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Abstract

In a rapidly changing IT environment, access to the resources involved in various projects might change randomly
based on the role-based access control (RBAC) system. Hence, the security administrator needs to dynamically main-
tain the role assignments to users for optimizing user-role assignments. The manual updation of user-role assignments
is prone to error and increases administrative workload. Therefore, a role recommendation model is introduced for
the RBAC system to optimize user-role assignments based on user behaviour patterns. It is shown that the model au-
tomatically revokes and refurbishes the user-role assignments by observing user access behaviour. This model is used
in the cloud for providing Role-Assignment-as-a-Service to optimize the cost of built-in roles. Several experiments
are conducted to verify the proposed model using the Amazon access sample dataset. The experimental results show
that the efficiency of the proposed model is 50% higher than the state-of-the-art.

Keywords: Access control, Cloud computing, Hidden Markov model, RBAC, Role recommendation

1. Introduction

To manage legitimate access to data, functionality, ser-
vices, and resources, researchers employ various access
control policies. At present, role-based access control
(RBAC) is the most preferred choice of many leading or-
ganizations due to minimal overhead when user assigned
permissions are frequently analyzed and updated. The
idea of RBAC [1] lies in creating roles, which further
incorporates a set of permissions. Each role is suitable
for a particular task, and thus all permissions necessary
to carry this task are known as permission-role assign-
ments. The users are then assigned a set of roles known
as user-role assignments depending on the tasks to be per-
formed. Figure 1 illustrates user-role assignments (UA)
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and permission-role assignments (PA) in RBAC for com-
pleting a particular task by the user. Role engineering,
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Figure 1: Users access permissions through roles

particularly role mining, is the most widely used and pre-
ferred choice of researchers for successful RBAC adop-
tion in any enterprise [2].

In RBAC, due to the dynamic nature of the business
processes, users may access only a limited number of
roles from the set of assigned roles. In such a case, role
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assignments for users may turn obsolete, which means
that the corresponding UA is not longer required at this
point of time [2]. Similarly, role assignments for users
may need to be refurbished, i.e., they might be obsolete
at some time in the past, but are required at this point
of time. Therein lies the biggest problem of RBAC as
to how exactly a security administrator can dynamically
maintain role assignments by optimizing the UA? Since
the main principle of RBAC lies in providing the least
privilege principle (LPP) [3], which means that a user is
not given more privileges (i.e., role) than necessary to per-
form a job. In role mining [4, 5] and role refinement [6, 7]
techniques, the authors have optimized the UA by refining
the existing role set. Such approaches are used to opti-
mize the UA at the system level, i.e., the role requirement
is checked among all the users. Therefore, by determining
whether to add or delete the UA at the system level does
not necessarily optimize the UA at the user level.

As far as is known, to date, no role recommendation
model is available, which is integrated with RBAC to op-
timize the UA at the user level. In this paper, the fol-
lowing three real-world scenarios are discussed and an-
alyzed where the proposed system is a good choice for
commercial applications. The proposed system was de-
veloped using the Amazon access sample dataset [8], and
successfully optimized the UA based on the recently ac-
cessed permissions. The performance of the proposed
system was also evaluated by comparing it with the ex-
isting models using the synthetic datasets proposed in [9].

Scenario 1: User A is involved in various projects of an
organization. Due to the completion of the project or
other reasons, user A may not use a certain set of roles
and the corresponding UA now becomes obsolete.
Scenario 2: When user A wants to access a certain set of
roles, which were revoked at some time in the past but is
now required, then the corresponding UA needs to be re-
furbished by considering it as an emergency requirement.
Scenario 3: User A is given privileges for a certain period
of time, after which the user needs to request for extension
of his privileges.

In leading cloud platforms such as Microsoft Azure,
the need of optimizing UA in deploying the applica-
tions was investigated. Consider Azure resource man-
ager [10], which provides fine-grained access control of
resources using a built-in RBAC system. Seventy built-

in roles can be assigned to users to provide restricted ac-
cess. Such predefined roles are assigned with the avail-
able constant number of resources that cannot be cus-
tomized. For example, in Azure, there exist roles such
as Monitoring Reader and Log Analytics Contributor,
which can access and monitor all the log activities, i.e.,
user behaviour/access pattern. Hence, many organiza-
tions use these built-in roles while deploying the RBAC
enabled applications in Azure Cloud. Meanwhile, organi-
zations need to pay for the cloud service provider (CSP)
based on the usage of roles, rather than the usage of per-
missions. Due to the dynamic nature of business pro-
cesses, users may not use all the resources/permissions,
which are assigned through the roles. Since the PA cannot
be altered, the only option to make effective pricing/utility
computing for organizations is to optimize the UA based
on the roles.

In this paper, a solution is proposed to optimize the UA
in the RBAC system. The solutions are presented in two
phases: 1) extraction of user behaviour pattern from the
system usage log data, and 2) matching the users from
this pattern to recommend the roles by checking whether
the UA is obsolete or whether the UA needs to be re-
tained or refurbished. The Hidden Markov model (HMM)
represented as a dynamic Bayesian network was used to
carry out the role recommendation. This is said to be
role recommender, which recommends the roles aligned
with the user privileges to optimize the UA, which can
be done by integrating with the RBAC. Here, it is rep-
resent it as Role recommender-RBAC (R-RBAC) on this
paper. For example, in RBAC enabled applications, roles
as well as its assignments to users and permissions have a
predefined period beyond which it expires. However, for
some users, it may not be necessary to have such role as-
signments longer than required. Therefore, the proposed
system monitors the access pattern of the users and auto-
matically revokes the UA before the fixed deadline, rather
than waiting for the deadline or for manual revoking op-
eration by the security administrator. The refined UA by
R-RBAC in the cloud applications optimizes the built-in
roles assigned to the users, which in turn provides cost
optimization for organizations. The services provided on
hosting R-RBAC in cloud applications is referred to as
Role-Assignment-as-a-Service (RAaaS).

The optimal solution in UA means the roles assigned
to the user must satisfy the LPP. Since optimizing UA by
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maintaining the LPP is proved to be NP-hard [6], a good
approximation is provided to the optimal solution in con-
trast to the state-of-the-art. Updating the UA by role rec-
ommendation has a direct impact on meeting the principle
of least privilege. So, the user as well as the security ad-
ministrator will always have a privilege to request a new
set of recommended roles by the R-RBAC, if the roles as-
signed to the user does not satisfy the principle of least
privilege.

Based on the above discussions, the following specific
contributions are listed out.

1. Role recommendation model for the RBAC system
(R-RBAC) recommends the roles to optimize the UA
by revoking obsolete UA, and refurbishing and re-
taining necessary UA based on user behaviour pat-
tern. It is shown that the R-RBAC recommends the
roles on Amazon access sample dataset [8] to opti-
mize the UA by retaining an average of 57% of roles
when 50% of UA is obsolete, and restoring an aver-
age of 28% of roles when 10% of UA needs refur-
bishment. The consequences of such optimization
helps cloud applications to optimize the cost of built-
in roles, which is referred to as Role-Assignment-as-
a-Service.

2. The R-RBAC recommends the roles for each user to
optimize the UA at the user-level, unlike the existing
models which optimize the UA at the system level.
The efficiency of the R-RBAC on size and speed met-
rics can be seen up to 32% and 50% respectively,
when compared with Least Privilege User-Role As-
signment Problem [6] using the synthetic datasets.

The rest of the paper is organized as follows: Section
2 discuss the related works. In Section 3, the proposed
methodology is provided. In Section 4, the R-RBAC anal-
ysis is presented. In Section 5, the experimental results
are shown, and finally, Section 6 concludes the paper.

2. Related Work

Recently many approaches have been identified to ap-
proximate the optimal solution for role generation and
role assignments in access control systems such as role
mining, dynamic user-role assignments, and role refine-
ment. Such approaches are not suitable to optimize the

UA when the user privileges need dynamic changes, for
example, the three scenarios described in the introduction
section. The following sections shall provide the details
of the mentioned approaches.

2.1. Role Mining Methods
Role engineering, especially role mining, is the most

widely used and preferred choice of researchers during
the implementation of RBAC to maintain LPP by opti-
mizing the UA as well as PA [2]. In most of the role
mining techniques, for deriving role assignments to users
as well as permissions, the available user-permission as-
signments are taken into consideration. The first proposed
technique for role mining is based on the initial cluster-
ing of users, who have been assigned the same permis-
sions [11]. Basic-RMP [4] finds a minimal set of roles
from user-permission assignments and provides role as-
signments to users as well as permissions. Researchers
have found that a feasible set of roles can be obtained to
optimize user access by mapping the role mining prob-
lem (RMP) to well-known problems (NP-hard). A solu-
tion to such a kind of problem may be used for the RMP.
For example, Basic-RMP is mapped to minimum tiling
problem [4]- where each tile corresponds to a role, min-
imum biclique cover [12]- where each role corresponds
to biclique, and set cover problem [6]- where each sub-
set corresponds to a role. In edge-RMP [5], work has
been done to minimize the administrative burden by opti-
mizing user-role as well as permission-role assignments.
Since Basic-RMP and edge-RMP proved to be NP-hard,
a greedy and approximation algorithm was proposed to
optimize the edges (i.e., UA and PA) in RBAC.

An unsupervised approach of role mining called Fast
Miner [9], is based on the permission set enumeration
on the predefined constraints. The Simple Role Mining
Algorithm [13], is a heuristics-based solution to approxi-
mate the optimal role set. The user with the least number
of permissions will be the initial entry to the role set. This
process of selection on the least number of permissions
is done progressively after completion of the individual
user’s task. The subsequent updation of the role set is
maintained by eliminating the roles obtained as union of
other roles which is already inserted in the role set. The
HP Role Minimisation algorithm [12] and the Weighted
Structural Complexity Optimization [14] are exact vari-
ants of RMP, as the set of roles is strongly compatible with
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the permissions assigned to the users. The process of min-
ing the roles are also incorporated in the RBAC extension
models such as Temporal RBAC and Generalized Tem-
poral RBAC. This is known as the Temporal RMP [15].
Here, the role assignments to the users and permissions
are enabled only for a set of time intervals. In constraint
role miner [16], a proposed role mining algorithm com-
plies with various kinds of constraints for optimizing the
role assignments to the users and permissions.

All the above role mining approaches maintain LPP
by optimizing role assignments to the users as well as
permissions, which are closely compatible with the user-
permission assignments. After a certain period, if some
UA becomes obsolete or needs refurbishment, then the
security administrator can manually update such assign-
ments. This will become a tedious task for the security
administrator, if the updating is frequent and required for
a large number of UA. To date, there is no user-level role
recommendation model for the RBAC system to optimize
the UA, dynamically based on the requirements. Further,
in R-PEKS [17], it is proposed in a future work that there
is need to optimize the UA for better performance and se-
curity in dynamic user-permission assignments.

2.2. Dynamic User-Role Assignments
In Rule-Based RBAC [18], the administrative unit of an

enterprise maintains dynamic UA by considering the cre-
dentials of the user and imposes certain constraints on the
roles. In TrustBAC [19], the roles are assigned dynami-
cally to the users based on the trust levels maintained by
the users during the past use of credential. Further, these
trust components also include past behaviour and recom-
mendations from other users. In Role-Based Trust Man-
agement Framework (RT) [20], for each request, the entire
credential phase is repeated because the role assigned for
the user is for a specified time interval. All the above dy-
namic UA may not be a good choice, where users access
the permissions regularly.

Recently, in [21], RBAC was combined with trust and
reputation for secure data access in the cloud. In such
a mechanism, roles are assigned to the users based on
experts' recommendations, role behaviour, and user be-
haviour analysis. This can be a solution to the problem
of remote access control for maintaining UA dynamically
when the users are not formerly known, i.e., unauthorized
users. Further, RBAC is combined with attributes (i.e.,

RBAC-A) [22] such as time and location to make it dy-
namic in a large scale fast changing domain. Addition-
ally, discriminative learning is used to generate the RBAC
system. But such dynamic role assignments in RBAC do
not recommend roles that may optimize the UA based on
attributes.

2.3. Role Refinement
The refinement of an existing set of roles to meet the

demands of new requirements that exist within the organi-
zation is said to be known as role refinement problem [7].
the ad hoc creation of roles to satisfy new requirements
increases administrative overhead. Therefore, it is always
recommended to periodically refine the roles in the exist-
ing role system. The role refinement problem is solved by
creating a new system of roles (refined role system), i.e.,
by considering a candidate set of roles as input. Applying
the role refinement is proved to be NP-hard, and a greedy
and randomized approach solves the problem [7]. Here,
role refinement also tries to optimize the UA at the system
level by assigning a refined role set to the users. Further,
during the role refinement process, the obsolete UA is not
taken into consideration.

Optimization in UA is done by maintaining least privi-
lege and is said to be the least privilege user-role assign-
ment problem (LPUAP) [6]. Since it is proved to be NP-
hard, the problem is solved using the approximation al-
gorithm by adjusting the roles (sometimes called role re-
finement). Once the roles are assigned to the users, post-
processing is done to reduce the number of roles. The
roles can be deleted if other existing roles cover the cor-
responding permissions among all the assigned users by
maintaining only the least privileges. While adding the
roles, if the existing roles do not cover the permissions,
then new roles are added. The model is more applicable
only if a user does not use a particular role, or if a new role
is added to the system. Therefore, the optimization of UA
is solved at the system level, rather than at the user level.
In [23], the process of security refinement is also avail-
able at the network access control. Here, the refinement
is meant to obtain an optimal network security configu-
ration by the placement of the security devices based on
exploring different design alternatives.

The existing research suggested an idea of using histor-
ical logs to refine the original role system [2]. This is a
very closed idea to maintain optimization in UA, where
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obsolete UA may be analyzed from the historical logs.
But the idea was just proposed in [2] and further, there
exists a challenge based on the requirement as to how the
system can refurbish the UA. Therefore, due to the dy-
namic nature of the business processes, there is a neces-
sity to update the UA (by revoking obsolete UA as well
as by refurbishing necessary UA) by maintaining the least
privileges at the user level. During the UA optimization
at the user level, the existing approaches such as role re-
finement cannot be incorporated as refining the existing
roles will impact on the other users. One possible solu-
tion can be to dynamically assigning the roles to the user
by maintaining the least set of privileges.

Based on the above limitations, the objective of the
proposed approach is to develop a role recommendation
model for the RBAC system (i.e., R-RBAC). Such a sys-
tem could help to optimize the UA by recommending
roles for each user, which are a good approximation to the
optimal solution. For recommending the roles, the HMM
was used, which is represented as a dynamic Bayesian
network and integrates with the RBAC system.

To develop a recommendation model, it was decided
to implement an HMM. Given a set of permissions re-
quested and granted to the user, what are the chances that
the user will be in one of the permission sets in the near
future? Such uncertainty is based on the assumption that
the user behaves in a similar manner when migrating be-
tween states [24]. For example, an employee who is as-
signed the same type of tasks will require the same set
of permissions and carry out the same actions. Thus us-
age behaviour will be similar, and the current permissions
requested can be implied from past permissions [25].

To generate an RBAC system, it was decided to use
the Simple Role Mining (SRM) algorithm [13]. The two
main criteria to consider while implementing role mining
algorithm is the speed and quality of the produced role
set. Speed is crucial as some algorithms grows exponen-
tially depending on the number of users and permissions,
and thus, are not suitable for large systems. There is of
course a question of how to measure the quality of the
roles. Some researchers focus only on the size of the
generated role set, while others introduce the notion of
weighted structural complexity [14], [26], which sums up
the number of relationships in an RBAC state, with possi-
bly different weights for each relationship. The HP Role
Minimisation algorithm [12] performs well using both of

the metrics mentioned above [26, 27]. SRM [13] has
taken this as a base and applied a heuristic to simplify the
algorithm. Instead of looking at how many users are cov-
ered under each new role, they pick the role that contains
the smallest number of permissions. It turns out that this
approach works well, and moreover is faster than the HP
algorithm and produces a role set whose quality is close to
the one produced by the HP algorithm. For these reasons,
it was chosen to implement the SRM algorithm.

A comparison of the proposed work with five related
works can be seen in Table 1. Along with the LPP, the
proposed approach also provides cost optimization while
using built-in roles in the cloud platform. In the proposed
approach, speed and percentage of optimization are rela-
tively better because the UA optimization is performed at
the user level, unlike the existing models, which do it at
the system level. Further, unlike the existing models, the
proposed solution periodically identifies obsolete UA as
well as refurbishes the necessary UA.

3. Proposed Methodology

In this section, the design of the R-RBAC system as
well as its components to recommend the roles and to op-
timize the UA at the user level is proposed.

3.1. Design of R-RBAC System
The design of the role recommendation model for the

RBAC system that optimizes the UA is shown in Figure
2. The RBAC consists of role assignments to the users
as well as permissions. Users access the logger, which
handles the assigned permissions based on the RBAC
and such sequences of accessed permissions are segre-
gated based on the user’s identity and are stored in log
files, as shown in Figure 2. In the log files, a set of
accessed permissions and a set of last ′k′ accessed per-
missions at time t from each user are further referred
to as user behaviour pattern (BP) and current usage of
user behaviour pattern (BPk) respectively. The role rec-
ommender consists of HHM generator, user behaviour
analyzer, and role matcher, which are used in the pro-
cesses of recommending the roles to optimize the UA. The
Recommended-RBAC contains the PA and the optimized
UA. The solution is optimized by revoking obsolete UA,
and retaining and refurbishing the necessary UA. More-
over, users continue to access the permissions based on
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Table 1: Properties of different UA optimization techniques in RBAC

Property Role Mining
algorithms [4, 5] LPUAP [6] Role refinement

[7]
Dynamic UA

[21]
Proposed
approach

Key concerns LPP LPP LPP LPP
LPP and cost

optimization for
organization

Optimization
Technique

greedy and
approximation approximation greedy and

randomized trust HMM

Speed of optimizing
a role

assigned to users

depends on
|UA| and |PA|

for a role

depends on the
number of users

assigned to a role

depends on
|UA| and |PA|

for all the roles

depends on experts'
recommendations, role

and user behaviour
analysis

depends on the
number of user

behaviour patterns

Percentage of
optimization below 10% below 10% below 10% not applicable below 40%

Level of optimization system level system level system level user level user level
Identification

of obsolete UA no yes no no yes

Refurbishment of UA no no no no yes

the Recommended-RBAC, until the user’s request or the
system admin recommends a new set of roles. A detailed
description of the flow of control is given below:

1. For a given sample dataset, user-permission assign-
ments and its corresponding access privileges based

on SRM algorithm are generated by the role miner.

2. Generated roles by the SRM algorithm are assigned
to the users as well as permissions to build an RBAC
system.

3. The logger stores the user behaviour pattern of all the

Methods to obtain User-

Permission Assignments

ROLE MINER

Simple Role Mining (SRM) 

algorithm

Hidden Markov Model 

(HMM) generator

ROLE RECOMMENDER

Methods to log requests

LOGGER

Methods to process log 

data

Log of user u1

LOG FILES

Log of user u2

Log of user un

User-Role 

Assignments

Permission-Role

Assignments

RBAC

1

2

4

6

5

RECOMMENDED -RBAC

7

SAMPLE DATASET

3

6

Role Matcher

User Behaviour Analyzer

5

R-RBAC SYSTEM

Figure 2: Proposed design of the R-RBAC System
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users in the log files.

4. HMM generator generates the states for all the users
using the corresponding user behaviour pattern.

5. To recommend the HMM state (i.e., set of permis-
sions), user behaviour analyzer analysis the current
usage of user behaviour pattern with the states gen-
erated by the HMM generator.

6. For a given user, the role matcher matches the recom-
mended HMM states to the user privileges to gener-
ate the recommended role set.

7. The Recommended-RBAC is generated by assigning
the recommended roles to the users as well as per-
missions.

Remark 1. Before the construction of HMM, all the per-
missions should be accessed based on the privileges, and
only the granted permissions are to be considered as user
behaviour patterns.

Remark 2. Following the construction of HMM, users
continue to access the permissions based on the privileges
which are updated in the log files. At the time t, only the
last k accessed permissions from the log files are consid-
ered for the role recommendation.

Hosting R-RBAC in the Cloud: The hosting of the R-
RBAC system by the CSP provides Role-Assignment-as-
a-Service (RAaaS) for the deployed RBAC applications
as depicted in the use-case diagram in Figure 3. Once
the organization deploys the RBAC enabled applications
on the cloud, an authorized user can access the permis-
sions based on the sessions. Each such user sessions
are assigned to roles, which are recommended by the R-
RBAC to optimize the UA. Therefore, a service provided
by the CSP to optimize the UA using the R-RBAC for the
RBAC enabled cloud applications is referred to as Role-
Assignment-as-a-Service. Such a service can also provide
cost optimization for organizations that use built-in roles
provided by the cloud (as an example- Azure resource
manager) in deploying the applications.

3.2. Components of R-RBAC System
In this section, the components, i.e., RBAC and Role

recommender, that are used to build the R-RBAC system
are described.

3.2.1. RBAC
The NIST RBAC reference model defines different

RBAC elements, RBAC assignments, and mapping func-
tions [1]. The pictorial representation of the NIST RBAC
system is shown in Figure 4. Let us define some of the

UA

RU

PA

P

Figure 4: NIST RBAC [1]

RBAC elements, assignments and functions which are
crucial for R-RBAC. Let U denote a set of users. Let
R denote a set of roles, where each role is a job as-
signed to some users in an organization. Let P denote
a set of permissions, where each permission is an ap-
proval to perform an operation on an object. Formally,
this is expressed as P = 2OP×OB, where OP is the set
of operations, and OB is the set of objects. Let UA de-
note a many-to-many mapping, which is user-to-role as-
signment relation, i.e., UA ⊆ U × R. Let PA denote
a many-to-many mapping, which is a permission-to-role
assignment relation, i.e., PA ⊆ P × R. Also, the as-
signed permissions: R→ 2P is a mapping function from
a role to a set of permissions [1]. So, for some r ∈ R, the
assigned permissions(r) = { p ∈ P | (p, r) ∈ PA }.
RBAC Configuration: Let UP denote a many-to-many
mapping of user-to-permission assignment relation, i.e.,
UP ⊆ U × P. Also let us consider the function Sim-
pleRoleMining which on input UP, outputs UA and PA,
i.e., SimpleRoleMining: U×P→ {UA, PA }. The access
control on RBAC can be defined as a CheckAccess func-
tion, which is responsible for the authorization process.
The function is defined as CheckAccess: U × P → P.
CheckAccess takes a user u and set of all permissions and
returns a legitimate set of permissions pertaining to user
u through the roles. Formally, CheckAccess(u, P) = {p :
p ∈ P ∧ ∀r, (u, r) ∈ UA ∧ (p, r) ∈ PA}.

3.2.2. Role Recommender
In this section, the construction of the HMM (HMM

generator), recommendation of the most suitable HMM
state based on user behaviour patterns (User behaviour
analyzer), and finally, matching the recommended state
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CLOUD SERVICE 
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ORGANIZATION

Cost Optimization

Figure 3: Hosting R-RBAC by the CSP providing Role-Assignment-as-a-Service

with RBAC (Role matcher) to generate an optimized UA
at the user level is presented.

A. HMM Generator: The HMM is a stochastic model
with probabilistic parameters such as states, observations,
transition probabilities from one state to another, emis-
sion probabilities as well as start probability for each
state. The observations are a set of possible permissions
from each state. The transition probability is the prob-
ability of the occurrence of transition among the states.
Emission probability is a property of the observed per-
missions at a particular time in a corresponding state of
HMM. Start probability is an initial probability distribu-
tion over the states.

Here, the elements required for the construction of
HMM is defined. Let BPu denote a set of user be-
haviour pattern of u ∈ U (refer Section 3.2.1), where
BPu = {p1, p2, . . . , pn}, such permission sequence is ob-
tained from the log files (refer Figure 2). Let Xu denote
a set of states of u ∈ U, where each state is associated
with the previously encountered set of permissions along
with one new permission from BPu, i.e., Xu = {< p1 >
, < p1, p2 >, . . . , < p1, p2, . . . , pn >} and its correspond-
ing observations are {{p1}, {p1, p2}, . . . , {p1, p2, . . . , pn}}.
Once the state is generated, it is possible to find the num-
ber of times a particular permission has been granted from
the state (emission count map). Additionally, the total
number of granted permissions from the state (frequency
of occurrence of the state) can also be counted. Further,
in HMM, there exists a transition from one state to all the
remaining states along with a self transition. Further, the
probability of such transitions in HMM is given by, tran-
sition probability, ti j = p(x j | xi). Since the user needs

to retain or change the state dynamically based on the
business requirements, the probability of transition to all
states is maintained at the same level all the time. There-
fore, the transition probability from one state to any of
the remaining n states is given by 1

n . The probability
of observed behaviour of permission pk at time t when
the user is in the state x j is given by emission proba-
bility e jk = p(pk | x j). Then the number of times the
permission is requested and granted at state x j by fre-
quency of occurrence of the state x j is calculated. The
start probability, π, is kept constant across all the states,
and hence, was not considered in further calculations.
Therefore, HMM was considered for user u as 4-tuple,
HMM = (S tates,Observations,Transition Probability,
Emission Probability). The detailed construction of the
HMM generator is shown in Algorithm 1.

Discussion on HMM Generator Algorithm. The user
behaviour pattern, BP, is collected and given as in-
put. Based on the input, states are generated for each
user. States are a unique set of permissions and are ob-
served/emitted at each state. Based on the occurrence of
permissions in a state, the emission probability is calcu-
lated, and the transition probability is constant across all
the states, which are calculated based on the total number
of states for a given user. Therefore, the algorithm will
continue to execute until the states and its probabilistic
parameters are generated for all the users. An instance of
Algorithm 1 depicting the characteristics of HMM states
for a particular user is given in Table 4.

The number of states in the HMM for a given user is
equal to the number of unique permissions in the user be-
haviour pattern. The time complexity of the HMM gener-
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Algorithm 1: HMM Generator Algorithm
Input: Map<U, BP>
Output: HMM: Map<U, States, Observations,

TransitionProbability, EmissionProbability>
1 State()

/* Characteristics of HMM state */

2 Set<P> EmittedPermission← ∅
3 FrequencyofOccurenceoftheState← 0
4 EmissionCountMap←Map<EmittedPermission, Count>
5 for each u ∈ U do
6 State CurrentState← ∅
7 Set<State> AllStates← ∅, Set<P> PermissionSet← ∅
8 for each p ∈ BPu do
9 if p ∈ CurrentState.EmittedPermission then

10 update(CurrentState)
11 end
12 else
13 State NewState.EmittedPermission←

PermissionSet.add(p)
14 update(NewState)
15 CurrentState← NewState
16 AllStates← AllStates.add(CurrentState)
17 end
18 end
19 Calculate the EmissionProbability and TransitionProbability

for the AllStates of the user u
20 HMM←Map<u, AllStates, EmittedPermission,

TransitionProbability, EmissionProbability>
21 end
22 return HMM
23 void calculateEmissionProbabilities()
24 e jk ←

EmissionCountMap.get(EmittedPermission)
Frequencyo f Occurenceo f theS tate

25 void calculateTransitionProbabilities()
26 ti j ←

1
AllS tates.size()

ator for a single user is O(nm), where n is the number of
user behaviour patterns with m unique permissions. Addi-
tionally, the required time for calculating emission proba-
bility as well as transition probability is O(m2). Since the
transition probability is constant, the time complexity to
calculate transition probability is O(1).

B. User Behaviour Analyzer: Here the most suitable
HMM state is recommended for user u at time t based
on BPk

u. Based on HMM generator (refer Algorithm 1),
the states and its observations for user u having n number
of user behaviour patterns with m unique permissions are
given below:
States, Xu = {< p1 >, < p1, p2 >, . . . , < p1, p2, . . . , pm >}
Observations, Ou = {{p1}, {p1, p2}, . . . , {p1, p2, . . . , pm}}

To model many observations, subindices represents time

slice as a dynamic Bayesian network as shown in Figure
5. Every recommended state x at time t denoted as x(t)

Observed

x(0)

o(t-1)

x(t)

o(t)

x(t-1)

o(1)

x(1)
Hidden

Figure 5: A dynamic Bayesian network specifying condi-
tional independence relations for an HMM [25]

depends only on state at time t − 1, i.e., x(t − 1) and ob-
servation of permissions at time t, i.e., o(t) depends only
on x(t). Now, that BPk

u has been observed at time t and
assumed that user u was in the state x(t−1) = xm, the rec-
ommended state x(t) needs to be found, given o(t) = BPk

u
, x(t − 1) = xm.
It is also known that the probability of x(t − 1) denoted as
p(x(t−1)) is equal to 1, because the state at the time (t−1)
already occurred; therefore,

p(x(t − 1), x(t), o(t)) =

p(o(t)|x(t)) ∗ p(x(t)|x(t − 1)) ∗ p(x(t − 1))
(1)

Substituting the suitable values in equation (1),

p(xm, x(t), BPk
u) = p(BPk

u|x(t)) ∗ p(x(t)|xm) ∗ 1 (2)

So, the state which takes a value with the maximum like-
lihood estimation for the equation (3) needs to be com-
puted.

x(t) = argmax
x j∈{x1,x2,...,xm}

[ p(BPk
u|x j)︸     ︷︷     ︸

emission probability

∗ p(x j|xm)︸   ︷︷   ︸
transition probability

] (3)

An HMM state having maximum likelihood estimation
at time t is called recommended state. Such a state is
mapped to the PA (permission-role assignments), which
will recommend the roles to optimize the UA. Therefore,
state x j having the maximum product value of transition
and emission probability is selected as the most recom-
mended state. Since transition probability is constant
across all the states for a given user, the calculation can
be reduced as shown below:

x(t) = argmax
x j∈{x1,x2,...,xn}

[ p(BPk
u|x j)︸     ︷︷     ︸

emission probability

] (4)
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Such a recommended state needs to update the emission
probability based on BPk

u. The classes and methods are
respectively stored in a package called Analyzer.
Discussion on Analyzer. Depending on the set of permis-
sions requested, each user is recommended to be placed in
a most suitable HMM state. Each state is associated with
the last k permissions requested by user u given as BPk

u.
Thus, if the user has requested the permission sequence
p1, . . . , p j, they will be located in the state having max-
imum emission probability value for the corresponding
permission sequences, observing maximum likelihood es-
timation. This is modelled using a dynamic Bayesian net-
work specifying conditional independence relations for an
HMM. Before closing this section, Table 2 provides the
list of notations discussed in this section.

Table 2: Summary of notations representing user u

Notation Description
BPu Permission sequence from the log files,

i.e., user behaviour pattern
BPk

u Last k permission sequence from the log files
i.e., current usage of user behaviour pattern

Xu Set of HMM states
Ou Set of observed permissions at each state
x(t) Identified state at time t
o(t) Observed permissions at time t

p(x(t)|x(t − 1)) Probability of transition between states at
time slices (t − 1) to t, i.e., transition probability

p(o(t)|x(t)) Probability of observed permissions at
state x(t), i.e., emission probability

pi Instance of permission
x j An instance of an HMM state

< .. > Set of unique values
{..} Set of values

C. Role Matcher: Here the roles are recommended by
matching the recommended state with the permission-role
assignments in RBAC system. Such recommended roles
are assigned to users to generate an optimized UA in the
Recommended-RBAC.
Recommended-RBAC Configuration: Let R be the
recommended set of roles, i.e., R ⊆ R (refer Section
3.2.1). Therefore, the Recommended-RBAC is denoted
as RBAC, which is obtained by assigning only the recom-
mended roles R to the users as well as permissions, which
are referred to as UA and PA, i.e., RBAC → {UA,PA}.
Thus, the RBAC system generated by R-RBAC remains
similar to Figure 4, and the authorization process is also

the same as RBAC (refer Section 3.2.1).
Before closing this section, Table 3 provides the list of
notations discussed in this section.

Table 3: Summary of notations

Notation Description
RBAC Roles generated and assigned to users as well

as permissions using SRM algorithm
R Set of roles defined in RBAC

UA User-role assignments in RBAC
RBAC Recommended-RBAC, i.e., roles assigned to

users as well as permissions based on
user behaviour pattern using R-RBAC.

Also RBAC ⊆ RBAC
R Set of roles defined in RBAC, i.e., R ⊆ R
UA Optimized user-role assignments in RBAC,

i.e., UA ⊆ UA

Remark 3. HMM, which is represented as a dynamic
Bayesian network, is a generative and probabilistic
model, unlike other statistical models of the sort of
Maximum-entropy Markov model and Conditional Ran-
dom Fields, which are discriminative models, especially
in supervised learning [24]. The proposed model is most
suitable for role recommendation under the existing sta-
tistical models because the roles are recommended based
on the state, which is generated using the user behaviour
patterns.

Remark 4. In HMM, unlike neural networks, identifi-
cation of the appropriate state depends on the type of
permissions rather than on the sequence of permissions.
Therefore, the HMM model can recommend the appropri-
ate state even if the user changes the pattern of his be-
haviour. Further, in HMM, unlike neural networks, the
user can randomly migrate between the states based on
the transition probability to recommend the state. Addi-
tionally, while choosing the HMM state, neither random
search nor Bayesian optimization can be a good solution
because the user’s preferred state depends on current be-
haviour patterns (refer to equation 4). In the case of a
neural network, the network is constructed based on user
behaviour pattern, where the output of one hidden layer
is an input to another hidden layer. After the construc-
tion of a network, the system cannot give an appropriate
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role recommendation, if the user changes the pattern of
his behaviour.

4. R-RBAC Analysis

In this section, the integration of a role recommenda-
tion model is presented for the RBAC system (i.e., R-
RBAC) to optimize the UA based on user behaviour pat-
terns. Further, an illustrative example will show the op-
timization of UA as well as security analysis on the R-
RBAC system. Finally, the usefulness of the R-RBAC
system in various IT environments is presented.

4.1. Optimizing User-Role assignments in RBAC

Here, the role recommendation model is shown for
the RBAC to optimize the UA at the user-level in the
Recommended-RBAC based on BPk, as shown in Algo-
rithm 2. To understand how obsolete and refurbished UA
is handled, the BPk

u is considered with a set of granted and
denied permissions, which are handled differently by re-
ferring it as AccessPermission and MissingPermission as
shown in Algorithm 2. The permissions that are granted
and currently not accessed by the user are over-assigned
permissions, whose roles need to be revoked from the user
depending on AccessPermission. The permissions that are
not accessible, since its corresponding roles are not re-
furbished to the user, are said to be missing permissions.
The roles pertaining to such missing permissions are re-
furbished depending on MissingPermission. For a given
set of AccessPermission, the most suitable state for the
user is recommended by FindClosestState based on the
equation (4), i.e., the computation of the HMM likelihood,
using the Forward algorithm. For each of the permissions
in the set that are considered to be added to a user by
role, it is checked whether they are typical for the rec-
ommended state, i.e., permissionIsTypicalForState, using
a metric LowestSignificantPermisssionProbability (LS P).
Therefore, if the obtained emission probability value of
permission is greater than or equal to LS P, then such
permissions are typical for the recommended state. The
FindClosestExtendedState considers only the permissions
within the scope of user privileges to recommend a suit-
able state using equation (4). Finally, using the recom-
mended state (i.e., NecessaryPrms), the roles are recom-
mended for the user based on PAu in the RBAC by the

Algorithm 2: Optimizing user-role assignments in
RBAC

Input: BPk

Output: RecommendedRoles: Set<R>, Recommended-RBAC:
Map<UA, PA>

1 RBAC: Map<UA, PA>
2 RecommendedState: Set<P>
3 Recommended-RBAC← RBAC
4 LowestSignificantPermisssionProbability← δ
5 for each u ∈ U do
6 {AccessPermission, MissingPermission} ← BPk

u
7 if AccessPermission then
8 RecommendedState←

Analyzer.FindClosestState(AccessPermission)
/* User behaviour analyzer */

9 if RecommendedState , NULL then
10 for each p ∈ RecommendedState do
11 if permissionIsTypicalForState(p) then
12 Set<P> NecessaryPrms.add(p)
13 end
14 end
15 end
16 end
17 if MissingPermission then
18 RecommendedState← Ana-

lyzer.FindClosestExtendedState(MissingPermission)
19 if RecommendedState , NULL then
20 NecessaryPrms.add(RecommendedState)
21 end
22 end

/* Role matcher */

23 RecommendedRoles←Map<PAu, 2|NecessaryPrms| >
24 OptimizedUA←Map <U, RecommendedRoles>
25 PAu ←Map <P, RecommendedRoles>
26 Recommended-RBAC←Map<OptimizedUA, PAu >

27 end

Role matcher to obtain optimization in UA, i.e., Optimize-
dUA. Such OptimizedUA is used to obtain Recommended-
RBAC, as shown in Algorithm 2.

Discussion on Optimizing User-Role Assignments in
RBAC. The algorithm takes last k permissions from each
user, i.e., BPk

u, as an input. Such input is segregated based
on granted and denied permissions which are further re-
ferred to as AccessPermission and MissingPermission re-
spectively, based on currently assigned roles. The Ana-
lyzer recommends the HMM states based on such per-
mission sets. Finally, the Role matcher performs in two
phases: 1) recommended states are mapped based on its
privileges in the RBAC to recommend the roles, and 2) a
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user is assigned only with the recommended roles, which
will generate optimized UA in the Recommended-RBAC.
The algorithm will continue to execute until the optimized
UA is generated for all the users based on BPk.

4.2. An Illustrative Example
In this section, the R-RBAC is illustrated by optimizing

the UA in RBAC with the help of a toy example, as shown
in Figure 1. With reference to Figure 1, the following log
file ToyExample.log containing user behaviour pattern of
user u2, i.e., BPu2 = {p1, p1, p3, p3, p1, p2, p3, p2, p2, p2}

is considered, as given in Figure 6. Additionally, the log
file also shows the permissions access status with respect
to date and time. The log file ToyExample.log is referred
to in this paper to show the role recommendation and op-
timization in the UA.

Table 4 shows the HMM model generated for user u2
based on the user behaviour pattern given in Figure 6.
The transition probability is given by the Markov ma-
trix, where a transition between any two states is equal to
0.33. With reference to Table 4, the emission probability
is given by

B = (e jk)=


x1 x2 x3

p1 1 0.33 0
p3 NA 0.67 0.2
p2 NA NA 0.8


Suppose the current usage of user behaviour pattern of
user u2 is observed, at time t as “p2, p3, p2, p3, p2”, where
all the permissions in a given sequence are granted. If
it is found that at time (t − 1) user u2 was in state

.

Date (MDY) Time Permission Status

10-01-2019     17:32:42.768   p1 granted

10-01-2019     17:32:42.768   p1 granted

10-01-2019     17:32:42.768   p3 granted

10-01-2019     17:32:42.768   p3 granted

10-01-2019     17:32:42.768   p1 granted

10-01-2019     17:32:42.768   p2 granted

10-01-2019     17:32:42.768   p3 granted

10-01-2019     17:32:42.768   p2 granted

10-01-2019     17:32:42.768   p2 granted

10-01-2019     17:32:42.768   p2 granted

Figure 6: System usage log containing the user behaviour
pattern for user u2 (ToyExample.log)

Table 4: Characteristics of HMM states for the user u2

State Description Frequency of Emission Count Map
(Xu2 ) of the State occurrence Emitted Count

(PermissionSet) of the state Permission
x1 < p1 > 1 p1 1
x1 < p1 > 2 p1 2
x2 < p1, p3 > 1 p1 0

p3 1
x2 < p1, p3 > 2 p1 0

p3 2
x2 < p1, p3 > 3 p1 1

p3 2
x3 < p1, p3, p2 > 1 p1 0

p3 0
p2 1

. . . . .

. . . . .

. . . . .
x3 < p1, p3, p2 > 5 p1 0

p3 1
p2 4

x3, then which is the most suitable state for user u2 as
recommended by the model based on the observation
sequence? Given o(t) = BPk

u2
= {p2, p3, p2, p3, p2},

k = 5, AccessPermission = {p2, p3, p2, p3, p2},
MissingPermission = ∅, and x(t − 1) = x3, find the rec-
ommended state xt.
Before optimization, there is |Ru2 | = 2, i.e., {r1, r2} and
|UA| = 2 (refer to Figure 1). Substituting the above val-
ues in equation (4),

x(t) = argmax
x j∈{x1,x2,x3}

[ P(BPk
u2
|x j)︸       ︷︷       ︸

emission probability

] = x3

Here, the states containing NA (not applicable) are not
taken into consideration while recommending the state.
Therefore, based on the obtained value, state x3 is the
most suitable and recommended state for the given ob-
servation sequence BPk

u2
. Finally, for the recommended

state (x3), the emission probability is updated as shown
below:

B = (e jk)=


x1 x2 x3

p1 1 0.33 0
p3 NA 0.67 0.3
p2 NA NA 0.7


Once the state is recommended as x3, it is to be checked
whether all the permissions are typical for the state. So it
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is assumed that LS P = 0.01, i.e., a heuristic value for the
toy example. From Table 4, it can be seen that the permis-
sion set for state x3 is < p1, p2, p3 >. Since the emission
probability value of p1 < LS P, permission p1 is not typ-
ical for the state. Therefore, the role recommended by
R-RBAC is only r2. Further, the Recommended-RBAC
is updated with a new recommended role r2. After opti-
mization by R-RBAC, it can be observed that |Ru2 | = 1,
i.e., r2 and |UA| = 1.

4.3. Security Analysis

In this section, security analysis related to users' acces-
sibility on permissions through roles using the R-RBAC
system is elaborated.

It is known that role recommendation plays a crucial
role in R-RBAC for optimizing the UA. So, the recom-
mended roles should give access to only those permis-
sions, which are in the user’s scope as defined in the
RBAC while optimizing the UA based on current usage
of user behaviour pattern (i.e., BPk

u). Permissions within
the scope of user’s privilege, is referred to as accessible
permissions. Similarly, the recommended roles should
not give access to those permissions, which are not in the
user’s scope as defined in the RBAC, which is referred to
as inaccessible permissions. Table 5 signifies the possible
outcomes of the R-RBAC based on its role recommenda-
tion for the granted and denied permissions.

As long as the user is accessing the permissions within
his scope of privileges and predefined period, he can in-
fluence the stochastic model; however, this will not be
a security issue. Further security issues are discussed in
Theorems 1 and 2 when the user accesses out of scope
privileges by colluding with a the malicious entity.

Definition 1. R-RBAC is said to be secure if it recom-
mends only roles within the scope of user privileges as
defined in the RBAC system.

In Theorem 1, the behaviour of a malicious user (i.e., ad-
versary) is studied while accessing the permissions as well
as the adversary’s scope of accessible permissions on rec-
ommending the roles.

Theorem 1. For any polynomial time adversary attempt-
ing to access finitely many permissions, the R-RBAC de-
terministically distinguishes the scope of privileges under

AccessPermission and MissingPermission to recommend
the roles.

Proof. It is known that AccessPermission, i.e., granted
permissions, is always within the scope of user privileges.
So here only the MissingPermission is considered, i.e., de-
nied permissions, where there is a possibility of recom-
mending out of the scope privileges.

Let us consider all the denied permissions as missing
permissions during the role recommendation by the R-
RBAC system. In the R-RBAC, let ρ be the set of all
permissions that are attempted to access by adversary u,
but are denied based on the assignment of the recom-
mended role set Ru in RBAC, which are now considered
as missing permissions and let ρ = {pi, p j}. In RBAC, let
Ru = {ri} and also let adversary u access the permission
P(ri) = pi through the assigned role set Ru, i.e., Check-
Access(u, P) = P(ri). So, P(ri) = {p : p ∈ P, (u, ri) ∈
UA ∧ (p, ri) ∈ PA}. So it is known that adversary u can-
not access the permission p j through the assigned role set
Ru. During the recommendation process, based on the
CheckAccess in RBAC, only role ri is added to the rec-
ommended role set Ru. It is noted that the role set Ru

is now restored for the adversary u to access the missing
permission pi in the RBAC. Hence, before recommend-
ing the role set Ru, R-RBAC verifies with RBAC using the
authorization process. Therefore, R-RBAC recommends
only the roles, which are in the scope of user privileges
in RBAC. Hence, the role recommended by R-RBAC is
secure and in line with RBAC.

Remark 5. It is known that, in RBAC, each permission is
an approval to perform an operation on an object. There-
fore, here permission is considered as certain operations
on the user’s data (i.e., object). From Theorem 1, it is
clear that the data confidentiality of the user is retained.

Therefore, from Theorem 1, the R-RBAC system is secure
under Definition 1, which ensures high data confidential-
ity by recommending only the roles within the scope of
user privileges.

In the next lemma, we study the probability of success
in accessing the permissions.

Lemma 1. Let BPp be the observed user behaviour pat-
tern at time t, i.e., o(t) = BPp. Also, let BPp = g + d,
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Table 5: Possible outcomes of R-RBAC based on its role recommendation for user u

Access control status Scope of the user’s privilege (accessible permissions) Not in the scope of user’s privilege
Belong to BPk

u Do not belong to BPk
u (inaccessible permissions)

Granted permissions necessary permissions, over-assigned permissions, not applicable
so retain its UA so revoke its UA

Denied permissions missing permissions, missing permissions, missing permissions,
so refurbish its UA but do not refurbish its UA but do not refurbish its UA

where ′g′ corresponds to the number of granted permis-
sions and ′d′ corresponds to the number of denied per-
missions which are out of the scope of the user privileges.
Then Pr[granted permissions] =

g
BPp

.

Proof. Since the role recommendation depends only on
the list of observed user behaviour pattern, the probability
of success in accessing the permissions is g

BPp
. �

In Theorem 2, the effect of accessing out of scope priv-
ileges on the availability of the existing privileges, i.e.,
roles is discussed.

Theorem 2. User privileges are suppressed if the users
are trying to access a large number of permissions that
are out of the scope of the user privileges.

Proof. In R-RBAC, at the time (t − 1), let the number of
roles in the recommended role set R be γ, i.e., |R| = γ
and the number of user-role assignment UA based on the
R in RBAC be ψ, i.e., |UA| = ψ. It is noted that UA, i.e.,
a map from users to roles is dependent on the number of
roles and reduction in |R| amounts to reduce |UA| also.
Let BPp be the observed user behaviour pattern at time
t, i.e., o(t) = BPp = g + d, where ′g′ corresponds to
number of granted permissions and ′d′ corresponds to
number of denied permissions which are out of the scope
of the user privileges and g << d. Since from Theorem 1
only roles within the scope of user privileges are recom-
mended. We know Pr[suppressed permissions] =

1 − Pr[granted permissions]. Also from
Lemma 1, Pr[granted permissions] =

g
BPp

.

So, Pr[suppressed permissions] = d
BPp

.
Since g << d, Pr[granted permissions] <
Pr[suppressed permissions]. At time t only a small
share of BPp, i.e., ′g′ will contribute to R compared with
its state at time (t − 1), i.e., |R| << γ. So the number of

roles assigned to the users UA in the RBAC is also less
than ψ, i.e., |UA| << ψ, since g << d. Hence, the user
privileges in terms of roles at time t are suppressed. �

Remark 6. From Lemma 1, it is worth noticing that when
g > d, the success rate is higher. When g < d, the suc-
cess rate is less, which is a hint for the user to revisit the
log, so has to ensure that suppressed permissions may not
take over. One realistic attack scenario relates to the ad-
versarial attempt to suppress a user’s permission. From
Lemma 1, when g = d = 1

2 , the entropy of the system is
highest. In this attack, the adversary can contribute in ac-
cumulating ′d′ by injecting fraudulent attempts to access
so that in the log, d ≈ g. In such a case when ′g′ access is
denied, the user will have less clue as to what takes over
the situation - the suppressed permissions or the granted
permissions.

Remark 7. From Theorem 2, users trying for some unan-
ticipated situations by accessing the unauthorized roles
reduce the access privileges, which in turn affects the
availability of the existing role set.

4.4. Usefulness in IT Environments

Automated Extension of Access: The role recommenda-
tion model can provide an effective solution by providing
automated access in RBAC applications. Employees are
given access to the laboratory for a certain period of time;
after that the employees have to request for extension of
privilege, i.e. roles. The manual updation for extension
of access by the security administrator is time consuming
and increases administrative workload. Such work can be
automated with the help of the R-RBAC system, which
results in faster and efficient access.

Security at Hypervisor Level: In a virtualized environ-
ment, the hypervisor is a single point of failure for all the
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virtual machines running on it. Using a compromized
hypervisor, the attacker can launch a Denial of Service
(DoS) attack across a collection of virtual machines by
increasing its resource usage. This makes machine re-
sources unavailable, i.e., intended users cannot access the
information deployed in the virtual machines [28]. Re-
stricting the resource usage to specific limits based on
the privilege (i.e., “roles”) assigned for a virtual machine,
is a security measure against hypervisor based DoS at-
tacks. Based on the requirements, the limits on resource
usage for a virtual machine can be changed by dynami-
cally maintaining the roles for virtual machines with the
help of the R-RBAC system.

5. Experimental Results

In this section, the experimental set-up is reported by
developing a role recommendation model for the RBAC.
The performance analysis of the proposed system is also
provided using the Amazon access sample dataset [8] and
on the generated synthetic datasets, which was executed
based on the developed test cases. The effective exper-
imental results for the proposed model can be shown in
terms of speed and size metrics using the results obtained
from the optimal solution in UA. Since optimizing UA by
satisfying the least privilege principle is proved to be NP-
hard, we have compared the above metrics with the exist-
ing models which provides good approximation to the op-
timal solution in contrast to the state-of-the-art. Addition-
ally, the similarity between the roles recommended by the
proposed model and the required optimal roles can also be
analyzed to show the effective experimental results. The
implementation is done on Intel Core(TM) i5− 7500 with
16 GB RAM using Java in the Windows platform.

To test the system, the user’s log dataset of the sys-
tem access over certain time was required. Secondly, an
RBAC structure was required. The role mining algorithm
can also be used to design a set of roles based on user-
permission assignments. Since the company log data is
generally considered as sensitive and very difficult to ob-
tain, an anonymized dataset provided in [8] was used for
the experiments.

5.1. Creation of RBAC on Amazon Access Sample
Dataset [8]

The Amazon access sample dataset [8], is an
anonymized sample of access rights provisioned in Ama-
zon’s Infosec and does not include all the logged access
requests. It also does not include user-permission assign-
ments, so this too had to be stipulated from the given log
data. The attributes of the data set are action, target name,
login, request date, and authorization date. Action refers
to whether the permission is granted or denied, target
name represents the permission, and login is considered
as user credentials. Request date and authorization date
is a timestamp that denotes the date and time on which the
user requested and authorized the permission. Therefore,
for the Amazon access sample dataset [8], the SRM algo-
rithm was applied and the statistics are shown in Table 6.
Further, the implemented SRM algorithm was validated
using nine real-world datasets [29], which confirmed that
the results are matching as summarized in [13].

Table 6: Statistics for Amazon access sample dataset [8]
using SRM algorithm

Input/Output Values
Total number of permission access status 716,063

Total number of permission access status- granted 705,152
Total number of permission access status- deny 10,911

Total number of user, |U| 5,885
Total number of permissions, |P| 6,451

Generated |UP| 144,435
Generated |UA| 39,389
Generated |PA| 48,845
Generated |R| 5,042

Maximum number of permissions for a user 125
Maximum number of roles for a user 46

Maximum number of permissions in a role 83

5.2. Automation of HMM Generator

In this section, the automated process of generating the
HMM is discussed, which helps in role recommendation
for the users. The framework was developed to generate
the HMM based on user behaviour pattern for each user
as shown in Figure 7. Further, the automation framework
accesses all the authorized permissions of the users such
that all possible states are registered with the HMM gen-
erator. The permission requester spawns parallel requests
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Figure 7: Automation framework to generate the HMM for role recommendation

for maximum of 5 permissions based on the RBAC from
each user every 1 minute to record the user’s permission
access status in the logger. The log data contains per-
missions, which are processed to classify the data based
on the user. Therefore for each user, HMM is generated
based on the log file as specified in Algorithm 1.

Remark 8. In all the experiments, to recommend the role
at time t, the last state of the HMM is considered to be at
time (t − 1). Therefore, the role is recommended based on
the observation of permissions at time t which is consid-
ered as BPk, i.e., o(t) = BPk.

5.3. Performance Analysis of R-RBAC

In this section, the performance evaluation of R-RBAC
in recommending the roles is shown. In the evaluation,
two different metrics were considered, namely, speed and
size. Speed and size are defined as processing time to rec-
ommend the roles and percentage of recommended roles
respectively, by the model against the variation of the
considered parameters. Further, the role recommendation
model was compared with the existing models.

Performance of R-RBAC in Recommending the Role:
In the next lemma, a complexity analysis of role recom-
mendation in the R-RBAC is provided.

Lemma 2. Using R-RBAC, the number of operations for
recommending the role set Ru among role set Ru in RBAC
for a given user u based on current usage of user be-
haviour pattern BPk

u at time t, among HMM states Xu with

total set of permissions λ is θ(k ∗ |λ|) + O(PAu ∗ (|Υ| ∗ ln2)),
where Υ is the set of permissions in the recommended
HMM state x ∈ Xu and PAu is the permission-role as-
signments for user u.

Proof. Time complexity to recommend HMM state: Here
BPk

u recommends one of the HMM state, x ∈ Xu with per-
mission set Υ at the time t, based on the dynamic Bayesian
network using forward algorithm. So the time required to
recommend the HMM state x at time t, i.e., x(t), with the
total set of permissions λ in the HMM states, for the given
BPk

u is θ(k ∗ |λ|).
Time complexity to recommend the roles for AccessPer-
mission/MissingPermission: Roles are recommended
based on the permission set Υ on the recommended state
x ∈ Xu with the possible number of combinations 2|Υ|.
Since this combination of 2|Υ| is done in lexicographic
order, without the loss of generality, binary search can
be applied. Therefore, the time complexity to recom-
mend the roles for AccessPermission/MissingPermission
is O(PAu ∗ ln(2|Υ|)) = O(PAu ∗ (|Υ| ∗ ln2)).

Speed of R-RBAC on Amazon Access Sample
Dataset [8]: Here, the speed, i.e., the time taken by the
R-RBAC on recommending the roles for a single user is
reported, where different number of permissions are ob-
served at time t, i.e., o(t). Initially, the HMM model is
automated (refer Figure 7) for Table 6. The experiment
is conducted on the Amazon access sample dataset [8] to
recommend the roles on the varying number of last k ac-
cessed permissions at time t. Therefore, o(t) = BPk is
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considered, where k ∈ {25, 50, 75, 100}. In Figure 8, the
average time required among users for role recommenda-
tion (along Y-axis) for the given number of current us-
age of user behaviour patterns (along X-axis) is plotted.
Figure 8 reflects a linear growth on speed from 22 to 92
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Figure 8: Speed of role recommendation on varying cur-
rent usage of user behaviour patterns

seconds, with an increase in the number of current usage
of user behaviour patterns from 25 to 100.

Size of R-RBAC on Amazon Access Sample
Dataset [8]: Here, the size, i.e., the percentage of
recommended roles by R-RBAC is reported, where four
different test cases can be observed based on the RBAC
(refer Table 6) at time t as described below:

• Test case 1: Access all the permissions assigned to
roles for a given user.

• Test case 2: Do not access permissions pertaining to
50% roles for a given user, so that it appears like the
user potentially did not need such obsolete UA.

• Test case 3: Add denied request in the log for a given
user, so that it appears like the user is requesting to
refurbish for 10% UA for such missing permissions.

• Test case 4: Access 50% of the roles that are not in
the scope of user privileges.

Let βi be the number of accessed permissions in the Test
case i, where i ∈ {1, 2, 3, 4}. Therefore, the experimen-

tation for the role recommendation is done by maintain-
ing the principle of least privilege based on the test cases
which is now considered as the set of last k accessed
permissions at time t. Based on the above observations,
o(t) = BPk, where k ∈ {β1, β2, β3, β4}. Similar to Figure
7, a test automation framework was also generated for the
execution of four different test cases. Applying the test
cases to the HMM model generated from Table 6, the fol-
lowing results were derived.

In test case 1, all the roles were maintained for the users
and there was no change in the roles recommended by the
R-RBAC. In test case 2, it was found that the average role
recommended by the R-RBAC for each user was 57% of
the roles when 50% of the UA was obsolete. In test case
3, all the UA pertaining to missing permissions was re-
furbished based on corresponding role assignments in the
RBAC. It was found that the average role recommended
by the R-RBAC for each user was to restore 28% of the
roles when 10% of UA was needed to be refurbished. If
the missing permissions for any user were assigned with
more than 10% of UA, then it was recommended to re-
construct the Recommended-RBAC for that correspond-
ing user. In test case 4, it was clear from Theorem 2 that
in R-RBAC, user privileges are suppressed if users access
privileges not in their scope. So, the average role recom-
mended by the R-RBAC for each user was 57% when the
log contained 50% out of scope privileges, which is the
same as test case 2.

5.4. Comparison with Other Models

In this section, the performance evaluation of the pro-
posed system compared with LPUAP [6] in terms of size
and speed is reported using synthetic datasets. This is be-
cause LPUAP [6] is the only model which at least iden-
tifies the obsolete UA to optimize the UA. Additionally,
comparison is also presented with the model proposed
in [21].

Size of R-RBAC and LPUAP [6] on Synthetic Datasets:
Here, the size, i.e., percentage of recommended roles by
the R-RBAC and the LPUAP [6] for the generated syn-
thetic datasets is reported. In [6], GA-UADel and GA-
UAAdd algorithm are used for role adjustments, i.e., to
delete and add roles respectively from the system.

The approach of generating the synthetic datasets using
test data creator algorithm (or training solution) is sug-
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gested to evaluate the performance of role mining algo-
rithms [9]. Further, the training solution used here is the
same as specified in [9] to generate synthetic datasets. To-
wards this, two synthetic datasets were generated and are
presented in Table 7 and Table 8 to understand the per-
formance of the R-RBAC on role recommendation. Since
the algorithm, i.e., test data creator is randomized, it is
executed five times on each particular set of parameters to
generate the synthetic datasets. The proposed model was
run on each of the created synthetic datasets. All the re-
sults obtained from the specific parameters were averaged
over the five runs. Both the synthetic datasets consisted

Table 7: Users with a varying number of permissions for
a constant number of roles

#U #R #P #Maximum #Maximum
roles for permissions

a user for a role
1000 100 400 20 6
1000 100 600 20 9
1000 100 800 20 12
1000 100 1000 20 15

Table 8: Users with a varying number of roles for a con-
stant number of permissions

#U #R #P #Maximum #Maximum
roles for permissions
a user for a role

1000 100 500 20 10
1000 150 500 20 10
1000 200 500 20 10
1000 250 500 20 10

of five parameters, namely, total number of users (#U),
total number of roles (#R), total number of permissions
(#P), maximum number of roles for a user, and maximum
number of permissions for a role. In the first synthetic
dataset, number of permissions and maximum number of
permissions for a role are varying parameters, while the
other parameters are constant as shown in Table 7. In
the second synthetic dataset, total number of roles is a
varying parameter, while other parameters are constant as
shown in Table 8. For the experimentation, o(t) = BPk

was considered, where k = β2. Once the RBAC was con-
structed for Table 7 and Table 8, the HMM model was

automated (refer Figure 7) for the corresponding tables,
and test case 2 was also automated. In Figure 9, the plot
of the average percentage of roles recommended for the
users (along Y-axis) for the given permissions/roles ra-
tio (along X-axis) based on the values tabulated in Ta-
ble 7. Figure 9 shows that for R-RBAC, the size varies
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Figure 9: Comparison of size on varying number of per-
missions for a constant number of roles

from 62% to 67%, whereas for LPUAP [6], the size is al-
most a constant value of 91%, over permissions/roles ratio
varying from 4 to 10. Similar to Figure 9, an experiment
was done based on the values tabulated in Table 8, which
showed a constantly recommended role as 63% and 91%
for the R-RBAC and the LPUAP [6] respectively, over
varying permissions/roles value from 2 to 5. Therefore,
the above comparison reveals that the size efficiency of
R-RBAC over LPUAP [6] is up to 32%.

Therefore from the above results, it can be observed
that lesser the number of permissions assigned to each
role, higher is the efficiency in recommending the roles.
So, R-RBAC is most suitable for applications where roles
are assigned with fewer numbers of permissions. The per-
centage of role recommendation is slightly higher than the
optimal solution because along with the recommendation,
the proposed model also predicts the roles which may help
the user to access the permissions shortly.
Speed of R-RBAC and LPUAP [6] on Synthetic
Dataset: Here, the speed, i.e., time taken by the R-RBAC
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Table 9: Users with a varying maximum number of as-
signed roles

#U #R #P #Maximum #Maximum
roles for permissions

a user for a role
1000 100 300 4 5
1000 100 300 6 5
1000 100 300 8 5
1000 100 300 10 5

and the LPUAP [6] to recommend the roles based on the
generated synthetic dataset is reported.

Experiments are conducted based on the synthetic
dataset, where all the parameters are constant but with a
varying maximum number of roles assigned for the users,
as given in Table 9. With regards to R-RBAC, all the per-
missions based on the RBAC system are observed at time
t, i.e., o(t) and a set of last k accessed permissions at time
t as 50 is maintained, since each user has a privilege of
maximum 50 permissions (refer Table 9). In Figure 10,
the average time taken to recommend the roles using the
R-RBAC and the LPUAP [6] model (along Y-axis) on the
varying number of roles assigned for the users (along X-
axis) is plotted. Figure 10 shows that the R-RBAC takes
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Figure 10: Comparison of speed on a varying maximum
number of roles assigned for users

almost a constant time of 52 seconds to recommend the

roles, whereas, in the case of LPAUP [6], the time varies
from 63 to 155 seconds while the maximum number of
roles assigned for users varies from 4 to 10. Based on the
above experiment, the speed efficiency of the R-RBAC
over the LPUAP [6] is up to 50%. Therefore, the R-RBAC
is efficient in terms of size and speed because the roles are
recommended at the user level, unlike the LPUPA [6] at
the system level. So, the R-RBAC is most suitable for
applications where role recommendation is needed at the
user level to optimize the UA.

Comparison with the Model in [21]: In trust and rep-
utation based RBAC system [21], the owners are service
providers who share their resources, data, or services with
the intended users in terms of eligible roles. Such eligibil-
ity of roles is based on their trust level. In this approach,
a group with large number of users may collude with a
malicious entity to either decrease or increase the other
entities' reputation. Further, the solution proposed in [21]
is ineffective, if the number of malicious entities in the
RBAC system is more than fifty per cent. Additionally, if
the user is found to be malicious, then his trust level to-
wards the roles is decreased and the corresponding roles
are revoked, if the user trust level depletes under the spec-
ified threshold of their roles. Therefore, by maintaining
the required trust value, the user can use or misuse the
system. Thus, the role recommendation cannot be trusted.

In the proposed system, the RBAC configuration was
generated using the SRM algorithm in the first step. Fur-
ther, in the second step, the roles were recommended
based on the scope of user privileges defined in the first
step for the three scenarios described in the introduction
section. Users colluding with a malicious entity cannot in-
fluence the stochastic model for accessing the permissions
which are not in the scope of the user’s privilege (refer
Section 4.3). Therefore in the R-RBAC, role recommen-
dation can be trusted because the recommended roles are
within user privileges (refer Theorem 1) and maintain the
required security, while accessing out of scope privileges
(refer Theorem 2).

6. Conclusion

Role recommendation at the user level is the most
preferred and efficient solution for the optimization of
user-role assignments (UA) in the RBAC. Towards this,
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the Role recommender-RBAC (R-RBAC) was designed,
which optimizes the UA, by recommending and assign-
ing the most suitable roles. Such role recommendation
was developed using a Hidden Markov Model and ana-
lyzed using the dynamic Bayesian network. While host-
ing the R-RBAC on the cloud platform, the CSP can pro-
vide Role-Assignment-as-a-Service, which optimizes the
organizational operation cost. It has been shown that the
R-RBAC is secure and in line with the RBAC system, and
it suppresses user privileges while accessing out of scope
privileges.

The experiment was conducted on the Amazon access
sample dataset [8] and synthetic datasets by generating
RBAC configuration using the Simple Role Mining algo-
rithm. The experiment showed that the time for role rec-
ommendation varied linearly with the increase in user be-
haviour/access patterns. To evaluate the size of the recom-
mended role set, four different test cases were considered.
Such test cases are considered as the least privileges dur-
ing role recommendation. It was shown that the R-RBAC
recommends roles to optimize the UA 1) by retaining an
average of 57% of roles when 50% of UA is identified as
obsolete, 2) by restoring an average of 28% of roles when
10% of UA need refurbishment, and 3) by maintaining all
necessary roles. Based on the experiments using synthetic
datasets, the performance of the R-RBAC was found to be
relatively good in terms of size and speed of optimization
because optimizing UA was performed at the user level,
unlike the existing models which perform UA optimiza-
tion at the system level.
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