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Asymptotic Theory and Econometric Practice

Roger Koenker

The classical paradigm of asymptotic theory rests on the following "willing suspension of

disbelief." We are asked to imagine a colleague with an extremely diligent research assistant in

the throes of specifying an econometric model. Daily, the RA arrives with buckets full of

independent new observations, but our colleague is so uninspired by curiosity and convinced

of the validity of his original model, that each day he simply reestimates this original model

without alteration using larger and larger samples.

We estimate a poisson model of the specification of wage equations in the econometric

literature based on a sample of 733 equations from 156 papers. The results strongly suggest

that the classical paradigm is seriously flawed: the number of parameters estimated in wage

equations, say p tends to infinity as the sample size tends to infinity, and, roughly, p
A/n tends

to a constant. Should we abandon our cherished beliefs in consistency and asymptotic nor-

mality to the dustbin of irrelevance?

On the contrary, the forthright admission that in realistic econometric settings p —
* oo

with n, offers an opportunity for an even more challenging (and informative) asymptotic

theory. Huber(1973) was apparently the first to observe that under rather mild regularity con-

ditions on the sequence of designs consistency and asymptotic normality of the least squares

estimator in linear models was possible if p/n — 0. Portnoy( 1984, 1985) extending results of

Huber and others has shown that similar results may be established for a broad class of M-
estimators for linear models when p log{p)/n -* 0. We survey these results and report on

some similar results for L-estimators for the linear model of the type proposed in Koenker and

Bassett(1978).





1. Introduction

The classical paradigm of asymptotic theory in econometrics rests on the following "wil-

ling suspension of disbelief." We must imagine a colleague in the throes of specifying an

econometric model. Daily, an extremely diligent research assistant arrives with hundreds of

(independent) new observations, but our imaginary colleague is so uninspired by curiosity and

convinced of the validity of his original model, that each day he simply reestimates his primal

model-without alteration-employing his ever-larger samples.

Is this a plausible meta-model of econometric model building? Casual observation sug-

gets that it is not. The parametric dimension of econometric models seems to expand inexor-

ably as larger samples tempt the researcher to ask new questions and refine old ones. Indeed,

this natural temptation is formally justified by the extensive literature on pre-testing and

model selection. As larger samples improve the precision of our estimates, our willingness to

accept bias in exchange for further improvements in precision inevitably declines.

In the next section we propose a simple, yet we hope plausible, meta-model of the

econometric model specification process. And we present some empirical evidence on the

specification of models of wage determination. We conclude from this exercise that the

parametric dimension of wage models grows roughly like the fourth root of the sample size.

The hypothesis of classical asymptotic theory that parametric dimension is fixed, i.e., indepen-

dent of sample size, is decisively rejected.

Should we abandon our cherished beliefs in the consistency and asymptotic normality of

econometric methods? Are the approximations suggested by fixed-/? asymptotic theory

"irrelevant" to the "real world" of econometric practice? In Section 3 we argue, on the con-

trary, that the forthright admission that p—oo with n, offers an opportunity for a challenging

and much more informative new form of asymptotic theory. We begin by reviewing results of

Huber (1973) on the large sample theory of the least squares estimator in linear models with

p— oo. The recent results of Yohai and Marrona (1979) and Portnoy (1984) on Iarge-p asymp-



totics for other m-cstimators are then surveyed. And we conclude with some remarks about

extending these results to the 1-estimators for linear models introduced in Koenkcr and Bassctt

(1978).

2. Econometric Practice: A Meta-Model of Wage Determination Models

Models of wage determination offer an unusually rich and revealing source of data on

the practice of model specification in econometrics. The "wage equation" pervades the

applied econometrics literature; models of discrimination in employment, the effects of unions,

returns to eductaion and of wage determination. The development of several large scale panel

surveys of labor market experience has facilitated the rapid growth of this empirical literature.

A meta-model is, of course, a model of models. As suggested in the previous section, we

are primarily interested in modeling the dependence of the parametric dimension of models,

say p, on the sample size of the available data, say n. Since the proposed dependent variabie,

p, is inherently a positive integer it is natural to begin with Poisson models in which the inten-

sity (or rate) is taken to be some parametric function of the sample size and perhaps other

characteristics of the research.

The data which we will analyze consists of 733 wage equations reported in 156 papers in

mainstream economics journals and essay collections over the period 1970 to 1980. For each

equation we observe the number of parameters estimated, the sample size, date of publication,

and subject classified into four categories. We also record the number of equations reported

in each paper which is used to weight the observations. Inevitably, there are ambiguities in

interpretation of the data. What constitutes an equation? Usually, this is quite straightfor-

ward, however, occasionally one sees samples split by age, race, sex, etc., and estimated with

and without homogeneity constraints on the coefficients. Our policy in these cases was to

interpret the disaggregated form of the equation as a single equaton with say, mp, parameters,

not as m distinct equations with p parameters. Frequently, there are non-wage equations in

the surveyed papers; these are remorselessly ignored. Equations must have wage, or some



function of wage as the dependent variable. Throughout, we have weighted observations on

equations by the reciprocal of the number of equations appearing in the published paper. This

tends to alleviate the problem of over-representation in the sample by a few (candid) "fishing"

enthusiasts who report a large number of equations in a single paper.

It would be barbaric in the extreme to adopt a notation in which p was regressed on n,

so we will revert to the more civilized convention of denoting our observed dependent vari-

able by y, the sample size variable will be denoted z, and the vector of explanatory variables

will be denoted x. Our meta sample size, 733, may thus be denoted simply as n, and the

dimension of x by p. This notational recursion makes the world safe for meta-meta-

econometrics.

For the Poisson model we may write, for a typical observation

P(Y=y) = e~x\<'/y\

with the rate parameter A is expressed, e.g., as,

A = exp(x£) = exp fa + fa Io8 -

In this form, the expectation and variance of the random variable Y are both equal to the

value A. This is not entirely implausible since we might expect that the dispersion of model

size would increase with its expectation. The Poisson hypothesis is obviously much stronger

than this vague presumption of monotonicity and may be subjected to explicit test. This prob-

lem is addressed below.

The simplest, and therefore perhaps the most compelling, of our estimated meta-models

yields
1

1
All estimation of Poisson models reported in this paper was carried out in the GLIM

(Generalized Linear Interactive Modeling/System Release 3 Baker and Nelder (1978) see also

McCullough and Nelder (1983). Reported standard errors beneath the coefficients in all pois-

son models are based on the GLIM quasi-likelihood model in which V{Y) = c^EiY) with a2 a

free parameter. It should be emphasized that in cases on overdispersion (a2>\) strict adher-

ence to the Poisson assumption that a2 = 1 can seriously bias standard errors toward zero.



log A = 1.336 + 0.235 log z n n
(0.149) (.017)

v
' '

Thus, roughly speaking, a 1% increase in the sample size of a wage determination model

induces a 1/4% increase in the number of parameters of the model. This parsimony elasticity,

or for the sake of brevity, "parsity," is, perhaps, the critical parameter of meta-econometrics. It

will be denoted as ir below. To put it slightly differently, p/n 1^ is roughly constant (= log

1.336 « 4.) over the range of observed wage equation models. It should be emphasized that

the hypothesis of classical asymptotic theory that the dimension of parametric models is

independent of sample size: fi2 - in (2.1) is decisively rejected by the data.

Our simple bivariate model is unsatisfactory in several respects:

1.) It predicts poorly for small n, implying extravagently prodigal models for n < 100,

and negative degrees of freedom for n < 10 .

2.) The model, in GLIM terminology, is seriously overdispersed, i.e., the Poisson hy-

pothesis that V(Y) = E(Y) is not supported by the data. The usual GLIM diagnostic

is the estimated scale parameter

a = (n-p)-1
i:(y

i
-\

i )
2
/\ i

is 4.73 in this case and significantly different from the hypothesized value of one.

3.) There are a few highly influential observations with z.'s (sample sizes) above

500,000.

Thus the narrow confidence interval on the coefficient of log z in (2.1) constructed con-

ditional on this specification of the meta-model is far too optimistic. We have experimented

with several alternate functional forms of the model for the conditional expectation of model

size. The obvious tactic of introducing a log quadratic term is (unfortunately) extremely sen-

sitive to the observations alluded to in point (3.) above. With those observations, we obtain,

log A = -.438 + .663 logz -.0245 (log z f n 2)
(512) (.118) (.0067)

while without them we have,

log A = 1.737 + .0581 log z + .01543 (log zf (2 3)
(512) (.128) (.0078)

In the former the model predicts that model size declines after roughly n = 100,000, whereas



the latter implies smoothly increasing parsity. In both cases the parsity at mean2 sample size

(n w 1000) is roughly comparable to our simple model, n = .32 for (2.2) and n = .27 for (2.3). It

is admittedly disturbing to find that the rise and fall of parsity is so sensitive to a few large-

sample observations from our meta-sample. However, such sensitivity, especially in quadratic

models, is often inevitable. Further, one may wish to question whether the observations with

n > 250,000 are really drawn from the same population as the other observations of our meta-

sample. For these cases, computational considerations enter the model specification process in

a nontrivial way and may eventually come to dominate the "scientific" considerations which

we emphasized in Section l.
3 Thus we believe that there should be some a priori preference for

(2.3) over (2.2).

We have also experimented with models in log (log n). The estimated model

log A = -.777 f 1.947 log log z n 4)
(315) (.148)

K
'

yields a slighly better fit than our simple meta-model (2.1) and at mean sample size it implies a

parsity of ir = .28. The log-log form has the attractive feature that the parsity parameter is pro-

portional to the reciprocal of log (sample size), and therefore tends to zero as n—><x>. Figure

2.1 illustrates the differences among the four models reported above with respect to parsity as

a function of sample size. One sees clearly in the figure that the differences between the func-

tional forms are primarily in the extremes of the observed sample sizes.

We have emphasized above that all of the Poisson models suffer from over-dispersion,

that is the estimated variance of dependent variable is roughly 3-4 times the mean that is

predicted by the Poisson model. One interpretation of this overdispersion in Poisson models

is that there is some inherent variability in the rate parameter A around its hypothesized (log)

2 Since sample sizes are logged this mean (« = 1 04 1 ) is geometric.

1 This comment may seem to undercut our contention that p —>oo with n, which if taken
absolutely literally is evidently asymptotically computationally infeasible. Of course, what is

relevant is what happens in the range of practical experience for which conventional asymp-

totic theory is expected to provide a guide; in the case of wage equations this seems to be

roughly sample sizes in the range 50-500,000. Here the evidence seems overwhelming that p
increasing gradually with n.



linear form. The classical approach to treating this (common) syndrome is to hypothesize a

gamma distribution for the intercept of the rate equation, and on integrating out this random

parameter one obtains a negative binomial model for the dependent variable. See e.g. John-

son and Kotz(1969) and the references cited there. This approach may be traced to

Anscombe (1949) who applied it in entomology, a recent application in econometrics is Haus-

man and Griliches (1983), and an extremely insightful view of this problem and parametric

heterogeneity in general is provided by Cox (1984). This interpretation is also set forth in

Cheshire (1984).

Tests for parametric heterogeneity in Poisson models may be developed along the lines

suggested by Lancaster (1984) based on Cheshire (1984), White (1982), Cox (1984) and others.

The basic information identity

f 3 log/ d log /
'

|

36 as
u = E »*- + E

aeae'

and its extensions may be used to construct tests which are readily computed as nR 2 from a

regression of a column of ones on a matrix of n by p(/? + l)/2 elements of D augmented by the

matrix of gradient "observations" g =31og/ /dd evaluated at the mle. "Explanatory power" in

this regression suggests systematic departures in the fitted model from the hypothesis that D

and g have zero expectation. We have conducted a number of these tests restricting attention

to the components of [Dg] corresponding to the intercept parameter in the log A equation.

Here the test is particularly simple since

i=(^-A,) 2 -A,

and

gi = y* - K

where £. = e'
iP

. The test statistic is 133.1 for meta-model (2.1) for example, which is clearly

an implausible value for a x
2 on 2 degrees of freedom variable.



Unfortunately, the negative binomial model while quite attractive from a number of per-

spectives is quite unwieldy computationally. Some initial forays have been made using the

remarkable quasi-mle software of Spady (1984). This approach is capital intensive, but avoids

the difficulties of coding analytical derivatives, and has the singular virtue of producing

numerically reliable standard errors.
4 In the simple log linear model, we obtain

log a, = 1.039 + .2721ogz
(.22) (.033)

with j3 = 1.51 (.13). The parsity parameter in this model is independent of z and at .272

roughly the same as in the simple Poisson model. Negative binomial models using other

specifications of the conditional mean function also produce results closely resembling their

poisson counterparts.

3. Asymptotic Theory: A Practical Paradigm

We are faced with a great dialetical discrepancy. Theory offers us a static view of the

econometric model, a model "cast in concrete," unperturbed by the influx of new data. The

practice of econometrics, however, offers quite a different, more plastic, view: models gradu-

ally expanding and elaborating themselves in response to the availability of new data. How

are these views to be reconciled?

The answer, of course, is to expand the paradigm of classical asymptotic theory. Huber

(1973) was apparently the first to observe that, under rather mild regularity conditions on the

sequence of designs, consistency and asymptotic normality of the least-squares estimator in

linear models was possible if p In —(). These results are quite elementary, on the same level as

the fixed p asymptotics which are done in introductory graduate courses, and therefore

should be better known. To my knowledge, only the recent text of Amemiya (1985) treats any

of these questions and even there the implications are only implicit.

4 Standard errors are computed by numerical approximations to the general quasi-mlc

formula V = J~l
I J~l where / denotes Ed\ogf /ded\ogf /dO' and J denotes Ed^ogf /dOdO'.
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To illustrate the general approach consider the simplest application the classical linear

model with iid disturbances, and the asymptotic behavior of the least-squares estimator. For

fixed p, and error distributions with finite variance, we know that f3-+/3 , strongly iff

(XX)~i-*0. See Lai, Robbins and Wei (1979), for a proof this is a surprisingly delicate and

difficult result. For />-k» with n, consider the "hat" matrix5 H = X{X'X)~lX' We know the

following: ha e [0,1] , tr(H) - p , HH = H Thus, since p=Hy,we have

Var($
i ) = £l

hZo2 = h
ii
o* (3.1)

*=/

so by Chebyshev's inequality

PUh-EPi] >/i,-4 (3-2)

Proposition 3.1. (Huber) £, is weakly consistent, i.e., 9i—*
p Xifi iff h{

—»0.

Proof. Sufficiency above. Necessity:

(3.3)

For independent random variables, X, Y,

P[\X+Y \>e] > P[X > e]P[Y>0] + P[X<-e]P[Y<0] > mm{P[X>e],P[X<-e])

so

P[\Pi-EPi | > e] > mmiPlUiZe/ki] ,/>K<-e//i t ]}

and if /i
t
-+0, then the rhs is bounded away from zero

Note that h = max, , |/r
it
\>—T,h

ii
= —Tr{H) = p/n, so h->0—>p/n—>0 so p /n>0 is neces-

n n

sary, but not sufficient for weak consistency.

5 This terminology is due to Tukey and may be attributed to the fact that H "puts the hat

on v", i.e., 9=Hy.



Now consider an arbitrary linear function of /?, say a'fi, \\a\\ = 1. Assume F isn't Gaus-

sian, and reparameterize so that

X'X = I
P

Hence,

and

P-x'y

a = a'fi = a X v = s y

where

s's =a'X'Xa = 1

SO

Var(a) = <?

Proposition 3.2. (Huber) a is asymptotically Gaussian, iff J" = max, \s{ \

-> 0.

Proof. If T—»0 then either a doesn't have a limiting distribution or it is a convolution of

two parts: one of which is F, thus not Gaussian, by hypothesis. If s = max |s, |—<-0,then the

Lindeberg condition is,

cr cr

-—Eu 2I{\u |
> ea/T) (since s 's = 1)

cr

=—>0 since T-*0

A
Proposition 3.3 (Bickel) Estimable functions a'/9, are asymptotically Gaussian with

natural parameters iff the fitted values are consistent.



so
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Proof. (Huber) Since X'X = I

5,
2 = (Ex

tJk
a

fc )
2 <(Exi)(Ea

fc

2
) = /i

|

.

ft-frO->J-»0«>a-»"G

This establishes the "if, the "only if follows from the decomposition (3.3) and the hypothesis

that m, is not, itself, Gaussian

These results for the least squares estimator are extremely encouraging. What happens in

nonlinear cases? The simplest nonlinear case is robust regression for linear models. Here all

the nonlinearity seems to be very well circumscribed, however, already, serious difficulties

arise. Huber (1973), on the basis of informal expansions and Monte Carlo, onjectured that

p
2/n-+0 was necessary to achieve a uniform normal approximation for a typical m-estimator

in the absence of any symmetry conditions on the error distribution. Subsequently, Yohai and

Marrona (1979) showed that p
3/2h—>0 implied a uniform normal approximation, but this

means, since h=0(p/n), that p
bl2/n would be sufficient. Huber (1981) conjectured that

ph -+0 was sufficient and that yfph —>0 was necessary if the error distribution was permitted to

be asymmetric. For symmetric errors one might hope that h —() was sufficient as in the least-

squares case. Huber (1981) contains an elementary proof for the case p
2h—>0.

Portnoy (1984, 1985) has recently improved these results and verified an important con-

jecture of Huber. In particular, he shows that under reasonably mild conditions on X,6

p(logn)/n—>0, suffices for norm consistency of m-estimators based on (smoothly) monotone V

functions. Asymptotic normality is more problematic, and under slightly stronger regularity

conditions, Portnoy shows that if (p\ogpfl2/n-*Q then a uniform normal approximation is

possible. Note that this essentially, except for the factor {logpfl2 , verifies Huber's conjecture.

Unfortunately, Portnoy's arguments which are based on density expansions are extremely

6 Conditions which roughly require that |x
t |/| |-xr,

I I
be smoothly distributed on the unit

sphere in R p
. As would be the case if they were iid and had a nice multivariate density.
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complex and delicate. The situation is somewhat better for monotone V>, but even there the

sledding is rough.

Perhaps here we should pause to reconsider the implications for the wage equation

literature considered in the previous section. Recall that our empirical meta-modcl of wage-

equations implied that p*/n was roughly constant over the observed range of sample sizes.

Thus, the Huber-Portnoy results would appear to be extremely encouraging. However, we

should be careful to remember that they rely on certain regularity conditions on the sequence

of designs in addition to the rate conditions on the growth of p. These conditions as Portnoy

shows are satisfied by design sequences drawn at random from a distribution "not too concen-

trated in any fixed directions." This, in a simpler form, already arose in the case of least

squares where h-*0 implied p/n—*Q as a necessary condition, but clearly the h condition, is

much more stringent. For example in the p sample design it requires that the number of

observations in each cell tends to infinity as n—»oo.
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