sid,Cast, v, σ,⊥) to Z.

� Upon receiving (sid,Open, v∗) from Z, if there is a tuple (v∗, σ∗) ∈ LVcast, V sends
(sid,Dec, v∗, topen) to FTLE.

1. Upon receiving (sid,Dec, v∗, topen, o
∗) from FTLE, V returns the message

(sid,Open, v∗, o∗) to Z.

2. Upon receiving (sid,Dec, v∗, topen,⊥) from FTLE, V returns the message
(sid,Open, v∗,⊥) to Z.

Figure 5.10: Description of Πvm in the {Fleak
TLE,Fan.BC, {FPcert},Gclock}-hybrid model

in the presence of V and SA.

Theorem 8. Πvm UC-realizes Fdelay
vm in the {Fleak,delay

TLE ,Fan.BC, {FPcert},Gclock}-
hybrid model given that the pair of functions Statusleak, define timeleak is
phase preserving.

Proof. In cases where a corrupted party receives input and we do not describe
her behaviour, we assume that the message is sent to S from Fvm and S forwards
that message to A as if he was from that party. Then S returns to Fvm whatever
he receives from A.

We describe the ideal adversary S. When S receives the corruption vector
from Z, S forwards it to A as if he was from Z. When S receives back the
corruption vector from A playing the role of both of FTLE,F

SA
cert, S forwards it to

Fvm. When S receives the setup information (sid,Setup Info, tcast, topen,Velig)

108 5.5 Realizing Fdelay
vm via time-lock puzzles

from Fvm, S sends ((SA, sid),Setup) to A as if he was FSA
cert. Upon receiving

((SA, sid),Algorithms, Verify, Sign) from A playing the role of FSA
cert, S stores

the algorithms (Verify, Sign) and produces the signature σ ← Sign(tcast, topen,
Velig). Then S asks A if he allows the cast of the message (tcast, topen,Velig, σ) as
if he was Fan.BC.

Then, S responds to Fvm according to the answer of A.

Upon receiving a Gen Ballot request from Fvm on behalf of a voter V , S
forwards the message to A as if it was from FTLE and he returns the response of
A to Fvm. Upon receiving an Advance Clock command from Gclock on behalf
of a voter V , S forwards the message to A as if he was Gclock. Upon receiving
an Update command as if he was FTLE from A, he forwards the message to
Fvm. Upon receiving (sid,Allow Cast, v, σ) from Fvm, S asks A if he allows
the broadcast of (v, σ) as if it was from Fan.BC. If the broadcast is allowed, S

sends (sid,Cast Allowed) to Fvm. When S receives a Cast request from Fvm

on behalf of a corrupted voter V , he forwards the message to A as if it was from
Fan.BC and he returns the message he received from A back to Fvm.

Upon receiving (sid,Open, v) from Fvm (where v is a ballot not generated by
Fvm), S sends (sid, Dec, v, topen) to A as if it was from FTLE. When S receives
(sid, Dec, v, topen, o) from A, he returns the message (sid, Open, v, o) to FTLE.

Upon receiving (sid,Leakage) from Z, S forwards the message to A as if it
was from Z. Upon receiving (sid,Leakage) from A, S reads the time Cl from
Gclock. Then S playing the role of FTLE returns to A all the maliciously generated
ciphertexts with time labelling until time leak(Cl). If Statusleak(Cl, t,Open) =
Statusleak(Cl, t,Cast) = Statusleak(Cl, t,Cred) = ⊥, then S can request and give
also the honest generated ciphertexts from Fvm and returns them to A as if there
were from from FTLE. Note that all honest parties will use FTLE with the same
time labelling for encryption requests and at most once. The only way simulation
fails is when the Statusleak(Cl, t,Cast) = > and Statusleak(leak(Cl), t,Open) = >
because in that case S can not retrieve the honestly generated plaintexts from
Fvm so he cannot give a response on behalf of FTLE to A on a (sid,Leakage)
command. By the definition of Statusleak and define timeleak this is impossible
to happen.

The distribution of messages is the same in both the ideal and the hybrid
setting, as the algorithms GenBallot ≡ eA and OpenBallot ≡ dA that are used
are the same. As a result, the simulation is perfect.

Based on all previous Sections in this Chapter, we can state the following
corollary as can be inferred from Figure 5.1.

Corollary 8.1. The protocol E-cclesia 1.0 , which is defined as the union of the
protocols Πelig(FGen

Crs ,Fan.BC,F
P
cert,FSOK,FNIC) and Πvm(Fan.BC,F

P
cert,W

∗
q(FOeval

),FRO),

CHAPTER 5. E-cclesia: a self-tallying classical e-voting protocol 109

UC realizes FSTE in the (FGen
Crs ,Fan.BC,F

P
cert,FSOK,FNIC,W

∗
q(FOeval

),FRO) hybrid
model 2.

2Note that there exist a UC realization of the functionalities (FSOK,FNIC,F
P
cert) in the

literature as we mentioned above.

110 5.5 Realizing Fdelay
vm via time-lock puzzles

Chapter 6

Quantum e-voting & limitations

Voting is fundamental in democratic societies. With the technological advances
of the computer era, voting could benefit to become more secure and efficient and
as a result more democratic. For this reason, over the last two decades, several
cryptographic protocols for electronic voting were proposed and implemented, see
e.g. Adida (2008); Chaum et al. (2009); Juels et al. (2005); Kiayias et al. (2015);
Ryan and Schneider (2006); Cortier et al. (2019). The security of all these systems
relies on computational assumptions such as the hardness of integer factorization
and the discrete logarithm problem. But, these are easy to solve with quantum
computers using Shor’s algorithm Shor (1994). Although not yet available, recent
technological advances indicate that quantum computers will soon be threatening
existing cryptographic protocols. In this context, researchers have proposed
to use quantum communication to implement primitives like key distribution,
bit commitment and oblivious transfer. Unfortunately, perfect security without
assumptions has proven to be challenging in the quantum setting Lo and Chau
(1998); Mayers (1997), and the need to study different corruption models has
emerged. This includes limiting the number of dishonest parties and introducing
different non-colluding authorities.

More than a decade of studies on quantum electronic voting has resulted
in several protocols that use the properties of quantum mechanical systems.
However, all these new protocols are studied against different and not well-
articulated corruption models and claim security using ad-hoc proofs that are
not formalized and backed only against limited classes of quantum attacks.
In particular, none of the proposed schemes provides rigorous definitions of
privacy and verifiability, nor formal security proofs against specific, well
defined (quantum) attacker models. When it comes to electronic voting schemes,
it is particularly hard to ensure that all the, somehow conflicting, properties
hold Chevallier-Mames et al. (2010); it is therefore important that these new
quantum protocols be rigorously and mathematically studied and the necessary
assumptions and limitations formally established.

This is precisely what we set to address in this work. We systematize and
assess the security of existing e-voting protocols based on quantum technology.

111

112

Privacy Correctness Verifiability Corruption
Dual basis (Section 6.1) 5 ? ? ε fraction of voters

Travelling ballot (Section 6.2) 5 5 5 two voters
Distributed ballot (Section 6.3) ? 5∗ 5 ε fraction of voters
Conjugate coding (Section 6.4) 5 ? ? election authority

Table 6.1: Properties of the different categories of quantum e-voting protocols. 5:
Insecure, ?: Unexplored Area, ∗:Protocol runs less than exp(Ω(N)) rounds.

Unfortunately, our analyses uncover vulnerabilities in all the proposed schemes.
While some of them suffer from trivial attacks due to inconsistencies in the security
definitions, the main contribution of the paper is to argue that sophisticated
attacks can exist even in protocols that “seem secure” if the security is proven ad
hoc, and not in a formal framework. We argue that the cause of these failures is
the absence of an appropriate security framework.

Therefore, this work follows previous works Barnum et al. (2002); Portmann
(2017); Unruh (2010); Moran and Naor (2006); Gallegos-Garcia et al. (2016) in
their effort to highlight the importance of formally defining and proving security
in the relatively new field of quantum cryptography. This also includes studying
classical protocols that are secure against unbounded attackers Broadbent and
Tapp (2007), as well as ones based on problems believed to be hard even for
quantum computers e.g. lattice-based Chillotti et al. (2016). However, it is out
of the scope of this study to review such classical protocols, as we are focusing on
the possible contribution of quantum computers to the security of e-voting.

We systematize the proposed quantum e-voting approaches according to key
technical features. To our knowledge, our study covers all relevant research in the
field, identifying four main families. Table 6.1 summarises our results.

• Two measurement bases protocols - These protocols rely on two measure-
ment bases to verify the correct distribution of an entangled state. We
specifically prove that the probability that a number of corrupted states are
not tested and used later in the protocol, is non-negligible, which leads to
a violation of voters’ privacy. Furthermore, even if the states are shared by
a trusted authority, we show that privacy can still be violated in case of
abort.

• Traveling ballot protocols - In these protocols the “ballot box” circulates
among all voters who add their vote by applying a unitary to it. We show
how colluding voters can break honest voters’ vote privacy just by measuring
the ballot box before and after the victim has cast their ballot. These
protocols further suffer as we will see from double voting attacks, whereby
a dishonest voter can simply apply multiple times the voting operator.

• Distributed ballot protocols - These schemes exploit properties of entangled
states that allow voters to cast their votes by applying operations on parts

CHAPTER 6. Quantum e-voting & limitations 113

of them. We present an attack that allows the adversary to double-vote and
therefore changes the outcome of the voting process with a probability of
at least 0.25 if the protocol runs fewer than exponentially many rounds in
the number of voters. The intuition behind this attack is that an adversary
does not need to find exactly how the ballots have been created to influence
the outcome of the election; it suffices to find a specific relation between
them from left-over voting ballots provided by the corrupted voters.

• Conjugate coding protocols - These protocols exploit BB84 states adding
some verification mechanism. The main issue with these schemes, as we
show, is that ballots are malleable, allowing an attacker to modify the part
of the ballot which encodes the candidate choice to their advantage.

In this work, we will be dealing with protocols involving one election authority
EA, a set of voters V = {Vk}Nk=1 and a set of talliers T (which may overlap
with V). EA sets the parameters of the protocol, each voter Vk ∈ V casts vote
vk and T gathers the ballots, computes the election outcome and announces it.
Informally, a voting protocol Π has three distinct phases (setup, casting, and tally)
and running time proportional to a security parameter δ0.

6.1 Dual basis measurement based protocols

In this section, we discuss protocols that use the dual basis measurement technique
Huang et al. (2014); Wang et al. (2016), and use as a blank ballot an entangled
state with an interesting property: when measured in the computational basis,
the sum of the outcomes is equal to zero, while when measured in the Fourier
basis, all the outcomes are equal. Both of these protocols use cut-and-choose
techniques to verify that the state was distributed correctly. This means that a
large number of states are checked for correctness and a remaining few are kept
at the end unmeasured, to proceed with the rest of the protocol. Although a
cut-and-choose technique with just one verifying party is secure if the states that
are sampled are exponentially many and the remaining ones are constant, it is
not clear how this generalizes to multiple verifying parties. Specifically, we show
that if the corrupted parties sample their states last, then the probability with
which the corrupted states are not checked and remain after all the honest parties
sample is at least a constant to the security parameter of the protocol.

6.1.1 Protocol specification

We will now present the self-tallying protocol of Wang et al. (2016), which is
based on the classical protocol of Kiayias and Yung (2002). The voters {Vk}Nk=1,
without the presence of any trusted authority or tallier, need to verify that they
share specific quantum states. At the end of the verification process, the voters

114 6.1 Dual basis measurement based protocols

share a classical matrix; every cast vote is equal to the sum of the elements of a
row in the matrix.

Setup phase:

1. One of the voters, not necessarily trusted, prepares N +N2δ0 states:

|D1〉 =
1√
cN−1

∑
∑N
k=1 ik=0 mod c

|i1〉 |i2〉 . . . |iN〉

wherem is the dimension of the qudits’ Hilbert space, c is the number of
the possible candidates such that m ≥ c and δ0 the security parameter.
The voter also shares 1 +N2δ0 states of the form:

|D2〉 =
1√
N !

∑
(i1,i2,...,iN)∈PN

|i1〉 |i2〉 . . . |iN〉

where PN is the set of all possible permutations with N elements. Each
Vk receives the kth particle from each of the states.

2. The voters agree that the states they receive are truly |D1〉 , |D2〉 by
using a cut-and choose technique. Specifically, voter Vk chooses at
random 2δ0 of the |D1〉 states and asks the other voters to measure
half of their particles in the computational and half in the Fourier
basis. Whenever the chosen basis is computational, the measurement
results need to add up to 0, while when the basis is the Fourier, then
the measurement results are all the same. All voters simultaneously
broadcast their results and if one of them notices a discrepancy, the
protocol aborts. The states |D2〉 are similarly checked. Specifically, if
measured either in the computational or the Fourier base all the values
should be different and in fact, constitute a random permutation in PN .

3. The voters are left to share N copies of |D1〉 states and one |D2〉 state.
Each voter holds one qudit for each state. They now all measure their
qudits in the computational basis. As a result, each Vk holds a “blank
ballot” of dimension N with the measurement outcomes corresponding
to parts of |D1〉 states:

Bk = [ξ1
k · · · ξ

skk
k · · · ξ

N
k]ᵀ

and a unique index, skk ∈ {1, . . . , N}, from the measurement outcome
of the qudit that belongs to |D2〉. The set of all the blank ballots has
the property

∑N
k=1 ξ

j
k = 0 mod c for all j = 1, . . . , N .

Casting phase:

4. Based on skk, all voters add their vote, vk ∈ Zc, to the corresponding
row of their “secret” column. Specifically, Vk applies ξskkk → ξskkk + vk.

CHAPTER 6. Quantum e-voting & limitations 115

5. All voters simultaneously broadcast their columns, resulting in a public
N ×N table, whose k-th column encodes Vk’s candidate choice.

B =

ξ1
k
...

Bv1
1 · · · ξskkk + vk · · · BvN

N
...
ξNk

Tally phase:

6. Each Vk verifies that their vote is counted by checking that the
corresponding row of the matrix adds up to their vote. If this fails, the
protocol aborts.

7. Each voter can tally the outcome of the election by computing the sum
of the elements of each row of the public N ×N table. The resulting
N elements are the result of the election.

6.1.2 Vulnerabilities of dual basis measurement Protocols

In this section, we present an attack on the cut-and-choose technique of the
protocol in the setup phase, that can be used to violate privacy. We consider
a static adversary that corrupts t voters, including the one that distributes the
states. Suppose that the adversary corrupts N out of N +N2δ0 states |D1〉. We
denote with Bad, the event that all the corrupted voters choose last which states
they want to test, and with Win, the event that the N corrupted states are not
checked. We want to compute the probability that event Win happens, given
event Bad, i.e. the probability none of the N corrupted states is checked by
the honest voters, and therefore remain intact until the corrupted voters’ turn.
The corrupted voters will of course not sample any of the corrupted states and
therefore the corrupted states will be accepted as valid.

The number of corrupted states that an honest voter will check, follows a
mixture distribution with each mixture component being one of the hypergeo-
metric distributions {HG(Lik , bik , 2

δ0) : 0 ≤ bik ≤ N} , where Lik is the number of
states left to sample from the previous voter and bik the number of the remaining
corrupted states. We can therefore define the random variable Xik that follows
the above mixture distribution, where i1, . . . , iN−t is a permutation of the honest
voters’ indices (by slightly abusing notation, we consider the first N − t voters to
be honest). The following lemma is proven by induction:

Lemma 9. Let Xik be a random variable that follows the previous mixture
distribution. Then,

Pr[
N−t∑
k=1

Xik = 0] =
N−t∏
k=1

Pr[X∗ik = 0] where X∗ik ∼ HG(Lik , N, 2
δ0).

116 6.1 Dual basis measurement based protocols

We are now ready to prove that with at least a constant probability, the
corrupted states will remain intact until the end of the verification process.

Proposition 9.1. For 0 < ε < 1, let t = εN be the fraction of voters controlled
by the adversary. It holds that :

Pr[Win | Bad] >
(ε

2

)N
Proof.

Pr[Win | Bad] = Pr[
N−t∑
k=1

Xik = 0] =
N−t∏
k=1

P [X∗ik = 0]

=
N−t−1∏
k=0

(
N +N2δ0 −N − k2δ0

2δ0

)
/

(
N +N2δ0 − k2δ0

2δ0

)
=

(N + t2δ0 −N + 1) · . . . · (N + t2δ0)

(N +N2δ0 −N + 1) · . . . · (N +N2δ0)

>
(t2δ0 + 1

N +N2δ0

)N
=
(t2δ0

N +N2δ0
+

1

N +N2δ0

)N
>
(t2δ0

N +N2δ0

)N
=
(ε

2−δ0 + 1

)N
>
(ε

2

)N

The question now is with what probability event Bad occurs, i.e how likely
is the fact that voters controlled by the adversary are asked to sample last? The
answer is irrelevant, because this probability depends on N and t, and are both
independent of δ0. As a result,

Pr[Win] > Pr[Win | Bad] Pr[Bad] = (ε/2)Nf(N, t)

where f(N, t) is a constant function with respect to the security parameter δ0,
making Pr[Win] non-negligible in δ0. As a matter of fact, a static adversary will
corrupt the voters that maximize Pr[Bad]. Therefore, we can assume that the
honest voters sample the states at random, in order to not favor sets of corrupted
voters. Now let us examine how this affects the privacy of the scheme.

Theorem 10. Let Π(N, t, δ0) be an execution of the self-tallying protocol with N
voters, t of them corrupted, and δ0 the security parameter. We can construct an
adversary A, which with non-negligible probability in δ0 violates privacy.

Proof. Let CA be the set of indices of the corrupted voters with |CA| = t. Suppose
the voter distributing the states is also corrupted, and prepares 1 + N2δ0 states
of the form of |D2〉, N2δ0 states of the form |D1〉 and N states of the form:

|DCorrupt〉 = |ξ1〉 ⊗ . . .⊗ |ξN〉

CHAPTER 6. Quantum e-voting & limitations 117

where ξk ∈R {0, . . . , c− 1} for all k ∈ {2, . . . , N}, ξ1 ∈ {0, . . . , c− 1} such that1:

ξ1 + . . .+ ξN = 0 mod c

From Proposition 9.1 and the previous observations we know that the proba-
bility that states |DCorrupt〉 remain intact after the verification procedure in step 2
(i.e. event Win), happens with non-negligible probability in the security param-
eter δ0. Therefore, with non-negligible probability, the remaining states in step
3 are: one of the form |D2〉 and N of the form |DCorrupt〉. All honest voters Vk
measure their qudits in the computational basis and end up with a secret number
skk (from measuring the corresponding part of |D2〉) and a column

Bk = [ξ1
k . . . ξskkk . . . ξNk]ᵀ

(from measuring states |DCorrupt〉), that is known to the adversary. Now all voters
apply their vote vk to the Bk according to skk. As a result:

Bvk
k = [ξ1

k . . . ξskkk + vk . . . ξNk]ᵀ

At this point all voters simultaneously broadcast their Bvk
k , as the protocol

specifies, and end up with the matrix B = (Bv1
1 . . . BvN

N). Each Vk, k 6∈ CA checks
that

N∑
j=1

B[skk, j] = vk mod c

which happens with probability 1 from the description of the attack in the previous
steps. As a result, each voter accepts the election result. The adversary knowing
both the pre-vote matrix and the post-vote matrix can therefore extract the vote
of all honest voters.

A similar attack can be mounted if the adversary instead of corrupting N out
of N +N2δ0 |D1〉 states, corrupts just 1 of the |D2〉 states. The attack is similar
to the one mentioned above but in this case, the adversary knows the row in
which each voter voted instead of the pre-vote matrix. Moreover, the probability
of theorem 9.1 is improved from (ε/2)N to ε/2 (the proof works similarly).

So far we have seen how voters’ privacy can be violated if an adversary
distributes the quantum states in the protocol. However, even if the sharing
of the states is done honestly by a trusted authority, still an adversary A can
violate the privacy of a voter. This is done by replacing one element in a column
of one of the players controlled by A with a random number. As a result, in
step, 6, the honest voter whose row doesn’t pass the test, will abort the protocol
by broadcasting it. A will therefore know the identity of the voter aborting and
their corresponding vote since it knows the matrix before the modification of the
column element.

1∈R denotes that the element is chosen uniformly at random from a specific domain.

118 6.2 Travelling ballot based protocols

A possible solution might be to use a classical anonymous broadcast channel,
so that the voters can anonymously broadcast abort if they detect any misbe-
haviour at step 6. However, this might open a path to other types of attacks, like
denial-of-service, and requires further study to be a viable solution.

6.2 Travelling ballot based protocols

In this section, we discuss the travelling ballot family of protocols for referendum
type elections. Here, T also plays the role of EA, as it sets up the parameters of
the protocol in addition to producing the election result. Specifically, it prepares
two entangled qudits and sends one of them (the ballot qudit) to travel from
voter to voter. When the voters receive the ballot qudit, they apply some unitary
operation according to their vote and forward the qudit to the next voter. When
all voters have voted, the ballot qudit is sent back to T who measures the whole
state to compute the result of the referendum. The first quantum scheme in this
category was introduced by Vaccaro et al. Vaccaro et al. (2007) and later improved
Bonanome et al. (2011); Hillery et al. (2006); Li and Zeng (2008).

6.2.1 Protocol specification

Here we present the travelling ballot protocol of Hillery et al. (2006); an alternative
form Vaccaro et al. (2007) encodes the vote in a phase factor rather than in the
qudit itself.

Setup phase:

1. T prepares the state |Ω0〉 = 1√
N

N−1∑
j=0

|j〉V |j〉T , keeps the second qudit

and passes the first (the ballot qudit) to voter V1.

Casting phase:

2. For k = 1, . . . , N , Vk receives the ballot qudit and applies the unitary

U vk =
N−1∑
j=0

|j + 1〉 〈j|, where vk = 1 signifies a “yes vote and vk = 0 a

“no” vote (i.e. applying the identity operator). Then, Vk forwards the
ballot qudit to the next voter Vk+1 and VN to T .

Tally phase:

3. The global state held by T after all voters have voted, is:

|ΩN〉 =
1√
N

N−1∑
j=0

|j +m〉V |j〉T

CHAPTER 6. Quantum e-voting & limitations 119

where m is the number of ”yes” votes. T measures the two qudits
in the computational basis, subtracts the two results and obtains the
outcome m.

6.2.2 Vulnerabilities of travelling ballot based protocols

The first obvious weakness of this type of protocol is that they are subject to
double voting. A corrupted voter can apply the “yes” unitary operation many
times without being detected (this issue is addressed in the next session, where we
study the distributed ballot voting schemes). As a result, we can easily construct
an adversary A that wins in the correctness experiment described in the Appendix
(Figure 6.6) with probability 1. Furthermore, these protocols are subject to
privacy attacks, when several voters are colluding. In what follows, we describe
such an attack on privacy, in the case of two colluding voters. Figure 6.1 depicts
this attack.

Let us assume that the adversary corrupts voters Vk−1 and Vk+1 for any k.
Upon receipt of the ballot qudit, instead of applying the appropriate unitary,
Vk−1 performs a measurement on the travelling ballot on a computational basis.
As a result the global state becomes |Ωk−1〉 = |h+m〉V ⊗ |h〉T , where |h+m〉V
is one of the possible eigenstates of the observable O =

N−1∑
j=0

|j〉 〈j|, and m is the

number of “yes” votes cast by the voters V1, . . . , Vk−2 (note that Vk−1 does not
get any other information about the votes of the previous voters, except number
h + m). Then Vk−1 passes the ballot qudit |h+m〉V to Vk, who applies the
respective unitary for voting “yes” or “no”. As a result the ballot qudit is in
the state |h+m+ vk〉V . Next, the ballot qudit is forwarded to the corrupted
voter Vk+1, who measures it again on the computational basis and gets the result
h+m+ vk. A can now infer vote vk from the two measurement results and figure
out how Vk+1 voted. The same attack can also be applied in the case where there
are many voters between the two corrupted parties. In this case, the adversary
can’t learn the individual votes but only the total votes. One suggestion presented
in Vaccaro et al. (2007) is to allow T to perform extra measurements to detect
a malicious action during the protocol’s execution. However, this only identifies
an attack and does not prevent the adversary from learning some of the votes, as
described above. Furthermore, the probability of detecting a deviation from the
protocol is constant and as such does not depend on the security parameter and
does not lead to a substantial improvement of security. It should also be noted
that verifiability of the election result is not addressed in any of these works,
since T is assumed to generate the initial state honestly. In the case where T is
corrupted,privacy is trivially violated.

All travelling ballot protocols proposed (Vaccaro et al. (2007); Bonanome et al.
(2011); Hillery et al. (2006); Li and Zeng (2008)) suffer from the above privacy

120 6.3 Distributed ballot based protocols

Figure 6.1: A corrupts voters Vk−1,Vk+1 and learns how voter Vk voted with
probability 1.

attack. Next, we discuss how this issue has been addressed by revisiting the
structure of the protocols. Unfortunately, as we will see, new issues arise.

6.3 Distributed ballot based protocols

Here we describe the family of quantum distributed ballot protocols Bonanome
et al. (2011); Hillery et al. (2006); Vaccaro et al. (2007). In these schemes, T
prepares and distributes to each voter a blank ballot, and gathers it back after all
voters have cast their vote to compute the outcome. This type of protocol give
strong guarantees for privacy against other voters but not against a malicious T
which is trusted to prepare correctly specific states. So it is not hard to see that
if the states are not the correct ones, then the privacy of a voter can be violated.

A first attempt presented in Vaccaro et al. (2007) suffers from double voting
similarly to the discussion in the previous section. The same problem also appears
in Dolev et al. (2006). Later works Bonanome et al. (2011); Hillery et al. (2006)
address this issue with a very elaborate countermeasure. The intuition behind
the proposed technique is that T chooses a secret number δ according to which
it prepares two different quantum states: the “yes” and the “no” states. This
δ value is hard to predict due to the non-orthogonality of the shared states and
the no-cloning theorem. The authors suggest that many rounds of the protocol
be executed. As a result, any attempt of the adversary to learn δ gives rise to a
different result in each round. However, the number of required rounds, as well
as rigorous proof are not presented in the study.

More importantly, a careful analysis reveals that the proposed solution is still
vulnerable to double voting. As we will see, an adversary can mount what we
call a d-transfer attack, and transfer d votes for one option of the referendum
election to the other. To achieve this attack, the adversary does not need to find

CHAPTER 6. Quantum e-voting & limitations 121

the exact value of δ (as the authors believed), but knowing the difference of the
angles used to create the “yes” and “no” states suffices. We construct a quantum
polynomial-time adversary that performs the d-transfer attack with a probability
of at least 0.25 if the number of rounds is smaller than exponential in the number
of voters. As a result, this makes the protocol practically unrealistic for large
scale elections.

6.3.1 Protocol specification

We first present the protocol from Bonanome et al. (2011); Hillery et al. (2006):

Setup phase:

1. T prepares an N -qudit ballot state: |Φ〉 = 1√
D

∑D−1
j=0 |j〉

⊗N , where

the states |j〉 , j = 0, ..., D − 1, form an orthonormal basis for the
D-dimensional Hilbert space, and D > N . The k-th qudit of |Φ〉
corresponds to Vk’s blank ballot.

2. T sends to Vk the corresponding blank ballot together with two option
qudits, one for the “yes” and one for the “no” option:

yes: |ψ(θy)〉 = 1√
D

∑D−1
j=0 e

ijθy |j〉 , no: |ψ(θn)〉 =
1√
D

D−1∑
j=0

eijθn |j〉

For v ∈ {y, n} we have θv = (2πlv/D) + δ, where lv ∈ {0, . . . , D − 1}
and δ ∈ [0, 2π/D). Values ly and δ are chosen uniformly at random
from their domain and ln is chosen such that N(ly − ln mod D) < D.
These values are known only to T .

Casting phase:

3. Each Vk decides on “yes” or “no” by appending the corresponding
option qudit to the blank ballot and performing a 2-qudit measurement
R =

∑D−1
r=0 rPr, where:

Pr =
D−1∑
j=0

|j + r〉 〈j + r| ⊗ |j〉 〈j|

According to the result rk, Vk performs a unitary correction Urk =

I⊗
∑D−1

j=0 |j + rk〉 〈j| and sends the 2-qudits ballot along with rk back
to T .

Tally phase:

122 6.3 Distributed ballot based protocols

4. The global state of the system (up to normalization) is:

1√
D

D−1∑
j=0

N∏
k=1

αj,rk |j〉
⊗2N

where

αj,rk =

{
ei(D+j−rk)θkv , 0 ≤ j ≤ rk − 1

ei(j−rk)θkv rk ≤ j ≤ D − 1

5. For every k, using the announced results rk, T applies the unitary
operator:

Wk =

rk−1∑
j=0

e−iDδ |j〉 〈j|+
D−1∑
j=rk

|j〉 〈j|

on one of the qudits in the global state (it is not important on which
one, since changes to the phase factor of a qudit that is part of a bigger
entangled state take effect globally). Now T has the state:

|Ωm〉 =
1√
D

D−1∑
j=0

eij(mθy+(N−m)θn) |j〉⊗2N

where m is the number of “yes” votes.

6. By applying the unitary operator
∑D−1

j=0 e
−ijNθn |j〉 〈j| on one of the

qudits and setting q = m(ly − ln), we have:

|Ωq〉 =
1√
D

D−1∑
j=0

e2πijq/D |j〉⊗2N

We note here that q must be between 0 and D− 1 so that the different outcomes
be distinguishable. Now with the corresponding measurement, T can retrieve q.
Since T knows values ly and ln, it can derive the number m of ”yes” votes. Note
that if a voter does not send back a valid ballot, the protocol execution aborts.

6.3.2 Vulnerabilities of distributed ballot based protocols

In this section, we show how the adversary can perform the d-transfer attack
in favour of the “yes” outcome. We proceed as follows. We first show that
this is possible if the adversary knows the difference ly − ln. We then show
how the adversary can find out this value, and conclude the section with the
probabilistic analysis of our attack which establishes that it can be performed
with overwhelming probability in the number of voters.

The d-transfer attack: Given the difference ly−ln, a dishonest voter can violate
the no-double-voting. From the definition of ly and ln it holds that:

2π(ly − ln)/D = θy − θn (6.1)

CHAPTER 6. Quantum e-voting & limitations 123

If a corrupted voter (e.g. V1) knows ly − ln, then they proceed as follows (w.l.o.g.
we assume that they want to increase the number of “yes” votes by d):

1. V1 applies the unitary operator: Cd =
D−1∑
j=0

eijd(θy−θn) |j〉 〈j| to the received

option qudit |ψ(θy)〉. As a result, the state becomes:

Cd |ψ(θy)〉 =
1√
D

D−1∑
j=0

eijd(θy−θn)eijθy |j〉

items V1 now performs the 2-qudit measurement specified in the Casting
phase of the protocol and obtains the outcome r1.

2. V1 performs the unitary correction Ur1 . For θ̃ = d(θy − θn) + θy, the global
state now is:

Ur1Pr1
(
|Φ〉 ⊗ Cd |ψ(θy)〉

)
=

1√
D

[r1−1∑
j=0

ei(D+j−r1)θ̃ |j〉⊗N+1 +
D−1∑
j=r1

ei(j−r1)θ̃ |j〉⊗N+1
]

3. Before sending the two qudit ballot and the value r1 to T , V1 performs the
following operation to the option qudit:

Correctr1 =

{
e−iDd(θy−θn) |j〉 〈j| , 0 ≤ j ≤ r1 − 1

|j〉 〈j| r1 ≤ j ≤ D − 1

4. After all voters have cast their ballots to T , the global state of the system
(up to normalization) is:

1√
D

(

r1−1∑
j=0

ei(j−r1)d(θy−θn)ei(D+j−r1)θy

N∏
k=2

αj,rk |j〉
⊗2N

+
D−1∑
j=r1

ei(j−r1)d(θy−θn)ei(j−r1)θy

N∏
k=2

αj,rk |j〉
⊗2N)

where,

αj,rk =

{
ei(D+j−rk)θkv , 0 ≤ j ≤ rk − 1

ei(j−rk)θkv rk ≤ j ≤ D − 1

and θkv describes the vote of voter Vk, where v ∈ {y, n}. T just follows the
protocol specification. It applies some corrections on the state given the
announced results rk and finally the state becomes:

1√
D

D−1∑
j=0

ei(j−r1)d(θy−θn)ei(j−r1)θy · . . . · ei(j−rn)θnv |j〉⊗2N

124 6.3 Distributed ballot based protocols

which under a global phase factor is equivalent to:

1√
D

D−1∑
j=0

eijd(θy−θn)eij(mθy+(N−m)θn) |j〉⊗2N

5. T removes the unwanted factor eijNθn as prescribed by the protocol, and
the final state is:

|Ωm+d〉 =
1√
D

D−1∑
j=0

eijd(θy−θn)eijm(θy−θn) |j〉⊗2N

=
1√
D

D−1∑
j=0

e2πij(m+d)(ly−ln)/D |j〉⊗2N

6. After measuring the state, the result is m+ d instead of m.

Finding the difference between ly and ln: What remains in order to complete
our attack is to find the difference ly − ln. We now show how an adversary can
learn this difference with overwhelming probability in N . We assume that the
adversary controls a fraction ε of the voters (0 < ε < 1), who are (all but
one) instructed to vote half the times ”yes” and the other half ”no”. Instead
of destroying the remaining option qudits (exactly εN/2 ”yes” and εN/2 ”no”
votes), the adversary keeps them to run Algorithm 1. In essence, the algorithm is

Algorithm 1 Adversary’s algorithm
Input: D, |ψ(θv)〉1 , · · · , |ψ(θv)〉εN/2
Output: l̃ ∈ {0, . . . , D − 1}
1: Record = [0, . . . , 0] ∈ N1×D; . This vector shows us how many values are observed in each interval

2: Solution = [”Null”, ”Null”] ∈ N1×2;
3: i, l,m = 0;
4: while i ≤ εN/2 do
5: Measure |ψ(θv)〉i by using POVM operator E(θ) from Eq.(6.2), the result is yi;

6: Find the interval for which 2πj
D
≤ yi ≤ 2π(j+1)

D
;

7: Record[j] =++;
8: i++;
9: end while

10: while l < D do
11: if Record[l] ≥ 40%(εN/2) then
12: Solution[m] = l;
13: m+ +;
14: end if
15: l + +;
16: end while
17: if Solution == [0, D − 1] then
18: Solution = [Solution[1], Solution[0]];
19: end if
20: return l̃ = Solution[0];

executed twice - once for each set of option qudits {|ψ(θv)〉}εN/2, where v ∈ {y, n}.
It measures the states in each set and attributes to each one an integer. After all,

CHAPTER 6. Quantum e-voting & limitations 125

Figure 6.2: The probabilities with which Algorithm 1 records a value in {lv −
1, lv, lv + 1} after measuring state |ψ(θv)〉 for δ1 = π

235
, δ2 = π

230
, and δ3 = π(26−1)

235
.

states have been measured, the algorithm creates a vector Record, which contains
the number of times each integer appeared during the measurements. Finally,
Algorithm 1 creates the vector Solution in which it registers the values that
appeared at least 40% times during the measurements, equivalently the values
for which the Record vector assigned a number greater or equal than 40% of
times. The algorithm outputs the first value in the Solution vector. As we see in
Figure 6.2, with high probability the value that algorithm outputs is either lv or
lv−1, for both values of v. Hence, we can find the difference ly− ln. After having
acquired knowledge of ly − ln, the adversary can instruct the last corrupted voter
to change the outcome of the voting process as previously described.

Probabilistic analysis We prove here that the adversary’s algorithm succeeds
with overwhelming probability in N , where N is the number of voters. Therefore,
as we later prove in Theorem 18, the election protocol needs to run at least
exponentially many times to N to guarantee that the success probability of the
adversary is at most 0.25. We present here the necessary lemmas and give the
full proofs in the Quantum Supplementary Material.

In order to compute the success probability of the attack, we first need to
compute the probability of measuring a value in the interval (xl, xl+w), where

xl =
2πl

D
, l ∈ {0, 1, . . . , D − 1}2.

Lemma 11. Let Θv
D,δ ∈ [0, 2π] be the continuous random variable that describes

the outcome of the measurement of an option qudit |ψ(θv)〉 , v ∈ {y, n} using
operators:

E(θ) =
D

2π
|Φ(θ)〉 〈Φ(θ)| (6.2)

2It is convenient to think of l as the Dth roots of unity.

126 6.3 Distributed ballot based protocols

where |Φ(θ)〉 = 1√
D

D−1∑
j=0

eijθ |j〉. It holds that:

Pr[xl < Θv
D,δ < xl+w] =

1

2πD

∫ xl+w

xl

sin2[D(θ − θv)/2]

sin2[(θ − θv)/2]
dθ

According to Algorithm 1, an option qudit is attributed with the correct value lv
when the result of the measurement is in the interval [xlv , xlv+1]. Using Lemma
11, we can prove the following:

Lemma 12. Let |ψ(θv)〉 be an option qudit of the protocol. Then it holds:

Pr[xlv < Θv
D,δ < xlv+1] > 0.405

Lemma 12 shows that with probability at least 0.405, the result of the measure-
ment is in the interval (xlv , xlv+1). Since Algorithm 1 inserts an integer to the
Solution vector if it corresponds to at least 40% of the total measured values, lv
will most likely be included in the vector (we formally prove it later). Further-
more, we prove now that with high probability, there will be no other values to
be inserted in Solution, except the neighbours of the value lv (namely lv ± 1).

Lemma 13. Let |ψ(θv)〉 be an option qudit of the protocol. Then it holds:

Pr[xlv−1 < Θv
D,δ < xlv+2] > 0.9

Here we need to note that we are aware of the cases lv ∈ {0, D − 1} where
the members xlv−1 and xlv+2 are not defined. It turns out not to be a problem
and the same thing can be proven for these values (see Quantum Supplementary
Material).

We have shown that the probability the measurement outcome lies in the
interval (xlv−1, xlv+2), and therefore gets attributed with a value of lv − 1, lv or
lv + 1, is larger than 0.9. If we treat each measurement performed by Algorithm
1 on each option qudit |ψ(θv)〉, as an independent Bernoulli trial with success
probability pl = Pr[xl < Θv

D,δ < xl+1], we can prove the following theorem:

Theorem 14. With overwhelming probability in the number of voters N , Algo-
rithm 1 includes lv in the Solution vector

Pr[Solution[0] = lv ∨ Solution[1] = lv] > 1− 1/exp(Ω(N))

We have proven that with overwhelming probability in N , integer lv occupies one
of the two positions of vector Solution, but what about the other value? In the
next theorem, we show that with overwhelming probability in N , the other value
is one of the neighbours of lv, namely lv + 1 or lv − 1.

Theorem 15. With negligible probability in the number of voters N , Algorithm
1 includes a value other than (lv − 1, lv, lv + 1) in the Solution vector, i.e.
∀w ∈ {0, . . . , lv − 2, lv + 2, . . . , D − 1} :

Pr[Solution[0] = w ∨ Solution[1] = w] < 1/exp(Ω(N))

CHAPTER 6. Quantum e-voting & limitations 127

Lemma 16. With overwhelming probability in N , the Solution vector in Algo-
rithm 1, is equal to [lv − 1, lv], [lv, ”Null”] or [lv, lv + 1]. Specifically,

Pr[Solution ∈ {[lv − 1, lv], [lv, ”Null”], [lv, lv + 1]}] > 1− 1/exp(Ω(N))

Now consider we have two executions of the Algorithm 1, one for the ”yes” and
one for the ”no” option qudits. It turns out that the values in the positions ly− 1
and ln− 1 of the vector Record, follow the same Binomial distribution (it is easy
to see that ply−1 = pln−1). Also, each of them can be seen as a function of δ which
is a monotonic decreasing function that takes a maximum value for δ = 0 (the
proof technique is similar to Lemma 12). At this point the probability is equal
to plv , which is at least 0.405 as we have proven in Lemma 123. Armed with this
observation we can prove the next theorem.

Theorem 17. If we define the event ”Cheat” as:

Cheat =
[
Algo(y)− Algo(n) = ly − ln

]
where Algo(v) is the execution of Algorithm 1 with v ∈ {y, n}, then it holds that:

Pr[”Cheat”] > 1− 1/exp(Ω(N))

Proof. (sketch) We have seen that there exists a δ0 such that the probability plv−1

is equal to 0.4 for both values of v. It holds that:

Pr[”Cheat”] = Pr[”Cheat”|δ ∈ [0, δ0)] · Pr[δ ∈ [0, δ0)]

+ Pr[”Cheat”|δ = δ0] · Pr[δ = δ0]

+ Pr[”Cheat”|δ ∈ (δ0, 2π/D)] · Pr[δ ∈ (δ0, 2π/D)]

For the first interval, for both values of v, Algorithm 1 registers Solution =
[lv − 1, lv] with overwhelming probability in N . This holds because of Theorem
16 and the previous observation. Therefore, for both values of v the algorithm
outputs the values lv − 1. As a result, ly − 1− (ln − 1) = ly − ln.

For the second term, Pr[δ = δ0] = 0, because δ is a continuous random
variable. Finally, in the last term, the probability that the algorithm registers
Solution = [lv − 1, lv] is negligible in N , and by Theorem 16, Solution has the
form [lv] or [lv, lv+1]. So for both values of v, the printed values are ly and ln.

At this point, we have proven that the adversary succeeds with overwhelming
probability in N to perform the d-transfer attack in one round. But how many
rounds should the protocol run to prevent this attack?

In the next theorem we prove that if the number of rounds is at most
exp(Ω(N)), the adversary succeeds with a probability of at least 0.25. Although

3The same holds for the ply+1, pln+1 except that probability is a monotonic increasing
function with maximum value at point δ = 2π/D and value equal to plv .

128 6.4 Quantum voting based on conjugate coding

in a small election these numbers might not be big, in a large scale election
it is infeasible to run the protocol as many times, making it either inefficient or
insecure. We also note that the probabilistic analysis for one round is independent
of the value D, so cannot be used to improve the security of the protocol.

Theorem 18. Let (|Φ〉 , |ψ(θy)〉 , |ψ(θn)〉 , δ,D,N) define one round of the proto-
col. If the protocol runs ρ rounds, where 2 ≤ ρ ≤ exp(Ω(N)) , the d-transfer
attack succeeds with probability at least 0.25.

Proof. According to Theorem 17 the probability that an adversary successfully
performs the d-transfer attack is:

Pr[”Cheat”] > 1− 1/exp(Ω(N))

Now, for ρ protocol runs, where 2 ≤ ρ ≤ exp(Ω(N)), this probability becomes:

(Pr[”Cheat”])ρ > (1− 1/exp(Ω(N)))ρ ≥ (1− 1/ρ)ρ > 0.25

6.4 Quantum voting based on conjugate coding

This section looks at protocols based on conjugate coding Okamoto et al. (2008);
Zhou and Yang (2013). The participants in this family of protocols are one or
more election authorities, the tallier and the voters. The election authorities are
only trusted for eligibility; privacy should be guaranteed by the protocol against
both malicious EA and T . Unlike the previous protocols, here the voters do not
share any entangled states with neither EA nor T to cast their ballots. One of
the main differences between the two protocols is that Okamoto et al. (2008) does
not provide any verification of the election outcome, while Zhou and Yang (2013)
does, but at the expense of receipt freeness, which Okamoto et al. (2008) satisfies.
Specifically, in Zhou and Yang (2013) each Vk establishes two keys with T in an
anonymous way by using part of protocol Okamoto et al. (2008) as a subroutine.
It’s worth mentioning that for these keys to be established, further interaction
between the voters and EA is required and EA is assumed trusted for that task.
At the end of execution, Vk encrypts the ballot with one of the keys and sends it
to T over a quantum anonymous channel. T announces the result of each ballot
accompanied with the second key so that the voters can verify that their ballot
has been counted. This makes it also possible for a coercer to verify how a voter
voted, by showing them the second key used as a receipt. It is worth mentioning
that protocol Okamoto et al. (2008) could easily be made to satisfy the same
notion of verifiability.

CHAPTER 6. Quantum e-voting & limitations 129

6.4.1 Protocol specification

Setup phase:

1. EA picks a vector b̄ = (b1, . . . , bn+1) ∈R {0, 1}n+1, where n is the
security parameter of the protocol. This vector will be used by EA for
the encoding of the ballots and it will be kept secret from T until the
end of the ballot casting phase.

2. For each Vk, EA prepares w = poly(n) blank ballot fragments each of
the form |φāj ,b̄〉 = |ψa1j ,b1〉 ⊗ . . . ⊗ |ψan+1

j ,bn+1
〉 , j ∈ {1, . . . , w}, where

āj = (a1
j , . . . , a

n+1
j) such that:

(a1
j , . . . , a

n
j) ∈R {0, 1}n, an+1

j = a1
j ⊕ . . .⊕ anj

and: |ψ0,0〉 = |0〉 , |ψ1,0〉 = |1〉 , |ψ0,1〉 = 1√
2
(|0〉 + |1〉), |ψ1,1〉 =

1√
2
(|0〉 − |1〉).

These w fragments will constitute a blank ballot (e.g the first row of
Figure 6.3 is a blank ballot fragment).

3. EA sends one blank ballot to each Vk over an authenticated channel.

Casting phase:

4. After reception of the blank ballot, each Vk re-randomizes it by picking
for each fragment a vector d̄j = (d1

j , . . . , d
n+1
j) such that:

(d1
j , . . . , d

n
j) ∈R {0, 1}n, dn+1

j = d1
j ⊕ . . .⊕ dnj .

∀j ∈ {1, . . . , w}, Vk applies unitary U
d̄j
j = Y d1j ⊗ . . . ⊗ Y dn+1

j to the
blank ballot fragment |φāj ,b̄〉, where:

Y 1 =

[
0 −1
1 0

]
, Y 0 = I

5. Vk encodes the candidate of choice in the (n + 1)th-qubit of the last
blank ballot fragments4. For example, if we assume a referendum
type election, Vk votes for c ∈ {0, 1} by applying to the blank
ballot fragment |φāw,b̄〉 the unitary operations U c̄

w respectively, where:
c̄ = (0, . . . , 0, c) (see Figure 6.3).

6. Vk sends the ballot to T over an anonymous channel.

Tally phase:

7. Once the ballot casting phase ends, EA announces b̄ to T .

4Candidate choices are encoded in binary format (e.g 3→ 011

130 6.4 Quantum voting based on conjugate coding

Figure 6.3: The ballot consisting of w ballot fragments, which encode the binary
choice “0. . . 01” in a referendum type election example.

8. With this knowledge, T can decode each cast ballot on the correct
basis. Specifically, T decodes each ballot fragment by measuring it in
the basis described by vector b̄ and XORs the resulting bits. After
doing this to each ballot fragment, T ends up with a string, which is
the actual vote cast.

9. T announces the election result.

6.4.2 Vulnerabilities of conjugate coding protocols

The technique underlying this protocol is closely related to the one used in the
first quantum key distribution protocols Bennett and Brassard (1984); Shor and
Preskill (2000). However, it has some limitations in the context of these voting
schemes.

Malleable blank ballots: An adversary can change the vote of an eligible voter
when the corresponding ballot is cast over the anonymous channel. Assume Vk
has applied the appropriate unitary on the blank ballot to vote for the candidate
of their choice. And let us consider that the last m ballot fragments encode the
candidate. When the adversary sees the cast ballot over the quantum anonymous
channel, they apply the unitary U c̄1

w−(m−1), . . . , U
c̄m
w , where cr is either 0 or 1,

depending on their choice to flip the candidate bit or not. As a result, the
adversary modifies the ballot of Vk such that it decodes to a different candidate
than the intended one. This is possible because the adversary is aware of the ballot
fragments used to encode the candidate choice. Furthermore, if the adversary has

CHAPTER 6. Quantum e-voting & limitations 131

side-channel information about the likely winning candidate (from pre-election
polls for instance), they will be able to change the vote encoded in the ballot
into one of their desire. This is possible because the adversary is aware of which
bits are encoded in the ballot more frequently and knows exactly which unitary
operator to apply to decode to a specific candidate.

Violation of privacy: It is already acknowledged by the authors of Okamoto
et al. (2008) that the EA can introduce a “serial number” in a blank ballot to
identify a voter, e.g. some of the blank ballot fragments in the head of the ballot
decode to “1” instead of “0”. This allows the EA to decode any ballot cast over
the quantum anonymous channel, linking the identity of the voters with their
choice.

One-more-unforgeability: The security of the protocol relies on a quantum
problem introduced in Okamoto et al. (2008), named one-more-unforgeability and
the assumption that it is computationally hard for a quantum adversary. The
game that captures this assumption goes as follows: a challenger encodes w blank
ballot fragments in a basis b̄ and gives them to the adversary. The adversary
wins the game if they produce w + 1 valid blank ballot fragments in the basis b̄.
The authors claim the probability of the adversary winning this game is at most
1/2 + 1/2(negl(n)).

On the security parameter: Because of the ballots’ malleability, an adversary
could substitute the parts of the corrupted voters’ blank ballot fragments that
encode a candidate, with blank ballot fragments in a random base. Of course,
these ballots would open into random candidates in a specific domain but would
still be valid, since the leading zeros would not be affected by this change. This is
because blank ballots contain no entanglement. Now the adversary can keep these
valid spare blank ballot fragments to create new valid blank ballots. To address
this problem, the size of blank ballots needs to be substantially big compared to
the number of voters and the size of the candidate space (Nm << w).

6.5 Other protocols

Other protocols have also been proposed, with the main characters that the EA
controls when ballots get counted. This can be achieved with either the use of
shared entangled states between EA, T and Vk Thapliyal et al. (2017); Xue and
Zhang (2017) or Bell pairs Thapliyal et al. (2017) between T and Vk with EA
knowing the identity of the holder of each pair particle. However, we do not fully
analyse these protocols in this review, as they have many and serious flaws making
even the correctness arguable. The protocol of Xue and Zhang (2017) claims
to provide verifiability of the election outcome, but without explaining how this
can be achieved. From our understanding of the protocol, this seems unlikely to

132 6.6 Discussion: definitions for secure quantum e-voting

be the case. From the description of the protocol, each voter can change their
mind and announce a different vote from the original cast one. This is possible
because the function every voter uses to encode their vote is not committed in any
way. Two protocols introduced in Thapliyal et al. (2017) have similar limitations.
For instance, there is no mechanism for verifiability of the election outcome. In
addition, privacy against T is not satisfied in contrast to protocols we saw in
section 6.3. This is because each voter’s vote is handled individually and not in
a homomorphic manner. All of these could be achieved just by a classical secure
channel. Last, the protocol appearing in Horoshko and Kilin (2011) shares many
of the limitations of the former protocols as well as some further ones. The method
introduced for detecting eavesdropping in the election process is insecure, as trust
is put into another voter to detect any deviation from the protocol specification.
Moreover, the way each voter casts their vote is not well defined in the protocol,
which makes privacy and correctness trivially violated.

Finally, we note that there exist protocols that consider elections with
quantum input, see e.g. Bao and Yunger Halpern (2017). This type of protocol is
more relevant to quantum game theory and less to election schemes with classical
input/voting choice, and we have not considered them in this study.

As we see, the absence of formal treatment in quantum settings leads to
security flaws, especially for the concept of verifiability, privacy, integrity. Just
to initiate such discussion, we present in the next section the first definitions of
the mentioned properties. Although these security definitions capture security
guarantees for protocols that use a specific tally function, this restriction is
a natural assumption based on the state-of-the-art e-voting protocols Arapinis
et al. (2016). Regarding the soundness of the security definitions, they need to
be compared extensively with the security definitions in the classical literature
and evaluated by arguing about their security in comparison with an ideal
functionality similar to Theorem 1 in this thesis. For that reason, we only
present them to initiate a discussion around the formal treatment of quantum
e-voting rather than suggest them as a solution for evaluating the security of
future implementations.

6.6 Discussion: definitions for secure quantum

e-voting

In this section, we present formal definitions for vote privacy and universal
verifiability in the quantum setting considering adaptive corruption. Even if
we inspired by other works in classical settings Cortier et al. (2016); Bernhard
et al. (2015) there are many challenges to define a security definition in the
quantum setting that is related to the sensitive nature of quantum information, for
example after measuring a quantum state we can not revert it to its original state
before the measurement occurs, leading us to many limitations. Contrary, these

CHAPTER 6. Quantum e-voting & limitations 133

limitations are not appearing in the classical setting, making security modelling
in the quantum setting inherently more challenging to be defined.

Next we present three security definitions, the first is for Universal verifia-
bility Cortier et al. (2016) in the quantum setting and it is captured via the
experiment EXPΠ

Qver described in Figure 6.4. Our definition is inspired by its
classical counterpart in Cortier et al. (2016) where the authors reviewing exten-
sively the state-of-the-art of the notions of verifiability in the classical setting.
Specifically, our predicate PΠ

VCounted captures the security properties of Defini-
tion 2, p.9 in Cortier et al. (2016). Our second security definition is for Privacy
and is captured via the experiment EXPΠ

Qpriv described in Figure 6.5. It is built
on classical Definition 1 in Bernhard et al. (2015). Specifically, in our experiment
we allow the adversary to define the votes of the honest parties and by the end of
the experiment, he should guess if the votes have been permuted or not, similar to
definition 1 in Bernhard et al. (2015) in the two-party case. However, our security
definition is more general as it captures a wider spectrum of both classical and
quantum e-voting protocol, such as protocols that rely such part of their security
in anonymous channels Dingledine et al. (2004). Finally, we define Correctness
which is captured in Figure 6.6. In a nutshell, the experiment is the same as
EXPΠ

Qver except that there is not any verifiable mechanism of the tallying, which
is provided by the protocol Π, and we do not allow the adversary to corrupt the
tallier, e.g. in settings where a tallier exists. The motivation defining this exper-
iment was the impact of the adversarial influence in various treat models where
the adversary can not corrupt the tallier, e.g. the ability of a corrupted voter to
double vote or alternate other voters vote.

we intend to present these definitions, not as a security tool for arguing about
the security of a quantum e-voting protocol, rather as a starting point for further
research.

For formalising security we adopt the standard game-based security frame-
work. The security of a protocol is captured by a game between a challenger
C that models the honest parties, and a quantum polynomial-time adversary A

that captures the corrupted parties. A can adaptively corrupt a fraction ε of the
voters. We assume that the eligibility list is provided with a priori in a trusted
manner and that A chooses the votes of all voters, to provide stronger definitions
Juels et al. (2005). We denote with Xa the local register of each party a. Com-
munication between parties is done using communication oracles Dupuis et al.
(2012); a call to the oracle OΠ,A(XS,XR) takes contents of the sender’s register
XS and copies them to the receiver’s register XR, according to Π. In between, it
allows the communication to be processed by A, and it also erases the quantum
information from the respective ’sent’ registers, to respect the no-cloning theo-
rem (classical information can still be transmitted without being erased from the
sender). Note that the way A can treat the transmitted information is specified
by the protocol Π and quantum mechanics, e.g. in case of a quantum authen-

134 6.6 Discussion: definitions for secure quantum e-voting

tication channel between parties, A is only allowed to erase the content of the
quantum register but nothing more.

Two limitations of our definitions are: (i) they capture only e-voting protocols
which the tally function defines explicitly the voting set (e.g no weigh voting); (ii)
the adversary can corrupt adaptively voters only during the casting phase, and
not initially.

Setup phase: A defines the voting choices of all voters. C and A generate the
protocol parameters and store them in the global register X (comprising of
all local registers Xa). This is done according to Π, therefore if the latter
specifies that the parameters are generated by a trusted third party, then
this interaction is void. Instead, in protocols like the one in section 6.1
where the parameters are generated interactively among the parties, this
interaction illustrates the fact that some of these parties might be corrupt.
To also capture protocols that use anonymous channels, we ask C to
randomly choose a permutation ρ from the set F of all permutations of
N elements (the uniformly at random choice is denoted with ρ ∈R F).
Permutation ρ specifies the casting order of the voters and is initially
unknown to A; information about ρ could however be leaked during the
next phase.

Casting phase: The protocol Π specifies the algorithm CastBallot for generating
the ballots. C generates ballots according to the CastBallot algorithm on
behalf of honest voters and A on behalf of the corrupted ones.

Tally phase: The protocol Π specifies the tallying algorithm Tally and the
verification algorithm Verify. The Verify algorithm is the protocol-specific
public test parties can run to verify the election. Note that if such an
algorithm is not explicitly provided in the protocol’s description, then it
can be modelled by the True predicate (the algorithm will always return
1). If this test is successful (return 1), the tally is then computed. If all
talliers are honest, C computes the election result on behalf of them by
running the Tally algorithm. If some of the talliers are corrupt, A and C

interactively produce the tally. If none of the talliers is honest, A computes
the tally instead. We capture all these cases with function Tally′, where
honest talliers controlled by C act according to Π and dishonest talliers act
as A dictates.

Ideally, an e-voting protocol will satisfy at least the following properties Bernhard
et al. (2015); Cortier et al. (2016); Delaune et al. (2006); Gallegos-Garcia et al.
(2016). Correctness: corrupted voters cannot modify the honest votes, all voters
vote at most once and the protocol does not abort5. Privacy: keep the vote of

5All of the quantum protocols we analyse in this work are subject to abort by a single
party except the one presented in Okamoto et al. (2008); Zhou and Yang (2013). Despite that,
we present and focus on attacks that violate properties such as privacy and correctness by
attacking the one-voter-one-vote policy.

CHAPTER 6. Quantum e-voting & limitations 135

a voter private. Verifiability: allow for verification of the results by voters
and external auditors. We focus on privacy and verifiability type properties.
We note that our tally function is defined similarly to Bernhard et al. (2015).
Our definitions, therefore, capture only tally functions where the election result
corresponds to a unique set of votes (e.g. it doesn’t capture privacy for ’weighted
voting’); however, this restriction is a natural assumption based on the state-of-
the-art on e-voting based protocols Arapinis et al. (2016).

Universal verifiability: Our definition of universal verifiability is sim-
ilar to Cortier et al. (2016) and is captured by the experiment EXPΠ

Qver.

The experiment EXPΠ
Qver(A, ε, δ0)

� Setup phase: C and A generate the parameters in register X as specified by Π and
the adversarial model. Furthermore, A chooses the votes for all voters {vk}Vk∈V and
C the casting order ρ ∈R F.

� Casting phase: For k = 1, . . . , N

• If A chooses to corrupt Vρ(k), they are added to VA, where |VA| ≤ ε|V|.

• If Vρ(k) 6∈ VA, then C runs (Xρ(k),⊥)← CastBallot(vρ(k),Xρ(k), δ0). If not ⊥, C
calls OΠ,A(Xρ(k),XR), where R is the receiver designated by Π.

• If Vρ(k) ∈ VA, A performs some operation on register XA and calls
OΠ,A(XA,XR), where R is any receiver designated by A.

� Tally phase: A and C call the Tally′ function, which depends on Π and the
adversarial model, to compute the election outcome X ← Tally′(XC,XA, δ0).

� If (VerifyΠ(X,XC, δ0) = 1) and (PΠ
VCounted({vk}Vk 6∈VA

, X) = 0 ∨NballotsΠ(X) > N)
then output 1, else output 0.

Figure 6.4: The experiment EXPΠ
Qver

First, A defines how honest voters vote. Then, C and A generate the protocol
parameters X according to Π and the corruption model of A. Moreover, C chooses
at random a permutation ρ that specifies the casting order of all voters. In
the casting phase, A can choose to corrupt voters adaptively. Specifically, A

decides to either corrupt or not the casting slot without knowing which party it
is in the case that the order is unknown to him (e.g anonymous channels). For
honest voters, C follows the CastBallot algorithm as specified by Π to generate
the ballot and sends it to A. Depending on the protocol specification, A might
then perform some quantum operation on the received ballot and further forward
it to the designated receiver. The operation should always be consistent with the
protocol, e.g. if Π uses quantum authenticated channels, A will not be able to

136 6.6 Discussion: definitions for secure quantum e-voting

modify the ballot. This process is captured by calling the communication oracle
O. For corrupted voters, A casts the ballot on their behalf. After all, votes
have been cast, the election outcome is computed by Tally′ defined above, which
depends on the protocol Π and the adversarial model. EXPΠ

Qver outputs 1 if
the election outcome is accepted by C, while either an honest vote has not been
counted in the outcome, or the number of cast votes exceeds the number of voters;
Otherwise, the experiment outputs 0. To account for these events, we define three
predicates; Verify which is the protocol-specific public test parties can run to verify
the election, the predicate PΠ

VCounted reveals if honest votes are discarded from or
altered in the final outcome6 and NballotsΠ reveals the number of votes accounted
for the election result X. Specifically, PΠ

VCounted captures exactly the two security
properties of definition 2, p.9 in Cortier et al. (2016). If A has tampered with the
election outcome, the predicate Verify should return false.

Definition 6.6.1. A quantum e-voting protocol Π satisfies ε-quantum ver-
ifiability if for every quantum polynomial-time A the probability of winning
experiment EXPΠ

Qver(A, ε, δ0) is negligible with respect to δ0:

Pr[1← EXPΠ
Qver(A, ε, δ0)] = negl(δ0)

6.6.1 Game based definition for quantum privacy

Vote-privacy: The experiment EXPΠ
Qpriv captures vote privacy which ensures

that the adversary A cannot link honest voters to their votes. We build upon
definition 1 in Bernhard et al. (2015); however, a problem with this definition
is that it requires the honest voters controlled by the challenger to send their
ballot in two separate ballot boxes. Such a process is not possible with quantum
information due to the no-cloning theorem; we solve this issue with our definition.
Moreover, we also capture self-tallying protocols, where Bernhard et al. (2015)
states explicitly that a secret key is required for the production of the tally.
Finally, our definition also treats protocols that use anonymous channels to
provide privacy, while Bernhard et al. (2015) leaves out such protocols since it
states that the adversary can call the oracle Ocast with the ballot and the voter’s
ID. These fundamental differences lead to a completely new experiment. The
goal of EXPΠ

Qpriv is to capture that A cannot distinguish between two worlds, one
where the voters vote as A tells them, and another where their votes have been
permuted.

6We require in particular that PΠ
VCounted({vk}Vk 6∈VA

,⊥) = 0

CHAPTER 6. Quantum e-voting & limitations 137

The experiment EXPΠ
Qpriv(A, ε, δ0)

� Setup phase: C and A generate the parameters in register X as specified by Π
and the adversarial model. C chooses the casting order ρ ∈R F and a bit β ∈R {0, 1}.
Furthermore, A chooses the votes for all voters {vk}Vk∈V and a permutation F ∈ F.

� Casting phase: For k = 1, . . . , N

• If A chooses to corrupt Vρ(k), Vρ(k) is added to VA, where |VA| ≤ ε|V|.

• If Vρ(k) 6∈ VA, then C runs {Xρ(k),⊥} ← CastBallot(vβF(ρ(k)) · v
1−β
ρ(k) ,Xρ(k), δ0). If

not ⊥, C calls OΠ,A(Xρ(k),XR), where R is the receiver designated by Π.

• If Vρ(k) ∈ VA, A performs some operations on register XA and calls
OΠ,A(XA,XR), where R is any receiver designated by A.

� Tally phase: If {vk : Vk 6∈ VA} = {vF(k) : Vk 6∈ VA}, C announces the election
outcome X ← Tally(XC, δ0) to A. Else output 0. A guesses bit β∗. If β∗ = β then
output 1, else output 0.

Figure 6.5: Experiment EXPΠ
Qpriv

A defines how honest voters vote and chooses a permutation F ∈ F over the
voting choices of all voters in V. After the parameters of the protocol X are
generated, C chooses a random bit β which defines two worlds; when β = 0, the
honest voters vote as specified by A, while when β = 1, the honest voters swap
their votes according to permutation F again specified by A. Again, C chooses
at random a permutation ρ which defines the casting order of all voters. If the
choices of the honest voters during the casting phase are still a permutation of
their initial choices the experiment proceeds to the next phase, else it outputs 0.
In the tally phase, C computes the election outcome. Finally, A tries to guess
if the honest voters controlled by C have permuted their votes (β = 1) or not
(β = 0), by outputting the guess bit β∗. If A guessed correctly EXPΠ

Qpriv outputs

1; otherwise EXPΠ
Qpriv outputs 0.

Definition 6.6.2. A quantum e-voting protocol Π satisfies ε-quantum privacy
if for every quantum polynomial-time A the probability of winning the experiment
EXPΠ

Qpriv(A, ε, δ0) is negligibly close to 1/2 with respect to δ0 :

Pr[1← EXPΠ
Qpriv(A, ε, δ0)] ≤ 1/2 + negl(δ0)

The most established game-based definitions for privacy in the classical
setting Bernhard et al. (2015) assume two ballot boxes, where one holds the real
tally and the other holds either the real or the fake tally. In the quantum case,
the adaptation is not straightforward mainly because of the no-cloning theorem.

138 6.6 Discussion: definitions for secure quantum e-voting

The existence of two such boxes assumes that information is copyable, which
is not the case with quantum information. Similarly, we cannot assume that
the experiment runs two times because A could correlate the two executions by
entangling their parameters, something that a classical adversary cannot do. We
address this difficulty by introducing quantum communication oracles to capture
the network activity and model the special handling of quantum information (e.g.
entangled states). Moreover, the election result is produced on the actual ballots
rather than the intended ones. With this, we capture a broader spectrum of
attacks (e.g Helios replay attack), at the same time introduce trivial distinctions
corresponding to false attacks. We tackle this by allowing the experiment to
output -1 in such undesired cases which are mainly artefacts of the model. So an
advantage of our privacy definition is that it allows the analysis of self-tallying
type protocols in contrast with previous definitions of privacy Bernhard et al.
(2015). In self-tallying elections, the adversary can derive the election outcome
on their own without the need for secret information.

Note: Our definitions of verifiability and privacy capture both classical
and quantum protocols. For the classical case, the quantum registers will be
used for storing and communicating purely classical information. Devising our
definitions for the quantum setting was not a trivial task as many aspects are
hard to define, like bulletin boards, and others that need to be introduced, like
quantum registers, potentially containing entangled quantum states. Moreover,
our experiments capture protocols that use anonymous channels, by assuming
that the casting order is unknown to A, as well as self-tallying protocols. We
leave as future work the investigation of the soundness of our definitions. To this
end, one would define an ideal functionality capturing privacy and verifiability,
and prove the soundness relation between our game-based definitions and this
ideal functionality similarly to Bernhard et al. (2015).

6.6.2 Game based definition for quantum integrity

The correctness experiment EXPΠ
Qcorr is the same as EXPΠ

Qver with the only
exceptions that there is not a predicate PΠ

Verify and we do not allow A to corrupt the
tallier (if there exist in the protocol Π). As a result, we do not capture universal
verifiability in EXPΠ

Qcorr, but only double voting and vote deletion/alteration of
honest ballots. Moreover, in the case that the election result X is equal “⊥” the
adversary wins the experiment.

CHAPTER 6. Quantum e-voting & limitations 139

The experiment EXPΠ
Qcorr(A, ε, δ0)

� Set up phase: C and A generate the parameters in register X as specified by Π
and the adversarial model. Furthermore, A chooses the votes for all voters {vk}Vk∈V
and C the casting order ρ ∈R F.

� Casting phase: For each k = 1, . . . , N

• If A chooses to corrupt Vρ(k), they are added to VA, where |VA| ≤ ε|V|.

• If Vρ(k) 6∈ VA, then C runs (Xρ(k),⊥)← CastBallot(vρ(k),Xρ(k), δ0). If not ⊥, C
calls OΠ,A(Xρ(k),XR), , where R is the receiver designated by Π.

• If Vρ(k) ∈ VA, A performs some operation on register XA and calls
OΠ,A(XA,XR), where R is any receiver designated by A.

� Tally phase: C computes X ← Tally(XC, δ0):

• If (X = ⊥) or (PΠ
VCounted({vk}Vk 6∈VA

, X) = 0 ∨ NballotsΠ(X) > N)
then output 1, else output 0.

Figure 6.6: The experiment EXPΠ
Qcorr

Definition 6.6.3. We say that a quantum e-voting protocol Π satisfies ε-
quantum correctness if for every quantum polynomial-time A, the probability
to win the experiment EXPΠ

Qcorr(A, ε, δ0) is negligible with respect to δ0:

Pr[1← EXPΠ
Qcorr(A, ε, δ0)] = negl(δ0).

140 6.6 Discussion: definitions for secure quantum e-voting

Chapter 7

Discussion

In this chapter, we summarize our findings across all the chapters of this thesis.
Moreover, we point out the limitation of our proposals related to the security
assumptions and the modelling choices that we made. Finally, we discuss the
possibilities of further improvements and likely future research directions.

7.1 Summary

We have examined the current state-of-the-art for both classic self-tallying and
quantum e-voting protocols. We defined new security definitions, modelled
and developed new cryptographic primitives and protocols, presented the most
prominent proposals and analysed their security.

Classical cryptography: In Chapter 4 we defined the ideal functionality FTLE

that captures all the security properties that a TLE scheme should ideally satisfy.
Moreover, we have introduced security definitions in a game-based style that,
again, both in the concept of UC and the stand-alone setting. Usually, game-based
definitions are more convenient and flexible when proving security, in contrast with
their counterpart, the UC framework. Although the UC framework is rigorous and
captures with precision the desired security properties, usually it lacks simplicity.
Next, we defined a protocol that UC realises the functionality FTLE given that
the underlying encryption scheme satisfies one of our security definitions. We
presented a concrete TLE construction, namely Astrolabous, that satisfies our
security definition, making the whole construction complete. Finally, we presented
a new game based definition in the stand-alone setting and showed that both
Astrolabous and a variant of the construction in Mahmoody et al. (2011) satisfies
it.

In Chapter 5 we captured the notion of self-tallying elections into the ideal
functionality FSTE and we presented our protocol E-cclesia, that UC realises
FSTE. We followed a modular approach by “breaking down” FSTE into two
sub-functionalities, namely Fvm and Felig. The functionality Fvm captures the

141

142 7.2 Limitations

semantic security of the encrypted votes and the network activity during the
election whereas the functionality Felig captures the security property of eligibility
(e.g. only votes originating from eligible voters will be counted). Because of our
modular approach, the substitution of one cryptographic primitive does not lead
to the need to reprove the security of the whole protocol, making E-cclesia easily
accessible for future development. For example, one can change the Astrolabous
TLE scheme with another construction, not necessarily a TLE-based one. In that
case, we can avoid proving the whole security of the new E-cclesia from scratch.
Instead, we need to prove that our new protocol UC realises Fvm.

Quantum setting: In Chapter 6 we have systematized and analyzed the most
prominent quantum e-voting protocols in the literature based on their special
features. What we have found is that all the proposed protocols fail to satisfy the
cryptographic security standards so that they can be implemented in the future.
We have presented concrete novel attacks in each of them. Notwithstanding
these limitations, we believe that our analysis opens new research directions for
the study of the quantum cut-and-choose technique, which plays a fundamental
role in the secure distribution of quantum information.

7.2 Limitations

In this section, we present the limitation of the work presented in the thesis
Chapter by Chapter.

Time-lock encryption, Chapter 4: The way the FTLE functionality handles
the decryption queries is limited as it does not specify which party is allowed
to decrypt the message. Instead, all parties can eventually decrypt and retrieve
the original message. This approach is similar to the concept of “time-lock com-
mitments” rather than of time-lock encryption. Nevertheless, in the literature,
the proposed constructions are termed time-lock encryption and we keep that
terminology.

We have defined a relativistic TLE construction, Astrolabous, that UC realises
FTLE. As an intermediate step, we had to prove that Astrolabous satisfies our
game-based definition. On the other hand, we do not know if our game-based
definition is general enough to capture absolute time TLE constructions such as
the one in Liu et al. (2018). Also, in Theorem 1 we proved that if a construction
satisfies our security definition, then we have a UC realization of a protocol that
uses these TLE algorithms, without proving the other direction. That means that
the security definition provides more security guarantees than FTLE itself, thus it
is “stronger”. Nevertheless, the security definition seems reasonable enough to
claim that it is not “too” strong.

Our modelling does not support constructions where the functionality FOeval

uses a constant distribution Dx to sample values upon request. For example,

CHAPTER 7. Discussion 143

in Rivest et al. (1996), solving a time-lock puzzle consists of repeatedly squaring a
base. This computation is deterministic so any PPT Turing machine can produce
identical results if they engaged in the same computation. Even if we abstract
this computation into the functionality FOeval

and we restrict the access to it by
using the functionality wrapper W, there is no way for the decryption algorithm
to know if the provided decryption key (witness in our case) is created through
queries to FOeval

or is locally computed by the adversary. As a result, either the
algorithm returns the actual message, without necessarily the provided decryption
key be created through the oracle, meaning that the model does not capture the
concept of TLE, or it returns the special symbol ⊥, meaning that even in optimal
scenarios where the FOeval

is engaged for the creation of the decryption key, the
algorithm aborts.

E-cclesia: A self-tallying classical e-voting protocol, Chapter 5: Our
ideal functionality Fvm captures correctness, privacy and fairness. Another very
important security property a protocol should satisfy is called coercion resistant.
Informally, the property considers adversaries called the coercers that they try to
influence a voter’s choice. The voter has to obey the coercer’s will because of the
relationship they have (e.g. the relationship between employer and employee).
The coercer can instruct a voter on how to vote before the start of the election.
After the end of the election, the coercer checks the election outcome and tries
to conclude if the coercion was successful (passive coercion). However, he can
be all along with the voter during the whole election process (active coercion).
Unfortunately, in FSTE we do not capture if a party becomes subject to coercion.
Coercion, as a security property, is crucially important, especially in the context
of on-line based elections. One of the main advantages of on-line based elections
is the accessibility properties it provides (e.g. convenient voting process through
a personal computer). On the other hand, the absence of a voting booth leaves
the voters vulnerable to potential coercers, opening the door for rigged election
results. Moreover, even if we believe that our protocol E-cclesia 1.0 satisfies
some notion of verifiability due to its decentralized nature we do not provide any
formal proof.

In the current version of the E-cclesia protocol, E-cclesia 1.0 , a single
authority executes the setup phase. Specifically, one of the roles of this authority
is to generate and distribute the RSA numbers which are mandatory for the
parameterization of the dynamic accumulator. On the other hand, the authority
knows the trapdoor information for these numbers (e.g. the factorization of n),
allowing it to create eligible votes originated from voters that do not belong to the
eligibility list. As a result, the eligibility property can be violated. Similarly, the
authority can break the hiding property of the commitment scheme as it holds
trapdoor information.

Moreover, in E-cclesia 1.0 , the computational burden for solving Astro-

144 7.3 Future directions

labou’s time puzzle is handled by the voters, making their participation in the
whole duration of the protocol mandatory.

Quantum e-voting & limitations, Chapter 6: In quantum e-voting, we saw
that, unless combined with some new technique, the travelling ballot protocols
do not seem to provide a viable solution, as double-voting is always possible, and
there is no straightforward way to guarantee privacy.

On the other hand, the distributed ballot protocols give us very strong
privacy guarantees because of the entanglement between the ballot states, but
verifiability against malicious talliers might be hard to achieve. In fact, one of
the most intriguing questions in quantum e-voting is whether we can achieve
all desired properties simultaneously. For instance, every classical definition
of verifiability Cortier et al. (2016) assumes a trusted bulletin board that the
participants can read, write on, and finally verify the outcome of the election.
However, implementing a quantum bulletin board to achieve the same properties
is not straightforward, since reading a quantum state can ’disturb’ it in an
irreversible way.

Regarding the protocols in Section 6.1, the cut-and-choose technique used is
both inefficient and insecure. An inherent problem with this type of technique
with one prover and one verifier is that the number of sampled states grows
exponentially to the protocol parameter to achieve a satisfying level of security.
With the protocols in Section 6.1, even if the sampled states are as many as in
the single prover/single verifier case, the protocol still is not secure. Finally, most
of the protocols we have seen are subject to denial-of-service attacks.

7.3 Future directions

In this section, we discuss possible solutions to the mentioned limitations.
Moreover, we give ideas for further development based on the literature.

Time-lock encryption: Regarding the functionality FTLE, we can enrich its
glossary by allowing the encryptor to specify the recipient party of the generated
ciphertext. Next, we can define a hybrid protocol to our “old” FTLE and prove
that it UC realises the “new” one, making FTLE a special instance of the new
functionality.

To realise constructions such as the one in Liu et al. (2018), we need to capture
the concept of the computational reference clock (CRC) via an ideal functionality.
Informally, the computational reference clock, as presented in Liu et al. (2018),
is a way to define the essence of time in the execution of a protocol, besides the
Gclock, in terms of the computational effort that is needed for solving a puzzle.
For example, in Bitcoin’s case, after x blocks have been announced we know that
y time has elapsed in the real world. Of course, the ideal functionality for CRC,
namely FCRC, should “live” below the presence of the Gclock and not above it, as

CHAPTER 7. Discussion 145

CRC produces puzzles when a specific amount of time has been passed and not
the opposite. That means that the FCRC should be parameterized by Gclock. We
leave the definition of FCRC, the realization of the construction in Liu et al. (2018)
and the proof that our game-based definition and FTLE are equivalent as future
work.

Finally, in TLE constructions where the way of solving the time-puzzle is
deterministic, for example, the construction in Rivest et al. (1996), might be able
to be proven secure in the Generic Group Model (GGM), similar to Baum et al.
(2021). We leave it as future work.

E-cclesia: A self tallying classical e-voting protocol: To enhance
E-cclesia with the coercion resistant property we can borrow ideas from Juels
et al. (2005). Specifically, the authors provide a mechanism, namely PETS (see
Subsection 3.1.1), where the tallying authorities can discard the tallied ballots
that are created with “fake” credentials without the identity of the ballot issuer
be revealed. The innovative part about this technique is the fact that the coercer
does not know if the voter provided him with the correct credential or the fake
one, making the coerced vote not countable in the outcome of the election. The
underline assumption is that the voter needs “one moment of privacy” to cast her
real ballot. We believe that we can take advantage of that technique or similar
end further develop E-cclesia 1.0 . However, this technique was meant to be
used in a centralized setting, thus cannot be adapted directly to E-cclesia. It
would be interesting to explore the trade-off between centralization and coercion
resistance as a security property. We leave it as future work.

In addition, in (Canetti, 2000, Version:11/02/2020), Canetti provides mod-
elling of coercion resistance in the UC framework. Following these steps, we can
further develop our FSTE functionality to capture that property. We leave both
of these as future work.

We can make the generation phase of E-cclesia 1.0 decentralized by
exploring the idea of RSA-UFO from Sander (1999) as mentioned in a dedicated
Paragraph on page 37. Of course, we have to prove the security of such
construction in a well-articulated framework, such as the UC. Alternatively, we
can explore other constructions, such as the one in Groth and Kohlweiss (2015)
for realizing Felig. Fortunately, we can do this kind of modification quite easily
thanks to our modular approach, without reproving the security of the whole
E-cclesia protocol.

We can use other TLE constructions to realize our Fvm to transfer the
computational burden of solving a time-puzzle either to external entities to the
protocol Liu et al. (2018) or we can take a totally different approach, outside
the concept of time-puzzles, and realize FTLE via distributed key generation
protocols Abe and Fehr (2004).

In addition, we can explore the possibility of defining verifiable auctions No-
joumian and Stinson (2014) via E-cclesia. As a matter of fact, auctions are not

146 7.3 Future directions

opposed to coercion thus no additional enhancement of E-cclesia is needed for
that task. Still, E-cclesia should be adapted to the concept of auctions.

Quantum e-voting & limitations: In Hillery et al. (2006), the authors
present an interesting solution, which however might still allow an adversary to
vote multiple times, by taking advantage of unused ballots. To prevent this, the
protocol would need to run exponentially many times to the number of voters,
which would in practice be inefficient. It might be possible to overcome this
specific issue, but to prevent other forms of attacks, formal treatment is essential
in well-studied models Unruh (2010); Hallgren et al. (2011); Canetti (2001a). One
plausible idea of how to improve the protocol to be resistant against the attack
we presented in Section 6.3 is to choose different values of δ for each ballot. If
this was possible, then the attack we described would not be applicable as it relies
on the fact that all ballot states share the same δ. On the other hand, this is
not an easy task because the δ’s are different for each ballot, it is not obvious
how the tallier could compute the correct result since the protocol’s correctness
is based on a homomorphic property that allows getting the correct result out of
the combination of all ballots. It is a very intriguing open question of whether we
can achieve these two properties at the same time. In Section 6.1 the verification
process of the distributed states is done in a very specific way, and it would
be interesting to study if there are other options to explore to improve it. A
possible solution could be to provide some type of randomness to the voters (in
the form of a common random string for example), which will define if a state
should be verified or used for the voting phase (a similar testing process has been
studied in the past for other types of entangled states, both in theory Pappa
et al. (2012) and experimentally McCutcheon et al. (2016)). However, even if the
problem with the cut-and-choose technique is addressed in future works, privacy
can still be violated as we have seen, and possible corrections might require the
use of more advanced techniques. Moreover, we could avoid assumptions such as a
simultaneously classical broadcast channel by using other quantum cryptographic
primitives such as relativistic quantum bit commitments Lunghi et al..

Our analysis is based on e-voting protocols implemented on quantum comput-
ers without concerning classical protocols that use primitives which are believed
to be quantum-resistant. So an interesting question that needs to be answered is
what is the level of security these protocols del Pino et al. (2017) provide against
our security definitions.

Appendix A

Supplementary material for
Section 5.4

Theorem A.1. Πelig UC-realizes Felig in the {FSoK(F∗acc, FNIC), Fan.BC, {FPcert},
Gclock}-hybrid model.

Proof. In a direct proof of UC-realizability, given a real adversary A we have to
construct a simulator S that can make the ideal execution indistinguishable from
the real ones from the point of view of the environment Z. Since we are in a
hybrid model, S will internally simulate the real execution for A by playing the
part of voters and authorities as well as the part of the hybrid functionalities. In
the case of corrupted voters, it will pass any requests from A onto Felig.

Since both Felig and all the functionalities we are working with expect the
adversary to provide algorithms and parameters during setup, S will have to ask
A for the algorithms for Facc, FNIC and FSoK and use them to define the algorithms
that Felig expects, as shown in Figure A.1.

We do not describe the reasoning behind the hybrid functionalities’ algorithms
here, as we are referring to the definitions established in Camenisch et al. (2016)
and Chase and Lysyanskaya (2006) respectively for FNIC and FSoK. TrapCom,
TrapOpen and VerifyNIC belong to FNIC and SimSign, VerifySoK and Extract

are from FSoK, and Verifycert and Signcert are given to all FPcert (which maybe
different for each party). The rest have been explained in the context of Facc in
Subsection 5.4.1.

Then S continues observing the ideal execution as allowed by Felig and its task
is to use this to play the part of real voters in the simulated execution with A.
Using the commitment algorithms obtained earlier by S , Felig can generate valid
credentials for all eligible voters who have been activated in the ideal execution.

147

148

GenCred(1λ, reg.par):

1. (comm, info)← TrapCom(sid, paramsNIC, trapdoor).

2. Let (M,R)← paramsNIC and compute S
$←M.

3. open← TrapOpen(sid, S, info).

4. If VerifyNIC(paramsNIC, comm, S, open) 6= >, return ⊥.

5. Return (cr, rc) := ((S, open), (comm)).

UpState(Stgen, C):

1. Return Stfin := C.

AuthBallot(v, cr, rc,Stfin, reg.par):

1. Let (S, r) := cr, (c, s) := rc and C := Stfin.

2. Compute w ← f(u,C\{c}) and a← f(w, {c}).

3. Compute a′ ← f(u,C). If a′ 6= a, return ⊥.

4. If Verifyacc(u,C\{c}, w) 6= >, Verifyacc(w, {c}, a) 6= > or Verifyacc(u, C,
a) 6= >, return ⊥.

5. Else compute φ← SimSign(L, v, (a, S)).

6. If VerifySoK(L, v, (a, S), φ) 6= >, return ⊥.

7. Else return σ := (φ, S).

VrfyBallot(v, σ,Stfin, reg.par):

1. Let C := Stfin and (φ, S) := σ. Compute a← f(u,C).

2. If Verifyacc(u,C, a) 6= >, return ⊥.

3. Else compute (c, w, r)← Extract(L, v, (a, S), φ).

4. If Verifyacc(w, {c}, a) 6= > or VerifyNIC(paramsNIC, c, S, r) 6= >, return ⊥.

5. Else return x← VerifySoK(L, v, (a, S), φ).

Figure A.1: Algorithms supplied by S to Felig during Setup, using algorithms
supplied by A to Facc, FNIC and FSoK.

On the other hand, in the ideal execution when S is asked by Felig if it allows
the credential to be generated via public delayed output, S signs the credential
and checks the signature with the algorithms provided by A. Note that in the

CHAPTER A. Supplementary material for Section 5.4 149

ideal execution there are not any signatures involved with each voter’s credential
because we assume that Felig broadcasts and authenticates the public part of
the credential at the same time. If the verification fails, S does not allow the
generation of the credential. Similarly, when S is asked by Felig if it allows
sending the credential via public delay output to the other parties, S asks A

if it allows the broadcast as if it was from Fan.BC and responds appropriately to
Felig. Note that S has no visibility into the interaction between voters and Felig for
Auth Ballot and Ver Ballot commands, just like A would not in the real
protocol. That is not the case for Z, as it can activate parties at will and supplies
their inputs, so indistinguishability of the outputs of those commands is ensured
by the matching of the algorithms described earlier. In this way, properties
guaranteed by Felig directly translate to (one or several) properties provided by the
hybrid functionalities, e.g. eligibility relies on binding commitments and ballot
unforgeability depends on the unforgeability of signatures of knowledge.

S proceeds as follows:

1. Send (sid,Corrupt,Vcorr) to Felig where Vcorr is the set of voters that A

has decided to corrupt at the beginning of the real execution.

2. Wait to receive (sid,Setup Elig) from Felig.

3. Simulate the ‘init’ stage of Πelig:

• Simulate setup of the hybrid functionalities Facc, FNIC, {FSA
cert} and FSoK

by requesting algorithms and parameters from A for each of them.
Store all except the accumulator Delete algorithm in Stgen.

• Use the received algorithms to define the new algorithms as in
Figure A.1 and send (sid, Setup Elig, GenCred, AuthBallot,
VrfyBallot, UpState, Stgen) to Felig.

• Wait to receive (sid,Elig Par, reg.par) from Felig.

4. Begin receiving (sid,Gen Cred, Vi, rci) from Felig for honest voters Vi. Sign
and verify the credential with the algorithms provided upon request from A

by playing the role of FVicert. If verification succeeds, then collate their public
credentials in the set C.

5. Send (sid,Gen Cred, V ′i , cr′i, rc
′
i) to Felig for each corrupted voter V ′i , where

rc′i is the public credential generated by A and cr′i is the private credential
generated by A or a random unique value, if A has generated the public
part in another way.

6. S has no visibility into Auth Ballot queries between Felig and the dummy
honest voters.

7. Simulate the ‘cast’ stage of Πelig:

150

• Respond to A’s requests to hybrid functionalities involved in authen-
tication.

• Verification and linking of ballots is performed by the voters them-
selves, so S can again only respond to A’s requests to hybrid function-
alities. The answers should be consistent with those of Felig, since they
are computed using the same algorithms.

8. S can provide the authentication receipts on behalf of corrupted voters by
sending (sid, Auth Ballot, V ′i , v

′
i, σ

′
i) to Felig, using the outputs given by

A in the simulation.

Hence the ideal and the real distribution will be the same.

In the next figures we give the full description of the functionality for non-
interactive commitments FNIC Camenisch et al. (2016) and signature of knowledge
FSOK Chase and Lysyanskaya (2006).

CHAPTER A. Supplementary material for Section 5.4 151

The non-interactive commitment functionality FNIC(P).

� Upon receiving (sid,Setup) from P ∈ P it does:

1. If (sid , params, trapdoor , algs) already stored, it inserts P in the set P (initially
empty) and sends (sid,Parameters, params) to P as delayed output.

2. Else, it generates a random ssid and stores (ssid , P). Then, it sends
(sid,Request Algorithms, ssid) to S.

� Upon receiving (sid,Request Algorithms, ssid , params, trapdoor , TrapCom, TrapOpen, Verify)
from S it does:

1. If no (ssid , P) is stored for some P , it sends (sid,Setup,⊥) to P .

2. It Deletes (ssid , P).

3. If (sid, params, trapdoor , algs) not already stored, it stores the tuple.

4. It includes P in the set P.

5. It sends (sid,Parameters, params) to P as delayed output.

� Upon receiving (sid,Verification Algorithm) from party P ∈ P, it sends
(sid,Verification Algorithm, Verify(sid, params, ·)) to P . � Upon receiving
(sid,Commit,msg) from party P ∈ P, it does:

1. If P 6∈ P or msg 6∈ M (for M defined in params), it sends
(sid,Commit,msg ,⊥) to P .

2. It computes (comm, info)← TrapCom(sid, params, trapdoor).

3. If there is an entry [comm,msg ′, open ′, 1] with msg 6= msg ′, it sends
(sid,Commit,msg ,⊥) to P .

4. It computes open ← TrapOpen(sid,msg , info).

5. If Verify(sid, params, comm,msg , open) 6= 1, it sends (sid,Commit,msg ,⊥)
to P .

6. It records the entry [comm,msg , open, 1].

7. It sends (sid,Commitment, comm, open) to P .

152

� Upon receiving (sid,Verify, comm,msg , open) from P ∈ P, it does:

1. If P 6∈ P, msg 6∈ M or open 6∈ R (for M,R defined in params), it sends
(sid, Verify, comm,msg , open,⊥) to P .

2. If there is an entry [comm,msg , open, u], set v ← u. Else it does:

If there is [comm,msg ′, open ′, 1] with msg 6= msg ′, it sets v ← 0.

Else it sets v ← Verify(sid , params, comm,msg , open).

3. It sends (sid, Verified, v) to P .

Figure A.2: The non-interactive commitment functionality FNIC(P) interacting
with parties in P and the simulator S.

The signature of knowledge functionality FSOK(FNIC,Facc).

� Upon receiving (sid,Setup) from party P ∈ P, it does:

If sid = (FNIC,Facc, sidNIC, sidacc, sid
′
) for some sidNIC, sidacc, sid

′
:

(a) It sets MNIC ← GetLanguage(FNIC, sidNIC).

(b) It sets Macc ← GetLanguage(Facc, sidacc).

(c) It defines ML((a, S), (c, w, r)) = Macc((a, {c}), w) ∧MNIC((c, S), r).

(d) It sends (sid,Setup) to S.

GetLanguage(F0, sid0) :

• It creates an instance of Fw0 with session id sid0.

• It sends (sid0,Setup) and (sid0,VerificationAlgorithm) to F0

on behalf of P .

• Upon receiving (sid0, VerificationAlgorithm,M) from F0, it out-
puts M.

� Upon receiving input (sid,Algorithms, Verify, Sign, SimSign, Extract) from S

for deterministic polynomial time (DPT) ITM Verify and the rest PPT ITMs:

It stores the algorithms and sends (sid,Algorithms, Sign(ML, ·, ·, ·), Verify(ML, ·, ·, ·))
to P .

CHAPTER A. Supplementary material for Section 5.4 153

� Upon receiving (sid,Sign,m, (a, S), (c, w, r)) from party P ∈ P, it does:

1. If Facc accepts (sidacc, Verify, a, {c}, w) and FNIC accepts
(sidNIC, Verify, c, S, r) when queried by P , it does:

(a) If ML((a, S), (c, w, r)) 6= 1, it sends (sid,Sign,m, (a, S), (c, w, r),⊥) to
P .

(b) It computes σ ← SimSign(ML,m, (a, S)).

(c) If Verify(ML,m, (a, S), σ) 6= 1, it sends (sid,Sign,m, (a, S), (c, w, r)) to
P .

(d) It records [m, (a, S), σ] and outputs (sid,Signature,m, (a, S), σ) to P .

FSOK forwards all queries between Facc,FNIC and P or S (the formal details
of this can be found in Chase and Lysyanskaya (2006).

� Upon receiving (sid,Verify,m, (a, S), σ) from party P , it does:

1. If [m, (a, S), σ′] is recorded for some σ′:

It sends (sid,Verified, Verify(ML,m, (a, S), σ)) to P .

Else:

(a) It sets (c, w, r)← Extract(ML,m, (a, S), σ).

(b) If ML((a, S), (c, w, r)) = 1, it does:

i. If Facc does not accept (sidacc,Verify, a, {c}, w) or FNIC does not
accept (sidNIC,Verify, c, S, r), it sends (sid,Verify,m, (a, S), σ,⊥)
to P .

ii. It outputs (sid,Verified, Verify(ML,m, (a, S), σ)) to V .

Else if Verify(ML,m, (a, S), σ) 6= 1:

It outputs (sid,Verified, 0) to P .

Else it sends (sid,Verify,m, (a, S), σ,⊥) to P .

Figure A.3: The signature of knowledge functionality FSOK parameterized by the
functionalities FNIC,Facc, interacting with parties in P and the simulator S.

154

Appendix B

Supplementary material for
Section 6.3

B.1 Proof of attack on distributed ballot proto-

cols

Now we give detailed proofs of the theorems and lemmas of Section 6.3.

Lemma B.1. 11 Let Θv
D,δ ∈ [0, 2π] be the continuous random variable that

describes the outcome of the measurement of a vote state |ψ(θv)〉 , v ∈ {y, n} using
operators

E(θ) =
D

2π
|Φ(θ)〉 〈Φ(θ)| (B.1)

where |Φ(θ)〉 = 1√
D

D−1∑
j=0

eijθ |j〉. It holds that:

Pr[xl < Θv
D,δ < xl+w] =

1

2πD

∫ xl+w

xl

sin2[D(θ − θv)/2]

sin2[(θ − θv)/2]
dθ (B.2)

155

156 B.1 Proof of attack on distributed ballot protocols

Proof.

Pr[xl < Θv
D,δ < xl+w] = 〈φ(θv)|

∫ xl+w

xl

E(θ)dθ |φ(θv)〉

=

∫ xl+w

xl

〈φ(θv)|E(θ) |φ(θv)〉 dθ

=
D

2πD2

∫ xl+w

xl

|
D−1∑
j=0

e(θ−θv)ij|2dθ

=
1

2πD

∫ xl+w

xl

([
D−1∑
j=0

cos[(θ − θv)j]]2

+ [
D−1∑
j=0

sin[(θ − θv)j]]2)dθ

For any x ∈ R, the following two equations hold:

D−1∑
j=0

cos[jx] =
sin[Dx/2]

sin[x/2]
cos[(D − 1)x/2]

D−1∑
j=0

sin[jx] =
sin[Dx/2]

sin[x/2]
sin[(D − 1)x/2]

So finally we have:

Pr[xl < Θv
D,δ < xl+w] =

1

2πD

∫ xl+w

xl

sin2[D(θ − θv)/2]

sin2[(θ − θv)/2]
dθ

Lemma B.2. 12 Let |ψ(θv)〉 be a voting state of the protocol. Then it holds:

Pr[xlv < Θv
D,δ < xlv+1] > 0.405

Proof. A simple change of variables in Eq.(B.2) gives us:

Pr[xlv < Θv
D,δ < xlv+1] =

1

2πD

∫ 2π/D

0

sin2[D(θ − δ)/2]

sin2[(θ − δ)/2]
dθ

By setting (θ − δ)/2 = y, we get:

Pr[xlv < Θv
D,δ < xlv+1] =

1

πD

∫ (2π/D−δ)/2

−δ/2

sin2[Dy]

sin2[y]
dy

CHAPTER B. Supplementary material for Section 6.3 157

The above is just a function of δ, which we denote as F (δ). In order to
lower-bound F (δ) we need to find its derivative:

dF (δ)

dδ
=

1

2πD

(
sin2[Dδ/2]

sin2[δ/2]
− sin2[Dδ/2]

sin2[(2π/D − δ)/2]

)
It is easy to check that:

dF (δ)

dδ
= 0, when δ = 0 or δ = π/D

dF (δ)

dδ
> 0, when 0 < δ < π/D

dF (δ)

dδ
< 0, when π/D < δ < 2π/D

It also holds that F (0) = F (2π/D), so the minimum extreme points of our
function are equal. As a result we have:

F (δ) ≥ lim
δ→0−

F (δ) = F (0) (B.3)

From the fact that:

| sin[x]| ≤ |x|,∀x ∈ R
| sin[x]| ≥ |(2/π)x|,∀x ∈ [0, π/2]

| sin[x]| ≥ | − (2/π)x+ 2|,∀x ∈ [π/2, π]

It follows:

F (0) ≥ 1

πD

∫ π
2D

0

(2

πDy

)2

/y2dy +

∫ π
D

π
2D

(2

πDy
+ 2
)2

/y2dy

≥ 4

π2

> 0.405

Now in order to prove lemma 13, we need the following proposition:

Proposition B.2.1. ∀x ∈ [−2π, 2π] it holds that:

sin2[x] >
20∑
n=1

(−1)n+1 22n−1x2n

(2n)!
(B.4)

Proof. From the Taylor series expansion at point 0 of cos[x], we know that:

cos[x] =
∞∑
n=0

(−1)n
x2n

(2n)!
, ∀x ∈ R

158 B.1 Proof of attack on distributed ballot protocols

Then:

sin2[x] =
1

2
− cos[2x]

2
=

1

2
− 1

2

∞∑
n=0

(−1)n
22nx2n

(2n)!

=
∞∑
n=1

(−1)n+1 22n−1x2n

(2n)!

Given the above equation, in order to prove Eq.(B.4), we simply need to show:

∞∑
n=21

(−1)n+1 22n−1x2n

(2n)!
> 0

If we think of the above as a sum of terms an (n = 21, . . . ,∞), for integer j ≥ 10,
it holds that:

an > 0, when n = 2j + 1,

an < 0, when n = 2j.

We therefore need to prove that
∞∑

n=21

an > 0, which in turn is equivalent to proving

that:

|an| > |an+1| ⇐⇒ 22n−1x2n/(2n)! > 22n+1x2n+2/(2n+ 2)!

⇐⇒ 1 > 4x2/((2n+ 1)(2n+ 2))

⇐⇒ (2n+ 1)(2n+ 2)/4 > x2

In this case, the above holds, because the minimum value of n is 21 and the
maximum value of x2 is 4π2.

Lemma B.3. 13 Let |ψ(θv)〉 be a voting state of the protocol. Then it holds:

Pr[xlv−1 < Θv
D,δ < xlv+2] > 0.9

Proof. We follow exactly the same procedure as lemma 12 and get:

Pr[xlv−1 < Θv
D,δ < xlv+2] (B.5)

=
1

2πD

∫ xlv+2

xlv−1

sin2[D(θ − θv)/2]

sin2[(θ − θv)/2]
dθ

=
1

2πD

∫ 4π/D

−2π/D

sin2[D(θ − δ)/2]

sin2[(θ − δ)/2]
dθ

=
1

πD

∫ 2π/D−δ/2

−π/D−δ/2

sin2[Dy]

sin2[y]
dy (B.6)

CHAPTER B. Supplementary material for Section 6.3 159

where (θ − δ)/2 = y. Again the above probability depends only on δ and can
therefore be denoted with F (δ). In a similar way as before, we can prove that the
minimum of this function is at δ = 0 and compute F (0).

F (0) =
1

πD

∫ 2π/D

−π/D

sin2[Dy]

sin2[y]
dy

≥ 1

πD

∫ 2π/D

−π/D

20∑
n=1

(−1)n+122n−1(Dy)2n

(2n)!

y2
dy

=
1

πD

20∑
n=1

∫ 2π/D

−π/D

(−1)n+122n−1D2ny2n

y2(2n)!
dy

=
1

πD

20∑
n=1

(−1)n+122n−1D2n

(2n)!

∫ 2π/D

−π/D
y2(n−1)dy

=
1

πD

20∑
n=1

(−1)n+122n−1D2n

(2n)!
[y2n−1/(2n− 1)]

2π/D
−π/D

=
20∑
n=1

(−1)n+122n−1

(2n)!

π2n−2(22n−2 + 1)

2n− 1

≈ 0.9263 (B.7)

Theorem B.4. 14 With overwhelming probability in the number of voters N ,
algorithm 1 includes lv in the Solution vector (i.e. it measures a value in the
interval [xlv , xlv+1] more than 40% of the time).

Pr[Solution[0] = lv ∨ Solution[1] = lv] > 1− 1/exp(Ω(N))

Proof. We can see each measurement that algorithm 1 performs at each vote
state |ψ(θv)〉, as an independent Bernoulli trial Xl with probability of success
pl = Pr[xl < Θv

D,δ < xl+1]. Then the value of Record[l] follows the binomial
distribution:

XRecord[l] ∼ B(
εN

2
, pl)

160 B.1 Proof of attack on distributed ballot protocols

We can therefore compute:

Pr
[
Solution[0] = lv ∨ Solution[1] = lv

]
= Pr

[
Record[lv] ≥ 0.4εN/2

]
≥ 1− Pr

[
Record[lv] ≤ 0.4εN/2

]
1
= 1− Pr

[
Record[lv] ≤ (1− γ)plvεN/2

]
2

≥ 1− exp(−γ2plvεN/6)

= 1− (exp(−γ2plvε/6))N

= 1− 1/exp(Ω(N))

Theorem B.5. 15 With negligible probability in the number of voters N , algo-
rithm 1 includes a value other than (lv − 1, lv, lv + 1) in the Solution vector, i.e.
∀w ∈ {0, . . . , lv − 2, lv + 2, . . . , D − 1}:

Pr[Solution[0] = w ∨ Solution[1] = w] < 1/exp(Ω(N))

Proof. Let w ∈ {0, . . . , D − 1} \ {lv − 1, lv, lv + 1}, then it holds:

Pr[Solution[0] = w ∨ Solution[1] = w]

= Pr[XRecord[w] ≥ 0.4εN/2]

We know from lemma 13 that pw < 0.1, so ∃γ > 0 such that:1

Pr[XRecord[w] ≥ 0.4εN/2]

= Pr[XRecord[w] ≥ (1 + γ)pwεN/2]

< exp(−γpwεN/6)

= (exp(−γpwε/6))N

= 1/exp(Ω(N))

Lemma B.6. 16 With overwhelming probability in N , the Solution vector in
algorithm 1, is equal to [lv − 1, lv], [lv, “Null”] or [lv, lv + 1]. Specifically,

Pr[Solution ∈ {[lv − 1, lv], [lv, “Null”], [lv, lv + 1]}]
> 1− 1/exp(Ω(N))

1plv > 0.405 =⇒ ∃γ > 0 s.t 0.4 = (1− γ)plv
2The Chernoff bound for a random variable X ∼ B(N, p) and expected value E[X] = µ is:

Pr[X ≤ (1− γ)µ] ≤ exp(−γ2µ/3)
1The Chernoff bound for a random variable X ∼ B(N, p) and expected value E[X] = µ is:

Pr[X ≤ (1 + γ)µ] ≤ exp(−γµ/3), γ > 1

CHAPTER B. Supplementary material for Section 6.3 161

Proof. Let as define the following events:

A =
[
Solution[0] = w ∨ Solution[1] = w,

w ∈ {0, . . . , lv − 2, lv + 2, . . . , D − 1}
]

B =
[
Solution[0] = lv ∨ Solution[1] = lv

]
Since the cases Solution = [lv, lv−1] and Solution = [lv+1, lv] are impossible

from the construction of the algorithm, from theorems 14 and 15 it holds:

Pr[Solution ∈ {[lv − 1, lv], [lv, “Null”], [lv, lv + 1]}]
= Pr[B ∧ ¬A]

= Pr[B]− Pr[B ∧ A]

> 1− 1/exp(Ω(N))

Lemma B.7. Let |ψ(θv)〉 be a voting state with δ ∈ [0, 2π/D) and lv =
D − 1,where δ is a continuous random variable .Then it holds:

Pr[xD−2 < Θv
D,δ < xD] + Pr[x0 < Θv

D,δ < x1] > 0.9

Proof.

Pr[x0 < Θv
D,δ < x1] (B.8)

= 1/(2πD)

∫ x1

x0

(
Sin[D/2(θ − θv)]
Sin[1/2(θ − θv)]

)2dθ (B.9)

Now we set θ = θ − xD to B.9 and we have:

Pr[x0 < Θv
D,δ < x1] (B.10)

= 1/(2πD)

∫ xD+x1

xD

(
Sin[−Dπ +D/2(θ − θv)]
Sin[−π + 1/2(θ − θv)]

)2dθ (B.11)

= 1/(2πD)

∫ xD+x1

xD

(
Sin[D/2(θ − θv)]
Sin[1/2(θ − θv)]

)2dθ (B.12)

Finally we have:

Pr[xD−2 < Θv
D,δ < xD] + Pr[x0 < Θv

D,δ < x1] (B.13)

= 1/(2πD)

∫ xD+x1

xD−2

(
Sin[D/2(θ − θv)]
Sin[1/2(θ − θv)]

)2dθ (B.14)

= 1/(2πD)

∫ 4π/D

−2π/D

Sin2[D(θ − δ)/2]

Sin2[(θ − δ)/2]
dθ (B.15)

From lemma 13 this integral is at least 0.9. The proof is similar for lv = 0.

162 B.1 Proof of attack on distributed ballot protocols

Lemma B.8. Let Solution be the matrix of algorithm 1, then it holds:

Pr[Solution ∈ {{lv − 1, lv}, {lv}, {lv, lv + 1}}]
= Pr[Solution ∈ {[lv − 1, lv], [lv], [lv, lv + 1]}]

Proof. (sketch)It holds that:

Pr[Solution ∈ {{lv − 1, lv}, {lv}, {lv, lv + 1}}] (B.16)

= Pr[Solution ∈ {lv − 1, lv}] (B.17)

+ Pr[Solution ∈ {lv}] (B.18)

+ Pr[Solution ∈ {lv, lv + 1}] (B.19)

We need to prove that:

Pr[Solution ∈ {lv − 1, lv}] = Pr[Solution = [lv − 1, lv]] (B.20)

From the construction of the algorithm 1 we know that:

Pr[Solution = [lv, lv − 1]|Solution ∈ {lv − 1, lv}] = 0 (B.21)

This is true because the values of the Solution are from the matrix Record in a
progressive manner. So under the assumption that both lv, lv − 1 had appeared
at least 40% times, they inserted in a progressive order. The only time they will
not is the case in which lv = 0 and lv− 1 = D− 1. At first, the order is [0, D− 1],
but because of the special condition we had in our algorithm the order switches
to [D − 1, 0].

It holds that:

Pr[Solution = [lv, lv − 1]|Solution ∈ {lv − 1, lv}] (B.22)

= Pr[Solution = [lv, lv − 1]] + Pr[∅] (B.23)

= Pr[Solution = [lv, lv − 1]] (B.24)

= 0 (B.25)

Similar are the other cases.

References

Masayuki Abe and Serge Fehr. Adaptively secure feldman vss and applications
to universally-composable threshold cryptography. In Matt Franklin, editor,
Advances in Cryptology – CRYPTO 2004, pages 317–334, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

Ben Adida. Helios: Web-based open-audit voting. In USENIX security sympo-
sium, volume 17, pages 335–348, 2008.

Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible
multi-party computation and universally composable receipt-free voting. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, pages 763–780, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg. ISBN 978-3-662-48000-7.

Myrto Arapinis, Véronique Cortier, and Steve Kremer. When are three voters
enough for privacy properties? 21st European Symposium on Research in
Computer Security, Heraklion, Crete, Greece, 2016. Springer.

Myrto Arapinis, Elham Kashefi, Nikolaos Lamprou, and Anna Pappa. Definitions
and analysis of quantum e-voting protocols. arXiv, pages arXiv–1810, 2018.

Charles Arthur. Estonian e-voting shouldn’t be used in
european elections, say security experts, 2014. URL
https://www.theguardian.com/technology/2014/may/12/

estonian-e-voting-security-warning-european-elections-research.

Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In CRYPTO, pages 324–356,
2017.

Foteini Baldimtsi, Ran Canetti, and Sophia Yakoubov. Universally composable
accumulators. IACR Cryptology ePrint Archive, 2018:1241, 2018.

Jonathan Bannet, David W. Price, Algis Rudys, Justin Singer, and Dan S.
Wallach. Hack-a-vote: Security issues with electronic voting systems. IEEE
Security & Privacy, 2(1):32–37, 2004.

163

https://www.theguardian.com/technology/2014/may/12/estonian-e-voting-security-warning-european-elections-research
https://www.theguardian.com/technology/2014/may/12/estonian-e-voting-security-warning-european-elections-research

164 REFERENCES

Ning Bao and Nicole Yunger Halpern. Quantum voting and violation of arrow’s
impossibility theorem. Phys. Rev. A, 95:062306, Jun 2017.

Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam Smith, and Alain
Tapp. Authentication of quantum messages. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 449–
458. IEEE, 2002.

Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. Craft: Composable randomness and almost fairness from time.
Cryptology ePrint Archive, Report 2020/784, 2020. https://eprint.iacr.

org/2020/784.

Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. Tardis: A foundation of time-lock puzzles in uc. Advances in
Cryptology - EUROCRYPT, 2021. https://eprint.iacr.org/2020/537.

Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. In Proceedings of IEEE International Conference
on Computers, Systems and Signal Processing, volume 175, page 8. New York,
1984.

David Bernhard, Veronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. Sok: A comprehensive analysis of game-based ballot privacy
definitions. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
499–516. IEEE, 2015.

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New generation
of memory-hard functions for password hashing and other applications. In 2016
IEEE European Symposium on Security and Privacy (EuroS P), pages 292–302,
2016.

Marianna Bonanome, Vladimı́r Bužek, Mark Hillery, and Mário Ziman. Toward
protocols for quantum-ensured privacy and secure voting. volume 84, page
022331. APS, 2011.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. J. Comput. Syst. Sci., 37(2):156189, October 1988. ISSN 0022-
0000.

Anne Broadbent and Alain Tapp. Information-theoretic security without an
honest majority. In Kaoru Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, pages 410–426. Springer Berlin Heidelberg, 2007.

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In CRYPTO, pages 61–76,
2002.

https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/537

REFERENCES 165

Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. UC commitments for
modular protocol design and applications to revocation and attribute tokens.
In CRYPTO, 2016.

Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Uc-secure
non-interactive public-key encryption. In CSF 2017, pages 217–233, 2017.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://

eprint.iacr.org/2000/067.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. of the 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145, 2001a.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001b.

Ran Canetti. Universally composable signatures, certification and authentication.
IACR Cryptology ePrint Archive, 2003:239, 2003.

Ran Canetti and Rosario Gennaro. Incoercible multiparty computation. In
Proceedings of 37th Conference on Foundations of Computer Science, pages
504–513. IEEE, 1996.

Ran Canetti and Hugo Krawczyk. Universally composable notions of key
exchange and secure channels. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 337–351. Springer, 2002.

Ran Canetti, Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Ra-
bin. Adaptive security for threshold cryptosystems. In Michael Wiener, editor,
Advances in Cryptology — CRYPTO’ 99, pages 98–116, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In TCC, pages 61–85, 2007a.

Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots:
How to use an imperfect reference string. In 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2007), October 20-23, 2007,
Providence, RI, USA, Proceedings, pages 249–259, 2007b.

Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO,
pages 78–96, 2006.

David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages
199–203, Boston, MA, 1983. Springer US. ISBN 978-1-4757-0602-4.

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

166 REFERENCES

David Chaum. Surevote: technical overview. In Proceedings of the workshop on
trustworthy elections (WOTE01), 2001.

David Chaum. Secret-ballot receipts: True voter-verifiable elections. Security &
Privacy, IEEE, 2:38 – 47, 02 2004.

David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-
niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and
Poorvi L. Vora. Scantegrity II: end-to-end verifiability by voters of optical scan
elections through confirmation codes. IEEE Trans. Information Forensics and
Security, 4(4):611–627, 2009.

Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-
release and key-insulated public key encryption. In Giovanni Di Crescenzo and
Avi Rubin, editors, Financial Cryptography and Data Security, pages 191–205,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46256-9.

Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. On some incompatible properties of voting schemes. In
David Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh
Benaloh, Miroslaw Kutylowski, and Ben Adida, editors, Towards Trustworthy
Elections: New Directions in Electronic Voting, pages 191–199, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. A
homomorphic lwe based e-voting scheme. In International Workshop on Post-
Quantum Cryptography, pages 245–265. Springer, 2016.

Michael Clarkson, Stephen Chong, and Andrew Myers. Civitas: A secure remote
voting system. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2008.

V. Cortier, D. Galindo, R. Ksters, J. Mller, and T. Truderung. Sok: Verifiability
notions for e-voting protocols. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 779–798, 2016.

Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of
ballot secrecy. J. Comput. Secur., 21(1):89148, January 2013. ISSN 0926-227X.

Véronique Cortier, P. Gaudry, and S. Glondu. Belenios: A simple private
and verifiable electronic voting system. In Guttman J.and Landwehr C.and
Meseguer J.and Pavlovic D., editor, Foundations of Security, Protocols, and
Equational Reasoning, volume 11565 of Lecture Notes in Computer Science.
Springer, Cham, 2019.

Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag,
Berlin, Heidelberg, 2002. ISBN 3540425802.

REFERENCES 167

Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS
’17, page 15651581, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349468.

Stephanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In 19th IEEE Computer Security Founda-
tions Workshop, pages 28–42, 2006.

David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic
accumulators, additional properties and relations to other primitives. In CT-
RSA, 2015a.

David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic
accumulators, additional properties and relations to other primitives. In CT-
RSA, 2015b.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theor., 22(6):644654, September 2006. ISSN 0018-9448.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM04, page 21, USA, 2004. USENIX
Association.

Shahar Dolev, Itamar Pitowsky, and Boaz Tamir. A quantum secret ballot. arXiv
preprint quant-ph/0602087, 2006.

Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively secure two-
party evaluation of any quantum operation. Cryptology ePrint Archive, Report
2012/304, 2012. https://eprint.iacr.org/2012/304.

Cynthia Dwork. Non-Malleability, pages 849–852. Springer US, Boston, MA,
2011. ISBN 978-1-4419-5906-5.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev., 47:777–780, 1935.

Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In George Robert Blakley and David Chaum, editors,
Advances in Cryptology, pages 10–18, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg. ISBN 978-3-540-39568-3.

Saghar Estehghari and Yvo Desmedt. Exploiting the client vulnerabilities in
internet e-voting systems: Hacking helios 2.0 as an example. In EVT/WOTE,
2010.

https://eprint.iacr.org/2012/304

168 REFERENCES

Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Nicolas Christin and Reihaneh Safavi-Naini, editors, Financial
Cryptography and Data Security, pages 436–454, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. ISBN 978-3-662-45472-5.

Nelly Fazio and Antonio Nicolosi. Cryptographic accumulators: Definitions, con-
structions and applications. Paper written for course at New York University:
www. cs. nyu. edu/nicolosi/papers/accumulators. pdf, 2002.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Yuliang Zheng, editors,
Advances in Cryptology — AUSCRYPT ’92, pages 244–251. Springer Berlin
Heidelberg, 1993. ISBN 978-3-540-47976-5.

Gina Gallegos-Garcia, Vincenzo Iovino, Alfredo Rial, Peter B. Roenne, and Peter
Y. A. Ryan. (universal) unconditional verifiability in e-voting without trusted
parties, 2016.

Juan A. Garay, Clinton Givens, Rafail Ostrovsky, and Pavel Raykov. Fast and
unconditionally secure anonymous channel. PODC ’14, page 313321, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450329446.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT, pages 281–310, 2015.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In STOC, 2013.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, Jan 2007.

Elizabeth Gibney. Quantum computer race intensifies as alternative tech-
nology gains steam, 2020. URL https://www.nature.com/articles/

d41586-020-03237-w.

Oded Goldreich. The Foundations of Modern Cryptography, pages 1–37. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-662-12521-2.

Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without
agreement. J. Cryptol., 18(3):247287, July 2005. ISSN 0933-2790.

Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An efficient
dynamic and distributed cryptographic accumulator. In ISC, 2002.

Jens Groth. Evaluating security of voting schemes in the universal composability
framework. In Applied Cryptography and Network Security, pages 46–60.
Springer Berlin Heidelberg, 2004. ISBN 978-3-540-24852-1.

https://www.nature.com/articles/d41586-020-03237-w
https://www.nature.com/articles/d41586-020-03237-w

REFERENCES 169

Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a
secret and spend a coin. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology - EUROCRYPT 2015, pages 253–280, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic protocols
in a quantum world. In Phillip Rogaway, editor, Advances in Cryptology–
CRYPTO 2011, pages 411–428. Springer Berlin Heidelberg, 2011.

Mark Hillery, Mário Ziman, Vladimı́r Bužek, and Martina Bieliková. Towards
quantum-based privacy and voting. In Physics Letters A, volume 349, pages
75–81. Elsevier, 2006.

Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, pages 466–485, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-13190-5.

Dmitri Horoshko and Sergei Kilin. Quantum anonymous voting with anonymity
check. In Physics Letters A, volume 375, pages 1172–1175. Elsevier, 2011.

Wei Huang, Qiao-Yan Wen, Bin Liu, Qi Su, Su-Juan Qin, and Fei Gao. Quantum
anonymous ranking. In Physical Review A, volume 89, page 032325. APS, 2014.

IBM. What is quantum computing?, 2019. URL https://www.ibm.com/

quantum-computing/what-is-quantum-computing/.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proc. of the ACM workshop on privacy in the electronic society,
pages 61–70, 2005.

Elham Kashefi, Luka Music, and Petros Wallden. The quantum cut-and-
choose technique and quantum two-party computation. arXiv preprint
arXiv:1703.03754, 2017.

Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In TCC, pages 477–498, 2013.

A. Khisti, A. Tchamkerten, and G. W. Wornell. Secure broadcasting over fading
channels. IEEE Transactions on Information Theory, 54(6):2453–2469, 2008.
doi: 10.1109/TIT.2008.921861.

Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy.
In David Naccache and Pascal Paillier, editors, Public Key Cryptography,
volume 2274, pages 141–158. Springer Berlin Heidelberg, 2002.

Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Elisabeth Oswald and Marc Fischlin, editors,

https://www.ibm.com/quantum-computing/what-is-quantum-computing/
https://www.ibm.com/quantum-computing/what-is-quantum-computing/

170 REFERENCES

Advances in Cryptology - EUROCRYPT 2015, pages 468–498. Springer Berlin
Heidelberg, 2015.

Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas
Zacharias. On the security properties of e-voting bulletin boards. In Dario
Catalano and Roberto De Prisco, editors, Security and Cryptography for
Networks, pages 505–523, Cham, 2018. Springer International Publishing. ISBN
978-3-319-98113-0.

Anna Kobusiska, Jerzy Brzeziski, Micha Boro, ukasz Inatlewski, Micha Jabczyski,
and Mateusz Maciejewski. A branch hash function as a method of message
synchronization in anonymous p2p conversations. International Journal of
Applied Mathematics and Computer Science, 26(2):479 – 493, 01 Jun. 2016.

Czes law Kościelny, Miros law Kurkowski, and Marian Srebrny. Foundations of
Symmetric Cryptography, pages 77–118. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013. ISBN 978-3-642-41386-5.

Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient
nonmembership proofs. In Jonathan Katz and Moti Yung, editors, Applied
Cryptography and Network Security, pages 253–269, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

Yannan Li, Willy Susilo, Guomin Yang, Yong Yu, Dongxi Liu, and Mohsen
Guizani. A blockchain-based self-tallying voting scheme in decentralized iot,
2019.

Yuan Li and Guihua Zeng. Quantum anonymous voting systems based on
entangled state. In Optical review, volume 15, pages 219–223. Springer, 2008.

Yehuda Lindell. Highly-efficient universally-composable commitments based on
the ddh assumption. In Kenneth G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, pages 446–466, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. ISBN 978-3-642-20465-4.

Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-
lock encryption. Designs, Codes and Cryptography, Feb 2018. ISSN 1573-7586.

Hoi-Kwong Lo and H.F. Chau. Why quantum bit commitment and ideal quantum
coin tossing are impossible. In Physica D: Nonlinear Phenomena, volume 120,
pages 177 – 187, 1998.

T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, S. Wehner,
and H. Zbinden. Practical relativistic bit commitment. Phys. Rev. Lett., 115:
030502.

REFERENCES 171

Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Time-lock puzzles in
the random oracle model. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, pages 39–50, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. ISBN 978-3-642-22792-9.

Lenka Marekova. Zerovote: Self-tallying e-voting protocol in the uc. project-
archive.inf.ed.ac.uk/ug4/2018-outstanding, 2018. https://project-archive.
inf.ed.ac.uk/ug4/2018-outstanding.html.

Ueli Maurer and Renato Renner. Abstract cryptography. In IN INNOVATIONS
IN COMPUTER SCIENCE. Tsinghua University Press, 2011.

Timothy C. May. Timed-release crypto, http://cypherpunks.venona.com/date/1993/02/msg00129.html,
1993.

Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.
Phys. Rev. Lett., 78:3414–3417, 1997.

Will McCutcheon, Anna Pappa, BA Bell, A McMillan, André Chailloux, Tom
Lawson, M Mafu, Damian Markham, Eleni Diamanti, and Iordanis Kerenidis.
Experimental verification of multipartite entanglement in quantum networks.
Nat. Comm., 7:13251, 2016.

Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford, CA, USA, 1979. AAI8001972.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In IEEE S&P, 2013.

Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with ever-
lasting privacy. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO
2006, pages 373–392, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

David Naccache. Standard Model, pages 1253–1253. Springer US, Boston, MA,
2011. ISBN 978-1-4419-5906-5.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2008.

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In CRYPTO, 2002.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, New York, NY, USA, 2011.

Mehrdad Nojoumian and Douglas R. Stinson. Efficient sealed-bid auction
protocols using verifiable secret sharing. In Xinyi Huang and Jianying Zhou,
editors, Information Security Practice and Experience, pages 302–317, Cham,
2014. Springer International Publishing. ISBN 978-3-319-06320-1.

https://project-archive.inf.ed.ac.uk/ug4/2018-outstanding.html
https://project-archive.inf.ed.ac.uk/ug4/2018-outstanding.html

172 REFERENCES

Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Security Protocols, 1998.

Tatsuaki Okamoto, Koutarou Suzuki, and Yuuki Tokunaga. Quantum voting
scheme based on conjugate coding. NTT Technical Review, 6(1):1–8, 2008.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Au-
thenticated hash tables based on cryptographic accumulators. Algorithmica, 74
(2):664–712, Feb 2016.

Anna Pappa, André Chailloux, Stephanie Wehner, Eleni Diamanti, and Iordanis
Kerenidis. Multipartite entanglement verification resistant against dishonest
parties. Physical Review Letters, 108(26):260502, 2012.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, pages 129–140, Berlin, Heidelberg, 1992. Springer Berlin Heidel-
berg. ISBN 978-3-540-46766-3.

Christopher Portmann. Quantum authentication with key recycling. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology –
EUROCRYPT 2017, pages 339–368. Springer International Publishing, 2017.

Michael O Rabin. Digitalized signatures. Foundations of secure computation,
pages 155–168, 1978.

Michael O. Rabin. How to exchange secrets with oblivious transfer, 2005. Harvard
University Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun
2005.

José Ramos. Liquid Democracy and the Futures of Governance, pages 173–191.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-22994-2.

R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996.

Eric Roberts. Arguments in favor, 2007. URL https://cs.stanford.edu/

people/eroberts/cs201/projects/2006-07/electronic-voting/index_

files/page0001.html.

Peter Y. A. Ryan and Steve A. Schneider. Prêt-à-voter with re-encryption mixes.
In 11th European Symp. On Research In Computer Security (ESORICS’06),
volume 4189, pages 313–326. Springer, 2006.

Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology —
EUROCRYPT ’95, pages 393–403, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg. ISBN 978-3-540-49264-1.

https://cs.stanford.edu/people/eroberts/cs201/projects/2006-07/electronic-voting/index_files/page0001.html
https://cs.stanford.edu/people/eroberts/cs201/projects/2006-07/electronic-voting/index_files/page0001.html
https://cs.stanford.edu/people/eroberts/cs201/projects/2006-07/electronic-voting/index_files/page0001.html

REFERENCES 173

Tomas Sander. Efficient accumulators without trapdoor extended abstract. In
Vijay Varadharajan and Yi Mu, editors, Information and Communication
Security, pages 252–262, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
ISBN 978-3-540-47942-0.

P. W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, Washington, DC, USA, 1994. IEEE
Computer Society. ISBN 0-8186-6580-7.

Peter W Shor and John Preskill. Simple proof of security of the bb84 quantum
key distribution protocol. In Physical review letters, volume 85, page 441. APS,
2000.

Alan Szepieniec and Bart Preneel. New techniques for electronic voting. Wash-
ington, D.C., 2015. USENIX Association. URL https://www.usenix.org/

conference/jets15/workshop-program/presentation/szepieniec.

Andranik Tangian. Representative Democracy, pages 353–403. Springer Interna-
tional Publishing, Cham, 2020a. ISBN 978-3-030-39691-6.

Andranik Tangian. Direct Democracy, pages 263–315. Springer International
Publishing, Cham, 2020b. ISBN 978-3-030-39691-6.

Kishore Thapliyal, Rishi Dutt Sharma, and Anirban Pathak. Protocols for
quantum binary voting. In International Journal of Quantum Information,
volume 15, page 1750007, 2017.

Aaron Toponce. Further investigation into scrypt and argon2 pass-
word hashing, 2016. URL https://pthree.org/2016/06/29/

further-investigation-into-scrypt-and-argon2-password-hashing/.

Edward Tremel. Real-world performance of cryptographic accumulators. Under-
graduate Honors Thesis, Brown University, 2013.

Dominique Unruh. Universally composable quantum multi-party computation.
In Advances in Cryptology (EUROCRYPT 2010), volume 6110, pages 486–505,
2010.

Dominique Unruh. Everlasting multi-party computation. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 380–
397, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-
40084-1.

Joan Alfina Vaccaro, Joseph Spring, and Anthony Chefles. Quantum protocols
for anonymous voting and surveying. In Physical Review A, volume 75, page
012333. APS, 2007.

https://www.usenix.org/conference/jets15/workshop-program/presentation/szepieniec
https://www.usenix.org/conference/jets15/workshop-program/presentation/szepieniec
https://pthree.org/2016/06/29/further-investigation-into-scrypt-and-argon2-password-hashing/
https://pthree.org/2016/06/29/further-investigation-into-scrypt-and-argon2-password-hashing/

174 REFERENCES

Qingle Wang, Chaohua Yu, Fei Gao, Haoyu Qi, and Qiaoyan Wen. Self-tallying
quantum anonymous voting. In Physical Review A, volume 94, page 022333.
APS, 2016.

Wikipedia. Electronic voting in estonia, 2020. URL https://en.wikipedia.

org/wiki/Electronic_voting_in_Estonia.

Douglas Wikström. Universally composable dkg with linear number of exponen-
tiations. In Carlo Blundo and Stelvio Cimato, editors, Security in Commu-
nication Networks, pages 263–277, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking
the washington, D.C. internet voting system. In FC, 2012.

Peng Xue and Xin Zhang. A simple quantum voting scheme with multi-qubit
entanglement. In Scientific Reports, volume 7, page 7586. Nature Publishing
Group, 2017.

Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic Encryption, pages 27–
46. Springer International Publishing, Cham, 2014. ISBN 978-3-319-12229-8.

Y. Zhang, J. Katz, and C. Papamanthou. An expressive (zero-knowledge) set
accumulator. In Euro S&P, 2017.

Rui-Rui Zhou and Li Yang. Distributed quantum election scheme. arXiv preprint
arXiv:1304.0555, 2013.

https://en.wikipedia.org/wiki/Electronic_voting_in_Estonia
https://en.wikipedia.org/wiki/Electronic_voting_in_Estonia

	Declaration
	Abstract
	Acknowledgements
	Contents
	Introduction
	Contributions

	Preliminaries
	Basic mathematical background and security notions
	Mathematical background
	Cryptographic notions

	Quantum information
	Unitary operations
	Continuous & discrete measurement
	The cut-and-choose method

	E-voting
	Protocol description
	Security definitions

	Protocol security
	Game-based definitions
	Universal composability
	Setup functionalities

	Literature review
	Classical e-voting
	Centralized e-voting
	Self-tallying protocols
	Cryptographic primitives in e-voting
	Comparison with CBRJS20 and CBRJS20B

	Quantum e-voting
	Quantum e-voting definitions

	Time-lock encryption
	Definition of Fleak,delayTLE
	Realization of Fleak,delayTLE via time-lock puzzles
	Security definitions of time-lock puzzles
	Proof of UC realizing Fleak,delayTLE

	Astrolabous: a UC-secure TLE construction
	The (AST.encE,H,AST.decE,H) scheme
	Equivocable (EAST.encE,H,G,EAST.decE,H,G) scheme
	IND-CPA-TLE security

	E-cclesia: a self-tallying classical e-voting protocol
	The STE functionality FdelaySTE
	Decomposing FdelaySTE into Felig and Fdelayvm
	Eligibility functionality Felig
	Vote management funtionality Fdelayvm

	The E-cclesia family: relalization of FdelaySTE in the (Felig,Fdelayvm,Gclock)-hybrid model
	Description of the E-cclesia family
	Realization of FdelaySTE via Felig and Fdelayvm

	Realizing Felig via accumulators
	Definition of Facc
	A protocol that realizes Facc
	A protocol that realizes Felig

	Realizing Fdelayvm via time-lock puzzles
	A protocol Fleak,delayTLEvm that realizes Fdelayvm

	Quantum e-voting & limitations
	Dual basis measurement based protocols
	Protocol specification
	Vulnerabilities of dual basis measurement Protocols

	Travelling ballot based protocols
	Protocol specification
	Vulnerabilities of travelling ballot based protocols

	Distributed ballot based protocols
	Protocol specification
	Vulnerabilities of distributed ballot based protocols

	Quantum voting based on conjugate coding
	Protocol specification
	Vulnerabilities of conjugate coding protocols

	Other protocols
	Discussion: definitions for secure quantum e-voting
	Game based definition for quantum privacy
	Game based definition for quantum integrity

	Discussion
	Summary
	Limitations
	Future directions

	Supplementary material for Section 5.4
	Supplementary material for Section 6.3
	Proof of attack on distributed ballot protocols

	References

