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NONPARAMETRIC APPROXIMATION OF CONDITIONAL

EXPECTATION OPERATORS

MATTES MOLLENHAUER AND PÉTER KOLTAI

Abstract. Given the joint distribution of two random variables X, Y on some
second countable locally compact Hausdorff space, we investigate the statisti-
cal approximation of the L2-operator P defined by [Pf ](x) := E[f(Y ) | X = x]
under minimal assumptions. By modifying its domain, we prove that P can
be arbitrarily well approximated in operator norm by Hilbert–Schmidt opera-
tors acting on a reproducing kernel Hilbert space. This fact allows to estimate
P uniformly by finite-rank operators over a dense subspace even when P is
not compact. In terms of modes of convergence, we thereby obtain the supe-
riority of kernel-based techniques over classically used parametric projection
approaches such as Galerkin methods. This also provides a novel perspective
on which limiting object the nonparametric estimate of P converges to. As an
application, we show that these results are particularly important for a large
family of spectral analysis techniques for Markov transition operators. Our
investigation also gives a new asymptotic perspective on the so-called kernel
conditional mean embedding, which is the theoretical foundation of a wide
variety of techniques in kernel-based nonparametric inference.

1. Introduction

We consider two random variablesX,Y taking values in a measurable space (E,FE)
where E is a second countable locally compact Hausdorff space and FE its Borel
σ-field. Let (Ω,F ,P) be the underlying probability space with expectation oper-
ator E. Let π denote the the pushforward of P under X , i.e., X ∼ π and let
L2(E,FE , π;R) = L2(π) be the space of real-valued Lebesgue square integrable
functions on (E,FE) with respect to π. Analogously, define ν as the pushforward
of P under Y on E, i.e, Y ∼ ν. Our goal is to perform a nonparametric estima-
tion of the contractive conditional expectation operator P : L2(ν) → L2(π) defined
by

[Pf ](x) := E[f(Y ) | X = x] =

∫

E

f(y) p(x, dy),

where p : E ×FE → R+ is the Markov kernel which describes a regular version of
the distribution of Y conditioned on X in terms of

P[Y ∈ A | X = x] = E[1A(Y ) | X = x] =

∫

A

p(x, dy) = p(x,A)

for all x ∈ E and events A ∈ FE. We will introduce additional notation and details
as well as appropriate assumptions in Section 4.
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We derive a natural and self-contained theory of the approximation of P over func-
tions in a reproducing kernel Hilbert space (RKHS) which is densely embedded into
the domain of P . Our analysis shows that the approximation of P is strongly
connected to recently developed concepts in RKHS-based inference and statistical
learning such as the kernel mean embedding (Berlinet and Thomas-Agnan, 2004;
Smola et al., 2007; Muandet et al., 2017), maximum mean discrepancy (Gretton
et al., 2012a; Sejdinovic et al., 2013) and the conditional mean embedding (Song
et al. 2009; Grünewälder et al. 2012; Klebanov et al. 2020a; Park and Muandet
2020a), which allows to extend our theory to several practical directions such as
hypothesis testing, filtering and spectral analysis for Markov kernels.

We will focus on deriving approximation-theoretic results instead of a statistical
analysis of convergence rates in our investigation. However, we show that con-
vergence results can be carried over from the theory of nonparametric regularized
least squares regression with vector-valued output variables (see for example Capon-
netto and De Vito, 2007; Rastogi and Sampath, 2017; Rastogi et al., 2020; Park
and Muandet, 2020b).

As a practical application, we argue that our theory provides a statistical model for
a well-known family of numerical spectral analysis techniques for Markov transition
operators, which we highlight in the following example.

A motivating example: Markov transition operators. The above scenario
is of particular practical interest when Y := Xt+τ and X := Xt for some stationary
Markov process (Xt)t∈R on the state space (E,FE), as in this case π = ν and P
given by

[Pf ](x) = E[f(Xt+τ ) | Xt = x] (1.1)

is the Markov transition operator with respect to the time lag τ > 0.

In the context of Markov processes and dynamical systems, it is known that the
spectrum of P and the associated eigenfunctions determine crucial properties of
the underlying dynamics such as ergodicity, speed of mixing, the decomposition of
the state space into almost invariant (so-called metastable) components and many
more (Davies, 1982a,b, 1983; Roberts et al., 1997; Roberts and Tweedie, 2001;
Kontoyiannis and Meyn, 2003, 2005, 2017; Huisinga et al., 2004; Huisinga and
Schmidt, 2006; Paulin, 2015).

As such, the operator P is often empirically approximated in various scientific
disciplines by performing a projection onto finite-dimensional subspaces of L2(π)
(see for example Li, 1976; Ding and Li, 1991; Dellnitz and Junge, 1999; Huisinga,
2001; Junge and Koltai, 2009; Schmid, 2010; Schütte and Sarich, 2013; Tu et al.,
2014; Williams et al., 2015a; Klus et al., 2016, 2018; Korda and Mezić, 2018, and
references therein). That is, given an n-dimensional subspace Vn ⊂ L2(π) spanned
by a dictionary of basis elements, a Monte Carlo quadrature based on observational

data is performed on Vn to obtain the empirical finite-rank operator P̂n as an
estimate of the Galerkin-approximation Pn := ΠnPΠn. Here, Πn is the orthogonal
projection operator onto Vn. Under the assumption of ergodicity, one typically

obtains P̂n → Pn almost surely by some version of Birkhoff’s ergodic theorem (Klus
et al., 2016). From a statistical perpective, these methods can be regarded as
parametric models, the parameter choice being the fixed basis functions spanning
the ansatz space Vn. By increasing the number of spanning elements, a convergence
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of the Galerkin approximation Pn to the real operator P in only the strong operator
topology (i.e., pointwise on L2(π)) as n → ∞ can generally be obtained (Korda and
Mezić, 2018).

In practice, the above methods are typically aimed at performing an empirical

spectral analysis of P , i.e., spectral properties of P̂n are computed and used as an
approximation of the spectral properties of P . It is well-known that most desirable
spectral convergence results require a convergence in operator norm (Kato, 1980;
Chatelin, 1983). The spectral convergence of the parametric approaches mentioned
above is therefore ultimately limited by the pointwise convergence of numerical
projection methods (Hackbusch, 1995).

As a nonparametric counterpart of the given parametric methods, there exist RKHS-
based versions where the basis functions are adapted to the data (Williams et al.,
2015b; Kawahara, 2016; Klus et al., 2020). For these methods, one may hope that
they allow for stronger modes of convergence than the classical projection methods.
However, it has not been shown yet which object is actually approximated in the
infinite-sample limit, as the asymptotics are significantly more complicated in this
case. Our theory solves this problem and confirms that the overall convergence is
stronger than in the parametric case under mild assumptions. The strength of this
result comes at the price of requiring to restrict the domain of the operator onto an
RKHS. Whether relevant objects, such as eigenfunctions, of the original operator
are contained in this space, is in general an open question.

Structure of this paper. This work is structured as follows. We delineate related
theoretical work in the field of nonparametric statistical inference in Section 2. For
better accessibility, we present our main results from a high-level viewpoint in Sec-
tion 3. Section 4 contains the mathematical preliminaries and detailed assumptions.
We prove our main results in Section 5 along some additional findings and elaborate
on their implications from a theoretical perspective. In Section 6, we outline the
empirical estimation in the context of inverse problems and regularization theory,
which we investigate in detail for the Tikhonov–Phillips case in Section 7. We re-
visit our example of Markov transition operators in Section 8 and conclude with a
brief outlook on potential future research in Section 9.

2. Related work

This work is inspired by recent development in RKHS-based statistical inference.
Although our investigation is targeted at creating a more general mathematical
perspective from an approximation viewpoint, we make use of the theoretical tools
which were originally developed in this context. We therefore highlight the most
important work which impacted our analysis.

Over the last years, the theory of RKHS-based inference and the kernel mean em-
bedding (KME, see Berlinet and Thomas-Agnan, 2004; Smola et al., 2007; Muandet
et al., 2017) spawned a vast variety of methods in various statistical disciplines. In
this context, a nonparametric approximation of the conditional mean operation
(x, f) 7→ E[f(Y ) | X = x] for functions f in some RKHS H over E was developed
by Song et al. (2009) as a purely linear-algebraic concept under the name condi-
tional mean embedding (CME). This idea has since been used as the theoretical
backbone for methods in Bayesian analysis, graphical models, time series analysis,
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spectral analysis and dimensionality reduction, filtering, reinforcement learning and
many more (see for example Muandet et al. 2017 for a non-exhaustive selection of
applications).

Although the CME as described by Song et al. (2009) performs successfully in
applications, the mathematical assumptions imposed in the original work are typi-
cally violated; this has been thoroughly examined by Klebanov et al. (2020a). The
foundational problems in the theory of the CME led to an investigation of the
approximation of RKHS-valued conditional Bochner expectations from a regres-
sion perspective. In particular, Grünewälder et al. (2012) show that the empirical
Tikhonov–Phillips solution of a regularized least squares regression problem in a
vector-valued reproducing kernel Hilbert space coincides with the empirical estimate
derived by Song et al. (2009). Additionally, Grünewälder et al. (2013) propose to
use the same estimate for the approximation of linear operators in a very broad
sense but do not offer an asymptotic perspective of this idea.

Park and Muandet (2020a) extend the asymptotic regression theory of the CME
in the framework of least-squares regression in a vector-valued reproducing kernel
Hilbert space (vRKHS) and regularization theory (see for example Caponnetto and
De Vito 2007). In this context, uniform convergence rates are proven under the
assumption that the true CME is contained in the hypothesis space. Klebanov et al.
(2020b) extend the operator-theoretic interpretation of the CME. In particular,
they prove existence of an operator on an RKHS which expresses the conditional
mean under the assumption that the true conditional mean function is a member
of a corresponding tensor product space. In fact, our analysis shows that this
assumption is equivalent to the assumption under which Park and Muandet (2020a)
derive convergence rates.

Comparison to this work. Concluding the overall picture of the aforementioned
work: while the regression perspective of the CME (Grünewälder et al., 2012; Park
and Muandet, 2020a) allows to consider asymptotic interpretations and prove con-
vergence results, it has the fundamental drawback that the algebraically interesting
operator-theoretic perspective of P is not present. Even more so, the estimation
of spectral properties of P (for example in the case of Markov operators or for di-
mensionality reduction purposes) is impossible. Conversely, the operator-theoretic
formulation of the CME (Song et al., 2009; Klebanov et al., 2020a,b) lacks an
asymptotic perspective and suffers from complex interdependencies of various as-
sumptions (Klebanov et al., 2020a), severely impeding a theoretical mathematical
analysis. Additionally, the approximation viewpoint in the L2-operator context has
not been investigated yet. We will see that this approximation admits a natural
perspective in terms of the maximum mean discrepancy between the underlying
Markov kernels.

Regarded in the context of the CME, our results can be interpreted as the missing
link between the recent work of Klebanov et al. (2020b) and Park and Muandet
(2020a). In particular, we provide an asymptotic approximation perspective in
the operator-theoretic context of conditional expectations. On our way, we more-
over improve a surrogate risk bound used by Grünewälder et al. (2012) and Park
and Muandet (2020a) which serves as the theoretical foundation for the regression
perspective of the CME. However, our results are formulated in a more general
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perspective in terms of the numerical approximation of linear operators and can
certainly be regarded outside of the context of the previously mentioned work on
the CME.

3. Main results

We will briefly outline some main results and the general content of our work.
All discussed concepts, mathematical preliminaries, and assumptions used in this
section will be introduced in more detail in Section 4.

As previously mentioned, we aim to approximate P over a separable reproducing
kernel Hilbert space H consisting of functions from E to R generated by the
canonical feature map ϕ : E → H . We will choose the space H such that is is
a subset of C0(E), i.e., the space of continuous real-valued functions which vanish
at infinity (Carmeli et al., 2010). Additionally, we choose H such that it can be
continuously embedded into L2(π) as well as L2(ν). That is, the inclusion operator
iπ : H → L2(π) defined by f 7→ [f ]∼L2(π) and the analougously defined inclusion

iν : H → L2(ν) are bounded (Steinwart and Christmann, 2008). Moreover, we
will generally assume that H is dense in both L2(π) and L2(ν). This property
is called L2-universality (Carmeli et al., 2010; Sriperumbudur et al., 2011). The
results shown here are proven in Section 5 with a more detailed presentation of the
assumptions.

Remark 3.1 (Inclusion operators and notation). We will sometimes suppress the
inclusion operators iπ and iν in our notation when the context is clear. In particular,
for f ∈ H we will simply write ‖f‖L2(ν) instead of ‖iνf‖L2(ν). Furthermore, under

the above assumptions, we may understand the operator Piν : H → L2(π) as a
conditional expectation operator acting on functions of H via

[Piνf ](x) = E[f(Y ) | X = x] ∈ L2(π) for f ∈ H (3.1)

and use the norm of H on its domain. By abuse of notation, we may write P :
H → L2(π) instead of Piν for the operator in (3.1). We will emphasize which
version of P we refer to by simply distinguishing between P : H → L2(π) and
P : L2(ν) → L2(π). We write out the corresponding operator norms ‖P‖

H →L2(π)

and ‖P‖L2(ν)→L2(π) to prevent confusion. Note that by boundedness of iν , we

have ‖P‖
H →L2(π) ≤ ‖iν‖ ‖P‖L2(ν)→L2(π). Similarly, for every bounded operator

A : H → H we can consider the bounded operator iπA from H to L2(π), which
we will also abbreviate as A : H → L2(π). At this point, it is worth mentioning
that functions in H are generally defined pointwise, while elements of L2(π) are
equivalence classes of π-a.e. equivalent functions.

It is known that under the assumptions above, the inclusions iπ and iν are Hilbert–
Schmidt operators (Steinwart and Christmann, 2008, Chapter 4.3). Therefore, the
operator P : H → L2(π) is Hilbert–Schmidt (and hence compact), independently
of the fact whether P : L2(ν) → L2(π) is Hilbert–Schmidt or not. Intuitively, the
approximation of P over functions in H in operator norm is therefore generally
possible with finite-rank operators from H to L2(π). Since we can not efficiently
impose the class of Hilbert–Schmidt operators from H to L2(π) as a nonparametric
hypothesis space in practical applications, we now provide a more suitable approx-
imation theory for practical scenarios. The following result shows that we may
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actually restrict ourselves to the class of Hilbert–Schmidt operators mapping from
the space H to itself and still expect an approximation of P : H → L2(π) up to
an arbitrary degree of accuracy.

Theorem 3.2 (Approximation by Hilbert–Schmidt operators). If there exists a
reproducing kernel Hilbert space H ⊂ C0(E) which is densely and continuously
embedded into both L2(π) and L2(ν), then for every δ > 0, there exists a Hilbert–
Schmidt operator A : H → H , such that

‖A− P‖
H →L2(π) < δ. (3.2)

Remark 3.3. Some remarks related to Theorem 3.2 are in order.

(1) We do not require P : L2(ν) → L2(π) to be a Hilbert–Schmidt operator
or compact in order for the above statement to hold. Our result is not
a contradiction to the known fact that operator norm limits of Hilbert–
Schmidt operators are compact. The reason for that is that the compactness
property is given with respect to the norm ‖·‖

H
on the domain, which is

stronger than the norm ‖·‖L2(ν). Hence, the continuous extension to A :

L2(ν) → H via the known construction for bounded operators (Weidmann,
1980, Theorem 4.5) is generally not compact. This can equivalently be seen
by the fact that iν does generally not admit a globally defined bounded
inverse. We visualize Theorem 3.2 in Figure 1.

(2) The assumptions on H are not restrictive, as they are well examined in
statistical learning theory and often satisfied for particular RKHSs used in
practice. It is actually sufficient to only require that H is dense in L2(ρ)
for any probability measure ρ on (E,FE), as this implies denseness in both
L2(π) and L2(ν). We address these topics in detail in Section 4.

(3) We will later also see under which requirements there exists a Hilbert–
Schmidt operator A : H → H such that ‖A− P‖

H →L2(π) = 0.

L2(ν) L2(π)

H H

P

iν

A ∈ S2(H )

iπA

Piν
iπ

Figure 1. Nonparametric approximation of P over functions in
H by a Hilbert–Schmidt operatorA ∈ S2(H ). Theorem 3.2 shows
that Piν ≈ iπA to arbitrary accuracy in the associated operator
norm. The operator A is approximated by finite-rank operators on
H in Corollary 3.4.

Corollary 3.4. Under the assumptions of Theorem 3.2, there exists a sequence of
finite-rank operators (An)n∈N from H to H such that ‖An − P‖

H →L2(π) → 0 as
n → ∞.
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As we will prove, such a sequence (An)n∈N can be almost surely computed in
practice by performing a nonparametric regression based on a linear space consisting
of functions mapping from E to H given by

G = {Aϕ(·) : E → H | A : H → H is Hilbert–Schmidt}.

One can show that the space G is actually a vector-valued reproducing kernel
Hilbert space (Carmeli et al. 2006, 2010) consisting of H -valued Bochner square
integrable functions. This fact connects our theory directly to the aforementioned
work on conditional mean embeddings.
We show that the approximation of P in the norm ‖·‖

H →L2(π) admits a natu-

ral measure-theoretic interpretation in terms of the well-known maximum mean
discprepancy (Gretton et al., 2012b; Sejdinovic et al., 2013), paving the way for
nonparametric hypothesis tests based on P .

The next result is the theoretical foundation for Theorem 3.2 and will allow us
to construct an estimator of P : H → L2(π) (see Section 6). It shows how the
approximation of P is related to the approximation of a conditional Bochner ex-
pectation and improves surrogate risk bounds used by Grünewälder et al. (2012)
and Park and Muandet (2020a) in the context of the CME (see Remark 5.9 for
details).

Theorem 3.5 (Regression and conditional mean approximation). Under the as-
sumptions of Theorem 3.2, we have for every Hilbert–Schmidt operator A : H → H

that

‖A− P‖2
H →L2(π) ≤ E

[
‖Fp(X)−A∗ϕ(X)‖2

H

]
= ‖Fp −A∗ϕ(·)‖2L2(E,FE ,π;H ) ,

where Fp = E[ϕ(Y ) | X = ·] ∈ L2(E,FE , π;H ) is any regular version of the H -
valued conditional Bochner expectation E[ϕ(Y ) | X ] ∈ L2(Ω,F ,P;H ). The given
bound is sharp.

Remark 3.6. In fact, the above result actually holds under less strict assumptions,
which we will see in Section 5.

As is well-known in statistical learning theory (see for example Cucker and Zhou
2007), the right hand side of the bound in Theorem 3.5 is exactly the so-called excess
risk R(F ) − R(Fp) of the infinite-dimensional least squares regression problem of
finding argminF∈G R(F ), where

R(F ) := E

[
‖ϕ(Y )− F (X)‖2

H

]
for F (·) = A∗ϕ(·).

In particular, the risk R(F ) allows for the decomposition

R(F ) = ‖Fp − F‖2L2(E,FE,π;H ) +R(Fp)

with the irreducible error term R(Fp). This puts the approximation of P in per-
fect line with the formalism developed for regularized least squares regression with
reproducing kernels which was established in a series of highly influential papers
(De Vito et al., 2005; Caponnetto and De Vito, 2007; Bauer et al., 2007; Yao et al.,
2007) and its connection to inverse problems in Hilbert spaces.

In particular, by employing a generic regularization strategy gλ for a regularization
parameter λ > 0, such as for example Tikhonov–Phillips regularization, spectral
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cutoff or Landweber iteration (see Engl et al. 1996), we obtain a regularized solution
to the above regression problem via

Fλ := gλ(T )I
∗
πFp ∈ G , (3.3)

where T : G → G is the generalized kernel covariance operator (see Section 4.6.2) of
the space G associated withX and Iπ : G → L2(E,FE , π;H ) is the inclusion opera-
tor of G into the space of Bochner square integrable functions L2(E,FE , π;H ).

Since T plays a crucial role in the underlying inverse problem, we also show that
the action of T on G admits a dual interpretation in terms of composition operators
acting on the class of Hilbert–Schmidt operators on H . For the special case that gλ
describes Tikhonov–Phillips regularization, this theory lets us obtain a closed form
expression of the regularized solution in terms of the kernel covariance operators
CXX and CXY on H . We confirm this solution to be the adjoint of the CME
first derived by Song et al. (2009) given by Aλ = (CXX + λIdH )−1CXY without
the limiting assumptions imposed in the original work. Although this statement
does not come as a surprise, it has never been proven in any of the aforementioned
papers on the CME. Our results can be interpreted as the population analogue of a
similar statement for the empirical case derived by Grünewälder et al. (2012) (see
Section 7.2).

By performing the empirical discretization of the above operators and problem (3.3)
based on a finite set of observations z = ((X1, Y1), . . . , (Xn, Yn)) sampled iid from
L(X,Y ) in terms of the sampling operator approach (Smale and Zhou, 2005, 2007),
we obtain a regularized empirical solution Fλ,z(·) = A∗

λ,zϕ(·). Theorem 3.5 shows

that the convergence Fλ,z → Fp in L2(E,FE , π;H ) for n → ∞ with a suit-
able regularization scheme λ = λ(n) implies convergence of Aλ,z → P in the
norm ‖·‖

H →L2(π).

4. Preliminaries and Assumptions

We give a concise overview of the needed mathematical background.

4.1. Measure, integration and Hilbert space operators. We briefly introduce
the main concepts from measure theory and linear operators and analysis in Hilbert
spaces. We refer the reader to Diestel and Uhl (1977), Dunford and Schwartz
(1988a,b) and Dudley (2002) for details.

For any topological space E, we will write FE = B(E) for its associated Borel field.
For any collection of setsM, σ(M) denotes the intersection of all σ-fields containing
M. For any σ-field F and countable index set I, we write F⊗I as the product σ-
field (i.e., the smallest σ-field with respect to which all coordinate projections on
EI are measurable). Note that since E is Polish (i.e., separable and completely
metrizable), we have B(EI) = B(E)⊗I , i.e. the Borel field on the product space
generated by the product topology and the product of the individual Borel fields
are equal. Put differently, the Borel field operator and the product field operator
are compatible with respect to product spaces (Dudley, 2002, Proposition 4.1.17).
Moreover, EI equipped with the product topology is Polish.

In what follows, we write B for a separable real Banach space with norm ‖·‖B, and
H for a separable real Hilbert space with inner product 〈·, ·〉H . The expression
B(B,B′) stands for the Banach algebra of bounded linear operators from B to
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another Banach space B′ and is equipped with the operator norm ‖·‖. For the case
B = B′, we abbreviate B(B,B′) = B(B). We will also write ‖·‖ = ‖·‖B→B′ , if the
choice of norms on the underlying spaces B,B′ needs to be emphasized.

Let (Ω,F , π) be a measure space. For any separable Banach space B, we let
Lp(Ω,F , π;B) denote the space of strongly F − FB measurable and Bochner p-
integrable functions f : Ω → B for 1 ≤ p ≤ ∞. In the case of B = R, we simply
write Lp(π) := Lp(Ω,F , π;R) for the standard space of real-valued Lebesgue p-
integrable functions.

The expression H ′ ⊗ H denotes the tensor product of Hilbert spaces H,H ′. The
Hilbert space H ′⊗H is the completion of the algebraic tensor product with respect
to the inner product 〈x′

1 ⊗ x1, x
′
2 ⊗ x2〉H′⊗H = 〈x′

1, x
′
2〉H′ 〈x1, x2〉H for x1, x2 ∈ H

and x′
1, x

′
2 ∈ H ′. We interpret the element x′ ⊗ x ∈ H ′ ⊗H as the linear rank-one

operator x′⊗x : H → H ′ defined by x̃ 7→ 〈x̃, x〉H x′ for all x̃ ∈ H . Whenever (ei)i∈I ,
(e′j)j∈J are complete orthonormal systems (CONSs) in H and H ′, (e′j⊗ei)i∈I,j∈J is
a CONS in H ′⊗H . Thus, when H and H ′ are separable, H ′⊗H is separable.

For 1 ≤ p < ∞, the p-Schatten class Sp(H,H ′) consists of all compact operators
A from H to H ′ such that the norm ‖A‖Sp(H) := ‖(σi(A))i∈J‖ℓp is finite. Here

‖(σi(A))i∈J‖ℓp denotes the ℓp sequence space norm of the sequence of the strictly

positive singular values of A indexed by the countable set J , which we assume to
be ordered nonincreasingly. We set S∞(H,H ′) to be the class of compact operators
from H to H ′ equipped with the operator norm and write Sp(H) := Sp(H,H)
for all 1 ≤ p ≤ ∞. The spaces Sp(H) are two-sided ideals in B(H). Moreover
‖A‖Sq(H,H′) ≤ ‖A‖Sp(H,H′) holds for 1 ≤ p ≤ q ≤ ∞, i.e., Sp(H,H ′) ⊆ Sq(H,H ′).

For p = 2, we obtain the Hilbert space of Hilbert–Schmidt operators from H to
H ′ equipped with the inner product 〈A1, A2〉S2(H,H′) = Tr (A∗

1A2). For p = 1,

we obtain the Banach space of trace class operators. The Schatten classes are the
completion of finite-rank operators (i.e., operators in span{x′⊗x | x ∈ H,x′ ∈ H ′})
with respect to the corresponding norm.

We will make frequent use of the fact that the tensor product space H ′ ⊗ H can
be isometrically identified with the space of Hilbert–Schmidt operators from H to
H ′, i.e., we have S2(H,H ′) ≃ H ′ ⊗H . For elements x1, x2 ∈ H , x′

1, x
′
2 ∈ H ′, we

have the relation 〈x′
1 ⊗ x1, x

′
2 ⊗ x2〉H′⊗H = 〈x′

1 ⊗ x1, x
′
2 ⊗ x2〉S2(H,H′), where the

tensors are interpreted as rank-one operators as described above. This identification
of tensors with as rank-one operators extends to span{x′ ⊗ x | x ∈ H,x′ ∈ H ′} by
linearity and defines a linear isometric isomorphism between H ′⊗H and S2(H,H ′),
which can also be seen by considering Hilbert–Schmidt operators in terms of their
singular value decompositions. We will frequently switch in between these two
viewpoints when considering Hilbert–Schmidt operators.

4.2. Joint and regular conditional distributions. In this paper, we will con-
sider a second countable locally compact Hausdorff space (E,FE) equipped with its
Borel field. We need this technical setup to avoid dealing with measure-theoretic
details later on.

We consider two random variables X,Y defined on a common probability space
(Ω,F ,P) taking values in E. We will assume without loss of generality that (Ω,F ,P)
is rich enough to support all performed operations in this paper. For a finite number
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of random variables X1, . . . , Xn defined with values in E, we write L(X1, . . . , Xn)
for the finite-dimensional law, i.e., pushforward measure on (En,B(En)). We write

X
d
= Y , if X and Y are equal in distribution, i.e., their laws are equal. Throughout

this paper, we define π := L(X) and ν := L(Y ), i.e., we have X ∼ π and Y ∼
ν.

Let p : E × FE → R be a Markov kernel1, i.e., p(x, ·) is a probability measure on
(E,FE) for every x ∈ E and the map E ∋ x 7→ p(x,A) is an FE − R measurable
function for every A ∈ FE such that

P[Y ∈ A | X = x] =

∫

A

p(x, dy) = p(x,A)

for all x ∈ E and events A ∈ FE. The Markov kernel p defines a so-called regular
version of the above conditional distribution which allows to consider the fiberwise
disintegration

P[X ∈ A, Y ∈ B] =

∫

A

p(x,B) dπ(x),

see Dudley (2002, Theorem 10.2.1). Such a Markov kernel p exists always in our
scenario, since the space E is Polish (Dudley, 2002, Theorem 10.2.2). Additionally,
two regular versions of the same conditional distribution with correspondingMarkov
kernels p, p′ coincide almost everywhere, i.e., we have p(x, ·) = p′(x, ·) for π-a.e.
x ∈ E.

Our goal is to perform a nonparametric estimation of the conditional expectation
operator P : L2(ν) → L2(π) defined by

[Pf ](x) := E[f(Y ) | X = x] =

∫

E

f(y) p(x, dy),

which is a contractive linear map (and therefore bounded). In fact, this can eas-
ily be seen by making use of Jensen’s inequality for conditional expectations and
considering

‖Pf‖2L2(π) = E
[
E[f(Y ) | X ]2

]
≤ E

[
E[(f(Y ))2 | X ]

]
= E[f(Y )2] = ‖f‖2L2(ν) .

4.3. Vector-valued reproducing kernel Hilbert spaces. We will give a brief
overview of the concept of a vector-valued reproducing kernel Hilbert space (vRKHS),
i.e., a Hilbert space consisting of functions from a nonempty set E to a Hilbert space
H . Since the construction of such a space is quite technical, we will not cover all
mathematical details here but rather introduce the most important properties. For
a rigorous treatment of this topic, we refer the reader to Carmeli et al. (2006) as
well as Carmeli et al. (2010).

Definition 4.1 (Operator-valued psd kernel). Let E be a nonempty set and H be
a real Hilbert space. A function K : E × E → B(H) is called an operator-valued

1We distinguish different notions of kernels in this paper. We will often refer to reproducing
kernels/symmetric positive semidefinite kernels simply as kernel, while the kernel p defining a
conditional distribution will always be called Markov kernel.
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positive-semidefinite (psd) kernel, if K(x, x′) = K(x′, x)∗ and all x, x′ ∈ E and
additionally for all n ∈ N, x1, . . . , xn ∈ E and α1, . . . , αn ∈ R, we have

n∑

i,j=1

αiαj 〈h, K(xi, xj)h〉H ≥ 0 (4.1)

for all h ∈ H.

Let K : E × E → B(H) be an operator-valued psd kernel. For a fixed x ∈ E and
h ∈ H , we obtain a function from E to H via

[Kxh](·) := K(·, x)h.

We can now consider the set

Gpre := span{Kxh | x ∈ E, h ∈ H} (4.2)

and define an inner product on Gpre by linearly extending the expression

〈Kxh, Kx′h′〉
G
:= 〈h, K(x, x′)h′〉H . (4.3)

Let G be the completion of Gpre with respect to this inner product. We call G the
H-valued reproducing kernel Hilbert space or more generally the vRKHS induced
by the kernel K.

The space G is a Hilbert space consisting of functions from E to H with the repro-
ducing property

〈F (x), h〉H = 〈F, Kxh〉G (4.4)

for all F ∈ G , h ∈ H and x ∈ E. Additionally, we have

‖F (x)‖H ≤ ‖K(x, x)‖1/2 ‖F‖
G
, x ∈ E (4.5)

for all F ∈ G . When Kx is understood as a linear operator from H to G fixed
x ∈ E, the inner product given by (4.3) implies that Kx is a bounded operator for
all x ∈ E. As a result, we can rewrite the reproducing property (4.4) as

F (x) = K∗
xF (4.6)

for all F ∈ G and x ∈ E. Therefore we obviously have

K∗
xKx′ = K(x, x′), x, x′ ∈ E (4.7)

and the linear operators Kx : H → G and K∗
x : G → H are bounded with

‖Kx‖ = ‖K∗
x‖ = ‖K(x, x)‖1/2 . (4.8)

In this paper, we will deal with two very specific examples of psd kernels, which we
will introduce in what follows.

4.3.1. R-valued RKHS. When we identify the space of linear operators on R with
R itself and consider a scalar-valued psd kernel

k : E × E → R (4.9)

in the sense of Definition 4.1, we obtain the standard setting of the (R-valued)
reproducing kernel Hilbert space (RKHS; Aronszajn 1950). The kernel k satisfies
k(x, x′) = k(x′, x) for all x, x′ ∈ E. We obtain a space H consisting of functions
from E to R with the properties

(i) 〈f, k(x, ·)〉
H

= f(x) for all f ∈ H (reproducing property), and
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(ii) H = span{k(x, ·) | x ∈ E}, where the completion is with respect to the
RKHS norm.

It follows in particular that k(x, x′) = 〈k(x, ·), k(x′, ·)〉
H

. The so-called canonical
feature map ϕ : E → H is given by ϕ(x) := k(x, ·).

The space H has been thoroughly examined over the last decades and has nu-
merous applications in statistics, approximation theory and machine learning. For
details, the reader may consult Berlinet and Thomas-Agnan (2004), Steinwart and
Christmann (2008) and Saitoh and Sawano (2016).

Remark 4.2 (Notation). In what follows, H will always denote the R-valued RKHS
induced by the kernel k : E × E → R with corresponding canonical feature map
ϕ : E → H as described in this section. We will write small letters f, g, h ∈ H for
R-valued RKHS functions.

4.3.2. H -valued vRKHS. Let H be the R-valued RKHS induced by the kernel
k : E × E → R as decribed in Section 4.3.1. Let IdH be the identity operator on
H . We define the map K : E × E → B(H ) with

K(x, x′) := k(x, x′)IdH (4.10)

for all x, x′ ∈ E. It is straightforward to show that K is a psd kernel and there-
fore induces an H -valued vRKHS G (see also Carmeli et al., 2010, Example
3.3.(i)).

Remark 4.3 (Notation). In what follows, G will always denote the H -valued vRKHS
induced by the kernel K : E × E → B(H ) given by K(x, x′) = k(x, x′)IdH as de-
scribed in this section. We will write capital letters F,G,H ∈ G for H -valued
functions in order to distinguish them from real-valued functions f, g, h ∈ H .

4.4. Isomorphism between G and S2(H ). The foundation of our approach is
given by the fact that elements of the vRKHS G defined by the kernel K(x, x′) =
k(x, x′)IdH can be interpreted as Hilbert–Schmidt operators on H . We again recall
that the space of Hilbert–Schmidt operators S2(H ) is isometrically isomorphic to
the tensor product space H ⊗ H via an identification of rank-one operators as
elementary tensors. We will use the latter to state the result, since a formulation
in this way is more natural.

Theorem 4.4 (G is isomorphic to H ⊗ H ). Let H be a scalar RKHS with
corresponding kernel k. Let G be the vector-valued RKHS induced by the kernel
K(x, x′) := k(x, x′)IdH . The map Θ defined on rank-one tensors in H ⊗ H

defining an H -valued function on E by the relation

[Θ(f ⊗ h)] (x) := h(x)f = (f ⊗ h)ϕ(x) = 〈h, ϕ(x)〉
H

f (4.11)

for all x ∈ E and f, h ∈ H maps to G . Furthermore, extending Θ to H ⊗ H via
linearity and completion yields an isometric isomorphism between H ⊗ H and G .

A proof of Theorem 4.4 can be found in Carmeli et al. (2010, Proposition 3.5 &
Example 3.3(i)). The isometric isomorphism

Θ : H ⊗ H → G
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defined by (4.11) seems technical but actually becomes quite intuitive when one
examines how the inner products of both spaces are connected via the kernels k
and K. We outline this connection briefly below.

Let x, x′ ∈ E and h, h′ ∈ H . We define F := Kxh ∈ G and F ′ := Kx′h′ ∈ G and
note that we can express the inner product in G as

〈F, F ′〉
G
= 〈K∗

x′Kxh, h
′〉

H
= 〈k(x′, x)IdH h, h〉

H

= 〈ϕ(x′), ϕ(x)〉
H

〈h, h′〉
H

= 〈h⊗ ϕ(x), h′ ⊗ ϕ(x′)〉
H ⊗H

.

This derivation can be extended straightforwardly to a correspondence of vector-
valued functions F, F ′ ∈ span{Kxh |x ∈ E, h ∈ H } ⊆ G and linear combinations of
tensors in {h⊗ϕ(x) |x ∈ E, h ∈ H } ⊆ H ⊗H by using bilinearity of the respective
inner products. Since both spans are dense in the associated spaces, this property
can be extended to the full spaces via completion. We now restate Theorem 4.4 in a
more accessible way for our scenario. The formulation below shows that pointwise
evaluation of functions in G may be conducted by the action of the corresponding
operator in S2(H ) on the canonical feature map ϕ. We will refer to this property
as the operator reproducing property. We visualize the relations between H ⊗ H ,
S2(H ) and G in Figure 2.

Corollary 4.5 (Operator reproducing property). For every function F ∈ G there
exists an operator A := Θ−1(F ) ∈ S2(H ) such that

F (x) = Aϕ(x) ∈ H (4.12)

for all x ∈ E with ‖A‖S2(H ) = ‖F‖
G

and vice versa.

Conversely, for any pair F ∈ G and A ∈ S2(H ) satisfying property (4.12) we have
A = Θ−1(F ).

Proof. The first assertion directly follows from Theorem 4.4 and the construction
of Θ. It remains to prove the second assertion. Let F ∈ G and define A := Θ−1(F ).
By the first assertion, A satifies (4.12). Assume there exists B ∈ S2(H ) satisfying
(4.12). Then by linearity, A and B coincide on span{ϕ(x) | x ∈ E}, which is dense
in H . By continuity, we therefore have A = B. The operator in S2(H ) satisfying
(4.12) is therefore uniquely given by Θ−1(F ). �

S2(H ) H ⊗ H G
A =

∑
i σi(A)ui ⊗ vi

SVD

Corollary 4.5

A ↔ Aϕ(·)

Theorem 4.4

Θ(ui ⊗ vi) = vi(·)ui

Figure 2. Visualization of the isometric isomorphisms between
S2(H ), H ⊗ H and G . Here, SVD refers to the singular value
decomposition of compact operators.
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Remark 4.6 (Operator reproducing property). Not only does Corollary 4.5 describe
how functions in G can be evaluated in terms of their operator analogue in S2(H ),
it also implies the implicit construction of G via Hilbert–Schmidt operators acting
on the RKHS H . In particular, the above result shows that the space of Hilbert–
Schmidt operators S2(H ) generates the vRKHS G via

G = {F : E → H | F = Aϕ(·), A ∈ S2(H )}.

Our previous considerations show that G is precisely the vRKHS associated with
the vector-valued kernel K := kIdH .

Corollary 4.5 will be of central importance for our approach. The identification of
an H -valued vRKHS function in G with a corresponding Hilbert–Schmidt opera-
tor acting on H will be used to bridge the gap between vector-valued statistical
learning theory and the nonparametric estimation of linear operators (Grünewälder
et al., 2013).

4.5. Assumptions on H . We impose some technical requirements on the RKHS
H and the corresponding kernel k. Our first three assumptions allow that we
can perform Bochner integration without being caught up in measurability and
integrability issues later on (Diestel and Uhl, 1977). The fourth and the fifth
assumption are needed to ensure that H supplies the typically used approximation
qualities in a function space context.

Assumption 1 (Separability). The RKHS H is separable. Note that for a Polish
space E, the RKHSs induced by a continuous kernel k : E × E → R is always
separable (see Steinwart and Christmann, 2008, Lemma 4.33). For a more general
treatment of conditions implying separability, see Owhadi and Scovel (2017).

Assumption 2 (Measurability). The canonical feature map ϕ : E → H is FE −
FH measurable. This is the case when k(x, ·) : E → R is FE − FR measurable
for all x ∈ E. If this condition holds, then additionally all functions f ∈ H are
FE − FR measurable and k : E × E → R is F⊗2

E − FR measurable (see Steinwart
and Christmann, 2008, Lemmas 4.24 and 4.25).

Assumption 3 (Existence of second moments). We have ϕ ∈ L2(E,FE , π;H ) as

well as ϕ ∈ L2(E,FE , ν;H ). Note that this is equivalent to E[‖ϕ(X)‖2
H

] < ∞ and

E[‖ϕ(Y )‖2
H

] < ∞ which trivially holds for all probability measures π, ν on (E,FE)
case whenever supx∈E k(x, x) < ∞.

Assumption 4 (C0-kernel). We assume that H ⊆ C0(E), where C0(E) is the
space of continuous real-valued functions on E vanishing at infinity. In particular,
this is the case if x 7→ k(x, x) is bounded on E and k(x, ·) ∈ C0(E) for all x ∈ E
(Carmeli et al., 2010, Proposition 2.2).

Assumption 5 (L2-universal kernel, see Section 4.6). We assume that H is dense
in L2(π). In this case, the kernel k and the RKHS H are called L2-universal
(Carmeli et al., 2010; Sriperumbudur et al., 2011).

Remark 4.7. Since not all of our results will need all of the above assumptions, we
collect some general implications of the different assumptions here.
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(1) Assumptions 1–3 ensures that H can be continuously embedded into both
L2(π) and L2(ν) (see Section 4.6).

(2) The combination of Assumption 4 and Assumption 5 implies that H is
even dense in L2(ν) for all probability measures ν on (E,FE) (Carmeli
et al., 2010, Theorem 4.1 and Corollary 4.2).

(3) Instead of Assumption 5, it is sometimes required in the literature that
H is dense in C0(E) with respect to the supremum norm. This property
is usually called C0-universality. One can show that when Assumption 4
holds, C0-universality is equivalent to L

2-universality (Sriperumbudur et al.,
2011).

(4) When Assumptions 1–5 are satisfied, then the vRKHS G induced by the
kernel K = kIdH is dense in both L2(E,FE , π;H ) and L2(E,FE , ν;H )
(see Carmeli et al. 2010, Example 6.3 and Carmeli et al. 2010, Theorem
4.1). This is important for us, as we will make use of this fact later on.

Example 4.8. For E ⊆ R
d, well-known translation invariant kernels such as the

Gaussian kernel or Laplacian kernel satisfy all of the above assumptions for arbi-
trary probability measures π, ν on (E,FE) (Sriperumbudur et al., 2011).

4.6. Integral operators and L2-inclusions. The Assumptions 1–3 imply that
H can be embedded into spaces of square integrable functions. This fact and
its connections to integral operators defined by the corresponding kernels plays a
fundamental role in learning theory.

4.6.1. Real-valued RKHS. We begin with general statements for the scalar kernel
k (see for example Steinwart and Christmann, 2008, Chapter 4.3). Let the As-
sumptions 1–3 be satisfied. The inclusion operator iπ : H → L2(π) given by
f 7→ [f ]∼ ∈ L2(π) identifies f ∈ H with its equivalence class of π-a.e. defined func-
tions in L2(π). It is bounded with ‖iπ‖ ≤ ‖ϕ‖L2(E,FE,π;H ) and Hilbert–Schmidt.

The adjoint of iπ is the integral operator i∗π : L
2(π) → H given by

[i∗πf ](x) =

∫

E

k(x, x′)f(x′) dπ(x′), f ∈ L2(π).

The kernel k is L2-universal if and only if i∗π is injective.

The operator CXX := i∗πiπ : H → H is the kernel covariance operator associated
with the measure π given by

CXX =

∫

E

ϕ(x) ⊗ ϕ(x) dπ(x) = E[ϕ(X)⊗ ϕ(X)],

where the integral converges in trace norm. We define all of the above concepts
analogously for the measure ν and the corresponding random variable Y . The
kernel cross-covariance operator (Baker, 1973) ofX and Y is the trace class operator
given by

CY X :=

∫∫

E×E

ϕ(y)⊗ ϕ(x) p(x, dy)dπ(x) = E[ϕ(Y )⊗ ϕ(X)].

Both operators satisfy 〈h, CXXf〉
H

= 〈h, f〉L2(π) = E[f(X)h(X)] as well as

〈h, CY Xf〉
H

= E[f(X)h(Y )] for all f, h ∈ H .
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Remark 4.9 (Scalar RKHSs and integral operators). Although the presented op-
erators i∗π : L2(π) → H , iπi

∗
π : L2(π) → L2(π) and CXX : H → H have the

same analytical expression as integral operators, they are fundamentally different
objects since they operate on different spaces. However, iπi

∗
π and CXX share the

same nonzero eigenvalues and their eigenfunctions can be related (see for example
Rosasco et al., 2010).

4.6.2. Vector-valued RKHS. Similarly to the above operators defined for the scalar
kernel k, we can define the above concepts for the vector-valued kernel K = kIdH

in the context of Bochner spaces (Carmeli et al., 2006, 2010).

When Assumptions 1–3 are satisfied, the space G is separable. The elements of
G are FE − FH measurable functions. Additionally, they are Bochner square
integrable w.r.t. π. The inclusion operator Iπ : G → L2(E,FE , π;H ) given by
F 7→ [F ]∼ is bounded with ‖Iπ‖ ≤ ‖ϕ‖L2(E,FE ,π;H ).

The adjoint of Iπ is the integral operator I∗
π : L

2(E,FE , π,H ) → G given by

[I∗
πF ](x) =

∫

E

K(x, x′)F (x′) dπ(x′), F ∈ L2(E,FE , π,H ).

The operator T := I∗
πIπ : G → G is the generalized covariance operator (also called

frame operator, Carmeli et al. 2006) associated with the measure π given by

TF =

∫

E

KxK
∗
xF dπ(x) (4.13)

for all F ∈ G . T is bounded.

The following example shows that the generalized covariance operator T associated
with K(x, x′) = k(x, x′)IdH is noncompact in general. This fact will be very
important for us later on in the context of inverse problems.

Example 4.10 (Noncompact generalized covariance operator T ). It is easy to see
that for commonly used radial kernels k such as the Gaussian kernel on E ⊆ R

d,
the generalized covariance operator T is never compact.
Consider a measurable kernel k : E×E → R which induces an infinite-dimensional
RKHS H satisfying Assumptions 1 and 2. Assume k(x, y) > 0 for all x, y ∈ E and
k(x, x) = 1 for all x ∈ E. Let K = kIdH and (ei)i∈N ⊂ H be an ONS. We fix
some x′ ∈ E and define Fi := Kx′ei ∈ G for all i ∈ N. Note that we have

〈Kx′ei, Kx′ej〉G = 〈k(x′, ·)ei, k(x
′, ·)ej〉G = k(x′, x′) 〈ei, ej〉H = δij ,

i.e., (Fi)i∈N is an ONS in G . Then it is possible to show that (TFi)i∈N consists of
orthogonal elements of the same length:

〈TFi, TFj〉G =

〈∫

E

KxFi(x)dπ(x),

∫

E

KxFj(x)dπ(x)

〉

G

=

〈∫

E

k(x′, x)Kxeidπ(x),

∫

E

k(x′, x)Kxejdπ(x)

〉

G

=

∫∫

E2

k(x′, x)k(x′, y)
〈
K∗

yKxei, ej
〉

H
d[π ⊗ π](x, y)

=

∫∫

E2

k(x′, x)k(x′, y)k(x, y) 〈ei, ej〉H d[π ⊗ π](x, y) = Mδij
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with the constant M :=
∫∫

E2 k(x
′, x)k(x′, y)k(x, y) d[π⊗π](x, y) > 0, which is inde-

pendent of i, j ∈ N. Consequently, we have ‖TFi − TFj‖
2
G
= ‖TFi‖

2
G
+ ‖TFj‖

2
G
=

2M for all i 6= j, i.e., no subsequence of (TFi)i∈N can be Cauchy. We therefore have
constructed a bounded sequence (Fi)i∈N in G such that (TFi)i∈N does not contain
a convergent subsequence in G , implying that T is not compact.

4.7. Conditional mean embeddings and regression function. Under Assump-
tions 1–3, the Bochner integrability of the feature map ϕ : E → H can be elegantly
used in combination with the reproducing property of H to express expectation
operations via simple linear algebra.

In particular, the kernel mean embedding (Berlinet and Thomas-Agnan, 2004; Smola
et al., 2007; Muandet et al., 2017) of the probability measure π defined by the
Bochner expectation

µπ :=

∫

E

ϕ(x) dπ(x) = E[ϕ(X)] ∈ H (4.14)

naturally satisfies the expectation reproducing property

E[f(X)] = E [〈f, ϕ(X)〉
H

] = 〈f, µπ〉H for all f ∈ H . (4.15)

We call the RKHS H (or equivalently the corresponding kernel k) characteristic,
if the mean embedding map

π 7→

∫

E

ϕ(x) dπ(x) = µπ ∈ H

defined on all probability measures on (E,FE) is injective.

Remark 4.11 (The RKHS H is characteristic). Our Assumptions 4 and 5 imply
that H is characteristic (Carmeli et al., 2010; Sriperumbudur et al., 2010, 2011).

For two probability measures π, ν on (E,FE), the maximum mean discrepancy
(MMD) is defined by

dk(π, ν) := sup
f∈H

‖f‖
H

≤1

∣∣∣∣
∫

E

f(x)dπ(x) −

∫

E

f(x)dν(x)

∣∣∣∣ = ‖µπ − µν‖H
. (4.16)

For characteristic kernels, the MMD constitutes a metric on the set of probability
measures on (E,FE). This fact has been used as a powerful tool in RKHS-based
inference (Gretton et al., 2012b; Sejdinovic et al., 2013). The MMD can be inter-
preted as a so-called integral probability metric (Müller, 1997) and has been shown to
metrize weak convergence of measures under some mild conditions (Simon-Gabriel
et al., 2020).

Transferring (4.14) to a regular conditional distribution of Y given X , we de-
fine H -valued conditional mean embedding (CME) function (Park and Muandet,
2020a)

Fp(x) :=

∫

E

ϕ(y) p(x, dy) = E[ϕ(Y ) | X = x] ∈ L2(E,FE , π;H ) (4.17)
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and obtain a pointwise conditional version of the expectation reproducing prop-
erty (4.15) as

E[f(Y ) | X = x] = 〈f, Fp(x)〉H for all f ∈ H and x ∈ E. (CME)

The fact that Fp (or analogously any other regular version of E[ϕ(Y ) | X = ·]) is
a well-defined element in L2(E,FE , π;H ) can be seen by using Jensen’s inequality
for conditional Bochner expectations as

‖Fp‖
2
L2(E,FE,π;H ) =

∫

E

‖Fp(x)‖
2
H

dπ(x)

≤

∫∫

E×E

‖ϕ(y)‖2
H

p(x, dy)dπ(x) = E[‖ϕ(Y )‖2
H

] < ∞.

together with Assumption 3.

The approximation of Fp is a key concept in a wide variety of models for kernel-
based inference. If CXX is injective, Song et al. (2009) and Fukumizu et al. (2013)
show that under the assumption

E[f(Y ) | X = ·] = 〈f, Fp(·)〉H ∈ H for all f ∈ H , (4.18)

we have a closed form expression of Fp via

Fp(x) = CY XC†
XXϕ(x) (4.19)

for all x ∈ E such that ϕ(x) ∈ range(CXX). Here, the (generally unbounded and

not globally defined) operator C†
XX : : range(CXX) + range(CXX)⊥ → H is the

Moore–Penrose pseudoinverse of CXX (see Engl et al. 1996). The assumption (4.18)
is generally not satisfied (see Klebanov et al. 2020a for a detailed investigation
of arising problems). Grünewälder et al. (2012) and Park and Muandet (2020a)
show that a Tikhonov–Phillips regularized version of the estimate of (4.19) can
be understood as an empirical approximation of Fp with functions in G in a least
squares regression context. However, no approximation qualities of the CME in the
L2-operator context are considered. We will now extend this theory and connect it
to the CME regression model later on.

5. Nonparametric approximation of P

We now restate the main results from Section 3 with detailed assumptions and pro-
vide their proofs. Furthermore, we investigate the connections of the approximation
of P over functions in H to the maximum mean discrepancy and regularized least
squares regression.

5.1. Proofs of main results. We begin with the proof of Theorem 3.5, as it
constitutes the theoretical foundation for our remaining work. We note that this
result can also be interpreted as an improvement of a surrogate risk bound derived
by Grünewälder et al. (2012, Section 3.1) and later on used by Park and Muandet
(2020a) to approximate the CME. We will elaborate on this fact in more detail later
on (see Section 5.3 and Remark 5.9 in particular). Our bound has a significant
impact from an approximation viewpoint, which we will highlight in our following
examination.
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Theorem 3.5 (Regression and conditional mean approximation). Under the As-
sumptions 1–3, we have for every operator A ∈ S2(H ) that

‖A− P‖2
H →L2(π) ≤ E

[
‖Fp(X)−A∗ϕ(X)‖2

H

]
= ‖Fp −A∗ϕ(·)‖2L2(E,FE ,π;H ) .

The given bound is sharp.

Proof. Let A ∈ S2(H ). We have

‖A− P‖2
H →L2(π) = sup

‖f‖
H

=1

‖Af − Pf‖2L2(π)

= sup
‖f‖

H
=1

‖[Af ](·)− E[f(Y ) | X = ·]‖2L2(π)

= sup
‖f‖

H
=1

∥∥〈Af, ϕ(·)〉
H

− 〈f, Fp(·)〉H
∥∥2
L2(π)

= sup
‖f‖

H
=1

∥∥〈f, A∗ϕ(·)− Fp(·)〉H
∥∥2
L2(π)

= sup
‖f‖

H
=1

E

[
〈f, A∗ϕ(X)− Fp(X)〉2

H

]

≤ sup
‖f‖

H
=1

E

[
‖f‖2

H
‖A∗ϕ(X)− Fp(X)‖2

H

]

= E

[
‖A∗ϕ(X)− Fp(X)‖2

H

]
= ‖A∗ϕ(·)− Fp‖

2
L2(E,FE ,π;H ) ,

where we use the reproducing property in H in the third equality and the Cauchy–
Schwarz inequality. It is clear that the above bound is sharp by considering the case
that we have P-a.e. A∗ϕ(X) − Fp(X) = h for some constant h ∈ H . In this case
the above bound is attained when we choose f = h/ ‖h‖

H
in the supremum. �

Theorem 3.2 (Approximation by Hilbert–Schmidt operators). Let Assumptions 1-
5 be satisfied. Then for every δ > 0, there exists a Hilbert–Schmidt operator
A : H → H , such that

‖A− P‖
H →L2(π) < δ. (5.1)

Proof. By Corollary 4.5, every operator A∗ ∈ S2(H ) corresponds to a function
F ∈ G via F (x) = A∗ϕ(x) for all x ∈ E and vice versa. The space G is densely
embedded into L2(E,FE , π;H ) by Remark 4.7(4). For every δ > 0 we therefore

have an operator A∗ ∈ S2(H ) such that the bound ‖A∗ϕ(·) − Fp‖
2
L2(E,FE,π;H ) =

‖F − Fp‖
2
L2(E,FE,π;H ) < δ holds. Together with the bound obtained in Theo-

rem 3.5, this proves the assertion. �

Corollary 3.4. Let Assumptions 1-5 be satisfied. Then there exists a sequence of
finite-rank operators (An)n∈N from H to H such that ‖An − P‖

H →L2(π) → 0 as
n → ∞.
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Proof. Let δ > 0. By the fact that the finite-rank operators on H are dense in
S2(H ) and Theorem 3.5, we can choose A ∈ S2(H ) as well as a finite-rank operator
An on H such that

‖An − P‖
H →L2(π) ≤ ‖A− P‖

H →L2(π) + ‖iπ‖ ‖An −A‖
H →H

≤ ‖A− P‖
H →L2(π) + ‖iπ‖ ‖An −A‖S2(H ) <

δ

2
+

δ

2
.

�

5.2. Measure-theoretic implications of the approximation of P . When H

is characteristic, P : H → L2(π) uniquely determines the conditional distribution
p(x, ·) for π-a.e. x ∈ E (that is, up to a choice of a regular version of the underlying
conditional expectation). This underlines that the conditional expectation operator
P interpreted as an operator with the domain H instead of L2(ν) still captures
sufficient information about the underlying joint distribution of X and Y . More
generally, an approximation of P naturally yields a weighted approximation of the
associated Markov kernel p in the MMD. This may provide a foundation for the
adaptation of MMD-based hypothesis tests for Markov kernels.

Theorem 5.1 (Equivalence to approximation in MMD). Let Assumptions 1–3 be
satisfied. Let P, P ′ : H → L2(π) be two well-defined bounded conditional expecta-
tion operators associated with the Markov kernels p, p′ : E × FE → R. Then we
have

‖P − P ′‖
2
H →L2(π) =

∫

E

dk(p(x, ·), p
′(x, ·))2 dπ(x). (5.2)

Proof. We have

‖P − P ′‖
2
H →L2(π) = sup

f∈H

‖f‖
H

=1

‖Pf − P ′f‖
2
L2(π)

= sup
f∈H

‖f‖
H

=1

∥∥∥∥
∫

f(y) p(·, dy)−

∫
f(y) p′(·, dy)

∥∥∥∥
2

L2(π)

= sup
f∈H

‖f‖
H

=1

∥∥∥∥
〈
f,

∫

E

ϕ(y) p(·, dy)−

∫

E

ϕ(y) p′(·, dy)

〉

H

∥∥∥∥
2

L2(π)

=

∫

E

∥∥µp(x,·) − µp′(x,·)

∥∥2
H

dπ(x)

=

∫

E

dk(p(x, ·), p
′(x, ·))2 dπ(x),

where we use the reproducing property in H in the third equality. �

Under more restrictive assumptions, the low-dimensional approximation of the ad-
joint of P by means of the MMD has been proposed in the context of random
dynamical systems with a different estimation scheme (Tian and Wu, 2020).
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Remark 5.2 (Assumptions of Theorem 5.1). For simplicity, we do not explicitly
assume in Theorem 5.1 that the underlying random variables associated with P
and P ′ are distributed with respect to the marginals π and ν. To show the above
statement, it is sufficient that both operators are well-defined and bounded when
the domain and image space and domain are chosen to be H and L2(π). The proof

of Theorem 5.1 shows that ‖P − P ′‖2
H →L2(π) can equivalently be interpreted as the

squared L2(E,FE , π;H ) distance between the two conditional mean embeddings
Fp(x) =

∫
E ϕ(y) p(x, dy) and F ′

p(x) =
∫
E ϕ(y) p′(x, dy).

Remark 5.3 (Approximation of MMD in Lq-norm). Whenever the conditional ex-
pectation operators P, P ′ are well-defined and bounded operators from H to Lq(π)
for 1 ≤ q ≤ ∞, we can analogously obtain versions of (5.2) for the respective Lq

norm. In particular, in this case we have

‖P − P ′‖
q
H →Lq(π) =

∫

E

dk(p(x, ·), p
′(x, ·))q dπ(x). (5.3)

When H is characteristic, we immediately obtain the following result. It shows that
conditional expectation operators on H determine the conditional distribution of
the associated random variables uniquely up to a choice of a regular version.

Corollary 5.4. Let Assumptions 1–3 be satisfied and H be characteristic. With
the notation of Theorem 5.1, we have ‖P − P ′‖

H →L2(π) = 0 if and only if p(x, ·) =

p′(x, ·) for π-a.e. x ∈ E.

Moreover, Corollary 5.4 implies that the joint distributions for the class of pairs of
random variables X,Y with a fixed marginal X ∼ π are uniquely determined by
P : H → L2(π).

Corollary 5.5. Let X,X ′, Y, Y ′ be random variables defined on (Ω,F ,P) taking
values in (E,FE) such that X ∼ π and X ′ ∼ π and Assumptions 1–3 are satisfied
for both pairs X,Y and X ′, Y ′. Let H be characteristic and P, P ′ : H → L2(π)
be bounded conditional expectation operators given by Pf = E[f(Y ) | X = ·] and
P ′f = E[f(Y ′) | X ′ = ·] defined by some Markov kernels p and p′ respectively.
Then we have ‖P − P ′‖

H →L2(π) = 0 if and only if L(X,Y ) = L(X ′, Y ′).

Proof. Let ‖P − P ′‖
H →L2(π) = 0. For any two events A,B ∈ FE , we perform the

disintegration

P[X ∈ A, Y ∈ B] =

∫

A

p(x,B) dπ(x) (5.4)

and analogously for the pair X ′, Y ′. We apply Corollary 5.4, leading to the π-a.e.
equivalence p(·,B) = p′(·,B). This gives P[X ∈ A, Y ∈ B] = P[X ′ ∈ A, Y ′ ∈ B].
The converse implication follows analogously. �

5.3. Least squares regression and connection to the CME. We now describe
the theoretical foundation of estimating P based on Theorem 3.5. In the process,
we will see that our concept is closely related to the CME.



22 MATTES MOLLENHAUER AND PÉTER KOLTAI

By the operator reproducing property from Corollary 4.5 we may rewrite the
vRKHS least squares regression problem

argmin
F∈G

R(F ) with R(F ) := E[‖ϕ(Y )− F (X)‖2
H

] (5.5)

equivalently as

argmin
A∗∈S2(H )

E[‖ϕ(Y )−A∗ϕ(X)‖2
H

]. (5.6)

As is well-known in statistical learning theory (see for example Cucker and Smale,
2002, Proposition 1), for all F ∈ L2(E,F , π;H ), the risk R allows for the decom-
position

R(F ) = ‖Fp − F‖2L2(E,F ,π;H ) +R(Fp), (5.7)

where R(Fp) represents the irreducible error term (see Theorem A.1 for a proof
in the infinite-dimensional case). This reduces the regression problem (5.5) and
equivalently problem (5.6) to an L2-approximation of the conditional mean embed-
ding Fp. In this context, Fp is often called regression function. Therefore, the

so-called excess risk R(F )−R(Fp) = ‖Fp − F‖2L2(E,F ,π;H ) of some estimate F ∈ G

is typically investigated in nonparametric statistics.

The above formalism allows us to estimate the conditional mean operator P based
on our previous results. By Theorem 3.5, we have

‖A− P‖2
H →L2(π) ≤ ‖Fp −A∗ϕ(·)‖2L2(E,FE,π;H ) (5.8)

for all A∗ ∈ S2(H ). We can now perform the vRKHS regression (5.6) and obtain

an approximation of P in the norm ‖·‖2
H →L2(π) in terms of A ∈ S2(H ), which we

implicitly interpret as an operator from H to L2(π). Theorem 3.2 and Corollary 3.4
show that this is possible up to an arbitrary degree of accuracy.

Along the lines of the known work on least squares regression of the form (5.5)
or equivalently (5.6), we can distinguish following two general cases (Szabó et al.,
2016):

(1) The well-specified case, i.e., there exists a regular version of the conditional
distribution of Y given X such that Fp(·) = E[ϕ(Y ) | X = ·] ∈ G . For
the well-specified case, we below obtain the known properties of the condi-
tional mean embedding which were derived from the linear-algebraic per-
spective (Song et al., 2009; Klebanov et al., 2020a,b).

(2) The misspecified case, i.e., Fp ∈ L2(π) \ G . This is clearly the more inter-
esting setting, as the well-specified case does typically not occur in practice.
From the operator-theoretic perspective, this case has not been investigated
yet.

Our previous results allow to reformulate the well-specified case and establish a
connection to the CME.

Corollary 5.6 (Well-specified case). Let Assumption 1–3 be satisfied. Consider
a fixed regular version of the distribution of Y conditioned on X given by some
Markov kernel p : E ×FE → R. The following statements are equivalent:

(i) We have Fp(·) = E[ϕ(Y ) | X = ·] ∈ G .
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(ii) There exists an operator A ∈ S2(H ) such that

[Af ](x) = 〈Af, ϕ(x)〉
H

= 〈f, A∗ϕ(x)〉
H

= E[f(Y ) | X = x] (5.9)

for all x ∈ E and f ∈ H .

Both (i) and (ii) imply (iii):

(iii) There exists an operator A ∈ S2(H ) which satisfies ‖A− P‖
H →L2(π) = 0.

Proof. We show that (i) is equal to (ii). Let Fp(·) = E[ϕ(Y ) | X = ·] ∈ G . Let
A∗ ∈ S2(H ) be the unique operator such that A∗ϕ(·) = Fp(·) by Corollary 4.5.
By the reproducing property in H , we can verify (5.9) immediately. For the
converse implication, let (5.9) be satisfied for some operator A∗ ∈ S2(H ). Then by
Corollary 4.5, we have the function F ∈ G with F (·) = A∗ϕ(·) such that

〈f, F (x)〉
H

= E[f(Y ) | X = x] = E[〈f, ϕ(Y )〉
H

| X = x] (5.10)

for all f ∈ H . The right hand side of 5.10 is equal to 〈f, E[ϕ(Y )
H

| X = x]〉
H

for all x ∈ E and f ∈ H , we therefore have F (·) = E[ϕ(Y ) | X = ·] = Fp(·) ∈ G

as claimed. The last statement follows from Theorem 3.5 by inserting A∗ into the
right hand side of the bound, giving ‖A− P‖

H →L2(π) = 0. �

Remark 5.7 (Connection to CME and well-specified case). By comparing (5.9) to
the expectation reproducing property (CME), we see that in the well-specified case,
the operator A∗ satisfying (5.9) is exactly the operator which was introduced by
Song et al. (2009) as the original conditional mean embedding. That is, we obtain
the approximation of P from H to L2(π) as the adjoint of the CME. A similar
connection was established by Klus et al. (2020) under the restrictive assumptions
of Song et al. (2009) in the context of Markov operators.

Remark 5.8 (Well-specified case closed form solution). Klebanov et al. (2020b, The-
orem 5.8) prove in a slightly different context of tensor product spaces without ex-
plicitly using vRKHSs, that in the well-specified case the operatorA∗ satisfying (5.9)

can be expressed in terms of the covariance operators as A∗ = (C†
XXCXY )

∗. In

fact, this proves that (C†
XXCXY )

∗ is Hilbert–Schmidt in this case.

Remark 5.9 (Surrogate risk bound for the CME). In the well-specified case, Park
and Muandet (2020a) investigate the estimation of the CME in terms of (5.5).
Their results build upon the surrogate risk bound

‖A− P‖2
H →L2(π) ≤ R(A∗ϕ(·)),

originally formulated by Grünewälder et al. (2012). Our Theorem 3.5 improves
this bound and eliminates the need for additional approximation results (see for
example Grünewälder et al., 2012, Theorem 3.2) for the analysis of the misspecified
case. By (5.7), our bound from Theorem 3.5 equals to

‖A− P‖2
H →L2(π) ≤ R(A∗ϕ(·)) −R(Fp),

which allows the approximation up to an arbitrary accuracy and removes the excess
term R(Fp).
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We have seen that in the well-specified case, our results align with prior work on the
CME. In the practically more relevant misspecified case however, the bound given
by Theorem 3.5 significantly simplifies the theory of approximating the CME. For
the remainder of the paper, we will focus on the empirical estimation of P without
restricting ourselves to the well-specified case.

6. Empirical estimation and regularization theory

We now connect our previous results to the theory of supervised learning and derive
empirical estimators of P . To this end, we will briefly review how the regression
problem (5.5) can be formulated in terms of an inverse problem. The decomposi-
tion of R in (5.7) allows to obtain a solution by approximating Fp with functions
in G . This framework allows to derive the well-known formalism for supervised
learning and regularization theory which will yield estimates of P . We refer to the
seminal work for least squares regression with vRKHSs (De Vito and Caponnetto,
2005; Caponnetto and De Vito, 2007) for more details. This section contains the
reformulation of our setting in terms of known results, making the theory of vRKHS
regression applicable for the estimation of P . We use this framework to derive new
results in Section 7.

6.1. Inverse problem. In the misspecified case, it is not necessarily clear that
the minimizer of R over G exists. The analytical nature of this question can be
naturally expressed in terms of an inverse problem. For the necessary background
on inverse problems in Hilbert spaces and regularization theory, we refer to Engl
et al. (1996). We will formulate (5.5) a bit more verbosely in terms of the inclusion
Iπ : H → L2(E,FE , π;H ), so that the connection to the inverse problem becomes
clear.

If F ∈ G , we have by (5.7) that

R(F ) = ‖IπF − Fp‖
2
L2(E,FE ,π;H ) +R(Fp).

Finding FG := argminF∈G R(F ) is therefore equivalent to finding FG ∈ G such
that

‖IπF − Fp‖
2
L2(E,FE,π;H )

is minimal. As is well-known from the theory of inverse problems, this is equivalent
to finding the optimal solution FG of the potentially ill-posed inverse problem

IπF = Fp, F ∈ G . (6.1)

The inverse problem (6.1) is again equivalent to finding the solution of the so-called
normal equation (Engl et al., 1996, Theorem 2.6) given by

(I∗
πIπ)F = TF = I∗

πFp, F ∈ G .

In particular, we obtain the following solution.

Theorem 6.1 (Regression solution). Let Assumptions 1–3 be satisfied. The optimal
solution

FG = argmin
F∈G

R(F ) = argmin
F∈G

‖IπF − Fp‖
2
L2(E,FE ,π;H )
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exists if and only if I∗
πFp ∈ range(T ) + range(T )⊥ =: dom(T †),2 where the operator

T † : range(T )+range(T )⊥ → G is the pseudoinverse of T . In this case, FG is given
by the solution to the normal equation

TF = I∗
πFp, F ∈ G (6.2)

in terms of FG = T †I∗
πFp.

Remark 6.2 (Limitations of existing literature). Theorem 6.1 and the resulting
normal equation (6.2) show that our surrogate problem is essentially a (potentially
ill-posed) inverse problem with the following technical features:

(i) both the forward operator T and the right-hand side I∗
πFp are unknown

and must be discretized by sampling from L(Y,X) and

(ii) the forward operator T is in general not compact but only bounded, as
Example 4.10 shows.

However, results on uniform upper and lower bounds for convergence rates in a
vector-valued learning scenario are typically investigated in the case where the
forward operator T of the problem (6.2) is trace class (Caponnetto and De Vito,
2007; Rastogi and Sampath, 2017; Rastogi et al., 2020, and references therein). In
particular, the aforementioned authors assume KxK

∗
x ∈ S1(H ) for all x ∈ E and

use the effective dimension

N (λ) := Tr
(
(T + λIdG )

−1T
)

for λ > 0

as the central tool in order to analyze the convergence of kernel-based regression
problems (the reader may also refer to Blanchard and Mücke 2018; Lu et al. 2020;
Lin et al. 2020 for the scalar case). Example 4.10 shows that N (λ) is generally not
finite in our setting.
Moreover, most results on statistical inverse problems with noncompact forward
operators seem to be derived under the assumption that the forward operator is
known (see for example Cavalier, 2006; Bissantz et al., 2007) and do therefore
not directly transfer to our scenario. Adapting these results in our setting would
need a thorough perturbation analysis of the continuous spectrum of T . Moreover,
discretizing G in the noncompact case may introduce additional difficulties, see
Remark 6.3.
To the best of our knowledge, Park and Muandet (2020a,b) are the only authors
who address the estimation under assumptions which are satisfied in our case (see
Remark 7.1). As these problems require a deeper analysis in the context of inverse
problems, they are out of the scope of this work.

Remark 6.3 (Discretization of T ). Note that due to the noncompactness of G , a
bit of caution is required when discussing its discretization. In particular, a naive
estimate of T would be the Monte Carlo sum

Tn :=
1

n

n∑

i=1

KXi
K∗

Xi

2An equivalent condition is ΠFp ∈ range(Iπ), where Π: L2(E,FE , π;H ) → L2(E,FE , π;H )

is the orthogonal projection onto the closure of range(Iπ).
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for iid Xi ∼ π and one would think that some strong law of large numbers and
concentration results in Banach spaces would lead to the desired convergence results
Tn → T in operator norm. Note that the Banach space of bounded operators on G

is not separable, even if G itself is separable.3 This fact may lead to measurability
issues of the B(G )-valued object

ξ := KXK∗
X .

Because of this fact, we defined the operator T in (4.13) pointwise as

TF =

∫

E

KxK
∗
xF dπ(x), F ∈ G

instead of an integral over the object ξ as defined above – which would need to
converge in operator norm. As previously mentioned, available literature on vector-
valued regression imposes the assumption KxK

∗
x ∈ S1(H ), which is not satisfied

in our scenario. In addition, versions of the strong law of large numbers in Ba-
nach spaces typically require additional properties (Ledoux and Talagrand, 1991,
Section 7). For simplicity, we will therefore consider the strong operator topology
formulation

TF =

∫

E

KxK
∗
xF dπ(x) = E[ξF ] ∈ G (6.3)

for every F ∈ G instead of the norm topology on B(G ).

6.2. Regularization and empirical estimation. For simplicity, we assume that
the optimal solution FG = argminG R(F ) exists, i.e., we have I∗

πFp ∈ dom(T †).
We wish to compute a solution of the normal equation

TF = I∗
πFp, F ∈ G . (6.4)

in terms of FG = T †I∗
πFp based on an empirical realization of (Xt)t∈Z.

In order to do this, we must discretize T as well as the right-hand side I∗
πFp. We

now face the problem that (6.4) may be ill-posed in the sense that the solution
does not continously depend on I∗

πFp (and of course on T as well). To still be able
to perform an estimation, a regularization strategy (Engl et al., 1996) is needed to
ensure well-posedness in practice.

Let {gλ(T ) : G → G |λ ∈ (0,∞]} be a regularization strategy.4 For a fixed regular-
ization parameter λ > 0, we define the regularized solution

Fλ := gλ(T )I
∗
πFp ∈ G . (6.5)

We now discretize the regularized problem (6.5) based on the empirical data z :=
((X1, Y1), . . . , (Xn, Yn)), where we assume iid (Xi, Yi) ∼ L(X,Y ). We generalize the
sampling operator approach (Smale and Zhou, 2005) from the scalar setting to the
vector-valued scenario and derive an empirical estimate of Fλ. Given the data above,
we define the sampling operator Sx

: G → H n given by SxF := (F (Xt))
n
t=1 =

3This can be proven with the fact that the sequence space ℓ∞ – which is not separable – can
be isometrically embedded into B(G ).

4We require {gλ(T ) : G → G |λ ∈ (0,∞]} to be a parametrized family of globally defined

bounded operators satisfying gλ(T )F → T †F for all F ∈ dom(T †) as λ → 0.
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(K∗
Xt

F )nt=1. Here, we consider H n as a Hilbert space equipped with the inner
product

〈f , h〉
H n :=

1

n

n∑

i=1

〈fi, hi〉H

for f = (f1, . . . , fn) ∈ H n and h = (h1, . . . , hn) ∈ H n. It is easy to see that the
adjoint of Sx is the operator S∗

x
: H

n → G given by

S∗
x
h =

1

n

n∑

i=1

KXi
hi

for all h ∈ H n and the operator Tx
:= S∗

x
Sx

: G → G satisfies

TxF = S∗
x
SxF =

1

n

n∑

i=1

KXi
K∗

Xi
F

for all F ∈ G . Based on these considerations, we will use S∗
x
and Tx as empirical

estimates for I∗
π and T respectively based on the data x. We define the target

data vector Υ := (ϕ(Y1), . . . , ϕ(Yn)) ∈ H n and obtain the empirical regularized
solution

Fλ,z := gλ(Tx)S
∗
x
Υ ∈ G (6.6)

as the discretized analogue of the analytical regularized solution (6.5).

Via the identification of Fλ and Fλ,z with operators through the isomorphism Θ in
Corollary 4.5, we obtain the analytical regularized operator solution

Aλ := [Θ−1(Fλ)]
∗ ∈ S2(H )

as well as the empirical regularized operator solution

Aλ,z := [Θ−1(Fλ,z)]
∗ ∈ S2(H ),

i.e., Fλ(x) = Aλϕ(x) and Fλ,z(x) = Aλ,zϕ(x) for all x ∈ E.

7. Tikhonov-Phillips regularization

For the remainder of this paper, we will restrict ourselves to the Tikhonov–Phillips
regularization approach (Phillips, 1962; Tikhonov and Arsenin, 1977) to solve the
(potentially ill-posed) inverse problem given by Theorem 6.1 in order to obtain the
optimal solution FG in G of the surrogate problem (assuming it exists).

7.1. General framework. Tikhonov–Phillips regularization corresponds to the
regularization strategy gλ(T ) := (T + λIdG )−1 ∈ B(G ) for λ > 0. We replace the
risk R with the regularized risk

Rλ(F ) := R(F ) + λ ‖F‖2
G

(7.1)

with a regularization parameter λ > 0. The unique minimizer of (7.1) exists for
all λ > 0 and is exactly given by the regularized solution Fλ = (T + λIdG )

−1I∗
πFp,

which is a standard result in inverse problems (Engl et al., 1996, Theorem 5.1).
Based on the data z, we define the regularized empirical risk

Rλ,z(F ) :=
1

n

n∑

i=1

‖ϕ(Yi)− F (Xi)‖
2
H

+ λ ‖F‖2
G

(7.2)

for all F ∈ G . We can reformulate (7.2) in terms of the sampling operator

equivalently as Rλ,z(F ) = ‖SxF − Υ‖2
H n + λ ‖F‖2

G
for all F ∈ G . Therefore,
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Rλ,z admits a unique minimizer in G given by the regularized empirical solution
Fλ,z = (Tx + λIdG )

−1S∗
x
Υ, which we will consider from now on as the estimate

of Fλ.

Remark 7.1 (Uniform convergence rates). As mentioned previously in Remark 6.2,
uniform convergence rates of Fλ,z can only be achieved under additional smoothness
assumptions on Fp. Park and Muandet (2020a,b) investigate Tikhonov–Phillips
regularization in the well specified case, i.e., Fp ∈ G and show R(Fλ,z) − R(Fp) ∈
Op(n

−1/4) for the regularization scheme λ(n) ∈ O(n−1/4) as n → ∞ whenever the
kernel k is bounded.

7.2. Closed form Tikhonov–Phillips operator estimates. We show that for
the Tikhonov–Phillips estimate, the adjoint of the regularized analytical operator
solution A∗

λ = Θ−1(Fλ) which satisfies

A∗
λ = argmin

A∈S2(H )

E[‖ϕ(Y )−A∗ϕ(X)‖2
H

] + λ ‖A‖2S2(H )

admits a closed form representation in terms of covariance operators associated
with the kernel k. In fact, we prove that A∗

λ has the known form which Song et al.
(2009) originally identified as the conditional mean embedding under the previously
mentioned restrictive assumptions.

While this result does not come as a surprise at this point, we emphasize that this
has not been proven before. Although Grünewälder et al. (2012) establish a connec-
tion between the empirical regularized solution Fλ,z and a version of the empirical
conditional mean embedding with a rescaled regularization parameter, a population
analogue was never derived. A simple asymptotic argument via convergence in the
infinite-data limit is hampered by the rescaling of the regularization parameter in
this derivation. Interestingly, the population expression of Aλ which we derive here
is sometimes taken for granted in the literature (see for example Fukumizu et al.
2013), even if it was never proven in the original work.

Our analysis offers a view on the beautiful duality between the generalized covari-
ance operator T acting on G , composition operators acting on S2(H ) and the
kernel covariance operator CXX .

Remark 7.2. While our analysis is purely aimed at a theoretical understanding at
this point, we expect that the following results will have a practical benefit, as they
allow an asymptotic discussion of the spectral properties of the given estimates (see
also Section 8).

For an operator B ∈ B(H ), define the right-composition operator

ΞB : S2(H ) → S2(H ), (7.3)

A 7→ AB. (7.4)

It is easy to see that ΞB is a well-defined bounded operator since S2(H ) is an
ideal in B(H ) and we have ‖ΞBA‖S2(H ) ≤ ‖A‖S2(H ) ‖B‖. Furthermore, if B is

invertible then ΞB is invertible and we have ΞB−1 = Ξ−1
B .
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The following result describes the connection between G and CXX in terms of the
composition operator ΞCXX

. In fact, it shows that T : G → G describes exactly the
action of ΞCXX

: S2(H ) → S2(H ) under the isomorphism Θ: S2(H ) → G .

G S2(H )

G S2(H )

T

Θ−1

ΞCXX

Θ−1

G S2(H )

G S2(H )

T + λIdG

Θ−1

ΞCXX+λIdH

Θ−1

Figure 3. Correspondence of T and ΞCXX
.

Theorem 7.3. Let F ∈ G and A := Θ−1(F ) ∈ S2(H ). Then the diagrams in
Figure 3 are both commutative diagrams, i.e., we have

Θ−1(TF ) = ACXX

as well as
Θ−1[(T + λIdG )F ] = A(CXX + λIdH ).

Proof. Let F ∈ G and A = Θ−1(F ) ∈ S2(H ). We have F (·) = Aϕ(·) by Corollary
4.5. From the definition of G , we get

TF =

∫

E

KxF (x)dπ(x) =

∫

E

Kx[Aϕ(x)]dπ(x)

=

∫

E

A[k(·, x)ϕ(x)]dπ(x) = A

∫

E

k(·, x)ϕ(x)dπ(x)

= A

∫

E

[ϕ(x) ⊗ ϕ(x)]ϕ(·)dπ(x) = ACXXϕ(·),

where we use the fact that for every fixed x′ ∈ E, the map x 7→ k(x′, x)ϕ(x) is an
element of L1(E,FE , π;H ) due to Assumption 3 and Hölder’s inequality. Because
of this, the integration and the operatorA commute (Diestel and Uhl, 1977, Chapter
II.2, Theorem 6). The operator ACXX is Hilbert–Schmidt and TF = ACXXϕ(·)
confirms the operator reproducing property under Θ−1 from Corollary 4.5, hence
we have Θ−1(TF ) = ACXX . Using this fact, we obtain

(T + λIdG )F = ACXXϕ(·) + λAϕ(·) = A(CXX + λIdH )ϕ(·),

confirming the same relation for the second assertion of the theorem. �

Theorem 7.3 allows us to easily derive the expression for the Tikhonov–Phillips
estimate Fλ under Θ−1 in terms of its corresponding operator in S2(H ) in terms
of CXX and CYX .

Corollary 7.4 (Closed form analytical operator solution). We have

Θ−1(Fλ) = A∗
λ = CY X(CXX + λIdH )−1,

i.e., the analytical regularized operator solution can be represented as

Θ−1(Fλ)
∗ = Aλ = (CXX + λIdH )−1CXY . (7.5)
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Proof. By definition, we have Fλ = gλ(T )I∗
πFp = (T + λIdG )

−1I∗
πFp. We can

rearrange

I∗
πFp =

∫

E

K(·, x)Fp(x)dπ(x) =

∫

E

k(·, x)

∫

E

ϕ(y)p(x, dy)dπ(x)

=

∫∫

E2

ϕ(y) 〈ϕ(x), ϕ(·)〉
H

p(x, dy)dπ(x)

=

[∫

E

ϕ(Y )⊗ ϕ(X)dP

]
ϕ(·) = CY Xϕ(·).

We have thus shown that CY X = Θ−1(I∗
πFp) by the operator reproducing property

from Corollary 4.5. Theorem 7.3 implies that the operator (T+λIdG )
−1 acting on G

may be represented under Θ−1 as by the right composition operator Ξ(CXX+λIdH )−1

acting on on S2(H ), leading to

Θ−1(Fλ) = Ξ(CXX+λIdH )−1CY X = CYX(CXX + λIdH )−1

as claimed. �

Analogously we obtain a closed form representation for the empirical regularized
operator solution Aλ,z, in terms of the emprical covariance operators

ĈXX :=
1

n

n∑

i=1

ϕ(Xi)⊗ ϕ(Xi) and ĈXY :=
1

n

n∑

i=1

ϕ(Yi)⊗ ϕ(Xi).

Theorem 7.5 (Closed form empirical operator solution). We have

Θ−1(Fλ,z) = A∗
λ,z = ĈYX(ĈXX + λIdH )−1,

i.e., the empirical regularized operator solution can be represented as

Θ−1(Fλ,z)
∗ = Aλ,z = (ĈXX + λIdH )−1ĈXY . (7.6)

Theorem 7.5 can be proven by simply replacing T with the sample-based operator Tx

in the proof of Theorem 7.3, leading to Θ−1[(Tx+λIdG )F ] = Θ−1(F )(ĈXX+λIdH )
for all F ∈ G . Furthermore replacing I∗

π with S∗
x
in the proof of Corollary 7.4

yields Θ−1(S∗
x
Υ) = ĈYX , thereby confirming the claim when applying both results

to Aλ,z = Θ−1(Fλ,z) = Θ−1[(Tx + λIdG )
−1S∗

x
Υ].

8. Application: kernel-based extended dynamic mode decomposition

The derivation of the closed form for the regularized operator solution from the
previous section allows to connect our theory to known spectral analysis techniques
used in practice.

Klus et al. (2020) and Mollenhauer et al. (2020b) show that the eigenfunctions of

the regularized empirical estimate Aλ,z = (ĈXX +λIdH )−1ĈXY can be computed
by solving a matrix eigenproblem. In the case that P is the Markov transition
operator from (1.1), it is furthermore shown by Klus et al. (2020) that this empirical
eigenproblem coincides exactly with the regularized eigenproblem given by the well-
known kernel-based version of extended dynamic mode decomposition (EDMD, Tu
et al. 2014; Williams et al. 2015a,b; Kutz et al. 2016). Hence, the asymptotic
viewpoint derived in our analysis proves that kernel EDMD essentially approximates
P : H → L2(π) in the infinite-sample limit with a suitable regularization scheme,
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thereby providing a statistical model for kernel EDMD. A theory of the spectral
convergence of kernel EDMD could now be developed by investigating the spectral
perturbation under the convergence ‖Aλ,z − P‖

H →L2(π) → 0 for an admissible

regularization scheme λ(n) and n → ∞ with suitable mixing assumptions of the
underlying process along the lines of Mollenhauer et al. (2020a). In particular,
our approximation results from Section 5 may be used to show that kernel EDMD
overcomes the weak spectral convergence of standard EDMD which was proven
by Korda and Mezić (2018). The details of this theory are not in the scope of this
work and are subject to further research.

9. Outlook

This work provides the theoretical framework for the nonparametric approximation
of the conditional expectation operator P over the RKHS embedded in its domain
H ⊂ L2(ν) from an approximation viewpoint. As a core result, we prove that
convergence takes place in the operator norm with respect to the RKHS H , there-
fore allowing for a stronger mode of convergence than classically used numerical
projection methods.

We establish the connection to recent topics in statistical learning theory, in partic-
ular least squares regression problems with vector-valued kernels and the maximum
mean discrepancy. These connections may allow to extend our theory to practical
applications such as nonparametric hypothesis tests for Markov kernels.

Although a large part of computational questions can be answered in terms of
inverse problems and regularization theory, our work shows that the derivation of
uniform convergence rates needs new theoretical approaches in this context. In
particular, the inverse problem associated with the estimation of P violates typical
assumptions used in statistical learning theory (see Remark 6.2).

In the case that P is a Markov transition operator, our analysis provides a statistical
model for kernel-based EDMD. However, in this case there remain open questions
from a theoretical perspective. In particular,

(i) convergence behaviour of the estimators need to be derived in terms of prop-
erties of the underlying Markov process such as a spectral gap, ergodicity
rates and mixing;

(ii) a spectral analysis of the estimators is needed in the context of classical
perturbation theory in order to understand details of the spectral conver-
gence.
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Appendix A.

It is well-known that for F ∈ L2(E,FE , π;H ), the standard least squares risk

R(F ) := E

[
‖ϕ(Y )− F (X)‖2

H

]
,

can be rewritten in terms of the regression function Fp. We report the proof here
for completeness (see also Cucker and Smale, 2002, Proposition 1 for a proof in the
scalar case).

Theorem A.1 (Risk and regression function). Under Assumptions 1–3, the risk
R can equivalently be rewritten as

R(F ) = ‖F − Fp‖
2
L2(E,FE,π;H ) +R(Fp) (A.1)

for all F ∈ L2(E,FE , π;H ).

Proof. We have

R(F ) = E

[
‖ϕ(Y )− F (X)‖2

H

]

= E

[
‖ϕ(Y )− Fp(X) + Fp(X)− F (X)‖2

H

]

= E

[
‖ϕ(Y )− Fp(X)‖2

H

]

+ 2E
[
〈ϕ(Y )− Fp(X), Fp(X)− F (X)〉

H

]

+ E

[
‖F (X)− Fp(X)‖2

H

]
,

where we see that the first summand equals to R(Fp). The second summand which
contains the mixed terms vanishes since we have

E
[
〈ϕ(Y )− Fp(X), Fp(X)− F (X)〉

H

]

=

∫

E

〈∫

E

ϕ(y) p(x, dy)

︸ ︷︷ ︸
=Fp(x)

−Fp(x), Fp(x)− F (x)

〉

H
dπ(x).

The last summand can be rewritten as

E

[
‖F (X)− Fp(X)‖2

H

]
= ‖F − Fp‖

2
L2(E,FE,π;H )

by change of measure, proving the assertion. �
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