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Abstract Peruvian glaciers are important contributors to dry season runoff for agriculture and hydropower,
but they are at risk of disappearing due to climate change. We applied a physically based, energy balance

melt model at five on-glacier sites within the Peruvian Cordilleras Blanca and Vilcanota. Net shortwave
radiation dominates the energy balance, and despite this flux being higher in the dry season, melt rates are
lower due to losses from net longwave radiation and the latent heat flux. The sensible heat flux is a relatively
small contributor to melt energy. At three of the sites the wet season snowpack was discontinuous, forming
and melting within a daily to weekly timescale, and resulting in highly variable melt rates closely related to
precipitation dynamics. Cold air temperatures due to a strong La Nifia year at Shallap Glacier (Cordillera
Blanca) resulted in a continuous wet season snowpack, significantly reducing wet season ablation. Sublimation
was most important at the highest site in the accumulation zone of the Quelccaya Ice Cap (Cordillera
Vilcanota), accounting for 81% of ablation, compared to 2%-4% for the other sites. Air temperature and
precipitation inputs were perturbed to investigate the climate sensitivity of the five glaciers. At the lower

sites warmer air temperatures resulted in a switch from snowfall to rain, so that ablation was increased via the
decrease in albedo and increase in net shortwave radiation. At the top of Quelccaya Ice Cap warming caused
melting to replace sublimation so that ablation increased nonlinearly with air temperature.

1. Introduction

Most of Peru's population and economic activities are concentrated within the dry coastal plains and western
slopes of the Andes, which rely on the Cordilleras as a vital source of runoff (Vergara et al., 2007). Glacier runoff
is crucial to sustain Peruvian water resources, especially in the dry season (~May to October). Around 70% of
the world's tropical glaciers (~1,603 km?, RGI 6.0) are located in Peru, and they can be found in three main re-
gions: the Western Cordillera north of 13°S, classified as the northern wet outer tropics (which includes our first
study region, the Cordillera Blanca near Huaraz); the Eastern Cordillera south of 13°S, classified as the southern
wet outer tropics (which includes our second study region, the Cordillera Vilcanota, near Cusco); and finally the
glaciers of the Western Cordillera south of 15°S, classified as the dry outer tropics (Sagredo & Lowell, 2012;
Seehaus et al., 2019).

In the Rio Santa catchment, a 12,200 km? basin, which drains the western slopes of the Cordillera Blanca down
to the coastal city of Chimbote, the average glacier contribution to streamflow above the gauge at the Callejon
de Huaylas (area of 4,900 km?, ~8% glacierized) is estimated to be at least 12% of annual discharge (Mark &
Seltzer, 2003), rising to around 40% in the dry season (Mark et al., 2005). This glacier runoff is crucial in sustain-
ing the livelihoods of the population and economy of Peru. Irrigated export agriculture is expanding (Drenkhan
et al., 2015), with melt water from the Rio Santa providing 6.8% (rising to 52% during extreme droughts) of the
irrigation water for export agriculture within the Chavimochic scheme on the Pacific coast (Buytaert et al., 2017;
Drenkhan et al., 2015). Hydropower is also a significant contributor to Peru's energy supply (International Energy
Agency, 2018) and municipal water demand is likely to increase due to population growth (Drenkhan et al., 2015).
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An analysis of long-term runoff records suggests that glacier recession has already led to declining river flows
in the Rio Santa catchment (Baraer et al., 2012). Water security is threatened by the continued recession of Pe-
ruvian glaciers. Glacier area has declined in the Cordillera Blanca from 800 to 850 km? in 1930 (Georges, 2004)
to 449 + 56 km? in 2016, with the rate of change increasing in recent decades (Silverio & Jaquet, 2017). In the
Cordillera Vilcanota, ice volume losses of around 40%—45% were reported between 1985 and 2006 (Salzmann
et al., 2013), the Quelccaya Ice Cap decreased in area by 19.4 km? (31%) between 1980 and 2010 (Hanshaw &
Bookhagen, 2014) and Quisoquipina Glacier reduced in volume by 0.06 km? (14.7%) between 1990 and 2010
(Suarez et al., 2015). Glacier change in these regions follows the trends found over the whole of Peru, with See-
haus et al. (2019) reporting a glacier area loss of 548.5 + 65.7 km? (29%) between 2000 and 2016, with an average
specific mass balance of —296 + 41 kg m~2 yr! Similarly, Braun et al. (2019) reported mean glacier elevation
changes over Peru and Bolivia of —0.40 + 0.08 m a~! (2000-2013) and —0.24 + 0.09 m a~! (2000-2013/14) for
the southern wet outer tropics and dry outer tropics, respectively, although the glaciers in the Peruvian northern
wet outer tropics were almost in balance (mean elevation change —0.01 + 0.13 ma~!, 2000-2012), attributed to
enhanced moisture in this region.

To elucidate the mechanisms of mass change of Peruvian glaciers and their sensitivity to climatic forcing, it is
necessary to understand their energy balance and ablation characteristics. In the Cordillera Blanca distributed
mass balance modeling over Shallap Glacier revealed that net shortwave radiation dominates the energy balance,
with melt energy higher in the dry season due to greater dry season net radiation (Gurgiser et al., 2013). The phase
and quantity of precipitation below the equilibrium-line altitude (ELA) and its influence on the snowpack was
the main control on glacier wide mass balance, with sublimation more importantly in the dry season (Gurgiser
et al., 2013). The importance of dry season sublimation was also found on Artesonraju Glacier, with measured
sublimation increased under conditions of low specific humidity, moderate wind speeds, and rough surface con-
ditions (Winkler et al., 2009). On Cuchillacocha Glacier, Aubry-Wake et al. (2018) identified the importance of
the longwave flux from nearby exposed rock in increasing daily melt near the glacier margins (by 106 W m~2 on
average).

In the Cordillera Vilcanota, analysis of the energy balance conditions on Quisoquipina Glacier revealed that the
net shortwave radiation also dominated the energy balance, primarily controlled by albedo and hence by snow-
fall. The energy available for melt was highest between September and December (Suarez at al., 2015). Perry
et al. (2017) investigated the character of the precipitation on Quelccaya Ice Cap, finding that the diurnal precip-
itation distribution had a main afternoon and secondary nighttime peak, and was nearly exclusively solid phase.
Graupel (heavily rimed snow crystals associated with convective precipitation) occurred frequently, comprising
more than 30% of precipitation hours in all months except May (Perry et al., 2017).

Despite the advances of these individual studies, they all focused on a single site, occasionally comparing with
data from Bolivia and Ecuador (Perry et al., 2017; Suarez et al., 2015). A better understanding of glacier con-
tribution to regional water supply necessitates the assessment of the energy balance and ablation characteristics
across Peruvian glaciers covering a variety of glacier and climate settings.

To address this, we focused on the Cordillera Blanca and Cordillera Vilcanota (the largest and second largest trop-
ical glaciated mountain ranges in the world, respectively [Drenkhan et al., 2015]), which have never previously
been the subject of a comparative study. We collated data from five glaciers, three in the Cordillera Blanca and
two in the Cordillera Vilcanota (Figure 1) and applied the energy and mass balance module of the land surface
model Tethys-Chloris at the point scale to all five records. To contextualize the results from these five sites
we also investigate the climatology and glaciology of their catchments: the upper Rio Santa catchment in the
Cordillera Blanca (4,953 km?, draining to the Callejon de Huaylas), and a catchment containing the Cordilleras
Vilcabamba, Urubamba and Vilcanota, and the Quelccaya Ice Cap (11,048 km?, draining to the Rio Urubamba
at Santa Maria, henceforth the Vilcanota catchment) (Figure 2). This study aims to understand the key drivers of
the energy and mass balance of these five glaciers and to determine the differences between the Cordillera Blanca
and Cordillera Vilcanota. To do this we will address the following objectives:

1. Determine the relative importance of each of the energy fluxes on melt rates of the five glaciers.
2. Determine the temporal variability and spatial differences between sites in the magnitude of ice melt, snow
melt, and sublimation.
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Figure 1. Glaciers and meteorological stations examined in this study. The full details of the meteorological stations are
given in Table S3 in Supporting Information S1. Panel (d) gives an overview of Peru and the location of the Cordilleras
Blanca and Vilcanota, with panels (a) to (c) showing the study sites in the Cordillera Blanca and panel (e) showing the study
sites in the Cordillera Vilcanota. The elevation data and underlying hillshade are from ASTER GDEM v.3, which is a product
of METI and NASA. The glacier and lake outlines are from the National Peruvian Glacier and Lake Inventories, respectively.

3. Quantify the sensitivity of the energy and mass balance at each of the five sites to changes in air temperature
and precipitation.
4. Determine the key differences between the Cordillera Blanca and Cordillera Vilcanota glaciers.

2. Regional Climate and Glacier Characteristics

The climate of our two study regions is characterized by a wet austral summer and a dry austral winter, caused by
switching of the synoptic flow from easterly in the wet season, which transports moisture from the Amazon to the
Andes, to westerly in the dry season when the inter-tropical convergence zone is further north (Garreaud, 2009;
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Figure 2. The average (from 1980 to 2018) daily temperature at 2 m from WRF (red shading) across the upper Rio Santa
River Basin (a), and the Vilcanota region, encompassing the Cordilleras Vilcabamba, Urubamba, and Vilcanota (b). The
locations of the glaciers are shown in blue (from the INAIGEM 2018 glacier inventory, which do not match exactly with the
glaciers in the WRF model, due to differences in resolution). Model elevation contours are also shown (black dashed lines),
along with the locations of the automatic weather stations referred to in this paper (maroon circles). Panels (c) and (d) are
the same as (a) and (b) but for average yearly precipitation (blue shading). See Section 3 for the full names of the study site
glaciers.

Garreaud et al., 2009; Marengo et al., 2012; Vera et al., 2006). By contrast, the annual temperature range is small,
unlike the large diurnal temperature range (Juen et al., 2007; Kaser et al., 2003).

The climate of the Peruvian Andes is considerably influenced on interannual timescales by the El Nifio-Southern
Oscillation (ENSO) (e.g., Vuille et al., 2003). El Nifio (La Nifia) episodes are characterized by anomalously warm
(cold) temperatures, which increase (decrease) ablation across the tropical Andes (Francou et al., 2004; Maussion
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et al., 2015; Thompson et al., 2017). However, the effect of ENSO fluctuations on precipitation is spatially varia-
ble across Peru, with the sign of precipitation change varying with latitude, El Nifio regime, and in southern Peru,
with distance to the Amazon (Jonaitis et al., 2021; Lavado-Casimiro & Espinoza, 2014; Sanabria et al., 2018)

There is strong evidence that air temperatures in the tropical Andes will increase in the future, with a warming
of 4.5-5°C predicted by the end of the 21st century under the SRES A2 scenario, which will be enhanced over
the Cordillera Blanca (Urrutia & Vuille, 2009; Vuille, Francou, et al., 2008). Yarleque et al. (2018) projected a
warming over the Quelccaya Ice Cap of 2.4°C under RCP 5.4 and 5.4°C under RCP 8.5 by the end of the 21st
century. However, there is less certainty in the sign of precipitation changes. Enhanced December-January-Feb-
ruary (DJF) precipitation is expected over southern tropical South America, with a precipitation increase more
likely north of ~12°S, but a decrease further south (Urrutia & Vuille, 2009). Strong drying is suggested over the
central Andes with Neukom et al. (2015) expecting a DJF precipitation decrease under RCP 8.5 of 19%-33% and
Minvielle and Garreaud (2011) a 10%-30% reduction under moderate to strong emissions. This precipitation
reduction will likely lead to both reduced accumulation and increased energy for ablation over the glaciers of the
Cordillera Vilcanota (Kronenberg et al., 2016).

To investigate the climate of the two study regions we analyze long-term, bias-corrected outputs from the Weath-
er Research and Forecasting (WRF) model version 3.8.1, which was run from 1980 to 2018 over each of the study
catchments at a 4 km horizontal resolution (Text S1.1 in Supporting Information S1). Glaciers in the Rio Santa
catchment are only found on the mountains on the eastern side (Cordillera Blanca), whereas the glaciers in the
Vilcanota catchment are found in the north (Cordilleras Vilcabamba and Urubamba) and south-east (Cordillera
Vilcanota) (Figures 2a and 2b). The spatial variation in air temperature across both regions is primarily con-
trolled by elevation (Figures 2a and 2b), with slightly cooler dry season air temperatures and a greater seasonal
difference in Vilcanota than in the Rio Santa (Figure 3a). Due to the higher elevations of the Vilcanota compared
to the Rio Santa glaciers (Figures 3e and 3f), dry season air temperatures over the glacier areas are lower in the
Vilcanota region, but in the wet season are similar (Figure 3a).

Spatial patterns in precipitation in the Rio Santa are primarily determined by elevation, with the highest precipi-
tation over the Cordillera Blanca (Figure 2c). In the Vilcanota catchment precipitation totals are much higher over
the Cordilleras Vilcabamba and Urubamba than over the Cordillera Vilcanota toward the south (Figure 2d). Here,
precipitation comes most commonly from the northwest, with moisture originating from deep moist convection
over the Amazon lowlands (Perry et al., 2014). The north-south spatial precipitation gradient therefore results in
a lack of an elevation dependent precipitation gradient (Figure 3d).

The lower total and wet season precipitation within the Vilcanota catchment (Figure 3b) results in a comparably
less favorable climate for the existence of glaciers compared to the Rio Santa. This is also reflected in the higher
off-glacier wet season snowlines in the Vilcanota (Figure 3e). Consequently, the minimum and median glacier
elevations are higher in the Vilcanota than in the Rio Santa (Figures 3e and 3f).

3. Study Sites and Data

In this study, we model the energy and mass balance at point locations on five glaciers across the two glacierized
regions described above: the Artesonraju (AG), Shallap (SG), and Cuchillacocha (CG) Glaciers in the Rio Santa
region, and the Quelccaya Ice Cap (QIC) and Quisoquipina (QQG) Glacier in the Vilcanota region (Figure 1 and
Table S3 in Supporting Information S1). All the Rio Santa stations and the Quisoquipina station are near the
glacier snout, whereas the Quelccaya Ice Cap station is at the top of the accumulation area (Figure 3f). Figure 3f
shows that the Vilcanota study glaciers do not reach down to the elevation of the Rio Santa stations. Hourly data
from on-glacier meteorological stations were available at all five glaciers, but not all on-glacier records were
complete or included all necessary variables to run the model. All data were carefully quality checked, and then
gaps in the on-glacier record were filled using data from near-by off-glacier stations whose data were transformed
to be relevant to the on-glacier site. Conversely, precipitation data were measured off-glacier at all sites except
Quelccaya. Where data gaps remained, they were either filled by a day of data on the same date of a randomly
selected year (if the records were long enough) or data were derived from the WRF model outputs. Full details of
the station instrumentation and data preprocessing are given in Text S2 in Supporting Information S1.
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Figure 3. Panel (a) is the average annual cycle in Weather Research and Forecasting (WRF) output air temperature at 2 m
(monthly averaged) over the Rio Santa (blue) and Vilcabamba, Urubamba, and Vilcanota regions (red), with the spatial
average calculated over the areas shown in Figure 2. The dotted lines show the average temperature over the glacierized

areas of both regions (where the WRF output has been regridded to a higher resolution [40 m] to ensure all glaciers are
represented). Shaded areas represent +2 standard deviations of the mean. Panel (b) is the same as (a) but for monthly
averaged precipitation. Panels (c) and (d) are the average total precipitation from the WRF output with elevation for each
season (December-January-February [DJF], March-April-May [MAM], June-July-August [JJA], September-October-
November [SON]) over the upper Rio Santa, and the Vilcanota-Urubamba-Vilcabamba region (see Figure 2 for regions)
(gray bars). The green line shows the number of WRF grid cells at each elevation, from which the average precipitation is
calculated. This shows that there are few WRF cells at the uppermost elevations, due to the 4 km model resolution, explaining
the gap in precipitation data at 5,400-5,600 m in the Rio Santa. The approximate elevations of the weather stations are shown
in red. The median elevation of the glaciers in the WRF model, and the 25th and 75th percentile are shown as black points
and bars, for each region. Panel (e) is the elevation distribution of the glaciers within the Rio Santa and Vilcanota catchments
with the mean catchment snowline in both seasons shown as a horizontal line. Panel (f) is the elevation distribution of the
study glaciers, including points showing the elevation of the on-glacier meteorological stations. The glacier outlines are from
the INAIGEM 2018 inventory, with the elevation data extracted from ASTER GDEM v.3, which is a product of METI and
NASA. See Text S1.2 in Supporting Information S1 for details of the methodology to derive the snowlines and Table S2 in
Supporting Information S1 for the data.
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The modeling periods at the on-glacier sites do not all overlap and they differ in length (from 20 months [Shal-
lap] to almost 7 years [Artesonraju]). Results are therefore given averaged per month or per season (wet season:
November—April and dry season: May—October) over all years. To assess the representativeness of the modeling
periods the WRF data averaged over 1980 to 2018 are compared with the WRF data averaged over the modeling
period at each location (Figure S3 in Supporting Information S1). This suggests that the precipitation and temper-
ature variation when station data are available is highly representative of the broader climatology over the last few
decades, except for cooler air temperatures at Shallap between January and June compared to average.

4. Model Description and Methods
4.1. Tethys-Chloris Energy and Mass Balance Model

The physically based model Tethys-Chloris (T&C) is used to simulate the mass, energy, and water fluxes at the
point scale at the five Peruvian study sites. T&C is a land surface model with an hourly time step that can resolve
the surface energy balance, soil and vegetation dynamics, processes of runoff generation and flow routing, and
the evolution of snow and ice packs (see Botter et al., 2021; Fatichi et al., 2012a, 2012b; Fatichi & Pappas, 2017
and Mastrotheodoros et al., 2020 for a description of the distributed model and its applications). For this study, we
use it at the point scale for computation of the surface energy fluxes and snow and ice mass balance.

The net input of energy to the snow/ice surface (dQ) is given by:
dO(T,) = R,(T,) + Q,(T;) + Qs (Ty) + H(T,) + 2E(T;) + G(T,),

where R, is net radiation, Q, the heat flux due to precipitation, Q, the heat released or gained within the snow-
pack due to melting or freezing of liquid water in the snowpack (Q, is not accounted for when the surface is ice),
H is the sensible heat flux, AE the latent heat flux, and G the ground heat flux. All fluxes are in W m~2 and we use
the convention of positive fluxes being directed toward the surface (this differs from previous T&C publications).
The prognostic surface temperature of the snow/ice surface (7,) is required to calculate the energy fluxes. It is de-
rived using an iterative numerical approach, which solves for 7 in a way that allows closure of the energy balance
while concurrently computing the mass of ice and snow melted and sublimated. Full details of the calculation of
all the individual fluxes and the snow and ice mass balance are given in Text S3 in Supporting Information S1.

4.2. Model Calibration and Uncertainty

The model has several physical and empirical parameters that need to be estimated. Surface roughness (z,,
20 Zom)» €MIssivity (), and the parameters for maximum snow density in melting and frozen conditions (p_f‘,f(}

and pf,foz) influence the mass and energy balance on the timescales of our simulations and are not known at our
sites. For the standard runs at all sites z,,, = 0.001 m with z,, = z,,, = 0.1 z,,, and ¢ = 0.97. Values of surface
roughness and emissivity are the same for snow and ice in T&C. For all sites apart from Quelccaya p;:[; = 600
and ps":oz = 450. These values are at the high end of the literature ranges, but resulted in a good comparison
with the SR50 data and were chosen based on the understanding that initial snow densities in the ablation area
of tropical glaciers are likely to be relatively high (Sicart et al., 2002). At Cuchillacocha, Quelccaya and for 8%
of the Artesonraju record, measured albedo and incoming longwave radiation were not available, and we used
parameterizations that introduced additional empirical parameters. Albedo was parameterized following Brock
et al. (2000), introducing the parameters describing the albedo decay and Pr,, the threshold precipitation required
to reset the snow albedo to that of new snow. Incoming longwave radiation was parameterized with the Dilley
and O'Brian (1998) and Unsworth and Monteith (1975) equations, introducing further empirical coefficients
(Text S3.1 in Supporting Information S1). For Cuchillacocha and Artesonraju we used the standard albedo and
longwave parameter values as given in the literature. At Cuchillacocha we checked the suitability of these param-
eterizations by comparing modeled net radiation with the 2 weeks of measured net radiation available (Text S3.9
and Figure S4 in Supporting Information S1). Calibration was necessary at Quelccaya since the deep snowpack
meant results were sensitive to the snow density and initial runs suggested modeled mass loss was too high. We
therefore calibrated Pr, (best value = 5 mm) and both the snow density parameters against SR50 snow depth data
(best value for both = 510 kg m~3). Although physically p! > pf,{ 02 the best results at Quelccaya were when they

sno
were equal, which may be due to the rarity of melting conditions or the deep snowpack.

FYFFE ET AL.

7 of 22



A7t |

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Atmospheres 10.1029/2021JD034911

To understand the model uncertainty due to variations in model parameters we performed a multiparameter
Monte-Carlo analysis at all five sites (the parameters and their ranges are given in Table S8 in Supporting Infor-
mation S1). We performed 1,000 model runs with randomly selected parameters from within assumed ranges.
Note, it was not possible to include variations in the Unsworth and Monteith (1975) parameters since this caused
instabilities in the calculation of surface temperature. The results of the Monte-Carlo analysis are given in Text
S4.2 and Figure S6 in Supporting Information S1.

4.3. Quantifying the Impact of ENSO and Sensitivity to Climate

To determine the impact of ENSO on the energy and mass balance at the study sites, the NOAA ONI (Oceanic El
Niflo Index) was correlated against the Artesonraju and Quisoquipina model outputs, since these sites had long
records (almost 7 years for Artesonraju, ONI range —1.7°C-1.6°C, and almost 5 years for Quisoquipina, ONI
range —1.1°C-2.6°C). The variables were averaged over rolling 3-month periods, to match the temporal reso-
lution of the NOAA ONI index, in which positive values are associated with El Nifio conditions and vice versa.
The analysis was conducted for all years in each rolling 3-month period. Linear regression was conducted if the
correlation was significant at p < 0.05.

To understand the climate sensitivity of each of the sites, we reran the model with changes to the air temperature
(0-6°C) and precipitation (—30% to +30%) inputs (both separately and combined). Unlike in the standard runs,
at all sites we used modeled albedo, so that changes in albedo due to changes to the snow cover duration could be
accounted for. The vapor pressure and dew point temperature were recalculated after changes were made to the
air temperature, to make sure that there was consistency between them. This results in an increase in the vapor
pressure with an increase in air temperature and vice versa. This will have an impact on sublimation rates and the
precipitation partition, since the Ding et al. (2014) precipitation partition implemented in T&C depends on the
vapor pressure (Text S3.7 in Supporting Information S1). At Quelccaya, the initial snow pack depth of 1,000 mm
w.e. was used for all the climate sensitivity runs. During warm conditions the model snowpack was completely
melted, initiating the melting of the ice pack underneath. There is 20-30 m of firn beneath the Quelccaya station
(Salzmann et al., 2013), so to replicate this the ice albedo was set to 0.53, a reasonable value for firn (Oerlemans
& Knap, 1998).

5. Results
5.1. Model Validation

To assess model performance the outputs were compared against surface height change measured using an SR50
sensor (for Shallap, Artesonraju and Quelccaya), ablation stakes (Shallap, Artesonraju, Cuchillacocha) and the
surface cover (ice or snow) as derived from albedo measurements (Shallap, Artesonraju, Cuchillacocha, Quiso-
quipina), and satellite imagery (Cuchillacocha). Full details of the validation are given in Text S4.1 and Tables
S9-S11 in Supporting Information S1.

The modeled surface height matches the SR50 records well (Figure S5 in Supporting Information S1), with
RMSE values in the order of tens of centimeters in most periods. The average RMSE across all periods is 0.360 m
at Shallap, 0.220 m at Artesonraju, and 0.141 m at Quelccaya. There is a tendency for the model to underestimate
surface height (overestimate mass loss) at Shallap (mean ME across periods is —0.251 m) and to overestimate the
surface height at Artesonraju (mean ME is 0.169 m), whereas the overall bias at Quelccaya is very small (mean
ME is 0.004 m).

Stake data were compared against cumulative ice mass loss (due to melt and sublimation) since stakes were
measured when the ice was snow-free. The stake data also confirm the good model performance (Figure S5 and
Table S10 in Supporting Information S1). At Shallap, modeled mass loss was between the values of the two clos-
est stakes in 2011, although melt was underestimated compared to the closest stake to the station (S7), whereas
in 2012 errors were small, with the mean absolute difference equating to 0.077 m w.e. At Artesonraju, modeled
mass loss was underestimated compared to the A14 stake in 2011, whereas modeled mass loss fell between the
range of the 2012-2013 stake measurements. At Cuchillacocha, modeled mass loss is high compared to the
mean of the 12 stakes measured over a 2-week period (the average difference is 0.055 m w.e.), although it still
fits within the range. The reason for the large range in stake values is likely observed ice weathering, resulting
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in cryoconite holes, which had not collapsed at all stakes. T&C cannot account for ice weathering processes and
small-scale spatial variability in ablation.

Comparisons of measured and modeled surface type showed that the surface was mainly modeled correctly at
Shallap (85.5% agreement), Artesonraju (65.7% agreement), and Cuchillacocha (76.6% agreement using 2 weeks
of measured albedo and 68.4% agreement when the surface was compared to Planet Labs imagery). At Quiso-
quipina, the agreement between simulated and observed surface was lower (54.3%), with a bias toward modeling
ice when the surface should be snow. This could be explained by the evening snowfall melting through the day
to leave bare ice in the late afternoon, which would affect the modeled surface type but have little influence on
measured albedo.

5.2. Micro-Meteorology

Here, we use the model simulations and input meteorological data to characterize the micro-meteorology at the
sites. Wet season air temperatures are warmer than in the dry season, with the difference between wet and dry
season air temperatures greater at the Vilcanota sites than the Rio Santa sites (Figure S7 in Supporting Informa-
tion S1). The air temperature at all Rio Santa sites (Shallap, Artesonraju, and Cuchillacocha) is similar, although
shading delays the morning rise in air temperature at Cuchillacocha. Air temperatures are colder at Quisoquipina,
and colder still at Quelccaya due to their higher elevations. Peak wind speeds are much higher at Cuchillacocha
(7.7 ms~!) than at the other sites (3.0-4.5 ms~!), with wind speeds in general higher in the dry compared to wet
season.

The wet season is characterized by much higher precipitation amounts compared to the dry season, with mean
wet season precipitation ~3 to 6 times dry season precipitation. There is a clear afternoon peak in wet season
precipitation, although the peak is earlier (~15:00-16:00) and smaller in magnitude in the Vilcanota compared to
the Rio Santa (at 18:00). The wet season is also characterized by much higher relative humidity (wet season di-
urnal minimum ranges from 66%—77% compared to 54%—61% in the dry season) with a larger diurnal amplitude
compared to the dry season. The higher atmospheric water content and cloud cover in the wet season also results
in higher incoming longwave radiation, which has a lower diurnal amplitude than in the dry season at the sites
where it has been measured (Shallap, Artesonraju, and Quisoquipina). Incoming longwave radiation is lowest at
Quelccaya due to its higher elevation.

The diurnal pattern of incoming shortwave radiation is similar across all the sites, except at Cuchillacocha where
shading delays the morning rise in incoming shortwave radiation. Incoming shortwave radiation is either similar
(Vilcanota) or higher (Rio Santa) in the dry season compared to the wet season, suggesting that the greater cloud-
iness in the wet season counteracts the higher potential radiation receipt.

5.3. Contribution of Energy Balance Fluxes

Net shortwave radiation is the most important flux for providing energy to the surface, in all months and seasons
(Figures 4 and 5). The net shortwave radiation is higher in the dry season at all sites (Figures 4 and 5), suggesting
that increased wet season cloudiness and a higher surface albedo due to snow cover counteracts the higher wet
season potential radiation receipt. This is especially true at Shallap, which has the largest difference in wet and
dry season net shortwave radiation. The month with the highest net shortwave radiation tends to be in late winter/
spring (August at Shallap and Cuchillacocha, September at Quelccaya, and October at Quisoquipina), when low
albedo is combined with an increasing radiation receipt (Figure 4). The exception is Artesonraju where net short-
wave radiation is highest in January.

The sensible heat flux provides energy to the surface at the lower elevation Rio Santa sites, although it is much
smaller in magnitude than net shortwave radiation. Values are greatest at Cuchillacocha due to its high wind
speeds and here the wet season sensible heat flux is greater than in the dry season, with the highest monthly mean
in November. At Shallap and Artesonraju, the sensible heat flux is slightly higher in the dry season, with the
highest monthly mean in May. At Quisoquipina and Quelccaya, the sensible heat flux is rather small (0.7 W m™2
and —1.0 W m~2, respectively, averaged over the full record).

The energy flux leading to the greatest loss of energy from the surface is net longwave radiation. At all sites it is
more negative in the dry season (Figures 4 and 5), reflecting less cloud cover in the dry season reducing incoming
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Figure 4. Monthly mean fluxes (per hour) for each site as output from T&C. dQ (energy available for melt) is shown as
a point on top of the bar graphs. Positive fluxes are toward the surface. S* is net shortwave radiation, L* is net longwave
radiation, H is the sensible heat flux, AE is the latent heat flux, Q, is the heat flux due to precipitation, O, is the heat flux due
to melting and freezing of water in the snowpack and G is the ground heat flux.
longwave radiation. However, it is also a positive flux at Quisoquipina in December, January, and February
(Figure 4), because of increased incoming longwave radiation counteracting the outgoing longwave radiation,
which does not vary much during the year. The net longwave radiation is more negative at Quelccaya compared
to Quisoquipina due to a combination of colder surface temperatures and lower incoming longwave radiation than
Quisoquipina in the wet season. Diurnal values tend to be most negative in the early morning and less negative or
even slightly positive in the middle of the day (Figure S8 in Supporting Information S1).
The latent heat flux results in the next greatest loss of energy from the surface. It is a negative flux for all sites
and in both seasons, except at Cuchillacocha in the wet season. At all sites, it is more negative in the dry season
(Figures 4 and 5). It tends to be most negative in the morning hours and decreases in magnitude during the day
(Figure S8 in Supporting Information S1).
The remaining fluxes are all small contributions to the surface energy balance once averaged at a monthly resolu-
tion. The heat flux due to precipitation (Q,) is less than 1 W m~2, with usually higher values in the wet than in the
FYFFE ET AL. 10 of 22
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Figure 5. Energy fluxes for each site from T&C, averaged per hour over the whole record and over the wet and dry seasons,
with dQ (energy available for melt) shown as a point on top of the bar graphs. Positive fluxes are toward the surface. S* is net
shortwave radiation, L* is net longwave radiation, H is the sensible heat flux, AE is the latent heat flux, Qv is heat flux due to
precipitation, Q, is the heat flux due to melting and freezing of water in the snowpack, and G is the ground heat flux.

dry season, and peaks in the afternoon. The monthly average heat flux due to melting or freezing of water in the
snowpack (Q,) is always less than 0.1 W m~2. The sign of this flux varies during the day, being negative in the
morning due to melting and positive in the evening due to refreezing (Figure S8 in Supporting Information S1).
The ground heat flux (G) is slightly larger but the monthly average is always less than 2 W m~2 in magnitude.

The energy available for melt is usually greater in the wet than the dry season (Figure 5), with the highest mean
monthly melt in January for Artesonraju and Quelccaya, February for Cuchillacocha, and November for Quiso-
quipina (Figure 4). The exception is Shallap where the melt is greatest in August. This demonstrates that the
greater dry season net shortwave radiation is balanced by the increase in the net longwave radiation (due to
cloudless skies) and the latent heat flux (due to low relative humidity). Conversely, during the wet season, the net
longwave radiation and latent heat flux are small (at least at Shallap, Artesonraju, and Quisoquipina) so the net
shortwave radiation alone drives variations in the energy for melt, and variations in albedo (driven by the occur-
rence and magnitude of snowfall) determine variability in wet season melt. At Shallap, melt is lower in the wet
season than in the dry season, because its continuous snowpack resulted in a high albedo, reducing net shortwave
radiation, and its annual energy for melt.

5.4. Patterns of Melt and Sublimation

Ice and snow melt occurs in all months of the year at Artesonraju, Cuchillacocha, and Quisoquipina, with the
fraction of ablation that is snow melt in the wet season usually less than 50% (Figure 6). This is a result of the
snowpack at these sites not being continuous throughout the wet season, but instead being continually melted
and reformed over periods of days to weeks. The snowpack tends to be quite shallow, with the maximum mean
monthly snow depths being only 0.13 m at Artesonraju (in March), 0.07 m at Cuchillacocha (in November), and
0.02 m at Quisoquipina (in February).

Despite the shallow snow depths, the snow cover is still very important for the overall energy and mass balance
at these sites. Unlike the sites above, Shallap had a continuous snowpack over the 2010/2011 wet season (mean
wet season percentage snow melt of ablation was 91%), with a maximum mean monthly snow depth of 0.61 m in
January. The higher surface albedo resulted in lower wet season melt rates than the dry season, in contrast to the
four other sites (Figures 5 and 6). This is likely an exceptional situation for Shallap caused by below average wet
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Figure 6. Ablation from T&C split into mean monthly ice melt, snow melt, and sublimation for each month. The
averages are applied over the whole record. The modeled record lengths for each weather station are given in Table S3 in
Supporting Information S1. Also shown is the fraction of snowmelt of total ablation, the fraction of sublimation of total
ablation, the albedo (monthly mean of daily minimum values), and on the right y-axis the mean monthly snow depth. Note
that the actual snow depth at Quelccaya Ice Cap will be much deeper than the values shown, since these are a function of
the snow depth used to initiate the model run, and over the full model run the snow depth increases. However, the relative
seasonal variation of the snowpack depth is correct.

season air temperatures (Figure S3f in Supporting Information S1), which are a consequence of strong La Nifia
conditions during the 2010/2011 wet season of the study period (NOAA ONI index in the Nifio 3.4 region mean
[range] = —1.2°C [-1.6 to —0.8°C]).

Mass loss is only from snow melt and sublimation at our highest site, Quelccaya. Snow melt is very small, and
occurs in only 7 months of the year, with the maximum mean monthly snow melt only 0.66 mm w.e. day~! in
January. Sublimation, on the other hand accounts for 42%—100% of mass loss in each month, with the maximum
mean monthly sublimation of 0.96 mm w.e. day~! occurring in July.

At the lower elevation sites sublimation is a much smaller contributor to mass loss than ice or snow melt, but it
does occur in all months at Shallap, Artesonraju, and Quisoquipina, and at Cuchillacocha in January and May
to November. Sublimation is highest in the dry season, with the proportion of ablation which is sublimation
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Figure 7. Variation in ablation characteristics from T&C against station elevation, with row (a) mean values of ice melt, snow melt, sublimation, and total ablation
against elevation; and row (b) percentage snow melt, ice melt and sublimation of total ablation alongside the mean ablation, plotted against the site elevation. Values in
both rows are given averaged over the full time series and the dry and wet season.

reaching a maximum in July, with values of 6% for Shallap, 8% for Artesonraju, 16% for Cuchillacocha, and
27% for Quisoquipina. Although the quantity of mass loss directly attributed to sublimation is small, it reduces
overall mass loss because the strongly negative dry season latent heat flux reduces the energy available for melt
(Section 5.3).

Mean ablation decreases with elevation, which is especially clear in the dry season when the snowpack at Shal-
lap does not influence results (Figure 7a). The gradient of change in ablation with elevation is steeper in the dry
season at the Rio Santa sites, compared with the Vilcanota sites, suggesting that ablation rates in Vilcanota are
higher for a given elevation than in the Rio Santa. However, it would be beneficial to have more sites with which
to compare given the small elevation range of the Rio Santa sites and the possibility of site-specific factors influ-
encing results. The decrease in ablation with elevation across all sites in the full time series is driven by a decrease
in melt rates. Mean sublimation rates are similar at all the sites.

Interestingly, the proportion of ablation comprised of ice and snow melt is rather similar between the Rio Santa
sites and Quisoquipina (Figure 7b). The mean ice (snow) melt percentage for the Rio Santa sites is 72% (26%),
compared to 68% (29%) for Quisoquipina. This suggests that despite Quisoquipina being ~400 m higher in ele-
vation than the Rio Santa sites, and having lower overall melt rates, the snowpack conditions are similar. This is
likely caused by the lower precipitation rates at Quisoquipina compared to the Rio Santa sites.

The 479 m increase in elevation between Quisoquipina and Quelccaya is associated with a decrease in mean snow
melt rates (from 2.57 mm w.e. day~! to 0.15 mm w.e. day~"), with the percentage snow melt of total ablation fall-
ing from 29% to 19%. However, the key difference is in the shift in the importance of sublimation to total ablation,
which increases from 4% at Quisoquipina to 81% at Quelccaya (Figure 7).
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5.5. Impact of El Nifio/La Nifa

At Artesonraju, positive ONI values (associated with El Nifio conditions) are associated with increased wet
season total melt (significant relationships in DJF and JFM) (Figure S9 in Supporting Information S1). This is
caused by an increased wet season air temperature (significant positive relationship with ONI from September to
May), which drives an increase in the sensible heat flux (significant December to April). There is also an increase
in rainfall (significant November to March), which reduces the albedo (significant in DJF and JEM) and increases
net shortwave radiation (significant in JEM). The correlation of precipitation with ONI in the wet season is usu-
ally positive but not significant.

ONI values at Quisoquipina are also positively correlated with increased total melt (significant in MAM), but the
positive correlation of air temperature with ONI is not significant and the sign of the relationship of precipitation
with ONI is less clear with no months with significant correlations (Figure S9 in Supporting Information S1).
ONI values are negatively correlated with albedo, which increases net shortwave radiation (both significant in
DJF) and net longwave radiation is negatively correlated with ONI (significant in SON). There is also a signif-
icantly negative relationship between wind speed and ONI in DJF, AMJ and NDJ, which decreases sublimation
from snow (significant in NDJ).

5.6. Sensitivity to Air Temperature and Precipitation

Results of the model sensitivity experiments to changes in the air temperature and precipitation show that, as ex-
pected, an increase in air temperature increases ablation (Figure 8). However, the drivers of this differ with eleva-
tion. At Shallap, Artesonraju, Cuchillacocha, and Quisoquipina ice melt is increased at the expense of snowmelt
because of a change in the precipitation phase from snow to rain. A 2°C increase in air temperature resulted in a
decrease of snowfall of total precipitation by 44% at Shallap, 53% at Artesonraju, 41% at Cuchillacocha, 17% at
Quisoquipina, and 0.8% at Quelccaya, resulting in lower albedos by 0.09, 0.11, 0.11, and 0.03 for the four lower
sites, while albedo remains similar at Quelccaya. Increased net shortwave radiation therefore drives the increase
in ablation with air temperature at the lower sites (Figure S10 in Supporting Information S1).

At the highest elevation site, Quelccaya, the rate of increase in snowmelt with air temperature steepens dra-
matically between 1 and 2°C. This corresponds with when sublimation switches from increasing to decreasing
and marks the air temperature threshold at which sublimation is replaced by melting (Figure 8a). This results in
ablation increasing nonlinearly with air temperature at Quelccaya (a 1°C air temperature rise enhances ablation
by 0.03 mm w.e. h™, but an additional 1°C rise increased ablation by an additional 0.20 mm w.e. h™!). This cor-
responds to the percentage sublimation of total ablation decreasing from 81% under the standard run to 9.7% with
a 2°C air temperature rise. Since the energy requirements for melt are much less than for sublimation, this results
in the rapid increase in mass loss.

Higher precipitation reduces ablation and vice versa (Figure 8). However, the impact of increasing precipitation
to decrease ablation is reduced at higher air temperatures because the percentage snowfall of total precipitation
is reduced. However, our sensitivity experiments do not account for the likely change in cloudiness and humidity
associated with increased precipitation, which would impact net radiation and the latent heat flux. The difference
in the specific mass balance under each of the experiments (Figure 8c) shows that under a 30% increase in pre-
cipitation enhanced specific mass loss compared to the standard run occurs when the air temperature increase is
at least 1°C at most of the sites and at least 2°C at Quelccaya.

6. Discussion
6.1. What are the Key Drivers of the Energy and Mass Balance of Peruvian Glaciers?

The key driver of the energy and mass balance of Peruvian glaciers is the precipitation dynamics. This is be-
cause net shortwave radiation is the most important contributor to energy available for melt (Figure 5) and its
magnitude is determined by albedo and cloudiness: despite higher top-of-the-atmosphere incoming shortwave
radiation in the wet season, net shortwave radiation was lower than in the dry season due to increased cloudiness
and higher wet season albedo (Figure 5). Obviously, there is a close link between precipitation and cloudiness,
and increased snowfalls maintain a high snow albedo and reduce the possibility that the snowpack is melted
completely. This is encapsulated by the situation at Shallap where a continuous snowpack over the 2010/2011 wet
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Figure 8. T&C sensitivity experiments showing the influence of the increase in air temperature (row a) and precipitation (row b) on snow melt, ice melt, total melt,
sublimation, and ablation. Note that the scenarios here involve change in only air temperature or precipitation, the other variable remains unchanged. For Quelccaya,
ice melt corresponds to the melt of firn, which was not represented as a separate compartment in the model. Row (c) shows difference in the specific mass balance

(in m w.e. per year) between the standard runs and each of the air temperature and precipitation scenarios. The mass balance in this case is the difference in the water
equivalent mass between the first and last time step of the model run, which may not be equivalent to over a hydrological year due to differences in the model run time

periods.
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season dramatically reduced net shortwave radiation and energy available for melt. Meanwhile, at Artesonraju,
Cuchillacocha, and Quisoquipina the difference between the wet and dry season net shortwave radiation (and
energy available for melt) was much smaller because of their ephemeral wet season snowpack, which allowed
ice to be exposed in the wet season (Figures 5 and 6). The importance of precipitation gleaned from an energy
balance perspective supports Vuille, Kaser, and Juen (2008)'s findings that glacier mass balance fluctuations in
the Cordillera Blanca are driven by interannual precipitation variability.

The dynamics of the wet season precipitation are therefore likely very important in determining annual varia-
tions in total melt at a given location. The wet season precipitation in the Peruvian Andes is driven by the rapid
southward shift of the ITCZ in October (Garreaud et al., 2009), associated with easterly airflow bringing moisture
from the Amazon across to the west of South America (Mourre et al., 2016). Within the wet season, the weekly
variations in the snowpack depth are likely driven by the episodic nature of precipitation, which in the central
Andes alternates weekly between wet and dry conditions (Garreaud, 1999; Guy et al., 2019).

The afternoon precipitation in the Cordillera Vilcanota is due to convective precipitation resulting from diurnal
heating of the planetary boundary layer. But nocturnal precipitation is stratiform and instigated by cooling of the
troposphere as the atmosphere stabilizes after convective storms so that the moisture bearing layer reaches satu-
ration, forming thickening clouds (Perry et al., 2014, 2017). Later in the evening thick cirriform clouds spreading
from Amazonian convection precipitate into the moisture bearing layer, resulting in snow over the mountains and
rain at lower levels. Most precipitation events in Cusco (95%) originate in the Amazon basin (trajectories from the
north or northwest) — indicating the importance of Amazonian moisture to the Cordillera Vilcanota and central
Andes (Perry et al., 2014).

Fluctuations in ENSO between warm (El Nifio) and cold (La Nifia) phases are the main drivers of interannual
precipitation and air temperature variability across South America (Garreaud et al., 2009). However, the influ-
ence of ENSO on precipitation in Peru varies between the north and south of the country, with distance from the
Amazon and according to the El Nifio regime (Jonaitis et al., 2021; Lavado-Casimiro & Espinoza, 2014; Sanabria
et al., 2018). At Shallap, Maussion et al. (2015) found a strong anticorrelation between glacier mass balance and
ENSO, with El Nifio years associated with reduced snowfall and increased net shortwave radiation, which gen-
erally agrees with the results for Artesonraju (Section 5.5). The strong La Nifia conditions during the 2010/2011
wet season in our study period at Shallap are also likely the cause of the continuous snowpack and low wet season
melt rates which contrast with the mean conditions at the other sites (Section 5.4). The more complex relationship
of ENSO with precipitation in southern Peru (Jonaitis et al., 2021) may explain the lack of a clear relationship
between precipitation and ONI at Quisoquipina in the Cordillera Vilcanota (Section 5.5).

Climate change will determine the long-term evolution of Peruvian glaciers, and here the positive trend in air
temperatures is rather certain, compared to the spatial variability in precipitation trends (Urrutia & Vuille, 2009).
The direct impact of air temperature via the sensible heat flux is a less important determinant of melt rates due to
the relatively cold air temperatures found on Peruvian glaciers (Figure 5). However, our sensitivity experiments
suggest that warmer air temperatures will change the precipitation phase from snow to rain, especially at lower
elevations, acting to decrease albedo and increase net shortwave radiation, reducing the snow cover that protects
the glacier ice from melting (Figure S10 in Supporting Information S1). Importantly, at locations currently in the
accumulation zone (e.g., the Quelccaya site) warmer air temperatures will allow melting to replace sublimation,
resulting in a nonlinear increase in ablation with air temperature (Section 5.6). This reduction in sublimation
with increased air temperature is seen at all the stations, but at a 2°C air temperature increase it only becomes
more important annually than the increase in net shortwave radiation (due to the change in precipitation phase) at
Quelccaya (Figure S10 in Supporting Information S1).

Both longwave radiation and the latent heat flux (resulting in sublimation) are important in reducing dry sea-
son ablation on Peruvian glaciers (Figure 5). Cloudless conditions in the dry season limit incoming longwave
radiation, resulting in negative net longwave radiation, with values most negative overnight and at higher ele-
vations (Figure S8 in Supporting Information S1). High dry season sublimation rates are driven by low relative
humidity, but between-site variations are also influenced by local wind fields and surface roughness variations.
Wind speeds are higher over Cuchillacocha and Quelccaya compared to their neighbors, increasing dry season
sublimation rates (Figure S7 in Supporting Information S1 and Figure 4). At Quelccaya this is likely due to its
exposed position at the summit of the Quelccaya Ice Cap, whereas at Cuchillacocha funneling of the prevailing
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synoptic winds into the north-south oriented valley are a possible cause. The surface roughness also controls
sublimation rates, and it is known to be higher in the dry season over penitentes and lower over smooth fresh
snow surfaces (Favier, Wagnon, Chazarin, et al., 2004; Wagnon et al., 1999; Winkler et al., 2009). Results of the
Monte-Carlo analysis (Text S4.2 and Figure S6 in Supporting Information S1) suggest that varying the surface
roughness between 0.001 and 0.05 m (covering the range of values mentioned in Winkler et al. (2009) (without
penitentes), Favier, Wagnon, Chazarin, et al., 2004, Sicart et al., 2011, and Gurgiser et al., 2013) varied modeled
total melt by 17% on average. Incorporating the spatial and temporal variability of surface roughness into future
modeling would be a useful advance.

6.2. What Are the Differences Between the Two Regions?

The key glaciological difference between the two regions, as shown in Section 2, is that glaciers in the Rio Santa
catchment extend to lower elevations than those in the Vilcanota catchment. This is possible primarily because of
the greater wet season precipitation at the elevation of the glaciers in the Rio Santa, compared to the Vilcanota.
This is a consequence of the northwesterly precipitation trajectory in the Vilcanota region (Perry et al., 2014),
which means that the glaciers further south receive less precipitation, and explains the lack of a clear dependence
of precipitation on elevation (Figures 2 and 3). The higher Vilcanota glacier elevations result in mean wet season
air temperatures over the glaciers being similar to the Rio Santa (for the same elevation they would be warmer),
but they are colder in the dry season due to the greater amplitude of the seasonal air temperature cycle (Figure 3a).

Contrasting the conditions at Quisoquipina with those at the Rio Santa sites allows the condition in the ablation
zone of both regions to be compared, since all these stations are near the snouts of their respective glaciers
(Figure 3ef). Many of the meteorological inputs are similar at Quisoquipina to the Rio Santa sites (Figure S7 in
Supporting Information S1). However, the cooler dry season air temperature and lower dry season net shortwave
radiation reduce dry season ablation compared to in the Rio Santa (Figure 7). Both ice and snowmelt occur within
the wet season at Quisoquipina, similar to Artesonraju and Cuchillacocha but at lower rates than those stations
(Figure 6). This results in a similar wet season percentage of ice and snowmelt (Figure 6) and is a function of the
lower precipitation rates in the Vilcanota region.

Based on our analysis there is more energy available for melt at a given elevation for the Vilcanota glaciers com-
pared to the Rio Santa glaciers. This is evident from Figure 7 where ablation is very similar in the wet season
between the Rio Santa sites and Quisoquipina, and in the dry season, where the gradient of the change in ablation
with elevation is much steeper in the Rio Santa sites than the Vilcanota sites. There is of course uncertainty in this
due to the small number of stations with which to compare, but the overall lower precipitation rates and warmer
wet season air temperatures in the Vilcanota catchment support this pattern.

6.3. Peruvian Glaciers in a South American Context

The energy balance characteristics of the Peruvian study glaciers can be compared to those in Ecuador, Boliv-
ia, and Chile in Table S12 in Supporting Information S1 and Figure 9. Some caution in direct comparison is
required given the differences in the record lengths and periods, energy flux calculation approaches (see Ayala
et al., 2017; Favier, Wagnon, Chazarin, et al., 2004; Favier, Wagnon, & Ribstein, 2004; Schaefer et al., 2020;
Wagnon et al., 1999), and the relative station elevation compared to the glacier ELA. Nevertheless, the Peruvian
glaciers' average energy balance characteristics are similar to Antizana Glacier 15 in Ecuador, Zongo Glacier in
Bolivia, and the Chilean glaciers from Guanaco to Bello. At these sites the net shortwave radiation dominates the
energy balance (average across the glaciers Antizana to Bello 169 W m~2), the net longwave radiation is strongly
negative (average —63 W m2), the sensible heat flux is small (average 25 W m™2), and the latent heat flux is
negative (average —41 W m~2). Mean air temperatures are also close to or below 0°C (average —0.8°C), except for
Juncal Norte. Due to the importance of the net shortwave radiation, albedo variations drive temporal variations
in melt on the Antizana 15 and Zongo Glaciers (Favier, Wagnon, Chazarin, et al., 2004; Favier, Wagnon, & Rib-
stein, 2004; Sicart et al., 2011), mirroring our findings on the Peruvian glaciers (Section 5.3).

These similarities reflect the climate of these glaciers, which exist either in “cold and dry” or “intermediate”
conditions, where precipitation rates in both classes are less than ~1,100 mm year™! (Sagredo & Lowell, 2012),
with this also following the classification of the Andes into dry regions north of 35°S and wet regions further
south (Lliboutry, 1998; Schaefer et al., 2020). These glaciers are therefore restricted to high elevations where
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Figure 9. Comparing South American glaciers, with sites ordered by latitude (north-south) and data from on-glacier meteorological stations. Panel (a) station
elevation (*) in context of the glacier maximum and minimum elevation (error bars), and the mean on-glacier air temperature (red points). Panel (b) radiation and

melt characteristics. S* is net shortwave radiation, L* is net longwave radiation, H is the sensible heat flux, AE is the latent heat flux, and ‘Melt’ is ice and snow

melt. Data for sites marked * were averaged over a few months or less, the data for the other sites were averaged over at least a year. Data from Favier, Wagnon, and
Ribstein (2004) and Sicart et al. (2002) (Antizana 15 and Zongo), this paper (Peruvian glaciers), Ayala et al. (2017) (Guanaco, Tapado, Juncal Norte, and Yeso) and
Schaefer et al. (2020) (Bello, San Francisco, Mocho, Exploradores, Tyndall). Elevation ranges for Bello and San Francisco are from Ayala et al. (2017), for Mocho from
Schaefer et al. (2017) and for Exploradores and Tyndall from Barcaza et al. (2017). See Table S12 in Supporting Information S1 for station details. Panel (c) location of

the on-glacier meteorological stations, shown on top of all South American glaciers classified following Sagredo and Lowell (2012). The data on the South American
glaciers were provided by Esteban Sagredo.

temperatures are low. Further south, the air temperatures on the Mocho, Exploradores, and Tyndall glaciers in
Chile are much warmer, with the sensible heat flux more important, net longwave radiation less negative, and
the latent heat flux small or positive (Figure 9 and Schaefer et al., 2020). These differences result in higher

melt rates, although of course this is countered by higher precipitation rates at these southern sites (Sagredo &
Lowell, 2012).

Despite the similarities of the mean conditions on the Peruvian glaciers to those in Bolivia and Ecuador, there are
important seasonal differences. For instance, on Zongo Glacier in Bolivia, the main accumulation period (Jan-
uary to March) is shorter than in Peru (Sicart et al., 2011) and on Antizana Glacier 15 in Ecuador the seasonal

variation in the meteorological conditions is very small, with precipitation throughout the year (Favier, Wagnon,
Chazarin, et al., 2004).

7. Conclusion

This work provides the first comprehensive understanding of the mass and energy fluxes of glaciers across Peru.
Our key findings are as follows:
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1. The Rio Santa glaciers reach lower minimum elevations and have a greater elevation range than the glaciers
in the Vilcanota catchment. This is primarily due to higher precipitation in the wet season in the Rio Santa
catchment. There is also a clear precipitation dependence on elevation in the Rio Santa catchment, which is
lacking in the Vilcanota catchment; here the northwest prevailing precipitation trajectories lead to lower pre-
cipitation over the glaciers to the south.

2. The net shortwave radiation is the greatest contributor to the energy available for melt, with the sensible heat
flux being much smaller in comparison due to low air temperatures. The net shortwave radiation is higher in
the dry season due to a lower albedo, but cloudless skies and low humidity mean it is counter-balanced by a
strongly negative net longwave radiation and latent heat flux. The energy available for melt is therefore highest
in the wet season, except at Shallap Glacier where strong La Nifia conditions resulting in below average air
temperatures meant the snowpack remained continuous throughout the wet season.

3. Atthree of the sites (Artesonraju Glacier, Cuchillacocha Glacier, and Quisoquipina Glacier) both ice and snow
melt occurred throughout the wet season. The wet season snowpack remained thin and was continually formed
and melted over periods of days to weeks. Sublimation was more important in the dry season at all sites and
became a greater proportion of total ablation with increasing elevation, reaching 81% of total ablation at the
summit of Quelccaya Ice Cap.

4. The key drivers of the mass and energy balance of Peruvian glaciers are the dynamics and phase of wet season
precipitation since they control the surface albedo and hence net shortwave radiation. Air temperature is still
important in determining the phase of precipitation and the elevation at which sublimation becomes more
important than melting for ablation.

5. Sensitivity experiments revealed that increased air temperature led to enhanced ablation, but the mechanisms
differed by elevation. At the lower elevation Rio Santa sites increased ablation was driven by a change in
precipitation phase from snow to rain, reducing albedo and increasing net shortwave radiation, alongside
an increase in the sensible heat flux. However, at higher elevations (specifically at the top of Quelccaya Ice
Cap), the increase in ablation with temperature was nonlinear and driven by a switch from sublimation to melt
dominated ablation.
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The Artesonraju and Shallap meteorological data (both on and off glacier) were collected by the University of
Innsbruck, with raw data available here: https://acinn-data.uibk.ac.at/. Meteorological data used to bias-correct
the WRF outputs from SENHAMI are available here: https://www.senamhi.gob.pe/servicios/?p=estaciones. All
of the data associated with this paper are available from the NERC EDS Environmental Data Centre, with the av-
eraged WRF data at: https://doi.org/10.5285/7dbb2d72-7032-4cfa-bc9b-aa02bebe8df5, the meteorological input
data and T&C code available at: https://doi.org/10.5285/b69b8849-6897-47eb-a820-f488f8bca437 and the ana-
lyzed outputs and associated code available at: https://doi.org/10.5285/5t6661e4-1d34-4b01-8f3a-9fc86c546£73.
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