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Experimental studies of a NACA 65(12)-101 airfoil with a sinusoidal leading-edge undulation (LEU) were carried

out to simultaneously optimize its aerodynamic and aeroacoustic performances by considering the attached as well as

the separated flow at the effective Reynolds number of 106, where themaximum lift was increasedwithout sacrificing

drag or overall noise near- and poststall angles. Further aerodynamic and aeroacoustic tests indicated that a

combination of LEU wavelength λ∕c � 30% and amplitude h∕c � 6% gave an optimum LEU by considering the

aerodynamic performance as well as the noise reduction. Particle image velocimetry measurements of the flow over

the optimized airfoil showed biperiodic velocity fluctuations downstream of the LEU peaks that were associated with

unsteady stall cell structure near the trailing edge.

Nomenclature

A = planform area
CD = drag coefficient, 2D∕ρU2

∞A
CL = lift coefficient, 2L∕ρU2

∞A
CL;max = maximum lift coefficient

c = chord length, mm
cm = mean chord length, mm
D = drag force, mm
f = frequency, Hz
h = peak-to-peak amplitude of leading-edge undulation,

mm
L = lift force, N
OAPWL = overall sound power level, dB
PWL = sound power level, dB
Rec = Reynolds number based on the chord length,

U∞c∕ν
St = Strouhal number, fc∕U∞

s = span, mm
U∞ = freestream velocity, ms−1

u 0 = root mean square of streamwise velocity fluctua-
tions, ms−1

x = chordwise coordinate of the baseline airfoil, mm
α = angle of attack
αeff = effective angle of attack
λ = wavelength of the leading-edge undulation, mm
ν = kinematic viscosity, m2 s−1

ξ = chordwise coordinate of the leading-edge undula-
tion, mm

ρ = density, kgm−3

I. Introduction

F LOW control methods have often been inspired by nature [1,2].
Among those, flippers of humpback whales have drawn much

attention of researchers recently due to their outstanding hydrody-
namic performance [3], where it was mentioned in [3] that the
leading-edge undulation (LEU) of flippers helps them bank and turn
sharply to catch their prey. During the wind tunnel experiments of
flipper models, increased CL;max with a delayed stall was observed
[4]. 2Since then, various geometric parameters of the LEU affecting
the airfoil performance were investigated. Johari et al. [5] studied the
aerodynamic effect of the LEU wavelength and amplitude of NACA
634 − 021 airfoils with an aspect ratio of 2 and the chord Reynolds

number Rec � 1.8 × 105. Their results were compared to the airfoil
with a straight leading edge (SLE) to show that CL increase was
obtained only in poststall angles. Further investigationsweremade in
[6] with various planforms of NACA 634 − 021 at a wide range of
Rec, showing that there is a certain combination of the LEU wave-
length and amplitude to give an increase in CL. However, no com-
parison of CL was presented for full span models with these
LEU parameters. In [7], aerodynamic characteristics of the LEU on
NACA 634 − 021 airfoils of an aspect ratio of 4 were examined at

Rec � 1.8 × 105, where an airfoil with a sinusoidal LEU showed
higher maximum lift at smaller stall angle than the airfoil with SLE.
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Hansen et al. [8] tested different symmetric airfoils (NACA 0012 and

NACA 65-021) with LEUs at Rec � 1.2 × 105. They showed that

CL;max was more sensitive to the amplitude than the wavelength of

LEU, although no increase in lift was observed. Rostamzadeh et al.

[9] investigatedNACA0021 airfoils with awavy leading edgewhose

geometric angle of attack changed sinusoidally in the spanwise

direction. These wavy airfoils outperformed the airfoil with an SLE

in poststall angles but CL;max was never increased.

Cambered airfoils with LEUs have also been examined for engi-

neering applications. For a micro-air vehicle application, effects of

amplitude and wavelength of sinusoidal LEUs on a NASA LS(1)-

0417 airfoil with a low aspect ratio were studied in [10]. Two-

dimensional, infinite-span cascades of NACA 4415 and NACA

0015 profiles with LEUs were numerically investigated, where it

was shown that the airfoil camber has a strong influence on the

aerodynamic performance [11]. This work was extended to a ven-

tilation fan with ARA-D airfoils in [12], where the wavelength and

the amplitude were redesigned to improve the poststall character-

istic. A single swept-back SD7032 airfoil with an LEU was exam-

ined at Rec � 5.5 × 104 in [13], where a CL increase over an entire

angle of attack tested was reported. A summary of recent research

on cambered NACA airfoils with LEUs is given in [14]. A NACA

65(12)-10 airfoil with different LEUswas investigated recently [15]

with a view to develop a new scaling law of lift coefficient to explain

the reduction in the lift slope.
The aeroacoustic effects of LEUs are also reported in a number of

papers. Turbulence–airfoil interaction noisewas reduced by 3–4 dB

using an LEU [16], whereas studies of a flat plate LEU in [17]

showed that the optimum wavelength should have approximately

four times the transverse integral-length scale of the freestream

turbulence. It also showed that LEUs were effective in reducing

the airfoil self-noise. Hansen et al. [18] reported that the tonal noise

and broadband noise from a NACA 0021 airfoil with Rec �
120;000were significantly reduced at the angle of attack of between
5 and 8°. Similar results are reported in [19] where the tonal noise

due to laminar flow instability from a NACA 65(12)-10 airfoil was

suppressed by LEU.
In many studies (e.g., [8,20–23]), counter-rotating streamwise

vortices have been observed downstream of the LEU, which are

considered to be related to the CL increase in poststall angles. Their

downstream developments are summarized in [20,24–26]. For sym-

metric airfoils, the design of LEU is rather simple since its leading

edge always stays on the chord line, which coincides with the mean

camber line. For cambered airfoils, however, there are a number of

possibilities in designing the LEU, but only few studies have looked

at the effect of LEU shape and location, which is themain objective of

this paper. Here, LEUsweremade by cutting into the airfoil so that an

extrapolation of the camber line is unnecessary [19]. Aerodynamic

optimization and aeroacoustic optimization of LEUwere then carried

out to obtain the best performing leading-edge profile.Measurements

of the flow around an airfoil were also made using particle image

velocimetry (PIV) to understand the mechanism behind the perfor-

mance improvement with an optimized LEU.

II. Experimental Setup

A. Aerodynamic Measurements

Aerodynamic measurements were carried out in an open-return
wind tunnel at the University of Nottingham, whose test section
measured 0.91 m wide ×0.75 m high ×1.5 m long. NACA 65(12)-
10 airfoils with and without sinusoidal LEU were manufactured by a
3D printer, Zortrax M300 using Z HIPS (high-impact polystyrene)
and polished with P120 and P600 sandpapers. Therefore, the surface
finish of the airfoil models is estimated to be Ra � 0.23 μm. They
were vertically positioned between two endplates at the center of the
wind-tunnel test section, 0.1 m above the tunnel floor and 0.7 m
downstream from the inlet. The bottom endplate consisted of a
150-mm-diam circular plate that was rotated with an airfoil model
around a 360 mm × 260 mm stationary rectangular plate, which
was attached to the tunnel floor (see Fig. 1). The identically shaped
upper endplate was attached to the wind tunnel ceiling with a
2 mm gap from the tip of the airfoil model. The leading and trailing
edges of both endplates had a super-elliptic shape to avoid local flow
separation.
To increase the effective Reynolds number to 106 [27] during the

aerodynamic measurements, a 20 mm × 20 mm square-hole perfo-
rated plate (the grid) with a 25mm pitch (64% porosity) was installed
0.56m (22 grid pitches) upstream of the airfoil model, with which the
turbulence intensity and the turbulence integral scale in the free-
stream were increased to 4.3% and 13 mm, respectively. Here, the
turbulence integral scale was obtained using the method described in
[28]. The ratio of turbulence length scale to the airfoil thickness was
of the order of 1, which was found effective in reducing the size of
laminar separation bubble over an airfoil [29]. Without the grid, the
turbulence intensity in the freestream was 0.3%, where the chord

Reynolds number was Rec � 105.
The use of turbulence-generating grid was aimed at removing the

ambiguity in aerodynamicmeasurements at low tomediumReynolds
numbers, where the aerodynamic forces on airfoils are strongly
influenced by the boundary-layer transition [30]. Indeed, much of
the confusion in the past studies is a result of this, because the LEU
undulation often triggers boundary-layer transition, resulting in a
flow separation delay accompanied by an increase in the lift coef-
ficient and/or the maximum lift angle. This was often confused with
an improvement in aerodynamics performance by the introduction of
LE undulation. The increased freestream turbulence by grid will
increase the effective Reynolds number by promoting transition to
turbulence closer to the leading edge of the airfoil. Here, the effective
Reynolds number is the equivalent Reynolds number in the airfoil
aerodynamic tests when the freestream turbulence level is nearly zero
[27]. The use of turbulence-generating grid is similar to but more
effective than the trip devices in promoting the boundary-layer
transition.
A three-component force transducer (Kyowa, LSM-B-SA1, rated

capacity 10 N) was used to measure the drag and lift forces of airfoil
models. The force balance was mounted on a turntable that was
connected through a 2∶1 gear to a stepping motor to reduce the
minimum angle of rotation to 0.45 deg. The data from the force

Fig. 1 Experimental aerodynamic measurement setup (not to scale). Units are in mm.
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balancewere acquiredwith a 16-bit analog-to-digital (A/D) converter
(IOtech ADC488/8SA) for 30 s at the sampling frequency of 500 Hz.
For surface pressure measurements, an airfoil model with a

150 mm chord length and a 500 mm span was designed and 3D
printed, including 19 and 15 pressure taps of 0.8 mm in diameter
along the centerline over the upper (suction) and the lower (pressure)
surfaces, respectively (see Fig. 2). Unfortunately, one of the pressure
taps was blocked during printing, so that the surface pressure meas-
urement between x∕c � 80 and 90% could not be made. We used
National Instruments (NI) LabVIEW software for pressure measure-
ments, controlling a pressure scanner (Scanivalve MPS4264, full
scale range �995.4 Pa) incorporating 24-bit A/D converters. The
data were acquired at 800 Hz for 1 minute, which were then trans-
ferred to a PC through an Ethernet cable.
The PIV system consisted of a Litron LDY302-PIV Nd:YLF laser

with 15 mJ per pulse, two high-speed cameras (Phantom v12.1) with
Sigma 105-mm-focal-length lenses, an NI 80N77 Timer Box, and a
dedicated PC. Di-ethyl-hexyl-sebacat (DEHS) seeding particles of
nominally 1 μm diameter were introduced upstream of the wind
tunnel contraction section using a TSI 9307-6 seeding generator
via a seeding rake. A laser sheet horizontally illuminated the airfoil
section near themidspan. The field of view of two cameras set side by
side was 172 mm × 55 mm, which captured the entire flowfield
around the airfoil. The twin-cavity laser was operated for 2.5 s to
obtain image pairs at a repetition rate of 1600 Hz with a 40 μs time
delay between two consecutive pulses. The particle imageswere used
to produce velocity vectors by an adaptive PIV algorithm using
Dynamic Studio v 4.15 software, where the window shift, subpixel
interpolation, and window deformation were also carried out. Here,
the size of the interrogation area was automatically adapted between
32 and 64 pixels horizontally and 16 and 32 pixels vertically to make
sure that the desired number of particles per interrogation area
remained around 10. The overlap ratio varied between 50 and 75%.
Uncertainties in the measured freestream velocity, aerodynamics

forces, and airfoil alignment are�0.5% FS,�0.3% FS,3 and�0.3°,
respectively, givingmaximum experimental errors in the lift and drag
coefficients of 2.5 and 13.2%, respectively [31]. The accuracy of the
pressure scanner is �0.15% FS so that the maximum experimental
error in the pressure coefficient is estimated to be 2%. The error in
PIV measurements is estimated using the equation σΔx � kdτ [32],
where σΔx and dτ are the standard deviation of subpixel displacement

and image diameter in pixel, respectively. Also, k � ηDI∕�2γN0.5
I �,

where η,DI , γ, andNI are the standard deviation of noise in grayscale
value, geometric mean of interrogation area in pixel, averaged expo-
sure of a single particle in grayscale value, and image density,
respectively, of the particle images. For the present study, the aver-
aged image diameter was dτ � 1.28 pixels, which is close to the
optimum particle diameter of 2 pixels in [32]. Considering the mini-
mum interrogation window size of 32 × 16 pixels, η, DI , γ, and
NI are estimated to be 1.4, 22.6, 51, and 6.4, respectively. Therefore,
k � 0.13, so that σΔx � kdτ � 0.16 pixel. Total uncertainty inmean

and root mean square velocity can be given by εt;U � u 0∕
����
N

p

and εt;u 0 �
��������������������������������������
σ2Δx � �u 0∕

�������
2N

p �2
q

, respectively, where N is a number

of samples averaged [33]. Therefore, experimental uncertainties

in U∕U∞ and u 0∕U∞ are 1 and 6.6%, respectively, with a 95%
confidence.

B. Aeroacoustic Measurements

Acoustic measurements of airfoils were carried out in an open-jet
wind tunnel facility at the Institute of Sound and Vibration Research
(ISVR) of the University of Southampton (see Fig. 3). The wind
tunnel was housed in an anechoic chamber measuring 8 m × 8 m ×
8 m, whose walls were acoustically treated with glass-wool wedges
to reach the lowest cutoff frequency of 80Hz.A large nozzle, 500mm
high and 350 mm wide, was used to minimize the incident flow
deflection by the airfoil, where two side plates were attached to
maintain the two-dimensionality of the flow. The angle of attack
was corrected according to the formula in [34] to give an effective
angle of attack, αeff , which was approximately 35% less than the
geometric angle of attack. A biplanar rectangular grid located 75 cm
upstream of the nozzle exit was used to generate freestream turbu-
lence, whose intensity and the integral length scale were 2.5% and
7.5 mm, respectively, in the measurement section.
An array of 10 half-inch condenser microphones (B&K type

4189), located 1.2 m from the midspan of the airfoil, was used to
take free-field noise measurements. The emission angles of micro-
phones relative to the downstream direction of the jet axis were in the
range of 40–130 deg. Each noise measurement lasted for 20 s at a
sampling frequency of 40 kHz. The uncertainty in the noise meas-
urement using these microphones was �0.2 dB. A further detail of
this facility and the test equipment used can be found in [35,36].

III. Results

A. Characteristics of the Baseline Model

Figure 4 shows the lift coefficient CL and the drag coefficient CD

of the baseline model against the angle of attack α, where error bars
are shown to indicate themaximum experimental errors. At the chord

Reynolds number of Rec � 105 without grid, the CL curve shows a
nonlinear behavior that is typical of low-Reynolds-number flows
[37–40], where the lift slope is initially low (0 < α < 4°) and then
increased until α � 10°. The CL will then drop sharply after the

Fig. 2 Positions of the pressure taps on the airfoil model.

Fig. 3 Open-jet wind tunnel and the acoustic setup inside the ISVR’s anechoic chamber.
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maximum lift angle. This behavior is believed to be due to separation

bubbles formed over both sides of the airfoil [41–43], which will be

discussed later. When we test the airfoil at the effective Reynolds

number of 106 with grid, on the other hand, theCL increased linearly

with α up to 5° (CL � 1.1) to reach the maximum lift coefficient

CL;max at around α � 14.5°.

The behavior of the pressure coefficient Cp over the same airfoil

without grid, as shown in Fig. 5a, suggests that a large separation

bubblewas formed near the leading edge over the lower surface (LS),

creating a negative pressure region between x∕c � 3% and 30% at

α � −1.8°. The lower surface of NACA 65(12)-10 airfoil is nearly

flat; therefore it is susceptible to flow separation at negative angles of

attack at low Reynolds number. At the effective Reynolds number of

106 with grid, the negative pressure region seems to be eliminated.

TheCp distribution without grid, shown in Fig. 5b, suggests an early

flow separation over the upper surface at α � 5.4°, leading to a low

CL value (see Fig. 4). With grid, the static pressure over the upper

surface remains lowup to the 80%chord, increasing theCL. A kink in

the Cp distribution without grid as shown in Fig. 5c suggests a

laminar separation bubble [44,45] over the upper surface of the airfoil

between x∕c � 60 and 80%at α � 9.9°, which helps increase theCL

until it finally bursts at around α � 16° (see Fig. 4). Again, the stall
angle is delayed with grid beyond the angle of attack of α � 20°,
which is accompanied by an increase in CL by more than 20%. A
nearly flatCp distribution over the upper surface of the airfoil without

grid at α � 19.8° (see Fig. 5d) suggests that a global flow separation

is taking place, whereas the leading-edge flow separation seems to be
delayed with grid.

B. Optimization of Leading-Edge Profile

1. Cross-Sectional Profiles of Leading-Edge Undulation

Optimization of the leading-edge profile was carried out for a
NACA 65(12)-10 airfoil with a 100 mm chord length and a

500 mm span, where the LEU amplitude and wavelength were
6 and 20% of the chord length, respectively (see Fig. 6a). Due to
manufacturing constraints, the trailing edge of the airfoil was

rounded with a radius equivalent to 0.5% of the chord length. There-
fore, the trailing edge did not extend to the “true” chord line of this

airfoil. LEUswere cut into the baseline profile rather than added to it.
We considered three types of leading-edge profiles: Und1, UAC,

and UMC, indicating undulation 1, undulation along the camber, and
undulationwith amodified camber, respectively. Figure 6b shows the

Und1 profile, where the cross-sectional profile of the LEU is similar
to that of the base line profile, whose leading edge always stays along
the chord line within the LEU. On the other hand, the UAC profile,

as shown in Fig. 6c, is obtained by modifying only the 24% of the
original leading-edge section by maintaining a similar shape. To be
aerodynamically efficient, the LEU must be positioned upstream of

the maximum camber for cambered airfoils [12] or the maximum
thickness for symmetric airfoils [5]. If it is too upstream, however,

the curvature of modified leading-edge profile becomes too large,
leading to local flow separation. The location of LE undulation
(x∕c � 24%) in this study was chosen by considering that the

maximum camber and the maximum thickness of the NACA
65(12)-10 airfoil are 51 and 42%, respectively. Here, the mean

a) b)

c) d)

Fig. 5 Cp distributions on the upper surface (US) and the lower surface (LS) at α equal to a) −1.8°, b) 5.4°, c) 9.9°, and d) 19.8°. Error bars to indicate
experimental uncertainties are shown in (a).

Fig. 4 Lift and drag coefficients of the baseline model with and without
grid.
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camber line of the UAC profile always stays on the original mean

camber line within the LEU. The mean chord position ξ of the UAC
profile measured from its local leading edge can be expressed by the

original chord position x in a simple linear relationship, given by

Eq. (1).

�
ξ

c

�
� 3

4

�
x

c

�
� 6 (1)

Similar to the UAC profile, the leading-edge shape of the UMC

profile changes only the front 24% of the original airfoil section (see

Fig. 6d). However, the leading edge of the UMC profile stays along

the chord linewithin the LEU. In this case, the x − ξ transformation of

the mean camber line can be given by a third-order polynomial given

by Eq. (2).

�
ξ

c

�
� a0

�
x

c

�
3

�
�
1

96
− 48a0

��
x

c

�
2

�
�
576a0 �

1

2

��
x

c

�
� 6

(2)

Here, the polynomial constants were determined by imposing con-

ditions that the slope of the mean camber line is 6° at the modified

leading edge and that dξ∕dx � 1 at x∕c � 24% to avoid a disconti-

nuity in the slope of the mean camber line. We also required that

ξ∕c � 6% at x∕c � 0 and ξ∕c � 24% at x∕c � 24%.We then found

that the numerical constant in Eq. (2) is given by a0 � 5.2 × 10−4. It
should be noted that theUACandUMC thickness associatedwith the
x − ξ transformation inEqs. (1) and (2) should bemeasured normal to
the mean camber line, not normal to the chord line.

2. Lift and Drag Coefficients

CL and CD of airfoils with the leading-edge profile Und1, UAC,
and UMC are now presented along with those of the baseline (BL) in
Fig. 7a. Here, the lift and drag coefficients are defined based on the
actual planform area of the modified airfoil with LE undulation. It
shows that the UMC profile outperforms the UAC and Und1 profiles
in the CL enhancement in both pre- and poststall conditions. Addi-
tionally, the enhancement in CL by the UMC profile is accompanied
by a reduction in CD. This superior aerodynamic performance of
UMC profile can be observed either with grid (see Fig. 7a) or without
grid (see Fig. 7b), which can be explained as follows.
The leading edge of the UMC profile stays along the chord line

within the LEU (see Fig. 6d), so that the local angle of attack of the
LEU is always less than that of the baseline profile. As a result, the
suction peak near the leading edge of the airfoil would be reduced by
this LEU, which helps increase CL by delaying flow separation. The
Und1 profile also increases CL, but the increment is limited only to
poststall angles. Although similar to the UMC profile in design, the
leading edge of theUACprofile is located along themean camber line
within the LEU; therefore the local angle of attack is always greater
than that of UMC.

a) b)

Fig. 7 Comparisons of CL and CD between different LEU shapes a) with grid and b) without grid.

a) b)

c) d)

Fig. 6 Definition of the amplitude andwavelength of the leading-edge undulation (a), and the profiles ofUnd1 (b),UAC (c), andUMC(d) showing camber
lines at the peak (blue) and trough (red) sections.
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Figure 7 also demonstrates that the UMC profile increases the

CL;max more than that of the baseline with a similar level ofCD. Such

an aerodynamic performance improvement was never seen by any
LEUs before [6,8,23]. Previous reports showing an increase inCL;max

with LEUs were either by an airfoil with a small aspect ratio [6]

or by a tapered airfoil [4], both of which have strong flow three-

dimensionality over the airfoil. Also, a 10% increase in CL;max with

anLEUonNACA 634 − 021 airfoil reported in [7]was achievedwith
an expense of 50% increase in CD.

3. Sound Power Level and Spectra

Figure 8 shows overall sound-power level (OAPWL) variations

with the effective angle of attack αeff for the baseline (BL) and an

airfoil with three different LEUs (Und1, UAC, and UMC) in a free-
stream of 20 m∕s, corresponding to the chord Reynolds number of

Rec � 1.3 × 105 without grid. Here,

OAPWL � 10log10

Z
f2

f1

10
PWL�f�

10 df (3)

where PWL�f� is the sound power level that is calculated by inte-

grating the sound pressure power spectral densitiesmeasured at every

10° between 40 and 130° of the polar angles in Fig. 3. These datawere
obtained by integrating the noise spectra between 40 and 2000 Hz,

covering both the separation noise and the stall noise [36]. For

the case of with grid, it is clear that the noise in the entire frequency

range considered is reduced from the baseline (BL) level by employ-
ing LEUs. In particular, noise reductions by LEUs are enlarged

further in the effective angle of attack αeff ranging between 12 and

18°where the lifts of the airfoils reach nearly maximum (see Fig. 7a).

For “no grid” cases, however, noise is increased by LEUs except for
αeff < ∼5°, where the laminar boundary-layer instability (Tollmien–

Schlichting waves) noise is amplified by the separation bubble [46].

Here, the boundary-layer instability noise is identified as a hump in

the Strouhal number St between 1 and 10 in the spectrum for αeff �
3.7° in Fig. 9. Awide and low hump is also seen in the spectrum for

αeff � 3.7° with grid (see Fig. 9). The boundary-layer instability

noise is thought to become weaker with grid because the separation

bubblewould bemuch smaller or eliminated, as implicated by theCp

distribution in Fig. 5b for x∕c between 60 and 90%. Figure 9 also

shows that at αeff near stall (αeff � 14.8°), the amplitude near St � 1
increases and the hump is reduced or stops increasing with or without

grid. Past the stall (αeff � 22.3°), the power spectral amplitude of St
less than around 0.5 is only seen to increase.
To see the effect of LEUs on different frequency components,

power spectra of airfoils with LEUs subtracted from the baseline data

are presented in Fig. 10 at different αeff . It is clear from Fig. 10a that
all LEUs at low αeff reduced the laminar boundary-layer instability

noise for St between 1 and 10 for “no grid” case. However, in the low

St range between 0.2 (40 Hz) and 1 (200 Hz), where large portions of
acoustic energywere contained, the noisewas increased byLEUs and

these increases are greatest with the UMC profile followed by UAC
and Und1. With grid, there was as much noise increase in the lower

range of St, whereas there were small decreases in higher St range.
Near stall, Fig. 10b demonstrates that the noise reduction effects

by LEUs with grid are seen in the entire frequencies except for
near St � 1. In Fig. 10c, it is seen that the noise in lower St range
increased greatly for “no grid” case due to stall at this angle of attack
of αeff � 22.3°.

C. Optimization of Amplitude and Wavelength

Aerodynamic performance and aeroacoustic performance of
NACA 65(12)-10 airfoils with Und1, UAC, and UMC leading-edge

profiles were presented in the previous section, where the UMC
profile demonstrated the highest CL with the lowest CD near and

poststall angles. All LEUs tested reduced the laminar boundary-layer
instability noise at low effective angle of attack αeff in a low-turbu-

lence freestream (i.e., with “no grid”). They also reduced the overall
sound power level near the stall angle in a high turbulence freestream

with grid. Using this best performing UMC profile we have carried
out a further optimization of LEUs to find the best combination of

LEUamplitudeh andwavelength λ using a 3 × 3 testmatrix inh (3, 6,
and 12% chord) and λ (10, 20, and 30% chord).

1. Maximum Lift Enhancement

CL and CD of the UMC profile in a 3 × 3 test matrix are presented

in Fig. 11. Here, each LEU configuration is named by the percentage
value of wavelength and amplitude in chord length, e.g., λ10h3
indicates anLEUwith 10% λ∕c and 3%h∕c. Figures 11a–11c clearly
show that CL and CD with grid depended strongly on a combination

of the LEU wavelength and amplitude. For a low LEU wavelength
(λ∕c � 10%), CL is reduced with an increase in the LEU amplitude

from h∕c � 3 to 12%, as seen in Fig. 11a. Compared to the baseline,
CL is greater with the LEU of a small amplitude h∕c � 3%, but only

at near-stall angles. CD is decreased by the LEU with all amplitudes
tested. With a medium LEUwavelength (λ∕c � 20%) the maximum

lift coefficientCL;max is increased by all LEUs, as shown in Fig. 11b.

For a large LEU wavelength (λ∕c � 30%), as shown in Fig. 11c, CL

at near and poststall angles is increased with an increase in the LEU
amplitude, which is offset by an increase in CD, however. For

example, a 13% increase in CL by the LEU with h∕c � 12% is
achieved by λ30h12 with an expense of a 24% increase in CD (see

Fig. 11c). Similar observations are made with “no grid” cases in
Figs. 11d–11f, where not smooth CL and CD curves as compared to

those “with grid” are due to laminar separation bubbles (see discus-

sions in Sec. III.A).
Figures 12a and 12b are contour maps to show the percentage

increase in CL;max of the UMC profile against the baseline with and

Fig. 8 Overall-sound-power-level variationswith the attack angle of the
airfoils. The amplitude and the wavelength of the LE undulation are
6 mm (h∕c � 6%) and 20 mm (λ∕c � 20%), respectively.

Fig. 9 Sound power spectra for the baseline airfoil at three representa-

tive angles of attack with and without the grid.
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without grid, respectively, which were obtained from a 3 × 3 test

matrix of different LEU amplitudes (h∕c � 3–12%) and wave-

lengths (λ∕c � 10–30%). The contour maps were obtained by inter-

polating 9 CL;max values (shown by red circles) from Fig. 11. In both

figures the local maximum of CL;max can be found in the top-right-

hand corner of the contourmap, suggesting that the optimumLEU for

CL;max should have greater wavelength and amplitude with or with-

out grid.

a) b) c)

Fig. 10 Sound power spectra of the airfoils with the LEU subtracted from those of the baseline at αeff � 3.7° (a), 14.8° (b), and 22.3° (c).

a) b) c)

d) e) f)

Fig. 11 CL and CD of UMC leading-edge profile with various h and λ against α: a–c) with grid; d–f) without grid. The baseline data are also shown for
comparison. The legends in the figure represent the percentage value of each parameter; e.g., λ10h3 indicates an LEU with 10% λ∕c and 3% h∕c.

Fig. 12 Contourmaps to show the percentage increase inCL;max of the UMCprofile based on a 3 × 3 test matrix of h and λ: a) with grid; b) without grid.
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Similar contour maps for the maximum lift angle of the UMC

profile are presented in Figs. 13a and 13b with and without grid,

respectively. Again, the localmaximum can be found in the top-right-

hand corner of each map, suggesting that the optimum LEU for the

maximum lift angle should also have greater wavelength and ampli-

tude with or without grid.

2. Maximum Noise Reduction

Figure 14 shows the overall sound power level (OAPWL) of the

UMC profile with three different wavelengths as a function of the

effective angle of attack αeff , which are compared with the baseline

result. The noise-spectra bandwidth was again between 40 and

2000 Hz. With grid, these figures reveal that the LEU amplitude

h∕c is an important parameter in reducing the turbulence interaction

noise, where noise reductions are seen with an increase in h∕c. For
“no grid” case, the noise reduction by the UMC profile depends on a

combination of the LEU amplitude and wavelength as well as αeff . In
αeff between 0 and 8°, where both the low-frequency noise due to

flow separation/stall and themidfrequency noise due to an interaction

between the Tollmien–Schlichting waves and the laminar separation

bubble (TS-SB noise) dominate, the UMC profile having λ∕c � 20
and 30% with h∕c � 6% (see Fig. 14b) and all the λ tested with

h∕c � 12% (Fig. 14c) are effective in reducing the overall noise. In

αeff between 8 and 12°, around which stall takes place, the overall

noise appears to increase by all LEUs.

To show the noise-reduction performance of LEUs at an angle of

attack of αeff � 15°, contours of the percentage noise change of the
UMCprofilewith grid is plotted in Fig. 15. It shows that optimal LEU

parameters are located at around λ∕c � 15% and h∕c � 10%. How-

ever, both the wavelength and amplitude are not very sensitive to

noise reduction because the level differences are less than 1 dB across

the entire contour map. We can, therefore, conclude that a combina-

tion of λ∕c � 30% and h∕c � 6%�λ30h6� are good compromise

parameters 4for LEU optimization considering the aerodynamic per-

formance as well as the noise reduction near stall angle.

D. Flow over an Optimized Airfoil

Figures 16a and 16b show the time-averaged streamlines (in pink)

and the mean velocity contours (in blue) from the PIV measurement

of flow over an optimized airfoil (h∕c � 6% and λ∕c � 30%). The

angle of attack was set at α � 10.8 and 15.3°, where the boundary-
layer thickness was δ � 7.5 and 12.0 mm, respectively, at

Fig. 13 Contours to show the percentage increase in the maximum lift angle of the UMC profile based on a 3 × 3 test matrix of h and λ: a) with grid;
b) without grid.

a) h/c = 3% b) h/c = 6% c) h/c = 12%

Fig. 14 Variations of overall sound power level with an angle of attack: a) h∕c � 3%; b) h∕c � 6%; c) h∕c � 12%.

Fig. 15 Contours of the noise change in dB by the UMCs at αeff � 15°
with grid.
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x∕c � 0.75. The freestream velocity was U∞ � 10 m∕s. The plane
of the PIV measurement is defined in Fig. 16, where the distance

between the model and the measurement plane was 2 mm. Peaks and

troughs of the LEU are shown on the left, and the flow is from left to

right. A comparison of flow recirculation regions downstream of the

peak and the trough section of the LEU at α � 10.8° (see Fig. 16b)
suggests that the flow separation takes place further downstream

along the LEU peaks [26], as it has a higher velocity. Stall cells

appear downstream of troughs, consisting of a pair of counter-rotat-
ingwall-normal vortices [20,24,25]. At this angle of attack, stall cells

have the sameperiodicity as thewavelength of theLEU (seeFig. 16a).

As the angle of attack is increased to α � 15.3°, the streamwise as

well as spanwise size of stall cells is increased by merging/absorbing

neighboring stall cells as shown in Fig. 16b. The PIV result suggests

that large stall cells are formed downstream of every other LEU

trough at this angle of attack. A similar structure of stall cells was

reported over an airfoil with LEUs [5,21].
Figures 17a and 17b are turbulence intensity contours over the

optimized UMC profile (λ30h6) at α � 15.3° with grid, downstream
of the LEU peak (z∕c � 0%) and the trough (z∕c � 15%), respec-
tively. Figure 17a shows that the separating shear layer coming off the

peak section of the LEU has a higher turbulence intensity than that

along the trough section (see Fig. 17b). To understand this difference

in the turbulence intensity, thevelocity signal downstreamof theLEU

peak at the point of maximum turbulence intensity (marked “X” in
Fig. 17a) is examined in Fig. 18a. For the nondimensional time
tU∞∕c < 20 and tU∞∕c > 120, the streamwise velocity fluctuation
appears to have a relatively low frequencywith a large amplitude. For
the rest of the time (20 < tU∞∕c < 120), however, the frequency of
the velocity fluctuation is increased and the amplitude reduced.
The unsteady nature of this velocity signal in Fig. 18a can

be studied by wavelet spectra, which is given in Fig. 18b. Here,
we used generalized Morse wavelets defined by ΨP;γ�ω� �
U�ω�aP;γωP2∕e−ω

γ
in the frequency domain ω, where U�ω� is the

unit step function and aP;γ is a normalising constant [47]. The

symmetry parameter and the time-bandwidth product were set to γ �
3 and P2 � 60, respectively.
As shown in Fig. 19a, the flow over the airfoil is separated down-

stream of the LEU peak at the start of the signal (0 < tU∞∕c < 20),
where the corresponding velocity is low (see Fig. 18a) with a low-
frequency component between 20 and 130 Hz (see Fig. 18b). Then
the flow is reattached to the airfoil at tU∞∕c � 20 (see Figs. 18a and
19b), increasing the frequency by approximately twice to 30–270 Hz
(see Fig. 18b). The spectrum is also broadened, suggesting that the
flow becomes fully turbulent as the flow is attached over the airfoil.
Attached flow continues until tU∞∕c � 120 (see Fig. 19b), then the
lower frequency contents (20–80 Hz) start to increase to indicate
the initiation of flow detachment, although high-frequency energy

Fig. 16 Time-averaged streamlines (in pink) and �U∕ �U∞ contours (in blue) for α � 10.8° with β � 23° (a) and α � 15.3° with β � 35° (b).

Fig. 17 Color contours of the turbulence intensity u 0∕U∞ downstream of the LEU peak (a) and the trough (b) of an optimized LEU profile (λ30h6) at
α � 15.3° with grid.
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contents up to 270 Hz are still present in the velocity signal until the
end of this signal (see Figs. 18b and 19a). The velocity signal and its
spectral behavior displayed in Figs. 18a and 18b suggest that the
process of flow separation (detachment) process at around tU∞∕c �
120 ismuch slower than that of flow reattachment (tU∞∕c � 20).We
believe that the unsteady nature of the velocity signal being observed
here is related to the unsteadiness of stall-cell structures that have
been observed by Cai et al. [20], whose position and shape changed
with time as well as with the angle of attack.

IV. Conclusions

5 Optimization of the LEU of a NACA 65(12)-10 model was con-
ducted in a wind tunnel at the effective Reynolds number of 106.
Three leading-edge profiles were considered for this study. The
cross-sectional shape of the Und1 profile is similar to that of the base
line profile, whose leading edge always stays along the chord line
within the LEU. On the other hand, the UAC profile is obtained by
modifying only the 24% of the original leading-edge section by
maintaining the similar shape. Here, the mean camber line of the
UACprofile always stays on the original mean camber linewithin the
LEU. Similar to the UAC profile, the leading-edge shape of theUMC
profile changes only the front 24% of the original airfoil section.
However, the leading edge of the UMC profile stays along the chord
line within the LEU. Here it was found that the UMC profile could
improve theCL;max value without sacrificing theCD unlike the LEUs

on NACA 634-021 airfoil reported in [7]. Such an improvement in
aerodynamic performance by the LEUs has never been demonstrated
before. The noise reduction effects by the LEUs are seen in the entire
frequencies near stall angles except for near St � 1. At low angles of

attack, there is as much noise increase in the lower range of St,
whereas there are small decreases in higher St range.
Further studies on the UMC profile have been carried out to find

the best combination of LEU amplitude h and wavelength λ using a
3 × 3 test matrix in h (3, 6, and 12%, chord) and λ (10, 20, and 30%
chord). The contour maps were obtained by interpolating nine mea-
sured CL;max values, from which it was concluded that the optimum

LEU for CL;max should have greater wavelength and amplitude. A

similar conclusion was made for the maximum lift angle of the UMC
profile that the optimum LEU for the maximum lift angle should also
have greater wavelength and amplitude. As for the noise-reduction

performance of LEUs at αeff � 15°, the optimal LEU parameters
were located at around λ∕c � 15% and h∕c � 10%, although both
the wavelength and amplitude were not very sensitive to noise
reduction. It is therefore concluded that a combination of

λ∕c � 30% and h∕c � 6%�λ30h6� gives an optimum LEU for the
UMC model for aerodynamic as well as aeroacoustic performance
near stall angles. The optimal design proposed in this paper is mostly
focused on high angle of attackwhere some degree of flow separation

is present. A significant component of the noise reduction mecha-
nism is therefore related to the degree by which flow separation can
be suppressed by the leading-edge serration. Our optimal design
therefore cannot be directly compared against the optimal designs

proposed by Lyu et al. [48], which are obtained from a theoretical flat
plate models in which the incoming turbulent flow ensures that the
boundary layer remains fully attached.
PIVmeasurements of the flow over aNACA65(12)-10 airfoil with

an optimized LEU showed stall cells downstream of troughs at

α � 10.8°, consisting of a pair of counter-rotating wall-normal vor-
tices. In other words stall cells at this angle of attack had the same

Fig. 19 Color contours of the turbulence intensity u 0∕U∞ downstream of the LEU peak at 0 < tU∞∕c < 20 and 120 < tU∞∕c < 165 (a) and at 20 <
tU∞∕c < 120 (b) of an optimized LEUprofile (λ30h6) at α � 15.3° with grid. The dotted lines indicate the region of flow separationwith negative velocity.

Fig. 18 The velocity fluctuation (a) at the point of maximum turbulence intensity in Fig. 17a and the corresponding wavelet spectrum (b).

10 KIM ETAL.



periodicity as the wavelength of the LEU. As the angle of attack was
increased to α � 15.3°, the streamwise as well as spanwise size of
stall cells was increased by merging/absorbing neighboring stall
cells. Similar flow structures revealed by the PIV measurements
may indicate the universality of the stall cell structure produced by
the LEUs. The unsteady velocity signal at this angle of attack seems
to be related to the unsteady stall-cell structures, where the turbulence
produced at LEU peaks through a generation of streamwise vortices
help reattach the flow whenever it is separated.
This paper resulted from a recently concluded multi-institutional

project, where the optimization of LEundulationswas investigated to
maximize noise reductions over a wide range of angles of6 attack
without causing significant degradations in aerodynamic perfor-
mance. This project was conducted with the aim that the optimized
configuration and geometry of the LE profile will pave the way for a
development of the next generation of quiet and more aerodynami-
cally efficient airfoils. Here, the authors had aeroengine application
inmind, which led to the choice of NACA 65(12)-10 airfoil shape for
this investigation. This collaborative research was made possible by
bringing together scientists and engineers with diverse background
and expertise in fluid mechanics, aerodynamics, and aeroacoustics
from four universities.

Acknowledgments

This study was supported by Engineering and Physical Sciences
Research7 Council (Grant No. EP/N018486/1). Some of the materials
in this paper have been presented at the 23rd International Congress
on Acoustics, Aachen, Germany, September 9–13, 2019.

References

[1] Choi, H., Park, H., Sagong, W., and Lee, S.-I., “Biomimetic Flow
Control Based onMorphological Features of LivingCreatures,”Physics
of Fluids, Vol. 24, No. 12, 2012, Paper 121302.
https://doi.org/10.1063/1.4772063

[2] Fish, F. E., and Lauder, G. V., “Passive and Active Flow Control by
Swimming Fishes and Mammals,” Annual Review of Fluid Mechanics,
Vol. 38, 2006, pp. 193–224.
https://doi.org/10.1146/annurev.fluid.38.050304.0922018

[3] Fish, F. E., and Battle, J. M., “Hydrodynamic Design of the Humpback
Whale Flipper,” Journal of Morphology, Vol. 225, No. 1, 1995,
pp. 51–60.
https://doi.org/10.1002/jmor.1052250105

[4] Miklosovic, D. S., Murray, M. M., Howle, L. E., and Fish, F. E.,
“Leading-Edge Tubercles Delay Stall on HumpbackWhale (Megaptera
novaeangliae) Flippers,” Physics of Fluids, Vol. 16, No. 5, 2004,
pp. L39–L42.
https://doi.org/10.1063/1.1688341

[5] Johari, H., Henoch, C., Custodio, D., and Levshin, A., “Effects of
Leading-Edge Protuberances on Airfoil Performance,” AIAA Journal,
Vol. 45, No. 11, 2007, pp. 2634–2642.
https://doi.org/10.2514/1.28497

[6] Custodio, D., Henoch, C. W., and Johari, H., “Aerodynamic Character-
istics of Finite Span Wings with Leading-Edge Protuberances,” AIAA
Journal, Vol. 53, No. 7, 2015, pp. 1878–1893.
https://doi.org/10.2514/1.J053568

[7] Wei, Z.Y., Toh, J.W.A., Ibrahim, I.H., andZhang,Y.N., “Aerodynamic
Characteristics and Surface Flow Structures of Moderate Aspect-Ratio
Leading-Edge Tubercled Wings,” European Journal of Mechanics B -

Fluids, Vol. 75, 2019, pp. 143–152.
https://doi.org/10.1016/j.euromechflu.2019.01.001

[8] Hansen, K. L., Kelso, R. M., and Dally, B. B., “Performance Variations
of Leading-Edge Tubercles for Distinct Airfoil Profiles,” AIAA Journal,
Vol. 49, No. 1, 2011, pp. 185–194.
https://doi.org/10.2514/1.J050631

[9] Rostamzadeh, N., Kelso, R. M., Dally, B. B., and Hansen, K. L., “The
Effect of Undulating Leading-Edge Modifications on NACA 0021
Airfoil Characteristics,” Physics of Fluids, Vol. 25, No. 11, 2013, Paper
117101.
https://doi.org/10.1063/1.4828703

[10] Guerreiro, J. L. E., and Sousa, J. M. M., “Low-Reynolds-Number
Effects in Passive Stall Control Using Sinusoidal Leading Edges,” AIAA
Journal, Vol. 50, No. 2, 2012, pp. 461–469.
https://doi.org/10.2514/1.J051235

[11] Corsini, A., Delibra, G., and Sheard, A. G., “On the Role of Leading-
Edge Bumps in the Control of Stall Onset in Axial Fan Blades,” Journal
of Fluids Engineering, Vol. 135, No. 8, 2013.

https://doi.org/10.1115/1.4024115 9
[12] Corsini, A., Delibra, G., and Sheard, A. G., “The Application of Sinus-

oidal Blade-Leading Edges in a Fan-Design Methodology to Improve
Stall Resistance,” Proceedings of the Institution of Mechanical Engi-

neers, Part A: Journal of Power and Energy, Vol. 228, No. 3, 2014,

pp. 255–271.

https://doi.org/10.1177/0957650913514229
[13] Wei, Z., Lian, L., and Zhong, Y., “Enhancing the Hydrodynamic Per-

formance of a Tapered Swept-Back Wing Through Leading-Edge

Tubercles,” Experiments in Fluids, Vol. 59, No. 6, 2018, p. 103.

https://doi.org/10.1007/s00348-018-2557-5
[14] Aftab, S. M. A., Razak, N. A., Rafie, A. S. M., and Ahmad, K. A.,

“Mimicking the Humpback Whale: An Aerodynamic Perspective,”

Progress in Aerospace Sciences, Vol. 84, 2016, pp. 48–69.
https://doi.org/10.1016/j.paerosci.2016.03.002

[15] Stalnov, O., and Chong, T. P., “Scaling of Lift Coefficient of an Airfoil
with Leading-Edge Serrations,” AIAA Journal, Vol. 57, No. 8, 2019,

pp. 3615–3619.
https://doi.org/10.2514/1.J058168

[16] Polacsek, C., Reboul, G., Clair, V., Garrec, T., Dufour, G., and Deniau,
H., “Turbulence-Airfoil InteractionNoise ReductionUsingWavy Lead-
ing Edge: An Experimental and Numerical Study,” Noise Control

Engineering of Japan (INCE/J) and Acoustical Society of Japan

(ASI), Osaka, 2011, pp. 1–11. 10
[17] Chaitanya, P., Joseph, P., Narayanan, S., Vanderwel, C., Turner, J., Kim,

J. W., and Ganapathisubramani, B., “Performance and Mechanism of

Sinusoidal Leading Edge Serrations for the Reduction of Turbulence-

Aerofoil Interaction Noise,” Journal of Fluid Mechanics, Vol. 818,

2017, pp. 435–464.
https://doi.org/10.1017/jfm.2017.141

[18] Hansen, K., Kelso, R., and Doolan, C., “Reduction of Flow Induced
Airfoil Tonal Noise Using Leading Edge Sinusoidal Modifications,”
Acoustics Australia, Vol. 40, No. 3, 2012, pp. 172–177.

[19] Chong, T. P., Vathylakis, A.,McEwen, A., Kemsley, F.,Muhammad, C.,
and Siddiqi, S., “Aeroacoustic and Aerodynamic Performances of an
Aerofoil Subjected to Sinusoidal Leading Edges,” 21st AIAA/CEAS

Aeroacoustics Conference, 2015. 11
[20] Cai, C., Zuo, Z., Maeda, T., Kamada, Y., Li, Q. A., Shimamoto, K., and

Liu, S., “Periodic and Aperiodic Flow Patterns Around an Airfoil with

Leading-Edge Protuberances,” Physics of Fluids, Vol. 29, No. 11, 2017,

Paper 115110.

https://doi.org/10.1063/1.4991596
[21] Skillen, A., Revell, A., Pinelli, A., Piomelli, U., and Favier, J., “Flow

over a Wing with Leading-Edge Undulations,” AIAA Journal, Vol. 53,
No. 2, 2015, pp. 464–472.
https://doi.org/10.2514/1.J053142

[22] Zhang, M. M., Wang, G. F., and Xu, J. Z., “Aerodynamic Control of
Low-Reynolds-Number Airfoil with Leading-Edge Protuberances,”
AIAA Journal, Vol. 51, No. 8, 2013, pp. 1960–1971.
https://doi.org/10.2514/1.J052319

[23] Zhang, M.M., Wang, G. F., and Xu, J. Z., “Experimental Study of Flow
Separation Control on a Low-Re Airfoil Using Leading-Edge Protub-

erance Method,” Experiments in Fluids, Vol. 55, No. 4, 2014. ARTN

1710

https://doi.org/10.1007/s00348-014-1710-z
[24] Zhao, M., Zhang, M., and Xu, J., “Numerical Simulation of Flow

Characteristics Behind the Aerodynamic Performances on an Airfoil

with Leading Edge Protuberances,” Engineering Applications of Com-

putational Fluid Mechanics, Vol. 11, No. 1, 2017, pp. 193–209.
https://doi.org/10.1080/19942060.2016.1277165

[25] Malipeddi, A. K., Mahmoudnejad, N., and Hoffmann, K., “Numerical
Analysis of Effects of Leading-Edge Protuberances on Aircraft Wing
Performance,” Journal of Aircraft, Vol. 49, 2012, pp. 1336–1344.
https://doi.org/10.2514/1.C031670

[26] Hansen, K. L., Rostamzadeh, N., Kelso, R. M., and Dally, B. B.,
“Evolution of the Streamwise Vortices Generated Between Leading
Edge Tubercles,” Journal of Fluid Mechanics, Vol. 788, 2016,
pp. 730–766.
https://doi.org/10.1017/jfm.2015.611

[27] Wang, S., Zhou, Y., Alam, M. M., and Yang, H., “Turbulent Intensity
andReynoldsNumber Effects on anAirfoil at LowReynoldsNumbers,”
Physics of Fluids, Vol. 26, No. 11, 2014, Paper 115107.
https://doi.org/10.1063/1.4901969

[28] Kurian, T., and Fransson, J. H. M., “Grid-Generated Turbulence Revis-
ited,” Fluid Dynamics Research, Vol. 41, No. 2, 2009, Paper 021403.
https://doi.org/10.1088/0169-5983/41/2/021403

KIM ETAL. 11

https://doi.org/10.1063/1.4772063
https://doi.org/10.1063/1.4772063
https://doi.org/10.1063/1.4772063
https://doi.org/10.1063/1.4772063
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1146/annurev.fluid.38.050304.092201
https://doi.org/10.1002/jmor.1052250105
https://doi.org/10.1002/jmor.1052250105
https://doi.org/10.1002/jmor.1052250105
https://doi.org/10.1002/jmor.1052250105
https://doi.org/10.1063/1.1688341
https://doi.org/10.1063/1.1688341
https://doi.org/10.1063/1.1688341
https://doi.org/10.1063/1.1688341
https://doi.org/10.2514/1.28497
https://doi.org/10.2514/1.28497
https://doi.org/10.2514/1.28497
https://doi.org/10.2514/1.28497
https://doi.org/10.2514/1.J053568
https://doi.org/10.2514/1.J053568
https://doi.org/10.2514/1.J053568
https://doi.org/10.2514/1.J053568
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.1016/j.euromechflu.2019.01.001
https://doi.org/10.2514/1.J050631
https://doi.org/10.2514/1.J050631
https://doi.org/10.2514/1.J050631
https://doi.org/10.2514/1.J050631
https://doi.org/10.1063/1.4828703
https://doi.org/10.1063/1.4828703
https://doi.org/10.1063/1.4828703
https://doi.org/10.1063/1.4828703
https://doi.org/10.2514/1.J051235
https://doi.org/10.2514/1.J051235
https://doi.org/10.2514/1.J051235
https://doi.org/10.2514/1.J051235
https://doi.org/10.1115/1.4024115
https://doi.org/10.1115/1.4024115
https://doi.org/10.1115/1.4024115
https://doi.org/10.1115/1.4024115
https://doi.org/10.1177/0957650913514229
https://doi.org/10.1177/0957650913514229
https://doi.org/10.1177/0957650913514229
https://doi.org/10.1007/s00348-018-2557-5
https://doi.org/10.1007/s00348-018-2557-5
https://doi.org/10.1007/s00348-018-2557-5
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.1016/j.paerosci.2016.03.002
https://doi.org/10.2514/1.J058168
https://doi.org/10.2514/1.J058168
https://doi.org/10.2514/1.J058168
https://doi.org/10.2514/1.J058168
https://doi.org/10.1017/jfm.2017.141
https://doi.org/10.1017/jfm.2017.141
https://doi.org/10.1017/jfm.2017.141
https://doi.org/10.1017/jfm.2017.141
https://doi.org/10.1017/jfm.2017.141
https://doi.org/10.1063/1.4991596
https://doi.org/10.1063/1.4991596
https://doi.org/10.1063/1.4991596
https://doi.org/10.1063/1.4991596
https://doi.org/10.2514/1.J053142
https://doi.org/10.2514/1.J053142
https://doi.org/10.2514/1.J053142
https://doi.org/10.2514/1.J053142
https://doi.org/10.2514/1.J052319
https://doi.org/10.2514/1.J052319
https://doi.org/10.2514/1.J052319
https://doi.org/10.2514/1.J052319
https://doi.org/10.1007/s00348-014-1710-z
https://doi.org/10.1007/s00348-014-1710-z
https://doi.org/10.1007/s00348-014-1710-z
https://doi.org/10.1080/19942060.2016.1277165
https://doi.org/10.1080/19942060.2016.1277165
https://doi.org/10.1080/19942060.2016.1277165
https://doi.org/10.1080/19942060.2016.1277165
https://doi.org/10.1080/19942060.2016.1277165
https://doi.org/10.2514/1.C031670
https://doi.org/10.2514/1.C031670
https://doi.org/10.2514/1.C031670
https://doi.org/10.2514/1.C031670
https://doi.org/10.1017/jfm.2015.611
https://doi.org/10.1017/jfm.2015.611
https://doi.org/10.1017/jfm.2015.611
https://doi.org/10.1017/jfm.2015.611
https://doi.org/10.1017/jfm.2015.611
https://doi.org/10.1063/1.4901969
https://doi.org/10.1063/1.4901969
https://doi.org/10.1063/1.4901969
https://doi.org/10.1063/1.4901969
https://doi.org/10.1088/0169-5983/41/2/021403
https://doi.org/10.1088/0169-5983/41/2/021403
https://doi.org/10.1088/0169-5983/41/2/021403


[29] Nakamura,Y., andOzono, S., “TheEffects of Turbulence on a Separated
and Reattaching Flow,” Journal of Fluid Mechanics, Vol. 178, 1987,
pp. 477–490.
https://doi.org/10.1017/S0022112087001320

[30] Mueller, T. J., “Low Reynolds Number Vehicles,” AGARD AG-288,
1985.

[31] Moffat, R. J., “Describing the Uncertainties in Experimental Results,”
Experimental Thermal and Fluid Science, Vol. 1, No. 1, 1988, pp. 3–17.
https://doi.org/10.1016/0894-1777(88)90043-X

[32] Westerweel, J., “Theoretical Analysis of the Measurement Precision in
Particle Image Velocimetry,” Experiments in Fluids, Vol. 29, No. 1,
2000, pp. S003–S012.
https://doi.org/10.1007/s003480070002

[33] Qu, W., Xiong, J., Chen, S., and Cheng, X., “High-Fidelity PIV Meas-
urement of Cross Flow in 5 × 5 Rod Bundle with Mixing Vane Grids,”
Nuclear Engineering and Design, Vol. 344, 2019, pp. 131–143.
https://doi.org/10.1016/j.nucengdes.2019.01.021

[34] Brooks, T. F., Marcolini, M. A., and Pope, D. S., “Airfoil Trailing Edge
Flow Measurements and Comparison with Theory Incorporating Open
Wind Tunnel Corrections,” AIAA Paper 1984-2266, 1984.
https://doi.org/10.2514/6.1984-2266

[35] Chong, T. P., Joseph, P. F., and Davies, P. O. A. L., “Design and
Performance of an Open Jet Wind Tunnel for Aero-Acoustic Measure-
ment,” Applied Acoustics, Vol. 70, No. 4, 2009, pp. 605–614.
https://doi.org/10.1016/j.apacoust.2008.06.011

[36] Lacagnina, G., Chaitanya, P., Berk, T., Kim, J.-H., Joseph, P., Ganapa-
thisubramani, B., Hasheminejad, S. M., Chong, T. P., Stalnov, O., Choi,
K.-S., Shahab, M. F., Omidyeganeh, M., and Pinelli, A., “Mechanisms
of Airfoil Noise Near Stall Conditions,” Physical Review Fluids, Vol. 4,
No. 12, 2019, Paper 123902.
https://doi.org/10.1103/PhysRevFluids.4.123902

[37] Feng, L.-H., Choi, K.-S., andWang, J.-J., “Flow Control over an Airfoil
Using Virtual Gurney Flaps,” Journal of Fluid Mechanics, Vol. 767,
2015, pp. 595–626.
https://doi.org/10.1017/jfm.2015.22

[38] Laitone, E. V., “Wind Tunnel Tests of Wings at Reynolds Numbers
Below 70 000,” Experiments in Fluids, Vol. 23, No. 5, 1997, pp. 405–
409.
https://doi.org/10.1007/s003480050128

[39] Ohtake, T., Nakae, Y., and Motohashi, T., “Nonlinearity of the Aerody-
namic Characteristics of NACA0012 Aerofoil at Low Reynolds Num-
bers,” Journal of the Japan Society for Aeronautical And Space

Sciences, Vol. 55, No. 644, 2007, pp. 439–445.
https://doi.org/10.2322/jjsass.55.439

[40] Winslow, J., Otsuka, H., Govindarajan, B., and Chopra, I., “Basic
Understanding of Airfoil Characteristics at Low Reynolds Numbers
(104–105),” Journal of Aircraft, Vol. 55, No. 3, 2018, pp. 1050–1061.
https://doi.org/10.2514/1.C034415

[41] Arena, A. V., and Mueller, T. J., “Laminar Separation, Transition, and
Turbulent Reattachment Near the Leading Edge of Airfoils,” AIAA

Journal, Vol. 18, No. 7, 1980, pp. 747–753.
https://doi.org/10.2514/3.50815

[42] Hansen, K., Kelso, R., Choudhry, A., and Arjomandi, M., “Laminar
Separation Bubble Effect on the Lift Curve Slope of an Airfoil,” 19th
Australasian Fluid Mechanics Conference. 2014.

[43] Lissaman, P. B. S., “Low-Reynolds-Number Airfoils,” Annual Review
of Fluid Mechanics, Vol. 15, 1983, pp. 223–239.
https://doi.org/10.1146/annurev.fl.15.010183.001255

[44] Gaster,M., “The Structure and Behaviour of Separation Bubbles,”ARC
R&M 3595, 1967.

[45] Horton,H. P., “ASemi-Empirical Theory for theGrowth andBursting of
Laminar Separation Bubbles,” ARC CP 1073, 1969.

[46] Chong, T. P., and Joseph, P. F., “An Experimental Study of Airfoil
Instability TonalNoisewith TrailingEdge Serrations,” Journal of Sound
and Vibration, Vol. 332, No. 24, 2013, pp. 6335–6358.
https://doi.org/10.1016/j.jsv.2013.06.033

[47] Lilly, J. M., and Olhede, S. C., “Generalized Morse Wavelets as a
Superfamily of Analytic Wavelets,” IEEE Transactions on Signal

Processing, Vol. 60, No. 11, 2012, pp. 6036–6041.
https://doi.org/10.1109/TSP.2012.2210890

[48] Lyu, B., Ayton, L. J., and Chaitanya, P., “On the Acoustic Optimality of
Leading-Edge Serration Profiles,” Journal of Sound and Vibration,
Vol. 462, 2019, Paper 114923.
https://doi.org/10.1016/j.jsv.2019.114923

P. Lavoie
Associate Editor

12 KIM ETAL.

https://doi.org/10.1017/S0022112087001320
https://doi.org/10.1017/S0022112087001320
https://doi.org/10.1017/S0022112087001320
https://doi.org/10.1016/0894-1777(88)90043-X
https://doi.org/10.1016/0894-1777(88)90043-X
https://doi.org/10.1016/0894-1777(88)90043-X
https://doi.org/10.1007/s003480070002
https://doi.org/10.1007/s003480070002
https://doi.org/10.1007/s003480070002
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.1016/j.nucengdes.2019.01.021
https://doi.org/10.2514/6.1984-2266
https://doi.org/10.2514/6.1984-2266
https://doi.org/10.2514/6.1984-2266
https://doi.org/10.2514/6.1984-2266
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1016/j.apacoust.2008.06.011
https://doi.org/10.1103/PhysRevFluids.4.123902
https://doi.org/10.1103/PhysRevFluids.4.123902
https://doi.org/10.1103/PhysRevFluids.4.123902
https://doi.org/10.1103/PhysRevFluids.4.123902
https://doi.org/10.1103/PhysRevFluids.4.123902
https://doi.org/10.1017/jfm.2015.22
https://doi.org/10.1017/jfm.2015.22
https://doi.org/10.1017/jfm.2015.22
https://doi.org/10.1017/jfm.2015.22
https://doi.org/10.1017/jfm.2015.22
https://doi.org/10.1007/s003480050128
https://doi.org/10.1007/s003480050128
https://doi.org/10.1007/s003480050128
https://doi.org/10.2322/jjsass.55.439
https://doi.org/10.2322/jjsass.55.439
https://doi.org/10.2322/jjsass.55.439
https://doi.org/10.2322/jjsass.55.439
https://doi.org/10.2322/jjsass.55.439
https://doi.org/10.2514/1.C034415
https://doi.org/10.2514/1.C034415
https://doi.org/10.2514/1.C034415
https://doi.org/10.2514/1.C034415
https://doi.org/10.2514/3.50815
https://doi.org/10.2514/3.50815
https://doi.org/10.2514/3.50815
https://doi.org/10.2514/3.50815
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1146/annurev.fl.15.010183.001255
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1016/j.jsv.2013.06.033
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1016/j.jsv.2019.114923
https://doi.org/10.1016/j.jsv.2019.114923
https://doi.org/10.1016/j.jsv.2019.114923
https://doi.org/10.1016/j.jsv.2019.114923
https://doi.org/10.1016/j.jsv.2019.114923
https://doi.org/10.1016/j.jsv.2019.114923


Queries

1. AU: Please check that the copyright (©) type is correct. Please note that the code will be added upon publication.

2. AU: References have been renumbered for chronologic order of citations in the text. Please check.

3. AU: Please define FS.

4. AU: “Wecan, therefore, conclude that a combination of λ∕c � 30% andh∕c � 6% (λ30h6) are good compromise parameters”
is not clear. Please review and edit as necessary.

5. AU: Conclusions section has been edited to be in the third person, per journal guidelines. Please check that your meaning was
retained.

6. AU: AoA has been expanded as angles of attack. Please check.

7. AU: EPSRC has been expanded as Engineering and Physical Sciences Research Council. Please check.

8. AU: Please provide the issue number and/ormonth of publication for Refs. [2, 7, 14, 17, 25, 26, 29, 33, 37, 43, 48] if applicable.

9. AU: For Refs. [11, 23], please provide the page range.

10. AU: For Ref. [16], please provide the full name and location of the publisher (NOT the conference host).

11. AU: If Refs. [19, 42] are published proceedings, please provide the names and locations of the publishers (NOT of the
conference hosts) and the page ranges. If they are conference papers, please provide the paper numbers and the organizers’
names.

Funding Information

The following research funding sources have been associated with your manuscript:

• EPSRC; Award no. EP/N018486/1

Funding sources listed here can be 1) research grants from outside agencies or organizations or 2) if an author is employed by aU.S.
government agency that directly funded this research, this employer alsomay be listed here as a funding agency. Please confirm that
this information is complete and correct for all authors. Edit the Funding Data/Acknowledgments section of your paper if you have
changes to funding agency names or grant numbers. Use the funder’s full and official name.

KIM ETAL. 13


