
Modelling parallel Oracle for performance predictionE.W. Dempster, N.T. Tomov, M.H. Williams (howard@cee.hw.ac.uk), H.Taylor (hamish@cee.hw.ac.uk), A. Burger (ab@cee.hw.ac.uk) and P.Trinder (trinder@cee.hw.ac.uk)Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton,Edinburgh, Scotland, EH14 4AS, UKJ. L�uThe School of Computing, Information Systems and Mathematics, South BankUniversity, Borough Road, London, SE1 0AA, UKP. BroughtonInternational Computers Limited, High Performance Technology, Wenlock Way, WestGorton, Manchester, England, M12 5DR, UKAbstract. The problem of predicting the performance of a parallel relational DBMS fora set of queries applied to a particular data set on a shared nothing parallel architecturewithout transferring the application to a parallel system is a challenging one. An analyticalapproach has been developed to assist with this task and has been applied to the ICLGoldRush machine, a parallel machine with a shared-nothing architecture. This paperdescribes how the Oracle Parallel Server and the Parallel Query Option are modelled by themethod and compares the predictions of the model against actual measurements obtained.Keywords: Analyticalmodelling,parallel Oracle, performanceprediction,parallel database1. IntroductionThe inherent parallelism in relational databases is well suited to parallel com-puter technology and commercial interest in the use of parallel computersfor running relational database systems has been growing [16]. A number ofparallel database systems running on di�erent parallel machines have becomeavailable from vendors such as Oracle [18], Informix [14], Ingres [1], Sybase [19]and IBM [12]. However, the cost of migrating to a parallel platform is highand the improvement in performance that can be achieved for individual ap-plications on particular con�gurations is not easy to estimate. For this reason,there is growing interest in performance prediction tools, both for assessingwhat parallel database platform con�guration is required and for tuning theperformance of an existing application running on a parallel system.c 1999 Kluwer Academic Publishers. Printed in the Netherlands.pv18a.tex; 25/11/1999; 15:44; p.1



1STEADY [26, 24] (System Throughput Estimator for Advanced DatabasesYstems) is an analytical parallel database performance estimation tool whichcan aid a user in selecting a data placement strategy [23], in determiningthe performance achievable from di�erent DBMS platform con�gurations, ininvestigating e�ects which changes to the system con�guration might have onperformance and assisting with tuning a particular DBMS con�guration tohandle a speci�c application. To do this it estimates performance in termsof system throughput, resource utilisation and response time. Currently, thetool models parallel Oracle [17, 11, 15], Informix XPS [14] and Ingres [20].This paper discusses how parallel Oracle is modelled. Section 2 provides areview of related work followed in section 3 by a description of the architectureof the STEADY tool. Section 4 contains an overview of Oracle, discusses itsvarious types of parallelism, and introduces Oracle's execution plan throughan example query. The modelling of Oracle is then discussed showing howan execution plan is translated into the task block formalism of the tool. Itslocking policies, cache management and database background processes aredescribed, followed by a brief comparison between the modelling of Oracleand Informix. Finally some results of measured and estimated performanceare compared and some of the problems encountered are discussed.2. Related WorkCommercially available performance measuring tools can be divided into threecategories: measurement tools, combined measurement/prediction tools andperformance prediction tools. Measurement tools are used to take measure-ments on existing systems. These tools monitor and pro�le the operation ofDBMSs and provide information on the way in which the systems are beingused in terms of resource utilisation. Examples of such tools are Digital'sECO Tools [7], the Patrol DB-Log master by BMC software [3] and the Ingres
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2DB Maximiser by DB LAB PTY Ltd [5]. Unfortunately they are of little valueto users who do not have access to a parallel database system.Tools which combine monitoring and prediction are useful to users whohave a parallel DBMS and would like to modify their existing set up. Anexample of such a tool set is BEZPlus [2], which comprises the Investiga-tor and Strategist tools. It monitors and predicts the performance of NCRTeradata and Oracle environments on MPP machines. The Investigator toolmonitors resource utilisation to highlight potential bottlenecks. The Strategistevaluates hardware and software alternatives in order to identify the e�ecton performance and workload of business growth. Another example is thecomputer monitoring tool suite Athene from Metron Technology [10] [9]. Itcomprises �ve core applications, one of which is the Planner, which uses queue-ing theory techniques to predict performance. Performance models generatedfrom recorded system performance data, can be held in a database for futurereference.The tools for performance prediction alone vary in complexity from asimple set of cost formulae to a detailed simulation of the DBMS. An exampleof a simulation-based tool is SMART(Simulation and Model of Applicationbased Relational Technology) [13] developed by Ifatec. It has recently beensuperceded by its re-engineered successor, SWAP. SMART/SWAP is an ad-vanced tool which is able to model complex Oracle 7 & 8 applications runningon GoldRush and Ncube platforms. An example of a tool based on an ana-lytical approach is the DB2 Estimator [8] from IBM, designed speci�cally forthe relational database system DB2 for OS/390 V5 & V6. It runs on a PCand calculates estimated costs using formulae obtained from an analysis ofreal DB2 code and performance measurements. It aims to have errors, (i.e.di�erences between actual and predicted values) of less than 20%. Anotherexample is the Oracle System Sizer V3.0 [6], produced by HP, Dell and Oracle.The tool sizes hardware con�gurations for Oracle database applications. Atpresent there are versions for HP NetServers and Dell PowerEdge servers
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3under Windows NT. Oracle are planning versions for additional hardwaretypes in the future.A user who has existing database applications running on a simple se-quential machine will in general, be unsure of the performance and costimplications of migrating such applications to a parallel system. If they don'thave access to a similar existing parallel system, then measuring and combinedmeasuring and prediction tools are of little relevance. In this case performanceprediction tools o�er the only solution. Of these, simulation tools, althoughpotentially more accurate, are time-consuming and costly. On the other handanalytical performance prediction tools provide a quicker and cheaper solutionalthough not necessarily as accurate. An ideal solution would be to use ana-lytical tools in the �rst stage to provide an idea of the most suitable machinecon�guration and data placement strategies, followed by simulation to providea more accurate prediction. The tool set described in this paper, STEADY,was designed as an analytical tool for use in this �rst stage.3. STEADYSTEADY is a tool set which can be used to predict the performance whichwould be obtained when a particular set of transactions is executed on aspeci�c parallel database laid out following some particular data placementstrategy.The tool set takes as input details of the relations (database schema),the data placement strategy to be used, the DBMS con�guration and theexecution plans of SQL queries, represented as annotated query trees. Thequery trees capture the order in which relational operators are executed andthe method for computing each operator. From these parameters it predictsaverage resource utilisation, maximum transaction throughput and averagetransaction response time given a transaction arrival rate. The maximumthroughput value is derived by analysing the workload and identifying the
pv18a.tex; 25/11/1999; 15:44; p.4
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Figure 1. STEADY architecturesystem bottlenecks. Given a transaction arrival rate, lower than the maximumthroughput, the average response time is derived using an analytical queuingmodel.Fig. 1 illustrates the architecture of STEADY. It has four layers connectedby a graphical user interface. Each layer comprises one or more modules, asfollows:
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51. The application layer consists of the Pro�ler and the DPToolmodules. ThePro�ler is used to generate statistical pro�les on the base relations. It alsogenerates information on intermediate relations, such as number of tuples,resulting from particular data operations performed in the queries. TheDPTool is a data placement tool which produces data placement schemesfor parallel databases. For a chosen strategy, DPTool takes informationabout the relations and the operations to be performed on them anddecides how the relations should be fragmented and divided among thedi�erent nodes and discs. DPTool also estimates the access frequency ofdi�erent pages in each relation. It supplies this information along with thegenerated data layout to the Cache Model Component.2. The DBMS kernel layer consists of the Cache Model Component, theQuery Paralleliser and the Modeller Kernel. The Cache Model Componentestimates the cache hit ratio for pages from the di�erent relations [25].The Query Paralleliser is used to generate parallelised query executionplans, incorporating a functionality which captures the di�erent parallelstrategies of modelled parallel DBMSs. It transforms the query tree intoa task block structure. Each task block represents one or more phasesin the execution of the relational operators within the query trees. Anexample of a phase is the building of a hash table in the �rst part ofa hash join operator. The Modeller Kernel takes as input the relationpro�les, data layout, estimated cache hit ratios and the task block pro�leof the query produced by the Query Paralleliser. It produces workloadpro�les in terms of the numbers of basic operations to be executed oneach node in the course of a transaction. This results in a set of workloadstatistics. Together with this, the Modeller Kernel �lls in the details ofthe task blocks by expanding each execution phase within the block intoa corresponding sequence of basic operations. The DBMS kernel layerrepresents the DBMS speci�c behaviour of the system.
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63. The platform layer consists of the Evaluator module. The task blockpro�les of the queries are mapped by the Evaluator into resource usagepro�les. The Evaluator also gives an upper limit to the system throughputvalue, based on estimating the usage of that resource which is a bottle-neck to performance in an average transaction. This layer represents theplatform speci�c behaviour of the system, although there are elements ofthe Query Paralleliser which are platform speci�c as well.4. The response time layer consists of the Queue Waiting Time Estimatorand the Response Time Estimator modules which use queueing theoryto compute the response time for a transaction, from its resource usagepro�le. Further details on the approach used for response time estimationare given in [21].4. Oracle Parallel Server and Parallel Query OptionIn Oracle, parallelism is exploited in two ways: through the Oracle ParallelServer (OPS) and through the Parallel Query Option (PQO) [17].OPS allows multiple Oracle instances to share a common database. Eachinstance is a separate user of Oracle. An instance can be run on one or morenodes of the parallel machine. Each instance has its own processes and log�les, but the data and control �les are common to all instances. Parallel Serveris designed to allow an instance to be shut down, intentionally or otherwise,without a�ecting the other running instances and also allows multiple usersto access the same database.The primary purpose of PQO is to improve the performance of the systemin terms of both throughput and response time. It involves using more thanone process(server) to carry out a task. It only comes into action when a querycontains a full table scan, otherwise the query is processed sequentially by asingle server.
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7In both OPS and PQO there is a shared database system at the disclevel. Its form depends on the architecture of the underlying machine. In asystem with multiple nodes and a shared disc this is straightforward, but ashared nothing system requires a coherent virtual �le system. Oracle employsa distributed lock manager (DLM) to maintain the status of distributed locksto coordinate access to resources required by di�erent database instances.Requests for locks or I/O may be satis�ed by a node remote from the oneissuing the request (host).Assuming that there is at least one full table scan in the query, the oper-ations which take advantage of PQO, are:� Full table scans.� Sorts for GROUP BY, ORDER BY and joins.� Sort merge, hash and nested loop joins.� Aggregation including GROUP BY, MIN, MAX, and AVG.� CREATE TABLE.Operations which are not parallelised include:� UPDATE, DELETE and INSERT.� UNION, INTERSECT and MINUS.� Any queries which do not contain a full table scan.The ow of a query through the PQO starts with the user process issuinga query or transaction. The dedicated server process parses and executes it.It assigns work to a number of query servers depending upon the degree ofparallelism. The query servers split the workload and return the result databack to the dedicated server process. The dedicated server assembles the dataand returns the results to the user process. The process of parsing the queryincludes optimisations, the details of which are not published by Oracle. Anode may have several query servers running at the same time. The maximumnumber of query servers available is set as an initialisation parameter.The main types of parallelismused by the PQO are inter-query, intra-queryand pipeline parallelism. Inter-query parallelism is the execution of di�erentqueries or transactions in parallel. Intra-query parallelism is parallelisation
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SELECT ename, job, sal, dname
FROM emp, dept
WHERE  emp.deptno =  dept.deptno
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(a)

(b)(c)Figure 2. (a) Example query (b) Server allocation (c) Execution planwithin a query and involves two forms: inter-operator and intra-operator paral-lelism. In inter-operator parallelism di�erent component operations of a query(sub-query) are carried out in parallel. In intra-operator parallelism a singleoperation such as a hashjoin is divided up and executed by multiple serversin parallel. Two successive operations exhibit pipeline parallelism when theirexecution is overlapped in such a way that the second is activated every timethe �rst produces and sends a single tuple. In order to show some of thesetypes of parallelism consider the example query in Fig. 2a.The query takes two tables, containing employee details and departmentdetails, joins them on the department number and returns the employee'sname, job, salary and department. Fig. 2b shows a possible server allocationfor the example query. The default number of servers for scanning the depttable is three and for the emp table it is four. Three servers (2,3,4) scan thedept table and broadcast all of the tuples to each of the four servers (5,6,7,8)which scan the emp table. Each tuple read from the emp table is then joinedwith the broadcast dept tuples if the department numbers are the same. Theresults are then sent to the query dedicated server(1).The execution plan for the query is shown in Fig. 2c. It shows the actionscarried out to execute the query. Some of the operations have options. Forexample, accessing the data in operations 2 and 3 requires a full table scan
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9on both the emp and dept tables. The last column speci�es the type of Oracleparallelism to be used. The type 'parallel combined with parent' indicatesthat the current operation (2) will be carried out by multiple servers whichwill also carry out the subsequent operation (1). The rest of the types are selfexplanatory.Oracle can join tables in three ways: nested loop, sort merge and hash join.Oracle carries out a nested loop join when one of the tables has an index on thejoining attribute. It is done by reading the non-indexed table and broadcastingthe qualifying tuples to each of the join servers. The join servers receive thetuples and then select tuples from the larger table using the index and joineach qualifying tuple against the non-indexed table tuples. Sort merge joinsare carried out by scanning and sorting the two tables at the same time, whichis an example of inter-operator parallelism, i.e. two separate tasks within thesame query being carried out at the same time. Sorted partitions are sentto the appropriate merging servers. To show how Oracle carries out a hashjoin, consider the join query example shown in Fig. 2b. The smaller table isread and all of its tuples are broadcast to each of the servers, which are toread the larger table, and they build a hash table with these tuples. Tuplesfrom the larger table are used to probe the hash table and are joined if theirdepartment numbers are the same.An optimisation feature of Oracle is that all full scans are always readfrom disc, except for a small number of pages which can be set by the user(default is �ve pages), so as not to empty the cache each time a full scanis conducted. When scanning large tables, Oracle employs a load balancingtechnique to share the load of the operation amongst all of the servers involved.The table is split into thirteen parts and these are grouped into three groupscontaining nine, three and one part, respectively. The �rst group is allocatedto the available servers and execution commences. As soon as a server �nishesprocessing its allotted parts, it is allocated the largest of the remaining partsuntil all thirteen have been processed.
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       send e hash_join

BLOCK:end
MODE:full_depend probe
HOME:PE1

..................

      activate scan_emp

BLOCK:start
MODE:independent
HOME:PE1
     ..................

      activate scan_dept

BLOCK:scan_dept
MODE:full_depend start
HOME:PE1,PE2,PE3       ..................

send d build

BLOCK:build
MODE:pipeline_depend scan_dept
HOME:PE1,PE2,PE3,PE4,PE5

..................
send r probe

BLOCK:probe
MODE:full_depend build;
            pipeline_depend scan_emp
HOME:PE1,PE2,PE3,PE4,PE5

..................
send s end

BLOCK:scan_emp
MODE:full_depend start
HOME:PE4,PE5..................

send e probe

Start

Scan
dept

Scan
emp

HashJoin

End

Full depend
Pipeline dependFigure 3. Task Execution Sequence5. Modelling Parallel OracleIn developing a model of parallel Oracle both the Parallel Server and the PQOfeatures need to be catered for. The �rst basic assumption relating to ParallelServer concerns the node which will act as host to the query since the choiceof host node can have a signi�cant e�ect on the performance of a query. Forthis reason, each node in turn is treated as the host and the performanceestimated, after which the results are totalled and an average �gure is usedfor modelling the Parallel Server feature of Oracle, as this e�ectively meansthat there are as many users as there are nodes.The rest of this section describes the modelling of PQO, locking, andbackground processes.
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11
BLOCK: scan_emp
MODE: full_depend  start
HOME: pe1 1.0, pe2 1.0, pe3 1.0
OPERATION_DEFINITION
         loop { pe1: x1, pe2: x2, pe3:x3 } {
                   read { disc1(1: p1), disc2(1: p2) } { pe1: h1, pe2:h2, pe3:h3 };
                    loop {  TpP } {
                               predicate_check;
                                send  hash_join e n
                     }
          }
END_DEFINITIONFigure 4. scan emp block5.1. Modelling Parallel Query OptionTo show how the di�erent forms of parallelisation employed in Oracle aremodelled, consider the join query example shown in Fig. 2a. The parallelisedquery execution plan can be schematically represented as shown in Fig. 3.It shows the sequence control graph of the query (left-hand side) and thecorresponding structure of the task block formalism of the model (right-handside). There is a task block for each SQL operation and a start and end taskblock. The start block activates the two scan blocks. The scan dept block isfully dependent on block start, which means that it can only be started afterthe execution of start has completed. The hash join operation is made up oftwo blocks (tasks), one to build the hash table and the other to probe the hashtable. The build block is pipeline dependent on the dept scan block, whichmeans that as the table is being scanned, the hash table is being built withthe tuples that were scanned. This represents pipeline parallelism which isindicated by a dotted line. The probe block is fully dependent upon the hashtable being built (indicated by the solid line between the blocks), but pipelinesthe scanning of the emp table and the probing of the hash table, i.e. each tupleread is then used to probe the hash table. The end block receives the resulttuples and presents the results.To show how the details of the task block format are modelled, considerthe scan emp block, shown in Fig. 4. The �rst line gives the block's name
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12(scan emp) and the second line its mode. The scan emp block is fully depen-dent on block start. The block is executed by query servers on nodes PE1, PE2and PE3 with equal probability, an example of intra-operator parallelism. Oneach server it reads a number of pages locally from relation emp where xi pagesare read from node PEi, as indicated by the keyword loop. The probabilitiesof the page being read from disc 1 or disc 2 are p1 and p2 (= 1 � p1). Theprobability attached to the disc read operation (hi) represents the cache missratio for a page of emp on node PEi. This is followed by a loop of TpPiterations where TpP is the number of tuples per page of emp. In this loop apredicate check is carried out on each tuple and the selected tuples are sentthrough the interconnect to the block hash join. Here e and n are the tuplelength and the number of tuples sent per iteration.As Oracle's load balancing technique is designed to balance the workloadacross the nodes of a parallel machine, the model considers each full tablescan to be spread across all the nodes involved equally.5.2. Oracle Transaction Locking and DLM PoliciesFor Oracle installed on a GoldRush machine each relation (table) comprises anumber of tuples (rows) and these tuples are stored in pages, which is the unitof storage at the disc level. In general, a page may contain a number of tuples.GoldRush Oracle has two distinct types of locks: parallel cache management(PCM) and transaction locks.PCM locks are used at the database page level. They can be held in shared(read only) or exclusive (update) mode. These page locks are assigned to thedistributed lock manager (DLM) instances on the nodes according to a hashingscheme, so that each page lock has an owner. The owner handles PCM lockrequests for that page lock. When a transaction requests a page, the PCMlocking process is used to ensure the safe extraction of the page and thedelivery of that page to the requesting transaction. However, once it receivesthe page, the transaction will want to access a tuple within that page.
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13At this point the transaction locks come into play. Each row has a trans-action lock associated with it. Transaction locks are owned by individualtransactions and not by servers. They are only given up when the transactioncommits or rolls back. Each transaction has an owner (its host, where thededicated server resides). A system is used to number the transactions as theystart. This number also identi�es the node that is hosting the transaction. Aserver scanning a relation receives a page from disc and locates the row it wantsto access. Attached to this row may be a transaction number, indicating thatthis row has been, or is going to be modi�ed. If no number exists then thetransaction is free to set a row lock and update the row. If the server readingthe page �nds a transaction number, then it must determine the status ofthe row. This it does by asking its DLM. The DLM contacts the host of thetransaction using a lock status request. The host node consults its rollbacksegment index for the location of the segment and sends this location to theserver querying the status of the row. The server reading the row receives thelocation of the rollback segment and reads it into its bu�er. It looks up theversion of the row with the largest transaction number, smaller than its own.The corresponding value of the row is returned.To illustrate PCM locks consider the following example. Suppose the DLMon node PE3 is the owner of a page lock, which a server on node PE1 needsin order to update a page. Suppose that this page is held in exclusive modeon node PE2. The server on node PE1 asks its DLM for the lock. The DLM isnot the owner, and therefore it sends a lock request to the owner. The owner(the DLM on node PE3) looks up its lock status table and notes that nodePE2 has the page held under an exclusive lock. The DLM on node PE3 sendsa lock-request message for the page to node PE2, which writes the page todisc and sends a lock-grant message in return to the DLM on node PE3. Oncethe DLM on node PE3 receives it, it updates its lock status table and sendsa lock-grant message to the original requester on node PE1. The server onnode PE1 reads the page from disc into its bu�er with an exclusive lock andcontinues with the update. Note that node PE2 releases the lock immediately
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14
BLOCK: start
MODE: independant
HOME: pe1 1.0
OPERATION_DEFINITION
         ...........
          send  dlm lck_req v
END_DEFINITION

BLOCK: dlm
MODE: full_depend  start
HOME: pe1 0.25, pe2 0.25, pe3 0.25, pe4 0.25
OPERATION_DEFINITION
         obtain_lock;
          send  end lck_rep { pe1:1.0 } 1.0
END_DEFINITION

BLOCK: end
MODE: full_depend  dlm
HOME: pe1 1.0
OPERATION_DEFINITION
         ...........
END_DEFINITIONFigure 5. PCM lock blocksupon request. If one or more servers hold the same page under a shared lock(only one copy of a page is allowed in any cache under an exclusive lock) andanother server requests the page for updating, all servers holding a shared-lock on the page, are asked by the page lock owner to give up the lock andpage. Once they acknowledge that they have done so, the owner grants thelock to the server requesting it. If a server �nishes with a page and no otherserver requests it, the page stays in its bu�er until it is required or the bu�eris ushed. At this point the owner is informed to update the lock status table.5.2.1. Modelling LocksA model has been developed to estimate the number of PCM locks held onpages in a particular server's cache. The model is derived following the ap-proach originally developed by Dan and Yu in [4]. The Oracle7 parallel cachemanagement as described above is similar to the Deferred until Transfer orFlushing policy detailed in [4]. The model allows one to estimate the numberof DLM exclusive and shared locks held on pages in a particular node's cache.This, in turn, allows one to obtain an estimation of local and remote bu�er hitprobabilities. The details of the model are described in greater detail in [25].The example in Fig. 5 shows how PCM locks are handled in the task blocknotation. A transaction running on node PE1 requests a lock from the DLMrunning on node PE2, which is the owner of the page. An extra block is addedfor lock request processing by the DLM instance. v is the probability that thepage that the lock request is for, is not held in the local cache.
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15The additional dlm block represents the handling by the DLM of a lockrequest from the transaction running on node PE1. The owner of the pagemay be any of the four nodes; thus each has a probability of 0.25 of owningthe page lock. lck req is the message size transmitted from node PE1 to nodePE2 to request a lock. lck rep is the message size transmitted from node PE2to node PE1 to grant the lock request.The modelling of transaction locks uses the same blocks as the DLM(shown above), because it also uses the DLM to communicate with the trans-action owner about row locks, but with di�erent frequencies. The estimation ofthe frequencies is based on the number of modifying queries in the transactionand the calculation of queue lengths for the rows being modi�ed.5.3. Modelling Background ProcessesIn Oracle there are many background processes, including a database writer,log writer, session monitor, checkpoint process, archiver and process monitor.The archiver, checkpoint process, session and process monitors are concernedwith recovery from a system breakdown, and are not modelled. This leavesthe two most important background processes which both write to disc andtherefore require to be modelled. They are the database writer (DBWR) andthe log writer (LGWR).The database writer (DBWR) writes bu�ers to disc. It maintains two lists,the least recently used (LRU) and the modi�ed bu�er list. The DBWR writesthe modi�ed bu�ers to disc when one of three things occur: when no free bu�ercan be found in the LRU list, when a time out occurs or when a checkpointprocess is initiated. The total number of pages in the bu�er and the page sizeare set by the user. The cache miss probability is estimated by the cache model.Knowing these, the number of pages in the bu�er cache can be estimated.The redo log bu�er, circular in design, records changes made to the database.The log writer (LGWR) writes the redo log bu�er to disc. There are threecircumstances when it does this:
pv18a.tex; 25/11/1999; 15:44; p.16



16
BLOCK:  dbwr
MODE: independent
HOME: pe1 1.0
OPERATION_DEFINITION
         in_parallel {
                write { disc1( x:p1), disc2( x:p2) } 1.0 }
END_DEFINITIONFigure 6. dbwr block� Every three seconds.� When the bu�er is one third full.� When the DBWR process writes to disc.The bu�er size, row length of the table and the query frequencies are setby the user. Knowing these, the rate of �lling of the bu�er can be estimated.To model the writes that occur due to the expiry of the time interval, the costcan be added at the end of the transaction.The block representation of the background processes which are modelledare very similar. For example, the DBWR process can be represented by ablock as shown in Fig. 6. The LGWR block is identical except that the valueof x is equal to a third of the size of the log bu�er instead of the number ofmodi�ed bu�ers in cache. Thus background processes are treated as if theywere separate transactions run at the same time as user transactions.5.4. Comparison with Modelling of InformixThere are a number of important di�erences in modelling the Parallel DBMSsOracle and Informix. In Informix, data is only read by the node that ownsthat data whereas in Oracle data can be read from any node. Consequentlyall reads in Informix are local reads whereas in Oracle they can be local orremote. In Oracle, locking policies are more complex, partly because of the twotypes of locks and partly because of maintaining the consistancy of the datain the virtual �le system employed. By contrast, in Informix all reads are localand the cost of locking can be dealt with more simply. Repeat full table scansin Informix are cached, unlike Oracle where all multiple full table scans are
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17read from disc except for a few pages. A separate cache model component hadto be written for Oracle, detailed in [25]. Background processes are modelledin the same way for both PDBMSs, only the actual amounts written to discare di�erent. Informix has no load balancing scheme for full table scans, as alldata is read from the node that owns the data, but redistribution of qualifyingtuples is carried out for aggregation to even the workload amongst nodes.6. Comparison With Actual Performance MeasurementsHaving developed the Oracle model, it was calibrated to obtain estimates forthe basic costs using an ICL GoldRush parallel server with 6 nodes and 6discs per node.Once the basic costs were obtained, a set of queries and tables were used tovalidate the model. Three of the queries used will be considered here, and arereferred to as Query 1, 2 and 3. Each involves a scan of a relation coupled withone or more aggregate operations. Three uniques relations of the AS3AP [22]benchmark were used by all three queries:Uniques30, 30,000 tuples on 1 disc of node PE3 (30k1)Uniques90, 90,000 tuples on 1 disc of node PE3 (90k1)Uniques270, 270,000 tuples on 1 disc each of node PE0,PE1,PE2,PE3,PE4and PE5 (270k6)There were two main steps in the validation phase. The �rst step estab-lished the maximumthroughput and the second the average response times fortransactions. For each step a separate transaction generator was required. Thetwo generators were written in Pro-C. The �rst generator, used to dterminethroughput, �res queries at a constant rate. Generally a batch of 100 querieswas �red for each inter-arrival time considered, although larger batches weretried to check the validity of the results gained from the smaller batches. Thestart time of each query was recorded as was the time when the result was
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18returned and the di�erence between the two taken as the time for the query toreturn the result, this includes execution and queue waiting time. The timesfor all 100 queries was totalled and averaged to give the throughput �gure.The response time generator �res queries with exponential inter-arrival times,to represent the load of a working database system. Again batches of 100 werefound to be su�cient to give as good results as larger batches. The timingswere taken in exactly the same way as for the throughput tests. All timingswere taken in clock ticks and then converted into seconds.6.1. ThroughputA selection of the results for the throughput tests are shown in Fig. 7 a, b andc. The x- and y-axis denote query arrival rate and throughput respectively,and are measured in transactions per second. In the top right hand corner ofeach graph, the value of the maximum throughput predicted by STEADY,which is a single value independent of the arrival rate, and the maximumthroughput actually achieved by the system are displayed. The maximumthroughput achieved by the system was established by �ring batches of 100queries with increasing inter-arrival rates, calculating the throughput, untilthe calculated throughput peaked.The throughput results for all of the queries showed reasonable agreementwith the STEADY maximum throughput results. A total of 9 experimentswas performed. In 7 of the 9 cases the relative error between predicted andmeasured maximum throughput was under 10%, and in 5 of these it waswithin 5%. Only 2 cases produced errors above 10% and here the worst casewas less than 17%. The average discrepancy was about 6%. The STEADY�gure is always higher than the actual measured value. This may be due toadditional operating system overheads which were not taken into account inthe STEADY model.
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Figure 7. Throughput graphs (a) 30k Query 1 (b) 90k Query 2 (c) 270k Query 36.2. Problems with measuring Oracle performanceDuring calibration the di�erence in behaviour between Oracle and Informixbecame apparent. The most obvious di�erence in behaviour was the variabilityin measured results exhibited by Oracle compared with the very consistentbehaviour of Informix. As a result, each test, which obtains a throughputvalue for a given arrival rate, had to be repeated a number of times to ensureconsistency. As an example Query 1, was run on 12 separate occasions withan inter-arrival rate of 0.27 transactions per second. On each occasion themachine was in a similar state and was dedicated to this application. Eachrun involved �ring 100 queries. The graph of the results of these 12 runs isshown in Fig. 8.The x-axis of the graph in Fig. 8 represents the identity number of thequery, which is allocated as it is �red, while the y-axis represents the executiontime of the query in seconds. As can be seen, there are three runs (4, 5 and6) where the times increased dramatically for no apparent reason and queries
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Run 3Figure 10. Informix - Throughput - 0.2 Txn/secwere obtained on Informix and this same level of consistency was observedin all cases. The erratic behaviour seen in Fig. 8 did not arise in Informix atall, possibly due to the di�erent approach to background processes. It shouldbe noted that the band e�ect observed in Fig. 9 has a minimal e�ect on theoverall maximumthroughput �gures. However, it does have a signi�cant e�ecton response time measurements.
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Figure 11. Response Times for (a) 90k query 2 - Oracle (b) 30k query 1 - Oracle (c) 90kquery 2 - Informix6.3. Response TimeThe same problems were experienced with the exponential transaction gen-erator, although the discrepancies are more di�cult to isolate because of thevariabilities in the inter-arrival time. In view of these problems, it was decidedto concentrate the response time tests on arrival rates between 10% and 70%of maximum throughput, as this is the resource utilisation that would beconsidered normal for database work. Two examples of results for the responsetime tests on Oracle are shown in Fig. 11a & b. These two graphs highlightthe variations in the results achieved. Fig. 11a shows a set of results wherethe error between measured and actual values are close together until 50%of maximum throughput when the curves diverge. However, Fig. 11b showsresults where the two curves are closely matched throughout. For comparisonpurposes the same test as Fig 11a for Informix is shown in Fig. 11c.For Informix, the average error, between measured and predicted values,for all response time tests was less than 15% for arrival rates up to 70%of maximum throughput. Between 70% and 90% of maximum throughput
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23measurements for Informix showed errors up to 30%. On the other hand, forOracle, for transaction arrival rates less than 70% of maximumthroughput theaverage error was 19%, whereas for transaction arrival rates above this it is dif-�cult to predict the response times as additional background processes causeserious problems to overall performance. However, normal database activityoccurs below 70% of maximum throughput and it would not be recommendedto exceed this value for any signi�cant period of time.7. ConclusionsPredicting the performance of a parallel database system is a complex task. Ananalytical approach has been developed for identifying bottlenecks, predictingmaximum throughput and estimating response times. This has been appliedto three separate parallel relational database systems (Oracle, Informix andIngres) running on the ICL GoldRush Megaserver. This paper focuses onthe Oracle system, discussing the di�erent forms of parallelism, the lockingpolicies, cache management and background processes, showing how these canbe mapped into a block formalism and presenting some preliminary results.In validating the model, considerable problems were experienced in repeatingresults for both throughput and response time tests. The throughput resultsshow very good correlation between STEADY predictions and actual measure-ments, with an average error of about 6% between the maximum throughputpredicted and that measured. The correlation of the response times betweenSTEADY predictions and actual measurements for arrival rates up to 70% ofSTEADY maximum throughput shows an average error of 19%.8. AcknowledgementsThe authors acknowledge the support received from the Commission of theEuropean Union under the Framework IV programme, for the Mercury project
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