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ABSTRACT 

 

Estimation of High-Resolution Evapotranspiration in Heterogeneous Environments Using 

Drone-Based Remote Sensing  

by 

Ayman M. M. Nassar, Doctor of Philosophy 

Utah State University, 2021 

 

Major Professor: Dr. Alfonso Torres-Rua  

Department: Civil and Environmental Engineering 

An accurate estimation of evapotranspiration (ET) is prerequisite to the water 

management practices for mitigating water overutilization and environmental degradation. 

Although many studies have investigated ET in agricultural settings, still there is limited 

understanding in quantifying ET in heterogeneous environments. Taking advantage of the 

wide range of data available from different remote sensing platforms, spatial ET maps can 

be generated at different scales using several algorithms. Nowadays, the advent of 

advanced small unmanned aerial systems (sUAS) technology with light sensors allows the 

capture of high-resolution data more quickly than traditional methods, described as 

“flexible in timing”. 

The major focus of this study is to provide an improved understanding of remote 

sensing-based ET in heterogeneous areas, particularly in vineyards and natural 

environments. First, the influence of model grid size/spatial resolution on the estimation of 

surface energy fluxes/ET was investigated in vineyards using the Two Source Energy 

Balance (TSEB) model and sUAS imagery. Different spatial resolutions were considered 
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including 3.6 m, 7.2 m, 14.4 m, and 30 m. ET maps obtained from the TSEB-2T model at 

different contextual spatial domains were compared and validated against the ground 

measurements from eddy covariance (EC). Results indicated that the TSEB-2T model is 

slightly affected in the estimation of the net radiation (Rn) and the soil heat flux (G) at 

different resolutions, while the sensible and latent heat fluxes (H and LE, respectively) are 

significantly affected by coarse grid sizes. Moreover, agricultural water management 

practices require daily crop water estimates for irrigation scheduling. To achieve that, five 

different methods were used and tested to upscale/extrapolate the instantaneous 

evapotranspiration to daily values including (1) evaporative fraction (EF), (2) solar 

radiation (Rs), (3) ratio of net radiation to solar radiation (Rn/Rs), (4) Sine, and (5) Gaussian 

(GA). The ET from EC observations and sUAS information was used to assess those 

approaches. Overall, the analysis using EC and TSEB indicated that the Rs, EF, and GA 

approaches presented the best goodness‐of‐fit statistics in the time window between 1030 

and 1330 PST, with the Rs approach yielding better agreement with the EC measurements. 

The promising results obtained from the TSEB model for ET estimates over a 

heterogeneous agricultural environment in vineyards encourage the implementation of that 

model in more heterogeneous natural area. TSEB was tested over the San Rafael River 

corridor, dominated by a wide range of vegetation density and diversity. The discrete 

wavelet transom (DWT) technique was used to identify adequate spatial resolution to 

represent the study area. Results indicated that spatial resolutions between 6 m and 15 m 

are suitable for representing energy fluxes with small differences in LE values between the 

two resolutions (6 m and 15 m).            

                 (225 Pages) 
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PUBLIC ABSTRACT 

 

Estimation of High-Resolution Evapotranspiration in Heterogeneous Environments Using 

Drone-Based Remote Sensing  

 

Ayman M. M. Nassar 

 

Evapotranspiration (ET) is a key element of hydrological cycle analysis, irrigation 

demand, and for better allocation of water resources in the ecosystem. For successful water 

resources management activities, precise estimate of ET is necessary. Although several 

attempts have been made to achieve that, variation in temporal and spatial scales constitutes 

a major challenge, particularly in heterogeneous canopy environments such as vineyards, 

orchards, and natural areas. The advent of remote sensing information from different 

platforms, particularly the small unmanned aerial systems (sUAS) technology with 

lightweight sensors allows users to capture high-resolution data faster than traditional 

methods, described as “flexible in timing”. In this study, the Two Source Energy Balance 

Model (TSEB) along with high-resolution data from sUAS were used to bridge the gap in 

ET issues related to spatial and temporal scales. Over homogeneous vegetation surfaces, 

relatively low spatial resolution information derived from Landsat (e.g., 30 m) might be 

appropriate for ET estimate, which can capture differences between fields. However, in 

agricultural landscapes with presence of vegetation rows and interrows, the homogeneity 

is less likely to be met and the ideal conditions may be difficult to identify. For most 

agricultural settings, row spacing can vary within a field (vineyards and orchards), making 

the agricultural landscape less homogenous. This leads to a key question related to how the 
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contextual spatial domain/model grid size could influence the estimation of surface fluxes 

in canopy environments such as vineyards. Furthermore, temporal upscaling of 

instantaneous ET at daily or longer time scales is of great practical importance in managing 

water resources. While remote sensing-based ET models are promising tools to estimate 

instantaneous ET, additional models are needed to scale up the estimated or modeled 

instantaneous ET to daily values. Reliable and precise daily ET (ETd) estimation is essential 

for growers and water resources managers to understand the diurnal and seasonal variation 

in ET. In response to this issue, different existing extrapolation/upscaling daily ET (ETd) 

models were assessed using eddy covariance (EC) and sUAS measurements. On the other 

hand, ET estimation over semi-arid naturally vegetated regions becomes an issue due to 

high heterogeneity in such environments where vegetation tends to be randomly distributed 

over the land surface. This reflects the conditions of natural vegetation in river corridors. 

While significant efforts were made to estimate ET at agricultural landscapes, accurate 

spatial information of ET over riparian ecosystems is still challenging due to various 

species associated with variable amounts of bare soil and surface water. To achieve this, 

the TSEB model with high-resolution remote sensing data from sUAS were used to 

characterize the spatial heterogeneity and calculate the ET over a natural environment that 

features arid climate and various vegetation types at the San Rafael River corridor. 
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1.                                                   CHAPTER 1 

INTRODUCTION 

1.1 Background 

Evapotranspiration (ET) is a key element of the hydrological cycle, analysis of 

irrigation demand, and allocation of water resources [1]. Among the components of the 

hydrological cycle, ET could be one of the most difficult to estimate due to variability of 

vegetation types and densities, hydrological characteristics of soil and the wide temporal 

and spatial variation of climate [2]. For successful water resources management activities, 

accurate estimation of ET is needed. Although several attempts have been made to achieve 

this, the variation in temporal and spatial scales constitute a major challenge [3], 

particularly in complex canopy environments such as vineyards, orchards, and 

heterogeneous natural areas. The spatial scale could span from micro to macro scales [4], 

while the temporal scale could vary from an hour to a year depending on the application.  

Surface energy balance (SEB) models are very important to understand the land-

surface energy exchange. In recent years, many SEB models have been developed to 

estimate ET that vary in complexity from simple schemes to detailed representation of 

energy fluxes [5]. Generally, the SEB models can be categorized into two types: (semi-) 

empirical methods and analytical methods. (Semi-) empirical models are usually 

accomplished by creating generic relationships, while the analytical approach relies on an 

understanding of physical processes at the scale of interest that varies in complexity and 

may require direct and indirect measurements from ground observations and remote 

sensing data [6]. Technical advancement in ground-based instrumentation and the advent 

of remote sensing with a wide range of data [7] allows models to estimate the main energy 
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fluxes including the net radiation (Rn), sensible heat flux (H), latent heat flux (LE), and soil 

heat flux (G). While these four components (Rn, H, LE and G) are considered in the 

simplified form of the energy balance (Rn = H + LE + G), there are other energy fluxes 

used for photosynthesis or storage of energy by vegetation ignored due to their small 

magnitude [4]. Rn is the balance of shortwave radiation and longwave radiation. H is the 

turbulent heat flux exchange between surface and air due to temperature difference. LE is 

the flux of the heat from surface to the atmosphere associated with evaporation of water 

and used to represent ET in SEB models. G represents the heat flux that moves in/out the 

soil medium due to temperature changes between surface and subsurface.  

The estimation of surface energy fluxes, particularly LE, depends on the land 

surface type, which requires information about the Earth’s features at appropriate spatial 

and temporal scales. Traditional in-situ measurements used to estimate ET, such as pan 

evaporation and eddy covariance (EC), provide information at a local scale [8,9] making 

these methods inapplicable for large scale due to the heterogeneity of land surfaces and 

complex environment of the heat transfer process governing the ET [10]. The availability 

of remote sensing information from different platforms, including satellite, manned aircraft 

and small unmanned aerial system (sUAS), allows the collection of multi-spectral data in 

various spatial and temporal resolutions for estimation of ET. For example, Landsat can 

provide spatial information of 30 m every 16 days, while the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data are available at 250-m to 1-km pixel resolution at 2 – 3 

days. A major limitation of using data from these satellites is related to their coarse spatial 

and temporal resolution, as well as the presence of clouds at overpass time [11]. Imagery 

from manned aircraft is another remote sensing data source that can provide high-
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resolution information for estimating ET and operate on demand. However, they are 

usually cost‐prohibitive and, therefore, unlikely to be used to conduct multiple flights over 

an area of interest [12]. Nowadays, the advent of advanced sUAS technology with light 

sensors allows users to capture high-resolution data more quickly than traditional methods, 

described as “flexible in timing”. According to previous studies, sUAS is recognized as a 

more precise and cost-effective technology compared with satellites and manned aircrafts 

[13]. 

Taking advantage of the wide range of data available from different remote sensing 

platforms, spatial ET can be calculated using different algorithms if the required inputs are 

available. These inputs are related to the land surface features and their characteristics 

involving the land surface temperature (LST), vegetation fractional cover (fc), leaf area 

index (LAI), and canopy height (hc). To achieve precise and reliable ET estimation, a high 

level of accuracy is required for the input data [14]. Over homogeneous vegetation 

surfaces, relatively low spatial resolution information derived from Landsat (e.g., 30 m) 

might be appropriate for ET estimate, which can capture differences between fields [15]. 

However, in agricultural landscapes with presence of vegetation rows and interrows, the 

homogeneity is less likely to be met and the ideal conditions may be difficult to identify. 

Meanwhile, for most agricultural settings, the row spacing could vary within the field, such 

as in vineyards and orchards, making the agricultural landscape less homogeneous. For 

example, in vineyards, the row space varies between 6 ft and 12 ft [16], while in orchards, 

the row spacing varies between 8 ft and 18 ft [17]. On the other hand, in the early growing 

stage of vegetation, completely closed canopies are rarely available [18], which increases 

the degree of heterogeneity. This leads to a key question related to how the contextual 
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spatial domain/model grid size could influence the estimation of surface fluxes in complex 

canopy environments, such as vineyards. 

Temporal upscaling of instantaneous ET at daily or longer time scale is of great 

practical importance in managing water resources [19,20]. While remote sensing-based ET 

models are promising tools to estimate instantaneous ET, additional models are needed to 

scale up the instantaneous ET to daily values. Reliable and precise daily ET (ETd) 

estimation is essential for growers and water resources managers to understand the 

variation in ET [21], particularly in drought-stricken regions, such as California. To achieve 

that, accuracy in both the instantaneous ET estimation and the upscaling methods is 

necessary. On the other hand, the time window selected to extrapolate the instantaneous 

ET to the daily value might be an issue due to the diurnal variation of solar radiation and 

other micrometeorological data. For example, Landsat-based ET models can provide 

information to estimate daily ET at the satellite overpass time; however, images could be 

jeopardized by intermittent clouds resulting in unsatisfying results for daily ET to quantify 

the agricultural water demand. To overcome that, the advent of advanced sUAS technology 

with high-resolution data allows on-demand acquisition of detailed images to assure the 

consideration of a reasonable temporal coverage. In response to this issue, two research 

questions are raised related to “Which daily ET extrapolation approach at grapevine row 

scales can provide reliable values under a variety of vegetation and environmental 

conditions and thermal‐based ET models like TSEB?” and “What time window for 

acquiring a remotely sensed ET provides the most reliable daily ET using an extrapolation 

approach?” 
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 Besides the evaporative losses from irrigated lands, ET assessment over arid/semi-

arid naturally vegetated regions becomes an issue due to high heterogeneity in such 

environments where vegetation tends to be distributed in complex ways over the land 

surface [4]. In arid areas, ET is more crucial, returning up to 90% or more of the annual 

precipitation to the atmosphere [22]. This reflects the surface conditions that are typically 

dominated by the natural vegetation, such as river corridors. Precise estimate of ET over 

riparian areas is essential to properly allocate river water for human and ecosystem needs 

[23]. In the western U.S., many river corridors are now prevailed by tamarisk replacing the 

native vegetation such as willow and cottonwood [23]. Previous studies indicated that 

tamarisk has higher ET rate than other native vegetation with high potential to increase the 

water used by the vegetation dominating the river corridor [24]. While multiple efforts 

have been made to estimate ET at different agricultural landscapes, accurate spatial 

information of ET over riparian ecosystems is still a challenging issue due to spatial 

variability in the land surface (vegetation, bare soil, and water) and narrow size of the 

riparian corridors [23]. In such a heterogeneous natural environment, a relatively high-

resolution imagery (e.g., <30 m) is highly recommended [25] to detect the different types 

of vegetative species on the ground and accurately estimate the land surface properties, 

such as fractional cover and the land surface temperature, which are key inputs for remote 

sensing-based ET models. To achieve this, a physically-based SEB model, namely TSEB, 

associated with high-resolution remote sensing data from sUAS was used to characterize 

the spatial variability and calculate the ET over a natural environment described by arid 

climate and various types of vegetation at the San Rafael River corridor. 
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1.2 Research Objectives 

The overall objective of this dissertation is to provide an improved understanding 

of a remote sensing-based ET model, namely the Two Source Energy Balance (TSEB) 

model, in vineyards and natural environments using high-resolution information derived 

from sUAS imagery. An accurate estimation of ET is prerequisite to the water management 

practices for mitigating the water overutilization and environmental degradation. TSEB is 

a soil-canopy-atmosphere scheme, which uses radiometric surface temperature as a key 

boundary condition to estimate energy fluxes. This model proved to be better for handling 

a wide range of heterogeneous surfaces. However, spatial and temporal scales for ET 

estimation still constitutes challenging issues, particularly in heterogeneous environments 

such as vineyards and natural areas. The structure of vineyard canopy is very 

heterogeneous due to variation of lateral vine growth, along with other complications from 

within-field variations in soil texture and elevation. In addition, interrows are usually 

occupied by a cover crop, which increases the complexity of the vineyard structure. 

Therefore, identifying a suitable spatial domain/model grid size to represent the vineyard 

is necessary for accurate ET estimates. In this study, different spatial domains/model grid 

sizes have been considered, including 3.6 m, 7.2 m, 14.4 m, and 30 m, to investigate the 

influence of domain size on the TSEB estimates. These selected values correspond to 

multiple vine rows spacing of 3.6 m (one row), 7.2 m (two rows), 14.4 m (four rows), and 

30 m (Landsat scale—nine rows). Energy flux maps obtained from the TSEB model at 

different contextual spatial domains were compared and validated against the ground 

measurements from EC towers installed in the field. Moreover, for practical irrigation 

water requirements, daily or weekly crop water use estimates to schedule irrigations are 
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needed, which require an accurate crop ET calculation. To achieve that, five different 

methods were used and tested to upscale/extrapolate the instantaneous evapotranspiration 

(ETi) to daily values including (1) evaporative fraction (EF), (2) solar radiation (Rs), (3) 

ratio of net radiation to solar radiation (Rn/Rs), (4) Sine approach, and (5) Gaussian (GA) 

model. The accuracy of daily ET estimation has been tested by (a) assessing the 

performance of daily ET scaling approaches using EC observations and sUAS information, 

and (b) determining an optimal time window for ET upscaling from one-time-of-day 

measurement. The promising results obtained from the TSEB model for ET estimates over 

a heterogeneous agricultural environment in vineyards encouraged the implementation of 

that model in more heterogeneous natural areas with a wide range of vegetation types and 

different features. TSEB was used over the highly heterogeneous area at the San Rafael 

River corridor in east central Utah, dominated by a wide range of vegetation types, 

including treated tamarisk, cottonwood, willow, grass and others. The study area is also 

characterized with arid conditions, different soil moisture status, various types of soil and 

various tree heights. To capture the spatial heterogeneity in the study area, the discrete 

wavelet transform (DWT) technique was used by decomposing the sUAS NDVI 

(Normalized Difference Vegetation Index) image into different scales to identify adequate 

spatial resolution to represent the San Rafael River corridor domain for ET estimation. 

Then the selected spatial scales were used to derive the TSEB inputs to evaluate their effects 

on ET estimation.  

To accomplish the previously mentioned objectives, several questions are addressed as 

follows: 

(1) How can “validity” of Tc vs. Ts at coarse scales/model grid sizes be quantified? 
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(2) How do changes in spatial resolution/model grid size affect LE? 

(3) Which spatial resolution/model grid size is appropriate? Why? 

(4) Which daily ET extrapolation approach at grapevine row scales can provide reliable 

values under a variety of vegetation and environmental conditions and thermal‐based ET 

models like TSEB? 

(5) What time window for acquiring a remotely sensed ET provides the most reliable daily 

ET using an extrapolation approach?  

(6) What is the dominant spatial resolution/model grid size to represent a heterogeneous 

natural environment/San Rafael River corridor with a wide range of vegetation? 

 (7) Which spatial resolution/model grid size is most appropriate for the river corridor and 

surrounding arid vegetation to estimate LE? 

(8) What is the daily ET estimation for each of the two ecosystems (river corridor and 

surrounding arid vegetation) in a heterogeneous natural environment/San Rafael River 

corridor? 

1.3 Dissertation Organization 

The dissertation is prepared in five chapters, three of which are in paper format 

addressing the different objectives mentioned in section (1.2). Chapter 1 is a general 

introduction to highlight the importance of this study bridging the gap in ET knowledge, 

particularly in spatial and temporal challenging issues in heterogeneous environments. 

Chapter 2 examines the influence of using different spatial domains/model grid sizes to 

represent surface features in a heterogeneous canopy environment, namely vineyards using 

the TSEB model and sUAS. Chapter 3 evaluates different methodologies for daily 
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evapotranspiration (ETd) estimation from sUAS over commercial vineyards of different 

climates, vine variety and trellis design. Chapter 4 deals with the issue of how to capture 

the spatial variability of the land surface to improve the ET estimation over a heterogeneous 

natural environment using high-resolution imagery from sUAS. 

Chapter 5 provides a summary of this research work, shows the main conclusions drawn 

from the study, and presents some recommendations for further research. 
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2.                                                   CHAPTER 2 

INFLUENCE OF MODEL GRID SIZE ON THE ESTIMATION OF SURFACE 

FLUXES USING THE TWO SOURCE ENERGY BALANCE MODEL AND SUAS 

IMAGERY IN VINEYARDS        

Abstract  

Evapotranspiration (ET) is a key variable for hydrology and irrigation water 

management, with significant importance in drought-stricken regions of the western US. 

This is particularly true for California, which grows much of the high-value perennial 

crops in the U.S. The advent of small unmanned aerial system (sUAS) with sensor 

technology similar to satellite platforms allows for the estimation of high-resolution ET 

at plant spacing scale for individual fields. However, while multiple efforts have been 

made to estimate ET from sUAS products, the sensitivity of ET models to different model 

grid size / resolution in complex canopies, such as vineyards, is still unknown. The 

variability of row spacing, canopy structure, and distance between fields makes this 

information necessary because additional complexity processing individual fields. 

Therefore, processing the entire image at a fixed resolution that is potentially larger than 

the plant-row separation is more efficient. From a computational perspective, there would 

be an advantage to running models at much coarser resolutions than the very fine native 

pixel size from sUAS imagery for operational applications. In this study, the Two Source 

Energy Balance with a dual temperature (TSEB-2T) model, which uses remotely sensed 

soil/substrate and canopy temperature from sUAS imagery, was used to estimate ET and 

identify the impact of spatial domain scale under different vine phenological conditions. 

The analysis relies upon high-resolution imagery collected during multiple years and 
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times by the Utah State University AggieAirTM sUAS Program over a commercial 

vineyard located near Lodi, California. This project is part of the USDA-Agricultural 

Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration 

eXperiment (GRAPEX). Original spectral and thermal imagery data from sUAS were at 

10 cm and 60 cm per pixel, respectively, and multiple spatial domain scales (3.6, 7.2, 

14.4, and 30 m) were evaluated and compared against eddy covariance (EC) 

measurements. Results indicated that the TSEB-2T model is only slightly affected in the 

estimation of the net radiation (Rn) and the soil heat flux (G) at different spatial 

resolutions, while the sensible and latent heat fluxes (H and LE, respectively) are 

significantly affected by coarse grid sizes. The results indicated overestimation of H and 

underestimation of LE values, particularly at Landsat scale (30 m). This refers to the non-

linear relationship between the land surface temperature (LST) and the normalized 

difference vegetation index (NDVI) at coarse model resolution. Another predominant 

reason for LE reduction in TSEB-2T was the decrease in the aerodynamic resistance (RA), 

which is a function of the friction velocity (𝑢∗) that varies with mean canopy height and 

roughness length. While a small increase in grid size can be implemented, this increase 

should be limited to less than twice the smallest row spacing present in the sUAS imagery. 

The results also indicated that the mean LE at field scale is reduced by 10% to 20% at 

coarser resolutions, while the with-in field variability in LE values decreased significantly 

at the larger grid sizes and ranged between approximately 15% and 45%. This implies 

that, while the field-scale values of LE are fairly reliable at larger grid sizes, the with-in 

field variability limits its use for precision agriculture applications. 
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Keywords: evapotranspiration (ET); GRAPEX; sUAS; remote sensing; Two Source 

Energy Balance (TSEB) model; contextual spatial domain/resolution; data aggregation; 

eddy covariance (EC). 

2.1 Introduction 

Evapotranspiration (ET) is a key factor in the hydrologic cycle and in irrigation 

demand. Conventional methods for estimating ET, such as lysimeters and flux towers, are 

limited to sampling small areas on the order of 101 to 103 m2. For that, a more efficient 

method is needed as ET varies spatially under different micrometeorological and vegetative 

conditions. Accordingly, spatially distributed data are important for mapping ET variations 

over large areas, particularly in agricultural regions containing many of crop types and 

growth stages. In recent decades, remote sensing products from various platforms and at 

various spatial resolutions have been applied in modeling different environmental 

processes (e.g., surface energy fluxes, water and carbon balance, net primary productivity) 

[1]. Improved sensor systems and methods in remote sensing, and particularly the advent 

of small unmanned aerial systems (sUAS), have made these technologies a valuable source 

of spatial information for ET estimation at the canopy level. sUAS can offer spatial 

coverage with sub-meter-resolution imagery for mapping canopy and soil temperature, 

which are the key surface states for estimating ET [2]. While satellites are characterized by 

either coarse resolution and high temporal frequency or by high spatial resolution and low 

repeatability [3], sUAS technology, in addition to offering high-resolution data [4,5,6], can 

be described as “flexible in timing” [7]. This means that remotely sensed information can 

be obtained when needed or on demand using sUAS. For these reasons, various methods 

are under development to employ sUAS data for ET estimation [2]. 
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Remote sensing is a valuable source for accessing land surface spatial information [8]. 

Nonetheless, spatial scaling is recognized as a challenging issue, particularly in surface-

atmosphere exchange [8,9], environmental modeling, and agricultural management [10] 

applications and research. Previous studies by Brunsell and Gillies [11] and Giorgi [12] 

indicated that spatial scaling becomes more complex in cases of heterogeneous land 

surfaces, and homogeneity is less likely to be met in reality [13]. Various models have been 

developed to describe aerodynamic or energy balance fluxes, but these models assume 

homogeneity in terms of agricultural type, surface roughness, surface temperature, and 

meteorological condition [13,14]. Heat fluxes, including latent heat flux (LE) and sensible 

heat flux (H), are highly influenced by land surface heterogeneity [15]. Therefore, the 

variability in land cover within a pixel or model grid size can result in significant error in 

the mean pixel or grid heat flux estimation [16]. Vegetated areas with partial canopy cover 

will have underlying soil/substrate affecting the remotely sensed data, and hence, require 

models that explicitly consider the different effects of these two sources on energy 

exchange and sensor integration [2]. Typically, remotely sensed data at different 

resolutions are employed as an approximation to describe the spatial variability of the 

interaction between surface and atmosphere [11]. Current and future developments in 

remote sensing, with information spanning from sub-meters to kilometers, are making 

upscaling (data aggregation) a crucial issue in scientific and methodological advances. This 

is particularly true for understanding the physics behind climate, weather, and the surface 

energy balance [13,17].  

In general, spatial aggregation can be performed under two different procedures: 

forcing inputs to a coarser resolution or aggregating the derived fluxes from initial high-

https://paperpile.com/c/HODZCN/b39I
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resolution data (contextual spatial domain). Long et al. [18] pointed out that forcing spatial 

data aggregation from Landsat bands to MODIS (Moderate Resolution Imaging 

Spectroradiometer) resolution results in different statistical and spatial properties in ET 

estimates than at the original Landsat resolution. Study cases of LE resulted in inaccuracies 

[19,20] due to a reduction in surface variability at MODIS scale [11]. Moreover, the 

structure of vegetation and aerodynamic roughness influence the aggregation of turbulent 

fluxes and produce bias when MODIS data is used [15]. On the other hand, Bian and Butler 

[21] showed that low-resolution data could retain the statistical characteristics of the 

original data using specific aggregation techniques such as average and median. In 

addition, the spatial aggregation of ET inputs removes the effects of heterogeneity on the 

land surface. Still, scaling up energy fluxes from Landsat to MODIS scale is necessary in 

large-scale environmental models [22]. However, Landsat resolution is needed for 

validating modeled outputs using flux towers [23].  

Several methods exist for spatial aggregation of ET data, but they are in the exploratory 

stage [24]. Ershadi et al. [14] demonstrated that ET results reduced by 15% when 

aggregating Landsat TM (Thematic Mapper) imagery by 50% using the Surface Energy 

Balance System (SEBS) model. The ET reduction was caused by the decrease in roughness 

parameterization [14]. This outcome was also supported by Brunsell and Gillies [11], who 

indicated that the land surface heterogeneity is highly influenced by the input forcing 

aggregation of Landsat TM data affecting the surface heat fluxes. In contrast, French et al. 

[25] found no significant difference in daily ET estimates when they used METRIC 

(Mapping EvapoTranspiration at high Resolution with Internalized Calibration) model and 

upscaled data acquired by aircraft to Landsat resolution. However, another study by Kustas 
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and Norman [16] that used a detailed soil-vegetation atmosphere simulation model along 

with the thermal-based Two Source Energy balance model found that varying the degree 

of heterogeneity within a pixel, either in terms of surface roughness, moisture status, or a 

combination thereof, can have a significant impact on the pixel aggregated flux. 

A key question related to data aggregation was raised by Su et al. [26]: “How does the 

level of aggregation affect surface energy fluxes as fluxes are aggregated from the 

resolution at which they are observed to the coarse grid cell size of the atmospheric 

model?”. The study conducted by Guzinskia and Nieto [27] aimed to estimate ET using a 

Two Source Energy Balance (TSEB) model. They reported that sharpening Sentinel 3 

thermal imagery at 1-km pixel resolution to higher resolution (20 m) visible/near-infrared 

is indicative of the main issue of the lack of fine resolution thermal-IR (InfraRed) data for 

input to remote sensing-based ET models, particularly when applied to agricultural areas. 

In addition, Niu et al. [28] indicated that the TSEB model ET output using sUAS imagery 

gives more reliable estimates compared to coarse-resolution data because the model can 

separate between canopy and soil components. Moreover, most previous studies exploring 

the effects of sensor resolution on modeled ET have used semi-empirical models (e.g., 

Surface Energy Balance Algorithm for Land (SEBAL) model) [14], while physically-based 

ET models are required to quantify changes in the water and energy exchange due to 

changes in fractional vegetation cover, roughness, canopy structure, phenology, etc. that 

are occurring at plant scale [29]. In addition, it is common knowledge that vineyards and 

orchard fields do not have the same row spacing. The spacing varies from 6 ft to 12 ft for 

vineyards [30] and from 8 ft to 18 ft for orchards [31].  
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In the same context as the investigations discussed above on spatial resolution and 

surface heterogeneity, this study investigates the impact of grid-size resolution on LE 

outputs from TSEB model using the component soil/substrate and canopy temperature 

version (TSEB-2T) model applied to a complex agricultural canopy, namely a vineyard in 

California’s Central Valley. The study directly quantifies the effect of sensor resolution on 

key TSEB model inputs (i.e., land surface temperature (LST), leaf area index (LAI), canopy 

height (hc), canopy height-to-width ratio (wc/hc), and fractional cover (fc)) for estimating 

surface energy balance/ET. High-resolution optical and thermal data were acquired by an 

sUAS platform for vine and cover crop phenological stages at several different times during 

the day. In this research effort, the topics investigated include determining (a) whether the 

separation between canopy and soil/substrate temperature (Tc and Ts, respectively) using 

TSEB-2T is valid for coarse spatial domains (e.g., towards Landsat scale); (b) the effect of 

spatial resolution of TSEB-2T inputs on the magnitude and spatial variation of LE; (c) if 

the different spatial domain scales/pixel resolutions under study (3.6, 7.2, 14.4 and 30 m) 

have an impact on the magnitude of the LE and quantify the discrepancies as a function of 

resolution. 

2.1.1 TSEB-2T Model 

TSEB-2T is a physically based approach developed by Norman et al. [32] that 

explicitly accommodates the difference between aerodynamic and radiometric surface 

temperature that affect the radiative and convective exchange of energy between soil and 

canopy systems and the lower atmosphere. The main concept underpinning the TSEB-2T 

approach is modeling of the partitioning of radiative and turbulent energy fluxes between 

canopy and soil systems. In this case, H is partitioned between soil and canopy, which is 



20 
 

dependent mainly on Tc and Ts differences with the overlying atmosphere and their 

respective aerodynamic coupling.  

As shown in the Figure 2.1, the TSEB-2T model separates the surface energy balance 

between soil and vegetation as follows: 

𝑅𝑛 = 𝐿𝐸 + 𝐻 + 𝐺, (2.1) 

𝑅𝑛𝑐 = 𝐻𝑐 + 𝐿𝐸𝑐, (2.2) 

𝑅𝑛𝑠 = 𝐻𝑠 + 𝐿𝐸𝑠 + 𝐺, (2.3) 

where Rn is the net radiation, H is the sensible heat flux, LE is the latent heat flux, and G is 

the soil heat flux. All units of fluxes are in W/m2. Subscripts of c and s represent the canopy 

and soil components, respectively. Because Ts and Tc can be derived from the LST with a 

high enough resolution of optical data, energy fluxes (Rn, H) can be calculated directly 

from the component temperatures (Tc and Ts) and estimated aerodynamic resistances of 

canopy and soil components, while G is parametrized as a portion of soil net radiation (Rns). 

LEc and LEs are solved as residuals when (Tc and Ts) observations are available. 

𝐺 = 𝑐𝐺𝑅𝑛𝑠 (2.4) 

where 𝑐𝐺 is an empirical coefficient changing over the daytime [2]. 
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Figure 2.1 Schematic representation of TSEB-2T model. 

To estimate the sensible heat flux for vegetation and canopy, Norman et al. [32] 

proposed a series of soil-vegetation resistance network as illustrated in Figure 2.1: 

𝐻 = 𝐻𝑐 + 𝐻𝑠 = 𝜌𝑎𝑖𝑟𝐶𝑝

𝑇𝐴𝐶 − 𝑇𝐴

𝑅𝐴
= 𝜌𝑎𝑖𝑟𝐶𝑝 [

𝑇𝐶 − 𝑇𝐴𝐶

𝑅𝑥
+

𝑇𝑠 − 𝑇𝐴𝐶

𝑅𝑠
] (2.5) 

𝑅𝐴 =
𝑙𝑛 (

𝑧𝑇 − 𝑑0

𝑧0𝐻
) − 𝛹ℎ (

𝑧𝑇 − 𝑑0

𝐿
) + 𝛹ℎ (

𝑧0𝐻

𝐿 )

𝜅′𝑢∗
          

(2.6) 

where 𝜌𝑎𝑖𝑟 is the air density (kg/m3); 𝐶𝑝 is the heat capacity of the air at constant pressure 

(J/(kg. K)); Tc and Ts are canopy and soil temperature (K), respectively; TAC is the 

temperature of canopy-air space (K); and TA is the temperature of air (K). RA is the 

aerodynamic resistance to heat transport from the soil/canopy system (s/m), Rx is the 

boundary layer resistance of the canopy leaves (s/m), Rs is the aerodynamic resistance to 

heat transport in the boundary layer close to the soil surface (s/m), 𝑧𝑇 is the measurement 

height for TA, 𝑧0𝐻 is the roughness length for heat transport, 𝑑0 is the zero-plane 

displacement height (m), L is the Monin-Obukhov length (m), 𝜅′ = 0.4 is the von 

https://paperpile.com/c/HODZCN/EBGQ
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Karman’s constant, 𝑢∗ is the friction velocity (m/s), and 𝛹ℎ is the adiabatic correction 

factor for the momentum. 

Key factors, including Ts and Tc, LAI, fc, wc/hc, and hc, are required as inputs for the 

TSEB model to parameterize the radiative and convective flux exchanges between 

soil/substrate and canopy. Other parameters related to micrometeorological data are also 

needed to run the model. In the study conducted by Chirouze et al. [33] comparing different 

remote sensing ET models, results indicated that TSEB is a better model for ET estimation 

compared to others, being less sensitive to roughness parameters. This lack of sensitivity 

to roughness parameters was also recently verified for vineyards by Alfieri et al. [34]. The 

TSEB model has been extensively tested for years over agroecosystems [35,36,37], natural 

ecosystems [38,39], and wetlands [40,41]. 

TSEB-2T was originally developed and evaluated by Kustas and Norman [42] using 

multiple thermal-IR radiometer viewing angles and was further refined and tested by Nieto 

et al. [2] applied to high resolution imagery from sUAS or other airborne sources. They 

found that TSEB-2T gave better agreement with tower fluxes compared to other versions 

of TSEB, including TSEB-PT (Priestly-Taylor), TSEB-DTD (Dual-time-difference), and 

TSEB-2T-DMS (Data-mining sharpening of temperature). TSEB-PT is one version of the 

TSEB model that assumes a composite radiometric temperature (Trad) containing 

temperature contribution from the canopy and soil/substrate, which is typically provided 

by the radiometer. The decomposition of radiometric temperature (Trad ) between plant 

canopy and soil/substrate is based on fc. TSEB-DTD is a further development of the TSEB-

PT model described by Norman et al. [43]. The TSEB-DTD model is similar to the TSEB-

PT model in that it divides the composite Trad into Tc and Ts. However, TSEB-DTD uses 

https://paperpile.com/c/HODZCN/ZYzj
https://paperpile.com/c/HODZCN/U7K4
https://paperpile.com/c/HODZCN/U7K4
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two observations of Trad : the first observation obtained 1.5 h after the sunrise (Trad ,0) and 

the second one during the daytime (Trad,1). This version is less sensitive to errors in absolute 

radiometric surface temperature or the use of non-local air temperature observations. 

TSEB-2T-DMS partitions Ts and Tc using a data-mining fusion algorithm [44] to sharpen 

the original LST to be similar to the optical data, which would allow a better discrimination 

between Ts and Tc.  

The Nieto et al. [2] TSEB-2T approach is a contextual TSEB that estimates Ts and Tc 

from composite LST imagery using the relationship between vegetation index (VI) and LST 

for extracting Ts and Tc within a spatial domain. Ts and Tc are calculated by averaging the 

temperature of pixels that are considered pure soil/substrate and pure canopy in a 

contextual spatial domain, namely, a two-dimensional plot of LST versus VI, such as 

Normalized Difference Vegetation Index (NDVI) (see Figure 2.1). That is, each pixel of 

the spatial domain is assigned based on Tc and Ts corresponding to the average temperature 

of the 0.6-m grids that are considered pure vegetation and bare soil, respectively. Both 

soil/substrate or canopy features are determined using NDVI threshold values (or any other 

vegetation index). The selection criterion for detecting the NDVI threshold of pure soil for 

bare soil interrows or, for most of the growing season, a soil senescent and cover crop 

stubble mixture (substrate) (NDVIs) can be further supported by other sources such as NDVI 

value from a NDVI-LAI curve when LAI in the interrows is nearly zero. The pure vine 

canopy NDVI threshold (NDVIv) can be calculated as the mean value of pixels identified 

as pure vegetation in a binary (soil-vegetation) classification of a multispectral image. In 

cases of very dense vegetation where pure soil pixels do not exist or sparse vegetation 

lacking pure vegetation pixels inside the spatial domain, a linear fit between LST and NDVI 
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can be developed where Ts and Tc can be estimated by previously defining the NDVI 

thresholds of canopy and bare soil (Figure 2.1).  

2.1.2 TSEB-2T Main Inputs 

2.1.2.1 Leaf Area Index (LAI) 

LAI is one of the key inputs in TSEB influencing the computation of ET as leaves 

distribution is the driving factor in energy and mass exchange in this model. LAI is also 

difficult to acquire using ground-based leaf-scale measurements, due to the time-intensive 

effort required [45], complications using indirect methods in complex canopies, and lack 

of any spatial extent for mapping, even at the field scale [46]. Therefore, considerable 

efforts have been devoted to developing remote sensing approaches to estimate LAI [47].  

Estimating spatial distribution of LAI is challenging in vineyards, with their rows of 

vines and interrows with little to no vegetation. A previous study conducted by Johnson 

[48] evaluated the LAI-NDVI relationship in vineyards using IKONOS satellite imagery 

with 1-m pixel resolution and comparing NDVI to ground-based LAI measurements. They 

concluded that LAI can be computed from NDVI using simple linear regression for the 

vineyard they studied planted with red grape in six blocks of different planting density, 

trellis, age, and cultivar. In addition, Johnson et al. [48] and Dobrowski et al. [49] showed 

that remotely sensed indices of soil and vegetation can be used to estimate LAI. However, 

a study by Fang [50] indicated that limitations exit when using vegetation indices (VIs) to 

describe the spatially distributed LAI due to sensitivity of the LAI-VIs relationship to 

vegetation type and substrate/soil type, and hence, will not be stable or applicable over 

large areas. Indeed, operational satellite retrievals of LAI, particularly for vineyards [51], 

have a level of uncertainty that could affect modeling fluxes using TSEB. Furthermore, 

https://paperpile.com/c/HODZCN/bQVU
https://paperpile.com/c/HODZCN/bQVU
https://paperpile.com/c/HODZCN/LVlH+f8CM
https://paperpile.com/c/HODZCN/A3Qs


25 
 

canopy phenological properties (i.e., chlorophyll content and average leaf angle), along 

with other factors such as atmospheric scattering, soil reflectance, and the effects of mixed 

pixel due to a composite of soil and vegetation that changes with time and from one place 

to another, affect the accuracy of LAI estimation [47]. To improve the LAI-VIs 

relationships, numerous studies have been conducted to estimate LAI using statistical 

approaches. Artificial Neural Network (ANN) was very promising and is simple to use [50]; 

however, this method does not allow for standardization of the LAI estimation [52]. As 

described by Gonsamo and Pellikka [53], there is currently no standard or arbitrary 

characteristic parameters, specific vegetation types, or data sources can be employed for 

LAI estimation. Thus, researchers must develop custom models by considering the 

sensitivity of parameters to LAI within an expected range [53].  

2.1.2.2 Canopy Height (hc) 

The hc value is representative (mean) over the area of interest, but it can also be 

incorporated from spatial sources. An estimate of hc can be produced using high-resolution 

images from sUAS and other airborne sources processed with structure-from-motion (SfM) 

methods in Agisoft or Pix4D, among others, along with digital elevation models (DEM) 

and point clouds (LiDAR). The value of hc is required for the TSEB-2T model to estimate 

surface aerodynamic roughness and radiation transmission in row crops and to calculate 

the foliage density, which are all required for the canopy wind attenuation model (Figure 

2.2).  

https://paperpile.com/c/HODZCN/RoYk
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Figure 2.2 Schematic diagram for canopy wc/hc ratio. 

2.1.2.3 Fractional Cover (fc) and Canopy Width (wc) 

Fractional cover (fc) is the proportional area of vine for each spatial domain under 

analysis, where values vary from 0 through 1. fc is used to estimate wc and the clumping 

index, which is a factor to adjust the remotely sensed LAI value, which is assumed to be 

uniformly distributed (homogeneous) over the landscape instead of being clumped [54]. 

These are used to estimate the actual canopy gap fraction, which is greater than the 

homogenous case. It is required as input for the radiation transmission and wind extinction 

algorithms through the canopy layer. The magnitude of wc is a length scale representing 

the area occupied by vine leaves along the vine row, which varies spatially and temporally 

based on phenology and management (i.e., vine manipulation via the trellis system and 

pruning) (Figure 2.2). 

2.1.2.4 wc/hc Ratio 

In TSEB and TSEB-2T models, the wc/hc ratio is required as input to the radiation 

transmission and wind extinction algorithms through the canopy layer developed for 
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vineyards [2,55]. The wc/hc ratio value is obtained by simply calculating canopy width over 

canopy height (Figure 2.2). 

2.2 Materials and Methods  

The methodology to assess the impact of changes in the contextual spatial domain for 

the TSEB-2T model is graphically presented in Figure 2.3. The analysis was performed for 

wine grape growing seasons (May–August) using different spatial domain scales. 

 

Figure 2.3 Study methodology for assessing the impact of the TSEB-2T contextual 

spatial domain. 
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2.2.1 Study Area and Data Sources 

The study site is located near Lodi, California (38.29o N, 121.12o W) with an area of 

approximately 150 ha. The two vineyard blocks (north and south) are part of the Sierra 

Loma vineyard ranch (Figure 2.4). The north block was planted in 2009, while the south 

block was implemented in 2011, leading to different levels of vine maturity, and hence, 

biomass and grape production. Both vineyards are managed cooperatively by Pacific Agri-

Lands Management. The plantation structure in both fields is the same, with vine rows 

having east–west orientation with a row width of 3.35 m (11 feet). A cover crop grows in 

the interrows, occupying ~ 2 m, with bare soil strips along the vine rows spanning ~ 0.7 m. 

The purpose of the cover crop is to deplete plant available water in the interrows from the 

fall and winter precipitation in order to control vine growth in the spring by irrigation. 

Typically, the vine height varies between 2 m and 2.5 m above ground level (agl) and vine 

biomass is concentrated mainly in the upper half of the vine canopy height. The actual vine 

canopy width varies spatially and temporally due to vine management practices. This study 

site is a part of the Grape Remote Sensing Atmospheric Profile and Evapotranspiration 

eXperiment (GRAPEX) project run by the USDA Agricultural Research Service in 

collaboration with E&J Gallo Winery, Utah State University, University of California in 

Davis, and others [56].  
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Figure 2.4 Layout of study area in Lodi, California, locations of EC towers and 

example of 90% of EC footprint at afternoon for June 02, 2015. 

 

Flights campaigns were conducted by the AggieAir sUAS Program at Utah State 

University (https://uwrl.usu.edu/aggieair/). Optical and thermal high-resolution imagery 

of the study site were collected from different flights in 2014, 2015, and 2016. Vegetative 

and soil conditions changed between the field campaigns. The 2016 flight imagery 

represents the early part of the growing season, around the time phenologically of fruit set, 

while other flights in 2014 and 2015 represent full vine canopy development and grape 

vine phenology in the pre- and post-veraison stages. Table 2.1 lists information concerning 

the different flights. The pixel resolution of the sUAS imagery collected is 10 cm and 60 

cm for the optical and thermal bands, respectively. The spectral range of the optical data is 
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similar to Landsat and includes visible bands (red, green, and blue) as well as near-infrared. 

However, the thermal band is different than Landsat, having a bandwidth spanning from 7 

to 14 µm [57]. Thermal data, acquired using a lightweight micro-bolometer camera, were 

radiometrically calibrated [58]. 

Table 2.1 Dates and times of AggieAir GRAPEX flights used in this study. 

Flight Date 
Landsat time 

PST 

Afternoon 

PST 

Midafternoon 

PST 

August 09, 2014 10:41 am  - 

June 02, 2015 10:43 am 14:07 pm - 

July 11, 2015 10:35 am 14:14 pm  

May 02, 2016 - 12:05 pm 15:04 pm 

May 03, 2016 - 12:48 pm - 

 

To evaluate the ET performance at different spatial domain scales, two eddy 

covariance (EC) flux systems were deployed for the measurements of turbulent fluxes, 

including LE and H, and the available energy terms of Rn and G. Both towers are located 

at the eastern edge of the fields, due to predominant winds from the west. Ground 

measurements, including soil temperature and soil moisture were also collected. A 

complete listing of all measurements on the towers is given by Kustas et al. [56]. Details 

of the post processing of the EC data as well as the available energy measurements are 

provided by Alfieri et al. and Agam et al. [59,60].  

        EC micrometeorological data also included wind speed, air temperature, vapor 

pressure, air pressure, and shortwave radiation. Hourly average values of these atmospheric 

forcing variables, as well as the components of the surface energy balance, were 
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computed. Table 2.2  illustrates the in-situ micrometeorological parameters and the name 

of the instruments used for the measurements. 

       Table 2.2 Description of in-situ micrometeorological measurements in this study. 

ID 
Micrometeorological 

parameters 

Instrument name1 Elevation 

1 Water vapor 

concentration 

Infrared gas analyzer (EC150, Campbell 

Scientific, Logan, Utah) 

5 m agl 

2 
Wind velocity 

Sonic anemometer (CSAT3, Campbell 

Scientific) 

5 m agl 

3 
Net radiation 

4-way radiometer (CNR-1, Kipp and Zonen, 

Delft, Netherlands) 

6 m agl 

4 
Air temperature 

Gill shielded temperature (Vaisala, Helsinki, 

Finland)  

5 m agl 

5 
Water vapor pressure  

Humidity probe (HMP45C, Vaisala, 

Helsinki, Finland) 

5 m agl 

6 
Soil heat flux 

Five plates (HFT-3, Radiation Energy 

Balance Systems, Bellevue, Washington) 

-8 cm 

7 Soil temperature  Thermocouples  -2 cm 

8 

Soil moisture  

Soil moisture probe (HydraProbe, Stevens 

Water Monitoring Systems, Portland, 

Oregon) 

-5 cm 

1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such 

use does not constitute official endorsement or approval by the US Department of Agriculture or the Agricultural 

Research Service of any product or service to the exclusion of others that may be suitable. 

 

Given the high fluctuation of atmospheric conditions during the daytime, the flux 

footprint or contributing source area of each EC tower was estimated for the hourly period 

encompassing sUAS flight campaigns using the two-dimensional (2D) flux footprint model 

developed recently by Kljun et al. [61]. Because a 100% EC footprint fetch could extend 

over the study area, a 90% footprint area (90% cutoff) was used for analysis. Then, the 

weighted footprint area was divided by 0.9.  

 
 

https://paperpile.com/c/HODZCN/ZL0a
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2.2.2 Data Processing  

In this study, images were acquired remotely by sUAS, and the data were terrain 

corrected using georeferencing based on ground control points (GCPs). Furthermore, both 

thermal and optical data were atmospherically corrected. 

2.2.2.1 Thermal Data 

   Torres-Rua [57] indicated that the thermal data obtained from the sUAS thermal 

sensors in this study are adversely affected by changes in transmissivity and atmospheric 

radiance. For this reason, ground measurements of temperature were collected in the same 

timeframe as the sUAS flight and compared with the imagery to calibrate the thermal image 

data. More details about the calibration of temperature imagery related to this study can be 

found in Torres-Rua [57]. 

2.2.2.2 Optical Data 

Radiometric agreement between remotely sensed data from different platforms 

constitutes one of the major challenges in image processing. Therefore, in this research, 

the images acquired by sUAS were upscaled and harmonized with Landsat using the point 

spread function (PSF). More details related to sUAS data harmonization can be found in 

Hassan-Esfahani et al. [62]. 

2.2.3 Energy Balance Closure Adjustment Methods for EC 

While the EC technique provides measurements of turbulent fluxes H and LE, a lack 

of energy balance closure with the available energy terms Rn and G [63] is well 

documented. This results in Rn − G > LE + H [64,65], and the computed closure ratio (CR) 

evaluates the energy balance discrepancy, 𝐶𝑅 = (𝐻 + 𝐿𝐸) (𝑅𝑛 − 𝐺)⁄ . This ratio varies 

https://paperpile.com/c/HODZCN/f1wz
https://paperpile.com/c/HODZCN/f1wz
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during the daytime, but for the sUAS flights [55] it was found to be above 0.8, except for 

the May 2 afternoon flight where it fell to around 0.7. 

To avoid any bias when comparing the energy balance models with EC field 

measurements, the energy closure issue needs to be handled and resolved. Twine et al. [66] 

suggested a method for energy balance closure that assumes the Bowen ratio (H/LE) before 

and after adjustment are the same, while considering both Rn and G as reliable 

measurements. A modified H and LE can be calculated as: 

𝐿𝐸∗ =
(𝑅𝑛 − 𝐺)

(𝐵 + 1)
 (2.7) 

𝐻∗ =
(𝑅𝑛 − 𝐺)

(
1
𝐵 + 1)

 (2.8) 

where 𝐿𝐸∗ and 𝐻∗ denotes the closure adjusted latent and sensible heat flux, respectively. 

2.2.4 Contextual Spatial Domain 

The representative TSEB-2T modeling grid size for the vineyard blocks was taken at 

3.6 m, which corresponds to encompassing 6 x 6 grid or 36 sUAS thermal pixels having a 

resolution of 0.6 m. At this grid size, the inputs to TSEB-2T incorporate the thermal-IR and 

optical bands of a vine row and adjusted interrows having a length scale of 3.35 m. Larger 

spatial domain scales were considered in this study, including 7.2 m, 14.4 m, and 30 m, to 

investigate the influence of domain size on the TSEB-2T estimates. These selected values 

correspond to multiple vine rows spacing of 7.2 m (two rows), 14.4 m (four rows), and 30 

m (Landsat scale—nine rows).  

https://paperpile.com/c/HODZCN/Hbv3
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2.2.5 TSEB-2T Inputs 

The TSEB-2T model developed by Nieto et al. [2] and implemented in Python 

language and is available at https://github.com/hectornieto/pyTSEB.  

2.2.5.1 Leaf Area Index (LAI) 

To assess the spatial heterogeneity of LAI, an approach was developed in this study to 

calculate LAI using a genetic programming (GP) model using the Eureqa software. The GP 

model associated sUAS imagery and LAI ground measurements collected with an indirect 

method using (LAI-2200, LI-COR, Lincoln, Nebraska) plant canopy analyzer 

measurements at several locations within the northern and southern vineyards with 

additional validation using destructive LAI sampling at several locations [46]. Before 

performing the GP model calculations, imagery features were classified into two 

categories, vine and interrow, and then statistical calculations were separately carried out 

for the optical properties of each category. The main optical reflectance used in this 

analysis comprise the original bands (red (R), green (G), blue (B), and near-infrared (NIR)), 

along with two conventional VIs (NDVI and NIR/R). Statistical computations were 

performed using the fine-resolution data inside the spatial domain scales (3.6 m, 7.2 m, 

14.4 m, and 30 m), which included the maximum, minimum, area, mean, standard 

deviation, and sum. The GP model integrates all of these corresponding statistics to 

construct a relationship to LAI observations.   

2.2.5.2 Canopy Height (hc) 

Spatial data from the digital terrain model (DTM) [67] and digital surface model 

(DSM) were aggregated into multiple spatial scales by employing a simple averaging 

https://github.com/hectornieto/pyTSEB
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method; then, hc was calculated using the expression: hc = DSM-DTM. For example, in the 

case of a 7.2-m grid, the average values of DSM and DTM, DSM(7.2), and DTM(7.2) , 

respectively, were computed inside the grid window, then the height of the canopy was 

computed as: ℎ𝑐(7.2)
= 𝐷𝑆𝑀(7.2) − 𝐷𝑇𝑀(7.2). 

2.2.5.3 Fractional Cover (fc) and Canopy Width (wc) 

The north and south vineyard blocks were classified into two categories, vine and 

interrow, based on NDVI. Then the vine area inside each spatial domain was calculated and 

divided by the total area of the grid to calculate the fc. wc inside each spatial domain was 

computed using fc and the width of the grid (w) under analysis, i.e., wc = fc×w. To calculate 

the representative width of the vine canopy, the total width was rescaled and standardized 

at multiple spatial domain scales, depending on the number of rows inside each grid. For 

example, in the case of a 3.6-m grid, one vine row was counted inside, while in a 7.2-m 

grid, the number of rows was doubled.  

2.2.5.4 wc/hc Ratio 

wc/hc was calculated by simply dividing canopy width by canopy height at each 

contextual spatial domain.  

2.2.6 Goodness-of-Fit Statistics 

Evaluating the performance of the TSEB-2T model with the sUAS imagery for the four 

different modeling grid resolutions involved comparing the estimated fluxes with 

measurements from the EC towers. Computed statistical metrics included the root mean 

square error (RMSE), the normalized root mean square error (NRMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency coefficient 
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(NSE). A value of NSE = 1 indicates perfect agreement between modeled and observed 

flux, while NSE approaching 0 means that the agreement is very poor, and NSE < 0 

indicates unacceptable performance [68]. These statistical measurements are calculated as 

follows using LE as the flux: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐿𝐸𝑚,𝑖 − 𝐿𝐸𝑜,𝑖)

2
𝑁

𝑖=1

 (2.9) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎𝑜
 (2.10) 

𝑀𝐴𝐸 =
∑ |𝐿𝐸𝑚,𝑖 − 𝐿𝐸𝑜,𝑖|

𝑛
𝑖=1

𝑛
            (2.11) 

𝑀𝐴𝑃𝐸 =

∑ |
𝐿𝐸𝑚,𝑖 − 𝐿𝐸𝑜,𝑖

𝐿𝐸𝑜,𝑖
|𝑁

𝑖=1 ∗ 100

𝑛
 

(2.12) 

𝑁𝑆𝐸 = 1 −
∑ (𝐿𝐸𝑚,𝑖 − 𝐿𝐸𝑜,𝑖)

2𝑛
𝑖=1

∑ (𝐿𝐸𝑜,𝑖 − 𝐿𝐸̅̅̅̅
𝑜,𝑖)

2𝑛
𝑖=1

 (2.13) 

where 𝐿𝐸𝑚 denotes the modeled latent heat flux obtained from the TSEB-2T aggregated up 

for the estimated flux footprint/source area, 𝐿𝐸𝑜 denotes the observed values from the EC 

tower, and n represents the number of observations, 𝜎𝑜 denotes the standard deviation of 

observed values. 

LE was used for evaluating the impact of spatial resolution or grid size on modeled 

fluxes. At field scale, the evaluation is done using the spatial mean and coefficient of 

variation (CV) statistics. For LE statistical characteristics, frequency and cumulative 

distribution curves were used. Finally, to evaluate the effect of aggregating LE at 3.6 m, 

7.2 m, 14.4 m, and Landsat scale, relative difference (relative error) was used. Relative 

difference (relative error) is defined as the root mean square error (RMSE) between the 
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aggregated resolution and its reference grid size resolution of 3.6 × 3.6 m divided by the 

spatial mean (𝜇) value computed from the reference grid size (3.6 m × 3.6 m), i.e., 𝐸𝑟 =

𝑅𝑀𝑆𝐸 𝜇⁄  [14]. Each grid value of aggregated data was compared to the n × n set of 

reference scale or resolution (3.6 m) grid using 𝐸𝑟. 

2.3 Results and Discussion 

2.3.1 TSEB-2T Contextual Spatial Domains Validation 

2.3.1.1 EC Footprint Estimation  

The results of footprint analysis using the 2D flux model developed by Kljun et al. 

[61] and described in section 2.2.1 are shown in Figure 2.5 for the different sUAS flights.  

The orientation and size of each flux footprint/source area depends on the 

micrometeorological conditions at the site measured by the EC towers, which include the 

turbulence fluxes, friction velocity (𝑢∗), and wind speed, which affect atmospheric 

stability, and canopy and EC measurement height, which affect the effective sampling 

height and wind direction that affects the orientation of the footprint. The total statistical 

weight of the footprint is taken to equal unity, although the actual area computed by the 

footprint model represents 90% of the contribution since the additional 10% essentially 

makes no measurable contribution. To compare the fluxes computed by the TSEB-2T 

model at the different spatial resolutions with the EC measurements, the source area 

estimated by the footprint model was multiplied by the corresponding modeled fluxes (Rn, 

H, LE, G) using ArcGIS10.6. Then, a comparison between the weighted fluxes at the 

different spatial resolutions or grid sizes from the TSEB-2T version of TSEB and EC 

measurements was performed to assess model performance. 

https://paperpile.com/c/HODZCN/ZL0a
https://paperpile.com/c/HODZCN/ZL0a
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Figure 2.5  Layout of 90% EC footprints for two towers at different times 

considered by this study. 
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2.3.1.2 Statistical Performance  

Table 2.3 lists the goodness-of-fit statistics between the energy fluxes using TSEB-2T 

at different spatial resolutions and EC tower observations, while Figure 2.6 shows the 

relationship between the modeled and measured fluxes. The results indicate a significant 

deterioration in model performance at the 30-m grid size. A major factor that may be 

responsible for this poor performance in the TSEB-2T model at 30-m resolution is that the 

size and dimension of the EC source area estimated by the footprint model cannot 

incorporate a representative range in the spatial variability in the fluxes at 30-m resolution. 

This conclusion agrees with a previous study conducted by Song et al. [69] that showed a 

major problem in comparing modeled and measured fluxes when there is a mismatch in 

pixel resolution or model grid size in the remotely sensed ET output and in the source area 

contributing to the EC tower measurements in a heterogeneous landscape. 

Results in Table 2.3 also indicate that Rn and G across multiple aggregated grids 

demonstrated a close agreement between the TSEB-2T output and observed measurements, 

as indicated by lower MAE and MAPE with quite constant correlation (R2). The MAE and 

MAPE in the Rn estimate at grid sizes of 3.6 m, 7.2 m, and 14.4 m accounted for less than 

25 W/m2 and 5%, respectively. However, at Landsat scale the MAE increased slightly to 

29 W/m2. A similar result was obtained for H, where MAE at the finer resolutions yielded 

values less than 45 W/m2, while the coarser grid size of 30 m yielded a larger MAE of 

nearly 80 W/m2. As shown in Table 2.3, the correlation of H is higher than G and LE, 

except for 30-m resolution/model grid. This implies that the performance of the 30-m 

resolution is different compared to the 3.6-m, 7.2-m, and 14.4-m resolutions. The results 

for LE indicated good agreement with the flux measurements at 3.6-m, 7.2-m, and 14.4-m 

https://paperpile.com/c/HODZCN/VDwq


40 
 

modeling grid sizes, while at the 30-m resolution, the MAE value was around 85 W/m2. As 

demonstrated in Figure 2.6 (d), all values of LE are underestimated (below 1:1 line) with 

an NSE coefficient of 0.2. Furthermore, the highest NRMSE values were observed for LE, 

compared with other surface fluxes, particularly at 30-m resolution. The lowest NRMSE 

was obtained for Rn across different spatial domains/model grids.  

Table 2.3 Goodness-of-fit statistics between the eddy covariance and the TSEB-2T 

fluxes at different spatial scales (3.6 m, 7.2 m, 14 m, and 30 m). 

Spatial 

domain 

Fluxes RMSE 

(W/m2) 
NRMSE 

MAE 

(W/m2) 

MAPE 

(%) 
NSE R2 

3.6m 

Rn 28 0.3 25 5 0.9 0.94 

LE 69 1.2 58 20 0.5 0.49 

H 54 0.8 41 26 0.7 0.67 

G 34 0.9 30 51 0.6 0.56 

7.2m 

Rn 27 0.3 24 4 0.9 0.94 

LE 66 1.2 56 19 0.5 0.53 

H 51 0.7 36 24 0.7 0.67 

G 33 0.8 30 50 0.6 0.58 

14.4m 

Rn 25 0.3 20 4 0.9 0.95 

LE 79 1.4 56 18 0.1 0.21 

H 48 0.7 35 26 0.6 0.69 

G 32 0.8 29 49 0.6 0.59 

30m 

Rn 34 0.4 29 5 0.9 0.96 

LE 101 1.8 86 30 0.2 0.53 

H 93 1.3 78 67 -0.1 0.23 

G 31 0.8 28 48 0.6 0.60 

 

With the TSEB-2T model and other remote sensing-based models using thermal-IR as 

the boundary condition, LE is solved as the residual component of the surface energy 

balance, LE = Rn − H − G. Therefore, an error in the calculation of energy fluxes (Rn, H, 
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and G) adversely affects the estimation of LE. Based on Figure 2.6, the LE estimation (or 

bias) is mainly influenced by the estimation of H. This conclusion was also reached by 

Kustas et al. [70], who showed the discrepancies between modeled and measured LE is due 

in large part, up to approximately 90%, to errors in modeled H.  

 

Figure 2.6 Scatterplot of observed versus estimated surface fluxes using different model 

grid sizes/resolution with the TSEB-2T model; (a) 3.6 m, (b) 7.2 m, (c) 14.4 m, and (d) 30 

m. 
 

(a) (b) 

(c) (d) 

https://paperpile.com/c/HODZCN/t6cZ
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2.3.2 Contextual Spatial Domain Aggregations Effects 

2.3.2.1 The Effect of Model Grid Size on TSEB-2T Inputs 

(a) Canopy and Soil Temperatures (Tc, Ts) 

Tc and Ts were estimated based on a linear LST-NDVI relationship as described by 

Nieto et al. [2]. However, this relationship does not fulfill the homoscedasticity criterion 

when the spatial domain/resolution reaches a certain size (i.e., 30-m) as shown in Figure 

2.7. For example, in the case of a 30-m grid size, a higher variability is observed in the 

LST-NDVI data compared with finer resolutions (3.6 m, 7.2 m, and 14.4 m). At micro-scale 

(e.g., 3.6 m), there are small number of pixels inside the spatial domain compared with 

others (7.2 m, 14.4 m, and 30 m), and exhibit an apparent linear relationship between LST 

and NDVI. However, at coarse resolution (e.g., 30 m), there are many more pixels, more 

rows of vineyard are included, and large vegetated and bare soil pixels exist inside the 

spatial domain. The result is a partially filled triangular shape. This indicates the 

relationship between LST and NDVI starts to resemble the “triangle method” [71] to 

estimate ET as the sampling domain increases. 
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Figure 2.7 The LST-NDVI relationship used for finding Tc and Ts as proposed by the TSEB-

2T model at different spatial domains (August 09, 2014). (a) 3.6 m, (b) 7.2 m, (c) 14.4 m, 

(d) 30 m. 
 

Figure 2.8 illustrates the Tc and Ts maps at different resolutions, which provide an 

indication of the loss in spatial variability due to spatial aggregation. The ranges of Tc and 

Ts were between 290 K (16.85 °C) and 320 K (46.85 °C) for the sUAS flight in 2014.   

 (a) 

 (c)  (d) 

(b) 
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(a) 

 

(b) 

 

Figure 2.8 Example of (a) canopy temperature (Tc) and (b) soil temperature (Ts) in Kelvin 

(K) at different spatial domains for August 09, 2014. 
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(b) Leaf Area Index (LAI) 

With the GP model results, it was found that the main estimators for computing LAI 

are the mean of NIR/R ratio of the vine, area of the vine, sum of NDVI of the vine, standard 

deviation of NIR of the interrow, and standard deviation of NIR/R ratio of the vine. The GP 

model (Equation 2.14) was applied to the remote-sensing imagery to map spatial LAI 

distribution across the study area. 

L𝐴𝐼 = 0.21𝑁𝐷𝑉𝐼𝑣_𝑎𝑟𝑒𝑎 − 0.004𝑁𝐷𝑉𝐼𝑣_𝑠𝑢𝑚
+ 0.34 (

𝑁𝐼𝑅

𝑅
)
𝑣_𝑚𝑒𝑎𝑛

−
0.94

𝑒𝑥𝑝 (0.23(𝑁𝐷𝑉𝐼𝑣_𝑎𝑟𝑒𝑎)
2
)

− 2.8𝑁𝐼𝑅𝑖_𝑆𝑇𝐷
(
𝑁𝐼𝑅

𝑅
)
𝑣𝑆𝑇𝐷

− 0.7 

(2.14) 

 

LAI values from the GP model compared with the actual LAI field measurements showed 

good agreement with an R2 of 0.73. 

To evaluate the difference between multiple model grid sizes of LAI for each flight, 

LAI maps at different resolutions were estimated (see Figure 2.9) and statistics including 

the spatial mean, standard deviation, and coefficient of variation (CV) were calculated as 

shown in Table 2.4. Figure 2.9 provides an indication of the loss in spatial variability in 

LAI images due to spatial aggregation. LAI at each contextual spatial domain/resolution 

was calculated using the LAI model (Eq 2.14). Each parameter in that equation was 

calculated based on the pixel values inside the model grid. The ranges of LAI were between 

0 and 2.5 for the sUAS flight in 2014. As illustrated in Table 2.4, the spatial mean value 

(μ) is the same across different scales, with a slight decrease in CV. The exception is the 

flight on May 02, 2016, which represents the early growing stage of the vine canopy with 

active/live interrow cover crop, showing a higher CV. Hardin and Jensen [72] also found 

greater uncertainty in estimating LAI under low LAI conditions using VIs. The frequency 



46 
 

histogram in Figure 2.10 indicates the distribution of values is skewed such that the lower 

values are more pronounced for the flight of May, 2, 2016, with a non-significant change 

between curves from the different grid sizes, except the 30-m resolution spatial domain, 

which shows a higher variation compared with other scales. This behavior aligns with the 

decreasing CV values due to loss in internal or pixel variability of the LAI values. A similar 

trend of lower CV toward large scale (30 m) has been observed for other TSEB-2T inputs 

including hc, fc, and wc/hc. 

 

Figure 2.9 Example of modeled LAI (unitless) across different spatial domains for August 

09, 2014. 
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                    Table 2.4 Spatial domain effect on LAI estimation. 

Flight Spatial domain μ σ CV 

August 09,2014 

3.6m 0.91 0.56 0.61 

7.2m 0.91 0.54 0.59 

14.4m 0.91 0.52 0.57 

30.0m 0.91 0.48 0.53 

June 02,2015 

3.6m 0.57 0.38 0.66 

7.2m 0.57 0.33 0.58 

14.4m 0.57 0.30 0.52 

30.0m 0.57 0.27 0.47 

July 11,2015 

3.6m 0.52 0.39 0.75 

7.2m 0.52 0.36 0.69 

14.4m 0.52 0.34 0.65 

30.0m 0.52 0.31 0.60 

May 02,2016 

3.6m 0.06 0.11 1.90 

7.2m 0.06 0.10 1.75 

14.4m 0.06 0.10 1.66 

30.0m 0.06 0.09 1.59 
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Figure 2.10 Frequency curve of LAI at different times from 3.6 m and 7.2 m, 14.4 

m and 30 m. 

 

2.3.2.2 Contextual Spatial Domain Effect on Field-Scale LE Estimation 

An example of the maps of LE across different model grid sizes is shown in Figure 

2.11. The maps of the energy balance components for 2014 flight at different resolutions 

are shown in Appendix A. The statistics (mean (µ) and coefficient of variation (CV)) for 

the LE maps at the different modeling resolutions are illustrated as bar graphs in Figure 

2.12 and Figure 2.13, respectively. For LE, the highest mean value is on May 02, 2016, at 

midafternoon. Although the grapevine canopy is fully developed by June, LE in May at 

both overpass times is higher than the acquisition in June, July, and August. However, on 

May 3, the model yields the lowest LE values due to overcast conditions that day 

significantly reducing incoming solar radiation, and hence, the energy fluxes. The 
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phenocam data (https://hrsl.ba.ars.usda.gov/awhite/CAM/) indicate the high rate of LE on 

May 2 is the result of a rapidly developing vine canopy, together with a transpiring cover 

crop.  

At a contextual spatial domain level, the magnitude of LE is degraded as shown in 

Figure 2.12 due to the data aggregation from the 3.6-m grid to Landsat scale (30 m). For 

example, the mean LE value from TSEB-2T on May 02, 2016 at midafternoon was 315 

W/m2 for the 3.6-m grid decreasing to 304 W/m2 for the 7.2-m grid, then decreases further 

to 293 W/m2 and 278 W/m2, respectively, for 14.4-m and 30-m grids. As shown in Figure 

2.13, CV value slightly increases as the model grid scale/resolution size increases despite 

a decrease in variation of LAI and LST distribution as seen in section 2.3.2.1. While LE 

degrades, the CV values do not show significant differences. This can be due to internal 

TSEB-2T compensation of the energy balance components at the different evaluated scales.  

 

Figure 2.11 LE (W/m2) aggregation at 3.6 m, 7.2 m, 14.4 m and 30 m for August 09, 

2014. 

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhrsl.ba.ars.usda.gov%2Fawhite%2FCAM%2F&data=02%7C01%7C%7C20c63f5412ac4b4dcf8d08d7218d42a5%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C637014762896686439&sdata=6T2IegE%2FdIBFFokROa00FGVpiOJ2Z0o%2Fn12VR0NfwB8%3D&reserved=0
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Figure 2.12 Spatial domain effect on the mean of LE spatial data at different 

times. 
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Figure 2.13 Spatial domain effect on the coefficient of variation (CV) of LE 

spatial data at different times. 

 

2.3.2.3 Contextual Spatial Domain Effect on LE Statistical Characteristics 

To provide quantitative evaluation of the impact of spatial aggregation of inputs on LE 

estimation for the resulting pixel values, frequency and cumulative distribution plots for 

the LE maps are illustrated in Figure 2.14. This figure shows that LE varies at different grid 

sizes. The cumulative frequency distribution curves indicate that, especially at the 30-m 

grid size, LE distribution tends to have the highest cumulative values at lower LE range 

(below 300 W/m2). A magnitude shift towards lower LE persists across different times, 

with one exception. In the case of a 30-m grid on June 02, 2015, the frequency moved up 

then decreased below the frequency curves of other grid sizes (3.6 m, 7.2 m, and 14.4 m). 

In general, the results in Figure 2.14 show a reduction in LE distribution as the scale 

becomes coarser. Hong et al. [22] indicated that an increase in the peak of the LE histogram 

curve spans as much 10% to 20% as a response to spatial data aggregation using SEBAL. 

In the TSEB model, the soil and vegetation components of the scene are treated separately, 

while the SEBAL model uses a single source approach using the composite soil/canopy 

temperature and is contextual defining wet and dry ET limits based on the hot and cold 
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extremes in the LST field within the image [73]. Moreover, Ershadi et al. [14] pointed out 

three possible reasons behind the different results obtained from ET models: (a) the 

approach (e.g., contextual hot/cold surface temperature limits versus using absolute 

surface-atmosphere temperature differences) of each model to estimate ET, (b) the study 

area and eco-hydrological conditions of the surface, which may favor certain ET model 

parameterizations over others, or (c) the different models of aerodynamic resistance 

formulations and sensitivity to the roughness parameters. 
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Figure 2.14 Frequency curve (left) and cumulative frequency distribution (right) 

plots of instantaneous LE for all sUAS flights at 3.6 m, 7.2 m, 14.4 m, and 30 m. 
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Increasing the spatial domain/resolution affects the estimation of TSEB-2T 

parameters as the fine details of the surface disappear. To test these claims, RA (s/m) and 

LST-NDVI relationship were evaluated at different spatial domain/resolution; the latter is 

shown in section 2.3.2.1 (a). As shown in Figure 2.15, there is a decreasing trend in the 

relative spatial mean (𝜇𝑟) of RA for all flights, ranging approximately from 20% to 60%. 

The high variability in RA is related mainly to the variables that affect the friction velocity 

(𝑢∗), which the mean canopy height and roughness length (𝑧𝑜𝐻), which are derived from 

the imagery at different resolution/spatial domain. This finding is in agreement with 

Ershadi et al. [14] and Moran et al. [15], who indicated that the reduction of RA value at 

coarse spatial domain/resolution is a key factor behind the underestimation of LE. 

 
Figure 2.15 Variation of the relative spatial mean of RA for different flights. 
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2.3.2.4 Effects of Model Grid Size on LE   

To evaluate quantitatively the impact of model grid size via the resolution of key input 

data, the relative difference (relative error) (𝐸𝑟) was computed using as the reference the 

LE at 3.6-m model grid size/resolution. For example, the LE value at the 7.2-m grid is 

compared to the LE at the 3.6-m grid size by resampling the 7.2-m grid to a 4 × 4 set of 

3.6-m LE output which will have a uniform LE-value at the finer resolution, and taking the 

difference. As illustrated in Figure 2.16, 𝐸𝑟 is calculated with the mean and percentiles 

(25th and 75th) for the coarser grid sizes used in the TSEB-2T model for the different sUAS 

acquisitions. The plots demonstrate an increasing trend in 𝐸𝑟 as the model grid 

size/resolution increases/decreases. The largest 𝐸𝑟 value was computed for the imagery on 

July 11, 2015 at afternoon at nearly 45% for the Landsat resolution. In contrast to July 11, 

2015, the lowest range of relative error was observed on August 09, 2014, where the 𝐸𝑟 

ranged approximately between 15% for the 7.2-m grid and 25% for the 30-m grid. On an 

average, 𝐸𝑟 value ranged from approximately 25% using the 7.2-m model grid size to 40% 

with the 30-m model resolution.  
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Figure 2.16 Relative error (Er) at different spatial resolutions for LE with the triangle 

symbols indicating mean and light lines indicating the 25th and 75th percentiles for 

the coarse grid sizes. 

 

These results are supported by an Ershadi et al. [14] study that found the 𝐸𝑟 of LE 

varied between 20% and 40% when aggregating the Landsat data incrementally from 120 

m to 960 m and using the SEBS model to calculate surface heat fluxes. Furthermore, Moran 

et al. [15] indicated that a larger error could appear (larger than 50%) in H estimation over 

a heterogeneous area due to a mix of stable and unstable conditions and the variation in 

aerodynamic roughness, especially for highly unstable conditions. As previously 

mentioned in section 2.3.1, the underestimated LE could be influenced by overestimation 

in H, which implies that a large error is expected in the residual flux (LE) estimate at coarse 

https://paperpile.com/c/HODZCN/v6bA


57 
 

spatial domains [70]. Furthermore, the effect of model grid size on LE is also visible at the 

25th and 75th percentiles, which immediately increases at the 7.2-m grid size and continues 

increasing towards the 30-m resolution, providing a clear indication of increasing 

discrepancy with the reference grid (3.6 m) LE estimates.  

2.4 Conclusion 

The objective of this study was to assess high-resolution LE estimation in vineyards at 

different model grid sizes or resolutions, specifically 3.6 m, 7.2 m, 14.4 m, and 30 m 

(Landsat scale), using a physically-based ET model known as TSEB-2T. The reference grid 

size of 3.6 m represents the finest pixel resolution that includes both vine canopy and 

interrow conditions, which is the resolution where the TSEB model algorithms of 

soil/substrate and canopy temperature partitioning radiation and convective energy 

exchange are applicable [2]. Multiple statistical measures were used to assess the effect of 

decreasing the spatial resolution or increasing the model grid size 2, 4, and nearly 10 times 

the original 3.6 m resolution. These included validation of TSEB-2T fluxes at the different 

model grid sizes with the EC measurements, comparing LE spatial statistics (mean and 

coefficient of variation, frequency distributions) and LE differences over the imaged 

domain at the different resolutions using LE at 3.6 m grid size as the reference. The results 

showed that separation of Tc and Ts, required in TSEB-2T, affects the LST-NDVI linear 

trend as a function of resolution of the pixels. The validation results with the flux tower 

measurements indicate that Rn and G discrepancies do not change across different model 

grid sizes, while for H and LE there is an increase in model-measurement differences, 

particularly at the 30-m resolution. This is largely caused by an overestimation in H, 

causing an underestimation in LE (bias), particularly at the coarsest resolution (30-m grid 
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size). This refers mainly to the non-linear relationship of LST-NDVI and the variability of 

Ra due to the variables that affect the 𝑢∗ which are the mean canopy height and roughness 

length, which are derived from remote sensing imagery at different spatial 

domain/resolution.  

The effects of model grid size were evaluated at field and at grid scale using the spatial 

mean and coefficient of variation and relative difference, respectively. At field scale, the 

results show small decreases in the spatial mean over the image, ranging approximately 

from 10% to 20%, as the data aggregated for model grid size increased from 3.6 m to 30 

m. However, the relative differences with resolution indicate a significant decrease in LE, 

ranging approximately from 25% to 45%, when aggregating the data from 3.6 m to Landsat 

scale (30 m). This means that, while field values of LE may be adequate to use, the field 

variability reduction limits its use for precision agriculture applications, such as identifying 

areas within the field under actual stress conditions or being over irrigated. These results 

suggest that TSEB-2T is only applicable using imagery with high enough resolution that 

can readily distinguish plant canopy and soil/substrate temperatures and the modeling grid 

size is at a resolution where it is appropriate to apply TSEB-2T algorithms for modeling the 

radiative and convective energy exchange from both the vegetation and soil substrate 

systems. Aggregating inputs to TSEB-2T to multiple grid sizes of the interrow/row spacings 

for vineyards is not advisable, since it is likely the accuracy of surface fluxes, particularly 

LE, will deteriorate. While this study was limited to evaluating different modeling grid 

sizes, a future comparison with Landsat and ECOstress ET products is also planned, which 

would provide a more comprehensive scaling assessment of ET estimates for sUAS-

Satellite ET integration. Furthermore, the effect of remote sensing resolution on the output 
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of other TSEB versions such as TSEB-PT may be less affected and will be evaluated in a 

future study. 
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3. CHAPTER 3 

ASSESSING DAILY EVAPOTRANSPIRATION METHODOLOGIES FROM  

ONE-TIME-OF-DAY SUAS AND EC INFORMATION IN THE GRAPEX PROJECT 

Abstract  

Daily evapotranspiration (ETd) plays a key role in irrigation water management and 

is particularly important in drought-stricken areas, such as California and high-value 

crops. Remote sensing allows for the cost-effective estimation of spatial 

evapotranspiration (ET), and the advent of small unmanned aerial systems (sUAS) 

technology has made it possible to estimate instantaneous high-resolution ET at the plant, 

row, and subfield scales. sUAS estimates ET using “instantaneous” remote sensing 

measurements with half-hourly/hourly forcing micrometeorological data, yielding hourly 

fluxes in W/m2 that are then translated to a daily scale (mm/day) under two assumptions: 

(a) relative rates, such as the ratios of ET-to-net radiation (Rn) or ET-to-solar radiation 

(Rs), are assumed to be constant rather than absolute, and (b) nighttime evaporation (E) 

and transpiration (T) contributions are negligible. While assumption (a) may be 

reasonable for unstressed, full cover crops (no exposed soil), the E and T rates may 

significantly vary over the course of the day for partially vegetated cover conditions due 

to diurnal variations of soil and crop temperatures and interactions between soil and 

vegetation elements in agricultural environments, such as vineyards and orchards. In this 

study, five existing extrapolation approaches that compute the daily ET from the 

“instantaneous” remotely sensed sUAS ET estimates and the eddy covariance (EC) flux 

tower measurements were evaluated under different weather, grapevine variety, and trellis 

designs. Per assumption (b), the nighttime ET contribution was ignored. Each 
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extrapolation technique (evaporative fraction (EF), solar radiation (Rs), net radiation-to-

solar radiation (Rn/Rs) ratio, Gaussian (GA), and Sine) makes use of clear skies and quasi-

sinusoidal diurnal variations of hourly ET and other meteorological parameters. The sUAS 

ET estimates and EC ET measurements were collected over multiple years and times from 

different vineyard sites in California as part of the USDA Agricultural Research Service 

Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment 

(GRAPEX). Optical and thermal sUAS imagery data at 10 cm and 60 cm, respectively, 

were collected by the Utah State University AggieAir sUAS Program and used in the Two 

Source Energy Balance (TSEB) model to estimate the instantaneous or hourly sUAS ET 

at overpass time. The hourly ET from the EC measurements was also used to validate the 

extrapolation techniques. Overall, the analysis using EC measurements indicates that the 

Rs, EF, and GA approaches presented the best goodness-of-fit statistics for a window of 

time between 1030 and 1330 PST (Pacific Standard Time), with the Rs approach yielding 

better agreement with the EC measurements. Similar results were found using TSEB and 

sUAS data. The 1030–1330 time window also provided the greatest agreement between 

the actual daily EC ET and the extrapolated TSEB daily ET, with the Rs approach again 

yielding better agreement with the ground measurements. The expected accuracy of the 

upscaled TSEB daily ET estimates across all vineyard sites in California is below 0.5 

mm/day, (EC extrapolation accuracy was found to be 0.34 mm/day), making the daily 

scale results from TSEB reliable and suitable for day-to-day water management 

applications. 

Keywords: evapotranspiration (ET); daily ET; remote sensing; sUAS; vineyards; 

GRAPEX; eddy covariance (EC); TSEB; energy balance 
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3.1 Introduction 

Evapotranspiration (ET) is a key component in the hydro-ecological process, which 

couples water and energy budgets, links the land surface and the atmosphere [1], and 

represents water consumption for biomass production [2]. Routine monitoring of actual ET 

is important for a variety of applications, including water resource management, drought 

monitoring, climate change, and the efficiency of crop irrigation [3–6]. Numerous methods 

have been used over the past decades to measure ET, including lysimeters, Bowen ratio, 

and eddy covariance (EC) flux towers. However, these methods represent limited sampling 

areas [7], and the measurements are best interpreted for homogeneous surfaces [8]. Spatial 

techniques are needed to accurately quantify ET for improved irrigation scheduling and 

water management decision support, particularly in complex canopies such as vineyards, 

which have non-uniform and complex vertical canopy structure, wide and variable row 

spacing, and deep and complex rooting systems [9]. This canopy structure produces large 

diurnal changes in solar radiation exposure to soil and plants [9] and requires sophisticated 

radiation extinction modeling [10,11]. Meanwhile, row spacing ranges between 2.4 m and 

3.6 m for vineyards [12], and between 3.6 m and 6 m for orchards trees [13]. Water-limiting 

conditions across different vineyards in drought-stricken areas, such as California, 

necessitate the assessment of irrigation demand to set up agricultural water management 

strategies and decisions [14]. According to the USDA, California produces over 90% of 

U.S. wine, with a steady growth reaching 635,000 acres [15] in 2019. The high evaporative 

demand with limited rainfall in the vineyard growing season (May–September), along with 

the need to achieve grapevine stress targets, constitutes a significant challenge for irrigation 

scheduling to ensure vineyard productivity [16]. 
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Advances in methods for measuring and modeling the interactions of vineyards with 

the environment require a better understanding of the processes influencing energy, water, 

and carbon exchange for highly organized and complex structure perennial crops. Various 

remote sensing platforms, including satellites, manned aircraft, and small unmanned aerial 

systems (sUAS), improve the potential availability of surface information for estimating 

ET at different spatial scales [17]. However, spatial information from satellites has 

limitations for ET estimation, including spatial and temporal resolutions, the presence of 

clouds at overpass time, and imagery delivery time [18]. These issues make satellite data 

challenging to use for the continuous mapping of daily ET (ETd) and for real-time irrigation 

scheduling [19]. However, data fusion methodologies using multiple satellite platforms 

have improved capabilities for generating daily ET on a more routine basis [20,21] and for 

irrigation scheduling [22]. While manned aircraft have the ability to gather high-resolution 

data on demand at different times of the day, they are usually cost-prohibitive and, 

therefore, unlikely to be used to conduct multiple flights over an area of interest [23]. The 

advent of advanced sUAS remote sensing technology with lightweight sensors could 

overcome some of the previously mentioned remote sensing platform limitations. 

Compared to satellites, sUAS can be described as “flexible in timing”, in that they can be 

operated as needed at almost any time [7]. Additionally, sUAS can provide high spatial and 

temporal resolution data at sub-meter and multispectral resolutions, although data quality 

and data processing workflows must be enhanced before sUAS can become an efficient 

data collection platform [24]. Moreover, the areal coverage from sUAS is limited compared 

to satellites. For example, the Landsat 8 scene size is 185 km × 180 km, while an sUAS is 

nearly 1.6 km × 1.6 km, depending on the sensor type and flight height. 
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Whether using satellite or aerial imagery, the ability to reliably extrapolate from one-

time-of-day instantaneous ET (ETi) to daily ET (ETd) is most useful [25] and relevant for 

the water management of agricultural crops [3]. Although numerous daily ET datasets are 

available for different applications, these products are often calculated based on the 

Penman-Monteith approach, the Priestley-Taylor method, or the integration of multiple ET 

estimates at a coarse resolution (≥0.25°) [26]. EEFLUX (Earth Engine Evapotranspiration 

Flux) is another source for obtaining daily ET information at 30-m spatial resolution using 

Landsat data and an energy balance model. However, its temporal resolution of 16 days 

[27] limits its capability for continuously monitoring ET and identifying the spatial 

variability in irrigation practices that can occur in less than one week. Many current 

research efforts are being directed towards daily ET estimation using surface energy 

balance models, among them the Two Source Energy Balance (TSEB) model. However, 

the TSEB model provides hourly surface energy fluxes, which requires a 

scaling/extrapolation approach for generating daily ET information. Several studies have 

compared different daily ET methods with an assumption that the ratio of latent heat flux 

(LE) to one energy balance term is constant throughout the day, yet no universal approach 

has been identified as suitable for all types of land surfaces. Previous studies have indicated 

that the accuracy of that approach (upscaling daily ET) is a function of land surface type. 

For example, the evaporative fraction (EF) approach produced the best agreement in bare 

soil [28] and soybean [19], while the incoming solar radiation (Rs) approach was deemed 

to be more efficient in estimating daily ET in grassland and woody savanna [29]. Another 

crucial issue for precise daily ET estimation is the proper selection of the time-of-day 

window. In the study conducted by Colaizzi et al. [28], the best time window for 
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extrapolating the hourly ET to a daily scale was shown to be within 1 or 2 h of solar noon. 

This conclusion was also supported by Jackson et al. [30], who identified the time-of-day 

window for acquiring the ET for daily ET estimation as within 2 h of solar noon. Therefore, 

some concerns, such as actual and potential satellite overpass times and cloudiness vs. time 

of day, should be identified clearly to avoid any error propagation in the daily ET 

estimation. 

The need for accurate daily ET (ETd) estimates raises two fundamental questions: (1) 

which daily ET extrapolation approach at grapevine row scales can provide reliable values 

under a variety of crop and environmental conditions and thermal-based ET models like 

TSEB? and (2) what time window for acquiring a remotely-sensed ET provides the most 

reliable daily ET using an extrapolation approach? Multiple efforts have been made to 

estimate ETd for different crops; however, computing ETd for complex canopies, such as 

vineyards and grapevine row scales, has not been adequately addressed. In this study, 

different extrapolation approaches from the literature were assessed for estimating daily 

ET from instantaneous sUAS ET estimates for several vineyard sites across California. 

Specifically, this paper (a) assessed the performance of several daily ET extrapolation 

approaches using EC observations and sUAS information, and (b) determined an optimal 

time window for ET upscaling from a single to a daily estimate. 

3.1.1 Daily ET Upscaling Approaches 

ET upscaling is commonly performed by assuming conservation of some ET metric 

over the daytime, generally known as a ratio between instantaneous ET and a reference 

variable at a specific time of day, and that nighttime E and T contributions (soil evaporation 

and plant transpiration) are negligible or represent some small percentage of the daytime 
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ET (on the order of 10%). This hypothesis is commonly known as energy self-preservation 

[29,31,32] and includes EF, Rs, and Rn/Rs ratio approaches. The second assumption in flux 

upscaling procedures is that cloud-free conditions persist throughout the daytime [28,33]. 

However, the clear-sky condition cannot be assured necessarily throughout the season. 

Other ETd extrapolation approaches are characterized by a quasi-sinusoidal shape, such as 

Gaussian (GA) and Sine. These approaches assume that the diurnal variation of ET is 

similar to the solar irradiance, with the peak value at solar noon. A description of each 

approach is presented below. 

3.1.1.1 Evaporative Fraction (EF) Approach 

One of the most common schemes to extrapolate instantaneous evapotranspiration to 

a daily value is the evaporative fraction (EF) [34]. EF is defined as the ratio of latent heat 

flux (LE) to the available energy (the difference between net radiation, Rn, and soil heat 

flux, G), assumed to be constant throughout daytime hours. The EF approach is presented 

in Equation (3.1), as follows: 

𝐸𝑇𝑑 = (
𝐿𝐸

𝑅𝑛 − 𝐺
) (

𝑐

𝜌𝑤𝜆
) (𝑅𝑛 − 𝐺)𝑑 (3.1) 

where ETd is the daily ET (mm/day), LE is the instantaneous latent heat flux (W/m2), Rn is 

the instantaneous net radiation (W/m2), G is the instantaneous soil heat flux (W/m2), 𝜌𝑤 is 

the water density (kg/m3), 𝜆 is the latent heat of vaporization for water (MJ/kg), (𝑅𝑛 − 𝐺)𝑑 

is the total daily available energy (MJ/m2/day), and c is a factor equal to 1000 to convert 

meters to millimeters. 

Numerous studies have considered the tendency of the EF to be nearly constant during 

the daytime [35]; however, the combination of soil moisture, weather conditions, 
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topography, and biophysical conditions has an impact on the conservation (or variability) 

of the EF in the daytime [31]. According to Hoedjes et al. [36], self-preservation of the EF 

approach is applicable under dry conditions, while under wet conditions, the EF is no 

longer valid. Nonetheless, a previous study by Crago [32], which used Bowen ratio stations 

over natural grassland, indicated that, for clear days, the midday EF is a good indicator of 

the daytime average value of the EF compared with cloudy days, but the values are still 

underestimated from the daytime average EF due to the concave-up shape of the diurnal 

variation of the EF. This finding is also supported by Li et al. [37], who found that the EF 

is relatively close to the daily average EF in the 1000 to 1500 timeframe, and could be used 

to guide vineyard irrigation practices in arid regions. However, the study by Zhang and 

Lemeur [38], which used 12 surface network stations called Système Automatique de 

Mesure de l’Evaporation Rèelle (SAMER) over an area composed of forest (40%) and 

mixed agriculture (60%), indicated that the EF varies during the daytime and could not be 

used as a guide for ETd estimates due to factors such as available energy, soil moisture, and 

other environmental variables. According to the study by Gentine et al. [39], which 

examined the influence of environmental factors (incoming solar radiation, wind speed, air 

temperature, soil water content, and leaf area index) on the diurnal behavior of the EF over 

wheat and olive, indicated that EF is strongly linked to soil moisture availability and 

canopy cover. As such, the EF increases with increasing the soil moisture and/or fractional 

cover. On the other hand, they found that the phase difference between net radiation (Rn) 

and the soil heat flux (G) must be well-characterized in application models that invoke the 

EF daytime self-preservation. 
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3.1.1.2 Solar Radiation (Rs) Approach 

Another approach for extrapolating ETi to ETd is the Rs approach, which is similar to 

the EF but replaces the available energy ((Rn – G), instantaneous or daily) term with the 

incoming solar radiation (Rs) as a reference variable. This approach, developed by Jackson 

et al. [30], assumes that the diurnal ET variation is similar to the solar radiation (ET~Rs), 

that is, the ET is highly correlated and proportional to the Rs. Equation (3.2) demonstrates 

the expressions for calculating ETd using the Rs approach. 

𝐸𝑇𝑑 = (
𝐿𝐸

𝑅𝑠
) (

𝑐

𝜌𝑤𝜆
)𝑅𝑠𝑑

 (3.2) 

where 𝑅𝑠𝑑
 is the daily solar radiation (MJ/m2/day), and 𝑅𝑠 is the instantaneous solar 

radiation (W/m2). Other parameters are similar to the EF approach. 

According to Van Neil et al. [40], the Rs approach is robust when upscaling ETi to 

multiple timeframes (e.g., daily, 8-day, and monthly). Moreover, many studies have 

indicated that solar radiation (Rs) is the most robust scalar approach that explains the ratio 

between the ETd and ETi [41]. 

3.1.1.3 Ratio of Net Radiation-to-Solar Radiation (Rn/Rs) Approach 

The Rn/Rs approach is another approach to scale up ETi to ETd using the evaporative 

fraction (EF) and the ratio of net radiation-to-solar radiation (Rn/Rs) [42]. The Rn/Rs 

approach is presented in Equation (3.3). 

𝐸𝑇𝑑 = (
𝐿𝐸

𝑅𝑛 − 𝐺
) (

𝑅𝑛

𝑅𝑠
) (

𝑐

𝜌𝑤𝜆
)𝑅𝑠𝑑

 (3.3) 

The parameters of this approach are explained in the EF and Rs approaches. 
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3.1.1.4 Sine Approach 

The Sine approach, developed by Jackson et al. [30], showed that the generic trend of 

the ETi during the daylight period is similar to the solar irradiance and could be 

approximated by a Sine function, where the maximum irradiance occurs at solar noon (~12 

p.m.). For cloudy days, the daily ET estimates using the Sine approach are less reliable or 

may be invalid. This implies that the ETi responds strongly to solar radiation [38]. The 

approach has been investigated by Zhang and Lemeur [38], who found the Sine approach 

to be preferable to others for upscaling instantaneous ET values. 

𝐸𝑇𝑑 = 𝐸𝑇𝑖 (
2𝑁

𝜋sin (𝜋𝑡/𝑁)
)  (3.4) 

where ETi represents the instantaneous ET (mm/hr), N is the total time from sunrise to 

sunset (h) and can be calculated using Equation (3.5), and t is the time elapsed since sunrise 

(h). 

𝑁 = 0.945{𝑎 + 𝑏 sin2[𝜋 (𝐷 + 10) 365⁄ ]} (3.5) 

In Equation (3.5), a and b are latitude-dependent constants, while D is the day of the 

year. For parameters a and b, Jackson et al. [30] developed a regression model that is a 

function of the latitude of the location, as shown in Equations (3.6) and (3.7), respectively. 

𝑎 = 12.0 − 5.69 × 10−2𝐿 − 2.02 × 10−4𝐿2 + 8.25 × 10−6𝐿3 − 3.15 × 10−7𝐿4   (3.6) 

And 

𝑏 = 0.123𝐿 − 3.10 × 10−4𝐿2 + 8.0 × 10−7𝐿3 + 4.99 × 10−7𝐿4 (3.7) 

where L is the latitude in decimal degrees. 
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3.1.1.5 Gaussian (GA) Approach 

The Gaussian (GA) approach has been used recently by Liu et al. [43] to retrieve the 

ETd from remotely sensed instantaneous ET. The study used ETi observations from an EC 

system and found that the ET diurnal variation follows a Gaussian-fitting curve. When 

comparing this approach to the Sine and EF approaches, results from the study of Liu et 

al. [43] indicated that GA is more accurate using the eddy covariance (EC) system. 

𝐸𝑇𝑑 = 𝑤√
𝜋

2
× 𝐸𝑇𝑖 × 𝑒2((𝑡𝑖−𝑡𝑐)

2/𝑤2) (3.8) 

where w is the width that equals 2δ, δ is the standard deviation of ETi values, ti is the time 

of the instantaneous ET (ETi), and tc is the time when ETi arrives at maximum value in the 

diurnal variation. 

3.1.2 Two Source Energy Balance (TSEB) Model 

The TSEB model was developed by Norman et al. [44] to explicitly accommodate the 

difference between radiometric and aerodynamic surface temperatures that affect the 

energy exchange between soil and canopy systems and the lower atmosphere at 

instantaneous time scales. In the TSEB model, turbulent energy fluxes are partitioned 

between canopy and soil, with different versions applied to separate between those 

components. These versions include the TSEB-PT (Priestly-Taylor), the TSEB-DTD (Dual 

Time Difference), TSEB-2T-DMS (Data-Mining Sharpening of temperature), and TSEB-

2T (Dual Temperature). The TSEB-PT version assumes a composite radiometric 

temperature (Trad) that contains temperature contributions from the soil/substrate and 

canopy and is decomposed based on the vegetation fractional cover (fc). The TSEB-DTD 

version, developed by Norman et al. [45], uses two observations of Trad: the first 
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observation obtained 1.5 h after the sunrise (Trad,0), and the second one during the daytime 

(Trad,1). The TSEB-DTD version uses the same approach as TSEB-PT to divide the 

composite Trad between the soil/substrate and canopy temperatures. Using TSEB-DTD 

could reduce the error in flux estimations when uncertainty exists in local air temperature 

observations and absolute Trad [46]. TSEB-2T-DMS uses a data-mining fusion algorithm to 

sharpen the land surface temperature (LST), which allows better discrimination between 

the soil/substrate and canopy temperatures [47]. The TSEB-2T approach was originally 

developed by Kustas and Norman [48] and was further refined and tested by Nieto et al. 

[49]. The main concept underpinning the TSEB-2T approach is to estimate the Ts and Tc 

from composite LST imagery using the relationship between the vegetation index (VI) and 

the LST to extract the Ts and Tc within a spatial domain. An early attempt at estimating 

vineyard water use at a field scale using aerial imagery with TSEB and a simple thermal-

based contextual scheme suggests the TSEB is a robust approach for vineyard ET 

estimation [50]. In this study, the TSEB model was used to calculate the instantaneous ET 

at the time of the sUAS overpass, and the various schemes were used to extrapolate this 

one-time-of-day ET to a daily value. The TSEB-2T model was used for the Sierra Loma 

vineyard analysis, while the TSEB-PT was used for Ripperdan and Barrelli due to 

limitations in applying the TSEB-2T model to those two sites. The average value of the LAI 

was used for these sites, but the TSEB-2T requires the LAI spatial information to identify 

the threshold values of NDVI of soil, which is based on the empirical relationship between 

the NDVI and LAI. More details about the TSEB-2T can be found in Nieto et al. [49]. 

Applying the energy conservation and balance principles, the energy budget in the TSEB 

model can be described in the following equations: 
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𝑅𝑛 = 𝐿𝐸 + 𝐻 + 𝐺, (3.9) 

𝑅𝑛𝑐 = 𝐻𝑐 + 𝐿𝐸𝑐, (3.10) 

𝑅𝑛𝑠 = 𝐻𝑠 + 𝐿𝐸𝑠 + 𝐺, (3.11) 

where Rn is the net radiation, and G is the soil heat flux. H and LE are heat fluxes, where 

H is the sensible heat flux and LE is the latent heat flux. All flux units are expressed in 

W/m2. Subscripts of c and s represent the canopy and soil components, respectively. To 

estimate the sensible heat flux for soil and canopy, Norman et al. [44] proposed a series of 

soil vegetation resistive schemes (following an analogy with Ohm’s law), as illustrated in 

Figure 3.1. 

 

Figure 3.1 Schematic representation of the Two Source Energy Balance (TSEB) model. 

 

𝐻 = 𝐻𝑐 + 𝐻𝑠 = 𝜌𝑎𝑖𝑟𝐶𝑝

𝑇𝐴𝐶 − 𝑇𝐴

𝑅𝐴
= 𝜌𝑎𝑖𝑟𝐶𝑝 [

𝑇𝐶 − 𝑇𝐴𝐶

𝑅𝑥
+

𝑇𝑠 − 𝑇𝐴𝐶

𝑅𝑠
] (3.12) 

where 𝜌𝑎𝑖𝑟 is the air density (kg/m3), 𝐶𝑝 is the heat capacity of the air at constant pressure 

(J/kg/K), TA is the air temperature (Kelvins), Tc and Ts are the canopy and soil temperatures 
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(Kelvins), respectively, and TAC is the temperature of the canopy air space (Kelvins), which 

is calculated with Equation (3.13). 

𝑇𝐴𝐶 =

𝑇𝐴

𝑅𝐴
+

𝑇𝐶

𝑅𝑥
+

𝑇𝑠

𝑅𝑠

1
𝑅𝐴

+
1
𝑅𝑥

+
1
𝑅𝑠

 (3.13) 

where RA is the aerodynamic resistance to heat transport from the soil/canopy system, Rx 

is the boundary layer resistance of the canopy leaves, and Rs is the aerodynamic resistance 

to heat transport in the boundary layer close to the soil surface. All resistances are expressed 

in (s/m). The mathematical expressions used to compute the resistance network are detailed 

in Equations (3.14) – (3.16). 

𝑅𝐴 =
𝑙𝑛 (

𝑧𝑇 − 𝑑0

𝑧0𝑀
) − 𝛹ℎ (

𝑧𝑇 − 𝑑0

𝐿
) + 𝛹ℎ (

𝑧0𝑀

𝐿 )

𝜅′𝑢∗
 

(3.14) 

𝑅𝑥 =
𝐶′

𝐿𝐴𝐼
√(

𝑙𝑤
𝑈𝑑0+𝑧0𝑀

)          (3.15) 

𝑅𝑠 =
1

𝑐(𝑇𝑠 − 𝑇𝐴)1/3 + 𝑏𝑢𝑠
 (3.16) 

where 𝑢∗ is the friction velocity, calculated as the following: 

𝑢∗ =
𝜅′𝑢

𝑙𝑛 (
𝑧𝑢 − 𝑑0

𝑧0𝑀
) − 𝛹𝑚 (

𝑧𝑢 − 𝑑0

𝐿
) + 𝛹𝑚 (

𝑧0𝑀

𝐿 )
 

(3.17) 

In Equation (3.17), 𝑧𝑢 and 𝑧𝑇 are the measurement heights for wind speed (u) and air 

temperature (𝑇𝐴), respectively, 𝑑0 is the zero-plane displacement height, and 𝑧0𝑀 is the 

roughness length for momentum. The unit of 𝑧0𝑀 is expressed in m. In the TSEB model 

versions, the roughness length of momentum (𝑧0𝑀) is assumed to equal the roughness 
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length for heat transport (𝑧0𝐻), as the aerodynamic resistance of the canopy elements (Rx) 

already takes into account the different efficiencies between momentum and heat transport. 

𝜅′ represents the von Karman’s constant, which is equal to 0.4. 𝛹ℎ and 𝛹𝑚 are the adiabatic 

correction factors for heat and momentum, respectively. The details of these two factors 

are described in Brutsaert [51]. In Equation (3.15), 𝐶′ is assumed to be 90 s1/2/m and 𝑙𝑤 

represents the average width of leaf (m). The coefficients (b and c) in Equation (3.16) 

depend on the turbulent length scale in the canopy, the soil-surface roughness, and the 

turbulence intensity in the canopy. More details can be found in the work by Nieto et al. 

(2019a), Nieto et al. (2019b), Kustas et al., and Kondo and Ishida [11,49,52,53]. 

3.2 Methodology 

3.2.1 Study Area 

The experiment was conducted within three different climate regions located in 

California, as shown in Figure 3.2. All of these sites are part of the Grape Remote Sensing 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project [54], led by 

the USDA ARS in collaboration with E&J Gallo Winery, University of California in Davis, 

Utah State University, NASA, and others. The overall objective of the GRAPEX project is 

to provide the vineyard manager and grower with spatially distributed, remotely sensed ET 

information for improving irrigation water use efficiency and detecting crop stress in 

multiple vineyard blocks. This would facilitate water conservation efforts in California’s 

Central Valley, which has been experiencing frequent and severe drought conditions. The 

project began in 2013 at two pinot noir blocks located within the Sierra Loma Vineyard 

near Lodi, California (38.29𝑜  𝑁, 121.12𝑜 𝑊) in Sacramento County (see Figure 3.2) [7]. 

The two vineyard blocks, north and south, differed in maturity and age, having been 
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implemented in 2009 and 2011, respectively. The configuration of the trellising system in 

both fields is the same, with vine trellises 3.35 m apart and an east–west orientation. In 

2017, the GRAPEX project extended the observations to include two additional vineyards: 

Barrelli vineyard (38.75𝑜  𝑁, 122.98𝑜 𝑊), located near Cloverdale, California, and 

Ripperdan vineyard (36.84𝑜  𝑁, 120.21𝑜 𝑊), located near Madera, California. With the 

expansion of the GRAPEX project from Sierra Loma to the Barrelli site to the north and 

Ripperdan to the south, a large range in trellis designs, climate regions, vine varieties, 

canopy structure, and vine physiology are represented. The Ripperdan vineyard was 

planted in 2009, whereas the Barrelli vineyard was implemented in 2010. Both the Barrelli 

and Ripperdan vineyards employ different plantation structures and vine varieties. The vine 

rows in Barrelli have a northeast–southwest row orientation, with a row spacing of 3.35 m 

and predominately Cabernet Sauvignon vine variety, while in Ripperdan, the row direction 

is east–west, with a row spacing of 2.74 m growing Chardonnay and Merlot. Data 

collection campaigns/intensive observation periods (IOPs) in these sites were conducted 

in the veraison period (from mid-July to early August), when the crop evaporative demand 

increases. 
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Figure 3.2 Layout of study vineyards in Central Valley, California with estimated typical 

flux footprint/source area for the EC towers. 

 

3.2.2 Procedure 

Figure 3.3 illustrates the procedure used for this study. First, available eddy covariance 

(EC) flux tower data was filtered to select cloud-free days only. Then, five different ETd 

approaches were applied to the LE fluxes from the EC measurements for upscaling the ET 

to the daily timescale. The analysis was performed using EC observations at different vine 

phenological stages (April–May, June–August, and September–October). Finally, daily 

sUAS ET information, produced using the TSEB model, and results from the five 

approaches for upscaling/extrapolating the daily ET were compared against the measured 

ETd from the EC tower data. Two time windows were selected for the daily ET estimation: 

the first was near solar noon (1030–1330), and the second was in the afternoon (1430–

1630). The reasons for these selections were (a) satellite overpass time, (b) sUAS 

flexibility, which allows for flights at different hours, including mid to late afternoon, and 
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(c) an opportunity to assess the suitability of using later (2+ hours after solar noon) sUAS 

flights for the estimation of daily ET. 

 

Figure 3.3 Study methodology for assessing different upscaling daily ET methods in 

sUAS. 

 

3.2.2.1 sUAS Data Processing 

The AggieAir sUAS Program at Utah State University (https://uwrl.usu.edu/aggieair/) 

[55] acquired high-resolution imagery at 450 m above ground level (agl), resulting in 

visible and near-infrared data at a 0.10 m spatial resolution, and a thermal spatial resolution 

at 0.6 m. The spectral range of the visible and near-infrared data was similar to Landsat; 

however, the thermal band range was wider, with a bandwidth spanning from 7 to 14 µm. 

Thermal data was acquired using a radiometrically calibrated micro-bolometer camera. 

Table 3.1 lists the information concerning the different AggieAir sUAS flights. In this study, 

the obtained sUAS images were georectified using ground control points (GCPs). Details 

of the optical and thermal information are presented below. 



85 
 

(a) Thermal Data 

Changes in the transmissivity and atmospheric radiance can adversely affect the sUAS 

thermal data [56]. Details about thermal data calibration can be found in the work by 

Torres-Rua [56], while the work by Torres-Rua et al. [57] shows that the TSEB model is 

insensitive to surface emissivity. The AggieAir sUAS Program has a thermal protocol to 

use over 90% of overlap for thermal raw imagery collected after sUAS launching but before 

mission data collection upon internal lens temperature stabilization of the microbolometer 

camera. These two steps address potential vignetting as well as the temperature drifting 

effect observed in other sUAS applications. 

(b) Optical Data 

Radiometric agreement between different remote sensing platforms is important for 

further integration. An internal evaluation of the optical data obtained from different sUAS 

flights was performed by aggregating the high-resolution imagery up to Landsat scale using 

a point-spread function (PSF). The resulting 30-m pixels were found to agree with Landsat 

reflectance information. This is due to the use of different sensors than the ones used by 

Hassan-Esfahani et al. [58]. 
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Table 3.1 Dates and times of AggieAir sUAS flights used in this study. 

Site Date Time PST 1 
Spectral 

Bands 2 

Satellite’s 

Overpass  

Sierra Loma 9 August 2014 1041 RGBNIR  Landsat 

Sierra Loma 2 June 2015 1043 RGBNIR Landsat 

Sierra Loma 2 June 2015 1407 RGBRE NA 

Sierra Loma 11 July 2015 1035 RGBNIR Landsat 

Sierra Loma 11 July 2015 1414 RGB NA 

Sierra Loma 2 May 2016 1205 REDNIR NA 

Sierra Loma 2 May 2016 1504 REDNIR NA 

Sierra Loma 3 May 2016 1248 REDNIR NA 

Barrelli 8 August 2017 1052 RGBNIR Landsat 

Barrelli 9 August 2017 1043 RGBNIR Landsat 

Ripperdan 760 24 July 2017 1035 RGBNIR Sentinel3 

Ripperdan 760 25 July 2017 1035 RGBNIR Landsat 

Ripperdan 760 25 July 2017 1357 RGBNIR NA 

Ripperdan 760 25 July 2017 1634 RGBNIR NA 

Ripperdan 760 26 July 2017 1426 RGBNIR NA 

Ripperdan 760 5 August 2018 1044 RGBNIR Landsat 

Ripperdan 760 5 August 2018 1234 RGBNIR NA 

Ripperdan 720 5 August 2018 1044 RGBNIR Landsat 

Ripperdan 720 5 August 2018 1234 RGBNIR NA 

1 PST: Pacific Standard Time. 2 Spectral Bands explanation: R/RED = red, G = green, B = blue, RE = red 

edge, NIR = near infrared. 3 All sUAS flights included thermal information. 
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3.2.2.2 Eddy Covariance (EC) Fluxes 

Surface energy fluxes (LE and H) were calculated from the EC measurements of the 

sonic temperature, water vapor, and vertical wind speed. In this study, the measurements 

obtained from the EC were averaged over a 60-min time interval to ensure appropriate 

averaging time for calculating the H and LE. The sensible heat flux was calculated from 

the product of the air density, the specific heat of air, and the covariance between the 

vertical wind speed and sonic temperature. The expression used to calculate H is shown in 

Equation (3.18). 

𝐻 = 𝜌𝑎𝐶𝑝(𝑈𝑧
′𝑇𝑠

′̅̅ ̅̅ ̅̅ ̅̅ ) (3.18) 

where 𝜌𝑎 is the air density (kg/m3), 𝐶𝑝 is the heat capacity of the air at constant pressure 

(J/kg/K), 𝑈𝑧
′ is the vertical wind speed (m/s), and 𝑇𝑠

′ is the sonic temperature (Kelvins). 

The latent heat flux (LE) was calculated from the product of the latent heat of 

vaporization (𝜆) and the covariance between the vertical wind speed (𝑈𝑧
′) and the water 

vapor density (𝜌𝑣
′). The formula used to calculate the LE is illustrated in Equation (3.19). 

𝐿𝐸 = 𝜆(𝑈𝑧
′𝜌𝑣

′̅̅ ̅̅ ̅̅ ̅̅ ) (3.19) 

where 𝜌𝑣
′ is the water vapor density (kg/m3). 

Table 3.2 describes the EC towers installed at the different vineyard sites to monitor 

ET. The EC measurements (April to October) obtained are the surface energy fluxes (Rn, 

H, and LE) and micrometeorological data. More details about the in-situ 

micrometeorological measurements can be found in the work by Nassar et al. [7]. 
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Table 3.2 Description of EC towers in vineyards that were part of this study. 

Vineyard 
Number of 

EC Towers 

Elevation 

(agl) 

EC Tower 

Name 
Latitude 1 Longitude 1 

Period of Data 

(Years) 

Sierra Loma 2 5 
1 38° 16′ 49.76″ −121° 7′ 3.35″ 5 

2 38° 17′ 21.62″ −121° 7′ 3.95″ 5 

Ripperdan 760 1 3.5 1 36° 50′ 20.52″ −120° 12′ 36.60″ 2 

Ripperdan 720 4 3.5 

1 36° 50′ 57.27″ −120° 10′ 26.50″ 1 

2 36° 50′ 51.40″ −120° 10′ 26.69″ 1 

3 36° 50′ 57.26″ −120° 10′ 33.83″ 1 

4 36° 50′ 51.39″ −120° 10′ 34.02″ 1 

Barrelli 1 3.5 1 38° 45′ 4.91″ −122° 58′ 28.77″ 2 
1 coordinates are in WGS1984. 

In Sierra Loma, each EC tower monitors grapevines of different ages, while 4 flux 

towers in Ripperdan 720 measure different water management approaches at 4 different 

blocks. In this study, the footprint analysis of each EC tower was performed to validate the 

results obtained from the TSEB model. The Kljun et al. [59] model was used for describing 

the fetch of the EC contribution area for the hourly period encompassing the sUAS flight 

times. The shape and orientation of the EC footprint depend on multiple 

micrometeorological conditions that are observed by the EC towers installed at the sites, 

which include the friction velocity, wind speed, wind direction, roughness length, standard 

deviation of the crosswind velocity, and Monin–Obukhov length as well as the EC tower 

height. In this study, the authors did not include any energy balance closure to the EC 

information to minimize biases. 
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3.2.3 Goodness-of-Fit Statistics 

3.2.3.1 Quantitative Statistics 

The performance indices to evaluate the daily ET approaches in this study involved 

comparisons of the modeled ET from the five different approaches against daily ET 

measurements from the EC towers. Computed statistical metrics included the root mean 

square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), 

Nash–Sutcliffe efficiency coefficient (NSE), and the coefficient of determination (R2). The 

NSE coefficient checks the capability of the model to reproduce the following statistical 

components: correlation coefficient of (r), mean (µ), and variance (s). NSE values range 

between −∞ and 1, where 1 represents a perfect agreement, while a value of 0 means that 

the model results are not better than the average of the variable of interest, and values < 0 

indicate unacceptable model performance [60]. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑁

𝑖=1

𝑁
 (3.20) 

𝑀𝐴𝐸 =
∑ |𝑂𝑖 − 𝑃𝑖|

𝑁
𝑖=1

𝑁
 (3.21) 

𝑀𝐴𝑃𝐸 =
∑ |

𝑂𝑖 − 𝑃𝑖

𝑂𝑖
|𝑁

𝑖=1 × 100

𝑁
 

(3.22) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
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where 𝑂𝑖 denotes the observed value, 𝑃𝑖 denotes the modeled value, �̅� denotes the mean 

observed value, �̅� denotes the mean modeled value, and N represents the number of 

observations. 

3.2.3.2 Graphical Representations 

Different graphical representations were used to visualize and evaluate the datasets 

from the EC towers and the performance of the extrapolation techniques. Boxplots were 

created to describe the variance of surface energy fluxes (Rn, H, LE, and G) at each hour in 

the dataset. Boxplots were also used to evaluate the performance of the five daily ET 

extrapolation schemes by presenting the distribution of relative error at each individual 

hour during the daytime, as shown in Appendix B. Moreover, scatterplots were used to 

compare the modeled fluxes from TSEB and the measurements from EC systems to 

evaluate model performance. 

3.3 Results and Discussion 

3.3.1 Diurnal Variation of Energy Fluxes from EC Measurements 

An example of the diurnal variation of surface energy fluxes (Rn, H, LE, and G) is 

shown in Figure 3.4 for the Sierra Loma vineyard. Diurnal variation plots for the other 

vineyard study sites (Ripperdan 760, Ripperdan 720, and Barrelli) are shown in Appendix 

Sections B.2.1, B.3.1, and B.4.1. The boxplot at each individual hour represents the 

seasonal variation (April to October) of surface fluxes due to changes in the irrigation 

scheduling and variations in weather conditions (wind speed, air temperature, vapor 

pressure deficit, and soil moisture) [61]. Overall, the behavior of Rn diurnal variation is 

similar among the different sites, as the solar radiation is relatively consistent. As shown 
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in Figure 3.4, Rn values are negative in the nighttime and late evening. In the daytime, Rn 

values vary, with maximum values of nearly 700 W/m2 at solar noon depending on the 

daily solar radiation. The diurnal pattern of Rn is almost systematic with a peak value 

appearing during midday, around 1200 standard time. The diurnal distribution of both H 

and LE exhibits a typical concave-down shape, with minimums in the early morning and 

late afternoon. The peak value appears near solar noon, between 1030 and 1330. Overnight, 

the H is almost negative, while the LE is approximately equal to zero, as the incoming solar 

radiation (Rs) value is 0 at night. Although this is not always the case, the approximation 

may be acceptable for night [62]. In summertime, the LE value overnight is very small and 

rarely exceeds 5–10% of the daily total [63]. The study by Shapland et al. [64], which was 

conducted to estimate the ET over vineyards in California, assumed that the turbulent 

fluxes are zero during the night to avoid the uncertainty associated with the flux 

measurement. Another study by Tolk et al. [65], which aimed to quantify the nighttime 

evapotranspiration ETN-to-24-h ET (ET24) of irrigated and dryland cotton in a semiarid 

climate, indicated that the ratio of ETN-to-ET24 ranged from an average of 3% for a dryland 

cotton crop to around 7% for irrigated alfalfa. The contribution of ETN-to-ET24 was the 

result of a relatively high nighttime vapor pressure deficit (VPD) and wind speed. 

Flux observations indicated that the LE values were higher than the H across the 

different vineyards, as shown in Figure 3.4 and Appendix Sections B.2.1, B.3.1, and B.4.1. 

These results stem from the fact that the vineyards are drip irrigated and, during most of 

the growing season, the cover crop is senescent, so ET is largely controlled by the vine 

canopy and, hence, mainly affected by the vine leaf stomatal conductance. The diurnal 

variation of soil heat flux (G) does not follow symmetric behavior, having a right skewness. 
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As demonstrated in Figure 3.4 and Appendix Sections B.2.1, B.3.1, and B.4.1, the G value 

is much lower than other energy fluxes (Rn, H, and LE), where the peak does not persist 

across different vineyard sites. For overnight and later evening, G is negative and could 

yield values around −100 W/m2, as shown in Figure 3.4d at Sierra Loma vineyard, with 

similar results obtained at the other vineyard sites included in this study. In the energy 

balance, usually, the G value is estimated as a portion of Rn (~0.35 Rn) for remote sensing 

ET models. Meanwhile, the G value is highly affected by the LAI, canopy architecture, row 

direction, and trellis design, as well as the incoming solar radiation. Reducing the canopy 

fractional cover results in an increased daytime soil heat flux (G), while increasing the areal 

coverage of vegetation leads to decreased soil heat flux and greater above-canopy latent 

heat fluxes, as long as there is ample root zone soil moisture to meet the atmospheric 

demand. 

 

Figure 3.4 Diurnal variations of energy fluxes at Sierra Loma Sites 1 and 2 for the 

years 2014 to 2018, from the April to October irrigation season. (a) Net radiation 

(Rn), (b) sensible heat flux (H), (c) latent heat flux (LE), (d) soil heat flux (G). 

(b) 

(c) (d) 

(a) 
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Figure 3.5 shows the LE diurnal variation at each individual EC tower included in this 

study. The boxplot at every hour represents the seasonal variation from April to October 

due to weather changes and irrigation scheduling. Overall, the general temporal trend of 

the LE has a shape that resembles solar radiation at different vineyard sites, with a peak 

value near solar noon, between 1030 and 1330. In early morning and overnight, the LE 

values were close to zero. Comparing the diurnal variation of LE at different vineyards, the 

Barrelli site had the lowest LE values. The Barrelli vineyard is located near the Pacific 

Coast shoreline, which brings cool maritime air that cools the warm interior valleys. The 

cool and moist air over Barrelli is associated with a decrease in the vapor pressure deficit 

(VPD) and more cloudiness, which causes a decrease in ET demand. In Sierra Loma and 

Ripperdan, the VPD and air temperature were higher than Barrelli, as both sites are exposed 

to a warm Mediterranean climate, which is characterized by abundant sunshine and a large 

day-to-night temperature difference and, therefore, increases the ET demand [66]. 
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Figure 3.5 Diurnal variations of LE for each EC included in this study for the years 2014 

to 2018, from the April to October irrigation season. 

 

 

To compare the contribution of the ET at different hours to the daily ET, additional 

statistics were included, such as the ratio of hourly ET (ETh)-to-daily ET (ETh/ETd) and the 

ratio of ETh-to-maximum hourly ET (ETh(max)) (ETh/ETh(max)). An example of the diurnal 

variation of both ratios (ETh/ETd and ETh/ETh(max)) at different phenological vine stages 

(bloom, April–May; veraison, June–August; and post-harvest, September–October) is 

shown in Figure 3.6 for the Sierra Loma vineyard, while the figures of other sites are shown 

Sierra Loma—site 1 

(2014-2018) 

Sierra Loma—site 2 

(2014-2018) 

Ripperdan 720—site 1 

(2018) 

Ripperdan 720—site 2 

(2018) 

Ripperdan 720—site 3 

(2018) 

Ripperdan 720—site 4 

(2018) 
Barrelli 

(2017-2018) 

Ripperdan 760   

(2017-2018) 
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in Appendix Sections B.2.2, B.2.3, B.3.2, B.3.3, B.4.2, and B.4.3. The general trends of 

ETh/ETd and ETh/ETh(max) resemble a Gaussian behavior, with peak values at solar noon. 

The results also indicate that the vine phenological stage could affect both ratios in terms 

of the variation at each individual hour during the daytime. In the veraison stage, low 

variation was observed in the ETh/ETd and ETh/ETh(max) compared with the bloom and post-

harvest stages. In the early growing season (April), the inter-row cover crop was at peak 

greenness, which was senesced by early June as the vines’ leaves were fully developed (see 

the phenocam data at different study sites showing the different vine phenological stages: 

https://hrsl.ba.ars.usda.gov/awhite/CAM/). This transition resulted in the main source of 

transpiration from the inter-rows, where the turbulent exchange was relatively suppressed 

to the vines with high potential coupled with the atmosphere [67]. On the other hand, the 

high variability observed in ETh/ETd and ETh/ETh(max) ratios in the time period between 

September and October were due to vines senescence and stress in the post-harvest stage 

due to a lack of irrigation and low atmospheric demand, where the daily ET decreased 

significantly. Moreover, as shown in Figure 3.6, the results of the ETh/ETd indicate that the 

major contribution of the daily ET came from the midday time between 1030 to 1530, 

which represents at least 65% of the daily total. However, in early morning (~0630 to 0930) 

and evening (~1630 to 1930), the value of ETh/ETd was low, which together represents 25–

35% of the daily ET. 
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Figure 3.6 An example of the diurnal variations of (a) and ETh/ETh(max) and (b) 

ETh/ETd at different phenological vine stages for Sierra Loma Sites 1 and 2 between 

2014 and 2018. 

3.3.2 Comparison between Different ETd Extrapolation Approaches Using the EC 

Measurements 
 

Table 3.3 lists the goodness-of-fit statistics comparing the five different extrapolation 

approaches used to compute daily ET from the hourly EC at two different time windows: 

near solar noon (1030–1330) and afternoon (1430–1630) PST. The detailed statistics for 

RMSE and Er at each individual hour at the different vineyard sites are shown in Appendix 

Sections B.1.1, B.1.2, B.2.4, B.2.5, B.3.4, B.3.5, B.4.4, and B.4.5. The analysis also 

considered all months segregated into three vine stages/periods (April–May, June–August, 

and September–October) to investigate how vine phenology could affect the accuracy of 

estimated daily ET due to the timing of both water uptake and growth. In general, the results 
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indicate that the performance of the methods had different utility in computing an accurate 

daily ET at different vine canopy development and grapevine phenological stages (bloom, 

veraison, and post-harvest). As shown in Table 3.3, the MAPE was lower during the 

summer months (June–August) compared with the early growing season (April–May) of 

the vine crop and after harvesting time. Meanwhile, the results indicate that the 

extrapolated EC-derived ETd could be affected by the time during the day, as a better 

agreement was observed using instantaneous (hourly) EC ET between 1030 and 1330 PST 

than within the second time window (1430–1630 PST). Across multiple ETd upscaling 

approaches during the veraison stage and in the 1030–1330 time window, the MAPE 

yielded values ranging between 8% and 22%, while in the 1430–1630 time window, the 

MAPE range increased and yielded values between 15% and 35%. 

The results indicate that three methods (Rs, GA, and EF) among the five daily ET 

models have the best performance (low RMSE and MAPE values and a high NSE value). 

The Rs showed better agreement with the ground measurements among the other 

extrapolation approaches and was less sensitive to LE variation due to seasonal and climate 

differences, and particularly when using the one-time-of-day ET in the time window 

between 1030 and 1330. Using the Rs approach, RMSE values were less than 0.4 mm/day, 

while the NSE value was higher than 0.9 for all vine stages (season). These results are also 

supported by a previous study conducted by Cammalleri et al. [29], which compared 

several upscaling daily ET methods using observations from flux towers within the United 

States and were evaluated over multiple seasonal cycles. They reported that using solar 

radiation (Rs) for converting the instantaneous to a daily ET value is more robust. 

Comparing the less accurate daily ET extrapolation techniques, the Sine method marginally 
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outperformed the Rn/Rs approach in terms of moderate to high error within the time window 

(1030–1330) in the bloom and veraison stages, while in the post-harvest stage, the Rn/Rs 

method gave better results than the Sine approach. Using these approaches increased the 

RMSE, which yielded values above 0.65 mm/day, while the MAPE values were greater 

than 20% in the time window between 1030 and 1330 for all vine stages (season). This 

implies that the Sine and Rn/Rs techniques do not work properly for a daily ET estimate in 

vineyards. 

Table 3.3 Goodness-of-fit statistics of daily ET extrapolation methods at two different 

time windows (1030–1330 and 1430–1630 PST) using only EC tower information in 

California. 

Vine 

Stage 
Method 

1030–1330 1430–1630 

RMSE 

(mm/day) 

MAE 

(mm/day) 

MAPE 

(%) 
NSE R2 

RMSE 

(mm/day) 

MAE 

(mm/day) 

MAPE 

(%) 
NSE R2 

B
lo

o
m

 

(A
p
ri

l–
M

ay
) EF 0.36 0.28 10 0.83 0.85 1.02 0.71 29 −0.75 0.55 

Rs 0.35 0.26 10 0.85 0.87 0.64 0.50 19 0.31 0.81 

Rn/Rs 1.33 0.82 29 −1.25 0.15 1.49 1.13 43 −2.68 0.06 

GA 0.38 0.30 11 0.81 0.87 0.87 0.72 28 −0.26 0.77 

Sine 0.56 0.47 18 0.60 0.86 0.50 0.39 15 0.59 0.82 

V
er

ai
so

n
 

(J
u
n
e–

A
u
g
u
st

) EF 0.47 0.32 9 0.81 0.85 0.97 0.70 21 0.07 0.63 

Rs 0.38 0.29 8 0.88 0.89 0.70 0.57 17 0.51 0.83 

Rn/Rs 1.67 0.90 22 −1.41 0.17 1.78 1.26 35 −2.14 0.08 

GA 0.43 0.33 9 0.84 0.87 1.12 0.96 29 −0.23 0.72 

Sine 0.65 0.53 14 0.64 0.86 0.63 0.51 15 0.61 0.84 

P
o
st

-h
ar

v
es

t 

(S
ep

te
m

b
er

–

O
ct

o
b
er

) 

EF 0.28 0.21 13 0.93 0.95 2.53 0.68 55 −6.76 0.10 

Rs 0.25 0.19 11 0.94 0.95 0.49 0.37 23 0.71 0.92 

Rn/Rs 0.47 0.31 16 0.80 0.88 1.02 0.63 42 −0.27 0.62 

GA 0.40 0.31 17 0.86 0.95 0.53 0.41 25 0.66 0.93 

Sine 0.77 0.64 36 0.45 0.92 0.31 0.24 16 0.88 0.92 

A
ll

 s
ta

g
es

 

(S
ea

so
n
) 

EF 0.41 0.29 10 0.91 0.92 1.50 0.70 31 −0.57 0.43 

Rs 0.34 0.26 9 0.93 0.94 0.64 0.51 19 0.71 0.90 

Rn/Rs 1.38 0.73 22 −0.08 0.37 1.56 1.08 38 −0.71 0.23 

GA 0.41 0.32 12 0.90 0.93 0.95 0.77 28 0.37 0.86 

Sine 0.67 0.55 21 0.75 0.91 0.54 0.42 15 0.80 0.91 

Numbers in bold are the best statistical results for each timeframe and vine stage. 
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3.3.3 Assessing the Instantaneous TSEB ET Versus EC Measurements 

As a first step toward evaluating the performance of the TSEB model, a comparison 

between the field observations from the EC and modeled fluxes using the TSEB and the 

sUAS (Table 3.1) at four different study sites are presented in Figure 3.7. A more detailed 

model performance assessment for each energy flux term is shown in Table 3.4. Surface 

fluxes were estimated from the sUAS based on the TSEB model, averaged over the EC 

footprint, and then compared against the measured fluxes. As shown in Figure 3.7, the 

estimated fluxes derived from the TSEB model generally align along the 1:1 line at the 

different vineyard sites, indicating good agreement between the modeled and measured 

fluxes. Net radiation (Rn) demonstrates a close agreement with the in-situ measurement, as 

indicated by lower RMSE, MAE, and MAPE values, and a high NSE value. The MAE and 

MAPE for Rn estimates at the different vineyard sites were less than 40 W/m2 and 10%, 

respectively, while the RMSE ranged between 26 W/m2 and 43 W/m2. The NSE yielded 

high values at the Sierra Loma and Ripperdan 760 sites, accounting for more than 0.85; 

however, at the Ripperdan 720 and Barrelli vineyards, the values decreased to less than 0.2 

and 0.6, respectively. The results for H agreed well with the EC observations at the Sierra 

Loma and Ripperdan sites, with the MAE and MAPE values less than 43 W/m2 and 28%, 

respectively, while the RMSE values were less than 55 W/m2. However, at the Barrelli 

vineyard, the RMSE and MAE increased to 62 W/m2 and 46 W/m2, respectively, while the 

MAPE value was 22%. However, this site had only 2 samples to compute the difference 

statistics, making it difficult to reach any conclusions concerning the model performance 

in relation to the other sites. The results for LE indicate a slight increase in the RMSE 

compared to the H, varying between 51 W/m2 and 58 W/m2 at the Sierra Loma and 
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Ripperdan vineyards. However, the Barrelli site results indicate that the RMSE of the LE 

was less than the H. Overall, the higher values of the RMSE obtained for the LE are 

attributed mainly to the TSEB method for calculating the LE, which is solved as the residual 

component of the surface energy balance, LE = Rn – H – G. Therefore, the uncertainties 

associated with the calculation of energy fluxes (Rn, H, and G) within the TSEB method 

can adversely affect the estimation of the LE. Another potential uncertainty could be related 

to the no use of flux closure in the eddy covariance (EC) data. According to previous 

studies (e.g., Neale et al. 2012) [68], heat fluxes (H and LE) are acceptable when the RMSE 

ranged between 20 W/m2 and 60 W/m2. This implies that the results of the H and LE 

obtained from the TSEB model across different vineyards were within an acceptable range 

and similar to prior studies [50]. The results for G indicate poor performance across the 

different vineyard sites, except for Ripperdan 720 vineyard, which had a MAPE of less 

than 25%. Part of these discrepancies between the modeled and observed G can be 

attributed to the assumption used in this study for calculating G, which is that as a portion 

of the soil net radiation (Rns), G = 0.35 Rns. This value was obtained based on a proposed 

method by Nieto et al. [49], which takes into consideration the diurnal variation of the 

G/Rns and found high scattering/uncertainty in the relationship, with an average value of 

0.35 near solar noon. In this study, most of the flights were between 1000 and 1500, and at 

these time intervals around solar noon, the G/Rns fraction remained rather constant at ~0.35 

(see Figure 4 in Nieto et al. (2019)) [49]. Therefore, for the sake of simplicity, and 

considering that the sinusoidal approach might be site-dependent, the constant fraction at 

0.35 was used. This value is also broadly applied over a wide range of crops and 

environments. Meanwhile, vineyards are characterized by strong heterogeneity, which 
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causes spatial and temporal variability in G values. According to Kustas et al. [69], the 

simple remote sensing methods for estimating G as a portion of Rn have significant 

uncertainty due to temporal variability in the G/Rn ratio. 

Sierra Loma (2 EC towers) Ripperdan 760 (EC tower) 

  
Ripperdan 720 (4 EC towers) Barrelli (EC tower) 

  
Figure 3.7 Comparison of instantaneous TSEB sUAS energy fluxes against EC 

measurements (without flux closure). The presented subplots include the available sUAS 

imagery, as described in Table 3.1. 
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Table 3.4 Goodness-of-fit statistics between the eddy covariance (EC) and the 

instantaneous TSEB sUAS fluxes at the different vineyard sites of this project. 

Site Fluxes 
RMSE 

(W/m2) 

MAE 

(W/m2) 

MAPE 

(%) 
NSE R2 

Sierra Loma 

Rn 43 36 7 0.85 0.90 

H 37 31 27 0.61 0.70 

LE 51 38 15 0.40 0.40 

G 55 50 96 0.08 0.30 

Ripperdan 

760 

Rn 36 31 5 0.91 0.96 

H 37 27 19 0.86 0.96 

LE 58 50 19 0.28 0.52 

G 27 20 66 0.11 0.21 

Ripperdan 

720 

Rn 35 28 4 0.17 0.53 

H 54 42 20 0.73 0.90 

LE 52 49 15 0.81 0.94 

G 14 14 23 −0.01 0.31 

Barrelli 

Rn 26 23 4 0.58 NA 1 

H 62 46 22 −0.92 NA 

LE 40 38 26 0.11 NA 

G 71 71 196 0.01 NA 

All 

vineyards 

Rn 39 32 6 0.90 0.90 

H 43 34 23 0.80 0.80 

LE 52 43 17 0.70 0.80 

G 45 36 78 0.20 0.40 
1 NA because we had only two sUAS flights. 

3.3.4 Assessment of the Daily ET Extrapolation Approaches Using TSEB sUAS Results 

The accuracy of the daily high-resolution ET from the TSEB depends largely on an 

accurate instantaneous ET estimate at the time of acquisition of the sUAS imagery, as well 

as the reliability of the approach used to scale up the TSEB-derived ET to a daily value. 
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The five daily ET methods (EF, Rs, Rn/Rs, GA, and Sine) were applied using the modeled 

energy fluxes derived from the TSEB and compared against the EC-derived daily value, 

ETd, calculated by integrating the daytime LE fluxes measured by EC towers. Table 3.5 

lists the goodness-of-fit statistics between the modeled daily ET using sUAS data sets and 

the ground-based EC daily measurements at two time windows during the day: 1030–1330 

and 1430–1630. Figure 3.8 shows the relationship between the modeled and measured 

fluxes. Overall, the results indicate that the modeled ETd values have better agreement 

across different upscaling methods using the time window of 1030–1330 PST, while a 

significant deterioration was observed in the performance of all methods using the 1430–

1630 period for upscaling. The RMSE and MAPE statistics yielded values greater than 1.2 

mm/day and 25%, respectively, in the 1430–1630 time window; however, these values 

decreased to less than 1 mm/day and 20% across different methods using the TSEB output 

in the 1030–1330 timeframe, with one exception. In the case of the Sine approach, the 

RMSE and MAPE yielded values of 1.32 mm/day and 26%, respectively. These findings 

align with the results obtained when comparing different ETd methods using measurements 

from the EC tower (see Section 3.2), where RMSE and MAPE yielded values greater than 

0.5 mm/day and 14% in the time window 1430–1630. However, using the time window of 

1030–1330, the values of RMSE and MAPE decreased to less than 0.7 mm/day and 23%, 

respectively. The larger RMSE and MAPE values obtained in the sUAS ETd compared to 

the EC ETd are due to the bias in the TSEB-derived ET compared to the EC measurements. 

These results are also supported by previous studies conducted by Jackson et al. [30] and 

Colaizzi et al. [28], where scaling instantaneous ET to daily values showed better 

agreement when the measurement was taken within about 1–2 h of solar noon. 
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Although the results indicate that three (GA, EF, and Rs) out of the five methods for 

daily ET upscaling agree reasonably well with the ground-based measurements, the Rs 

technique yielded better agreement at all three sites (Sierra Loma, Ripperdan 720, and 

Barrelli). This approach generated a robust ETd when a single remote sensing-based ET 

estimate was taken within 1–2 h of solar noon and provided a close agreement with the 

ground truth ET measurement. This result also aligns with the EC ETd analysis, which 

indicates that the Rs approach has better statistical performance (see Table 3.3). Using the 

Rs approach for all vineyards, the RMSE values were 0.45 mm/day, and the MAPE was 

10%, while the R2 was 0.88 for the time window of 1030–1330 (see Table 3.5, All 

Vineyards section). 

These results agree with a previous study conducted by Wandera et al. [41], which 

showed that the Rs-based approach was better for upscaling compared with the EF method. 

That study was carried out over 41 FLUXNET validation sites for two different times of 

day, including 1100 and 1330. Furthermore, the found results are also supported by 

Cammalleri et al. [29], when comparing different daily extrapolation methods. Cammalleri 

et al. [29] found that the incoming solar radiation (Rs) was the most robust method with the 

least error when using EC data collected at different flux tower sites within the United 

States and over multiple seasons. The Rs approach for ET upscaling is highly recommended 

in situations where obtaining the daily net radiation is not possible [19] or, in some cases, 

where the modeled Rn is overestimated/underestimated, which will adversely affect the EF 

ratio. On the other hand, the G is more difficult to estimate than the Rs and Rn, which could 

limit the accuracy of the EF method. This might explain why the Rs method has a slightly 

higher agreement than the EF. Comparing the approaches with the lowest performance, the 
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Sine method demonstrated the worst performance, with the largest RMSE and MAPE 

values and the lowest NSE value in the time window between 1030 and 1330. However, 

between 1430 and 1630, the results indicate that Sine performed slightly better than Rn/Rs. 

Still, the RMSE and MAPE values were high and the NSE and R2 values were very low. 

The hypothesis is that the heterogeneity in the field, due to vine biomass, cover crop, and 

bare soil, has a larger impact on the Rn/Rs and Sine approaches than other methods. 

 1030 – 1330 1430 – 1630 

EF 

  

Rs 

  

Rn/Rs 
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GA 

  

Sine 

  

Figure 3.8 Comparison between daily ET from TSEB sUAS and EC at two different 

time windows (1030–1330 and 1430–1630). 
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Table 3.5 Goodness-of-fit statistics comparing multiple daily ET methods at two 

different time windows (1030–1330 and 1430–1630). 

Sites Method 
1030–1330 1430–1630 

RMSE 

(mm/day) 

MAE 

(mm/day) 

MAPE 

(%) 
NSE R2 

RMSE 

(mm/day) 

MAE 

(mm/day) 

MAPE 

(%) 
NSE R2 

Sierra 

Loma  

EF 0.44 0.32 10 0.57 0.63 1.02 0.89 27 −7 0.00 

Rs 0.38 0.32 10 0.67 0.78 0.95 0.72 22 −6 0.00 

Rn/Rs 0.95 0.77 23 −0.96 0.67 1.30 1.05 31 −12.08 0.05 

GA 0.44 0.39 13 0.58 0.82 1.02 0.79 24 −7.02 0.01 

Sine 0.80 0.63 18 −0.41 0.79 1.01 0.76 24 −6.93 0.00 

 

Ripperdan 

760 

EF 0.39 0.34 8 0.24 0.93 1.85 1.5 36 −33.52 0.55 

Rs 0.62 0.55 13 −0.82 0.45 1.65 1.34 33 −26.54 0.69 

Rn/Rs 0.73 0.62 14 −3.43 0.70 2.12 1.77 43 −44.70 0.67 

GA 0.63 0.61 14 −2.26 0.55 2.39 1.99 48 −56.82 0.28 

Sine 1.60 1.34 31 −20.18 0.19 1.83 1.63 38 −33 0.04 

 

Ripperdan 

720 

EF 0.49 0.44 11 0.80 0.92 

No flights 

Rs 0.44 0.36 9 0.85 0.93 

Rn/Rs 0.83 0.73 16 0.44 0.92 

GA 0.59 0.47 11 0.72 0.91 

Sine 1.68 1.47 31 −1.26 0.94 

Barrelli 

EF 0.41 0.41 19 NA NA 1 

Rs 0.19 0.19 9 NA NA 

Rn/Rs 0.78 0.78 36 NA NA 

GA 0.67 0.67 31 NA NA 

Sine 0.86 0.86 40 NA NA 

All 

vineyards  

EF 0.45 0.37 10 0.81 0.82 1.35 1.1 30 −14.29 0.11 

Rs 0.45 0.37 10 0.80 0.88 1.23 0.93 25 −11.65 0.19 

Rn/Rs 0.87 0.73 20 0.29 0.82 1.62 1.29 35 −21.06 0.22 

GA 0.54 0.47 13 0.71 0.87 1.61 1.19 32 −20.72 0.25 

Sine 1.32 1.05 26 −0.68 0.87 1.34 1.05 28 −14.10 0.37 
1 NA because we have only two observations. Numbers in bold are the best statistical results for each 

timeframe and vine stage. 
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3.4 Conclusion 

The objective of this study was to assess existing methodologies for upscaling ET from 

single time-of-day information to daily estimates over commercial vineyards in 

California’s Central Valley using EC flux measurements and the TSEB model with sUAS 

imagery. The extrapolation approaches included the evaporative fraction (EF), solar 

radiation (Rs), net radiation to incoming solar radiation (Rn/Rs), the Gaussian (GA), and 

Sine technique. First, analysis was performed using flux observations collected at eight EC 

towers located at three vineyards in California’s Central Valley: Sierra Loma, Ripperdan, 

and Barrelli. These sites are characterized by different climates, soils, vine variety, and 

trellis designs. The analysis also considered months of the growing season to coincide with 

three vine phenological stages (April–May (rapid vine growth, bloom/berry 

establishment), June–August (berry development/veraison), and September–October 

(harvest/post-harvest/vine senescence)) to investigate how vine phenology could affect the 

accuracy of the modeled daily ET due to timing of both water uptake and growth. 

The EC analysis results indicate that three daily ET approaches (EF, Rs, and GA) out 

of five have a reasonable agreement with the EC-based measurements, with the Rs approach 

being preferred for daytime upscaling of ET across different stages of vine phenology, as 

it yielded the highest accuracy among the tested methods. Moreover, the results 

demonstrate that the methods could perform differently at different vine canopy 

development and grapevine phenology stages and at different time windows during the 

day. In the time window between 1030 and 1330, MAPE yielded values of 8% when using 

the Rs approach in the veraison stage, whereas this value increased to 17% between 1430 

and 1630 h. In the bloom and post-harvest vine stages, the MAPE yielded values of 10% 
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and 11%, respectively, when using Rs within the 1030–1330 time window, which then 

increased to 19% and 23%, respectively, between 1430 and 1630. 

A similar result was obtained when applying the five ET upscaling methods using 

instantaneous TSEB-derived ET. The results reported that the Rs, out of the other methods, 

has better agreement with the ground measurements to extrapolate the instantaneous ET at 

the time of the sUAS acquisition to daily values, with an RMSE of 0.45 mm/day and an 

MAPE of 10% in the time window between 1030 and 1330 PST. The EF and GA methods 

performed relatively well, with a MAPE of 10% and 13%, respectively, in the same time 

window. However, between 1430 and 1630, the results indicate a significant deterioration 

in the performance of all methods, with the RMSE and MAPE values greater than 1.2 

mm/day and 25%, respectively. The range in climate, vine variety, soils, trellis designs, 

and times when sUAS imagery was collected support the general results that the Rs 

extrapolation method can provide reliable daily ET estimates, particularly if the modeled 

ET is extrapolated from imagery collected 1–2 h before/after solar noon. 
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4.                                                    CHAPTER 4 

CHARACTERIZING THE SPATIAL HETEROGENEITY IN A RIVER CORRIDOR 

TO EVALUATE ITS IMPACT ON EVAPOTRANSPIRATION ESTIMATES USING 

THE TSEB MODEL AND SUAS INFORMATION 

 Abstract 

Understanding the spatial variability in highly heterogeneous natural environments 

such as savannas and river corridors is an important issue in characterizing and modeling 

energy fluxes, particularly for evapotranspiration (ET) estimates. The natural environment 

is characterized by variation in vegetation types, soil strata and properties, and other 

geomorphological processes. Various land surface and hydrological models can be applied 

to estimate ET in such environments; however, model performance may be affected due to 

the lack of robust methods of accounting for the spatial variability in the vegetation and 

soil. Remote sensing-based surface energy balance (SEB) models are applied widely and 

routinely in agricultural settings to obtain ET information on an operational basis for use 

in water resources management. However, the application of these models in natural 

environments is challenging due to spatial heterogeneity in vegetation cover and 

complexity in the number of vegetation species existing within a biome. The analysis in 

this study relies upon multispectral images acquired through multiple campaigns over 

different seasons (June, July, and October) by the AggieAirTM small unmanned aerial 

systems (sUAS) program at Utah State University (https://uwrl.usu.edu/aggieair/) 

specifically in the San Rafael River corridor in Utah, which is part of the Upper Colorado 

River Basin. The study area is characterized by arid conditions and variations in soil 

moisture status and the type and height of vegetation (treated tamarisk, cottonwood, 

https://uwrl.usu.edu/aggieair/
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willow, grass, and other vegetation species). Optical data in red, green, blue, and near 

infrared bands were acquired at 2.5-cm spatial resolution, while thermal data were acquired 

at 15 cm using a microbolometer camera. The micrometeorological data were obtained 

from a weather station installed in the field during the flight dates. In this research effort, 

sUAS data were used to study the influence of land surface spatial heterogeneity on the 

modeling of ET using high-resolution information. First, a spatial variability analysis was 

performed using a discrete wavelet transform (DWT) to identify a representative spatial 

resolution/model grid size for adequately solving energy balance components to derive ET. 

Next, the Two Source Energy Balance (TSEB) model, a physically based ET model, was 

implemented over different vegetation/soil conditions and times at two different scales, 6 

m and 15 m. Lastly, the instantaneous (hourly) latent heat flux (LE) was 

extrapolated/upscaled to daily ET values using the incoming solar radiation (Rs) method. 

Results indicate that spatial resolutions between 6 m and 15 m are suitable for representing 

fluxes in the study area. The results also indicate small differences in the LE values between 

6-m and 15-m resolutions, with a slight decrease in detail at 15 m due to losses in spatial 

variability. For daily ET estimation, the results indicate that willow and cottonwood have 

the highest ET rates, followed by grass/shrubs and treated tamarisk. 

Keywords: evapotranspiration (ET); natural environment; spatial heterogeneity; wavelet 

energy; discrete wavelet transform (DWT); sUAS; Remote Sensing; TSEB model; Upper 

Colorado River Basin; San Rafael River corridor 
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4.1 Introduction 

Evapotranspiration (ET) is of paramount importance for terrestrial water balance as 

it represents the second largest component after precipitation and it links climate, 

hydrology, and ecosystem processes that couple water and energy budgets [1]. Spatial ET 

information has been shown to play a critical part in monitoring the spatial and temporal 

variation of agricultural drought on monthly and annual scales [2] to improve water 

resources planning and management. Accurate ET estimation is necessary, particularly in 

drought-stricken areas, to monitor the impacts on the natural environment. Direct 

measurements of ET using ground instrumentation such as eddy covariance (EC) or 

lysimeters only work appropriately for homogenous surfaces and are limited to small 

sampling areas [3]. At large scales, such as watersheds or biomes, these methods are 

difficult to employ due to the complexity of hydrometeorological processes [4]. Challenges 

associated with natural ecosystem scales usually arise from spatial heterogeneity in soils 

and vegetation species, in addition to other biophysical processes that affect the surface-

atmosphere exchanges of water and energy [5]. Therefore, to understand the spatial 

heterogeneity of the landscape for accurate estimation of surface energy fluxes, particularly 

latent heat flux (LE) or evapotranspiration (ET), advanced techniques are needed. To 

address these needs, the scientific community has developed land surface models, 

mathematical representations of land-atmosphere exchange, to quantify surface energy and 

water balance, which drive climatic and earth system processes [6]. These models are 

helpful tools that can provide vital information to track ecosystem response to dynamic 

changes in climate and environmental components [7,8].  
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Simple and complex land surface and hydrological models [9] have been applied 

to estimate ET in heterogeneous environments [10]. Currently, remote sensing-based 

energy balance models are widely and routinely applied to produce spatial ET information 

on an operational basis for use in water resources management [11]. These models use 

thermal infrared (TIR) data as a boundary condition and solve LE as a residual component 

of the surface energy balance (SEB) [12]. Generally, two types of SEB models are applied, 

both of which use optical and TIR remote sensing information to calculate ET through the 

radiation and energy balance equations. The first is the One-Source Energy Balance 

(OSEB) model, which treats the canopy-substrate surface as a single layer [13]. The second 

is the dual source, such as the Two-Source Energy Balance (TSEB) model [14], which 

partitions the energy fluxes between canopy and soil/substrate [15]. The TSEB model was 

originally developed for homogenous partial vegetation cover, and then the framework was 

upgraded to accommodate the effects of heterogeneous partial vegetation, as opposed to 

the OSEB models [16,17]. However, both model types tend to show greater uncertainty in 

cases of heterogeneous landscapes and/or natural environments [18,19]. From an 

operational perspective, identifying individual fields and other small hydrological features 

in a heterogeneous environment requires a more advanced technology that can provide 

high-resolution data in a timely manner. Satellite remote sensing can provide radiometric 

surface temperature and optical observations at a spatial scale of 10 to 103 m2; however, 

satellite measurements are affected by various landscape features and require semi-

empirical algorithms to convert radiances to physical quantities for SEB modeling [20]. 

Although satellite data fusion has improved the information, the presence of clouds during 

satellite overpass can limit its operational application [20]. The development of small 
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unmanned aerial systems (sUAS) with novel instrumentations and lightweight sensors has 

made high multispectral resolution possible without the previously mentioned limitations. 

Additionally, these systems are “flexible in timing” [3].  

Remote sensing offers access to a wide range of spatial information, but the high 

spatial resolution is also recognized as a challenging issue for energy flux modeling, 

particularly for ET estimates. According to Brunsell and Gillies (2003) [21], spatial scaling 

becomes more complicated in heterogeneous landscapes. Considering the spatial 

variability of surface and environmental properties such as canopy height, vegetation 

cover, and land surface temperature (LST), the spatial resolution of remote sensing products 

should have a significant impact on the adequacy and accuracy of ET estimates. Previous 

studies assessing the effects of different satellite sensors on ET estimation found 

discrepancies among the various spatial scales [22,23]. To a large extent, this is a function 

of the scale of variability in land cover relative to the resolution of the pixel information 

[24,25]. Therefore, analyses to evaluate the effects of spatial scale on surface properties 

and states that affect surface energy balance (SEB) modeling for different heterogeneous 

landscapes are required [26].  

In natural environments that are characterized by a heterogeneous natural 

ecosystem and low precipitation, such as the San Rafael River corridor in Utah, the major 

component of the water balance is vegetation transpiration (T) and soil evaporation (E) or 

the combined evapotranspiration (ET). This location also exhibits significant high spatial 

variability in ET information due to several factors that include soil moisture availability, 

groundwater depth, leaf area, topography, land surface temperature and vegetation species 

[27]. Moreover, the San Rafael River corridor is dominated by treated tamarisk, which 
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increases the complexity of the ecosystem’s water use and poses additional difficulties 

beyond the previously mentioned challenges due to the high variability of this vegetation 

in space and time.  

The presence of treated tamarisk and other riparian vegetation in the river corridor 

changes the river hydraulics by increasing the channel roughness, which can result in 

slower water flow and increased flood frequency. Efforts are underway to restore habitats 

by removing tamarisk in the river corridor to foster a more ecologically acceptable state, 

which may also have an impact on the evapotranspiration rate [28]. These efforts target 

mechanical whole tree removal on riverbanks lined with mature trees to encourage lateral 

scour and channel widening within channelized sections. A tracked excavator with a 

grapple attachment removes the tamarisk at or below the soil surface. This method has 

proven effective in removing the tamarisk root system and minimizing re-sprouting in 

subsequent years. Tamarisk removal is conducted in the winter months to reduce upland 

soil disturbance and avoid impacts to migratory birds.  After removal, tamarisk is stacked 

and left to dry for later burning or is left onsite to provide brush pile habitat. Areas disturbed 

during mechanical treatment and newly opened areas are seeded in the autumn following 

removal.    

According to a 2011 study by Neale et al. [27] conducted over the Mojave River, 

California, to estimate ET using high-resolution airborne multispectral imagery, tamarisk 

and cottonwood plants had the highest ET rate compared with other vegetation species. 

Furthermore, although a vast amount of information is available on water use by different 

types of riparian species, plant physiological processes and sources of available water that 

control water use are still disputed and poorly understood [27]. Hence, further insights into 

https://paperpile.com/c/zVs8Ut/a5qa
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the amount of available water used in such heterogeneous systems would benefit natural 

and water resources managers and decision makers. In this research effort, the topics 

investigated include (a) determining which spatial resolution(s)/scale(s) are most 

appropriate to represent the two ecosystems (river corridor and surrounding arid 

vegetation) for ET estimation, (b) examining the effects of different spatial resolutions for 

TSEB inputs on the magnitude and spatial variation in LE, and (c) calculating the daily ET 

of vegetation species using the incoming solar radiation (Rs) method. 

4.2 Methodology 

Figure 4.1 illustrates the research methodology used for this study. First, the spatial 

domain/model grid size to represent the San Rafael River corridor was identified using 

discrete wavelet transform (DWT) analyses and sUAS NDVI information. Next, we derived 

the input data required by the TSEB model to calculate energy fluxes, mainly LE. Finally, 

the daily ET was calculated for each vegetation type using the Rs method.  
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Figure 4.1 Flowchart of the methodology followed in this study. 

4.2.1 Site Description 

The study location is the San Rafael River corridor located in east central Utah 

(38°46′31″ N, 110°06′17″ W), as shown in Figure 4.2. The San Rafael River drains 

approximately 4,500 km2 in south central Utah, including the northern Swell, which makes 

up part of the San Rafael Swell, a giant dome-shaped anticline. The river originates from 

the merging of three tributaries: Huntington Creek, Cottonwood Creek, and Ferron Creek. 

The San Rafael is one of the most over-allocated rivers in the State of Utah, with some 360 

dams and 800 surface points of diversion. The underlying geology within the region 

consists of sandstone, shale, and limestone, which are consistently eroded by infrequent 

but powerful flash floods. In recent times, fragmentation, dewatering, non-native species, 
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and channelization have heavily impacted the river. The combination of altered hydrology, 

reductions in the magnitude and duration of snowmelt floods, and vegetation colonization 

has led to a narrowing and confinement of the river into a single-thread channel with steep 

banks, a low width-to-depth ratio, and a loss of habitat complexity [29]. Dewatering in this 

drainage is sometimes so severe that it results in a complete lack of flow for up to two 

months during the summer period [30]. The main riparian vegetation species in the San 

Rafael River corridor are treated tamarisk, willow, cottonwood, and grass/shrubs. The 

treatment of tamarisk involves spraying all sides of the canopy stems from the soil surface 

to a height of 12–18 inches using oil-soluble forms of triclopyr (Garlon 4 Ultra) herbicide 

and an approved oil (i.e., JBL Oil Plus). Willows are abundant along the river, and treated 

tamarisk are generally set back from the channel edge and dominate the floodplain. 

Multiple age classes of cottonwood exist on the lower floodplain surface, while grass and 

shrubs are scattered across the landscape.  

 

Figure 4.2 Layout of a section of the San Rafael River corridor area of study. 

FL1 

FL2 

FL3 
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The analyses in this study rely on multiple flight campaigns implemented by the 

AggieAir sUAS Program at Utah State University (https://uwrl.usu.edu/aggieair/). Remote 

sensing data with multispectral images have been acquired through many sUAS campaigns 

over different seasons (see Table 4.1). Optical data, including red, green, blue, and near 

infrared bands, were acquired at 2.5-cm spatial resolution. Thermal data were acquired at 

15 cm during the same flights at 400-ft elevation using a microbolometer camera. Each 

individual scene was mosaicked to generate a calibrated image (reflectance and 

temperature) covering the study area. The micrometeorological data was obtained from a 

weather station installed in the field during the flight dates. The technical specifications of 

the weather station used for this study are illustrated in Table 4.2. In this study, wind and 

temperature data obtained from the weather station (~2-m height) were extrapolated to 20 

m above ground level (agl) to address the tall tree (mainly cottonwood) heights. For the 

calculation of the adjusted wind speed at 20 m agl, a logarithmic wind speed profile was 

used as shown in equation (4.1), while the air temperature was reduced using adiabatic 

lapse rate (ca. 6K/1km) 

𝑢2 = 𝑢𝑧

4.7

ln(67.8𝑧 − 5.42)
 (4.1) 

where 𝑢2 wind speed at 2 m agl (m/s), 𝑢𝑧 measured wind speed at specific height (m/s), z 

height of measurement agl (m). 

 

 

 

https://uwrl.usu.edu/aggieair/
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Table 4.1 Dates and times (launch and landing) of AggieAir flights at the San Rafael 

River corridor. 

Date 
Flight 1 (FL1) Flight 2 (FL2) Flight 3 (FL3) 

Launch Landing Launch Landing Launch Landing 

June 19, 2019 11:34 12:07 13:52 14:20 - - 

July 22, 2019 9:49 10:20 12:36 13:02 14:50 15:18 

October 26, 2019 11:38 12:03 13:00 13:23   

All times are expressed in Daylight-Saving Time zone. 

 

Table 4.2 The technical specifications of the weather station used for this study. 

Parameter Instrumentation 

Wind Speed Solid state magnetic sensor 

Wind Direction Wind vane with potentiometer 

Rain Collector Tipping spoon 

Temperature PN Junction Silicon Diode 

Relative Humidity Film capacitor element 

4.2.2 Characterizing the Spatial Heterogeneity Using Wavelet Analysis 

The availability of different remote sensing platforms (satellites, manned aircrafts, 

and sUAS) with various spatial resolutions allows for assessment of the spatial 

heterogeneity in the landscape using vegetation indices such as NDVI [31]. While sUAS 

provides spatial information at a fine scale (i.e., plant scale), SEB models need to have 

adequate spatial resolutions/model grid sizes that are associated with the model 

parameterizations in deriving energy fluxes, particularly given challenges associated with 

accurately representing heterogeneous domains. For example, agricultural fields such as 

vineyards and orchards have an organized plant pattern with uniform vegetation row 

spacing, making it easy to identify the dominant scale based on the distance between plant 
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rows. In contrast, specifying the representative spatial resolution/model grid size in natural 

environments is more difficult as the perennial vegetation is more randomly spaced and 

largely clumped, creating significant gaps of bare soil with annuals emerging when water 

is available.  

In this study, we used the discrete wavelet transform (DWT) along with sUAS NDVI 

data to characterize the spatial heterogeneity over the San Rafael River corridor, a 

heterogeneous natural environment. Wavelet analysis has been introduced successfully in 

different applications over the last two decades, particularly in signal processing and 

computational statistics [32]. In ecological/ecosystem applications, a few studies have 

addressed wavelet analysis [33]. The earliest study, conducted by Bradshaw and Spies 

(1992) [34], aimed to characterize forest canopy structure along a transect. Another 

application of the wavelet analysis sought to identify the dominant resolution/model grid 

size (e.g., Murwira and Skidmore 2010) [35] by decomposing the 2D image into different 

scales for detecting the spatial pattern at each scale [36].                                         

Wavelet energy [37] was used to characterize the spatial variability in the San 

Rafael River corridor by quantifying the intensity and the dominant resolution/model grid 

size of spatial heterogeneity in NDVI images from different dates (see Table 4.1). The 

calculation of wavelet energy begins with a wavelet transform, a linear filter that can be 

described by two functions: the scaling/smoothing function (also referred to as the father 

wavelet) and the detail function (or mother wavelet). These two functions are used to 

decompose the image to multiple wavelet transform coefficients to evaluate the degree of 

similarity between the wavelet template and the image structure/pattern. The Haar DWT 

was used for its ability to detect boundary, edges, and abrupt discontinuity in the data such 

https://paperpile.com/c/zVs8Ut/4CzT
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as changes and gaps in the vegetation cover [34]. At each level of decomposition, the 

wavelet transform produces two types of coefficients, “smooth” and “detail,” at successive 

bases (2𝑗  𝑤𝑖𝑡ℎ 𝑗 = 0,1,2, … . . 𝐽), as shown in Figure 4.3. Smoothing coefficients represent 

an averaged version of the original data, whereas detail coefficients describe the deviances 

from the average value in horizontal (h), vertical (v) and diagonal (d) directions. A high 

absolute value of the coefficients represents a good match between the wavelet and the 

image data (e.g., a change in vegetation cover), while small or zero values represent a poor 

match. Given an image, 𝐹(𝑥, 𝑦), the wavelet approximations, �̂�(𝑥, 𝑦),  are calculated as a 

sum of the smooth and detail coefficients at different bases. 

�̂�(𝑥, 𝑦) = 𝑆𝑗(𝑥, 𝑦) + ∑ ∑𝐷𝑗
𝑑𝑖𝑟(𝑥, 𝑦)

𝑑𝑖𝑟

𝐽

𝑗=1

 (4.2) 

where 𝑆𝑗 is the smooth coefficients and 𝐷𝑗
𝑑𝑖𝑟 is the directional detail coefficients. 

 

Figure 4.3 Schematic diagram of DWT for 2D image. 

The wavelet energy is calculated as the sum of squares of the coefficients at a level of 

decomposition, 2𝑗, divided by the sum of squares all of the coefficients in �̂�(𝑥, 𝑦). The 

formula describes the wavelet energy as shown in Equation (4.3). 
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𝐸𝑗
𝑑 =

1

𝐸
∑ 𝑑𝑗(𝑥,𝑦)

2

𝑛/(2𝑗)
2

𝑘=1

  , 𝑗 = 1,2,3, … 𝐽 

(4.3) 

where 𝑑𝑗(𝑥,𝑦) is the detail wavelet coefficient at level j and position (x,y), E is the total 

wavelet energy calculated as the sum of squares of the coefficients in �̂�(𝑥, 𝑦), and 𝑛/(2𝑗)
2
 

is the number of coefficients at level j. High energy values represents the presence of larger 

coeficients and therefore identify dominant patterns at a given spatial resolution/model grid 

size. 

4.2.3 Image Classification 

Coarse resolution imagery, such as Landsat at 30-m or SPOT at 20-m, may not be 

enough to capture the spatial heterogeneity in natural environment [38]. However, the 

recent development of sUAS remote sensing technology with spatial resolutions of 10 cm 

or less allows for the capture of spatial variability in the riparian vegetation in locations 

such as the San Rafael River corridor. In this study, multispectral images from several 

flight campaigns acquired by AggieAir sUAS were classified to identify and map the 

features/classes of interest in riparian scenes using supervised classification, in which the 

spectral signatures/training samples from the image are extracted by specifying the known 

or visibly distinct features. Training samples were extracted from the images using ArcGIS 

10.7 and then used to classify the entire map into several features, including willow, water, 

treated tamarisk, bare ground, developed/road, grass/shrubs, and cottonwood. Flight 

images show distinct spectral variations between different vegetation types, mostly willow 

(dense with green tones), treated tamarisk (represented by a dark brown color), and 

cottonwood (large green leaves and thick foliage). 
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4.2.4 ET Estimation Using the Two Source Energy Balance (TSEB) Model  

4.2.4.1 Model Overview 

The TSEB model was developed originally by Norman et al. (1995) [14] to calculate 

energy fluxes, mainly the latent heat flux (LE). TSEB considers the combined emissions 

from vegetation and soil to compose the total temperature emitted by the surface, weighted 

based on the fractional cover as described in Equation (4.4) 

𝜎𝑇𝑟𝑎𝑑
4 (𝜃) = 𝑓𝑐(𝜃)𝜎𝑇𝑐

4 + [1 − 𝑓𝑐(𝜃)]𝜎𝑇𝑠
4      (4.4) 

where 𝑓𝑐(𝜃) is the vegetation fractional cover observed by the TIR sensor at specific angle 

(𝜃). Tc and Ts are the canopy and soil temperature, respectively, in (Kelvin). 𝑇𝑟𝑎𝑑(𝜃) is the 

directional radiometric surface temperature. As the temperature is separated into soil and 

canopy temperatures (Ts and Tc ), the energy balance is decoupled into two layers and can 

be described in the following equations 

𝑅𝑛𝑐 = 𝐻𝑐 + 𝐿𝐸𝑐,                                                           (4.5) 

𝑅𝑛𝑠 = 𝐻𝑠 + 𝐿𝐸𝑠 + 𝐺,        (4.6) 

where 𝑅𝑛 is net radiation, LE is latent heat flux, H is sensible heat flux , and G is the soil 

heat flux.  All flux units are expressed in W/m2, and subscripts c and s represent the canopy 

and soil components, respectively. Radiative transfer and absorption through canopy are 

simulated using an extinction coefficient approach, which is a function of the amount of 

canopy foliage (i.e. LAI) and canopy architecture (i.e. XLAD) along with the incident solar 

angle. In the radiative transfer model, the incoming shortwave radiation is separated into 

direct and diffused radiation, along with separation between visible and near-infrared (VIS-

NIR) spectral ranges due to drastic changes in reflectivity and transmissivity between 
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canopy and soil features. TSEB simulated the longwave (LW) radiation transfer model 

similarly without considering a diffusion from the TIR region.  

When estimating the sensible heat flux for soil and canopy (Hs and Hc), both layers are 

assumed to interact with each other and with the atmosphere using their respective 

temperatures along with a series of soil-vegetation resistive schemes (following an analogy 

with Ohm’s law). 

𝐻 = 𝐻𝑐 + 𝐻𝑠 = 𝜌𝑎𝑖𝑟𝐶𝑝

𝑇𝐴𝐶 − 𝑇𝐴

𝑅𝐴
 (4.7) 

𝐻𝑐 = 𝜌𝑎𝑖𝑟𝐶𝑝 [
𝑇𝐶 − 𝑇𝐴𝐶

𝑅𝑥
] (4.8) 

𝐻𝑠 = 𝜌𝑎𝑖𝑟𝐶𝑝 [
𝑇𝑠 − 𝑇𝐴𝐶

𝑅𝑠
] (4.9) 

where 𝐻 is the sensible heat flux (W/m2); 𝜌𝑎𝑖𝑟 is the air density (kg/m3); 𝐶𝑝 is the heat 

capacity of the air at constant pressure (J/kg/ K); TA is the air temperature (Kelvin); Tc and 

Ts are canopy and soil temperature (Kelvin), respectively; and TAC is the temperature of the 

canopy-air space (Kelvin) calculated from the component temperature of each source (Tc 

and Ts) along with aerodynamic resistances, 𝑅𝐴, 𝑅𝑠 and 𝑅𝑥, as described mathematically in 

Equation (4.10). 

𝑇𝐴𝐶 =

𝑇𝐴

𝑅𝐴
+

𝑇𝐶

𝑅𝑥
+

𝑇𝑠

𝑅𝑠

1
𝑅𝐴

+
1
𝑅𝑥

+
1
𝑅𝑠

          (4.10) 

where 𝑅𝐴 is the aerodynamic resistance to heat transfer based on the Monin-Obukhov 

similarity theory, Rx is the boundary layer resistance of the canopy leaves, and Rs is the 

aerodynamic resistance to heat transport in the boundary layer above the soil layer. All 
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resistances are expressed in (s/m). More details about the TSEB model and 

updates/revisions to algorithms can be found in Kustas et al. (1999), Kustas et al. (1999), 

and Nieto et al. (2019) [39,40,41], and the details of radiation formulations can be found 

in Campbell and Norman (1998) [42]. 

4.2.4.2 Retrieving the Biophysical TSEB Inputs  

The TSEB model requires vegetation biophysical properties as inputs. In natural 

environments such as the San Rafael River corridor, deriving the spatial information of 

biophysical parameters is challenging due to spatial heterogeneity in the vegetation species, 

terrain formation, and environmental characteristics. 

(a) Fractional Cover (fc) 

In the TSEB model, fractional cover (fc) is used as a proxy for canopy clumpiness, 

which is defined as the nadir-looking fraction of vegetation (both green and standing dead 

vegetation elements) per unit ground. Together with total LAI, fc mainly affects how 

irradiance is effectively intercepted by the vegetation and/or transmitted through the 

background/soil. To calculate the fc in this study, the high resolution RGB image was first 

classified into multiple features/classes, then fc was estimated as the portion of vegetation 

(green and standing dead) within the spatial domain / model grid size. 

(b) Green Ground Cover (fg) 

Green ground cover (fg) is defined as the fraction of leaves or vegetation elements 

that could actively transpire. It represents the fraction of LAI that is actually green and 

hence mainly contributing to latent heat flux, while the rest of the dead vegetation elements 
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(1 - fg) are mainly contributing to sensible heat flux. For the June and July flights, NDVI 

was used to separate vegetation pixels (classified previously for the fc calculation) to 

calculate the proportion of green and dead elements at different spatial resolutions (6-m 

and 15-m), whereas the NIR band was used for October flights as most vegetation is in a 

dry and/or dead condition. 

(c) Canopy Height (hc) 

 Generating hc maps for the San Rafael River corridor was challenging due to the 

high variation in the land surface topography. Canopy height (hc) was calculated as the 

difference between the digital surface model (DSM) and the digital terrain model (DTM). 

The DSM was obtained from sUAS flights at different dates, while the DTM, which 

represents the ground elevation, was generated by selecting the elevation of pure bare soil 

pixels and then creating a DTM map covering the study area using an interpolation model 

(Kriging). 

(d) Leaf Area Index (LAI) 

LAI is an important state variable in ecosystem modeling as it influences the energy 

fluxes between the land surface and atmosphere. Estimating spatial distribution of LAI is 

challenging in heterogeneous natural environments with a variety of vegetation types, such 

as the San Rafael River corridor. In this study, the ground-based LAI measurements were 

collected using a LiCOR plant canopy analyzer at multiple locations. Due to the variability 

within the canopy as shown in Figure 4.4, the LAI was placed near the bottom of the canopy 

at each location and was moved to different spots (4 – 6) at the base of the canopy to 

provide a representative sample. For each measurement, a 45o view cap was placed over 

the lens, restricting the view to an eighth of a hemisphere.  
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LAI was estimated as a point measurement for individual canopy (LAIshrub). The 

primary goal was to have the LAI value represent the spatial domain/model grid size 

(including bare ground and vegetation), and this was calculated as LAI = fc× fg × LAIshrub 

[43]. Next, a regression model (exponential equation) between LAI and the vegetation 

indices, particularly NDVI, was used to derive spatial maps of LAI in the June and July 

flights. However, using the regression model for October flights resulted in a weak 

correlation due to senescent condition with low LAI values. For the October flights, a 

specific LAI value was used for each vegetation type based on in-situ measurements. 

  

Figure 4.4 Example of in-situ LAI measurements taken in the San Rafael River corridor. 

4.3 Results and Discussion 

4.3.1 Land Cover/Land Use Classification 

The sUAS images, in conjunction with ground-based observations, were used to 

discriminate riparian vegetation  classes in the San Rafael River corridor. The results of 

the land cover/land use classification are summarized into six categories: water, bare 

ground, treated tamarisk, cottonwood, willow, and grass/shrubs. The distribution of the 
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vegetation has distinct patterns across the San Rafael floodway. Dense vegetation stands 

of treated tamarisk (non-native) represent the second dominant riparian plant species in the 

study area. Willows/phragmites (also called common reed) were identified along the river 

and dominate the river channel margin occupying the riparian berm that extends laterally 

to a width of 2 to 10 m. Some cottonwood trees are scattered across the floodplain. Most 

of the cottonwood trees are designated within the old age class, with height varying 

between 8 and 12 m above ground level (agl). Swaths of grass and desert shrubs are 

observed along the dry riverside, and other areas are dominated by sand dunes.  

Figure 4.5 shows the proportion of the different plants mapped across the San Rafael 

River corridor. The results indicate that grass/shrubs are widespread throughout the entire 

study area, representing nearly 37%. Treated tamarisk is the second dominant vegetation 

species, which represents 23% of the study area. In contrast, the classified map shows the 

percentage of cottonwood and willow to be relatively small compared with the other 

vegetation species, accounting for 2% and 3% of total area, respectively. Of the remaining 

three land cover/land use classes, bare ground constitutes nearly 31%, and water, 3%, while 

the developed (Road) class is far less prevalent across the study area, accounting for 1%. 
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Figure 4.5 Vegetation classification map of the San Rafael River corridor. 
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4.3.2 Spatial Heterogeneity Using Wavelet Analysis 

Understanding the role of landscape heterogeneity is essential for identifying the 

representative spatial resolution/model grid size to estimate surface fluxes, mainly LE. In 

this study, NDVI, as one of the most common vegetation indices, was used to investigate 

spatial heterogeneity in the San Rafael River corridor. As shown in Figure 4.6, high spatial 

variability was observed in the NDVI due to high landscape heterogeneity within the 

different features/classes, including water, vegetation, and bare soil. Other environmental 

factors that could increase the NDVI spatial variability are the variation in soil properties 

(such as soil salinity) and/or soil moisture [44]. High NDVI values correspond to green 

vegetation, particularly along the river corridor, whereas bare soil and standing dead 

vegetation are characterized by low NDVI. For example, the NDVI increases dramatically 

in cottonwood and high-density vegetation such as willow/ phragmites with values above 

0.75. Sparse vegetation such as grass/shrubs result in moderate values of NDVI ranging 

between 0.4 and 0.7. In cases of soil and dead and/or dry vegetation, NDVI is less than 

0.35. Negative values of NDVI correspond to the waterbody. 

    Figure 4.7 shows the wavelet energy of NDVI for two different features, the river 

corridor and the remaining area surrounding the river corridor (non-river corridor). Each 

plot describes the change in the wavelet energy (%) in the various directions (horizontal, 

vertical, diagonal) corresponding to multiple spatial resolutions/model grid sizes. The 

comparison of the wavelet energy curves for the two features shows that they have 

completely different shapes for all flights (June, July, and October). For the area adjacent 

to the river (river corridor), wavelet energy resembles a concave down shape with highest 

values of energy appearing in the vertical (north-south) direction, medium in the horizontal 



138 
 

(east-west) direction, and lowest in the diagonal (northeast-southwest and northwest-

southeast) direction. Based on Figure 4.7, the vertical and horizontal curves show the 

presence of two dominant scales of spatial heterogeneity, depicted by two wavelet energy 

maxima ranging between 6.4 and 12.8 m for all sUAS flights. The wavelet energy values 

at 6.4-m and 12.8-m spatial resolutions are relatively close, with a slight increase at 12.8 

m. However, in the diagonal orientation, the wavelet energy values are very low, with the 

wavelet-based dominant scale peaking at 12.8 m. In the non-river corridor area, the wavelet 

energy curves in the various directions (vertical, horizonal, and diagonal) flatten out 

without the presence of a dominant spatial resolution/scale, with one exception. FL1 on 

June 19, 2019, shows a high wavelet energy value present at very low spatial resolution, 

which may occur as a result of different vegetation patterns and types existing in that area.  

The different wavelet energy curves between the river corridor and the remaining area 

(non-river corridor) are caused mainly by the fact that green vegetation is present along the 

river, while the surrounding area is characterized by different surface types (soil, standing 

dead vegetation, shrubs or others). The NDVI of the canopy has a much higher value than 

any surface type, which causes a larger variation and more wavelet energy. However, for 

the second feature (non-river corridor), which is characterized by scattered shrubs and 

canopies, the wavelet energy is very low with a flat curve. This indicates that considerable 

wavelet energy is present at all spatial resolutions/model grid sizes. One explanation for 

the flat shape in the wavelet energy curve across the different flights could be the low 

variation in the NDVI values of dead plants and soil. Even the shrubs present within the 

domain do not seem to have a significant influence on the general trend of the wavelet 

energy curve due to the large distances between them. 
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Figure 4.6 Layout of river corridor and non-river corridor area for wavelet analysis. 

NDVI RGB image 
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June 19, 2019 – FL1 (River Corridor) June 19, 2019 – FL1 (Non-River Corridor) 

  
June 19, 2019 – FL2 (River Corridor) June 19, 2019 – FL2 (Non-River Corridor) 

  
July 22, 2019 – FL1 (River Corridor) July 22, 2019 – FL1 (Non-River Corridor) 

  
July 22, 2019 – FL2 (River Corridor) July 22, 2019 – FL2 (Non-River Corridor) 
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July 22, 2019 – FL3 (River Corridor) July 22, 2019 – FL3 (Non-River Corridor) 

  
October 26, 2019 – FL1 (River Corridor) October 26, 2019 – FL1 (Non-River Corridor) 

  
October 26, 2019 – FL2 (River Corridor) October 26, 2019 – FL2 (Non-River Corridor) 

  
Figure 4.7 Wavelet energy at multiple spatial domains for different flights. 

4.3.3 Retrieving the Biophysical Parameters 

Figure 4.8 shows an example of each biophysical parameter (fc, fg, LAI, and hc) used 

for the TSEB model. the fc parameter was calculated using the percentage of vegetative 

pixels (stand dead and green) within each contextual spatial domain/resolution and ranged 

between 0 and 1 for the sUAS flight in July 2019. As shown in Figure 4.8a, the highest fc 

values were observed along the river corridor, which is dominated by green vegetation. 
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The comparison of the fc maps at the two spatial resolutions (6 m and 15 m) shows a non-

significant difference, with a slight decrease at 15 m due to the loss in spatial variability.  

Green fractional cover (fg) was calculated as the percentage of green vegetation 

only. NDVI threshold values were used to distinguish between the dead and green 

vegetation for the sUAS flights in June and July, whereas the NIR band was used for the 

October flight because most vegetation is in a dry condition at that time. Figure 4.8b 

illustrates the ranges of fg, which are between 0 and 1 for the sUAS FL1 on July 22, 2019. 

The highest fg values were observed along the river corridor, whereas the lowest values are 

present in the treated tamarisk patches, which are in a dead/dry condition. Comparing the 

fg values between the 6-m and 15-m spatial scales revealed a slight difference caused by 

aggregation issues. 

Canopy height (hc) maps were generated based on the differences between the DSM 

and DTM. Overall, hc values showed high spatial variability due to the number of 

vegetation types (treated tamarisk, cottonwood, willow, grass/shrubs) that exist in the study 

area. The highest hc values correspond to cottonwood, varying between 8 and 12 m, 

whereas the lowest hc values were observed in grass/shrubs, ranging between 0.2 and 0.5 

m, depending on the vegetation development stage. Figure 4.9 shows an example of canopy 

height calculation. The DSM profile represents the elevation of canopy above mean sea 

level (AMSL) at 25-cm spatial resolution, whereas the hc profile represents canopy height 

derived at a 1-m spatial domain. A comparison of the two profiles indicates similarities in 

the shapes of both curves. 

 LAI calculation was challenging in this study because of the landscape complexity 

in the San Rafael River corridor. Figure 4.8 shows an example of the LAI maps at different 
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resolutions for sUAS FL1 on July 22, 2019. The highest LAI values were observed in 

willow and cottonwood, whereas the lowest values exist in grass/shrubs. Comparing the 

LAI maps at the two scales, the values at 15-m spatial resolution are lower due to the mix 

of different vegetation types within the spatial domain/resolution. Wu et al. (2016) [45] 

found that LAI scaling is influenced not only by the spatial heterogeneity of NDVI but also 

by the nonlinearity model used for retrieving LAI. The study also found that the logarithmic 

regression model results in overestimation in LAI values, whereas the exponential 

regression function leads to underestimation of LAI values within the heterogeneous spatial 

domain. For this study, we found reasonable agreement between the NDVI and ground LAI 

measurements using the exponential equation as explained in the methodology section.  

 

fc (6-m resolution) fc (15-m resolution) 

a 
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fg (6-m resolution) fg (15-m resolution) 

hc (6-m resolution) hc (15-m resolution) 

b 

c 
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Figure 4.8 Example of the spatial maps for biophysical parameters at 6-m and 15-m 

resolutions for FL1 (July 22, 2019). 

 

 

Figure 4.9 Example of DEM and hc profiles in the study site. 

LAI (6-m resolution) LAI (15-m resolution) 

d 

(A – B) 

(A – B) 
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4.3.4 Spatial Scale Implications on LE 

The TSEB model was applied at two selected spatial resolutions/model grid sizes, 

6 m and 15 m, both of which are considered suitable to represent the San Rafael River 

corridor domain according to the wavelet analysis (see section 4.3.2). To represent 

differences in roughness for the vegetation types within the two model grid sizes/spatial 

domains (6 m and 15 m), different canopy heights were weighted by their fractional cover. 

To evaluate the influence of the two resolutions on LE energy fluxes using the sUAS 

information, an example of the LE map along with other statistics, including the frequency 

curve, spatial mean, and standard deviation, were calculated and presented in Table 4.3 and 

Figure 4.10.  Overall, the results indicate low statistical discrepancies in the LE values at 

the two different scales, 6 m and 15 m, for the multiple sUAS flights. The statistics (spatial 

mean (𝜇)  and standard deviation (𝜎)) of the two resolutions are close, with a slight decrease 

at 15 m due to losses in spatial variability. For example, the spatial mean LE value for FL1 

on July 22, 2019, was 126 W/m2 at 6-m resolution/model grid size but decreased to 122 

W/m2 at 15-m resolution. Similarly, the standard deviation decreases slightly from 68 

W/m2 at 6-m resolution to 64 W/m2 at 15-m resolution. Figure 4.11 shows the frequency 

curves of LE at 6-m and 15-m spatial resolutions/model grid sizes for the area covered by 

each flight (FL1, FL2, and FL3). The plots demonstrate different trends due to different 

vegetation patterns and types that dominate each flight. For example, grass and shrubs 

dominate in FL1, whereas treated tamarisk is widespread in FL2 and FL3. Moreover, the 

frequency histogram in Figure 4.11 indicates a non-significant change between the two 

curves at the two different scales for each single flight. This behavior aligns with the results 

obtained from the spatial mean and standard deviation. One explanation for the similarities 
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in LE values could be that both resolutions are able to capture the heterogeneity in the study 

site domain.  

Figure 4.10 shows an example of modeled instantaneous LE (W/m2) at 6-m and 15-

m resolutions for FL1 on July 22, 2019. The maps show high spatial variability in LE 

values, varying between 0 W/m2 and 330 W/m2. A similar trend in spatial variances has 

been observed for other LE maps at different dates and times. Many factors related to soil 

moisture and differences in vegetation species and vegetation cover could potentially cause 

these variations in LE. High LE values correspond to the vegetation along the river corridor 

due to the presence of dense patches that reach full green ground cover. This is true for all 

of the vegetation along the riverbank. 

Table 4.3 Spatial resolution effect on LE estimation. 

Flight data 
Flight 

number 

Spatial mean (µ) (W/m2) Standard deviation () (W/m2) 

6 m 15 m 6 m 15 m 

June, 19, 2019  FL1 181 168 93 86 

June, 19, 2019 FL2 203 184 132 122 

July 22, 2019 FL1 126 122 68 64 

July 22, 2019 FL2 218 197 143 134 

July 22, 2019 FL3 274 255 154 145 

October 26, 2019 FL1 206 204 50 50 

October 26, 2019 FL2 232 230 56 52 
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Figure 4.10 Example of modeled instantaneous LE (W/m2) at 6-m and 15-m resolutions 

for July 22, 2019 at 10:05 am. 
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June 19, 2019 – FL1 June, 19, 2019 – FL2 

  

July 22, 2019 – FL1 July 22, 2019 – FL2 

  

July 22, 2019 – FL3 October 22, 2019 – FL1 

  

October 22, 2019 – FL2  

 

 

Figure 4.11 Frequency curves of instantaneous LE (W/m2) for all sUAS flights at 6 m and 

15 m. Note: Blue dashed line represents the spatial mean of LE at 6-m resolution, the red 

represents the 15-m resolution. 
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4.3.5 Daily ET Calculation for Vegetation Types 

The instantaneous (hourly) latent heat flux (LE) was obtained using the TSEB 

model then extrapolated/upscaled to daily ET (ETd) values using the incoming solar 

radiation (Rs) method, which is the recommended method for use in complex canopy 

environments [46]. Moreover, a study conducted by Cammalleri et al. (2014) [47] indicated 

that the Rs approach is the best for extrapolating the instantaneous ET to daily values in 

grassland and woody savanna. To evaluate the difference in daily ET for each vegetation 

type on the different dates (June 19, 2019; July 22, 2019; October 26, 2019), spatial mean 

(µ) and standard deviation () were calculated as shown in Table 4.4, while LE variability 

is illustrated as boxplots in Figure 4.12. Overall, the results indicate only a small difference 

in the spatial mean of ETd between June 19, 2019, and July 22, 2019, with a significant 

decrease in standard deviation. For example, the mean daily ET value for cottonwood on 

June 19, 2019, and July 22, 2019, was 4.9 mm/day and 5 mm/day, respectively, and then 

decreased to 2.7 mm/day on October 26, 2019. Similarly, willow daily ET was 5 mm/day 

and 4.9 mm/day, respectively, for June 19 and July 22 and then decreased to 2.6 mm/day 

on October 26. The low values of ET on October 26 across different vegetation types are 

due to the dry condition of vegetation observed on that date. The exception is the treated 

tamarisk, which is in a dry/dead condition across all of the different dates. 

As shown in Figure 4.13, the highest ET was observed in willow, which dominates 

the river corridor, and cottonwood. According to Neale et al. (2011) [27], cottonwood has 

the highest ET among the vegetation types studied (saltcedar/tamarisk, mesophytes, 

arundo, mesquite, conifer and desert scrub). In contrast, the lowest ET in this study was 

observed in treated tamarisk, which represents the second largest vegetation area after 
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grass/shrubs, with an average value of nearly 2.1 mm/day. Although the treated tamarisk 

is in dead and/or dry condition across different dates, green vegetation growing underneath 

contributed to a magnitude value of ET for tamarisk as shown in Figure 4.14.  Generally, 

the estimation of actual water use in tamarisk is complicated in that it varies from one 

location to another and is strongly influenced by the measurement period [48] due to 

several factors related plant size, water quality and salinity, and depth to groundwater. The 

average ET rate of grass/shrubs was found to be between 2.2 mm/day and 2.8 mm/day 

across the different dates. These results are similar to Neale et al. (2011) [27], which 

showed daily ET ranging between 2 mm/day and 3.3 mm/day. The large ET rate estimated 

for grass/shrubs corresponds to the vegetation along the river corridor (see Figure 4.13).  

Table 4.4 Average daily ET estimation for different vegetation types on different dates 

for the study area. 

Vegetation 

type 

June 19, 2019 July 22, 2019 October 26, 2019 

µ 

(mm/day) 

 

(mm/day) 

µ 

(mm/day) 

 

(mm/day) 

µ 

(mm/day) 

 

(mm/day) 

Cottonwood 4.9 1.7 5 1.1 2.7 0.2 

Willow 5 1.25 4.9 0.7 2.6 0.1 

Grass/Shrubs 2.7 1.3 2.8 1.2 2.2 0.4 

Treated 

tamarisk 
2 1.1 2 1.1 2.3 0.4 
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(a) Cottonwood (b) Willow 

  

(c) Grass/Shrubs (d) Tamarisk 

  

Figure 4.12 Daily ET estimation for each vegetation type on different sUAS flight dates in 

the study area. 
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Figure 4.13 Example of modeled daily ET for July 22, 2019. 
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Figure 4.14 Example of RGB sUAS image from each flight date (June, July, and 

October). 

4.4 Conclusion 

Spatial resolution/scale is one of the challenges related to ET estimation, 

particularly in heterogeneous natural environments such as the San Rafael River corridor, 

which has a wide range of vegetation types and other ground features.  The objective of 

this study was to characterize the spatial heterogeneity in a natural environment to evaluate 

its impact on ET estimation using the TSEB model and high-resolution data acquired by 

sUAS. Retrieving the biophysical parameters (LAI, fc, fg, and hc) required as inputs to the 

TSEB model constitutes a challenging issue in this study due to landscape heterogeneity.  

The discrete wavelet transform (DWT) was used along with sUAS NDVI to identify the 

suitable spatial resolution to represent the study area. Wavelet analysis was considered for 

two different features from multiple sUAS flights; the river corridor and the remaining area 

(non-river corridor) that surrounds the river corridor. Multiple plots were used to describe 

the changes in wavelet energy (%) in the different directions (horizontal, vertical, and 

diagonal) corresponding to different spatial resolutions. The results showed that the 

maximum wavelet energy is between 6.4 m and 12.8 m for the river corridor area, while 
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the non-river corridor area, which is characterized by different surface types and random 

vegetation, does not show a peak value. One explanation for the flat shape in the wavelet 

energy in the non-river corridor area is the low variation in NDVI values for the dead/dry 

vegetation and soil.  

Secondly, to evaluate the effect of spatial resolution on LE estimation using the 

TSEB model, spatial scales of 6 m and 15 m instead of 6.4 m and 12.8 m, respectively, 

were used to simplify the derivation of model inputs. Multiple statistical measures 

(frequency curve, spatial mean, standard deviation) were used to assess the effect of spatial 

resolutions. The results indicated low statistical differences in the LE values at the two 

different scales, 6 m and 15 m, for the multiple sUAS flights. Furthermore, the results 

showed that the high spatial variability in LE values within each single flight was due to 

many environmental factors, including soil moisture, different vegetation types, and 

fractional cover. 

 Lastly, to estimate the water use for each vegetation type in the study area, the 

instantaneous (hourly) latent heat flux (LE) obtained from the TSEB model was 

extrapolated to a daily scale using the Rs method. The highest ET was observed in willow, 

which dominates the river corridor, as well as cottonwood, followed by grass/shrubs and 

treated tamarisk. Although most of the treated tamarisk vegetation is in dead/dry condition, 

the green vegetation growing underneath resulted in a magnitude value of ET. 

 This study is an initial step toward a continued effort to explore and improve TSEB 

inputs for better ET estimates in such heterogeneous natural environments. Future research 

work should include ground-based energy flux measurements such as from an eddy 

covariance (EC) tower to validate further the results obtained from the TSEB model. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

The western U.S., including California and Utah, has always presented harsh climate 

conditions, but the combination of global climate change and a rapidly growing population 

exacerbates the impacts and shows the importance of water sustainability as a cross-cutting 

priority for hydrological, agricultural and ecological dimensions. From season to season, 

there is significant variation in precipitation and river flow as a result of climate change 

effects on the hydrological cycle, leading to decreased precipitation in some areas. The 

agriculture in that region mainly depends on diversions of water for irrigation, as rainfall 

is insufficient to grow the crop without supplemental water. Therefore, adequate estimation 

of consumptive water use by the crop or evapotranspiration (ET) is essential for balancing 

water supplies and water demand, particularly in arid regions such as western U.S., to avoid 

fragility and severe damage to the natural environment. To achieve that level of adequacy, 

it is necessary to explore emergent technologies that can assess water use by vegetation, 

such as sUAS that can provide detailed information and can be used to continuously 

monitor water use in agricultural and natural environments along other technologies 

(ground and satellite).  

This dissertation contributes to improving the means for the use of spatial and temporal 

ET information for complex environments, particularly vineyards and natural areas. 

Heterogeneous landscapes and non-ideal surface conditions present challenges for 

adequate characterization of water and energy processes and require advanced analysis to 

estimate ET. 
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The need for accurate spatiotemporal ET estimation raised two fundamental questions: 

1) What representative spatial scale/model grid size can describe the spatial heterogeneity 

in complex agricultural and natural environments, and how does this influence surface 

energy fluxes/ET estimates? and 2) Which data collection times and ET upscaling approach 

is appropriate for instantaneous to daily estimates and is reliable? The analysis relies upon 

high-resolution data acquired by sUAS, which is used for deriving key inputs (i.e., 

vegetation cover, LST, and canopy height) needed for an energy balance model, called 

TSEB, to estimate ET.  

This dissertation is designed in five chapters. The first chapter is a general introduction 

addressing the importance of producing accurate ET for complex environments such as 

vineyards and natural areas. 

The second chapter presents the influence of model grid size/spatial resolution on 

energy fluxes over the vineyard environment in California’s Central Valley using the 

TSEB-2T model. Multiple spatial resolutions/domains were considered for the analysis, 

which corresponded to one, two, four, and nine vine rows, respectively. The results 

indicated that the separation of canopy and soil/substrate temperatures (Tc and Ts) using 

the LST-NDVI relationship is highly influenced by the spatial domain. At small scale, a 

linear relationship between the LST and NDVI was found due to small number of pixels 

exist inside the spatial domain; however, at the coarse resolution (i.e, Landsat scale), there 

are many more pixels, more rows of vineyard are included, and the LST-NDVI relationship 

starts to resemble a triangle shape, which results in a weak LST-NDVI correlation. The 

validation results using the eddy covariance (EC) flux measurements indicated that the 

difference between the TSEB LE and EC LE increased at different spatial resolutions, 
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particularly at the coarsest resolution (Landsat scale). This large difference in LE at Landsat 

scale was due to overestimation in H, causing an underestimation in LE, which refers 

mainly to the non-linear relationship LST-NDVI at that coarse resolution. Another 

explanation for that difference is the variability of aerodynamic resistance (RA) due to the 

variables that affect the friction velocity (u∗) - the mean canopy height and roughness 

length, which were derived from remote sensing imagery at different spatial 

domains/resolutions. 

The third chapter assesses different daily evapotranspiration methodologies from a 

single time-of-day sUAS and EC information over multiple vineyard sites characterized by 

different climate, soils, vine variety, and trellis design. Five existing methods that estimate 

daily ET from instantaneous measurements were evaluated. Each approach (evaporative 

fraction (EF), solar radiation (Rs), net radiation to solar radiation (Rn/Rs) ratio, Gaussian 

(GA), and Sine) takes advantage of clear skies and quasi-sinusoidal diurnal variation of 

hourly ET and other meteorological parameters as documented by eddy covariance (EC) 

sensors. The analysis also considered different growing seasons of vine (bloom (April – 

May), veraison (June – August), and post-harvest (September – October))) to investigate 

how vine phenology could affect the accuracy of modeled daily ET. Overall, the results 

obtained from the EC-derived ETd and TSEB-derived ETd analysis indicated that three out 

of five methods (GA, EF, and Rs) reasonably agree with the ground observations from EC, 

with the Rs approach yielding better agreement across different stages in the season. 

Moreover, the results showed that the approaches could perform differently at different 

vine canopy development and grape vine phenology stages, and at different time windows 

during the day. The modeled ETd values obtained from the time window 1030 – 1330 
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showed better agreement with the ground measurements than the second time window 

(1430 – 1630). This implies that sUAS imagery should be collected 1 – 2 hours before/after 

solar noon for generating accurate daily ET estimations. 

The fourth chapter investigated the effect of the spatial heterogeneity of the natural 

environment on the ET. The study area is the San Rafael River corridor, which is 

characterized by extreme heterogeneous landscape described by a variety of vegetation 

species interspersed with bare soil and high spatial variability in canopy height, root zone, 

and soil moisture. First, spatial variability analysis was performed for identifying the 

spatial resolution/model grid size that can represent the study area using the discrete 

wavelet transform (DWT). Results indicated that spatial resolution between 6 m and 15 m 

is suitable for capturing the spatial heterogeneity in the San Rafael River corridor. Then, 

the TSEB model was used to evaluate the effect of the two different spatial resolutions (6 

m and 15 m) on the LE estimates where the results showed low statistical discrepancies in 

the LE values at the two scales, with a slight decrease at 15 m due to loss in spatial 

variability. Lastly, to quantify the daily ET for the riparian vegetation, the instantaneous 

TSEB LE values were extrapolated to daily ET scale. The results indicated that willow and 

cottonwood vegetation have the highest ET, followed by grass/shrubs and treated (dead) 

tamarisk. 

5.2 Recommendations 

Remote sensing is a valuable source for having accurate ET spatial information, 

particularly in complex environments such as vineyards and natural areas. However, 

further investigation is needed for other complex agricultural environments, such as 

orchards (e.g., almonds and oranges), which are also characterized by a complex canopy 
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structure. Moreover, the analysis in this study relies upon the high-resolution data acquired 

by sUAS to explore the influence of different spatial resolutions on the ET estimates. Future 

work should include other remote sensing data from different platforms (e.g., satellites) to 

compare them to the sUAS ET products, which could provide a more comprehensive 

scaling assessment of ET estimates.  

The first paper in this dissertation was limited to evaluating the influence of the 

model grid size/spatial resolution on the surface energy fluxes using TSEB-2T version. It 

is recommended to use other versions of the TSEB model, such as TSEB-PT, which may 

have less effect on scaling issues. TSEB-2T is highly influenced by the LST-NDVI 

relationship, which is used to separate canopy and soil/substrate temperature (Tc and Ts). 

In the TSEB-PT version, the decomposition of radiometric temperature (Trad) between plant 

canopy and soil/substrate is based on fractional cover ( fc).  

The second paper assessed multiple approaches for upscaling the instantaneous ET 

to daily values in vineyards. It will also be important to study the extrapolation/upscaling 

of instantaneous ET to daily ET estimates over natural areas, which are characterized by 

extreme heterogeneous landscape. Moreover, the nighttime ET contribution was neglected 

due to some uncertainties in the EC measurements at that time. Future research work should 

consider the LE fluxes overnight, which could provide a more comprehensive assessment 

to the daily ET estimates using different upscaling approaches. 

The third paper focused on characterizing the spatial heterogeneity in natural 

environments to evaluate its impact on the ET estimation without ground observations. 

Future investigations in such heterogeneous environment should include results 

verification using ground-based measurements such as EC towers. This will help in 
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evaluating the performance of TSEB model in such environments where random 

distribution of vegetation presents with different types and heights.  
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Appendix A: Supplemental Figures for Chapter 2 

 
Figure A1 Example of modeled hc (m) across different spatial domains for August 09, 

2014. 

 
Figure A2 Example of modeled fc across different spatial domains for August 09, 2014. 
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Figure A3 Example of Modeled wc/hc different spatial domains for August 09, 

2014 
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Figure A4 Aggregation of surface energy fluxes across different spatial domain (3.6m, 

7.2m, 14.4 m, and 30 m) on August 09, 2014: (a) Rn, (b) LE, (c) H, and (d) G. 
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Appendix B: Supplemental Figures for Chapter 3 

Appendix B.1 Daily ET Analysis at Sierra Loma Vineyard Near Lodi, California 

Appendix B.1.1 Relative Error (Er) at Hourly Scale for EC Measurements 

 
Figure B1 Er of daily EC ET (April–May). 
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Figure B2 Er of daily EC ET (June–August). 

 

 
Figure B3 Er of daily EC ET (September–October). Note: Red dash line represents a 10% 

relative error (Er). 
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Appendix B.1.2 Daily RMSE Performance Using Hourly EC ET Values 

  

 

 

Figure B4 Daily RMSE performance using hourly EC ET values. 
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Appendix B.2 Daily ET Analysis at Ripperdan 760 Vineyard, California 

Appendix B.2.1 Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and G) 

 
Figure B5 Diurnal variation of surface energy fluxes (Rn, H, LE, and G). 
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Appendix B.2.2 Hourly ET to Maximum Hourly ET ratio (ETh/ETh(max)) Variation Using 

EC Measurements 

  

 

 

 

Figure B6 Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC 

measurements. 
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Appendix B.2.3 Hourly ET-to-Daily ET Ratio (ETh/ETd) variation Using EC 

Measurements 

  

 

 

Figure B7 Hourly ET to daily ET ratio (ETh/ETd) variation using EC measurements. 
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Appendix B.2.4 Relative Error (Er) at Hourly Scale for EC Measurements 

 
Figure B8 Er of daily EC ET (April–May). 

 
Figure B9 Er of daily EC ET (June–August). 
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Figure B10 Er of daily EC ET (September–October). Note: Red dash line represents a 

10% relative error (Er). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 
 

Appendix B.2.5 Daily RMSE Performance Using Hourly EC ET Values 

  

 

 

 

Figure B11 Daily RMSE performance using hourly EC ET values. 
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Appendix B.3 Daily ET Analysis at Ripperdan 720 Vineyard, California 

Appendix B.3.1 Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and G) 

 
Figure B12 Diurnal variation of surface energy fluxes (Rn, H, LE, and G). 
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Appendix B.3.2 Hourly ET-to-Maximum Hourly ET Ratio (ETh/ETh(max)) Variation Using 

EC Measurements 

  

 

 

Figure B13 Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC 

measurements. 
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Appendix B.3.3 Hourly ET-to-Daily ET Ratio (ETh/ETd) Variation Using EC 

Measurements 

  

 

 

Figure B14 Hourly ET-to-daily ET ratio (ETh/ETd) variation using EC measurements. 
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Appendix B.3.4 Relative Error (Er) at Hourly Scale for EC Measurements 

 
Figure B15 Er of daily EC ET (April–May). 

 
Figure B16 Er of daily EC ET (June–August). 
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Figure B17 Er of daily EC ET (September–October). Note: Red dash line represents a 

10% relative error (Er). 
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Appendix B.3.5 Daily RMSE Performance Using Hourly EC ET Values 

  

 

 

Figure B18 Daily RMSE performance using hourly EC ET values. 
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Appendix B.4 Daily ET analysis at Barrelli Vineyard, California 

Appendix B.4.1 Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and G) 

 
Figure B19 Diurnal variation of surface energy fluxes (Rn, H, LE, and G). 
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Appendix B.4.2 Hourly ET-to-Maximum Hourly ET Ratio (ETh/ETh(max)) Variation Using 

EC Measurements. 

  

 

 

Figure B20 Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

Appendix B.4.3 Hourly ET-to-Daily ET Ratio (ETh/ETd) Variation Using EC 

Measurements 

  

 

 

Figure B21 Hourly ET-to-daily ET ratio (ETh/ETd) variation using EC measurements. 
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Appendix B.4.4 Relative Error (Er) at Hourly Scale for EC Measurements 

 
Figure B22 Er of daily EC ET (April–May). 

 
Figure B23 Er of daily EC ET (June–August). 
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Figure B24 Er of daily EC ET (September–October). Note: Red dash line represents a 

10% relative error (Er). 
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Appendix B.4.5 Daily RMSE Performance Using Hourly EC ET Values 

  

 

 

 

 

 

Figure B25 Daily RMSE performance using hourly EC ET values. 
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Ayman: 

  

Cool.  Go for it. 

  

M 

 

 

Dr. Lawrence Hipps 

 

Of course! 

 

 

 

 

https://sciprofiles.com/profile/858331
mailto:hector.nieto@complutig.com
http://www.complutig.com/
https://sciprofiles.com/profile/author/NndqNFBYN3oySnFVdVFDUnBleE52Z2FtUDdUamF3RnZvMFNJdlc0NDZpYz0=
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Dr. David Stevens 

I approve this request. 

David Stevens 

Dr. Joseph Alfieri 

Hi Ayman – Of course. That is your work; I am simply honored that I was include. And, 

since this for the university and has to be blunt: as a co-author who made only modest 

contributions to your research, you have my permission to include the publication named 

below as a part of your dissertation. 

Best Regards 

Joe 

 

 

Dr. John Prueger 
 Yes. That would be fine Ayman. Good Luck. 

John 

 

 

Dr. Maria Mar Alsina 

 

Good morning, Ayman: 

  

Congratulations for your great work and for reaching this important point in your career. 

It has been a pleasure to work with you, and I thank you for including me in these 

publications. 

  

You have my permission to include the two following peer reviewed publications as 

chapters in your PhD dissertation. 

  

 “Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two 

Source Energy Balance Model and sUAS Imagery in Vineyards” 

“Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day sUAS and 

EC Information in the GRAPEX Project” 

  

Best of luck in your next steps 

  

Mimar 

  

  

Maria Mar Alsina 

Research Scientist-viticulture 

E&J Gallo Winery 

530 219 7366 
Mariadelmar.alsina@ejgallo.com 

https://sciprofiles.com/profile/author/aHkxR0xLS3MrTHJYZWR1TjVzWFJWZ05uS0pzMXYvQXhveU4xSXFoY09RZz0=
https://sciprofiles.com/profile/author/Yi9qRE1uOWF0R2xTYlA1UHFmVG9OTzR0RFc1TW5Rb0J0TE10TGFEUmJ4bz0=
mailto:Mariadelmar.alsina@ejgallo.com
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Dr. Lynn McKee 

Fine with me 

  

Thanks - Lynn 

  

Lynn McKee 

USDA, ARS, Hydrology & Remote Sensing Lab 

10300 Baltimore Ave, Bldg 007 Rm 104 

Beltsville, MD  20705 

301-504-8081 

301-648-6644(cell) 

 

 

Dr. Calvin Coopmans 

 

Yes, I appove! 

 

Dr. Luis Sanchez 

Nassar, I approve of course, and thank you for including me as coauthor and for all your 

hard work. 

 

Dr. Nick Dokoozlian 

Approved – thank you – Nick 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sciprofiles.com/profile/author/bzhPRmdGNm1YYk9BZFM4aEpUM05jWWZDQkIza2JJdFZvd0RvS0dMeG5GUT0=
https://sciprofiles.com/profile/author/bDRkSkdOZ0I4Q2Eyd2o1eWw1YVhtNXZEY1MvVnJmOGxBcXRqTWRmbWRXMD0=
https://sciprofiles.com/profile/author/Y29BQVhXRGFDTlhsYnNjR2JZSzRWM0tWaFhIMGlxYVBydFBDYjlvMmh0TT0=
https://sciprofiles.com/profile/author/aXFWSk1rY3Vxb1c1eXpxUkd2VzFVL3k3UUtxU3RlT0RZaWYvY1o4N0MrYz0=
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Paper II  

 

 

Dear All,  

  

I am in the process of preparing my dissertation in the Civil and Environmental 

Engineering Department at Utah State University.   

I am requesting your permission to include the journal paper “Assessing Daily 

Evapotranspiration Methodologies from One-Time-of-Day sUAS and EC Information in 

the GRAPEX Project”, of which you are a coauthor, as a chapter in my dissertation.   

Please indicate your approval of this request.    

  

Thank you,  

Ayman  

 

Dr. Alfonso Torres-Rua 

Ayman, 

  

Yes, I approve this too. 

  

  

Alfonso 

 

Dr.William Kustas 

Dear Ayman: 

  

Congratulations!  These are great papers and happy to have been invited and contribute to 

both papers as a co-author.  I certainly approve having both the journal papers entitled 

“Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two 

Source Energy Balance Model and sUAS Imagery in Vineyards”, and “Assessing Daily 

Evapotranspiration Methodologies from One-Time-of-Day sUAS and EC Information in 

the GRAPEX Project” as chapters in your PhD dissertation.    

  

Regards 

  

Bill 

  

********************************************************* 

Bill Kustas 

USDA-ARS Hydrology & Remote Sensing Lab 

10300 Baltimore Av. 

Bldg 007 BARC-West 

Beltsville, MD 20705 

Tel:301-504-8498 

******************************************************** 

 

https://sciprofiles.com/profile/151881
tel:301-504-8498
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Dr. Joseph Alfieri 

Hi Ayman – Of course. That is your work; I am simply honored that I was include. And, 

since this for the university and has to be blunt: as a co-author who made only modest 

contributions to your research, you have my permission to include the publication named 

below as a part of your dissertation. 

Best Regards 

Joe 

 

Dr. Lawrence Hipps 

Roger that! 

 

Dr. John Prueger 
 Yes. That would be fine Ayman. Good Luck. 

 

John 

 

Dr. Héctor Nieto 

 

Yes, I also approve the inclusion of this other paper, 

Cheers! 

Héctor Nieto 

 

COMPLUTIG 

hector.nieto@complutig.com 

Complutum Tecnologías de la Información Geográfica S.L. 

C/ Colegios 2 

28801, Alcalá de Henares, Madrid 

www.complutig.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sciprofiles.com/profile/author/aHkxR0xLS3MrTHJYZWR1TjVzWFJWZ05uS0pzMXYvQXhveU4xSXFoY09RZz0=
https://sciprofiles.com/profile/author/NndqNFBYN3oySnFVdVFDUnBleE52Z2FtUDdUamF3RnZvMFNJdlc0NDZpYz0=
https://sciprofiles.com/profile/author/Yi9qRE1uOWF0R2xTYlA1UHFmVG9OTzR0RFc1TW5Rb0J0TE10TGFEUmJ4bz0=
https://sciprofiles.com/profile/858331
mailto:hector.nieto@complutig.com
http://www.complutig.com/
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Dr. Maria Mar Alsina 

 

Good morning, Ayman: 

  

Congratulations for your great work and for reaching this important point in your career. 

It has been a pleasure to work with you, and I thank you for including me in these 

publications. 

  

You have my permission to include the two following peer reviewed publications as 

chapters in your PhD dissertation. 

  

 “Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two 

Source Energy Balance Model and sUAS Imagery in Vineyards” 

“Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day sUAS and 

EC Information in the GRAPEX Project” 

  

Best of luck in your next steps 

  

Mimar 

  

  

Maria Mar Alsina 

Research Scientist-viticulture 

E&J Gallo Winery 

530 219 7366 
Mariadelmar.alsina@ejgallo.com 

 

Dr. William White 
 Hi Ayman, 

  

That’s fine with me. Good luck with your dissertation! 

  

-Alex 

  

William Alexander White 

Hydrology and Remote Sensing Laboratory 

USDA Agricultural Research Service 

Rm 104 Bldg 007 BARC-West 

10300 Baltimore Ave 

Beltsville, MD 20705 

301-504-6542 

Alex.White@usda.gov 

 

 

 

mailto:Mariadelmar.alsina@ejgallo.com
https://sciprofiles.com/profile/1267527
mailto:Alex.White@usda.gov
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Dr. Lynn McKee 

That is fine 

Thanks - Lynn 

  

Lynn McKee 

USDA, ARS, Hydrology & Remote Sensing Lab 

10300 Baltimore Ave, Bldg 007 Rm 104 

Beltsville, MD  20705 

301-504-8081 

301-648-6644(cell) 

 

Dr. Calvin Coopmans 

 

Yes I approve! Cheers!  

  

— 

Calvin Coopmans 

Research Assistant Professor, Utah State University Electrical and Computer Engineering 

Dept. 

Director, USU AggieAir 

http://aggieair.usu.edu/ 

 

 

Dr. Luis Sanchez 

Ayman, 

I approve being included as coauthor of your submission “Assessing Daily 

Evapotranspiration Methodologies from One-Time-of-Day sUAS and EC Information in 

the GRAPEX Project” 

Thank you, 

Luis Sanchez 

 

Dr. Nick Dokoozlian 

Approved – thank you – Nick 

 

 

 

 

 

 

 

 

 

 

https://sciprofiles.com/profile/author/bzhPRmdGNm1YYk9BZFM4aEpUM05jWWZDQkIza2JJdFZvd0RvS0dMeG5GUT0=
https://sciprofiles.com/profile/author/bDRkSkdOZ0I4Q2Eyd2o1eWw1YVhtNXZEY1MvVnJmOGxBcXRqTWRmbWRXMD0=
http://aggieair.usu.edu/
https://sciprofiles.com/profile/author/Y29BQVhXRGFDTlhsYnNjR2JZSzRWM0tWaFhIMGlxYVBydFBDYjlvMmh0TT0=
https://sciprofiles.com/profile/author/aXFWSk1rY3Vxb1c1eXpxUkd2VzFVL3k3UUtxU3RlT0RZaWYvY1o4N0MrYz0=
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Curriculum Vitae 

Ayman M. M. Nassar 

Emails: aymnassar@gmail.com; ayman.nassar@usu.edu 

Google scholar: https://scholar.google.com/citations?user=6flaS3YAAAAJ&hl=en 

LinkedIn: https://www.linkedin.com/in/ayman-nassar-24a92723/ 

 

HIGHLIGHTS 

• Hydrologic modeler to advance cyberinfrastructure that supports large scale 

collaborative, reproducible hydrologic modeling.  

• 5+ years served as a lecturer in GIS, Remote Sensing and Hydrologic Information 

Systems (HIS) at different universities. 

• 4+ years served as water and wastewater engineer/expert at consulting engineering 

firms and NGOs.  

• Awarded a prestigious fellowship in advanced data analytics and computational 

methods funded by NSF / Purdue University. 

• Member of the USDA-led GRAPEX (Grape Remote sensing Atmospheric Profile and 

Evapotranspiration eXperiment) and HydroFrame (Computational and Data Innovation 

Implementing a National Community Hydrologic Modeling Framework for Scientific 

Discovery) projects. 

• Trained visiting scholars from Brazil and Turkey on energy and water balance. 

 

EDUCATION 

Ph.D. Civil and Environmental Engineering/Hydrology and Water Resources, Utah State 

University, Logan UT- 2021 

Dissertation: Estimation of High-Resolution Evapotranspiration in Heterogeneous 

Environments Using Drone-Based Remote Sensing. 

M.Sc. Civil Engineering/Infrastructure and Water Engineering, Islamic University of 

Gaza, Palestine - 2012 

B.Sc. Civil Engineering, Islamic University of Gaza, Palestine – 2008 

 

 

mailto:aymnassar@gmail.com
mailto:ayman.nassar@usu.edu
https://scholar.google.com/citations?user=6flaS3YAAAAJ&hl=en
https://www.linkedin.com/in/ayman-nassar-24a92723/
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PUBLICATIONS 

Peer-Reviewed Publications 

1. Nassar, A.; Torres-Rua, A.; Kustas, W.; et al. Assessing Methodologies for Daily 

Evapotranspiration Estimation from sUAS over Commercial Vineyards in California. 

Remote Sens. 2021, 13, 2887. https://doi.org/10.3390/rs13152887 

 

Proceeding Conference Papers 

2. Nassar, A.; Torres-Rua, A.; Kustas, W.; et al. Influence of Model Grid Size on the Estimation 

of Surface Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in 

Vineyards. Remote Sens. 2020, 12, 342. https://doi.org/10.3390/rs12030342 

3. Al-Juaidi, A.; Nassar, A.; Al-Juaidi A. 2018. Evaluation of Flood Susceptibility Mapping 

Using Logistic Regression and GIS Conditioning Factors. Arabian Journal of Geosciences. 

https://doi.org/10.1007/s12517-018-4095-0 

4. Safre, A.; Nassar A.; Torres-Rua, A.; et al. Performance of Sentinel-2 SAFER ET 

model for Daily and Seasonal Estimation of grapevine water consumption. (Under-

review- Irrigation Science journal) 

5. Nassar, A.; Torres-Rua A.; et al. Characterizing the Spatial Heterogeneity in a River 

Corridor to Evaluate its Impact on the Evapotranspiration Estimates Using TSEB 

Model and sUAS Information. (Under-review- Remote Sensing journal) 

1. Nassar, A.; Torres-Rua, A.; Kustas, W.; et al. Assessing Methodologies for Daily 

Evapotranspiration Estimation from sUAS over Commercial Vineyards in 

California. Remote Sens. 2021, 13, 2887. https://doi.org/10.3390/rs13152887 

2. Nassar, A.; Torres-Rua, A.; Kustas, W.; et al. Influence of Model Grid Size on the 

Estimation of Surface Fluxes Using the Two Source Energy Balance Model and sUAS 

Imagery in Vineyards. Remote Sens. 2020, 12, 342. https://doi.org/10.3390/rs12030342 

3. Al-Juaidi, A.; Nassar, A.; Al-Juaidi A. 2018. Evaluation of Flood Susceptibility Mapping 

Using Logistic Regression and GIS Conditioning Factors. Arabian Journal of 

Geosciences. https://doi.org/10.1007/s12517-018-4095-0 

4. Nassar, A.; Torres-Rua, A.; et al. Development of High-Performance Computing Tools 

for Estimation of High-Resolution Surface Energy Balance Products Using sUAS 

https://doi.org/10.3390/rs12030342
https://doi.org/10.1007/s12517-018-4095-0
https://doi.org/10.3390/rs12030342
https://doi.org/10.1007/s12517-018-4095-0
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Information. Proc. SPIE 11747, Autonomous Air and Ground Sensing Systems for 

Agricultural Optimization and Phenotyping VI, 117470K (12 April 

2021); https://doi.org/10.1117/12.2587763 

5. Gao, R.; Torres-Rua, A.; Nassar, A.; et al; Evapotranspiration Partitioning Assessment 

Using Machine Learning –Based Leaf Area Index and The Two-Source Energy Balance 

(TSEB) Model With sUAS Information. Proc. SPIE 11747, Autonomous Air and 

Ground Sensing Systems for Agricultural Optimization and Phenotyping VI, 117470N 

(12 April 2021); https://doi.org/10.1117/12.2586259 

6. Torres-Rua, A.; Aboutalebi, M.; Wright, T.; Nassar, A.; et al. Estimation of Surface 

Thermal Emissivity in a Vineyard for UAV Microbolometer Thermal Cameras Using 

NASA Hytes Hyperspectral Thermal, and Landsat and Aggieair Optical Data. Proc. 

SPIE 11008, Autonomous Air and Ground Sensing Systems for Agricultural 

Optimization and Phenotyping IV, 1100802 (14 May 2019); 

https://doi.org/10.1117/12.2518958  

7. McKee, M.; Nassar, A.; Torres-Rua, A; et al, (2018). Implications of Sensor 

Inconsistencies and Remote Sensing Error in the Use of Small-Unmanned Aerial 

Systems for Generation of Information Products for Agricultural Management. 

Autonomous Air and Ground Sensing Systems for Agricultural Optimization and 

Phenotyping III. SPIE. https://doi.org/10.1117/12.2305826 

8. Nassar, A. ; Torres-Rua, A. ; Kustas, W.; et al. Implications of Soil And Canopy 

Temperature Uncertainty in the Estimation of Surface Energy Fluxes Using TSEB2T 

and High-Resolution Imagery in Commercial Vineyards, Proc. SPIE 11414, 

Autonomous Air and Ground Sensing Systems for Agricultural Optimization and 

Phenotyping V, 114140F (26 May 2020); https://doi.org/10.1117/12.2558715 

9. Nassar, A. ; Torres-Rua, A. ; Kustas, W.; et al. To What Extend Does the Eddy 

Covariance Footprint Cutoff Influence the Estimation of Surface Energy Fluxes Using 

Two Source Energy Balance Model and High-Resolution Imagery in Commercial 

Vineyards?, Proc. SPIE 11414, Autonomous Air and Ground Sensing Systems for 

Agricultural Optimization and Phenotyping V, 114140G (26 May 

2020); https://doi.org/10.1117/12.2558777 

https://doi.org/10.1117/12.2587763
https://doi.org/10.1117/12.2586259
https://doi.org/10.1117/12.2518958
https://doi.org/10.1117/12.2305826
https://www.spiedigitallibrary.org/profile/Ayman.Nassar-4090173
https://www.spiedigitallibrary.org/profile/Alfonso.Torres-Rua-4048869
https://www.spiedigitallibrary.org/profile/William.Kustas-19417
https://www.spiedigitallibrary.org/
https://doi.org/10.1117/12.2558715
https://www.spiedigitallibrary.org/profile/Ayman.Nassar-4090173
https://www.spiedigitallibrary.org/profile/Alfonso.Torres-Rua-4048869
https://www.spiedigitallibrary.org/profile/William.Kustas-19417
https://www.spiedigitallibrary.org/
https://doi.org/10.1117/12.2558777
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Conference Presentations 

1. Nassar, A.; Torres-Rua, A.; et al. Influence of Spatial Heterogeneity in 

Evapotranspiration Modeling at Natural Areas Using sUAS High Resolution Data. 

AGU Fall Meeting 2020. 

2. Gao, R.; Nassar, A.; et al, Grapevine Leaf Area Index Estimation With Machine 

Learning And Unmanned Aerial Vehicle Information. AGU Fall Meeting 2020.  

3. Safre, A.; Nassar A.; et al, Validation of the SAFER ET model using Landsat 8 

and Sentinel-2 images over commercial vineyards in California. AGU Fall Meeting 

2020.  

4. Nassar, A.; Torres-Rua, A., et al. Assessment of High-Resolution Daily 

Evapotranspiration Models Using Instantaneous sUAS ET in Grapevine Vineyards. 

2019 AGU, San Francisco, California. 

5. Torres-Rua, A.; Aboutalebi, M.; Nassar, A.; Nieto, H.; et al. Getting Closer to 

Landsat: Advances from the GRAPEX Project in the Application of UAVs for 

High-Resolution Evapotranspiration. 2019 AGU, San Francisco, California. 

6. McKee, M.; Torres-Rua, A.; Aboutalebi ,M.; Nassar A.; Coopmans, C.; Kustas 

W.; et al. Challenges that beyond-visual-line-of-sight technology will create for 

UAS-based remote sensing in agriculture., Proc. SPIE 11008, Autonomous Air and 

Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, 

110080J (14 May 2019); https://doi.org/10.1117/12.2520248  

7. Nassar, A.; Torres-Rua, A.; McKee, M.; et al. Assessment of UAV Flight Times 

for Estimation of Daily High-Resolution Evapotranspiration in Complex 

Agricultural Canopy Environments. 2019 UCOWR /NIWR, Annual Water 

Resources Conference, Snowbird, Utah.  

8. Nassar, A.; Nieto, H.; Aboutalebi, M.; Torres-Rua, A.; et al. (2018). Pixel 

Resolution Sensitivity Analysis for the Estimation of Evapotranspiration Using the 

Two Source Energy Balance Model and sUAS Imagery under Agricultural 

Complex Canopy Environments. AGU Fall Meeting 2018. 

https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/716416
https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/716416
https://agu.confex.com/agu/fm20/prelim.cgi/Paper/678175
https://agu.confex.com/agu/fm20/prelim.cgi/Paper/678175
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/530177
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/530177
https://ui.adsabs.harvard.edu/abs/2019AGUFM.B54D..05T/abstract
https://ui.adsabs.harvard.edu/abs/2019AGUFM.B54D..05T/abstract
https://ui.adsabs.harvard.edu/abs/2019AGUFM.B54D..05T/abstract
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/491591
https://doi.org/10.1117/12.2520248
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WORK EXPERIENCE 

Teaching Experience 

Jan 2020–May 2020 Teaching assistant 

Utah State University, Logan UT  

- Teaching assistant of remote sensing class.  

- Carried out training sessions in Python programming. 

Aug 2019–Dec 2019 Teacher 

Utah State University, Logan UT  

- Co-taught graduate level class, namely Environmental and 

Hydrologic Data Analysis and Experimentation.  

- Conducted training sessions using R programming. 

Jan 2019–May 2019 Teaching assistant 

Utah State University, Logan UT  

- Remote sensing class.  

-  Training sessions in Python programming language. 

- Physical hydrology class (Terrain Modeling) – Guest lecturer. 

Jan 2013–May 2017 Lecturer 

University College of Applied Sciences, Palestine 

-Taught undergraduate level courses (Surveying, GIS in 

Hydrology, Civil and Infrastructure Planning, Applied Statistics, 

Applied Mathematics, Advanced GIS, Remote Sensing 

Applications, GIS Customization and Programming) 

- Followed-up the progress of students' projects. 

Sep 2013–May 2017 Part-time lecturer 

Islamic University of Gaza, Palestine 

-Taught courses (HIS, GIS, Remote Sensing) 

Sep 2008–May 2009 Lecturer 

Polytechnic University, Palestine 

-  Taught undergraduate level courses. 
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Research/Professional Experience 

Expected (Sep. 2021) Postdoctoral researcher 

Utah State University 

-Develop hydrologic modeling use cases to address large scale 

questions related to flood prediction, inundation mapping, and 

water availability. 

-Apply the modeling use cases to improve computational 

approaches implemented in community collaboration platforms 

(e.g. HydroShare, JupyterHub) in support of collaborative, 

reproducible hydrologic modeling. 

-Explore approaches for publishing models and results where 

the datasets are large. 

-Advance available cyberinfrastructure for supporting modeling 

and sharing of model forcing data and results. 

Aug 2017 – August 2021 Graduate research assistant 

 Utah State University 

 - Conducted research in geospatial and remote sensing energy 

balance. 

- Conducted research in evapotranspiration (ET) in natural 

environments. 

- Carried out original, high-level collaborative research with 

other team members. 

- Collected field data that serve the research and models 

validation. 

- Participated in scientific conferences. 

 

Nov 2015–Dec 2015 Water resources expert 

Action Against Hunger (ACF), Palestine 

- Reviewed the stormwater master plan of Khanunyis city, 

Palestine. 

- Carried out stormwater drainage design. 

Feb 2014–Feb 2015 Water resources expert 

Action Against Hunger (ACF), Palestine 
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AWARDS / HONORS 

1. 2020 - "Outstanding Student Spotlight" Utah Water Research Laboratory -Utah 

State University.  

2. 2020 - "Best Conference Paper" Society of PhotoOptical Instrumentation Engineers 

Conference.  

3. 2020 - "Cyber Training Award" National Science Foundation Findable-Accessible-

Interoperable-and-Reusable Program, Purdue University.  

4. 2020 - "First Place Technical Writing Competition" College of Engineering, Utah 

State University. 

5. 2020 – "Travel Award" National Science Foundation. 

6. 2019 - " Eva Nieminski Honorary Graduate Science Engineering Scholarship " 

American Water Works Association - Intermountain Section 

7. 2019 - " Graduate Student Travel Award " - Utah State University Office of 

Research and Graduate Studies. 

8. 2019 - " Graduate Student Travel Award " – College of Engineering, Dean Office, 

Utah State University. 

9. 2019 - " Utah Water User Association Scholarship " Utah Water User Association. 

- Evaluated the existing stormwater infrastructure and identified 

the flooded-areas. 

- Designed stormwater harvesting system. 

-Conducted training sessions in hydrologic modeling and 

stormwater design. 

Jan 2010–Jan 2013 Water and wastewater engineer 

ALMADINA - ENFRA -DHV-Netherland joint venture  

- Provided technical assistance on using the non-conventional 

water resources (treated wastewater reuse and stormwater 

harvesting). 

Aug 2008–Dec 2009 Office manager 

Engineering, Management and Infrastructure (ENFRA) 

Consultants, Palestine. 
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10. 2019 - " Graduate Student Travel Award " – Utah State University Office of 

Research and Graduate Studies. 

11. 2019 - " Graduate Student Travel Award " – College of Engineering, Dean Office, 

Utah State University. 

12. 2018 - " Graduate Student Travel Award " – Utah State University Office of 

Research and Graduate Studies. 

13. 2018 - " Graduate Student Travel Award " – College of Engineering, Dean Office, 

Utah State University. 

14. 2017 - " Scholarship for PhD Study in Civil and Environmental Engineering " 

Utah Water Research Laboratory - Utah State University. 

15. 2016 - " Outstanding Teacher " University College of Applied Sciences. 

16. 2015 - " Outstanding Teacher " University College of Applied Sciences. 

17. 2013 - " Outstanding Teacher " University College of Applied Sciences. 

18. 2008 – " Trustee Board Scholarship for Distinction for MSc Study in Civil 

Engineering " Islamic University of Gaza. 

 

FUNDED PROJECTS 

• Contributed to proposal for California Almond Board, $399,880 (2020). 

• FAIR Cyber Training (FACT) Fellowship for Climate and Water Fellowship, Funded 

by NSF/Purdue University, $2,000 (May 2020 – May 2021). 

• “GIS for Community” project, University College for Applied Sciences, Funded by 

Quality Improvement Fund (QIF), World Bank, ~$150,000 (2017-2020). 

 

COMPUTER SKILLS 

• Data management and modeling (Arc GIS, SQL server, Silverlight, Google Earth Engine).  

• Remote sensing (ERDAS, ILWIS, IDRISI, ENVI). 

• Computer programming (Python,MATLAB , GrADS). 

• Statistical packages (R, SPSS). 

• Hydrologic modeling systems (WRF-Hydro.NWM, ParFlow.CONUS, HEC-HMS, HEC-

Geo HMS, Archydro, SWMM).  

• Subsurface hydrology model (MODFLOW, Hydrus). 
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• Others (MS Project, Word, Excel, Power Point, AutoCAD) 

 

MEMBERSHIPS 

• American Geophysical Union (AGU). 

• American Water Works Association (AWWA). 

• Engineering syndicate (PA). 

 

PROFESSIONAL ACTIVITES 

• Coordinator, University College of Applied Sciences (UCAS) Applied GIS program. 

• Curriculum committee member – Applied GIS and Civil Engineering programs, 

University College of Applied Sciences. 

• Chair, GISday, Consortium of University College of Applied Sciences, Islamic University of 

Gaza, and American University of Jenin 

 

ONLINE OPEN-SCIENCE REPOSITORIES 

1. Gao, R., A. F. Torres-Rua, A. Nassar, et al (2021). Comparison between the TSEB 

results and eddy covariance (EC) ground measurements, 

HydroShare, https://doi.org/10.4211/hs.eb6eeeccdbe546fc941f3c219cb05a34 

2. Torres-Rua, A., Nassar A. “USU Remote Sensing Laboratory sessions”, 2020, 

https://github.com/torresrua/prj_earthengine_hydroshare   

3. Gao, R., Nassar, A. EC footprint model, 2021, https://github.com/RuiGao9/EC-

Tower_Data_Organizing 

 

MEDIA OUTREACH / OTHER ACTIVITIES 

• I received a prestigious fellowship awarded by NSF in collaboration with Purdue 

university https://mygeohub.org/cybertraining/fellowship/fellows2020 

• UWRL Outstanding Student Spotlight, Utah State University: 

https://uwrl.usu.edu/news/main-feed/2020/ayman-nassar-spotlight, Accessed May 21, 

2020. 
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• American Water Works Association - Intermountain Section Scholarship 

https://uwrl.usu.edu/news/main-feed/2019/ayman-nassar-scholarship-2019 Accessed June 

14, 2019  

• Utah Water Users Association Scholarship https://engineering.usu.edu/news/main-

feed/2019/grad-student-awarded-uwua-scholarship 

• Volunteer Training Coordinator at Nassej Association for Building Capacity 

(2006/2007) 

• Trainer for visiting scholars from Brazil and Turkey in energy balance modeling 

(February 2020- February 2021). 

• Participated in GISday (2018) – Joint-event between University College of Applied 

Sciences and American University of Jenin. 

• Trainer of Python programming for beginners (2019) - Civil and Environmental 

Engineering, Utah State University. 
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