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1 . Introduction

In recent years the Nash-Debreu theorem [28, 81 of 1951-52 has been

the subject of two particularly far-reaching generalizations. The

first is a neglected contribution of Ma [24] and is a result on the

existence of Cournot-Nash equilibria in games with an arbitrary set of

players each of whom has strategy sets in an arbi trary Hausdorff topo-

logical vector space. The second is a result of Toussaint [32] and it

can be viewed as a generalization of Ma's theorem to a setting where

each player's pay-off is generated by a non-ordered relation. Both of

these results are elegant and simple enough that they can be fully

stated.

The following result was proved in 1969.

Theorem (Ma) A : Let { X } „ J)e a_ family, finite or infinite, of

nonempty compact convex sets each in _a Hausdorff topological vector

space . Let (f } be a family of real-valued continuous functions_c i t
J te'f *

.1
defined on X = II X . _If_ for each t e T and for any fixed

"

teT
t

x £ II X. = X , f(x ,x ) is a quasi-concave function
t .... j -t' t' t

J
j*t J

then there exists a point y e X such that for any teT

f (y) = Max f (z,y_
t

)

C
zeX

t

where y _is_ the projection of y _i_n X_ .

Ma's theorem can be viewed, in a sense, as the culmination of research

initiated by Nash [28] and Debreu [8] and one in which the results of

Browder [5] and Fan [12] played a leading role. It is worth under-

scoring the fact that the underlying space of strategies is not even

assumed to be locallv convex in Theorem A.
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Browder's fixed point theorem [8, Theorem 1] also constituted an

essential ingredient in the following theorem proved in 1984.

Tneorem (Toussaint) B : Let {X
} T

_be as in Theorem A. Let {P
t f CeT

and j A } _ be a familv of set-valued mappings from X into \/(X ) such
l

t teT ' "

t

that for any teT,

( i ) ( a ) for all xeX, x ^coP(x) and P ( x ) i_s open in X ,

(b) for all y e X , P~ (y) is, open in X,

(ii) (a) for all x e X, int A (x) J_s_ nonempty and convex

,

( b) for all y e X , int A~ (y) i_s_ open in X,

( c

)

A has closed graph in X x X

.

Then there exists a_ point y e X such that for any teT

y
t

e A
c
(y) and P^y) d A

£
(y) = {^>}

where y _is_ the projection of y _i_n X and co and int denote convex

hull and relative interior respectively.

Toussaint 's theorem is heavily influenced by wortc on economies with

non-ordered preferences initiated by Mas-Colell [2b] and with subsequent

contributions of Gale-Mas-Colell [14], Shaf er-Sonnenschein [31],

Borglin-Keiding [4] and Yannelis-Prabhakar [33]. The last bears spe-

cial mention; see Theorem 6.1 in [33].

Powerful as these results are, their generality is also their prin-

cipal weakness. Put simply, the complete lack of structure on the set

of agents implies a corresponding lack of structure on the equilibrium

point of the game. To state the matter differently, tne generality of

the set of players does not permit the formulation, in the context of
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infinite player games, of the notion of an average response , a concept

that is of especial significance in the study of pure strategy

equilibria (see, for example, Schmeidler [30]), as well as in other

contexts (see, for example, Dubey, Mas-Colell and Shubik [9J). It thus

seems desirable to ask. whether by specializing the set of players to

(say) an abstract measure space, one can show the existence of an

equilibrium point that is measurable or even integrable over the set of

players. We study this question here in the context of the generalized

3
qualitative games examined in Theorem B above by Toussaint.

The result we report in this paper, however, restricts this gener-

ality in two important ways. First, instead of an arbitrary Hausdorff

topological vector space, we work, in the setting of a separable Banach

space. Second, we also require that our measure space be a locally

compact subset of a metric space with a countably generated a-field.

It is of interest that Bewley [2] also made a similar restriction on

the space of agents in his equivalence theorem. Even with such

restrictions, however, the solution to our problem requires substantial

mathematical machinery and poses technical problems whose resolution

may have independent interest. In particular, in Section 4 below we

present a new selection theorem of the Caratheodory type but with a

stochastic domain. In order to motivate the need for such a theorem as

well as to give the reader an appreciation of the difficulties engen-

dered by a fairly straightforward economic problem, we present, in

Section 3 below, an informal introduction to our proof. Section 2 pre-

sents the model and principal results and Section 5 the formal proofs.
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We conclude this introduction with two further observations.

Firstly, there has already been some recent work on the existence of

Cournot-Nash equilibria in games with a measure space of players; see,

for example, Schmeidler [ 30 j , Khan-Vohra [20] and Khan [17,18] . The

principal result presented in this paper can be seen as an extension of

this work to games with non-ordered preferences, as in the case of [30,

17, 18], or to games with infinite dimensional strategy sets, as in the

case of [20, 30]. Indeed, the problem solved here was identified as an

open problem in the survey of these results, see [19].

Secondly, it needs to be pointed out, though certainly not over-

stated, that the problem we solve in this paper has a bearing on the

question of the existence of competitive equilibria in economies with

an infinity of commodities and an infinity of agents—a problem on

which substantial progress has remained elusive for some time. Of

course, our setting is much simpler, as we do not have to concern our-

selves with (i) price systems or alternatively, the existence of non-

4
trivial continuous linear functionals, (ii) an ordered structure to

deal with concepts such as desirability and free disposal, and (iii)

with showing compactness of the space of attainable allocations. In

this sense, the problem of this paper is a double infinity problem with

a minimum of complications.

2. The Model and Results

2.1 Preliminary Definitions and Notation

Let T be a locally compact metric space, Z a countably generated

complete a-field and \i a real valued, non negative countably additive
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measure defined on L . (T,E,y) is ttie measure space we shall be working

with.

Let E denote a separable Banach space over the real numbers R and

E* its topological dual. The norm in E will be denoted by II

*
II . (?

f
(E)

O
will denote the set of nonempty, closed subsets of E and uT(E) the set

of nonempty, compact subsets of E. Aw in front of f or k will mean

that the closedness or compactness is with respect to the weak topology

on E. Ac after f or k will denote that the set is in addition convex.

We shall also use the conventional notation Cr(E) to denote the space

of subsets of E and {^} to denote the empty set.

For any A, B in (r(E), we shall use the following notation.

A: closure of A in the norm topology

co A: convex hull of A

co A: closed convex hull of A

c
A '• compliment of A in E

A/B: set-theoretic subtraction

For the definitions of upper semi-continuous (u.s.c.) and lower

semi -continuous (l.s.c.) multifunctions , the reader is referred to [3,

Chapter VI] . We shall prefix the terms by a w to indicate that the

relevant topology is the weak topology. We shall also have occassion

to use Hausdorff continuity of a multifunction. We shall abbreviate it

by h-continuity and shall not distinguish situations when we are

working with the Hausdorff pseudo-metric rather than a metric—it shall

be clear from the context. However, h -continuous will denote the fact
w

that the Hausdorff metric has been derived from a raetrizable weak
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topology. Finally, when we refer to joint continuity, we shall mean

continuity in the product topology.

L_ will denote the space of all (equivalence classes of) E-valued
E

Bochner integrable functions defined on T with llfll =
J II f ( t) lldyt . We

1

'

T

shall abreviate L by L . For any multifunction F: T - *r(E)/{<j>}, we

shall denote by S
f

the set {f e L : f(t) e F(t) a.e. in T}

.

A multifunction F: T •* (r(E) is said to be measurable if the graph

of F, GrF = {(t,x) e TxE: x e F(t)}, is an element of E® 2)(E) where

Cb(E) is the set of Borel subsets of E and <x) denotes the product a-

field. A measurable multifunction F: T + ir(E) is said to be

integrably bounded if there exists g e L such that

sup{ llxll : x e F(t)} <_ g(t) a.e. in T.

2.2 The Results

We now have all the terminology we need to present the principal

results of our paper.

Theorem 1: If

1) X: T + (r (E) is integrably bounded,
wkc "

2) P: T x Sy * Cr(E)/{cf)} has norm open values and such that

(i) co P is jointly w-u.s.c ,

(ii) (t ,x ) + (t,x) implies w-lim co P( t ,x ) co P(t,x),
n->-°°

(iii) P(t,*) is h-continuous for all t J_n T,

(iv) for all x e S , x(t) i co P(t,x) a.e. in T,

3) A:
' T x SI + P, (E) is such that for all (t,x) £ T x S v ,X wrc X

A(t,x) ^X(t) and such that

( i ) A i_s_ jointly w-u.s.c.
,



(ii) A(t,x) has nonempty norm interior for all (t,x) e T x S ,

(iii) A(t,') is h-continuous for all t in T, then there exists

f* £ S such that a.e. in T,

f*(t) £ A(t,f*) and A(t,f*)H P(t,f*) = {<j>}.

The above result can be used to prove the existence of Cournot-Nash

equilibria with only measure-theoretic hypotheses on the dependence of

P and A on T. We shall refer to f* satisfying the conclusion of

Theorem 1 as a Cournot-Nash equilibrium.

Theorem 2 . If

1) X: T * (9 , (E) is such that for all t in T, X(t) CO; Qs (? . ,u wf c — — wk.c

2) P: T x Sx
* P(E)/{4>} is such that for all (t,x) e T x S ,

P(t,x) O X(t) and such that

(i) P(*,x) is measurable for all x e S ,A

(ii) P(t,*) is h -continuous for all t e T,_ —v/

(iii) P(t,x) has norm open values for all (t,x) e T x S ,

(iv) P (t,y) = {x s S
x

: y £ P(t,x)} i_s w-open in S
x

for all

y £ X(t) , for all t z T,

(v) for all x e S , x(t) i co P(t,x) a.e. in T,

3) A: T x S + P r is such that for all (t,x) £ T x S ,

X wfc
x

A( t ,x) C X( t) and such that

(i) A( * ,x) i_s_ measurable for all x £ S ,

(ii) A(t,*) is h -continuous for all t £ T,—— —

w

(iii) A(t,x) has nonempty norm interior for all (t,x) £ T x S„,
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( i v ) A ( t , y ) = •[ x z S : y e a( t , x )
} i_s w-open in S for all

A A

y e X(t), for all t e T,

Chen there exists a Cournot-Nash egui li br ium.

2.3 Interpretation of the Results

T represents the set of players, £ the set of all permissible

coalitions and u the size of a particular coalition. A coalition is

numerically negligible if its u measure is zero. This formalization of

a continuum of players is now standard in the mathematical economics

literature; see [15] for a comprehensive treatment.

The multifunction X represents the strategy sets with X(t) the

strategy set of player t. The fact that the range of X is a separable

iianach space allows us to consider infinite dimensional strategy sets.

Only a subset of the strategy set is available to a particular

player and this subset depends on the choices of the rest of the

players. This is formalized by the multifunction A. This feature is

not present in the earlier literature on Cournot-Nash equilibria, as

for example in Theorem A above, and is the reason for the terminology

qualitative game . Following Shaf er-Sonnenschein [31], such games are

also referred to as abstract economies . We avoid this terminology here

primarily because of our interest in the game as a worthwhile object of

study in its own right rather than as a vehicle for showing the

existence of competitive equilibria.

The multifunction P represents a formalization of the pay-off func-

tions where P(t,x) represents all strategies preferred by player t to

the strategy x(t) and that these preferred strategies depend on the

choices of all the remaining players. Such a set is also referred to
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as the "better-than-set " in the economic literature. With this

interpretation it is intuitively reasonable to suppose that

x(t) i P(t,x) and that P(t,x) is an open set. Note, however, that

even though P is a well-defined mathematical object, the interpreta-

tion we give it makes sense only for almost all players rather than

for all players. This is simply a consequence of the fact that x is

chosen from a space of equivalence classes and that it may be per-

turbed on sets of measure zero without changing its value. This dif-

ficulty, if it can be termed as such, is a consequence of a measure-

theoretic formulation of a noncooperative solution concept of an

infinite game and is discussed at some length in [19]

.

We can now interpret our results. Consider first the Cournot-Nash

equilibrium f* whose existence is asserted in Theorem 1. For all

except a negligible set of players, f*(t) is in the t-th player's

restricted strategy set A(t,f*) and there is no strategy in A(t,f*)

which is preferred by him to f*(t). Both of these statements are con-

tingent on the strategy choices of all other players being summarized

by f*. Thus, in the language of Ma's theorem, almost everyone is

choosing their best strategy given the choices of the others.

The disagreeable aspect of Theorem 1 is in the requirement that A

and P are jointly w-u.s.c. on T x S . Such an assumption makes essen-

tial use of the topology on T and allows statements such as "a sequence

It } chosen from T tends to a limit t in T." This makes no sense from
1 n J

an economic point of view since the only basis for two players being

"close" to each other lies in their characteristics being "close" and

cannot be imposed from the outside in any other essentially ad-hoc

raanne r

.
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Theorem 2 remedies this deficiency of Theorem 1. However, as will

become clear from Che section below, we still cannot prove Theorem 2

in the generality of an abstract measure space of players and need a

topology on T. This is obviously a restriction though it is worth

pointing out that there is a substantial literature in mathematical

economics which considers the unit interval endowed with Lebesgue

measure as the underlying space of economic agents.

Another requirement in Theorem 2 must be noted. This relates

to hypothesis 1 and to the assumption that every player's strategy set

must lie in the same weakly compact set Q. The technical reason for

such an assumption will become clear from tne discussion below; it suf-

fices to state here that the assumption restricts variation in the

distribution of the players' strategy sets.

Finally, in terms of the way we posed the problem in the introduc-

tion, it may be appropriate to draw the reader's attention to the fact

that f* is Bochner integrable and tnat
J

f*(t)du(t) denotes the

T

equilibrium average response of the players.

3. An Introduction to the Proofs

There are now two basic approaches to deal with the problems

arising out of non-ordered preferences. The first is due to Gale-Mas-

Colell [14] and is essentially based on Michael's selection theorem

[27, Theorem 3.1'''] while the second, due to Shaf er-Sonnenschein [31 J,

exploits the fact that one can construct a pseudo-utility function

corresponding to each preference relation. Both approaches also use

Kakutani's fixed point theorem. In the context of our problem,
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Yannelis-Prabhakar [ 33 J and Khan-Vohra [20] respectively follow the two

approaches rather closely whereas Toussaint [32], though clearly

inspired by [ 14 j by way of [4], dispenses with the selection theorem

and develops a proof more directly based en a theorem of Browder [5,

Theorem 1] . Our proof modifies and extends the approach of [33] but

before we discuss our method of proof, it may be instructive to examine

why methods based on other approaches fail.

As discussed in [19], once we have a pseudo-utility function, one

can essentially follow the argument originally furnished by Debreu [8]

.

The only additional wrinkle lies in showing that the fixed point is

indeed a Cournot-Nash equilibrium and for this one uses the fact that

the preferences are irreflexive, i.e., x(t) £ co P(t,x). Of course,

with non-ordered preferences, the set of maximizers of the pseudo-

utility function is not convex but to overcome this one simply takes

the convex hull of this set and, in a finite dimensional set-up, this

operation disturbs neither the upper semi continuity nor the measurabi-

lity of the relevant mappings; for details the reader is

referred to [19] . However, both of these become insurmountable dif-

ficulties in an infinite-dimensional context and since one cannot

exclude that x(t) z co P(t,x), the argument cannot be advanced by

taking the closed convex hull.

The approach of Toussant [32] falls victim to measure-theoretic

difficulties. Its elegance and power lies in reducing the entire argu-

ment to a single player and this cannot be done in a situation where

negligible sets of players are being neglected to begin with. In terms

of a little more detail, Toussaint extends each multifunction P : X + X
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to a multifunction P' : X * X by defining y e X to be in P'(x) iff

y e X . Then she applies Browder's theorem to a map P: X + X where

for any x in X

P'(x) if T(x) = {t e T: P(x) * $} * $
teT(x)

otherwise.

An examination of the proof of Theorem 2.4 in [32] reveals that an

essential step in showing that P satisfies the conditions for

Browder's theorem one uses the fact that

p(z) t {<()} =$> "3 i
Q

such tnat p
- < z ) * 1*}

in which case P(z) = ( \ P'(z) o P- (z) and the argument can be

teT(z)
C l

pursued in terms of player i . It is clear that this argument fails at

the outset on account of the fact that P cannot be extended in the

measure-theoretic context to P'.

Thus, the only argument which to us has the possibility of being

successful is that due to Yannelis-Prabhakar . However, it has its own

set of difficulties and before we go into them, a brief outline of

their proof is warranted. We stay with the notation of Theorem B.

YannelisPrabhakar construct a multifunction F = H F from X into X

t£T
L

where F : X * X and such that
t t

'
(f (x)} if x £ U = (x £ X: A(x)Oco Pjx) * ^
1 t t t L

F
t
(x) = I

A (x) otherwise
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Here f is a continuous function from U to X and is a selection

guaranteed by the Michael selection theorem. The Ky-Fan fixed point

theorem is applied to F and the fixed point is easily shown to be a

Cournot-Nash equilibrium by using, in particular, the irref lexibili ty

condition on preferences.

The extension of the multifunction F to our setting raises the

obvious difficulty that we cannot simply take the Cartesian product of

F (*) (F(t,*) in the notation of Section 2) over tne set of players.

We thus have to ensure that each F is measurable over t or , to go to

the nub of the matter, to ensure that the continous selection f (*) is

also measurable over t. To see it slightly differently, we have to get

a selection of the correspondence A (x) (~\ co P (x) that is simultaneously

continuous in x and measurable in t. Such selectors are called

Caratheodory selectors in this branch of the mathematical literature

and we are naturally led to them. However, still two difficulties

remain. The first is the problem that we already met in the discussion

of the Shaf er-Sonnenschein approach and this is the fact that

A (x) Aco P (x) is not necessarily closed. The second is that we are

looking for a selector of a multifunction that is not defined on

T x X, i.e., on a Cartesian product of two spaces, but on the set U

which varies with t. In summary then, we need a selection theorem of

the Caratheodory type for a multifunction whose values cannot be

assumed to be closed and which has a stochastic domain.

We present such a theorem in the next section and show how it

relates to other such results in the matnematical literature. However,

we could only prove it under a joint upper semicontinui ty hypothesis on
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the underlying multifunction. This is required in order to appeal to

Ma's [25J generalization of Dugundji's extension theorem. This is also

the reason for such a hypothesis in our Theorem 1.

However, once we have Theorem 1, it is natural to ask. whether we

can use a Lusin type theorem to eliminate the continuity hypothesis on

T. In particular, can one approximate a measurable correspondence by a

continuous one, apply Theorem 1 to show the existence of an approximate

Cournot-Nash equilibrium, and finally show that the limit of these

equilibria is indeed a bona-fide Cournot-Nash equilibrium? The answer

to all of these questions is yes but it is obvious that such a program

requires a topology on the set of players and this is the reason for

such a hypothesis even in Theorem 2.

It should be underscored that our formulation of Theorem 2 makes an

essential use of the Hausdorff metric derived from the weak topology

—

indeed this seems to us to be the only essentially additional hypothesis

in relation to previous work. However, as is well known, the weak

topology is not globally metrizable and hence we have to include all

our strategy sets in the weakly compact set Q. This also has the addi-

tional advantage of allowing us to go from Hausdorff continuity to

upper semi-continuity.

In conclusion, it may be worth mentioning that the Lusin-type

theorem that works for the problem at hand is a result due to Scorza-

Dragoni [6] and that in showing that the limit of the approximate

equilibria is an equilibrium, we use the Khan-Majumdar [21J extension

Artstein's characterization of weak sequential convergence in L .

t,
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4 . A Selection Theorem of the Caratheodory Type

We begin with a definition. A function f: T x E * E is said to be

a Caratheodory function if f
(

* ,x) is measurable in T for any x in E and

if f(t,*) is continuous in E for any t in T. It is clear that the

definition of a Caratheodory function carries over to any abstract

measure space T and any topological space E. The following Lemma is a

generalization of Lemma 1 in [22] and is a useful characterization of

Caratheodory functions.

r-f

Lemma .
' Let (ft, J",y) be_ _a complete o-f inite measure space

,

Z a_ locally

compact separable metric space and Y _a metric space . Then f : ft x Z •* Y

is Caratheodory iff oj *• r(u)( * ) = f (w, * ) from ft into C(Z,Y) i_s_ measur-

able where C(Z , Y) is the space of continuous functions from Z into Y

and endowed with the compact-open topology.

The above Lemma allows us to prove

Theorem 3. If

1

)

K is a w-compact subset of a separable Banach space

,

2) A C T x K _is_ closed (K with w-topology)

,

3) F: A + Q , (E) and such that
WKC

(i) F(t,x) has nonempty norm interior for all (t,x) z A,

(ii) F is jointly w-u.s.c

(iii) F(t,*) is h-continuous on A = {x e K: (t,x) e A},

then there exists a Caratheodory function f : A » E such that

f(t,x) £ F(t,x) for all (t,x) e A.
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Remark : Theorem 3 is true if K is any locally compact metric space

instead of being a w-corapact subset of a separable Banach space.

The above theorem can be usefully compared to the Caratheodory type

selection theorems of Kucia [22] and to those of Fryszkowski [13] , the

latter already generalizing earlier work of Castaing. Note that

Fryszkowski 's theorems are also restricted to a topological measure

space but they deal with multif unctions with closed values and whose

domain is a Cartesian product of two spaces, i.e., whose domain is not

stochastic. As such they cannot be used for our problem. Kucia's

work deals with abstract measure spaces but does not contain general-

izations along the directions relevant to our problem.

5 . Proofs of the Theorems

We begin with a proof of the Lemma.

Proof of Lemma .

Necessity . Let B be a basis element for the compact-open topology on

C(X,Y). rtence tnere exist KcX compact, V C Y open such that

8 = (q(') e C(X): q(K) C V} . We need to show that r (B) e Z. We have

r~ (B) = {co £ fl: r(u)C) e Bj = [oi £ 8: r(u>)(K) C. V} =
{
u £ fi: f(w,K) C v}

Note that f(u,K) is a compact subset of V. Let \z \ V1 be a dense setr l n J n2_l

in K. Then exploiting the continuity of f(oj,*) we can write

r
_1

(B) = f\ {to £ $2: f(w,z ) £ V} £ E

n>l
n

since for all x £ X, f(*,z) is measurable.
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Suf f iciency . Let (r,id): 9, x Z * C(Z,Y) x Z be defined by

(u,z) * (r(aj)( *) ,z)

This is a measurable map. Let e be the evaluation map on C(Z,Y) x Z

from [10, theorem 2.4, p. 250] we know that this is continuous. Now

consider u: ft x Z •* Y defined by: (oj,z) * u(ta,z) = [e*(r,id)](u>,z).

This is measurable. But e*( r ,id)(w, z) = e(r(u)(*),z) = r(oj)(z) = f(j,z)

implies u = f which shows that f is a Caratheodory function. 9

We can now provide a

Proof of Theorem 3.

Consider the multifunction F: A * \r ,
(E). On applying [25,

WK.C

Theorem 2.1, p. 7] we can find

G: TxK> P, (E)
wkc

which is an u.s.c. extension of F(*,*). From the proof of theorem 2.1

of Ma [25], we know that G( *

,

" ) has the following form

F(t,x) for (t,x) e A

F(t,x) =

E a. (t,x)F(t,x) for (t,x) s A , (t,x) e A

isl

where {a. (*,*)}. is an appropriate partition of unity for A (for

details see Ma [25]). But then this expression suggests that G( *

,

*

)

still has nonempty interior and that for every t e T, G( t
,

* ) is h-

continuous. This also implies that int G( t
,

* ) is h-continuous and

hence int G( t
,

* ) is lower semi continuous

.
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Now we work with this globally defined multifunction G( "

,

* )

.

Consider the multifunction M: T + (r(C(K,X))

M(t) - {f e C(K;X): f(x) e int G(t,x) for all x e K}

where C(K;X) is the space of all continuous functions from K into X,

endowed with the compact-open topology. Recalling that K being a

weakly compact subset of separable Banach space, is metrizable for the

weak topology (see Dunf ord-Schwartz [11, theorem 3, p. 434 J ) and so

i i »

perfectly normal, we can apply theorem 3.1 (c) of Michael [27 J and

deduce that for all t e T, M(t) t <j>. Now rewrite M( * ) as follows

M(t) = (f e C(K;X): d(f(x)) > for all x e K} C\ (C(G(t,*))}
3G(t,x)

where 3G(t,x) denotes the boundary for the set G(t,x) where d (x)
ci.

denotes the distance of x from the set A and C(G(t,")) is the nonempty

set of continuous selections from G( t
,

* )

.

Next we claim that for fixed t e T the map x + d(f(x) is con-
3G(t,x)

tinous from K into R . To show that we proceed as follows. Since, by

construction, G( t
,

* ) is Hausdorff continuous, proposition 2.1 of

DeBlasi-Pianigiani [7] tells us that 3G(t,*) is Hausdorff too. So

for everv z > there exists 5 > such that d (x',x) < 6 (d (*,*)
w w

is the metric that makes the weak topology on K metrizable) implies

h(3G(t,x») ,3G(t,x)) < e/2. Also since f e C(K,X) we can take 6 > so

that llf(x') - f(x);i < e/2.
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Using the fact that the distance function is nonexpansive and the

definition of the Hausdorff metric, we can write for x,x' e K,

d (x',x) < 6:
w

jd(f(x')) - d(f(x))| < |d(f(x')) - d(f(x))
3G(t,x') 3G(t,x) 3G(t,x*) 3G(t,x')

+ |d(f(x)) - d(f(x))
|3G(t,x») 3G(t,x)

: llf(x') - f(x)ll + h(3G(t,x'),3G(t,x)) < e/2 + e/2 =

Hence we get that x * d(f(x)) is continuous.
3G(t,x)

Also since t > G(t,x) is u.s.c. it is automatically measurable

and so theorem 4.6 (iv) of Himmelberg [16] tells us that t + 3G(t,x)

is measurable and so t * d(f(x)) is measurable.
3G(t,x)

Thus we have shown that the map

(t,x) + d(f(x))
3G(t,x)

from T x K into R is a Caratheodory map.

Now consider the map L: T x C(K;X) » C(K;R
+

) defined by

L(t,f(*)) = d(fO)
3G(t,*)

Since (t,x) » d(f(x)) is Caratheodory, the lemma tells us that t * d(f(*))
3G(t,x) 3G(t,*)

is measurable from T into C(K;R). Also theorem 1 of Kuratowski [22,

p. 93] tells us that C(K;X) with the compact-open topology is metrizable.

So let f (*)
C(K;X)

f(*) as n -> ». Then for x > we have
n
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|L(t,f
n
C)(x ) - L(t,f('))(x)| = |d(f

n
(x ) - d(f(x))|

I

n
| |3G(t,xJJ) 3G(t,x)|

< |d(f
n
(x ) - d(f.(x))| + |d(f(x)) - d(f(x))j

|3G(f,x
n

) 3G(t,x ) |3G(t,x ) 3G(t,x)
n n n

< ||f
n
(x ) - f(x)!l + h(3G(t,x ), 3G(t,x))— n n

C(K;X)
Note that h(3G(t,x ), 3G(t,x)) + as n - =°. Also f (*) -»- f(*).

But since X is a metric space, the compact-open topology is equivalent

to the topology of uniform convergence on compact a and the latter is

in turn equivalent Lo continuous convergence (see theorem 7.5 of

Dugundji [10, p. 268]). So Hf
n

( x
n

> " Hx)l * as n * ». Thus L( t ,
*

)

is continuous for the compact-open topology on C(K;X).

Therefore we have just proved that L( *

,

* ) is Caratheodory. Since

C(K;X) is separable (see theorem 3 in tCuratowski [22, p. 94] ), we

deduce that L( *

,

* ) is in fact jointly measurable. Hence we have

Gr M = |(t,f{')) e T x C(GC,*)): L(t,f(*)) e int C
+
(K;R

+ )} z L®S(C(K;X)

On applying Aumann's selection Theorem [15, Theorem 1, p. 54] we can

find a measurable function r: T •* C(K,X) such that for all t e T we

have that r(t) e M(t). Let r(t)(*) = f(t,*). Using the lemma we have

that f(*,*) is a Caratheodory function such that f(t,x) z F(t,x) for

all (t,x) z A. This is the desired Caratheodory selector of F(*,*). 1

Proof of Remark :

It can be easily checked that nothing is changed in the proof if

instead of taking K to be a w-compact subset of a separable Banach

e, we let it be any locally compact metric space.
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Proof of Theorem 1.

From [29, Theorem 4.2], we know Chat Sy is a w-corapact subset of

L . Since Z is countably generated and E is separable, then L, is
L h

separable and so S endowed with the weak topology is metrizable.
a

Let ip(t,x) = A(t,x) n co P(t,x) and set M(t) = {x z S : i|>(t,x) # §}

We now claim that GrM is closed in T x S , S endowed always with the
A A

weak topologv. To see this, let !(t ,x )} v , <Z GrM such that
n' n' J n>l

(t ,x ) * (t,x). Then we have

w-lim d/(t »x ) = w-lim [A(t ,x ) A co P( t ,x )]an- n n n n

C w-lim A(t ,x ) P> w-lim co P(t ,x ).— n n n n

But by hypothesis A is jointly w-u.s.c. and by the hypothesis on P, we

obtain

w-lim A( t ,x ) C A(t,x) and w-lim co P( t ,x ) C. co P(t ,x ).nn— nn — nn
n-*-«> n^-°°

Thus we have

w-lim \li(t ,x ) d A(t,x) C\ co P(t,x) = t|;( t,x) .

n n —

Again, by hypothesis, ijj(t ,x ) c KJ B(t ) which by [3, Theorem 3, p.

n_XL

110 J is a weakly compact set. Let z e (Kt ,x ). Then the Eberlein-
n T n n

Smulian theorem [11,- Theorem V.6.1, p. 430] tells us that we can find
w

(z n ) * z which implies that z e w-lim tjj(t ,x ) C t{>(t,x). This impliesuk n n —

that ij;(t,x) t <j) which ensures that (t,x) e GrM, i.e., GrM is closed.
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Now ~(t,x) = A( t ,x) n co P( t ,\) = A(t,x) O "co P(t,x) is w-u.s.c.

from GrM into E, see Theorem 8 in Aubi:i-Ek.eland [1, p. 110]

.

Finally, since P( *
,

* ) has open values and A( *

,

* ) has a nonempty

norm interior, A(t,x)H co P(t,xj has a nonempty norm interior for all

x in M(t). We can now appeal to [7, Proposition 2.3J to assert that ty

is h-continuous on M(t).

We are now in a position to apply Theorem 3 and find a Caratheodory

function f: T x S„ *• E such that

f(t,x) e tKt,x) = A(t,x)f\co P(t,x) for all (t,x) z GrM.

Next define

ff(t,x) for (t,x) e GrM

G(t,x) = 1

I A(t,x) for (t,x) t GrM

Clearly G: T x Sv > P
,

(E).
X J

wk.c

Let a: S„ v (S v ) be defined by:
X X

a(x) = (y(') e S„: y(t) e G(t,x) a.e. in T}

Clearly a(x) ± <j> for all x e S • It is also easy to see that a(*) has

closed and convex values. We will now show that it is w-u.s.c.

Since S with the weak, topology is a compact, metric space it suf-

wxw
fices to show that Gra is closed. So let (x ,y ) e Gra, (x ,y ) + (x,y)

n n n n

Then we have

y (t) e G(t,x ) a.e.
n n
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Invoking Mazur's theorem [11, V.3.14, p. 422] we can find

1

z (*) z conv \J y (*) such that z (') * y( * ) . By passing to a sub-
n . K cc n

K>n

L
£

sequence if necessary we may assume that z (t) * y(t) for all t e T/N
n

with u(N) =0. Fix t e T/N. Observe that G( t
,

* ) is w-u.s.c. from S
A

into E. So for every e > we can find n _> 1 such that for all k > n

we have

G(t,x. ) C G(t,x) + eB.
k — 1

where 3 is the unit ball of E. Hence

con U G(t,x, ) C G(t,x) + eB -X z (t) e G(t,x) + eB

k>n k in
^ y(t) e G(t,x) + eB

On letting e go to zero, we conclude that y(t) z G(t,x). Since

t e T/N was arbitrary, we also conclude that y(t) e G(t,x) a.e. in T.

Thus y e a(x), i.e., Gra is closed and hence ct(*) is w-u.s.c. Then
A

1
Ky Fan's fixed point theorem [3, p. 251] tells us that x(') e SY such

that x e ct(x). It is easy to see that this is the desired Nash

equilibrium.

Finally, we can furnish a proof of our principal result.

Proof of Theorem 2 .

View A and co P as mappings from T x S into the space of nonempty,
X

closed convex subsets of a weakly compact subset Q of E. Since E is

separable, the weak topology on Q is metrizable and we can correspon-

dingly view A and co P as mappings which take values in a separable



metric space. We can now apply the Scorza-Dragoni theorem [b, Theorem

3.1, p. 97] to find, for any e > 0, a compact T e Z such that

u(T/T ) < e and A and co P restricted to T x S to be both jointly
£ £ A

h -continuous. However, since both A and co P take compact values, we
w

can appeal to [3, Theorem 1, p. 126] to assert that A and co P are

w-u.s.c. In addition, since p(U,V) = p(U,V) for any subsets U, V of E

and p denotes the Hausdorff metric derived from the weak, topology, we

can assert that co P is also jointly h -continuous. But this clearlyJ J w '

implies

w-lim co P(t ,x ) C co P(t,x) as (t ,x ) * (t,x)
n n — n n

Finally, observe that P(t,*) and A( t
,

* ) are h-continuous on S for
A

all t in T on account of the fact that the weak topology is weaker than

the norm topology.

Now extend A| , , P , to T x Sx
by choosing the same, convex,

IVs
* Vs

x

subset Q of Q for all t in T/T and for all x in S and such that

Q has nonempty norm interior. All the hypotheses of Theorem 1 are

satisfied and for any n in N, we can appeal to Theorem 1 to assert the

.n , ,1
Z, u(T/T ) < e/2

n
existence of a compact set T £ Z, u(T/T ) < e/2 , f e S such that

n n a

for all t in (T/T )
n

f (t) £ A(t,f ) and A(t,f ) f\ P(t,f ) = U}.
n n n n

We can thus manufacture a sequence (f } v , each of whose elementsn L n ' n_> 1

lie in SY » Since S is w-corapact , there exists a subsequence, also
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denoted by If 1, such chat w-liui t = f* and f* e S . We can now
n

assert: that a.e. in T,

(i) f*(t) £ A(t,f*) and (ii) A(t,f*)n P(t,f*) = {<?>}.

Suppose not. Without loss of generality, let S e E, u(S) > be

the set of players for which both (i) and (ii)- are violated. Focus on

the violation of (i). Find an n such that for all n _> n ,(e/2 ) < (y(S)/4).

Then u( U X
T ) < (p(S)/2).

n>n

Now by [21, Theorem 1J , there exists B e E, y(B) = such that for

all t in (T/B), f*(t) e co lira sup [f (t)}. Pick t e (S/B {J T )

.

n_>n

Since A(x,*) is h -continuous and takes weakly compact values,
w

A(t,*) is w-u.s.c. Furthermore, since the domain and range of A(t,*)

are compact sets, by [3, Corollary, p. 122], A(t,") has a closed graph.

Hence anv cluster point f(x) of If (t)1 lies in A(x,f*). Since this is
n

true for any cluster point and since A(t,f*) is convex, we can assert

that f*(i) e co {f(x)} C A(t,f*), a contradiction to the fact that t is

in S.

Now focus on (ii). Suppose there exists y in A(T,f*)/"N P(r,f*).

Since both A and P have weakly open lower sections, there exists

a such that for all n > n^, y e A(x,f*) f\ P(x,f*). Now choose n to be— n n

greater than Max (n ,n ), and we obtain a contradiction. fl
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Footnotes

Strictly speaking, (x ,x^) in f(x ,x ) refers to a vector whose
t t t t

t-th coordinate is x . However no confusion should result.
t

2
Toussaint emphasizes that her results do not even require the

underlying topological space to be Hausdorff, see [32, Footnote 3, p.

100] .

3
These are also termed abstract economies by Shaf er-Sonnenschein

[31]; also see below.

4
Hence the absence of the local convexity requirement on the

topological vector space in Theorems A and B.

As is pointed out in [19] , this difficulty is also present in

Schmeidler's work [30] and has nothing to do with non-ordered pre-

ferences as such.

This is in view of the fact that X is integrably bounded.

The reader can check that this is the essential result in the

proof of her Theorem B quoted in the Introduction above.
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