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An optical ring resonator with third-order, or Kerr, nonlinearity will exhibit symmetry breaking
between the two counterpropagating circulating powers when pumped with sufficient power in both
the clockwise and counterclockwise directions. This is due to the effects of self- and cross-phase
modulation on the resonance frequencies in the two directions. The critical point of this symmetry
breaking exhibits universal behaviors including divergent responsivity to external perturbations,
critical slowing down, and scaling invariance. Here we derive a model for the critical dynamics of
this system, first for a symmetrically-pumped resonator and then for the general case of asymmetric
pumping conditions and self- and cross-phase modulation coefficients. This theory not only provides
a detailed understanding of the dynamical response of critical-point-enhanced optical gyroscopes and
near-field sensors, but is also applicable to nonlinear critical points in a wide range of systems.

I. INTRODUCTION

Spontaneous symmetry breaking is ubiquitous in
physics, occurring at every possible energy scale all the
way from the Higgs mechanism [1] down to supercon-
ductivity [2], superfluidity [3] and other exotic quantum
states of matter at ultracold temperatures [4]. Associ-
ated with every spontaneous symmetry-breaking transi-
tion is a critical point [5] – a point in parameter space on
the boundary of the symmetry-broken regime where the
symmetric state of the system is neither stable nor un-
stable, which exhibits certain universal features. Firstly,
the system will have divergent responsivity to external
perturbations that break the symmetry of the system,
exhibiting large excursions in response to tiny perturba-
tions but always eventually returning to the symmetric
state if the perturbation is removed. Secondly, the char-
acteristic timescales and lengthscales (where relevant) of
the system’s response diverge – the system exhibits fluc-
tuations at all lengthscales that decay with time accord-
ing to a power law rather than exponentially and thus
take exponentially longer to reach the steady state. This
is often referred to as critical slowing down [5]. Thirdly,
the equations of the system around the critical point
exhibit scaling invariance, meaning that they are un-
changed when the offsets of the various parameters from
the critical point, as well as length and time, are scaled
by certain powers of each other.

One system that exhibits spontaneous symmetry
breaking of the discrete group Z2 is that of a symmetri-
cally bidirectionally-pumped optical microresonator with
Kerr nonlinearity, in which the counterpropagating cir-
culating powers will spontaneously deviate from each
other [6–9]. This is an example of what is known as a
pitchfork bifurcation due to the way in which one stable
solution splits into two. Because the symmetry in ques-
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tion is clockwise-counterclockwise symmetry, the system,
at a critical point, exhibits divergent responsivity to per-
turbations that distinguish between the two directions,
including most notably pump power and detuning differ-
ences. Since pump detuning differences can be induced
via the Sagnac effect by rotating the entire setup, which
causes the counterpropagating resonance frequencies to
differ by an amount proportional to the rotation veloc-
ity [10], this critical point can be used to create a simple
yet extremely sensitive gyroscope [11–13]. The Sagnac ef-
fect is related to but distinct from Fizeau drag, which was
recently demonstrated in a similar experiment in which
the microresonator was rotated but the rest of the setup
remained stationary [14].

The development of such a gyroscope, or indeed other
critical-point-enhanced sensors such as for refractive in-
dex [15, 16] requires a detailed understanding of the crit-
ical dynamics of the system, including its response to
time-dependent and finite-amplitude inputs. In this pa-
per we show that in the limit as we approach the critical
point, the dynamics are governed by a simple equation,
from which the divergent responsivity, critical slowing
down, and scaling invariance are manifestly apparent.
This is done first in Section II for the simplest case of a
symmetrically-pumped resonator with a Kerr cross-phase
modulation (XPM) coefficient twice as large as that of
self-phase modulation (SPM), as is the case in any di-
electric solid [17]. In Section III we show that the same
critical point and behavior can occur even when the sys-
tem itself is not symmetric, but when two different asym-
metries, for example in pump power and detuning, bal-
ance each other [18]. We derive the exact condition for
the critical point, as well as the equation for the critical
dynamics, in an asymetrically-pumped resonator with ar-
bitrary and even asymmetric SPM and XPM coefficients.

The theory presented here applies not only to Kerr-
related symmetry breaking between counterpropagating
light, but also between different frequencies, propagation
angles [19], and opposite circular polarisations [20–22],

mailto:jonathan.silver@npl.co.uk


2

all of which obey the same equations. For instance, the
asymmetric critical point was recently demonstrated for
the polarisation case in a fiber loop cavity [18]. Further-
more, this theory applies to systems where the Kerr ef-
fect is substituted with a Kerr-like interaction such as the
magnetic nonlinearity [23], or even to similar nonlinear
systems outside the optical domain altogether.

The ratio between the XPM and SPM coefficients can
take different values in different materials, including less
than two in semiconductors and gases due to diffusive
effects, and as much as seven for interaction between
opposite circular polarisations in Kerr liquids [17, 24].
Differences between the two mode volumes will lead to
asymmetries in both the SPM and XPM coefficients,
while asymmetric effective SPM coefficients but symmet-
ric XPM coefficients can arise if the light in one of the
modes is not monochromatic [13].

Finally, a condition is derived for decoupling the crit-
ical dynamics from the thermal nonlinearity [25], which
although perfectly symmetric in its action, is typically
much larger than the Kerr effect, and could thus disrupt
the critical dynamics in the case of asymmetric pumping
conditions or SPM or XPM coefficients.

II. SYMMETRIC PUMPING CONDITIONS

When an optical ring resonator with Kerr, or χ(3), non-
linearity is pumped with light of equal power and fre-
quency in both directions, a spontaneous splitting can
occur between the two counterpropagating circulating
powers and resonance frequencies [6–8]. This occurs due
to the interplay between the circulating-power-dependent
Kerr shifts of the counterpropagating resonance frequen-
cies and the detuning-dependent circulating powers due
to the pump frequency being on the side of the resonance.
The Kerr effect decreases each resonance frequency by
an amount proportional to the circulating power in that
mode (from SPM) plus twice that in the counterpropa-
gating mode (from XPM). This means that the resonance
frequency is lower in the direction with less circulating
power. If the pump is blue-detuned from the resonance –
a necessary condition for passive thermal locking of the
resonance to the pump frequency [25] – then the direc-
tion with less circulating power will be shifted further
from the pump, which in turn increases the circulating
power difference, creating positive feedback that causes
the symmetry to spontaneously break.

This effect may be described by solving the following
pair of simultaneous equations for the circulating powers
p1,2 in the two counterpropagating directions in terms
of the pump powers p̃1,2 and detunings ∆1,2 from the
resonance without Kerr shift [8]:

p1,2 =
p̃1,2

1 + (p1,2 + 2p2,1 −∆1,2)2
. (1)

Here, and throughout this paper, we use the dimension-
less quantities defined in Table I. Equation (1) is sim-

TABLE I. Dimensionless quantities used in this manuscript.
ηin is the resonant in-coupling efficiency equal to 4κγ0/γ

2

where κ, γ0 and γ = γ0+κ are the coupling, intrinsic and total
half-linewidths respectively. Pin,1,2 and Pcirc,1,2 are the pump
and circulating powers respectively. P0 = πn2

0V/(n2λQQ0)
is the characteristic in-coupled power required for Kerr non-
linear effects, where n0 and n2 are the linear and nonlinear
refractive indices, V is the mode volume, and Q = ω0/(2γ)
and Q0 = ω0/(2γ0) are the loaded and intrinsic quality factors
respectively for cavity resonance frequency ω0 (without Kerr
shift). F0 = ∆ωFSR/(2γ0) is the cavity’s intrinsic finesse for
free spectral range ∆ωFSR, and ω1,2 are the pump frequencies.

Symbol Description Formula
p̃1,2 Pump powers ηinPin,1,2/P0

p1,2 Circulating powers 2πPcirc,1,2/(F0P0)

∆1,2

Pump detunings from
resonance frequency
without Kerr shift

(ω0 − ω1,2)/γ

ẽ1,2 Pump field amplitudes p̃1,2 = |ẽ1,2|2

e1,2 Circulating field amplitudes p1,2 = |e1,2|2

ply the dimensionless form of the Lorentzian resonance
curves for the circulating powers, taking into account the
Kerr shifts. Note the factor of two in front of the counter-
propagating circulating power, corresponding to the ratio
betweeen the strengths of XPM and SPM in a dielec-
tric solid with Kerr nonlinearity; this ratio is generalised
in Section III. Under symmetrical pumping conditions
p̃1,2 = p̃ and ∆1,2 = ∆, symmetry breaking occurs for a

range of ∆ if p̃ exceeds 8/(3
√

3) ' 1.54 [6, 8]. This is illus-
trated in Fig. 1 for p̃ a little above this threshold. As the
detuning approaches the symmetry-broken regime, the
difference between p1 and p2 exhibits increasing respon-
sivity to perturbations that break the directional sym-
metry, such as pump power or detuning differences. This
responsivity diverges at each of the critical points A1

and A2, at which the finite-amplitude response is pro-
portional to the cube root of the perturbation.

We begin with the dimensionless equations for the time
derivatives ė1,2 of the electric field amplitudes e1,2 in the
two counterpropagating modes in the rotating frames of
their respective pump fields [8], which yield Eq. (1) in
the steady state:

ė1,2 = ẽ1,2 −
(
1 + i

(
|e1,2|2 + 2|e2,1|2 −∆1,2

))
e1,2. (2)

Once again, the notation is given in Table I, and time is in
units of 1/γ. We shall assume for now that ẽ1 = ẽ2 = ẽ
is constant with time, while ∆1,2 undergo small time-
dependent perturbations around a common value ∆, with
ẽ and ∆ chosen so as to place the system at a critical
point. We are interested in the perturbative dynamics
of e1,2 around a symmetric steady-state solution e1,2 = e
that satisfies ẽ = (1 + i(3p−∆))e, where the circulating
power in each direction p = |e|2. Choosing the phase of
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FIG. 1. Solutions to Eq. (1) under symmetric pumping con-
ditions p̃1,2 = p̃ and ∆1,2 = ∆, illustrated for p̃ = 1.75. Solid
black and grey lines represent stable and unstable solutions
respectively. Between the critical points A1 and A2, the sym-
metric solution p1 = p2 is unstable and two new symmetry-
broken stable solutions appear in which p1 and p2 take the op-
posite branches shown. Another unstable region lies between
B1 and B2, which occurs even for a unidirectionally-pumped
resonator and here corresponds to a symmetric bistability.

ẽ such that e is real and positive, we let

∆1,2 = ∆ + δ1,2

e1,2 = e+ f1,2 + ig1,2,
(3)

where δ1,2, f1,2 and g1,2 are all real, and represent per-
turbations to the pump detunings and circulating field
amplitudes and phases respectively. Substituting these
into Eq. (2), we can express the dynamical equations of
f1,2 and g1,2 in the form

ḟ = Mf + d + Df + k + l, (4)

where

f =

f1

g1

f2

g2

; d = e

 0
δ1
0
δ2

; D =

 0 −δ1 0 0
δ1 0 0 0
0 0 0 −δ2
0 0 δ2 0



M =

 −1 3p−∆ 0 0
∆− 5p −1 −4p 0

0 0 −1 3p−∆
−4p 0 ∆− 5p −1



k = e


g1 (2f1 + 4f2)

−
(
3f2

1 + g2
1 + 2f2

2 + 2g2
2 + 4f1f2

)
g2 (2f2 + 4f1)

−
(
3f2

2 + g2
2 + 2f2

1 + 2g2
1 + 4f1f2

)


l =


g1

(
f2

1 + g2
1 + 2f2

2 + 2g2
2

)
−f1

(
f2

1 + g2
1 + 2f2

2 + 2g2
2

)
g2

(
f2

2 + g2
2 + 2f2

1 + 2g2
1

)
−f2

(
f2

2 + g2
2 + 2f2

1 + 2g2
1

)
. (5)

We begin by considering the linear response of the sys-
tem around the steady-state solution, which is governed

by ḟ = Mf + d. Here we have kept only the terms that
are first-order in the perturbations fi , gi and δi, discard-
ing those that are second- or third-order. Inspecting the
eigenvalues of M, we find that the steady-state solution
is unstable when one of the following two conditions is
satisfied, as each condition causes a different eigenvalue
to be real and positive:

(p−∆)(3p−∆) < −1 (6)

(3p−∆)(9p−∆) < −1. (7)

Since p > 0, Eq. (6) can hold only when 3p−∆ > 0, and
(7) only when 3p−∆ < 0. Since 3p−∆ is the laser de-
tuning from the Kerr-shifted resonance, this means that
(6) must correspond to the symmetry-broken region be-
tween the critical points A1 and A2 in Fig. 1, and (7) to
the region between B1 and B2. The critical points are
thus characterised by the boundary of (6):

(p−∆)(3p−∆) = −1. (8)

Under this condition, which shall be assumed to hold for
the rest of this section, the eigenvectors vi and corre-
sponding eigenvalues λi of M are:

v1 =

−a−1
a
1

, λ1 = 0; v2 =

 a
−1
−a
1

, λ2 = −2;

v3 =

−ir1
−ir
1

, λ3 = −1 + ia/r;

v4 =

ir1ir
1

, λ4 = −1− ia/r.

(9)

where a = 3p−∆ and r =
√

(3p−∆)/(9p−∆) are real
and positive. The slow critical dynamics will thus be
dominated by v1 as this has a zero eigenvalue, whereas
the other three have eigenvalues with negative real parts
of order unity, and thus decay away on a timescale of the
order of the cavity lifetime. Note that v1 corresponds to
an antisymmetric combined amplitude and phase pertur-
bation.

Turning again to Eq. (4) including all its nonlinear
terms, we will now express it in this eigenbasis by using
the inverse basis {ui} : ui · vj = δij , where δij is the
Kronecker delta, to decompose

f =
∑
i

µivi, d =
∑
i

divi,

D =
∑
i,j

Dijviu
T
j , k =

∑
i,j,k

Kijkviµjµk,

and l =
∑
i,j,k,l

Lijklviµjµkµl,

(10)
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where i, j, k, l index the eigenvectors and hence run from
1 to 4, and µi is the projection of f along vi:

µ̇i = λiµi + di +
∑
j

Dijµj

+
∑
j,k

Kijkµjµk +
∑
j,k,l

Lijklµjµkµl.
(11)

To extract the dynamics in the region immediately sur-
rounding the critical point, we will start by removing the
driving terms di and Dij :

µ̇i = λiµi +
∑
j,k

Kijkµjµk +
∑
j,k,l

Lijklµjµkµl. (12)

For small perturbations and responses around the criti-
cal point, we may say that |µ1| � 1. Furthermore, since
µ2, µ3, and µ4, unlike µ1, have exponential decay times
that are short compared to the timescale of the critical
dynamics as discussed above, it is safe to assume that
|µi| � |µ1|, i 6= 1. Nevertheless, we shall see that these
cannot be ignored entirely as they still contribute to the
dynamics of µ1. Looking at the case i = 1 in Eq. (12),
since λ1 = 0, the leading term in µ̇1 would be K111µ

2
1,

however K111 = 0 by considerations of directional sym-
metry i.e. switching the 1 and 2 directions. This leaves

µ̇1 = 2
∑
i 6=1

K11iµ1µi + L1111µ
3
1 (13)

to leading order, assuming that Kijk = Kikj by con-
struction. Looking again at Eq. (12), we can see that
to leading order, the other µi obey the following quasi-
steady-state equations:

0 = λiµi +Ki11µ
2
1, i 6= 1. (14)

Noting that also K211 = 0 by directional symmetry, this
can be combined with Eq. (13) to give

µ̇1 =

L1111 − 2
∑
i=3,4

K11iKi11

λi

µ3
1. (15)

Both terms are of equal order, so indeed we cannot ne-
glect the effect of µ3 and µ4 on the dynamics of µ1.
Futhermore, we may observe that µ3,4 scale as µ2

1 and
µ̇1 scales as µ3

1, the latter confirming that the timescale
of the dynamics increases (as µ−2

1 ) as we zoom closer and
closer into the critical point.

Equation (15) describes the free evolution of the sys-
tem to leading order. Now we re-introduce the driv-
ing terms di and Dij at magnitudes that preserve the
above hierarchy of scalings. For this, it is useful to
introduce the common- and differential-mode detunings
δc = (δ1 + δ2)/2 and δd = (δ1 − δ2)/2, and to note that

d1 = −eδd
2
, d3,4 =

eδc
2
, D11 = (2p−∆)δc. (16)

Substituting the first two of these into Eq. (11) for the
relevant i, we deduce that δd scales as µ3

1 and δc as µ2
1,

and therefore that the only element of Dij that can pos-
sibly affect the dynamics to leading order is D11. This
leaves us, to leading order, with

µi = −Ki11µ
2
1 + eδc/2

λi
for i = 3, 4, (17)

satisfying µ4 = µ∗3 since K114 = K∗113 and λ4 = λ∗3, and

µ̇1 = −eδd
2

+

(
(2p−∆)− e

(
K113

λ3
+
K114

λ4

))
δcµ1

+

(
L1111 − 2

(
K113K311

λ3
+
K114K411

λ4

))
µ3

1 (18)

= −eδd
2

+
5p−2∆

4
δcµ1+

(3p−∆)
(
4+4p∆−15p2

)
2

µ3
1.

So far, for conciseness, we have not considered the ef-
fect of pump power purturbations. It turns out that
these have a very similar effect to detuning purturba-
tions; their treatment is summarised as follows. We
may represent small fractional pump power perturba-
tions ε1,2 by letting ẽ1,2 = ẽ (1 + ε1,2/2) and conse-
quently adding e (ε1, aε1, ε2, aε2)/2 to d. Decomposing
these into common- and differential-mode components
εc = (ε1 + ε2)/2 and εd = (ε1 − ε2)/2 and revisiting the
above steps, we find that εd scales as µ3

1 and εc as µ2
1

just as with detuning perturbations, and that Eq. (18)
becomes

µ̇1 = −e
2

(δd + pεd) +

(
5p− 2∆

4
δc +

2∆− 3p

4
pεc

)
µ1

+
(3p−∆)

(
4 + 4p∆− 15p2

)
2

µ3
1. (19)

Interestingly, if we include pump phase perturbations,
for example by allowing ε1,2 to be complex, we find that
they (as distinct from detuning perturbations which are
analogous to their time derivatives) play no role in the
critical dynamics to leading order. This is actually ex-
pected, since Eq. (2) is invariant under static phase ro-
tations of ẽ1,2, as long as the same rotations are applied
respectively to e1,2.

Importantly, the coefficient of µ3
1 in Eqs. (18) and (19)

is always negative, which can be seen by substituting in
Eq. (8) to give −(3p−∆)((2∆− 5p)2 + 2p2)/2. We can
therefore re-express (19) in the form

ẏ = −y3 + xy + z, (20)

where

x =
5p− 2∆

4
δc +

2∆− 3p

4
pεc

y = −
√

(3p−∆) (15p2 − 4p∆− 4)

2
µ1

z =

√
p (3p−∆) (15p2 − 4p∆− 4)

8
(δd + pεd) .

(21)
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FIG. 2. Response to a sinusoidally modulated differential-
mode detuning δd = δAC

d cosωt, with δc = 0, at the critical
point p = 1, ∆ = 2 for δAC

d = ω = 0.1 and µi = 0 at t = 0.
Dashed lines indicate exact solutions to Eq. (4) resolved into
the eigenbasis via µi = ui·f , while solid lines are calculated us-
ing the leading-order approximation developed in this section,
via Eqs. (17) and (18). There is a visible difference between
the two here since we are not in the regime |µ1| � 1, meaning
that higher-order terms are not negligible. The smaller δd and
µ1 are, the better the leading-order approximation becomes,
and the smaller µ3,4 become relative to µ1.

From the expression for v1 in Eq. (9) we can relate y
to the observable differential-mode (normalised) coupled
power pd = (p1 − p2) /2 to leading order as follows:

pd = e (f1 − f2) =

√
8p (3p−∆)

15p2 − 4p∆− 4
y. (22)

Observe that Eq. (20) is invariant under the transforma-
tion y → κy, x → κ2x, z → κ3z, t → κ−2t where t
is time and κ is an arbitrary scaling parameter. This
scaling invariance, in which the equations look the same
when each of the variables is scaled by some power of
a common parameter, is a universal feature of critical
points in many areas of physics, such as ferromagnetism,
superconductivity and liquid-gas transitions [5].

The dynamics of y under Eq. (20) can be summarised
as an interplay between three simple behaviors, each of
which occurs in its pure form when two of the three terms
containing y can be neglected – cube root (y = z1/3), pro-
portional (y = −z/x) and integrator (ẏ = z). Further-
more, Eq. (20) indicates the presence of two universal
critical behaviors, namely divergent steady-state respon-
sivity (|y/z| → ∞ as |x|, |y|, |ẏ| → 0) and critical slowing
down (|ẏ/y| → 0 as |x|, |y|, |z| → 0). Figure 2 shows the
dynamics for sinusoidally varying δd, or z. Note that the
phase lag between δd and −µ1 tells us that the system’s
response time, rather than being around the normalised
inverse cavity half-linewidth of unity, is not much less
than 1/ω = 10, due to critical slowing down.

III. ASYMMETRIC SPM AND XPM
COEFFICIENTS AND PUMPING CONDITIONS

In this section we generalise the theory to asymmetric
SPM and XPM coefficients and pump powers and detun-
ings. This is based on an extension of Eq. (2) to general
SPM and XPM coefficients Aij :

ėj = ẽj −

(
1 + i

(∑
k

Ajk|ek|2 −∆j

))
ej , (23)

where A11 = A22 = 1, A12 = A21 = 2
reproduces Eq. (2). This time, we expand this
around a general asymmetric steady-state solution
∆i = ∆0

i , ei = e0
i ∈ R+, ẽi = ẽ0

j = (1 + iaj)e
0
j where

ai =
∑

j Aijp
0
j−∆0

i , p0
i = e0

i
2
. For completeness, in addi-

tion to detuning perturbations δi, we include fractional
pump power and pump phase perturbations, εi and φi
respectively, from the start (although static phase per-
turbations φi will again be found to have no effect on the
critical dynamics):

∆i = ∆0
i + δi

ẽj = ẽ0
j

(
1 +

εj
2

+ iφj

)
ej = e0

j + fj + igj .

(24)

We still express the time evolution of fi and gi in the form
given in Eq. (4), but with the following modifications:

d =

 e0
1ε1

e0
1(δ1 + ζ1)
e0

2ε2

e0
2(δ2 + ζ2)

, M =

−1 a1 0 0
−b1 −1 −c1 0

0 0 −1 a2

−c2 0 −b2 −1

,

k =

 2g1(A11 e
0
1f1 +A12 e

0
2f2)

−e0
1(A11(3f2

1 +g2
1)+A12(f2

2 +g2
2))−2A12 e

0
2f1f2

2g2(A22 e
0
2f2 +A21 e

0
1f1)

−e0
2(A22(3f2

2 +g2
2)+A21(f2

1 +g2
1))−2A21 e

0
1f1f2

,

l =

 g1(A11(f2
1 + g2

1) +A12(f2
2 + g2

2))
−f1(A11(f2

1 + g2
1) +A12(f2

2 + g2
2))

g2(A21(f2
1 + g2

1) +A22(f2
2 + g2

2))
−f2(A21(f2

1 + g2
1) +A22(f2

2 + g2
2))

, (25)

where εi = εi/2−aiφi, ζi = aiεi/2 +φi, bi = ai + 2Aiip
0
i ,

c1 = 2A12e
0
1e

0
2 and c2 = 2A21e

0
1e

0
2. The condition for one

of the eigenvalues of M to vanish, which is a requirement
for a critical point as it enables the divergent responsivity
and slow critical dynamics, is that det M = 0, or [8]

(1 + a1b1)(1 + a2b2) = a1a2c1c2. (26)

As the solution space is now four-dimensional,
parametrised e.g. by (p0

1, p
0
2,∆

0
1,∆

0
2), as opposed to

the two-dimensional symmetric space parametrised by
(p,∆), and the space of critical points is now two-
rather than one-dimensional (for example, given any
(p0

1, p
0
2) within some region, there are one or more dis-

crete points (∆0
1,∆

0
2) that are critical points), this single
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FIG. 3. Solutions to Eq. (1) under symmetric pump pow-
ers p̃1,2 = p̃ = 1.75 as in Fig. 1 but for five values of
the differential-mode detuning ∆d = (∆1 − ∆2)/2, plot-
ted as circulating power p1 vs. common-mode detuning
∆c = (∆1 + ∆2)/2. The case ∆d = 0 and points A1, A2,
B1, and B2 are as in Fig. 1, and faint lines represent unstable
solutions. The locus of the edge of the symmetry-breaking-
related unstable region for varying ∆d is shown as a thick
black line.

condition is not sufficient for a given solution to be a
critical point. Rather, it describes a more general three-
dimensional space that we shall call the boundary of the
unstable region. The intersection of this with the two-
dimensional subspace p̃1 = p̃2 = 1.75 (for A11 = A22 = 1,
A12 = A21 = 2 as in Section II) is shown as a thick black
line in Fig. 3. In fact Eq. (26) also encompasses the
boundary of the other unstable region that is a generali-
sation of the points B1 and B2; the symmetry-breaking-
related one may be specified by a1,2 > 0, i.e. both pumps
being blue-detuned from their respective Kerr-shifted res-
onances. We assume for the remainder of this section
that Eq. (26) and a1,2 > 0 hold. The next question is
how to identify which points on the edge of the unstable
region are critical points. To answer this, we proceed in
the same way as in Section II. Defining the quantities

Q =
1 + a1b1
a1c2

, R =
1 + a2b2
1 + a1b1

,

S =
√

1 + a1b1 + a2b2,

(27)

and noting that (26) implies that

Q2R =
A12 a2

A21 a1
, (28)

the eigenvectors and eigenvalues of M on the boundary
of the unstable region may be written as

v1 =

−QRa1

−QR
a2

1

, λ1 = 0; v2 =

QRa1

−QR
−a2

1

, λ2 = −2;

v3 =

−ia1Q/S
Q

−ia2/S
1

, λ3 = −1 + iS; (29)

v4 =

ia1Q/S
Q

ia2/S
1

, λ4 = −1− iS.

The normalisation of the eigenvectors is chosen to be con-
sistent with Eq. (9) in the symmetric case. Using these
new eigenvalues and eigenvectors and the corresponding
inverse basis {ui} : ui · vj = δij , where again δij is the
Kronecker delta, the reasoning in Section II can be repli-
cated with just two slight modifications. Firstly, whereas
in Section II we have K111 = 0 by symmetry, here that
condition specifies the critical points. In other words,
it distinguishes the critical points from the rest of the
boundary of the unstable region since it implies that, in
the absence of external perturbations, µ̇1 is proportional
to −µ3

1 rather than µ2
1 to leading order. This is a nec-

essary condition for a critical point since a non-zero µ2
1

term in µ̇1 would mean that µ1 is unstable for one sign of
perturbation, somewhat like a particle in an x3 potential.
This occurs everywhere on the boundary of the unstable
region except for the critical point, where the stability
is analogous to a particle in an x4 potential. Conve-
niently, K112 = −K111 on the boundary of the unstable
region, so K111 = 0 implies K112 = 0, another result of
directional symmetry that was used in Section II. The
condition K111 = 0 can be expressed as

(1− 3a2
2)(QA22e

0
2 −A12e

0
1)

+Q2R2(1− 3a2
1)(QA21e

0
2 −A11e

0
1) = 0.

(30)

The second slight change from Section II is in the res-
olution of the external perturbations into common- and
differential-mode components. In the general asymmetric
case, the ratios of the coefficients of δ1,2 and ε1,2 are dif-
ferent in every relevant di or Dij term. However, it is still
true that d1 must scale as µ3

1 and d3,4 and D11 as µ2
1 in or-

der to preserve the natural hierarchy of scalings of terms
in the eigenbasis, and that no other elements of di or Dij

contribute to leading order. Therefore we may define lin-
ear combinations δc’ and δd’ of δ1,2 that scale as µ2

1 and
µ3

1 respectively, requiring only that ∂d1/∂δc’ = 0 (and
∂d3,4/∂δc’, ∂D11/∂δc’ 6= 0), and still satisfy the scalings
of d1, d3,4 and D11 to leading order. Since

d1 =
Qe0

2δ2 − e0
1δ1

2Q(1 +R)
+
Qa1(1 + a2

2)e0
2ε2 − a2(1 + a2

1)e0
1ε1

4a1a2Q(1 +R)
(31)
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we shall do this as follows:

δc’ =
1

2

(
δ1 +

Qe0
2

e0
1

δ2

)
, δd’ =

1

2

(
δ1 −

Qe0
2

e0
1

δ2

)
. (32)

Similarly, for ε1,2 we define

εc’ =
1

2

(
ε1 +

Qa1(1 + a2
2)e0

2

a2(1 + a2
1)e0

1

ε2

)
,

εd’ =
1

2

(
ε1 −

Qa1(1 + a2
2)e0

2

a2(1 + a2
1)e0

1

ε2

)
,

(33)

so that ∂d1/∂εc’ = 0. Finally, like in Section II, we can
express the dynamics of µ1 in the form

µ̇1 = d1 +Deff
11 µ1 + Leff

1111 µ
3
1, (34)

where

Deff
11 = D11 − 2

(
K113d3

λ3
+
K114d4

λ4

)
and

Leff
1111 = L1111 − 2

(
K113K311

λ3
+
K114K411

λ4

)
,

(35)

applying the transformation

x = Deff
11 , y = −

√
−Leff

1111 µ1, z = −
√
−Leff

1111 d1 (36)

to reproduce Eq. (20), which works because Leff
1111 < 0.

The quantities d1, Deff
11 (to leading order) and Leff

1111 (sim-
plified a little by assuming Eq. (30)) are given by:

d1 = −e
0
1(2a1δd’ + (1 + a2

1)εd’)

2Q(1 +R)a1
, (37)

Deff
11 =

1

2a2
1a2Q2(1 +R)

(
a1Q(a1(a2

2 − 1)e0
1 + (a2

1 − 1)a2e
0
2QR)δc’

e0
2

+
e0

1

1 + S2

(
a1

(
Q(a2(1− 3a2

2)A22e
0
2 + a1(1− a2

2)A21e
0
1Q) + 2A12a

2
2(a2e

0
1 + a1e

0
2Q)

)
+ a2Q

(
(1− a2

1)A12a2e
0
2 + a1(1− 3a2

1)A11e
0
1Q
)
R
)

(2a1δc’ + (1 + a2
1)εc’)

)
,

(38)

Leff
1111 =

1

2a2
1a2(1 +R)

(
a1

(
a1(1− a4

2)A22 + 2A12a2(1− a2
1a

2
2)R+ (1− a4

1)A11a2Q
2R3

)
− 2

Q2(1 + S2)

(
2a1A12(1− a2

2)e0
1 − a1(1− 3a2

2)A22e
0
2Q+ (1 + a2

1)A12a2e
0
2QR

)
(
a1(Q(a2(1− 3a2

2)A22e
0
2 + a1(1− a2

2)A21e
0
1Q) + 2A12a

2
2(a2e

0
1 + a1e

0
2Q))

+ a2Q((1− a2
1)A12a2e

0
2 + a1(1− 3a2

1)A11e
0
1Q)R

))
.

(39)

The deviations δp1,2 of the circulating powers p1,2 from
their steady-state values p0

1,2 are given to leading order

by 2e0
i fi, or

δp1 = −2QRa1e
0
1µ1, δp2 = 2a2e

0
2µ1. (40)

As a final comment, it is worth noting that microres-
onators generally possess strong thermal nonlinearity due
to a combination of thermorefractive effects and thermal
expansion [25]. This typically creates circulating-power-
dependent resonance frequency shifts between one and
two orders of magnitude larger than the Kerr shifts, but
which require much longer timescales to take effect, and
could thus greatly complicate the critical dynamics. Im-
portantly, however, these effects depend only on the total
circulating power p1 +p2 and create equal shifts for both

directions, i.e. change ∆1 and ∆2, or equivalently δ1 and
δ2, by the same amount, assuming that the two modes
occupy the exact same region. This means that they can
be decoupled from the critical dynamics in two ways –
firstly by making δp1 and δp2 in Eq. (40) equal and oppo-
site, and secondly by making the coefficients of δ1 and δ2
in δd’ (Eq. (32)) equal and opposite. The latter condition
may be written as

Qe0
2 = e0

1, (41)

whilst the former simplifies via Eq. (28) to

QA21e
0
2 = A12e

0
1. (42)

Thus the two conditions are equivalent if A21 = A12,
which is in fact necessarily true due to the reciprocity of
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the Kerr effect, and since the normalisation factor for the
circulating power is the same for both modes.

IV. CONCLUSION AND OUTLOOK

We have derived a theory that explains the dynam-
ics of a bidirectionally-pumped optical resonator with
Kerr nonlinearity in the region close to the critical point
of the symmetry breaking between counterpropagating
light. This was done first for the case of a perfectly sym-
metrical system in Section II, before being generalised to
asymmetrical pumping conditions and SPM and XPM
coefficients in Section III. A condition for compensat-
ing the various asymmetries with each other to recover a
critical point is derived (Eqs. (26) and (30)). The crit-
ical dynamics are shown to be described by the simple
Eq. (20) in both the symmetric and asymmetric cases,
for each of which explicit formulae for the conversion fac-
tors to the generalised variables x, y and z are obtained.
From Eq. (20), we see that the system exhibits scaling in-
variance, divergent steady-state responsivity and critical
slowing down, all of which are universal features of criti-
cal systems. Finally, a condition for decoupling the crit-
ical dynamics from thermal nonlinearities is discussed.

The theory presented here describes in detail the re-
sponse of critical-point-enhanced sensors such as gyro-
scopes [11, 12] and refractive index sensors [15]. Further-
more, it is applicable to any optical resonator in which
two modes interact via the Kerr nonlinearity, including
modes of different frequencies, propagation angles [19] or
opposite circular polarisations [18, 20–22]. It also extends
to other Kerr-like effects such as the magnetic nonlinear-
ity [23], and even to similar nonlinear systems outside
the optical domain.
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