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Abstract—We present a model that fuses lesion segmentation
with Attention Mechanism to predict COVID-19 from chest CT
scans. The model segments lesions, extracts Regions of Interest
from scans and applies Attention to them to determine the most
relevant ones for image classification. Additionally, we augment the
model with Long-Short Term Memory Network layers that learn
features from a sequence of Regions of Interest before computing
attention. The model is trained in one shot for both problems,
using two different sets of data. We achieve 0.4683 mean average
precision for lesion segmentation, 95.74% COVID-19 sensitivity
and 98.15% class-adjusted F1 score for image classification on
a large CNCB-NCOV dataset. Source code is available on https:
//github.com/AlexTS1980/COVID-LSTM-Attention.

I. INTRODUCTION

Coronavirus (COVID-19) is an ongoing global pandemic that

has taken so far over 5.3M lives worldwide as of December

2021 with the crisis worsening in some countries, measured

both by the number of deceased and the number of new cases

(https://www.worldometers.info/coronavirus). The pandemic

caused a complete or partial lockdown in most countries

across the planet and led to a previously unseen pressure on

healthcare, with the radiology departments workload exceeding

their capacity and manpower.

Analysis of chest CT scans using Deep Learning (DL)

can provide assistance to the radiology personnel in many

ways. One of them is the reduction of time it takes to process

a scan slice from roughly 20 minutes to a few seconds and

less [1]. DL algorithms can both rule out clear true positives,

and draw the personnel’s attention to suspicious images, e.g.

by detecting and segmenting lesions. This may result in two

types of errors that the algorithm can possibly make: failure to

identify suspicious areas in scans (false negative) or a false

alarm (false positive) due to the misclassification of images

with clean lungs as COVID-19. One of the specific challenges

that the personnel, and, therefore, DL algorithms, face is the

misclassification of COVID-19 into other types of pneumonia,

due to a large number of overlaps between the ways these

diseases manifest in chest CT scans.

Existing Deep Learning methodology analyzing chest

CT scans has two main limitations: either it relies on large

amounts of data (and data manipulation tricks) to train the

model or the model was both trained and evaluated on small

amounts of data, hence the solution’s ability to extend to larger

datasets is questionable. Another problem that, to the best of

our knowledge, all DL solutions suffer from, is transferability

of results to other datasets without additional finetuning/transfer

learning, something that models like Faster R-CNN or Mask

R-CNN do not have a problem with due to the training on

general-purpose datasets like MS COCO 2017 and Pascal VOC

2012.

One of the approaches in the analysis of images is the

extraction of Regions of Interest (RoIs) containing class-

and object-specific information expressed in mask features.

This can be done through either semantic [2] or instance [3]

segmentation of objects. In COVID-19 literature, there is a

large number of models that combine semantic segmentation

of lesions and CT classification, e.g. [1], [4].

The novelty and contribution of our work can be summarized

in the following way:

1) Advanced architecture with an Attention Layer that

learns class-relevant RoIs. Additionally, this architecture

is augmented with LSTM layer that uses a batch of RoIs

ranked by the Euclidean distance from the origin,

2) RoIs are expressed by their mask feature maps instead

of box coordinates. Mask feature maps have a richer

expression, and they consist of a large number of features,

and contain more accurate information about lesions than

box coordinates and confidence scores,

3) We run a large number of experiments and ablation studies

for Attention-only and LSTM with attention architectures



and compare them to a large suite of benchmark models.

Our best model achieves 0.4683 mean average precision

on lesion segmentation problem, 95.74% COVID-19

sensitivity and 98.15% F1 score in image classification,

which are among the best results on a dataset of this size

The rest of the paper is structured in the following way: Section

II discusses the related literature, Section III introduces the

data and details of the attention-based methodology, Section

IV discusses experimental setup, results and comparison to a

suite of baseline models, and also ablation studies. Limitation

of the COVID-19 methodology and our approach are discussed

in Section V. Section VI concludes.

II. RELATED WORK

Mask R-CNN [3] is the state-of-the-art instance segmentation

model based on the object detector Faster R-CNN [5]. It

predicts the objects’ bounding boxes, classes and masks

independently, thus improving accuracy compared to

semantic segmentation model like Fully Convolutional Net

(FCN, [2]). The key steps of Mask R-CNN are backbone

model that extracts image-level features, Region Proposal

Net (RPN) that predicts bounding boxes and objects and

Region of Interest (RoI) layer that refines bounding boxes,

predicts classes and object masks, see [3] for the details.

Backbone model consists of two stages: backbone feature

extractor, e.g. ResNet50, [6] and Feature Pyramid Net, FPN, [7].

Long short-term memory network (LSTM, [8]) is one

of the most popular recurrent neural networks (RNNs) used

to analyze and extract features from sequential data. In terms

of application to COVID-19 diagnosis, in [9] a combined

convolutional neural net and LSTM was presented, in which

LSTM takes the last features output of ConvNet (dimensions

512 × 7 × 7) as an input, and LSTM’s final fully connected

layer predicts the class of the image (COVID-19, Common

Pneumonia and Control).

Attention mechanism is one of the most active research

topics in deep learning at present. It was first introduced in

[10] in the form of global (connection to all encoder states)

and local (connection to a window of outpus). Its functionality

is based on the encoder-decoder architecture for a wide range

of sequence-based problems, and the mechanism is used to

weigh the effect and the relationship of the encoder’s output

features. Typically, weighing is done by computing softmax

distribution over the outputs of the encoder to determine the

most and least relevant features or outputs.

There is a number of well-received publications that

use a form of attention for COVID-19 prediction and lesion

segmentation. In [11] a model with residual connections

and attention-aware units was used to predict COVID-19 vs

Negative. In [12] attention is computed between convolution

maps from two different branches of the model: 2- and 3-class

problem classification branches.

The most relevant to our study are [13] that trains Mask

R-CNN for lesions segmentation and a classifier for image

classification and [14] that improves this architecture by fusing

segmentation and classification functionality in one model.

RoI layer has therefore two branches: segmentation branch

(box+class and mask), and classification branch. Its architecture

is identical to the segmentation branch, and it also shares

weights with it. During classification training and evaluation, it

detects lesions in input images that are used to classifty the

whole image.

A. LSTM for object detection and image classification

Recently, a number of studies fused LSTM and ConvNets

for image segmentation and object detection problems. In [15],

an RNN was applied to a ConvNet’s feature maps to classify

whole images. In [16] box coordinate and class of the object

prediction are done through fusion of Faster R-CNN and LSTM.

The order of the object’s parts input into LSTM is random. As

the authors point out, other ordering rules had little effect on the

model’s accuracy. In [17] to detect masks of doctored areas in

images, input image is split into a number of non-overlapping

boxes. Input in LSTM uses Hilbert curve, which sets up the

order of square areas, so the order of inputs is determined by

the location.

III. METHODOLOGY

For both problems, like in [13], [14] we use CNCB-NCOV

dataset with 3 classes: COVID-19, Common Pneumonia (CP)

and Normal, and COVIDx-CT splits from [18], except that our

training data has only 3000 observations (1000/class) instead

of 61037 like in [18]. Test split with 21191 images was used in

full. For the segmentation problem, 650 images from CNCB-

NCOV dataset were used for training and validation, and 100

for testing. At lesion level, there are 3 classes: clean lungs,

Ground Glass Opacity and Consolidation, so the segmentation

branch learns to predict their masks.

A. Overall model

The core idea of the study is to investigate the sequence of

Regions of Interest ranked by the Euclidean distance from

the origin, i.e. their location rather than confidence scores

as in [13]; as mentioned before, similar approaches were

implemented in [15] - [17]. Our approach was also motivated

by COVID-19 studies that established a range of similarities

between COVID-19 and Common Pneumonia (CP) and subtle

difference between them, e.g. [19].



Fig. 1: One Shot Model with the Attention layer, Figure 2. Normal arrows: data, Broken arrows: batches or samples, dotted

arrows: labels. Purple layers: segmentation, green layers: classification, beige layers: shared between these two. Broken layer

boundaries: loss computation. Two classification layers are used in the architecture with two LSTM layers in the Attention layer.

Other architectures have a single classifier. Best viewed in color.

Fig. 2: Attention layer with two parallel LSTM+Attention branches (one for class-relevant, one for class-irrelevant RoIs. In the

model with a single LSTM, class-irrelevant LSTM+Attention layer is deleted, and it outputs only one feature vector. Model without

LSTM only uses Attention for RoIs (vectorization layer output) and outputs a single feature vector. Best viewed in color.

In this study we introduce the Attention mechanism

that learns the importance of RoIs for image classification.

Often, for sequential problems, a combination of LSTM and

Attention mechanism is used, in which the output of LSTM at

each step is weighed by softmax probability. Therefore, in this

paper we investigate three architectures: base Attention model,

single LSTM layer+Attention and two LSTM layers+Attention.

The overall architecture of the model is shown in Figure 1.

The architecture of all models consists of the following

layers:

1) Backbone feature extractor + Feature Pyramid Net (FPN),

2) Region Proposal Network layer (RPN, [3]),

3) Region of Interest layer (RoI, [3], [14]) with two branches,

segmentation and classification branches,

4) Attention Layer that varies depending on the chosen

Attention architecture,

5) Image classification module that also depends on the

Attention architecture.

The first three layers are identical across all Attention models.

RoI layer architecture is same as the one used in [14]: two

parallel branches, one for segmentation problem, and one for

classification. Functionality of the segmentation branch is

discussed in details in [14].

In this study classification branch has two important

properties:

1) For the image classification, RoI layer outputs a batch of

mask features with dimensionality β × C ×H ×W : β
is the batch size, C is the number of channels (feature

maps), H,W are height and width of each feature map,

see [14]. For simplicity, we refer to RoI mask features

as RoIs.

2) The solution here ranks RoIs using Euclidean distance

from the origin to the RoI’s bounding box instead of

confidence scores. Note that this approach uses absolute

distance from the origin to the object only to assign the

rank to the RoI mask features of the object. Distance

value itself is not used as an input or in any other way

in the model.

We use the hack introduced in [14] for the classification

branch: instead of training its weights, they are copied from



Fig. 3: LSTM with Attention. Normal black arrows: LSTM

inputs and recurrent connections, broken arrows: matrix-vector

product (black: v, Equation 11, blue: b, Equation 12, red:

d, Equation 15, yellow: d∗, Equation 16), normal green

arrows:softmax, Equations 13 and 14, dotted green arrows:

elementwise summation, p, Equation 17. Normal circles:

vectors, broken circles: scalars. L:fully connected layers. Best

viewed in color.

the segmentation branch, hence classification branch has the

same functionality, albeit it is used for image classification.

B. RoI feature refinement and vectorization

In the context of COVID-19 prediction, this layer was first

introduced in [14]. In this stage we improve the expression and

strength of useful features in RoIs. The main difference from

the classification branch in RoI layer, is that the weights in this

stage are trainable using image-level loss. RoIs are downsized,

upsized, downsampled and upsampled a total of N times. The

final output has the same dimensionality as the input, but with

features more relevant to the image classification rather than

segmentation problem. Next, we reduce the dimensionality of

each RoI from a feature map to a vector: first, from C×H×W
to C×H

2 ×W
2 , and then to C×1×1, i.e. the batch dimensionality

becomes β × C × 1× 1.

C. RoI Attention Model

In Equation 1 each xk is the RoI row vector and X is matrix

with dimensions β × C, and attention is computed for each

RoI.

X = [x1,x2 . . .xβ ] → x∗ (1)

z = Linear(x∗) (2)

a = Xz (3)

a∗k =
eak

∑β
k=1 e

ak

(4)

a∗ = [a∗1, a
∗
2, . . . a

∗
β ] (5)

c = XTa∗ (6)

c∗ = Linear(c) (7)

o = c∗ ⊕ z (8)

In the first step, X is reshaped to a vector x∗ with

dimensionality β × C, i.e., we transform a batch into a single

vector. We need to do this reshaping in order to obtain a single

Attention vector later on. A fully connected trainable layer

takes it as an input and outputs a vector of features z with C
dimensions, Equation 2.

Again, we have to keep this dimensionality because of

Attention computation in Equation 3: we take a matrix-

vector product of X and z to obtain a vector of weights a
(Equation 3) that is next scaled using softmax distribution a∗

(Equation 4). In Equation 3 matrix-vector product is taken for

each RoI, so a has dimensionality β, and, therefore, so does a∗.

Essentially, each value a∗k in Equations 4 and 5 is a

probability (or scaled weight) measuring the effect of each xk

for image classification. Now we are ready to weigh each RoI

using a∗. In Equation 6 each RoI vector xk is multiplied by

the corresponding ‘probability’ a∗k to obtain feature vector c.

In order to do this, we transpose X, so that a∗k is multiplied

by each channel (feature) in the corresponding kth RoI; hence,

vector c in Equation 6 has dimensionality C.

Although in the context of RoI weighing, vector of

features c can be used as an output of the Attention layer,

we followed the approach in [10]: we filtered c through

another fully connected layer to get c∗, Equation 7, and,

finally, summed z and c∗ elementwise, Equation 8: ⊕ is an

elementwise operator to obtain vector o, the final output of the

Attention layer that expresses useful features extracted from

RoIs.

D. LSTM with Attention Model

We attempt two variants of LSTM+Attention mechanism:

single LSTM branch with attention (LSTM-1) that outputs a

single feature vector and uses a single image classifier, like in

the Attention above. The second approach, LSTM-2, uses two

parallel LSTM+Attention branches: one for class-relevant RoIs

and one for class-irrelevant RoIs, so Attention layer outputs



two feature vectors. LSTM with Attention is shown in Figure

3.

The input in the Attention layer is the same, X with

the same dimensionality, β × C, which is the input in the

LSTM model, Equation 9. This is the first difference from the

base model, as the batch X is not reshaped. Therefore, the

dimensionality of the LSTM input sequence is β × C, and, as

explained earlier, RoIs are ordered by Euclidean distance from

the origin.

The second important difference from the Attention model is

the dimensionality of the hidden features in LSTM, C∗, which

can be different to C. LSTM outputs two tensors: H, the full

history of the hidden features with dimensions β × C∗(C∗ is

a hyperparameter), and the last hidden output, hβ with C∗

dimensions, Equation 9. Each row in H is the feature outputs

of the corresponding hidden layer, hk, Equation 10.

To get a better expression, hβ is filtered through a fully

connected layer to get another feature vector v, Equation

11. Then, we take a matrix-vector product of H and v to

obtain a vector of raw features b, Equation 12. This is yet

another important difference from the Attention model: raw

features are computed for ordered LSTM hidden features,

rather than RoIs, from which they were extracted. Raw feature

vector is transformed into softmax probability, b∗k, Equation

13, and b∗ is the vector of the softmax distribution, Equation 14.

We take matrix-vector product of LSTM history, H and b∗

to get feature vector d. This is another important difference

from the Attention model, becasue softmax distribution scales

LSTM hidden features, hk, rather than RoIs (see Equation

6). After another fully connected filter, Equation 16, feature

vector d∗ is summed elementwise with feature vector v from

Equation 11 to output feature vector p, Equation 17.

Attention and LSTM-1 output a single vector of features,

respectively o or p, into the image classifier. Instead, LSTM-2

outputs two vectors from two different LSTM+Attention layers:

p1,p2 - class-relevant (positive), and class-irrelevant(negative)

features. The architecture in these two layers is identical to

LSTM-1, and the computation in both layers is done using

Equation 9-17. These outputs are used as an input in the

final stage of the model, image classifier, which has the same

architecture as in [14].

H,hβ = LSTM(X) (9)

H = [h1,h2 . . .hβ ] (10)

v = Linear(hβ) (11)

b = Hv (12)

b∗k =
ebk

∑β
k=1 e

bk
(13)

b∗ = [b′1, b
′
2 . . . b

′
β ] (14)

d = HTb∗ (15)

d∗ = Linear(d) (16)

p = d∗ ⊕ v (17)

IV. EXPERIMENTAL SETUP

We compare the new model to One Shot Model with Affinity

from [14] for both problems. For the classification problem,

we also compare it to COVID-CT-Mask-Net, [13], and a suite

of the state-of-the-art benchmark models. For the segmentation

problem, we compare it to Mask R-CNN. In all experiments

we used Adam optimizer with a learning rate of 1e − 5 and

weight decay of 1e− 3.

All input images are scaled to 512× 512, the dimensionality of

all RoIs (mask features) is 256× 28× 28, batch size β is set

to 16, N is set to 1 (larger values did not improve the results,

but slowed down the training). Matrix X has dimensionality

16 × 256. C∗ is set to 256, H has dimensionality 16 × 256.

Other hyperparameters of Mask R-CNN and One Shot Model

are the same as in [14].

A. Segmentation Results

We use MS COCO 2017 main criterion, mean Average

Precision (mAP) AP@[0.5:0.95:0.05]IoU, and two Intersect

over Union (IoU) thresholds: AP@50%IoU and AP@75%IoU,

see [7] for the details and [13] for the previous implementations

in the context of COVID-19.

Segmentation results on the test split are reported in

Table I. Attention model with ResNet50 feature extractor

achieves the highest mAP of 0.4469, thus outperforming the

highest scoring Mask R-CNN model (also with ResNet50

feature extractor and 5 FPN layers) by 0.0594, next-best

Attention model with ResNet34 backbone by 0.0077 and One

Shot Model with Affinity from [14] by 0.0226. It also achieves

top precision with AP@75%IoU criterion, 0.4423. Attention

model with ResNet34 feature extractor achieves top precision

for AP@50%IoU criterion, 0.6405.



TABLE I: Average Precision on the segmentation test split (100 images). Best results in bold.

Model Model size AP@0.5 IoU AP@0.75 IoU AP@[0.5:0.95]IoU

Attention

ResNet18 23M 0.5670 0.4201 0.4018
ResNet34 33M 0.6405 0.4350 0.4392
ResNet50 35M 0.6350 0.4423 0.4469
ResNeXt50 35M 0.5364 0.4087 0.3959
ResNeXt101 99M 0.5879 0.4226 0.4118
One Shot Model [14] 36M 0.5903 0.3891 0.4242
Mask R-CNN 44M 0.5026 0.4194 0.3875
Mask R-CNN (heads only) 44M 0.4442 0.3791 0.3354

B. Classification Results

Accuracy of the model is computed using sensitivity/recall

per class and class-adjusted F1 score for the overall model.

In our implementation of F1 score, the weights (shares) of

classes in the test set are taken into consideration. In many

publications, COVID-19 sensitivity is considered to be a

particularly important measure.

Results in Table II demonstrate that Attention model

with ResNet50 backbone confidently outperforms all other

models across all accuracy metrics.

For COVID-19 sensitivity, it improves on the next best

model, Attention with ResNet34 backbone by 5.69%, One

Shot Model with Affinity by 1.96%, COVID-CT-Mask-Net

by 4.51%, and the best benchmark model (DenseNet121) by

2.57%, and the lowest-scoring one, ResNet34, by 6.61%.

For CP, the same values are 0.90% (ResNet34), 2.98%

(One Shot Model+Affinity), 6.92% (COVID-CT-Mask-Net),

0.90% (ResNet50) and 10.09%(ResNeXt50).

For the Normal class these values are 0.01%(ResNet34), 3.57%

(One Shot Model+Affinity), 8.11% (COVID-CT-Mask-Net),

0.01%(ResNet34), and 14.90%(ResNeXt50).

Finally, for F1 score, these values are 1.31% (ResNet50), 3.03%

(One Shot Model+Affinity), 6.68% (COVID-CT-Mask-Net),

1.31% (ResNet50) and 10.87% (ReNeXt50).

Overall, Attention model with ResNet50+FPN backbone

achieves best results across all problems, except segmentation

AP@50%IoU, in which ResNet34 improves on it by 0.005.

C. Ablation Studies

In Section III-D we presented two extensions to the Attention

model’s architecture for sequential RoI input, LSTM-1 and

LSTM-2. Also, as explained in Sections II-A and III-D, the

order of inputs in LSTM is determined by the RoI’s rank in

the batch sorted by the RoIs’ Euclidean distance from the origin.

Hyperparameters, including RoI layer and Attention

functionality, for both LSTM models were the same as for the

Attention model. Model sizes in Tables III and IV show that

LSTM layers add only a small overhead to the base model.

1) Segmentation results: We use the same MS COCO

metrics to compare models as in Section IV-A. Results of

ablation experiments are reported in Table III and Figures 4a-4c.

Barcharts in Figure 4 show the LSTM models’ performance

compared to the base model for the same backbone architecture.

Two LSTM-2 architectures clearly stand out: LSTM-2

with ResNet18 backbone and LSTM-2 with ResNeXt101

backbone, as they confidently outperform both LSTM-1 and

base models. by a large margin, including mAP, main MS

COCO criterion across architectures. LSTM-2 improves base

model by 0.056 and LSTM-1 by 0.069.

Overall, for the mAP metric, LSTM-2 performs best

across all feature extractor architectures, except ResNet50,

where its precision is 0.001 lower than base model. LSTM-1

with ResNet34 and ResNext50 backbones also outperform

Attention model, albeit with a lower margin. Both LSTM-2

top models outperform LSTM-1 top models for the same

architecture across all metrics (ResNet18 and ResNeXt101

bars in Figures 4a-4c).

Results in Table III confirm these findings. For mAP

and AP@75%IoU, LSTM-2 with ResNext101 backbone

achieves the highest accuracy: 0.4683 for mAP and 0.4891 for

AP@75%IoU. LSTM-1 with ResNet34 backbone achieves the

highest accuracy for AP@50%IoU metric.

For the AP@50%IoU criterion, top LSTM-1 result (ResNet34)

outperforms top base model (ResNet34) result by 0.002.

For AP@75%IoU metric top Attention model (ResNet50)

is outperformed a number of models. Top model, LSTM-2

(ResNeXt101) outperforms it by 0.0467, and top LSTM-1

(ResNet34) by 0.0401.

Finally, for mAP metric top base model (ResNet50) is



TABLE II: Accuracy results on the COVIDx-CT test split (21191 images). Per-class sensitivity, overall and F1 scores are reported.

Best results in bold.

Model Model size COVID-19 CP Negative F1score

Attention

ResNet18 23M 90.34% 94.96% 98.58% 95.63%
ResNet34 33M 94.75% 92.66% 89.68% 91.80%
ResNet50 35M 95.32% 98.55% 99.21% 98.19%
ResNext50 35M 88.96% 93.55% 95.68% 93.66%
ResNext101 99M 91.71% 96.83% 97.27% 96.00%
One Shot Model [14] 36M 93.35% 95.56% 95.63% 95.16%
COVID-CT-Mask-Net [13] 32M 90.80% 91.62% 91.10% 91.50%
ResNet18 11M 92.59% 96.25% 92.03% 93.61%
ResNet34 21M 88.70% 96.66% 99.20% 96.17%
ResNet50 25M 91.04% 97.64% 98.97% 96.88%
ResNeXt50 25M 91.94% 88.45% 84.30% 87.31%
ResNeXt101 88M 91.58% 92.13% 94.02% 92.86%
DenseNet121 8M 92.64% 96.16% 98.98% 96.69%
DenseNet169 14M 89.37% 96.78% 98.12% 95.86%

also outperformed by both LSTM models. Top LSTM-2 model

(ReNeXt101) improves on base model by 0.0213, and top

LSTM-1 model (ResNet34) by 0.0030.

At the same time, for AP@50%IoU none of the LSTM-2

models achieves top-3 results. For AP@75%IoU, LSTM-2

achieves the best and third-best results (ResNeXt101 and

ResNet50), as LSTM-1 (ResNet34) achieves the second-best

one. For mAP, LSTM-2 (ResNeXt101) achieves the top result,

LSTM-1 (ResNet34) second-best and base model (ResNet50)

third-best.

2) Classification results: Classification results for the same

setup are reported in Table IV and Figures 5a-5d. As reported

in Figures 5a-5d, three LSTM-2 models: ResNet18, ReNeXt50

and ResNeXt101 backbones outperform both base model and

LSTM-1 across all 4 metrics for their respective architecture.

On top of that, LSTM-2 with ResNet34 outperforms base model

only. LSTM-1 with ResNet34 outperform base model and

LSTM-2 on 3 out of 4 metrics (except Common Pneumonia),

in which it lags behind LSTM-2 only by 0.02%.

In Table IV, LSTM-2 with 3 different architectures achieve 3

out of 4 top results. For COVID-19, LSTM-2 with ResNeXt101

backbone gets 95.74% sensitivity, for CP LSTM-2 with

ResNet34 gets 98.91% sensitivity, and for Normal, LSTM-2

with ReNeXt50 achieves 99.77% sensitivity.

Top F1 score, 98.56% is achieved by LSTM-1 with

ResNet34 backbone. For COVID-19, top LSTM-1 result,

ResNet34 improves on baseline by 0.14%, and top LSTM-2

result improves it by 0.42%. For CP, top LSTM-1 result

(ResNet34) outperforms base model (98.55%) by 0.34% and

top LSTM-2 result outperforms it by 0.35%.

For Normal class, top base result is 99.21%, LSTM-1

improves it by 0.49% and LSTM-2 by 0.56%. For F1 score

top base result is 98.19%, improved by the top LSTM-1 result

by 0.37% and top LSTM-2 result by 0.17%.

As reported in Table IV, for COVID-19 sensitivity, LSTM-2

with ResNeXt101 and ResNeXt50 achieve best and second-best

results, and LSTM-1 third best. For CP, LSTM-2 achieves the

best result (ResNeXt101), LSTM-1 second-best (ResNet34),

and Attention model third-best (ResNet50). For Normal,

LSTM-2 achieves the best and third-best results (ResNeXt50

and ResNet34), and LSTM-1 second best (ResNet34). For F1

score, LSTM-2 achieves the second- and third-best results

(ResNet34 and ResNeXt50), and LSTM-1 the best one

(ResNet34).

Overall, across both problems and metrics, LSTM-2

with ResNeXt101 backbone achieves top results in 3 categories

(COVID-19 sensitivity, AP@75%IoU and mAP). LSTM-1 with

ResNet34 achieves top results in two categories (AP@50%IoU

and F1 score), LSTM-2 with ResNet34 in one category (CP),

and LSTM-2 with ResNeXt50 also in one catogory (Normal).

Therefore, LSTM-2 with different backbones achieves 5 top

results out of a total of 7.

Considering top 3 results for each category, LSTM-2

achieved 5 top results (AP@75%IoU, mAP, COVID-19, CP,

Normal), 2 second-best (COVID-19, F1 score) and 3 third-best

(AP@75%IoU, Normal, F1 score). LSTM-1 achieved two top

results (AP@50%IoU, F1 score), 4 second-best (AP@75%IoU,

mAP, CP, Normal) and one third-best (COVID-19). Attention

model achieved one second-best result (AP@50%IoU) and

three third-best (AP@50%IoU, mAP, CP).

Another important result from the ablation study is that

the architecture, depth or size (number of parameters) do

not determine the model’s accuracy. For example, LSTM-1

with ResNeXt50 (34M parameters) vs ResNeXt101 (98M



TABLE III: Results for ablation experiments on the segmentation test data. Bold: best result for this backbone architecture, blue

underline: best result for the metric, green:second-best, black: third-best.

Backbone Architecture Model Size AP@0.5 IoU AP@0.75 IoU AP@[0.5:0.95]IoU

ResNet18
Attention model 23M 0.5670 0.4201 0.4018

LSTM-1 22M 0.5398 0.4250 0.3911
LSTM-2 23M 0.6146 0.4390 0.4229

ResNet34
Attention model 33M 0.6405 0.4350 0.4392

LSTM-1 32M 0.6434 0.4825 0.4472
LSTM-2 33M 0.6288 0.4357 0.4457

ResNet50
Attention model 35M 0.6350 0.4423 0.4469

LSTM-1 35M 0.5961 0.4178 0.4137
LSTM-2 36M 0.6234 0.4561 0.4453

ResNeXt50
Attention model 35M 0.5364 0.4087 0.3959

LSTM-1 34M 0.5761 0.4112 0.3981
LSTM-2 36M 0.6269 0.4048 0.4153

ResNeXt101
Attention model 99M 0.5879 0.4226 0.4118

LSTM-1 98M 0.5591 0.4203 0.3983
LSTM-2 99M 0.6187 0.4891 0.4683

TABLE IV: Results for ablation experiments on the classification test data. Bold: best result for this backbone architecture, blue

underline: best result for the metric, green:second-best, black: third-best

Backbone Architecture Model size COVID-19 CP Normal F1 score

ResNet18
Attention model 23M 90.34% 94.96% 98.58% 95.63%

LSTM-1 22M 92.04% 88.98% 97.81% 93.59%
LSTM-2 23M 92.08% 98.05% 99.25% 97.37%

ResNet34
Attention model 33M 94.75% 92.66% 89.68% 91.80%

LSTM-1 32M 95.46% 98.89% 99.70% 98.56%
LSTM-2 33M 95.16% 98.91% 99.37% 98.36%

ResNet50
Attention model 35M 95.32% 98.55% 99.21% 98.19%

LSTM-1 35M 93.62% 95.88% 99.24% 96.93%
LSTM-2 36M 94.45% 96.91% 98.73% 97.22%

ResNeXt50
Attention model 35M 88.96% 93.55% 95.86% 93.66%

LSTM-1 34M 89.48% 93.07% 99.22% 95.07%
LSTM-2 36M 95.58% 97.86% 99.77% 98.25%

ResNeXt101
Attention model 99M 91.71% 96.83% 97.27% 96.00%

LSTM-1 98M 82.88% 91.31% 92.18% 90.04%
LSTM-2 99M 95.74% 98.13% 99.27% 98.15%

parameters) leads to a large drop across all classification

accuracy criteria, i.e. a smaller model outperforms a much

larger one. At the same time, for ResNeXt50 architecture.

LSTM-2 has about 1.5M parameters more that either base of

LSTM-1. Nevertheless, it confidently outperforms both of them

across all classification criteria.

V. LIMITATIONS OF THE METHODOLOGY

In Sections I and II, we mentioned the problem of

transferability (generalization), or domain adaptation of the OS

COVID-19 models to other datasets and their implementation

in the real hospital environment. To the best of our knowledge,

no known OS solution, trained on one dataset, was then

successfully evaluated on an entirely different one out-of-the-

box, or implemented in the real-life medical facility. We do

admit though that such proprietary solutions may exist though.

A detailed discussion of this situation (up until October

2020) is presented in [20]: a large number of methodological

flaws, lack of information about hyperparameters and

architectures, and unavailable datasets prevent the replication,

fair comparison, generalization and real-life implementation

of the models. Unlike benchmark datasets, like MS COCO or

Pascal VOC, on which general-purpose deep learning models

can be trained, evaluated and compared, COVID-19 datasets

for both classification and segmentation problems are yet to be

developed.

Although we do not adapt or generalize the presented

models, they have a strong potential for real-life applications

given their advanced architecture, inherited from Mask R-CNN

and a small training data.

VI. CONCLUSIONS

In this paper we presented a novel methodology that

combines a lesion detection and CT scan slices classification



(a) mAP

(b) AP@50%IoU

(c) AP@75%IoU

Fig. 4: Comparison of lesion segmentation precision of LSTM-1

and LSTM-2 to Attention model.

model with Attention mechanism and Long Short-Term

Memory Net to explore relationship among Regions of Interest

(expressed through mask features) to segment lesions and

classify chest CT scans.

Our base model with ResNet50+FPN backbone and

Attention mechanism on Regions of Interest achieves 0.4469

mean average precision, 95.32% COVID-19 sensitivity

and 98.19% F1 score, outperforming both Mask R-CNN

(a) COVID-19

(b) Common Pneumonia

(c) Normal

(d) F1 score

Fig. 5: Comparison of classification accuracy of LSTM-1 and

LSTM-2 models to Attention model, in %.



(segmentation) and a suite of benchmark models (classification).

We ran a set of ablation studies, by adding either one

or two LSTM layers with Attention. The model with

ResNeXt101+FPN backbone and two LSTM branches,

achieved 0.4683 mean average precision, 95.74% COVID-19

sensitivity and 98.15% F1 score, the model with a single

LSTM layer and ResNet34 backbone achieved 0.4472 mAP,

95.46% COVID-19 sensitivity and 98.56% F1 score. Both of

them improve on results achieved by the Attention model.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Dr Esther Mondragon,
Professor Eduardo Alonso and Dr Giacomo Tarrone for their
valuable advice and recommendations that helped improve the
quality of the paper.

Aram Ter-Sarkisov is a Lecturer at City, University
of London. For several years he has been working on
the application of Deep Learning in Computer Vision,
and his most recent work is on the segmentation
of lesions and classification of chest CT scans for
COVID-19 prediction. He earned his MSc in Statistics
from the University of Auckland, New Zealand and
PhD in Computer Science from Massey University,
New Zealand. Email:alex.ter-sarkisov@city.ac.uk

REFERENCES

[1] Y.-H. Wu, S.-H. Gao, J. Mei, J. Xu, D.-P. Fan, C.-W. Zhao, and M.-
M. Cheng, “Jcs: An explainable covid-19 diagnosis system by joint
classification and segmentation,” arXiv preprint arXiv:2004.07054, 2020.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[4] J. Zhao, Y. Zhang, X. He, and P. Xie, “Covid-ct-dataset: a ct scan dataset
about covid-19,” arXiv preprint arXiv:2003.13865, 2020.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep cnn-lstm
network for the detection of novel coronavirus (covid-19) using x-ray
images,” Informatics in medicine unlocked, vol. 20, p. 100412, 2020.

[10] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[11] S. Yazdani, S. Minaee, R. Kafieh, N. Saeedizadeh, and M. Sonka,
“Covid ct-net: Predicting covid-19 from chest ct images using attentional
convolutional network,” arXiv preprint arXiv:2009.05096, 2020.

[12] J. Wang, Y. Bao, Y. Wen, H. Lu, H. Luo, Y. Xiang, X. Li, C. Liu,
and D. Qian, “Prior-attention residual learning for more discriminative
covid-19 screening in ct images,” IEEE Transactions on Medical Imaging,
vol. 39, no. 8, pp. 2572–2583, 2020.

[13] A. Ter-Sarkisov, “COVID-CT-Mask-Net: Prediction of COVID-19 from
CT Scans Using Regional Features,” medRxiv, 2020. [Online]. Available:
https://github.com/AlexTS1980/COVID-CT-Mask-Net

[14] ——, “One shot model for the prediction of covid-19 and lesions
segmentation in chest ct scans through the affinity among lesion mask
features,” medRxiv, 2021.

[15] M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 3367–3375.

[16] Q. Yao and X. Gong, “Exploiting lstm for joint object and semantic part
detection,” in Asian Conference on Computer Vision. Springer, 2018,
pp. 498–512.

[17] J. H. Bappy, C. Simons, L. Nataraj, B. Manjunath, and A. K. Roy-
Chowdhury, “Hybrid lstm and encoder–decoder architecture for detection
of image forgeries,” IEEE Transactions on Image Processing, vol. 28,
no. 7, pp. 3286–3300, 2019.

[18] H. Gunraj, L. Wang, and A. Wong, “Covidnet-ct: A tailored deep
convolutional neural network design for detection of covid-19 cases
from chest ct images,” arXiv preprint arXiv:2009.05383, 2020.

[19] X. Li, X. Fang, Y. Bian, and J. Lu, “Comparison of chest ct findings
between covid-19 pneumonia and other types of viral pneumonia: a
two-center retrospective study,” European radiology, pp. 1–9, 2020.

[20] M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung,
A. I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer et al., “Common
pitfalls and recommendations for using machine learning to detect and
prognosticate for covid-19 using chest radiographs and ct scans,” Nature
Machine Intelligence, vol. 3, no. 3, pp. 199–217, 2021.


