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Abstract

Tractor Connections for Killing Tensors and their Generalizations

by

Benjamin D. Shaw, Master of Science

Utah State University, 2021

Major Professor: Dr. Ian Anderson
Department: Mathematics and Statistics

We create new symbolic software tools for the analysis of Killing tensors.

Central to our work is the construction of the tractor connection defined on

the tractor bundle, which allows one to obtain information about the space of

Killing tensors without solving the Killing equations–an approach termed the

tractor approach. We give a new application of the tractor approach which

allows one to more easily check explicitly for linear independence of a given set

of Killing tensors. We develop software to implement such methods in the case

of rank 2 Killing tensors; similarly, we develop software to implement analogous

methods in the study of Killing-Yano tensors and conformal Killing vectors.

Using our newly developed software, we find examples of rank 2 irreducible

Killing tensors for exact solutions to Einstein’s field equations. We also make

an in-depth study of various other methods of constructing Killing tensors of

rank 2 and find that these algorithms most often do not produce Killing tensors

which are linearly independent of the reducible Killing tensors and the metric,

with the Kerr metric being one of the only known sources of examples.

(220 pages)
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Public Abstract

Tractor Connections for Killing Tensors and their Generalizations

Benjamin D. Shaw

We create new symbolic software tools for the analysis of Killing tensors.

Central to our work is the construction of the tractor connection defined on

the tractor bundle, which allows one to obtain information about the space of

Killing tensors without solving the Killing equations–an approach termed the

tractor approach. We give a new application of the tractor approach which

allows one to more easily check explicitly for linear independence of a given set

of Killing tensors. We develop software to implement such methods in the case

of rank 2 Killing tensors; similarly, we develop software to implement analogous

methods in the study of Killing-Yano tensors and conformal Killing vectors.

Using our newly developed software, we find examples of rank 2 irreducible

Killing tensors for exact solutions to Einstein’s field equations. We also make

an in-depth study of various other methods of constructing Killing tensors of

rank 2 and find that these algorithms most often do not produce Killing tensors

which are linearly independent of the reducible Killing tensors and the metric,

with the Kerr metric being one of the only known sources of examples.
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1 Introduction

In this thesis, we create new symbolic software tools for the analysis of Killing

tensors. Central to our work is the construction of the tractor connection defined

on the tractor bundle, which allows one to obtain information about the space of

Killing tensors without solving the Killing equations–an approach termed the tractor

approach. We give a new application of the tractor approach which allows one to

more easily check explicitly for linear independence of a given set of Killing tensors.

We develop software to implement such methods in the case of rank 2 Killing tensors;

similarly, we develop software to implement analogous methods in the study of Killing-

Yano tensors and conformal Killing vectors. Using our newly developed software, we

find examples of rank 2 irreducible Killing tensors for exact solutions to Einstein’s

field equations.

Killing vectors are quantities of remarkable interest in differential geometry and

mathematical physics. Named after Wilhelm Killing, Killing vectors on Riemannian

or pseudo-Riemannian manifolds are vector fields which Lie-differentiate the metric to

zero. Additionally, the set of all Killing vector fields is isomorphic to the Lie algebra

of the isometry group of the metric. Explicitly finding the Killing vectors for a given

metric can prove to be elusive, as doing so requires one to solve a system of linear,

first order, partial differential equations known as the Killing equations for Killing

vectors.

Killing tensors are generalizations of Killing vectors. Killing tensors appear,

among other places, as first integrals of the geodesic equation (Stephani et al., 2003).

Additionally, they have been used in the separation of variables for the Hamilton-

Jacobi equation (Kalnins and Miller, 1981) and in the separation of variables for the

Dirac equation (Carignano et al., 2011). Notwithstanding their utility in physics,

finding them explicitly involves solving a system of linear, first order, partial differ-
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ential equations–as with Killing vectors–which we refer to as the Killing equations

for Killing tensors. However, Killing tensors are generally more difficult to solve for

than Killing vectors. In the case of Killing vectors, the Killing equations become a

system of finite type differential equations after one differentiation: that is, all second

derivatives of the components of the Killing vectors are written in terms of lower order

derivatives. With Killing tensors of rank k, however, k derivatives must be taken be-

fore the Killing equations become a system of finite type: that is, k derivatives must

be taken before all derivatives at order k are written in terms of lower-order deriva-

tives (Houri et al., 2018). On a manifold of dimension 4, the Killing equations for

Killing vectors become a finite system of 10 equations, whereas the Killing equations

for Killing tensors of rank 2 become a finite system of 50 equations.

The two other generalizations of Killing vectors examined in this thesis are con-

formal Killing vectors and Killing-Yano tensors. Both have utility, among other uses,

in explicitly constructing Killing tensors of rank 2 (Popa and Ovidiu, 2007; Edgar et

al., 2004). Killing-Yano tensors have also been used in the separation of the Dirac

equation (Carter and McLenaghan, 1979; Fels and Kamran, 1990). As with Killing

vectors and Killing tensors, finding conformal Killing vectors and Killing-Yano tensors

requires solving a system of linear, first order, partial differential equations–known

also as Killing equations–and so they too can prove difficult to solve for explicitly.

Other generalizations of Killing vectors include higher rank conformal Killing

forms, conformal Killing tensors, and Killing spinors (M. Walker and R. Penrose,

1970). These will not be treated in this thesis, though they too are of interest in

differential geometry and mathematical physics.

Having identified objects of interest, and having pointed to the difficulty of ex-

plicitly finding those objects due to the requirement of solving the associated Killing

equations, we will present a method for studying solutions of systems of differential

equations which need not involve solving the Killing equations directly (Houri et al.,
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2018). This method is sometimes referred to, in the mathematical literature, as the

tractor approach, as it will be referred to in this thesis.

The tractor approach entails the construction of a vector bundle known as the

tractor bundle, as well as the construction of a linear connection defined on the

bundle known as the tractor connection. The tractor approach allows us to write

the original system of equations as the equations which define a smooth, parallel

section on the tractor bundle with respect to the tractor connection. A section in

the nullspace of the kth and lower order derivatives of the curvature tensor is called

quasi-parallel to order k, and the set of quasi-parallel sections of order k form what

is known as the kth order reduced tractor bundle. The dimension of the nullspace

of the curvature tensor and its derivatives give us an upper bound on the number of

parallel sections. The curvature tensor and its derivatives determine the holonomy

algebra of the tractor connection.

In some cases, the tractor approach also allows one to get the independent so-

lutions explicitly where a direct approach to solving the Killing equations fails. In

cases where a sub-maximal number of independent solutions exist, the quasi-parallel

sections as well as the condition of parallelism with respect to the tractor connection

allow one to form a reduced system of equations which may be more practical to solve

explicitly than the original system of equations.

The reduced system of equations is generated as follows. After computing a basis

for the kth order reduced tractor bundle, one forms an arbitrary linear combination of

the basis elements using unknown functions as scalars. A system of equations for the

unknown functions is then generated by applying the condition of parallelism. The

resulting system of differential equations is thought to be easier to solve explicitly,

since it may contain fewer unknown functions than the parallel equations, which

equations are equivalent to the original Killing equations.

It is known that the set of Killing tensors of a particular metric forms an alge-
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bra with respect to the symmetric tensor product (Thompson, 1986). Killing tensors

which cannot be algebraically generated by Killing tensors of lower rank are known

as irreducible Killing tensors. Accordingly, one seeks to find all irreducible Killing

tensors for a particular metric. To our knowledge, this has only been accomplished for

metrics of constant sectional curvature (Thompson, 1986). As irreducible Killing ten-

sors seem to be scarce (Kruglikov and Matveev, 2016), the discovery of an irreducible

Killing tensor is of significance.

A novel application of the tractor approach is the ability to more easily check

the linear independence of a set of Killing tensors. The issue of determining the

number of independent, reducible Killing tensors of a given rank is, conceptually, an

elementary question of basic linear algebra. And yet, it can be difficult in practice1

to check linear independence when the components of the Killing tensor fields are not

rational functions of the coordinates. However, our novel application is that a set of

Killing tensors is linearly independent over R if and only if their lifts to the tractor

bundle are linearly independent at a single point. Thus, with the tractor approach,

checking linear independence for Killing tensor fields can be reduced to checking linear

independence for vectors in Rn.

This novel application is of paramount importance in the search for metrics which

admit irreducible Killing tensors. The tractor approach is known, as we have ex-

plained, to produce an upper bound on the number of linearly independent Killing

tensors of a given rank. On the other hand, the number of independent, reducible

Killing tensors, together with the metric, which may or may not be reducible, gives

us a lower bound on the number of linearly independent Killing tensors. For example,

we consider the case of rank 2 Killing tensors. If a metric admits p Killing vectors, we

can generate
p(p+ 1)

2
reducible Killing tensors of rank 2 by means of the symmetric

tensor products of the (covariant) Killing vectors. Coupled with the metric, we can

1i.e. in a computer algebra system.
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easily generate
p(p+ 1)

2
+ 1 Killing tensors of rank 2, and, for the purposes of this

illustration, we call this set S. Each element of S can be lifted up to the tractor

bundle to form the set S̃. The set S̃ evaluated at a point x0 can be checked for linear

independence: in fact, the number of linearly independent elements of S̃ evaluated at

x0 can be computed in Maple using rudimentary principles of linear algebra. Suppose

this number is q: our novel application then informs us that the dimension of the span

of S is q, thus providing a lower bound on the number of Killing tensors admitted by

a particular metric. If, by means of the tractor approach, we determine that an upper

bound on the number of Killing tensors of rank 2 is k, then we know that there are at

most k − q Killing tensors of rank 2 which are not in the span of S. Thus, this novel

application will allow us to determine which metrics may admit irreducible Killing

tensors of rank 2, and it will provide an upper bound on the number of independent,

irreducible Killing tensors of rank 2 which can be admitted.

One more application of the tractor approach stems from homogeneous spaces. If

a manifold M is a homogeneous space G/H and the metric is G-invariant, then the

tractor approach allows one to determine the number of Killing tensors without the

need to introduce coordinates. Thus, the tractor approach can produce meaningful

information about the space of Killing tensors where one cannot find the Killing

tensors explicitly.

The tractor approach has been successfully applied to Killing vectors, and some

examples are included in this thesis. While the equations that define the tractor

connection for Killing vectors are well known, lesser-known are the equations which

define the tractor connections for Killing tensors of rank 2, Killing-Yano tensors, and

conformal Killing vectors. These equations are presented in this thesis, and software

is created which constructs the tractor connections explicitly.

There are also existing formulas for constructing Killing tensors of rank 2 from

objects such as Killing-Yano tensors (Popa and Ovidiu, 2007) and conformal Killing
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vectors (M. Walker and R. Penrose, 1970), as well as for type D vacuum solutions to

the Einstein field equations (Stephani et al., 2003). We have tested these formulas

extensively and found that in almost every case, each Killing tensor which was pro-

duced was a linear combination of reducible Killing tensors and the associated metric.

Only one Killing tensor of rank 2 was produced which was not a linear combination of

reducible Killing tensors and the metric, and the metric which admitted this Killing

tensor was the Kerr metric.

This thesis is organized as follows. In chapter 2, we give our conventions and offer

a description of some important properties of Killing tensors, Killing vectors, Killing-

Yano tensors, and conformal Killing vectors. In chapter 3, we give a more detailed

description of the tractor approach and illustrate the tractor approach with regard

to Killing vectors and to a particular system of partial differential equations. The

fourth chapter of this thesis details our application of the tractor approach to Killing

vectors, and the fifth chapter details the tractor approach applied to conformal Killing

vectors. In the sixth chapter, we recover the equations used to define the tractor

connection (Thompson, 1986). We then identify many metrics which cannot admit

rank 2 irreducible Killing tensors, and we find new examples of metrics which admit

rank 2 irreducible Killing tensors. We identify other metrics which may admit rank

2 irreducible Killing tensors, though we do not find these Killing tensors explicitly.

Also included in chapter 6 is a treatment of Killing tensors of rank 2 for metrics in

the plane. We apply the Darboux-Koenings theorem and offer necessary and sufficient

conditions for the existence of precisely four Killing tensors of rank 2 for a metric in

the plane with a single Killing vector. We also find that the maximum number of

Killing tensors of rank 2 for a plane metric with no Killing vectors is three.

In chapter 7, we apply the tractor approach to Killing-Yano tensors of rank 2,

first reproducing the known (Houri et al., 2018) equations which define the tractor

connection. For many exact solutions, we obtain a count of the number of Killing-
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Yano tensors, and, in some cases, we obtain them explicitly in cases for which a direct

approach appears to be more problematic.

Finally, we allude to future projects of interest and then give a brief overview of

how our software programs are to be used. After we offer a few software demonstra-

tions, the thesis is concluded after the inclusion of the source code for the software

programs that have been developed.
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2 Conventions and Basic Properties

2.1 Conventions

The conventions used in this thesis are those used in the Differential Geometry soft-

ware package (Anderson and Torre, 2016). Let∇ be a connection on an n-dimensional

manifold M . With respect to a system of local coordinates xβ, the connection coeffi-

cients Γγβµ are given as

∇∂xµ∂xβ = Γγβµ∂xγ .

Let T be a type
(
r
s

)
tensor defined on M . We denote the covariant derivative of T

with respect to a connection using the “semicolon” notation, so that the first covariant

derivative of T is written, in terms of the components, as

Tα1...αr
β1...βs;γ

=
∂

∂xγ
(
Tα1...αr

β1...βs

)
+

r∑
t=1

ΓαtνγT
α1...αt−1ναt+1...αr

β1...βs

−
s∑

w=1

ΓνβwγT
α1...αr

β1...βw−1νβw+1...βs
.

When more derivatives are taken, more indices appear on the right of the semicolon.

For example, the second covariant derivative of T is written as Tα1...αr
β1...βs;γδ

.

If M is taken to be a Riemannian or pseudo-Riemannian manifold endowed with

a metric g, covariant differentiation is taken with respect to the Christoffel symbols{
γ
β µ

}
, which are the components of the unique, torsion free connection for which

the metric is covariantly constant. In local coordinates, these components can be

expressed in terms of the metric by
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{
γ
β µ

}
=

1

2
gαγ
(
gαβ,µ + gαµ,β − gβµ,α

)
,

where the “comma” notation denotes partial differentiation. Let X be a contravariant

vector field defined on M . The curvature tensor Rα
βγδ of the connection defined by

the Christoffel symbols is defined by the commutator of the covariant derivatives. For

a contravariant vector field, we have

Xα
;βγ −Xα

;γβ = Rα
νγβX

ν ,

while the commutator of the covariant derivative of a covariant vector field Y is given

as

Yα;βγ − Yα;γβ = Rν
αβγYν .

The two preceding equations give rise to the following Bianchi identities:

Rα
βγδ +Rα

δβγ +Rα
γδβ = 0,

Rα
βµν;λ +Rα

βλµ;ν +Rα
βνλ;µ = 0.

Applying the commutator formula to the metric, we find that

gαβ;γδ − gαβ;γδ = gµβR
µ
αγδ + gαµR

µ
βγδ,

giving us, since gαβ;γ = 0,

Rβαγδ +Rαβγδ = 0.

We use δαβµν to denote the generalized Kronecker-Delta symbol, which can be written

in terms of the ordinary Kronecker-Delta symbols as follows:
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δαβµν = δαµδ
β
ν − δαν δβµ .

Parenthesis will be used to denote the symmetrization of the indices of a tensor, which

for a type
(

0
2

)
tensor T is given as

T(αβ) =
1

2

(
Tαβ + Tβα

)
.

Square brackets will be used to denote skew-symmetrization, so that

T[αβ] =
1

2

(
Tαβ − Tβα

)
.

In the case of a type
(

0
3

)
tensor T , the symmetrization formulas are given as

T(αβγ) =
1

3!

(
Tαβγ + Tγαβ + Tβγα + Tβαγ + Tγβα + Tαγβ

)
and

T[αβγ] =
1

3!

(
Tαβγ + Tγαβ + Tβγα − Tβαγ − Tγβα − Tαγβ

)
.

It is sometimes convenient to use an alternate means of indicating the symmetriza-

tion of tensors. In such cases, the operator Yt is used, where t is a Young tableau from

which the symmetrization is determined: one first applies (symmetric) symmetriza-

tion according to the rows of the tableau, then subsequently skew-symmetrization

according to the columns of the tableau. For example, consider the following sym-

metrization operator applied to a tensor F of type
(

0
4

)
:

Y
β α
γ δ

Fαβγδ .

To compute this explicitly, one first computes the symmetrization over the pairs (β, α)
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and (γ, δ). The result is then skew-symmetrized over the pairs (β, γ) and (α, δ):

Gαβγδ = Y
β α
γ δ

Fαβγδ

=
1

4
Y
β
γ

Y
α
δ

(
Fαβγδ + Fβαγδ + Fαβδγ + Fβαδγ

)
=

1

8
Y
β
γ

(
Fαβγδ + Fβαγδ + Fαβδγ + Fβαδγ − Fδβγα − Fβδγα − Fδβαγ − Fβδαγ

)
=

1

16

(
Fαβγδ + Fβαγδ + Fαβδγ + Fβαδγ − Fδβγα − Fβδγα − Fδβαγ − Fβδαγ

)
− 1

16

(
Fαγβδ + Fγαβδ + Fαγδβ + Fγαδβ − Fδγβα − Fγδβα − Fδγαβ − Fγδαβ

)
.

The tensor G satisfies a cyclic identity on any three indices:

Gαβγδ +Gαδβγ +Gαγδβ = 0.

We also note that

Y
β
α
γ
δ

Fαβγδ = F[αβγδ]

=
1

12

(
Fαβγδ + Fδαβγ + Fγδαβ + Fβγδα

)
− 1

12

(
Fβαγδ + Fδβαγ + Fγδβα + Fαγδβ

)
− 1

12

(
Fγβαδ + Fδγβα + Fαδγβ + Fβαδγ

)
,

so that if Fαβγδ = F[αβγ]δ ,

F[αβγδ] =
1

4

(
Fαβγδ + Fδαβγ + Fγδαβ + Fβγδα

)
. (2.1)

Equation (2.1) will be referenced in chapter 7. Our final demonstration using the
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Young symmetrization operators is the following, applied to a type
(

0
3

)
tensor Lαβγ:

Y
α γ
β

Lαβγ =
1

2
Y
α
β

(
Lαβγ + Lγβα

)
=

1

4

(
Lαβγ − Lβαγ + Lγβα − Lγαβ

)
.

These Young symmetrization operators map tensors into the various irreducible rep-

resentations of the general linear group.

Let T be a tensor of type
(

0
r

)
. The tensor T is said to be a symmetric tensor of

type
(

0
r

)
if

Tα1...αr
= T(α1...αr)

.

The tensor T is said to be a skew-symmetric tensor of type
(

0
r

)
if

Tα1...αr
= T[α1...αr]

.

The dimension of the space of rank r symmetric tensors on a manifold of dimension

n is
(n+ r − 1)!

r!(n− 1)!
, and the dimension of the space of rank r skew-symmetric tensors

on a manifold of dimension n is
n!

r!(n− r)!
.

Now let S be a tensor of type
(
r
0

)
: S is said to be symmetric if

Sα1...αr = S(α1...αr).

Similarly, S is said to be skew-symmetric if

Sα1...αr = S[α1...αr].
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2.2 The Theorem of Frobenius

In this section, we will present a theorem which is attributed to Frobenius, which

theorem can be found on page 254 of (Spivak, 1979). This theorem will eventually

lead to our novel application of the tractor approach.

Let V ⊂ Rn be open, and let U be an open neighborhood of 0 ∈ Rm. For

i = 1, . . . ,m, let fi : U × V → Rn be C∞ functions. Let α : W → V , where W is a

neighborhood of 0 ∈ Rm. We consider a system of equations, defined for all t ∈ W ,

of the form

∂α(t)

∂tj
= fj(t, α(t)), (2.2)

with initial conditions α(0) = x. We will refer to such a system of equations as a

Frobenius system of equations.

Theorem 2.1. For every x ∈ V , there is at most one function α : W → V satisfying

equation (2.2): that is, any two functions α1 and α2 defined on neighborhoods W1 and

W2, respectively, agree on the component of W1 ∩W2 containing 0. Moreover, such

a function exists and is automatically C∞ if and only if there is a neighborhood of

(0, x) ∈ U × V on which the following equation is satisfied, for i, j = 1, . . . ,m:

∂fj
∂ti
− ∂fi
∂tj

+
n∑
k=1

∂fj
∂xk

fki −
n∑
k=1

∂fi
∂xk

fkj = 0.

The proof of theorem 2.1 is documented in the literature (Spivak, 1979) and has

been omitted in this thesis. The theorem does, however, allow us to make the following

observation.

Corollary 2.1.1. Let each fj(t, α) as in equation (2.2) be linear in α, and suppose

that α(0) = 0. Then the unique solution satisfying (2.2) is α(t) = 0.

Proof. Because each fj is linear in α, α(t) = 0 is a solution of equation (2.2) with
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initial conditions α(0) = 0. By theorem (2.1), the solution α(t) = 0 is unique.

2.3 Properties of Killing tensors and their Generalizations

In this section, we will present important properties of Killing tensors, Killing-Yano

tensors, and conformal Killing vectors.

2.3.1 Properties of Killing tensors

Let K be a symmetric tensor of type
(

0
r

)
. K is said to be a rank r Killing tensor of

a connection ∇ if (Stephani et al., 2003)

K(α1...αr;αr+1) = 0. (2.3)

This is known as the Killing equation. A special case of this is when r = 1, giving us

Kα;β +Kβ;α = 0. (2.4)

A rank 1 tensor satisfying equation (2.4) is a Killing tensor of rank 1, and if the index

of K is raised, it is called a Killing vector. In general, if the indices αi are raised

in equation (2.3), K is called a contravariant Killing tensor of rank r. One reason

Killing tensors are of interest is due to the fact that they can be associated with first

integrals of the geodesic equation as follows (Stephani et al., 2003). Let xα(s) be the

coordinates of an affinely parameterized geodesic. Then

D

Ds

(
dxβ

ds

)
=
d2xβ

ds2
+
{
β
α γ

}dxα
ds

dxγ

ds
= 0. (2.5)

Equation (2.5) is the geodesic equation. We recall that the absolute differential of a

type
(

0
2

)
tensor field K is given as

DKαβ = Kαβ;γ dx
γ,
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so that if K is a Killing tensor of rank 2, we get

D

Ds

(
Kαβ

dxα

ds

dxβ

ds

)
= Kαβ;γ

dxα

ds

dxβ

ds

dxγ

ds
= 0.

Thus, Kαβ

dxα

ds

dxβ

ds
is a quadratic first integral of the geodesic equation. Similarly,

Killing tensors of higher rank define cubic and higher first integrals.

Let T be a covariant tensor of rank p, and let S be a covariant tensor of rank

q. The symmetric tensor product of T and S, denoted T � S, is the completely

symmetric part of the tensor product of T and S:

T � S = T(α1...αp
Sβ1...βq) .

Similarly, the symmetric tensor product is defined for two contravariant tensors. Now

suppose that T and S are symmetric tensors: it is evident that the symmetric tensor

product of two symmetric tensors is a symmetric tensor. Thus, the set of symmetric

tensors on M , together with the operations of scalar multiplication, addition of ten-

sors, and the symmetric tensor product, forms an infinite dimensional, commutative

algebra (Thompson, 1986).

The notion of the Lie bracket of vector fields generalizes to the Schouten bracket

on the algebra of symmetric (contravariant) tensor fields (Thompson, 1986). Let T be

a contravariant symmetric tensor of rank p, and let S be a contravariant symmetric

tensor of rank q. The Schouten bracket is defined as

[T, S]β1...βp+q−1 = pTα(β1...βp−1Sβp...βp+q−1)
,α − qSα(β1...βq−1T βq ...βp+q−1)

,α . (2.6)

The tensorial nature of equation (2.6) is due to the fact that, on a pseudo-Riemannian

manifold, one can replace the partial derivatives with covariant derivatives with re-
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spect to the Christoffel symbols, since the connection is torsion free. Additionally,

if the tensors T and S are defined on a Riemannian or a pseudo-Riemannian mani-

fold, the Schouten bracket can also be defined for covariant symmetric tensors by the

lowering of indices.

The interaction of the structure of the symmetric tensor product and the structure

of the Schouten bracket is captured in the following formula, for symmetric tensors

T , S, and Y (Thompson, 1986):

[T � S, Y ] = [T, Y ]� S + T � [S, Y ]. (2.7)

Additional properties of the Schouten bracket include skew-symmetry,

[T, S] = −[S, T ],

and the Jacobi identity (Woodhouse, 1975)

[T, [S, Y ]] + [Y, [T, S]] + [S, [Y, T ]] = 0.

Thus, it is clear that the Schouten bracket endows the space of symmetric tensors

with the structure of a real, infinite dimensional Lie algebra (Thompson, 1986).

Killing tensors are symmetric tensors themselves, and so it is natural to consider

the operations of the symmetric tensor product and of the Schouten bracket on the

space of Killing tensors of a particular metric. Let T and S be Killing tensors of a

metric g, and let W = T � S.

W(α1...αpβ1...βp;γ) =
1

p+ q

(
qTα1...αp

S(β1...βq ;γ) + pT(α1...αp;γ)Sβ1...βq

)
= 0,

and so the symmetric tensor product of two Killing tensors is a Killing tensor. Thus,
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the symmetric tensor product defined on the space of symmetric tensors restricts to

the space of Killing tensors of a particular metric, making the set of Killing tensors

of a given metric an infinite dimensional, commutative algebra.

A Killing tensor of g may be defined as a tensor which commutes (with respect

to the Schouten bracket) with g (Thompson, 1986; Woodhouse, 1975). Let T and S

be two Killing tensors of g. The notion that the Schouten bracket endows the space

of symmetric tensors with the structure of a Lie algebra, along with the notion that

Killing tensors of g commute with g, give rise to the following:

[g, [T, S]] = −[S, [g, T ]]− [T, [S, g]] = 0.

Thus, the Schouten bracket of two Killing tensors of g is also a Killing tensor of g,

and so the space of Killing tensors of g forms an infinite dimensional Lie subalgebra

of the Lie algebra of symmetric tensors (Woodhouse, 1975).

A Killing tensor is called a reducible Killing tensor if it can be written as a linear

combination of the symmetric tensor products of Killing tensors of lower rank. An

irreducible Killing tensor is a Killing tensor which is not reducible. For the special

case of rank 2 Killing tensors, we say that a Killing tensor is metric reducible if it can

be written as a linear combination of reducible Killing tensors and the metric itself.

We introduce the term metric reducible due to the fact that the metric itself may be

expressible as a linear combination of the reducible Killing tensors: a Killing tensor

is not particularly interesting if it is metric reducible. A Killing tensor which is not

metric reducible will be called metric irreducible.

By definition, the set of irreducible Killing tensors of a particular metric does

not form an algebra with respect to the symmetric tensor product. Additionally, the

Schouten bracket of two irreducible Killing tensors is, in general, not an irreducible

Killing tensor. However, the set of Killing tensors is algebraically generated by the

irreducible Killing tensors, which set is presumably finite.
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2.3.2 Properties of Killing-Yano tensors

Equation (2.3) may be seen as one possible generalization of equation (2.4). There

is another generalization, applicable to skew-symmetric tensors. Let F be a skew-

symmetric tensor of rank p: F is said to be a rank p Killing-Yano tensor with respect

to a connection ∇ if (Houri et al., 2018)

Fα1...(αp;β) = 0. (2.8)

As with Killing tensors, the collection of Killing-Yano tensors of rank p has the

structure of a real vector space. It is natural to consider what additional algebraic

structure can be put on the set of Killing-Yano tensors, since the Schouten-Nijenhuis

bracket for skew-symmetric tensors is given, for skew-symmetric, contravariant tensors

A and B of ranks p and q, respectively, as (Kastor et al., 2007)

[A,B]α1...αp+q−1 = pAβ[α1...αp−1B
αp...αp+q−1]

,β + q (−1)pq Bβ[α1...αq−1A
αq ...αp+q−1]

,β.

However, Killing-Yano tensors do not, in general, form a Lie algebra with respect

to the Schouten-Nijenhuis bracket (Kastor et al., 2007). In any case, Killing-Yano

tensors are of interest (Popa and Ovidiu, 2007) due to the fact that if xα(s) are

coordinates of an affinely parameterized geodesic, the p− 1 form field Fα1...αp−1β

dxβ

ds

is parallel transported along affine geodesics (Stephani et al., 2003):

∇ẋγ

(
Fα1...αp−1β

dxβ

ds

)
= Fα1...αp−1β;γ

dxβ

ds

dxγ

ds
= 0.

Killing-Yano tensors have also been used in the separation of the Dirac equation

(Carter and McLenaghan, 1979; Fels and Kamran, 1990). Additionally, when the

connection is defined in terms of Christoffel symbols of a metric, the product of two
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Killing-Yano tensors is of interest in the search for Killing tensors. This is due to

the fact that the following product of Killing-Yano tensors F and F̃ defines a Killing

tensor of rank 2 which is not necessarily reducible (Popa and Ovidiu, 2007):

Aγβ = F̃
α1...αp−1

(γ Fβ)α1...αp−1
. (2.9)

It can be checked that the symmetric tensor A is a Killing tensor of rank 2:

A(γβ;µ) =
1

3

(
Aγβ;µ + Aµγ;β + Aβµ;γ

)
=

1

6

(
F̃α1...αp−1

γ Fβα1...αp−1;µ + F̃α1...αp−1
µFγα1...αp−1;β + F̃

α1...αp−1

β Fµα1...αp−1;γ

)
+

1

6

(
F̃
α1...αp−1

β Fγα1...αp−1;µ + F̃α1...αp−1
γ Fµα1...αp−1;β + F̃α1...αp−1

µFβα1...αp−1;γ

)
+

1

6

(
F̃α1...αp−1

γ;µFβα1...αp−1
+ F̃

α1...αp−1

µ;β Fγα1...αp−1
+ F̃

α1...αp−1

β;γ Fµα1...αp−1

)
+

1

6

(
F̃
α1...αp−1

β;µFγα1...αp−1
+ F̃

α1...αp−1

γ;β Fµα1...αp−1
+ F̃α1...αp−1

µ;γ Fβα1...αp−1

)
=

(−1)p−1

3

(
F̃α1...αp−1

γ Fα1...αp−1(β;µ) + F̃α1...αp−1
µFα1...αp−1(γ;β)

)
+

(−1)p−1

3
F̃
α1...αp−1

β Fα1...αp−1(µ;γ)

+
1

3

(
F̃
α1...αp−1

(γ;µ)Fβα1...αp−1
+ F̃

α1...αp−1

(µ;β)Fγα1...αp−1
+ F̃

α1...αp−1

(β;γ)Fµα1...αp−1

)
,

= 0.

2.3.3 Properties of conformal Killing vectors

There is another generalization of Killing vectors, namely conformal Killing vectors,

for which the defining equation (Ashtekar and Magnon-Ashtekar, 1978) is, for λ =

λ(x),

X(α;β) = λgαβ . (2.10)
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By taking the trace of equation (2.10), it can be shown that λ =
1

n
Xγ

;γ . While

conformal Killing vectors are of interest in their own right (U. Semmelmann, 2002), it

has been shown that they can be used to construct Killing tensors of rank 2 (Stephani

et al., 2003; Edgar et al., 2004) as follows. If X is a non-null conformal Killing vector

field (i.e. equation (2.10) is satisfied and gαβX
αXβ 6= 0) which is not also a Killing

vector field, and if

Xα;βX
β = ζXα (2.11)

for some smooth function ζ = ζ(x)–that is, if X is geodesic–then the following defines

a Killing tensor of rank 2 (Edgar et al., 2004):

Kαβ = XαXβ −XγXγ gαβ . (2.12)

To show this, we first note that by contracting equation (2.10) with XαXβ and

applying equation (2.11), we get

ζXαX
α = λXαX

α,

so that, since X is not null, ζ = λ. Next, we note that

Xα;β = X[α;β] +X(α;β) ,

so that, using equation (2.10),

Xα;βX
β = X[α;β]X

β + λgαβX
β.

Applying equation (2.11), and the fact that ζ = λ, we get

λXα = X[α;β]X
β + λXα ,
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which implies that

X[α;β]X
β = 0.

Thus,

Xα;βX
β = Xβ;αX

β. (2.13)

Now, we apply the Killing equation to (2.12):

K(αβ;µ) =
1

3

(
Kαβ;µ +Kµα;β +Kβµ;α

)
=

1

3

(
Xα;µXβ +XαXβ;µ −Xγ

;µXγ gαβ −XγXγ;µgαβ
)

+
1

3

(
Xµ;βXα +XµXα;β −X

γ
;βXγ gµα −XγXγ;β gµα

)
+

1

3

(
Xβ;αXµ +XβXµ;α −Xγ

;αXγ gβµ −XγXγ;αgβµ
)

=
2

3

(
XβX(α;µ) +XαX(β;µ) +XµX(α;β)

)
−2

3

(
XγXγ;µgαβ +XγXγ;β gµα +XγXγ;αgβµ

)
.

Applying equations (2.10), (2.11), and (2.13), we get

K(αβ;µ) =
λ− ζ

3

(
Xβ gαµ +Xαgβµ +Xµgαβ

)
= 0, (2.14)

since λ = ζ. In chapter 5 of this Thesis, we use equation (2.12) in an effort to

construct Killing tensors from conformal Killing vectors.

Conformal Killing vectors also generalize to conformal Killing tensors (Edgar et

al., 2004). A conformal Killing tensor Q of rank r is a symmetric tensor which

satisfies, for some rank r − 1 tensor λ,
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Q(α1...αr;β) = λ(α1...α(r−1)
gαrβ).

Conformal Killing tensors, along with other generalizations of Killing vectors, such as

conformal Killing forms (U. Semmelmann, 2002) and Killing spinors (M. Walker and

R. Penrose, 1970), while of interest in their own right, are not treated in this thesis.

2.4 Literature Review

The purpose of this section is to summarize the list of references used. We will begin

with our general references, the first of which is the Differential Geometry Software

Package (Anderson and Torre, 2016), after which we pattern our own conventions.

We find useful properties of Killing tensors in chapter 35 of the second edition of

Exact Solutions to Einstein’s Field Equations (Stephani et al., 2003), including the

algorithm for constructing Killing tensors for Petrov type D vacuum solutions, which

formula is proven in (M. Walker and R. Penrose, 1970). The theorem of Frobenius

is found in (Spivak, 1979). We apply the tractor approach to several exact solutions

contained in (Stephani et al., 2003) as well as to some exact solutions contained in

chapter 5 of The Large Scale Structure of Space-Time (Hawkings and Ellis, 1973).

Other references deal with additional useful properties of Killing tensors, including

their algebraic structure and the notion that the Schouten bracket endows the space of

contravariant Killing tensors with the structure of an infinite dimensional Lie algebra

(Thompson, 1986; Woodhouse, 1975). As it is known that one can associate Killing

tensors with first integrals of the geodesic equation (Stephani et al., 2003), another

set of references deals with the use of Killing tensors in the separation of variables for

the Hamilton-Jacobi equations (Kalnins and Miller, 1981; Woodhouse, 1975) as well

as for the Dirac equation (Carignano et al., 2011; Fels and Kamran, 1990).

The next set of references deals with Killing tensors in spaces of constant curva-
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ture. The first of these contains the theorem which specifies the maximum number

of Killing tensors of rank n on a manifold of dimension m (Thompson, 1986), which

maximum is achieved on spaces of constant curvature. In the case of rank 2 Killing

tensors, this has been independently verified by means of directly examining the

structure equations (Hauser and Malhiot, 1975b).

The next set of references deal with what we are referring to as the tractor ap-

proach. For one reference, we find general information about parallel sections on

vector bundles (Atkins, 2011). The equations which define the tractor connection

for Killing vectors, as well as the equations which define the tractor connection for

conformal Killing vectors, are given (Ashtekar and Magnon-Ashtekar, 1978) and are

called the “Killing data:” we pattern our own construction according to these equa-

tions. This reference also gives the maximum number of conformal Killing vectors,

which number coincides with the more general maximum number of conformal Killing

p-forms (U. Semmelmann, 2002). Similar equations are given in the case of Killing

tensors of ranks 1 and 2 (Hauser and Malhiot, 1975a), from which we pattern our

own tractor approach. Another reference (Houri et al., 2018) gives an alternate way

of constructing the tractor connection for Killing tensors using Young decomposi-

tion, though from this reference we use only the equations which define the tractor

connection for Killing-Yano tensors. This reference (Houri et al., 2018) also gives

a procedure for constructing the tractor connection for higher rank Killing tensors,

though the equations are only explicitly given through rank 3. Other attempts have

also been made to construct the tractor connection for Killing tensors of higher rank

(Wolf, 1998).

The interest in Killing tensors of higher rank is evident not just in the attempts

made to construct the tractor connections for them. For one particular metric in

dimension 4, all Killing tensors have been found through rank 6 (Kruglikov and

Matveev, 2012), though no irreducible Killing tensors were identified. In fact, it
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appears that irreducible Killing tensors are generally rare (Kruglikov and Matveev,

2016). Notwithstanding, irreducible Killing tensors have been explicitly identified for

several pp-wave spacetimes (Keane and Tupper, 2010).

Our next set of references deal primarily with Killing-Yano tensors. Killing-Yano

tensors are found to be parallel propagated along affine geodesics (Popa and Ovidiu,

2007). In contrast to Killing tensors, Killing-Yano tensors do not appear to form a

Lie algebra (Kastor et al., 2007), though a particularly interesting reference (Popa

and Ovidiu, 2007) uses Killing-Yano tensors of rank 3 to construct irreducible Killing

tensors of rank 2: in this reference, we also learn that Killing-Yano tensors of any

rank can be used to construct Killing tensors of rank 2.

A few other references give us information about conformal Killing vectors. From

the reference that gives the equations which define the tractor connection for Killing

vectors (Ashtekar and Magnon-Ashtekar, 1978), we also find the maximum number

of conformal Killing vectors which a manifold of dimension n ≥ 2 can admit: this

number coincides with the more general maximum number of conformal Killing p-

forms (U. Semmelmann, 2002). One reference outlines the method by which certain

conformal Killing vectors can be used to construct Killing tensors of rank 2 (Edgar

et al., 2004).

Other references deal primarily with 2 or 3 dimensions. From one reference (Krug-

likov, 2008), we get the statement and proof of the Darboux-Koenig theorem, as well

as criterion for whether a metric is Liouville. We also find that there are many

examples of plane metrics which admit irreducible Killing tensors (Darboux, 1972).

Systems of finite type with regard to Killing tensors have been treated in dimension 2

(G. Thompson, 1999), and elsewhere we find the criterion for the existence of Killing

vectors in dimension 3 (Kruglikov and Tomoda, 2018).
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2.5 The Barbance-Delong-Takeuchi-Thompson Theorem on

the Maximum number of Killing Tensors.

Let g be a metric on a Riemannian or pseudo-Riemannian manifold M of dimension

m. The maximum dimension of the space of Killing tensors of g is known (Thomp-

son, 1986): the purpose of this section is to give the formula and a summary of its

derivation. The following Theorem has been given by Thompson, but has also been

attributed to Barbance, Delong, and Takeuchi (Houri et al., 2018).

Theorem 2.2. The set of Killing tensors of rank n of the metric g is a vector space

with dimension less than or equal to

1

n

(
m+ n

n+ 1

)(
m+ n− 1

n

)
,

where we have equality in the case of constant curvature.

We have previously explained that the set of Killing tensors of rank n is a vector

space, and so we will give an outline of the proof that the maximum dimension of

this space is given as in Theorem (2.2). Equation (2.3) can be written as

K(i1...in;in+1) = nKj(i1...in−1
Γjinin+1). (2.15)

Next, we consider the set of equations obtained by differentiating equation (2.15) at

most n times: the result is a homogeneous system of linear equations with unknowns

Ki1...in;j1
, Ki1...in;j1j2

, . . . , Ki1...in;j1...jn+1
.

The number of unknowns is given as

n+1∑
r=0

(
m+ r − 1

r

)(
m+ n− 1

n

)
, (2.16)
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while the number of independent linear equations is given as

n+1∑
r=1

(
m+ r − 2

r − 1

)(
m+ n

n+ 1

)
. (2.17)

Subtracting equation (2.17) from equation (2.16) gives us

n+1∑
r=0

(
m+ r − 1

r

)(
m+ n− 1

n

)
−

n+1∑
r=1

(
m+ r − 2

r − 1

)(
m+ n

n+ 1

)

=
(m+ n− 1)!(m+ n)!

(m− 1)!m!n!(n+ 1)!
,

from which the conclusion follows. Thus, the dimension of the space of Killing tensors

of rank n is given as in the statement of Theorem (2.2).

In general, compatibility conditions constrain the second and higher order deriva-

tives of the tensor Ki1...in
, due to the fact that the second covariant derivative of the

Killing tensor may be written in terms of the curvature tensor and the Killing ten-

sor itself: thus, in general, the dimension of the space of Killing tensors is less than

the given formula. However, in a space in which the curvature tensor is zero, the

compatibility conditions are satisfied identically, and so the dimension of the space of

Killing tensors is given by the above formula. It is also shown that the compatibility

conditions are satisfied identically in spaces of constant curvature (Thompson, 1986).

Theorem 2.3. Let (M, g) be a Riemannian or pseudo-Riemannian manifold of con-

stant curvature. Any Killing tensor on (M, g) consists of sums of symmetrized prod-

ucts of Killing vectors.

That is to say, there are no irreducible Killing tensors in spaces of constant cur-

vature (Thompson, 1986).
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3 The Tractor Approach

The purpose of this section is to illustrate the method for constructing the tractor

connection from a given Frobenius system of equations and to illustrate the utility of

doing so.

Let M be a manifold, and let X (M) denote the vector space of smooth vector

fields on M . Let π : E →M be a vector bundle: Ex = π−1(x) is the fiber of E at the

point x. A map σ : M → E is said to be a section of the vector bundle if π ◦ σ is the

identity map on M . Let S(E) denote the vector space of smooth sections of the vector

bundle. A connection on the bundle is a linear mapping ∇̃ : X (M)× S(E)→ S(E)

such that, for any smooth function f on M , any vector field X ∈ X (M), and any

smooth section σ ∈ S(E),

∇̃fX(σ) = f∇̃X(σ), ∇̃X(fσ) = X(f)σ + f∇̃X(σ). (3.1)

If {Ei} is a local basis of sections of E, and if {xα} are local coordinates for M , then

the connection coefficients Γ̃jiα are defined by

∇̃∂xαEi = Γ̃jiαEj. (3.2)

Let σ = SiEi. Equation (3.1) implies that

∇̃Xσ = ∇̃Xα∂xα

(
SiEi

)
= Xα∂xα(Si)Ei +XαSiΓ̃jiαEj. (3.3)

In terms of the components of σ, equation (3.3) gives us

Si;α =
∂Si

∂xα
+ Γ̃ijαS

j. (3.4)

A section σ is said to be parallel if, for all X ∈ X (M), ∇̃Xσ = 0. By equations
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(3.3) and (3.4), the condition of parallelism results in the following condition on the

coefficients of σ:

∂Si

∂xα
+ Γ̃ijαS

j = 0. (3.5)

Let L(S) denote the set of linear mappings from S(E) to itself. Given the connec-

tion ∇̃, we can introduce the curvature tensor K̃ : X (M)×X (M)→ L(S) by virtue

of

K̃(X, Y )(σ) = ∇̃X∇̃Y (σ)− ∇̃Y ∇̃X(σ)− ∇̃[X,Y ](σ), (3.6)

where Y ∈ X (M). We can also write K̃ as a matrix of 2-forms:

K̃i
j = K̃i

jαβdx
α ∧ dxβ = Γ̃ijα,βdx

α ∧ dxβ − Γ̃ikαΓ̃kjβdx
α ∧ dxβ. (3.7)

If a section σ is parallel, then it is clear from equation (3.6) that

K̃(X, Y )(σ) = 0. (3.8)

In coordinates, this condition can be written as

SiKj
iαβ = 0.

Equation (3.8) implies that, for any positive integer r, for 1 ≤ i ≤ r, and for Zi ∈

X (M),

∇̃Zr∇̃Zr−1
. . . ∇̃Z1

(
K̃(X, Y )(σ)

)
= 0. (3.9)

Due to the fact that ∇̃σ = 0, equation (3.9) represents additional algebraic constraints

on Si.
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Definition 3.1. A section σ is said to be quasi-parallel to order k if, for each integer

0 ≤ r ≤ k,

∇̃Zr∇̃Zr−1
. . . ∇̃Z1

(
K̃(X, Y )(σ)

)
= 0.

Definition 3.2. Let π : E → M be a vector bundle, let r be a non-negative integer,

and let Er
x ⊂ Ex denote the subspace of elements which are quasi-parallel to order r.

We assume that Er
x has constant dimension, and we call π : Er → M the rth order

reduced vector bundle.

These definitions motivate the following inclusion statement.

Corollary 3.0.1. Let S∇̃(E) ⊆ S(E) be the vector space for which a basis is the set

of parallel sections with respect to the connection ∇̃. Then for every non-negative

integer r, we have

S∇̃ (E) ⊆ S (Er) ⊆ S
(
Er−1

)
⊆ · · · ⊆ S

(
E1
)
⊆ S

(
E0
)
⊆ S (E) .

The utility of this observation is that it allows one to obtain an increasingly tighter

upper bound on the number of independent parallel sections by computing bases for

sets of quasi-parallel sections of increasingly higher order. The iterative process of

doing so terminates, due to the following (Atkins, 2011):

Lemma 3.1. There is a non-negative integer k such that

S∇̃(E) = S
(
Ek
)
.

The question of what non-negative integer k is required so that the dimension of

S(Ek) is that of the dimension of S∇̃(E) is addressed as follows.

Suppose that a matrix A is smoothly parameterized by t ∈ (a, b), and suppose that

A(t) has constant rank r on (a, b). It can be shown that the nullspace of A, denoted
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{Ni(t)} for i = 1, . . . N (where r + N is the number of columns of A), consists of

vectors which depend smoothly on t in the open interval (a, b).

Now suppose that the nullspace of A(t) is contained within the nullspace of Ȧ(t).

Then for every Ni in the nullspace of A(t),

(ANi)
′ = ȦNi + AṄi = 0,

which implies that AṄi = 0, since Ni is contained within the nullspace of Ȧ: this in

turn implies that ȦṄi = 0. On the other hand, we have

(ȦNi)
′ = ÄNi + ȦṄi = 0,

which implies that ÄNi = 0, since ȦṄi = 0. In the context of our reduced tractor

bundles, we have the following.

Lemma 3.2. Suppose that there is a non-negative integer r such that

S (Er) = S
(
Er+1

)
.

Then S (Er+2) = S (Er).

Proof. Let σ ∈ S (Er). By assumption,

∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )(σ)

)
= 0, (3.10)

and

∇̃Zr+1∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )(σ)

)
= 0. (3.11)

Equation (3.11) implies that

∇̃Zr+2

(
∇̃Zr+1∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )(σ)

))
= 0, (3.12)
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so that

∇̃Zr+2 . . . ∇̃Z1

(
K̃(X, Y )(σ)

)
+ ∇̃Zr+1 . . . ∇̃Z1

(
K̃(X, Y )

)
∇̃Zr+2 (σ) = 0. (3.13)

On the other hand, equation (3.10) implies that

∇̃Zr+2

(
∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )(σ)

))
= 0, (3.14)

so that

∇̃Zr+2∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )(σ)

)
+ ∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )

)
∇̃Zr+2 (σ) = 0. (3.15)

Since σ ∈ S (Er) = S (Er+1), equation (3.15) gives us

∇̃Zr . . . ∇̃Z1

(
K̃(X, Y )

)
∇̃Zr+2 (σ) = 0. (3.16)

Equation (3.16) implies that ∇̃Zr+2(σ) ∈ S (Er), so that, by assumption, ∇̃Zr+2(σ) ∈

S (Er+1). Coupled with equation (3.13), this implies that

∇̃Zr+2 . . . ∇̃Z1

(
K̃(X, Y )(σ)

)
= 0, (3.17)

so that σ ∈ S (Er+2). This implies that S (Er) ⊆ S (Er+2). The conclusion then

follows from corollary (3.0.1).

Theorem 3.1. If, for some non-negative r, Er = Er+1, then

S∇̃(E) = S(Er).

Proof. Since there is a non-negative integer k such that S∇̃(E) = S
(
Ek
)

by lemma
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(3.1), it follows from lemma (3.2) that if k ≥ r, then S∇̃(E) = S
(
Ek
)

= S (Er). If

k < r, the conclusion follows from corollary (3.0.1).

Thus, when for some non-negative integer r we have Er = Er+1, the number of

independent parallel sections of ∇̃ is the dimension of S(Er).

The ultimate purpose of the tractor approach applied to Killing tensors is to

establish a one-to-one correspondence between the solutions of the Killing equations

and the parallel sections of a vector bundle E with respect to a connection ∇̃ on E.

This is done by creating a vector bundle where the components of the smooth sections

of the vector bundle represent the unspecified functions in the Killing equation.

We will now illustrate the tractor approach to Killing tensors in the simpliest of

cases, which is the case of rank 1 Killing tensors on a pseudo-Riemannian manifold

of dimension 2. Let M be such a manifold with local coordinates (u, v), let g be the

metric on M , let ∇ be the connection defined by the Christoffel symbols, and let R

be the curvature tensor of ∇. The tensor X is a rank 1 Killing tensor of the metric

g if and only if

Xα;β +Xβ;α = 0. (3.18)

However, equation (3.18) is not a Frobenius system of equations. This is due to

the fact that there are only three independent equations and yet four first order

derivatives. Thus, we will need to derive a Frobenius system from equation (3.18).

We define the tensor ωαβ as follows:

ωαβ = X[α;β] . (3.19)

Thus,

ωαβ;γ = X[α;β]γ . (3.20)
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We note that, using the commutator of covariant derivatives,

(
Xα;βγ −Xα;γβ

)
+
(
Xβ;αγ −Xβ;γα

)
+
(
Xγ;αβ −Xγ;βα

)
(3.21)

=
(
Rν

αβγ +Rν
βαγ +Rν

γαβ

)
Xν .

If X is a Killing vector, we can apply equation (3.18) for the left hand of equation

(3.21), and, using the Bianchi identity on the right hand side, we get

2X[γ;α]β = 2Xγ;αβ = 2Rν
βαγXν . (3.22)

Thus, the Frobenius system for (covariant) Killing vectors is given as


Xα;β = ωαβ

wαβ;γ = Rν
γβαXν .

(3.23a)

(3.23b)

This system is a Frobenius system of partial differential equations due to the fact

that the derivatives of X and ω are fully specified: compare with equation (2.2).

We note that in two dimensions, ωαβ has only one independent component, namely

ω21. We also note that the curvature tensor has only one independent component,

which we denote as R1
212 = κ. Using equation (3.23a), we find that

X2;1 = X2,1 −
{

1
2 1

}
X1 −

{
2

2 1

}
X2 = ω21. (3.24)

Similarly, we find that

X1;2 = X1,2 −
{

1
1 2

}
X1 −

{
2

1 2

}
X2 = ω12. (3.25)

Subtracting equation (3.25) from equation (3.24) gives us



34

ω21 − ω12 = X2,1 −X1,2 −
{

1
2 1

}
X1 −

{
2

2 1

}
X2 +

{
1

1 2

}
X1 +

{
2

1 2

}
X2 , (3.26)

which implies, due to the symmetry of the Christoffel symbols and the fact that

ω12 = −ω21, that

ω21 =
1

2

(
X2,1 −X1,2

)
. (3.27)

The tractor bundle is π : T → M , where T = T ∗(M) ⊕
∧2(M). The Killing

tensor X = p(u, v)du+ q(u, v)dv on M is lifted to the local section X̃ = p(u, v)E1 +

q(u, v)E2 + a(u, v)E3 on T, where a(u, v) =
1

2
(qu − pv).

The system of equations (3.23) becomes



pu −
{

1
1 1

}
p−

{
2

1 1

}
q = 0

pv −
{

1
1 2

}
p−

{
2

1 2

}
q + a = 0

qu −
{

1
2 1

}
p−

{
2

2 1

}
q − a = 0

qv −
{

1
2 2

}
p−

{
2

2 2

}
q = 0

au −
{

2
2 1

}
a−

{
1

1 1

}
a+ κq = 0

av −
{

2
2 2

}
a−

{
1

1 2

}
a− κp = 0.

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)

Matching system (3.28) with equation (3.5), we find that
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Γ̃ji1 =



−
{

1
1 1

}
−
{

2
1 1

}
0

−
{

1
2 1

}
−
{

2
2 1

}
−1

0 κ −
({

2
2 1

}
+
{

1
1 1

})


,

Γ̃ji2 =



−
{

1
1 2

}
−
{

2
1 2

}
1

−
{

1
2 2

}
−
{

2
2 2

}
0

−κ 0 −
({

2
2 2

}
+
{

1
1 2

})


.

Using equation (3.2), we find that

∇̃∂uE1 = −
{

1
1 1

}
E1 −

{
1

2 1

}
E2, ∇̃∂vE1 = −

{
1

1 2

}
E1 −

{
1

2 2

}
E2 − κE3, (3.29)

∇̃∂uE2 = −
{

2
1 1

}
E1 −

{
2

2 1

}
E2 + κE3, ∇̃∂vE2 = −

{
2

1 2

}
E1 −

{
2

2 2

}
E2,

∇̃∂uE3 = −E2 −
({

2
2 1

}
+
{

1
1 1

})
E3, ∇̃∂vE3 = E1 −

({
2

2 2

}
+
{

1
1 2

})
E3,

thus defining the tractor connection ∇̃ on T. By construction, X is a rank 1 Killing

tensor of g if and only if X̃ is parallel with respect to ∇̃.

Now, suppose that the metric g could be written as

g = λdu2 + λdv2 (3.30)

for some smooth function λ = λ(u, v). The non-vanishing Christoffel symbols are
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{
1

1 1

}
=
{

2
1 2

}
=
{

2
2 1

}
= −

{
1

2 2

}
=
λu
2λ
,
{

1
1 2

}
=
{

1
2 1

}
= −

{
2

1 1

}
=
{

2
2 2

}
=
λv
2λ
.

In this example, we find that

Γ̃ji1 =



−λu
2λ

λv
2λ

0

−λv
2λ
−λu

2λ
−1

0 κ −λu
λ


, Γ̃ji2 =



−λv
2λ
−λu

2λ
1

λu
2λ

−λv
2λ

0

−κ 0 −λv
λ


.

Thus, the curvature matrix is given as

K̃i
j =


0 0 0

0 0 0

−λku −λkv 0

 du ∧ dv, (3.31)

where k = k(u, v) is the sectional curvature of g, which is given, in this case, as

k =
κ

λ
.

If k is a constant, we see that the dimension of T0, the 0th order reduced tractor

bundle, is three, since the curvature matrix is identically zero. The derivatives of the

curvature matrix would also be identically zero, making the dimension of T1 three as

well. Thus, T0 = T1, which, by Theorem (3.1), implies that the dimension of S∇̃ (T)

is three, which in turn implies that the metric g admits precisely 3 Killing tensors of

rank 1.

On the other hand, if k2
u + k2

v 6= 0, a basis of the local sections of T0 is given as
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{kvE1 − kuE2, E3} ,

which implies that g admits no more than two rank 1 Killing tensors. Having obtained

an upper bound at curvature order 0, we now endeavor to obtain an upper bound at

curvature order 1. In order to calculate a basis for the local sections of T1, we will

need to find all sections X̃ = b(u, v) (kvE1 − kuE2)+c(u, v)E3 for which the following

conditions hold:

K̃i
j X̃

j = 0, ∇̃∂uK̃
i
j X̃

j = 0, ∇̃∂vK̃
i
j X̃

j = 0. (3.32)

The matrices K̃i
j , ∇̃∂uK̃

i
j , and ∇̃∂vK̃

i
j can also be stacked, so that equation (3.32)

is equivalent to the following:



0 0 0

0 0 0

−λku −λkv 0

0 0 0

λku λkv 0

−λkuu −
λuku + λvkv

2
−λkuv +

λvku − λukv
2

−λkv

−λku −λkv 0

0 0 0

−λkuv +
λukv − λvku

2
−λkvv −

λuku + λvkv
2

λku




kvb

−kub

c

 =



0

0

0

0

0

0

0

0

0



. (3.33)

Equation (3.33) is equivalent to Ay = 0, where



38

A =


(
−λkuv +

λukv − λvku
2

)
kv +

(
λkvv +

λuku + λvkv
2

)
ku λku

−
(
λkuu +

λuku + λvkv
2

)
kv +

(
λkuv +

λukv − λvku
2

)
ku −λkv

 , (3.34)

and where y = (b, c). Thus, the number of independent rank 1 Killing tensors of g is

no greater than the dimension of the nullspace of A. If the rank of A is 2, then we

must have b = 0 and c = 0, which means that there are no (non-zero) rank 1 Killing

tensors of g. The rank of A cannot be zero, since this would imply that ku = 0

and kv = 0 and, subsequently, that k2
u + k2

v = 0, which we are assuming is not true.

Therefore, the rank of A must be 1 or 2, and g cannot admit more than a single rank

1 Killing tensor.

If the rank of A is 1, det(A) = 0, giving us, along with k2
u + k2

v 6= 0, the following

additional condition:

λ2k2
vkuv−

λk3
vλu
2
−λ2kvkukvv−

λkvλuk
2
u

2
+λ2kukvkuu+

λkuλvk
2
v

2
−λ2k2

ukuv+
λk3

uλv
2

= 0.

(3.35)

Dividing equation (3.35) by λ2, since λ 6= 0, our conditions can be written as

1

2
Wα

;α − ru − sv = 0, (3.36)

where W 1 = r(u, v) = −kv(k2
u + k2

v), W
2 = s(u, v) = ku(k

2
u + k2

v), and k2
u + k2

v 6= 0.

If these conditions are satisfied, then g admits a single rank 1 Killing tensor. If

k2
u + k2

v 6= 0 but equation (3.36) is not satisfied, g admits no rank 1 Killing tensors.

If k2
u + k2

v = 0, ku = 0 and kv = 0, and so g admits three independent rank 1 Killing

tensors. This result confirms the findings of previous dealings with Killing vectors in

two dimensions (Kruglikov, 2008).
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The utility of the tractor approach extends beyond the study of Killing tensors,

which we illustrate with a simple example. Suppose we had the following system of

equations for the functions f = f(u, v) and h = h(u, v), where F = F (u) is given:



fu − Ff = 0

fv = 0

hu = 0

hv − f = 0.

(3.37a)

(3.37b)

(3.37c)

(3.37d)

Formally, the tractor bundle is π : T→ R2, with coordinates (u, v, E1, E2), and where

T = R⊕ R. A pair (f, h) is lifted to the section fE1 + hE2, and, using the methods

described above, we see that

Γ̃ji1 =

−F 0

0 0

 , Γ̃ji2 =

 0 0

−1 0

 . (3.38)

Thus, the tractor connection is defined by

∇̃∂uE1 = −FE1, ∇̃∂vE1 = −E2. (3.39)

At this point, we see that the condition that the section X̃ = fE1 +hE2 is parallel

with respect to ∇̃ is equivalent to the original system of equations, since the covariant

derivative of X̃ is given as

(fu − Ff)E1 ⊗ du+ fvE1 ⊗ dv + huE2 ⊗ du+ (hv − f)E2 ⊗ dv. (3.40)

We find that the curvautre matrix of 2-forms is given as
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 0 0

−F 0

 du ∧ dv. (3.41)

The nullspace of this matrix is a basis for the set of sections which are quasi-parallel

to order 0. Assuming F 6= 0, this basis is generated by a single element, namely E2.

This in turn implies that there is at most one independent parallel section, which

implies that the space of solutions of (3.37) is at most 1-dimensional.

The tractor approach can also be used to reduce the original system of equations.

We begin by constructing the section Y as follows:

Y = q(u, v)E2;

that is, in general, a linear combination of the basis elements of S(E0) using unknown

function coefficients as scalars. The condition ∇̃Y = 0 gives us the following system

of equations:

qu = 0

qv = 0.

(3.42a)

(3.42b)

We see that q = c1 for some constant c1, so that Y is a parallel section if and only if

Y = c1E2. As the parallel sections are in one-to-one correspondence with the solutions

of the original system of equations, we see that the general solution is f = 0, h = c1.
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4 The Tractor Connection for Killing vectors

4.1 Constructing the Tractor Connection

The tractor equations for Killing vectors are relatively well known, and are given

in existing literature (Ashtekar and Magnon-Ashtekar, 1978; Hauser and Malhiot,

1975a). We derived these formulas in the previous chapter–see equation (3.23)–and

they are, for a Killing vector X, given as


Xα;β = ωαβ

wαβ;γ = Rν
γβαXν ,

(4.1a)

(4.1b)

where the tensor ω is defined as

ωαβ = X[α;β] .

Let M be a manifold with local coordinates xα. For (covariant) Killing vectors

defined on M , the tractor bundle is π : T → M , where T = T ∗(M) ⊕
∧2(M).

Coordinates for T are (xα, aα, bαβ), where bαβ = −bβα. Thus, it is clear that the fibers

of T have dimension n +
(
n
2

)
= n(n + 1)/2. If X is a Killing vector, then the lift of

X to a section X̃ on T is given by aα(x) = Xα (x), bαβ(x) = ωαβ(x): by construction,

this is a parallel section. Conversely, given a parallel section (aα, bαβ), the (covariant)

vector defined by Xα (x) = aα(x) is a Killing vector, since a(α;β) = b(αβ) = 0. The

tractor connection and the tractor curvature are defined by equations (3.2), (3.7),

and (3.5).

Lemma 4.1. Let X be a Killing vector, and suppose that X̃ is the lift of X up to the

tractor bundle. X̃ vanishes at a point if and only if X = 0.
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This is due to the fact that equations (4.1a) and (4.1b) define a system of equations

which is Frobenius in the sense of equation (2.2): the lemma follows as a direct result

of Corollary (2.1.1).

Lemma 4.1 gives rise to the following useful application of the tractor approach.

Corollary 4.0.1. The Killing vectors X1 . . . Xk are linearly independent over R if

and only if their lifts up to the tractor bundle are linearly independent at a single

point.

Proof. Let X1 . . . Xk be Killing vectors, and let X̃1 . . . X̃k be their lifts up to the

tractor bundle at a point. By the previous lemma, a1X̃1 + a2X̃2 + . . . akX̃k = 0 if and

only if a1X1 + a2X2 + . . . akXk = 0. Thus, the linear independence of one set implies

the linear independence of the other.

Once Killing vector fields are explicitly identified, the task of determining their

linear independence is, in principle, a rudimentary linear algebra problem when the

coefficient functions are rational functions. If the coefficient functions are, for in-

stance, trigonometric, exponential, or square-root functions, then a direct approach

often fails, even when symbolic software is used. In this case, Corollary (4.0.1) can

be used to complete the task.2

4.2 Killing vectors on spacetimes

In this section, we apply the tractor approach to finding Killing vectors for a few

metrics taken from the literature (Stephani et al., 2003; Hawkings and Ellis, 1973).

Our goal is to determine the number of Killing vectors which are admitted by these

metrics, which goal is obtained as follows. Using the tractor approach, we will obtain

an upper bound on the number of linearly independent Killing vectors which can

exist: when possible, we will use Theorem (3.1) to determine the precise number.

2We will demonstrate this novel application for Killing tensors of rank 2 in Appendix F.
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If we cannot apply Theorem (3.1), we will obtain a lower bound on the number of

Killing vectors which exist by exhibiting solutions to the Killing equation. A summary

is given in Table 1.

Known dim(T0) dim(T1) dim(T2) Direct Tractor T
Isometry pdsolve pdsolve

5.29 2 4 x x x X 2
35.80(i) 1 5 1 - x X 1
35.80(ii) 3 6 4 3 X X 3
35.80(iii) 3 6 4 3 X X 3
35.80(iv) 4 6 4 4 X X 4
35.80(v) 4 6 4 4 X X 4
35.80(vi) 1 6 2 1 x X 1

12.32 4 4 4 - x x 4

Table 1: The tractor approach for Killing vectors for a few metrics.

We indicate the number of Killing vectors known previous to the application

of the tractor approach by means of the “Known Isometry” column. The “Direct

pdsolve” column indicates whether the Killing vectors could be found by solving

the Killing equations directly in Maple using the “pdsolve” command: a checkmark

indicates that the Killing equations were solved directly, and an “x” indicates that

the Maple computation was aborted. Maple computations were aborted either due

to the seemingly abnormal amount of required time or due to memory constraints

imposed by the computer used. The “Tractor pdsolve” column indicates whether

the Killing vectors could be found by means of the reduced Killing equations. A

checkmark in this column indicates that this computation was achieved by means of

the Maple “pdsolve” command, while an “x” indicates that this Maple computation

was aborted. The column T indicates the number of independent Killing vectors we

obtain using the tractor approach. Dashes indicate that the associated computation

is not needed.



44

The metric in the first entry is the Kerr metric, given explicitly in local coordinates

(t, r, θ, φ) as (Hawkings and Ellis, 1973)

−A− 2mr

A
dt2 − 4amr sin2(θ)

A
dtdφ+

A

a2 − 2mr + r2
dr2 + Adθ2

+
sin2(θ) (−2a2mr cos2(θ) + 2a2mr + A(a2 + r2))

A
dφ2,

where a and m are parameters, and where A = r2 + a2 cos2(θ). This metric will

appear again in section 6.2. It can be easily determined that two Killing vectors of

this metric are ∂t and ∂φ, since the components of the metric neither depend on t nor

on φ. This observation does not answer the question, however, of whether the metric

admits more independent Killing vectors. Our method for determining the precise

number of independent Killing vectors for this metric is as follows.

First, we find a basis for the local sections of T0: that is, a basis for the local

sections of the 0th order reduced tractor bundle. There are four basis elements, which

we denote as W1, W2, W3, and W4. Unfortunately, we were not able to compute a

basis for the local sections of T1 for the Kerr metric: notwithstanding, we still attempt

to find the Killing vectors. We construct a linear combination of the basis elements

of the local sections of T0 (the coefficients being smooth functions):

S = q1(t, r, θ, φ)W1 + q2(t, r, θ, φ)W2 + q3(t, r, θ, φ)W3 + q4(t, r, θ, φ)W4.

The section S is a parallel section if and only if its covariant derivative with respect

to the tractor connection ∇̃ vanishes. The equations generated by ∇̃S = 0 can be

solved explicitly using Maple, and it is determined that the dimension of the space of

solutions is 2. Thus, ∂t and ∂φ constitute a basis for the space of Killing vectors.

The metric 35.80(i) is simply 35.80 (Stephani et al., 2003), which is given in local

coordinates (x, y, u, v) as
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dx2 + dy2 − 2H(x, y, u)du2 − 2dudv.

It is clear that ∂v is a Killing vector of this metric, and our methods demonstrate

that, absent additional conditions on the function H, no additional Killing vectors can

exist. However, conditions on H can be imposed which grant the metric additional

Killing vectors. 35.80(ii) is 35.80 with the condition that Hy = 0: in this case, our

methods show that the Killing vectors are

∂v, ∂y, u∂y + y∂v.

Similarly, if Hx = 0, which condition is imposed in 35.80(iii), we get the following

Killing vectors:

∂v, ∂x, u∂x + x∂v.

The metric 35.80(iv) has Hy = 0 and Hu = 0, giving us the Killing tensor ∂u in

addition to those specified for entry 35.80(ii). The metric 35.80(v) has Hx = 0 and

Hu = 0, giving us a Killing vector of ∂u in addition to those in entry 35.80(iii).

Our last examined case of 35.80 is 35.80(vi), where we impose the condition Hxx+

Hyy = 0. We find that, at order 2, the metric admits a maximum of 1 Killing vector,

so that ∂v is the single Killing tensor. It should also be pointed out that there are

other conditions which can be imposed which may yield a higher number of Killing

vectors; for example, Hx = 0 and Hy = 0.

For the metric 12.32 (Stephani et al., 2003), we have s =
√

2 and a = 1, so that

β2 = −3, k =

√
3

2
, b = 2, and F = −1.
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5 The Tractor Connection for Conformal Killing

Vectors.

5.1 Constructing the Tractor Connection

Let M be a pseudo-Riemannian manifold of dimension n > 2.3 A conformal Killing

vector is a vector X which satisfies

X(α;β) =
1

n
Xγ

;γ gαβ . (5.1)

The equations which define the tractor connection for conformal Killing vectors can be

found in the literature (Ashtekar and Magnon-Ashtekar, 1978) and are also presented

in this section. We define the skew-symmetric tensor Y as

Yαβ = X[α;β] , (5.2)

and the scalar function F = 1
n
Xγ

;γ , so that for a conformal Killing vector X,

Xα;β = X[α;β] +X(α;β) = Yαβ + Fgαβ . (5.3)

With our definition of Y , we also have

Yαβ;γ =
1

2

(
Xα;βγ −Xβ;αγ

)
,

which becomes, after using the formula for the commutator of the covariant derivative

for X,

Yαβ;γ =
1

2

(
Xα;γβ −Xβ;γα +Rδ

αβγXδ −Rδ
βαγXδ

)
.

3An account of the n = 2 case will be given in section 5.1.1.
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Using equation (5.1), we interchange the first two indices of the terms involving X to

rewrite this as

Yαβ;γ = 2gγ[αF;β] +
1

2

(
Xγ;βα −Xγ;αβ +Rν

γβαXν

)
. (5.4)

Lastly, we use the commutator of the covariant derivatives of X to obtain

Yαβ;γ = 2gγ[αF;β] +Rν
γβαXν ,

so that

Yαβ;γ = 2gγ[αZβ] +Rν
γβαXν , (5.5)

where we have defined the tensor Zα as

Zα = F;α . (5.6)

This definition also implies, using the commutator of covariant derivatives of X, that

nZβ;α = Xµ
;µβα (5.7)

=
(
Xµ

;βµ +Rµ
γβµX

γ
)

;α

= Xµ
;βαµ +Rµ

γαµX
γ
;β +Rγ

βµαX
µ
;γ +Rµ

γβµ;αX
γ +Rµ

γβµX
γ
;α .

We find, using equations (5.3) and (5.2), that

Xµ
;βαµ =

(
Y µ

β;α + gµβF;α

)
;µ

=
(
Rν µ

αβ Xν + g µ
α F;β − gαβF;δ g

δµ + gµβF;α

)
;µ

= Rν µ
αβ ;µXν +Rν µ

αβ Xν;µ + g µ
α Zβ;µ − gαβZδ;µgδµ + gµβZα;µ .
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Applying this to equation (5.7), we get

nZβ;α − g µ
α Zβ;µ + gαβZδ;µg

δµ − gµβZα;µ = Rν µ
αβ ;µXν +Rν µ

αβ Xν;µ (5.8)

+Rµ
γαµX

γ
;β +Rγ

βµαX
µ
;γ +Rµ

γβµ;αX
γ +Rµ

γβµX
γ
;α .

The left side of equation (5.8) can be written as

Zδ;µ
(
nδδβδ

µ
α − g µ

α δδβ + gαβg
δµ − gµβδ

δ
α

)
= Zδ;µ

(
nδδβδ

µ
α − δµαδδβ + gαβg

δµ − δµβδ
δ
α

)
= Zδ;µ

(
(n− 2)δδβδ

µ
α + gαβg

δµ
)
,

so that

gαβZδ;µ
(
(n− 2)δδβδ

µ
α + gαβg

δµ
)

= (2n− 2)Zµ
;µ .

On the other hand, the right side of equation (5.8) can be written, using equation

(5.3), as

−Rαβ;νX
ν − 2RαβF −Rγ

αYγβ −R
γ
βYγα .

Thus,

(2n− 2)Zµ
;µ = −R;νX

ν − 2FR,

and so, for n 6= 2,

Zβ;α = (5.9)
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1

n− 2

(
−Xν

(
Rαβ −

1

2n− 2
Rgαβ

)
;ν

− 2F

(
Rαβ −

1

2n− 2
Rgαβ

)
+ 2Rγ

(αYβ)γ

)
.

Equations (5.3), (5.5), (5.6), and (5.9) define the Frobenius system from which the

tractor connection is constructed. In the present case, and for a manifold M with

coordinates xα, the tractor bundle is π : T → M , with T = T ∗(M) ⊕
∧2(M) ⊕

R ⊕ T ∗(M). The coordinates are (xα, aα, bαβ, c, dα), where bαβ = −bαβ: thus, the

dimension of the fibers is n(n+ 3)/2 + 1 for n > 2.

The lift up to the tractor bundle is given by aα(x) = Xα (x), bαβ(x) = Yαβ (x),

c(x) = F (x), and dα(x) = Zα(x). If Xα is a conformal Killing vector, the lift is a

parallel section by construction. Conversely, given the parallel section (aα, bαβ, c, dα),

the covariant vector defined by Xα = aα is a covariant conformal Killing vector.

As with Killing vectors, we have an important application of the lift.

Lemma 5.1. Let X be a conformal Killing vector, and suppose that X̃ is the lift of

X up to the tractor bundle. X̃ vanishes at a point if and only if X = 0.

As in the case of Killing vectors, the equations which define the tractor connection

for conformal Killing vectors is Frobenius. Thus, lemma (5.1) follows from corollary

(2.1.1).

Corollary 5.0.1. The conformal Killing vectors X1 . . . Xk are linearly independent

over R if and only if their lifts up to the tractor bundle are linearly independent at a

single point.

Proof. Let X1 . . . Xk be conformal Killing vectors, and let X̃1 . . . X̃k be their lifts up

to the tractor bundle at a point. By the previous lemma, a1X̃1 +a2X̃2 + . . . akX̃k = 0

if and only if a1X1 + a2X2 + . . . akXk = 0. Thus, the linear independence of one set

implies the linear independence of the other.

As with Killing vectors, this simplifies the issue of determining linear independence

for conformal Killing vector fields.
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5.1.1 Conformal Killing vectors in dimension 2

Our discussion of the tractor connection for conformal Killing vectors has been limited

to the case where the dimension of the manifold is strictly greater than 2. We now

briefly consider conformal Killing vectors on a manifold of dimension n = 2.

For a metric g in the plane, there exist coordinates (x, y) so that g can be written

in the form

g = λ
(
dx2 + dy2

)
(5.10)

for some smooth function λ = λ(x, y). A metric g2 are said to be conformally equiva-

lent to a metric g1 if there exists a positive function φ such that g1 = φg2 (Dairbekov

and Sharafutdinov, 2011). Thus, every metric in the plane is conformally equivalent

to the metric

g̃ = dx2 + dy2.

In particular, any metric in the plane will have the same conformal Killing vectors as

g̃. We define X as

X = pdx+ qdy

for p = p(x, y) and q = q(x, y). In light of equation (5.1), X is a conformal Killing

vector of g̃ if and only if the following system of equations is satisfied:

px − qy = 0

py + qx = 0.

(5.11a)

(5.11b)

(5.11) is equivalent to the Cauchy-Riemann equations for z(x, y) = p(x, y) + iq(x, y).

Thus, the solution space for (5.11) is infinite dimensional.
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On the other hand, the number of parallel sections for any linear connection on a

finite-dimensional vector bundle is always finite. Therefore, for n = 2, equation (5.1)

cannot give us the interpretation of parallel sections of a finite dimensional vector

bundle.

5.2 Conformal Killing vectors on non-conformally flat solu-

tions

We will now employ the tractor approach to the study of conformal Killing vectors

for exact solutions appearing in section 35.4.4 of Exact Solutions to Einstein’s Field

Equations (Stephani et al., 2003). Our goal is to determine the precise number of

conformal Killing vectors which various metrics admit. As with Killing vectors, we

will employ the tractor approach not only to determine an upper bound on the number

of conformal Killing vectors, but also in hopes of applying theorem (3.1) to get the

precise count. If theorem (3.1) cannot be applied, we will obtain a lower bound on the

number of conformal Killing vectors by exhibiting solutions to the Killing equation

for conformal Killing vectors. Our calculations in Maple are summarized in Table 2.

Killing dim(T0) dim(T1) dim(T2) Direct Tractor C T
vectors pdsolve pdsolve

35.74 4 6 6 - X X 2 0
35.75(i) 4 6 6 - X X 2 r
35.75(ii) 4 6 6 - X X 2 r
35.76(i) 4 6 5 5 X X 1 0
35.76(ii) 4 6 5 5 X X 1 0

35.77 2 4 4 - X X 2 0
35.78 1 3 3 - X X 2 0
35.79 0 4 1 0 - - 0 0
35.80 1 8 x - x x

Table 2: Metrics from section 35.4.4.
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We indicate, for each metric, the number of independent Killing vectors, as well as

the dimensions of Tn for n = 0, 1, 2. We indicate whether the conformal Killing vectors

were found by solving the Killing equation directly as well as whether they were

found by solving the tractor-simplified Killing equations with the columns “Direct

pdsolve” and “Tractor pdsolve,” respectively. A checkmark indicates the affirmative

result in the respective column, whereas an “x” indicates that the Maple calculation

was aborted after a reasonable time with no results. Similarly, an “x” in other

columns indicates that the Maple computation was aborted after some time. Column

C denotes the number, as determined by the tractor approach, of conformal Killing

vectors which are not also Killing vectors. Column T indicates the number of Killing

tensors that were generated from the conformal Killing vectors using equation (2.12):

an “r” indicates that only metric reducible Killing tensors were found.

Metric 35.80 appeared in section 4.2, and it was determined that the space of

Killing vectors had dimension 1, at least where there are no additional constraints on

the function H(u, x, y). We find that the metric 35.80 admits at most 8 conformal

Killing vectors, including the Killing vector itself, though we are unable to determine

whether the dimension of the space of conformal Killing vectors is precisely 8.

For metric 35.74, we have chosen n = 2. 35.75(i) is metric 35.75 with k = 1, while

35.75(ii) has k = −1. 35.76(i) is metric 35.76 with b = a, c = 4a(1 − a)(1 − 2a);

35.76(ii) has b = (a− 1)/(2a− 1) and c = 4a. For 35.76(i) and 35.76(ii), a = 2. 35.77

has a = 1 = b, and 35.78 has α = 2.

Metric 35.75(i) is given as

6

Λr2 + 3
dr2 + r2dx2 + r2 sin2(x)dy2 − r2dt2.

The covariant conformal Killing vector from which we constructed a Killing tensor is
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r√
Λr2 + 3

dr,

and the associated Killing tensor is

−r
4

6
dx2 − r4 sin2(x)

6
dy2 +

r4

6
dt2.

It can be shown that this Killing tensor is expressible as a linear combination of the

reducible Killing tensors and the metric itself. Metric 35.75(ii) is similar, and is given

explicitly as

6

Λr2 − 3
dr2 + r2dx2 + r2 sinh2(x)dy2 − r2dt2.

The covariant conformal Killing vector from which we constructed a Killing tensor is

r√
Λr2 − 3

dr,

and the associated Killing tensor is

−r
4

6
dx2 − r4 sinh2(x)

6
dy2 +

r4

6
dt2.

As in the previous case, it can be shown that this Killing tensor is expressible as a

linear combination of the reducible Killing tensors and the metric itself.
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6 Killing tensors of rank two

6.1 Constructing the Tractor Connection

The equations that define the Tractor connection for Killing tensors of rank two

are already known (Hauser and Malhiot, 1975a). In this section, we rederive these

equations for arbitrary torsion free connections. The tractor connection equations are

then further simplified in the case of metric connections.

Let K be a symmetric tensor of rank 2. By definition, K is a Killing tensor of

rank 2 if

K(αβ;γ) = 0. (6.1)

We now define the tensor L as

Lαβγ = −2Y
α γ
β

Kγα;β , (6.2)

and the tensor M as

Mαβγδ = −2Y
α γ
β δ

Kγα;βδ . (6.3)

We note that L[αβ]γ = Lαβγ, and that L[αβγ] = 0. Similarly, we note that the tensor

M has the symmetries of the Riemann curvature tensor:

Mαβγδ = M[αβ][γδ] = Mγδαβ . (6.4)

The derivation of the tractor equations has been organized into three parts. In

the first part, we give the covariant derivative of K in terms of L. Next, we give the

covariant derivative of L in terms of K and M , valid for any torsion free connection–
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the equations for the metric connection are then derived. Lastly, we give the covariant

derivative of M in terms of both K and L, first for any torsion free connection and

then in the case of the metric connection.

6.1.1 The First Tractor Equation

We will now assume that K is a Killing tensor, and we will derive the formula for the

covariant derivative of K. From the definition of the tensor L,

Lαβγ = Kβγ;α −Kαγ;β . (6.5)

From equation (6.5), we have

Kβγ;α = Lαβγ +Kαγ;β . (6.6)

Using the fact that Kαβ = Kβα as well as the fact that K(αβ;γ) = 0, we get

Kβγ;α = Lαβγ −Kαβ;γ −Kβγ;α . (6.7)

By equation (6.5), Kαβ;γ = −Lαγβ +Kγβ;α , so that equation (6.7) becomes

Kβγ;α = Lαβγ + Lαγβ −Kγβ;α −Kβγ;α , (6.8)

which implies that

Kβγ;α =
2

3
Lα(βγ). (6.9)

Equation (6.9) is the first equation which will define the tractor connection for Killing

tensors of rank 2. We note that this equation is valid when covariant differentiation

is taken with respect to any symmetric connection.
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6.1.2 The Second Tractor Equation

We now turn our attention to the covariant derivative of L. Due to equation (6.9),

and by the definition of the tensor M in (6.3), we have

Mαβγδ = −2Y
α γ
β δ

Kγα;βδ = −2

3
Y
α γ
β δ

Lβ(γα);δ (6.10)

= −2

3
Y
α
β

Y
γ
δ

(
Lβ(γα);δ + Lδ(γα);β

)
=

1

3

(
Lαβ[γ;δ] + Lγδ[α;β]

)
+

1

3
Y
α
β

Y
γ
δ

(
Lγβα;δ + Lαδγ;β

)
.

Using the fact that L[αβγ] = 0, we get

1

3
Y
α
β

Y
γ
δ

(
Lγβα;δ + Lαδγ;β

)
(6.11)

=
1

12

(
Lγβα;δ − Lγαβ;δ − Lδβα;γ + Lδαβ;γ + Lαδγ;β − Lβδγ;α − Lαγδ;β + Lβγδ;α

)
=

1

6

(
Lαβ[γ;δ] + Lγδ[α;β]

)
.

Combining equations (6.10) and (6.11), we can express the tensor M in terms of the

tensor L as follows:

Mαβγδ =
1

2

(
Lαβ[γ;δ] + Lγδ[α;β]

)
. (6.12)

Next, we note that, using equation (6.5),

Lαβ(γ;δ) =
1

2

(
Kβγ;αδ −Kαγ;βδ +Kβδ;αγ −Kαδ;βγ

)
, (6.13)

and since K(αγ;δ) = 0 = −K(βγ;δ) ,
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Lαβ(γ;δ) =
1

2

(
Kβγ;αδ −Kαγ;βδ +Kβδ;αγ −Kαδ;βγ + 3K(αγ;δ)β − 3K(βγ;δ)α

)
, (6.14)

which, after expanding the terms K(αγ;δ)β) and K(βγ;δ)α) , can we written as

Lαβ(γ;δ) = Kβγ;[αδ] +Kαγ;[δβ] +Kδα;[γβ] +Kβδ;[αγ] +Kγδ;[αβ] . (6.15)

The terms on the right are simply commuting covariant derivatives of Kβγ :

Kβγ;[αδ] =
1

2

(
Rν

βαδKνγ +Rν
γαδKβν

)
. (6.16)

Thus, equation (6.15) becomes

Lαβ(γ;δ) =
1

2

(
Rν

βαδKνγ +Rν
γαδKβν

)
+

1

2

(
Rν

αδβKνγ +Rν
γδβKαν

)
+

1

2

(
Rν

δγβKνα +Rν
αγβKδν

)
+

1

2

(
Rν

βαγKνδ +Rν
δαγKβν

)
+

1

2

(
Rν

γαβKνδ +Rν
δαβKγν

)
.

Collecting the terms above on Kαβ , and using the symmetries of the Riemann curva-

ture tensor, we find that

Lαβ(γ;δ) = KνγR
ν
δαβ +KνδR

ν
γαβ + 2Rν

(γδ)[βKα]ν . (6.17)

On the other hand, equation (6.5) gives us

Lαβ[γ;δ] − Lγδ[α;β]

=
1

2

(
Kβγ;αδ −Kαγ;βδ −Kβδ;αγ +Kαδ;βγ

)
− 1

2

(
Kδα;γβ −Kγα;δβ −Kδβ;γα +Kγβ;δα

)
,

which can be written as
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Lαβ[γ;δ] − Lγδ[α;β] = Kβγ;[αδ] −Kαγ;[βδ] +Kαδ;[βγ] −Kβδ;[αγ] .

Using equation (6.16) and the symmetries of the Riemann curvature tensor, we find

that

Lαβ[γ;δ] − Lγδ[α;β] =
1

2

(
KγνR

ν
δαβ +KδνR

ν
γβα +KβνR

ν
αγδ +KανR

ν
βδγ

)
. (6.18)

By equation (6.12),

Lαβ[γ;δ] + Lγδ[α;β] = 2Mαβγδ . (6.19)

Adding equations (6.18) and (6.19) gives us

Lαβ[γ;δ] = Mαβγδ +
1

4

(
KγνR

ν
δαβ +KδνR

ν
γβα +KβνR

ν
αγδ +KανR

ν
βδγ

)
. (6.20)

Adding equations (6.20) and (6.17) gives us

Lαβγ;δ = KνγR
ν
δαβ +KνδR

ν
γαβ + 2Rν

(γδ)[βKα]ν +Mαβγδ

+
1

4

(
KγνR

ν
δαβ +KδνR

ν
γβα +KβνR

ν
αγδ +KανR

ν
βδγ

)
,

which can be rewritten as

Lαβγ;δ = Mαβγδ +
5

4
KνγR

ν
δαβ +

3

4
KνδR

ν
γαβ +

3

2
Rν

γδ[βKα]ν +
1

2
Rν

δγ[βKα]ν . (6.21)
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Equation (6.21) is the second equation which will define the tractor connection, and

is valid for any symmetric connection. Before addressing the third and final equation,

we wish to show how equation (6.21) can be rewritten in the presence of a metric

connection. Returning to equation (6.15), we write

Lαβ(γ;δ) =
1

2

(
Kµ

βRµγαδ +Kµ
γRµβαδ

)
+

1

2

(
Kµ

αRµγδβ +Kµ
γRµαδβ

)
(6.22)

+
1

2

(
Kµ

δRµαγβ +Kµ
αRµδγβ

)
+

1

2

(
Kµ

βRµδαγ +Kµ
δRµβαγ

)
+

1

2

(
Kµ

γRµδαβ +Kµ
δRµγαβ

)
.

This can be re-written as

Lαβ(γ;δ) =
1

2
Kµ

δ

(
Rµαγβ +Rµβαγ +Rµγαβ

)
+

1

2
Kµ

γ

(
−Rβµαδ −Rαµδβ −Rδµαβ

)
(6.23)

+
1

2

(
Kµ

βRµγαδ +Kµ
αRµγδβ +Kµ

αRµδγβ +Kµ
βRµδαγ

)
,

which can be written, using the Bianchi identity, as

Lαβ(γ;δ) = Kµ
γRδµβα +Kµ

δRγµβα +Kµ
αRβ(γδ)µ −K

µ
βRα(δγ)µ, (6.24)

or simply

Lαβ(γ;δ) = 2Kµ
(γRδ)µβα + 2Kµ

[αRβ](γδ)µ. (6.25)

On the other hand, equation (6.5) gives us

Lαβ[γ;δ] − Lγδ[α;β] (6.26)
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=
1

2

(
Kβγ;αδ −Kαγ;βδ −Kβδ;αγ +Kαδ;βγ

)
− 1

2

(
Kδα;γβ −Kγα;δβ −Kδβ;γα +Kγβ;δα

)
,

which can be written as

Lαβ[γ;δ] − Lγδ[α;β] = Kβγ;[αδ] −Kαγ;[βδ] +Kαδ;[βγ] −Kβδ;[αγ] . (6.27)

Applying equation (6.16) and the Bianchi identity to equation (6.27) gives us

Lαβ[γ;δ] − Lγδ[α;β] =
1

2

(
Kµ

δRαβγµ +Kµ
γRβαδµ +Kµ

βRγδµα +Kµ
αRδγµβ

)
, (6.28)

which can be written as

Lαβ[γ;δ] − Lγδ[α;β] = Rγδµ[αK
µ

β] −Rαβµ[γK
µ

δ] . (6.29)

By equation (6.12),

Lαβ[γ;δ] + Lγδ[α;β] = 2Mαβγδ . (6.30)

Adding equations (6.29) and (6.30) implies that

Lαβ[γ;δ] =
1

2
Rγδµ[αK

µ
β] −

1

2
Rαβµ[γK

µ
δ] +Mαβγδ . (6.31)

Adding equations (6.31) and (6.25) gives us

Lαβγ;δ = 2Kµ
(γRδ)µβα + 2Kµ

[αRβ](γδ)µ +
1

2
Rγδµ[αK

µ
β] −

1

2
Rαβµ[γK

µ
δ] +Mαβγδ . (6.32)

We will now rewrite this expression, starting with expanding the right hand side:



61

Lαβγ;δ = Mαβγδ + 2Kµ
(γRδ)µβα +

1

2
Kµ

αRβγδµ +
1

2
Kµ

αRβδγµ −
1

2
Kµ

βRαγδµ (6.33)

−1

2
Kµ

βRαδγµ +
1

4
RγδµαK

µ
β −

1

4
RγδµβK

µ
α −

1

4
RαβµγK

µ
δ +

1

4
RαβµδK

µ
γ .

Using the symmetries of the Riemann curvature tensor, we write this as

Lαβγ;δ = Mαβγδ + 2Kµ
(γRδ)µβα −

1

2
Kµ

δRαβγµ −
1

2
Kµ

γRαβδµ (6.34)

+
3

4

(
Kµ

δRαβγµ +Kµ
βRδαγµ +Kµ

αRβδγµ

)
+

1

4

(
Kµ

γRαβδµ +Kµ
βRγαδµ +Kµ

αRβγδµ

)
.

Finally, we write equation (6.34) as

Lαβγ;δ = Mαβγδ + 3Rαβµ(γK
µ

δ) +
9

4
Kµ

[δRαβ]γµ +
3

4
Kµ

[γRαβ]δµ. (6.35)

Equation (6.35) bears a stronger resemblance than equation (6.21) to that which is

found in existing literature (Hauser and Malhiot, 1975a). Nevertheless, our software

program will incorporate equation (6.21), which is valid for any torsion free connec-

tion.

6.1.3 The Third Tractor Equation

Finally, we will derive the formula for the covariant derivative of M . Differentiating

equation (6.17) gives us

Lαβ(γ;µ)δ = Kνγ;δR
ν
µαβ +KνγR

ν
µαβ;δ +Kνµ;δR

ν
γαβ +KνµR

ν
γαβ;δ +KανR

ν
(γµ)β;δ
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+Rν
(γµ)βKαν;δ −KβνR

ν
(γµ)α;δ −Kβν;δR

ν
(γµ)α,

so that, using equation (6.9) and simplifying, we get

Lαβ(γ;µ)δ −Lαβ(δ;µ)γ = Rν
µαβLδγν + 2Rν

µαβ;[δKγ]ν +Rν
γαβLδ(µν)−Rν

δαβLγ(µν) (6.36)

+Rν
(γµ)βLδ(να) −Rν

(δµ)βLγ(να) −Rν
(γµ)αLδ(νβ) +Rν

(δµ)αLγ(νβ)

+Kνµ

(
Rν

γαβ;δ −Rν
δαβ;γ

)
+Kαν

(
Rν

(γµ)β;δ −Rν
(δµ)β;γ

)
−Kβν

(
Rν

(γµ)α;δ −Rν
(δµ)α;γ

)
.

Meanwhile, by expanding each term and, subsequently, writing commuting covariant

derivatives in terms of the Riemann curvature tensor, we find that

Lαβ(γ;µ)δ − Lαβ(δ;µ)γ =
1

2
Lαβγ;µδ +

1

2
Lαβµ;γδ −

1

2
Lαβδ;µγ −

1

2
Lαβµ;δγ (6.37)

= Lαβµ;[γδ] +
1

2
Lαβγ;µδ −

1

2
Lαβδ;µγ

= Lαβµ;[γδ] +
1

2
Lαβγ;µδ −

1

2
Lαβδ;µγ −

1

2
Lαβγ;δµ +

1

2
Lαβγ;δµ +

1

2
Lαβδ;γµ −

1

2
Lαβδ;γµ

= Lαβµ;[γδ] + Lαβγ;[µδ] + Lαβδ;[γµ] + Lαβ[γ;δ]µ

=
1

2

(
LνβµR

ν
αγδ + LανµR

ν
βγδ + LνβγR

ν
αµδ + LανγR

ν
βµδ + LνβδR

ν
αγµ + LανδR

ν
βγµ

)
+Lαβ[γ;δ]µ + LαβνR

ν
µγδ.

Differentiating equation (6.20) and applying equation (6.9) gives us

Lαβ[γ;δ]µ =
1

4

(
Rν

δαβLµ(νγ) +KγνR
ν
δαβ;µ +Rν

γβαLµ(νδ) +KδνR
ν
γβα;µ

)
(6.38)
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+
1

4

(
Rν

αγδLµ(νβ) +KβνR
ν
αγδ;µ +Rν

βδγLµ(να) +KανR
ν
βδγ;µ

)
+Mαβγδ;µ .

Combining equations (6.36), (6.37), and (6.38), we get

Mαβγδ;µ = Rν
µαβLδγν + 2Rν

µαβ;[δKγ]ν +Rν
γαβLδ(µν) −Rν

δαβLγ(µν) (6.39)

+Rν
(γµ)βLδ(να) −Rν

(δµ)βLγ(να) −Rν
(γµ)αLδ(νβ) +Rν

(δµ)αLγ(νβ)

+Kνµ

(
Rν

γαβ;δ −Rν
δαβ;γ

)
+Kαν

(
Rν

(γµ)β;δ −Rν
(δµ)β;γ

)
−Kβν

(
Rν

(γµ)α;δ −Rν
(δµ)α;γ

)
.

−1

2

(
LνβµR

ν
αγδ + LανµR

ν
βγδ + LνβγR

ν
αµδ + LανγR

ν
βµδ + LνβδR

ν
αγµ + LανδR

ν
βγµ

)
−1

4

(
Rν

δαβLµ(νγ) +KγνR
ν
δαβ;µ +Rν

γβαLµ(νδ) +KδνR
ν
γβα;µ

)
−1

4

(
Rν

αγδLµ(νβ) +KβνR
ν
αγδ;µ +Rν

βδγLµ(να) +KανR
ν
βδγ;µ

)
− LαβνRν

µγδ.

Equation (6.39) is the third and final equation which defines the tractor connection

for Killing tensors of rank 2, and is valid for any torsion free connection. As with

the second equation, we wish to rewrite this equation under the assumption that the

connection on the base manifold is the metric connection. Differentiating equation

(6.25) gives us

Lαβ(γ;µ)δ =
(
2Kν

(γRµ)νβα + 2Kν
[αRβ](γµ)ν

)
;δ

(6.40)

=
1

2
Kν

α;δ

(
Rβγµν +Rβµγν

)
− 1

2
Kν

β;δ

(
Rαγµν +Rαµγν

)
+

1

2
Kν

α

(
Rβγµν;δ +Rβµγν;δ

)
− 1

2
Kν

β

(
Rαγµν;δ +Rαµγν;δ

)
+Kν

γ;δRµνβα +Kν
γRµνβα;δ +Kν

µ;δRγνβα +Kν
µRγνβα;δ.

This implies, after rearranging terms, that
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Lαβ(γ;µ)δ − Lαβ(δ;µ)γ = Rµνβα

(
Kν

γ;δ −Kν
δ;γ

)
(6.41)

+Kν
µ

(
Rγνβα;δ −Rδνβα;γ

)
+
(
Kν

γRµνβα;δ −Kν
δRµνβα;γ

)
+

1

2
Kν

α

(
Rµνβγ;δ +Rβµγν;δ −Rµνβδ;γ −Rβµδν;γ

)
+

1

2
Kν

β

(
Rµναγ;δ +Rαµγν;δ −Rµναδ;γ −Rαµδν;γ

)
−R ν

αβγ Kµν;δ +R ν
αβδ Kµν;γ +R ν

β(µγ) Kνα;δ

−R ν
α(µγ) Kνβ;δ −R ν

β(µδ) Kνα;γ +R ν
α(µδ) Kνβ;γ .

Using equation (6.5), the fact that the tensor K is symmetric, and symmetries of the

Riemann curvature tensor, we rewrite this as

Lαβ(γ;µ)δ − Lαβ(δ;µ)γ = R ν
αβµ Lγδν −Rαβγδ;νK

ν
µ + 2Rµναβ;[γK

ν
δ] (6.42)

+Rµνγδ;[αK
ν

β] +Kν
[αRβ]µγδ;ν

−R ν
αβγ Kµν;δ +R ν

αβδ Kµν;γ +R ν
β(µγ) Kνα;δ

−R ν
α(µγ) Kνβ;δ −R ν

β(µδ) Kνα;γ +R ν
α(µδ) Kνβ;γ .

However, using equation (6.9), we see that

1

3
δϕχαβδ

ψω
γδ

(
R ν
ϕχψ Lω(µν) + 2R ν

ϕ(µψ) Lω(νχ)

)
(6.43)

= −R ν
αβγ Kµν;δ +R ν

αβδ Kµν;γ +R ν
β(µγ) Kνα;δ

−R ν
α(µγ) Kνβ;δ −R ν

β(µδ) Kνα;γ +R ν
α(µδ) Kνβ;γ ,

so that equation (6.42) can be written as
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Lαβ(γ;µ)δ−Lαβ(δ;µ)γ = R ν
αβµ Lγδν −Rαβγδ;νK

ν
µ + 2Rµναβ;[γK

ν
δ] +Rµνγδ;[αK

ν
β] (6.44)

+Kν
[αRβ]µγδ;ν −

1

3
δϕχαβδ

ψω
γδ

(
R ν
ϕχψ Lω(µν) + 2R ν

ϕ(µψ) Lω(νχ)

)
.

Meanwhile, by expanding each term, we see that

Lαβ(γ;µ)δ − Lαβ(δ;µ)γ =
1

2
Lαβγ;µδ +

1

2
Lαβµ;γδ −

1

2
Lαβδ;µγ −

1

2
Lαβµ;δγ (6.45)

= Lαβµ;[γδ] +
1

2
Lαβγ;µδ −

1

2
Lαβδ;µγ.

However,

Lαβµ;[γδ] +
1

2
Lαβγ;µδ −

1

2
Lαβδ;µγ = (6.46)

Lαβµ;[γδ] +
1

2
Lαβγ;µδ −

1

2
Lαβδ;µγ −

1

2
Lαβγ;δµ +

1

2
Lαβγ;δµ +

1

2
Lαβδ;γµ −

1

2
Lαβδ;γµ

= Lαβµ;[γδ] + Lαβγ;[µδ] + Lαβδ;[γµ] + Lαβ[γ;δ]µ.

= Lαβ[γ;δ]µ +
1

2
Lαβν

(
Rν

µγδ +Rν
γµδ +Rν

δγµ

)
+

1

2

(
LνβµR

ν
αγδ + LανµR

ν
βγδ + LνβγR

ν
αµδ + LανγR

ν
βµδ + LνβδR

ν
αγµ + LανδR

ν
βγµ

)
.

We see that we can rewrite the second term in the final expression on equation (6.46)

as follows:

1

2
Lαβν

(
Rν

µγδ +Rν
γµδ +Rν

δγµ

)
=

1

2
L ν
αβ

(
Rµνδγ +Rγνδµ +Rδνµγ

)
(6.47)

=
1

2
L ν
αβ

(
Rµνδγ −Rµνγδ

)
= −R ν

γδµ Lαβν .
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Additionally, we see that

1

2
δϕχαβδ

ψω
γδ

(
R ν
µψϕ Lχνω −

1

2
R ν
ψωϕ Lχνµ

)
(6.48)

=
1

2

(
R ν
µγα Lβνδ −R ν

µδα Lβνγ −R ν
µγβ Lανδ +R ν

µδβ Lανγ
)

−1

4

(
R ν
γδα Lβνµ −R ν

δγα Lβνµ −R ν
γδβ Lανµ +R ν

δαβ Lανµ
)

= −1

2

(
LνβµR

ν
αγδ + LανµR

ν
βγδ + LνβγR

ν
αµδ + LανγR

ν
βµδ + LνβδR

ν
αγµ + LανδR

ν
βγµ

)
.

Applying equations (6.47) and (6.48) to equation (6.46), we are left with

Lαβ(γ;µ)δ−Lαβ(δ;µ)γ = −R ν
γδµ Lαβν+Lαβ[γ;δ]µ−

1

2
δϕχαβδ

ψω
γδ

(
R ν
µψϕ Lχνω −

1

2
R ν
ψωϕ Lχνµ

)
.

(6.49)

Differentiating equation (6.31) gives us

Lαβ[γ;δ]µ = Mαβγδ;µ +
1

4
Rγδνα;µK

ν
β +

1

4
RγδναK

ν
β;µ −

1

4
Rγδνβ;µK

ν
α −

1

4
RγδνβK

ν
α;µ

(6.50)

−1

4
Rαβνγ;µK

ν
δ −

1

4
RαβνγK

ν
δ;µ +

1

4
Rαβνδ;µK

ν
γ +

1

4
RαβνδK

ν
γ;µ .

Now, we apply equation (6.9) to write the terms involving the covariant derivative of

K as terms involving the tensor L. The result is

Lαβ[γ;δ]µ = Mαβγδ;µ −
1

6
R ν
γδα Lµ(νβ) +

1

6
R ν
γδβ Lµ(να) +

1

6
R ν
αβγ Lµ(νδ) −

1

6
RαβδνLµ(νγ)

(6.51)

−1

4

(
Rγδνα;µK

ν
β +Rγδβν;µK

ν
α +Rαβγν;µK

ν
δ +Rαβνδ;µK

ν
γ

)
.

We now combine equations (6.44), (6.49), and (6.51) to obtain the following:
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Mαβγδ;µ = −Rαβγδ;νK
ν
µ (6.52)

+δϕχαβδ
ψω
γδ

(
1

2
R ν
µψϕ Lχνω −

1

4
R ν
ψωϕ Lχνµ −

1

3
R ν
ϕχψ Lω(µν) −

2

3
R ν
ϕ(µψ) Lω(νχ)

)
+R ν

γδµ Lαβν+R ν
αβµ Lγδν+

1

6
R ν
γδα Lµ(νβ)−

1

6
R ν
γδβ Lµ(να)−

1

6
R ν
αβγ Lµ(νδ)+

1

6
R ν
αβδ Lµ(νγ)

+2Rµναβ;[γK
ν

δ] +Kν
[αRβ]µγδ;ν +Rµνγδ;[αK

ν
β] +

1

2

(
Kν

[βRα]νγδ;µ +Kν
[γRδ]ναβ;µ

)
.

While equation (6.52) is valid if covariant differentiation is taken with respect to

the metric connection, and more closely resembles the equations found in existing

literature (Hauser and Malhiot, 1975a), it is equation (6.39) that is implemented in

the software program. This is due to the fact that equation (6.39) is valid not only

for the metric connection, but for any torsion free connection.

6.1.4 Summary

For Killing tensors of rank 2, and for a manifold M with coordinates xα, the tractor

bundle is π : T → M, where T = S2(M) ⊕ Y3(M) ⊕ Y4(M), Y3 is the set of type

(0, 3) tensors whose symmetry is that of Lαβγ, and where Y4 is the set of type (0, 4)

tensors whose symmetry is that of Mαβγδ . For a general torsion free connection,

the equations which define the tractor connection are (6.9), (6.21), and (6.39). The

coordinates are (xα, aαβ, bαβγ, cαβγδ), where aαβ = aβα, and the symmetries of bαβγ

and cαβγδ are that of Lαβγ and Mαβγδ , respectively. The dimension of the fibers of T

is n(n+ 1)2(n+ 2)/12, which for n = 2 is 6 and for n = 4 is 50.

The lift onto the tractor bundle is then given by aαβ(x) = Kαβ (x), bαβγ(x) =

Lαβγ(x), and cαβγδ(x) = Mαβγδ (x). By construction, this lift is a parallel section

if Kαβ is a Killing tensor. Conversely, given a parallel section (aαβ, bαβγ, cαβγδ), the

tensor Kαβ defined by Kαβ (x) = aαβ(x) is a Killing tensor of rank 2. This is due to

the fact that, by equation (6.9),
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K(αβ;γ) = a(αβ;γ) =
2

3
Y
α β γ bα(βγ) = 0

by the symmetries of bαβγ.

As with Killing vectors and conformal Killing vectors, we have an important ap-

plication of the lift of Killing tensors (of rank 2):

Lemma 6.1. Let X be a Killing tensor of rank 2, and suppose that X̃ is the lift of

X up to the tractor bundle. X̃ vanishes at a point if and only if X = 0.

As in the case of Killing vectors and conformal Killing vectors, the equations which

define the tractor connection for Killing tensors of rank 2–namely (6.9), (6.21), and

(6.39)–form a Frobenius system of equations in the sense of equation (2.2). Thus,

lemma (6.1) follows from corollary (2.1.1).

Corollary 6.0.1. The rank 2 Killing tensors X1 . . . Xk are linearly independent over

R if and only if their lifts up to the tractor bundle are linearly independent at a single

point.

Proof. Let X1 . . . Xk be rank 2 Killing tensors, and let X̃1 . . . X̃k be their lifts up to

the tractor bundle at a point. By the previous lemma, a1X̃1 + a2X̃2 + . . . akX̃k = 0

if and only if a1X1 + a2X2 + . . . akXk = 0. Thus, the linear independence of one set

implies the linear independence of the other.

This result is of particular importance to us: though it closely resembles results

for Killing vectors and conformal Killing vectors, it is of particular importance in the

study of Killing tensors of rank 2. When we apply the tractor approach to Killing

tensors, we will examine metrics for which the Killing vectors are already known.

One can always use the (covariant) Killing vectors to generate a set of Killing tensors;

however, it is not always clear whether the resulting set is linearly independent. As

the tractor approach allows us to obtain upper bounds on the number of independent
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Killing tensors, it is of paramount importance for us to know the dimension of the

space of reducible Killing tensors, as it allows us to identify those metrics for which

irreducible Killing tensors may exist. Though computing a basis for the space of

reducible Killing tensors is often impractical using a direct approach, corollary (6.0.1)

provides a computationally efficient way to find the number of basis elements for the

set of reducible Killing tensors. When this number matches the upper bound obtained

by the tractor approach, no additional Killing tensors can exist.
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6.2 Rank 2 Killing tensors on type D vacuum solutions

Rank 2 Killing tensors are of particular interest in the study of General Relativity,

and not only for the reason of being first integrals of the geodesic equation (Kalnins

and Miller, 1981). We will examine Rank 2 Killing tensors in General Relativity in

this section, the next, and again in section 7.2. In this section, we will calculate

rank 2 Killing tensors for various Petrov type D vacuum solutions of the Einstein

equations. In particular, we will determine whether the Killing tensors generated by

equation (35.51) in the second edition of Exact Solutions to Einstein’s Field Equa-

tions (Stephani et al., 2003) are metric irreducible, and we will attempt to determine

whether there are Killing tensors beyond those found from this equation.

We begin by recalling the definition of a null tetrad. Let M be a Lorentzian

manifold, and let g be the metric on M . Let lα, nα, mα, and m̄α be null vectors,

where m̄α is the complex conjugate of mα. The set {lα, kα,mα, m̄α} is called a null

tetrad if it is a basis for the space M and the following relations hold:

gαβ l
αmβ = gαβ l

αm̄β = gαβk
αmβ = gαβk

αm̄β = 0;

gαβ l
αkβ = 1, gαβm

αm̄β = −1.

This gives rise to the following derivative operators: D = ∇l, ∆ = ∇n, δ = ∇m,

and δ̄ = ∇m̄. Let W be the Weyl tensor of g. The Weyl scalars are defined as:

Ψ0 = −Wαβγδ l
αmβlγmδ, Ψ1 = −Wαβγδ l

αnβlγmδ, Ψ2 = −Wαβγδ l
αmβm̄γnδ,

Ψ3 = −Wαβγδ l
αnβm̄γnδ, Ψ4 = −Wαβγδ n

αm̄βnγm̄δ.

A principle null direction is a null vector k which satisfies the following equation:
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k[µWα]βγ[δ kν]k
βkγ = 0.

For a metric of Petrov type D, there are two distinct principal null directions, which

are important in the study of Killing tensors due to the following, previously known

(Stephani et al., 2003) method of constructing Killing tensors.

Theorem 6.1. Let g be a Petrov type D vacuum solution which is not the charged

Kerr metric, and let kα and lα be the two distinct principle null directions. The

following defines a Killing tensor of g,

Kαβ =
(
A2 +B2

) (
lαkβ + kαlβ

)
+B2gαβ ,

with A+ iB = const (Ψ2)−
1
3 and DA = ∆A = δB = 0.

The proof of this theorem makes use of the two-component spinor formalism (M.

Walker and R. Penrose, 1970). We note that this theorem does not imply that all

Killing tensors of a given type D vacuum solution take this form, nor does it imply

that the Killing tensor so defined is irreducible.

Accordingly, we examine the utility of this result by examining several known

vacuum type D solutions of the Einstein field equations, producing, for each metric,

Killing tensors of rank 2 using theorem (6.1). We have examined metrics from Exact

Solutions to Einstein’s Field Equations (Stephani et al., 2003) and from The Large

Scale Structure of Space-Time (Hawkings and Ellis, 1973). We will list the examined

metrics by chapter and equation number before explaining the results.

We will begin with metrics from Exact Solutions to Einstein’s Field Equations.

From chapter 13, equation 49; from chapter 15, equations 19, 22, 23, 24, 26, 27, 29,

and 30; from chapter 28, equations 21, 24, and 25. The metrics from The Large Scale

Structure of Space-Time come from chapter 5, and are equations 21 and 29.

With only one exception, each of the Killing tensors produced using theorem (6.1)
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are metric reducible, the exception being the Kerr metric in equation 29 from chapter

5 of The Large Scale Structure of Space-Time. Explicitly, this metric is given in

coordinates (t, r, θ, φ) as

g = −A− 2Mr

A
dt2 − 4aMr sin2(θ)

A
dtdφ+

A

a2 − 2Mr + r2
dr2 + Adθ2 (6.53)

+
sin2(θ) (−2a2Mr cos2(θ) + 2a2Mr + A(a2 + r2))

A
dφ2,

where a and M are parameters, and where A = r2 + a2 cos2(θ). The null tetrad is

given with k and l defined by

k =
a2 + r2√

(2A(a2 − 2Mr + r2))
∂t +

√
a2 − 2Mr + r2

2A
∂r

+
a√

2A(a2 − 2Mr + r2)
∂φ,

l =
a2 + r2√

(2A(a2 − 2Mr + r2))
∂t −

√
a2 − 2Mr + r2

2A
∂r

+
a√

2A(a2 − 2Mr + r2)
∂φ,

and with m defined as

m =
ia sin(θ)√

2A
∂t +

1√
2A

∂θ +
i

sin(θ)
√

2A
∂φ.

The principle null directions are k and l. Using theorem (6.1), we recover the following

Killing tensor:

Kαβ = (6.54)

a2 (A− 2mr cos2(θ))

A
dt2 − 2

(
a sin2(θ) (−2a2mr cos2(θ) + a2A+ r2A)

A

)
dtdφ
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− a2 cos2(θ)A

a2 − 2mr + r2
dr2 + r2Adθ2

−
sin2(θ)

(
2a4mr cos2(θ) sin2(θ)− a4A sin2(θ)− 2a2r2A+ a4r2 cos4(θ)− r6

)
A

dφ2.

Knowing from section 4.2 that the metric given in (6.53) admits precisely two

independent Killing vectors, namely ∂t and ∂φ, we can construct the reducible Killing

tensors and find, using Maple, that the Killing tensor defined in equation (6.54) is

indeed metric irreducible (see Appendix E).

Our conclusion for this section is that while theorem (6.1) has been verified to

produce Killing tensors for several known Petrov type D vacuum solutions, it may

not be an efficient tool in the search for metric irreducible Killing tensors as all but

one of the Killing tensors produced were found to be metric reducible.
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6.3 Rank 2 Killing tensors on Homogeneous Exact solutions

In this section, we will present the results of examining many of the homogeneous

spacetimes found in chapter 12 of Exact Solutions to Einstein’s Field Equations

(Stephani et al., 2003). For each metric, we have calculated the tractor connec-

tion as well as the dimensions of Tn for n = 0, 1, 2, where applicable. We have looked

for additional Killing tensors in cases where dim(Tn) is greater than the number of

known, linearly independent, Killing tensors.

We found that, of the 39 metrics examined, 33 of them were found to admit no

metric irreducible Killing tensors. Of the remaining 6, the dimension of the corre-

sponding reduced tractor bundle T2 exceeds the number of metric reducible rank 2

Killing tensors, allowing for the possibility of metric irreducible Killing tensors. Of

these 6 metrics, we have been able to establish the existence of metric irreducible

Killing tensors for 3, namely metric 12.12 with ε = 0 and γ = 0 (known as metric

12.12(ii)), metric 12.13, and metric 12.37 with C(u)2 = u
3
2 + 2u+ u

1
2 . Of these three

metrics, we have explicitly identified the single metric irreducible tensor associated

with metric 12.12(ii). No other metric irreducible Killing tensors have been identified

explicitly.

We organize our calculations based on the dimensions of the isometry group. Table

3 contains the summary of the calculations for metrics with precisely 4 Killing tensors,

Table 4 contains metrics with isometry dimension 5, Table 5 contains metrics with

isometry dimension 6, and Table 6 contains the metrics with isometry dimension 7.

The first column of each table denotes the dimension of the space of metric reducible

Killing tensors of rank 2. The next three columns indicate the dimension of Tn for

n = 0, 1, 2: an entry of “x” indicates that the Maple computation was aborted, either

due to computational memory constraints or due to the computation seeming to take

an abnormal amount of time. A dash in any column indicates that the associated

computation was not attempted.
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A checkmark or an x in the “Direct pdsolve” column indicates that the Killing

equation was solved (resp. unable to be solved) directly in Maple; these symbols are

also used to indicate, in the “Tractor pdsolve” column, whether the reduced Killing

equations were solved. In the final column, denoted T , we indicate the number of

metric irreducible Killing tensors which our methods demonstrate exist.

For a few of the metrics we have examined admitting 6 or 7 Killing vectors, we

have reproduced the known results of (Keane and Tupper, 2010). Therein, rank 2

metric irreducible Killing tensors have been considered and, in many cases, explicitly

calculated, specifically for pp-wave spacetimes of the form

g = −2H(u, y, z)du2 − 2dudv + dy2 + dz2. (6.55)

The results of (Keane and Tupper, 2010) also show that metric 12.12 with ε = 1

and γ = 0 (known as 12.12(iii)) admits no metric irreducible Killing tensors, which

result we obtain in Table 5.

6.3.1 Isometry dimension 4

We begin by examining a few metrics from chapter 12 of (Stephani et al., 2003)

admitting precisely four, previously known Killing vectors. From the Killing vectors,

we generate 4·5
2

= 10 Killing tensors, which combine with the metric itself to produce

11 independent Killing tensors: in each case, the metric is irreducible.

A summary of our results is given in Table 3. We note that for metric 12.30, we

have made choices for the constants appearing in the metric, which choices are A = 1,

B = 2, and F = 3. For these metrics, we conclude that no Killing tensors of rank 2

beyond that of the reducible Killing tensors and the metric itself can exist.
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Reducibles dim(T0) dim(T1) dim(T2) Direct Tractor T
and metric pdsolve pdsolve

12.21 11 15 11 - x X 0
12.14 11 16 11 - x X 0
12.30 11 13 11 - x X 0
12.35 11 18 11 - X X 0

Table 3: Metrics from chapter 12 with isometry dimension 4.

6.3.2 Isometry dimension 5

We now turn our attention to metrics from chapter 12 of (Stephani et al., 2003) which

admit precisely five Killing vectors, which are previously known. These metrics are

12.26, 12.34, 12.36, and 12.38. Four variations of the metric 12.38 are examined. We

denote 12.38 with k = 1 as 12.38(ii); 12.38 with ε = 1 and k = 2 as 12.38(iii); 12.38

with ε = −1 and k = 2 as 12.38(iv); 12.38 with k = 3/2 as 12.38(v).

We can build 5·6
2

= 15 Killing tensors from products of rank 1 Killing tensors. For

metric 12.26, the metric is reducible, and in all other cases, the metric is irreducible:

therefore, we can build 15 or 16 independent, metric reducible Killing tensors, respec-

tively.

We find that in each case, the Killing equations can be dealt with directly, without

the need of the tractor construction. For these cases, we verify that the number of

independent Killing tensors is no more than the dimension of metric reducible Killing

tensors, which is also the number of Killing tensors we find by solving the Killing

equations directly. A summary is made in Table 4.

6.3.3 Isometry dimension 6

We now turn our attention to metrics from chapter 12 (Stephani et al., 2003) which

admit precisely 6 Killing vectors. These metrics are 12.6, 12.18, 12.19, 12.8, 12.16,

12.37 (generically), 12.9, 12.12, and 12.13.

We examine eight variations of the metric 12.8. 12.8(i) has Σ(x, k) = sin(x)
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Reducibles dim(T0) dim(T1) dim(T2) Direct Tractor T
and metric pdsolve pdsolve

12.26 15 23 15 - X X 0
12.34 16 26 16 - X X 0
12.36 16 33 17 16 X X 0

12.38(ii) 16 31 17 16 X X 0
12.38(iii) 16 26 16 - X X 0
12.38(iv) 16 26 16 - X X 0
12.38(v) 16 26 16 - X X 0

Table 4: Metrics from chapter 12 with isometry dimension 5.

and Σ(z, k) = sin(z); 12.8(ii) has Σ(x, k) = sin(x) and Σ(z, k) = z; 12.8(iii) has

Σ(x, k) = sin(x) and Σ(z, k) = sinh(z); 12.8(iv) has Σ(x, k) = x and Σ(z, k) = sin(z);

12.8(v) has Σ(x, k) = x and Σ(z, k) = sinh(z); 12.8(vi) has Σ(x, k) = sinh(x) and

Σ(z, k) = sin(z); 12.8(vii) has Σ(x, k) = sinh(x) and Σ(z, k) = z; 12.8(viii) has

Σ(x, k) = sinh(x) and Σ(z, k) = sinh(z).

We also examine three variations of the metric 12.9. 12.9(i) has Σ(r, k) = sin(r);

12.9(ii) has Σ(r, k) = r; 12.9(iii) has Σ(r, k) = sinh(r). For these metrics, we make

no restrictions on the function a(t) at this time, though it should be noted that it is

possible to obtain different results for different choices of a(t). 12.12(iii) is 12.12 with

ε = 1 and γ = 0.

For metrics with isometry dimension 6, we can generate a maximum of 6·7
2

+1 = 22

independent Killing tensors. However, it appears that, with the exceptions of 12.6

and 12.12(iii), only 21 of these Killing tensors are independent.

Two of our candidates for admitting metric irreducible Killing tensors have isom-

etry dimension 6, namely the metrics 12.37(i) and 12.13. 12.37(i) is 12.37 where C(u)

is treated as an arbitrary function: as such, our findings concerning this metric are

rather inconclusive and results may vary greatly depending on the function C(u)4.

Thus, it is recommended that a particular C(u) be chosen for future study.5

4in fact, the number of Killing vectors themselves appears to depend on the choice of the function
C(u).

5Metric 12.37 is a special case of metric 12.7, though 12.7 is not examined in this thesis.
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Reducibles dim(T0) dim(T1) dim(T2) Direct Tractor T
and metric pdsolve pdsolve

12.6 22 26 22 - X X 0
12.18 21 34 22 21 X X 0
12.19 21 34 22 21 X X 0
12.8(i) 21 34 22 21 x - 0
12.8(ii) 21 36 24 21 x - 0
12.8(iii) 21 34 22 21 x - 0
12.8(iv) 21 36 24 21 x - 0
12.8(v) 21 36 24 21 x - 0
12.8(vi) 21 34 22 21 x - 0
12.8(vii) 21 36 24 21 x - 0
12.8(viii) 21 34 22 21 x - 0

12.16 21 34 22 21 x - 0
12.37(i) 21 35 28 24 - -
12.9(i) 21 31 21 - x - 0
12.9(ii) 21 31 21 - x - 0
12.9(iii) 21 31 21 - x - 0
12.12(iii) 22 31 22 - x - 0

12.13 21 31 22 22 x x 1

Table 5: Metrics from chapter 12 with isometry dimension 6.

At the time of writing, we are unable to explicitly identify the metric irreducible

Killing tensors for metric 12.13, though our methods demonstrate that precisely one

exists, given that dim(T)1 = dim(T)2 = 22, whereas the dimension of the space of

metric reducible Killing tensors is 21. We find that the remaining metrics in Table 5

cannot admit metric irreducible Killing tensors.

6.3.4 Isometry dimension 7

Finally, we examine several metrics with isometry dimension 7. Metric 12.9 was

examined previously, but if we now choose a(t) to be a constant, we find that 12.9(i)

and 12.9(iii) admit seven Killing vectors. 12.9(ii) admits 10 Killing vectors if a(t) is

constant, and is thus a space of constant curvature. 12.12(ii) is 12.12 with ε = 0 and

γ = 0, and 12.12(iv) is equation 12.12 with ε = 1 and a = 0. We also examine a few

variations of the metric 12.37. 12.37(iii) is 12.37 with C(u) = sinh(
√
−2bu); 12.37(iv)
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has C(u) = sin(
√

2bu); 12.37(v) has C(u)2 = u
3
2 +2u+u

1
2 ; 12.37(vii) has C(u) =

√
u;

12.37(viii) has C(u) =
√
u ln(u); 12.37(ix) has C(u) =

√
u sin(c ln(u)).

The metric 12.12(ii) is given as

−2b2ζζ̄du2 − 2dudv + 2dζdζ̄,

and we have identified the following Killing tensor as being the single metric irre-

ducible Killing tensor of this metric:

−
(
b2ζζ̄u− v

)
du2 − ududv − ζ̄dudζ + udζdζ̄.

We find that other metrics of isometry dimension 7 may admit metric irreducible

Killing tensors, though at the time of writing we are unable to identify them explicitly.

These metrics are 12.37(iii) and 12.37(iv). Metric 12.37(v) is shown to admit precisely

6 metric irreducible Killing tensors, since the dimension of T1 is that of T2, which is

6 greater than the dimension of the space of metric reducible Killing tensors.

Reducibles dim(T0) dim(T1) dim(T2) Direct Tractor T
and metric pdsolve pdsolve

12.9(i) 27 37 28 27 x - 0
12.9(iii) 27 37 28 27 X X 0
12.12(ii) 27 37 29 28 X X 1
12.12(iv) 28 35 29 28 X X 0
12.37(iii) 27 37 29 28 x x
12.37(iv) 27 37 29 28 x x
12.37(v) 28 35 34 34 x x 6

12.37(vii) 28 35 29 28 x - 0
12.37(viii) 28 35 29 28 X X 0
12.37(ix) 28 35 29 28 x - 0

Table 6: Metrics from chapter 12 with isometry dimension 7.

We now point to results we have recovered from (Keane and Tupper, 2010). First,
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we have recovered the result that metric 12.12(iv) does not (generically) admit metric

irreducible Killing tensors, which result is evident in Table 6. We have also confirmed

the result that metric 12.12(iii) does not admit metric irreducible Killing tensors,

which result is evident in Table 5.

We note that our discovery of the metric irreducible Killing tensor of 12.12(ii)

confirms the result that a metric in the form of equation (6.55) with 2H = ay2 +

byz+ cz2 admits an irreducible Killing tensor, where a, b, and c are constants: indeed

metric 12.12(ii) takes this form under a convenient coordinate transformation.

Our conclusion for this section is that the tractor approach is useful for deter-

mining an upper bound for the number of independent Killing tensors for at least

certain exact solutions. This upper bound is useful in the search for metrics which

admit metric irreducible Killing tensors, since a lower bound can be obtained from

known Killing vectors. There are even a number of metrics for which the tractor

approach can be used to simplify the Killing equations themselves and allow one to

obtain the Killing tensors explicitly, where solving the Killing equations without such

simplification may be less practical.
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6.4 Killing tensors in dimension 2

Killing tensors of rank 2, though useful in the context of general relativity, have also

been considered exclusively in dimension 2 (G. Thompson, 1999). In fact, there are

many examples of metrics in the plane which are known to admit irreducible Killing

tensors (Darboux, 1972). In this section, we will apply the tractor connection to

metrics in the plane in order to derive differential conditions from which the number

of Killing tensors may be inferred. It is expected that the derivation of such conditions

is more simple in dimension 2 than in dimension 4, since the dimension of the fibers

of the tractor bundle is 6 instead of 50.

In section 3 of this thesis, we reestablished the result that a plane metric admits

either 3, 1, or 0 Killing vectors (Kruglikov, 2008). By theorem (2.2), a plane metric

has 3 Killing vectors when the space is one of constant curvature. Accordingly, we

will examine the cases in which the metric admits either 1 or 0 Killing vectors.

When there is a single Killing vector, the result is given by the Darboux-Koening

theorem (Kruglikov, 2008). In section 6.4.1, we give a partial proof of the Darboux-

Koening theorem using the tractor approach, arriving at differential conditions which

guarantee the existence of precisely 4 Killing tensors of rank 2. In section 6.4.2, we

give a proof of the Darboux-Koening theorem using a more conventional approach–

that is, dealing with the Killing equations directly.

The case of no Killing vectors does not seem to be resolved in existing literature.

In section 6.4.3, we prove that a plane metric with no Killing vectors has a maximum

of 3 Killing tensors of rank 2. Examples of metrics with 3, 2, and 1 Killing tensor(s)

are explicitly given.

6.4.1 One Killing vector: the tractor approach

We begin with a normal form for metrics in the plane with a single Killing vector.
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Lemma 6.2. If g is a metric in the plane which admits a Killing vector X, then

there exist coordinates (u, v) such that X = ∂v and

g = λdu2 + λdv2

for some nonzero function λ = λ(u).

Proof (Sketch). Since X is a Killing vector, there exist coordinates (x, y) such that

X = m(x, y)∂x + n(x, y)∂y.

We now apply a change of coordinates u = A(x, y), v = B(u, v), where mAx+nBy = 0

and mBx + nAy = 1. This gives us

X(A) = mAx + nBy = 0 = X(u), X(B) = mBx + nAy = 1 = X(v),

and so X = ∂v in (u, v) coordinates. This in turn implies that the components of the

metric do not depend on v. Subsequently, it can be shown that the metric can be

written as in the statement of the lemma.

Accordingly, we will study metrics in this form. Also of interest is the following

theorem, which is referred to as the Darboux-Koening theorem (Kruglikov, 2008):

Theorem 6.2. Let g be a metric in the plane which admits a single Killing vector.

The metric g admits precisely 4 Killing tensors of rank 2 if and only if it admits a

Killing tensor of rank 2 which is not algebraically generated by the (covariant) Killing

vector and the metric itself.

In this section, we will use the tractor approach to provide a partial proof of this
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theorem. In the next section, we will provide a proof of this theorem using a more

conventional approach.

For n = 2, we note that with respect to the general equations (6.9), (6.21), and

(6.39), the tensor K has 3 independent components, the tensor L has two independent

components (namely L211 and L212), and the tensor M has a single independent

component (namely M2112 ), having the same symmetries as the Riemann curvature

tensor. Thus, the equations which define the tractor connection are given as



K11;1 = 0

K11;2 −
2

3
L211 = 0

K12;1 +
1

3
L211 = 0

K12;2 −
1

3
L212 = 0

K22;1 +
2

3
L212 = 0

K22;2 = 0

L211;1 − 3kλK12 = 0

L211;2 +
3kλ

2
(K11 −K22) +M2112 = 0

L212;1 +
3kλ

2
(K11 −K22)−M2112 = 0

L212;2 + 3kλK12 = 0

M2112;1 +
3k′λ

2
(K11 −K22) + 3kλL212 = 0

M2112;2 + 3k′λK12 − 3kλL211 = 0,

(6.56a)

(6.56b)

(6.56c)

(6.56d)

(6.56e)

(6.56f)

(6.56g)

(6.56h)

(6.56i)

(6.56j)

(6.56k)

(6.56l)

where k =
λ′′λ− (λ′)2

2λ3
is the sectional curvature of g expressible in terms of the single

independent component of the curvature tensor. After writing out the covariant

derivatives in terms of the partial derivatives and the Christoffel symbols, we can

construct the matrices which define the tractor connection. The columns of the

matrix are associated with the unknown functions in (6.56) as follows:
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[
K11 K12 K22 L211 L212 M2112

]
.

The matrices which define the tractor connection are given explicitly as

Γ̃ij1 =



−λ
′

λ
0 0 0 0 0

0 −λ
′

λ
0

1

3
0 0

0 0 −λ
′

λ
0

2

3
0

0 −3kλ 0 −3λ′

2λ
0 0

3kλ

2
0 −3kλ

2
0 −3λ′

2λ
−1

3k′λ

2
0 −3k′λ

2
0 3kλ −2λ′

λ



,

Γ̃ij2 =



0 −λ
′

λ
0 −2

3
0 0

λ′

2λ
0 −λ

′

λ
0 −1

3
0

0
λ′

λ
0 0 0 0

3kλ

2
0 −3kλ

2
0 − λ

′

2λ
1

0 3kλ 0
λ′

2λ
0 0

0 3k′λ 0 −3kλ 0 0



.

We find the curvature matrix to be given as
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K̃i
j =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3λk′′ − 3k′λ′ 0 −5k′λ 0 0


.

Consequently, if k is constant, then K̃i
j = 0 and the metric g admits precisely 6

Killing tensors of rank 2. If k′ 6= 0, the rank of the curvature matrix is 1, which implies

that g admits no more than 5 rank 2 Killing tensors. Having obtained an upper bound

at curvature order 0, we now endeavor to obtain an upper bound at curvature order

1. In order to count the number of basis elements for the local sections of T1, we will

need to find the rank of the stacked matrix


K̃i

j

∇̃∂uK̃
i
j

∇̃∂vK̃
i
j

 .
Removing rows of zeros and duplicate rows, the stacked matrix becomes

A =


0 3λk′′ − 3k′λ′ 0 −5k′λ 0 0

0 P1 0 −6λk′′ − 3λ′k′

2
0 0

P 0 −P 0 λk′′ − 7λ′k′

2
5k′λ

 ,
where

P =
3 (5kk′λ3 + k′(λ′)2 − k′′λλ′)

2λ

and

P1 = −9kk′λ2 + 3λk′′′ − 3λ′k′′.
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Lemma 6.3. Let Q1 be defined as

Q1 = −45k(k′)2λ3 + 15k′′′k′λ2 +
9(k′)2(λ′)2 − 3k′k′′λλ′

2
− 18(k′′)2λ2.

The rank of A is 3 if and only if Q1 6= 0. The rank of A is 2 if and only if Q1 = 0.

Proof. The third row of the matrix A gives us a pivot, since A36 = 5k′λ, which is

nonzero by assumption. The number of pivots we get from the first and second rows

of A is controlled by the number of pivots in the matrix

Ã =

A12 A14

A22 A24

 =

3λk′′ − 3k′λ′ −5k′λ

P1 −6λk′′ − 3λ′k′

2

 .
Thus, Rank(A) = 1 + Rank(Ã). The matrix Ã is not identically zero, since Ã12 =

−5k′λ 6= 0: thus, the rank of Ã is at least 1. The rank of Ã is 2 if and only if

det(Ã) 6= 0. The conclusion follows since det(Ã) = Q1.

If the rank of A is 3, the metric admits no more than 3 Killing tensors of rank 2.

If the rank of A is 2, the metric admits no more than 4 Killing tensors of rank 2.

We now wish to consider the following stacked matrix, the nullspace of which is

representative of T2:

B =



K̃i
j

∇̃∂uK̃
i
j

∇̃∂vK̃
i
j

∇̃∂u∇̃∂uK̃
i
j

∇̃∂u∇̃∂vK̃
i
j

∇̃∂v∇̃∂uK̃
i
j

∇̃∂v∇̃∂vK̃
i
j



.

Removing rows of zeros and duplicate rows, we have the matrix
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B̃ =



0 3λk′′ − 3k′λ′ 0 −5k′λ 0 0

0 P1 0 −6λk′′ − 3λ′k′

2
0 0

P 0 −P 0 λk′′ − 7λ′k′

2
5k′λ

0 P2 0 12λk′′ +
11k′λ′

2
0 0

0 P3 0 P4 0 0

0 P5 0 −6λk′′ − 4k′λ′ 0 0

P6 0 −P6 0 P7 6λk′′ +
3k′λ′

2

0 P8 0 P9 0 0



,

where

P2 =
3 (12λ3k′k − 4λ2k′′′ + 3k′′λλ′ + k′(λ′)2)

2λ
,

P3 = −30λ2kk′′ − 9λ2(k′)2 − 9λkk′λ′

2
+ 3λk′′′′ − 3λ′k′′′,

P4 =
84λ3k′k − 28λ2k′′′ − 14k′′λλ′ − 3k′(λ′)2

4λ
,

P5 = −3 (6λ3k′k − 2λ2k′′′ + k′′λλ′ + k′(λ′)2)

2λ
,

P6 =
3 (12λ3kk′′ + 9λ2kk′λ′ − 2λλ′k′′′ + k′′(λ′)2)

4λ
,

P7 =
−12λ3k′k + 4λ2k′′′ − 16k′′λλ′ − 3k′(λ′)2

4λ
,

P8 = −3
8k′′λ4k + 10λ4(k′)2 − 23λ3k′λ′k + 2k′′λ(λ′)2 − 2k′(λ′)3

2λ2
,

and

P9 =
140λ3k′k − 6k′′λλ′ + 11k′(λ′)2

4λ
.

Lemma 6.4. If the rank of A is 3, then the rank of B̃ is 4.
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Proof. The first three rows of B̃ are the three rows of A, and so the first three rows

of B̃ yield three pivots. The only other row of B̃ which can yield a pivot is row 7.

We consider the matrix which consists of the fifth and sixth columns of the third and

seventh rows of B̃:

C =

λk′′ − 7λ′k′

2
5k′λ

P7 6λk′′ +
3k′λ′

2

 .
The determinant of C is 3Q1. Thus, the seventh row of B̃ yields another pivot if and

only if Q1 6= 0, and so the conclusion follows from lemma 6.3.

This allows us to make the following observation.

Corollary 6.2.1. If Q1 6= 0, then the metric g admits precisely 2 Killing tensors

of rank 2, namely the metric itself and the square of the single (covariant) Killing

vector.

Proof. Q1 6= 0 implies that Rank(B̃) = 4 by lemma 6.3 and lemma 6.4, so that the

metric g admits no more than 2 Killing tensors of rank 2. However, g admits at least

two Killing tensors of rank 2, namely λ2dv2 and the metric itself.

Proposition 6.1. Let

Q2 = 60kk′′λ4k′ + 90kλ3λ′(k′)2 − 100λ4(k′)3 − 6λ2λ′(k′′)2 − 3λ(λ′)2k′k′′ + 9(λ′)3(k′)2.

If Q1 = 0 and Q2 = 0, the rank of B̃ is 2.

Proof. Since Q1 = 0, there is precisely one pivot between the third and seventh rows

of B̃ by the proof of lemma 6.4. Let B2, B4, B5, B6, and B8 denote the 2×2 matrices

where the first rows consist of the first two non-zero entries in the first row of B̃ and

where the second rows are constructed from the first two non-zero entries of rows 2,

4, 5, 6, and 8 of B̃, respectively. Explicitly, these matrices are given as
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B2 =

3λk′′ − 3k′λ′ −5k′λ

P1 −6λk′′ − 3λ′k′

2

 = Ã,

B4 =

3λk′′ − 3k′λ′ −5k′λ

P2 12λk′′ +
11λ′k′

2

 B5 =

3λk′′ − 3k′λ′ −5k′λ

P3 P4

 ,

B6 =

3λk′′ − 3k′λ′ −5k′λ

P5 −6λk′′ − 4λ′k′

 , B8 =

3λk′′ − 3k′λ′ −5k′λ

P8 P9

 .
It can be shown that if Q1 = 0, the determinants of B2, B4, B5, and B6 are identically

zero. It can also be shown that the determinant of B8 is identically Q2. Thus, if

Q1 = 0 and Q2 = 0, there is precisely one pivot among rows 1, 2, 4, 5, 6, and 8 of B̃.

Thus, there are two pivots of B̃, and the rank of B̃ is 2.

Corollary 6.2.2. If Q1 = 0 and Q2 = 0, then the metric g admits precisely 4 Killing

tensors of rank 2.

Proof. Since the ranks of A and B̃ are both 2 by assumption, dim(T1) = dim(T2) = 4,

and so there are precisely 4 Killing tensors of rank 2 by theorem 3.1.

Thus, we have established necessary and sufficient conditions for the existence of

precisely 4 Killing tensors. However, the tractor approach has, so far, only led us to

a partial proof of the Darboux-Koening theorem as it is not clear that the conditions

Q1 = 0 and Q2 = 0 are degenerate. The remainder of this section will be devoted to

showing that if Q2 = 0, Q1 = 0.

Let f1, f2, and h be defined as follows:
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f1 =
3 (−20λ3k′k + (λ′)2k′ + 4k′′λ′λ)

20λ2k′
, f2 =

3

10λk′
, h = 7k′λ′ + 8λk′′.

It can be shown that

(Q2)′ − hf2Q2 − f1Q1 = 0. (6.57)

Lemma 6.5. If k′ 6= 0, The conditions Q1 = 0 and h = 0 are incompatible.

Proof. Assume that k′ 6= 0, h = 0 and Q1 = 0. The assumption that h = 0 allows us

to write

k′′ = −7k′λ′

8λ
. (6.58)

The expression above can be substituted into the equation Q1 = 0, which expression

can be simplified to the following:

15(k′)2 (−192kλ3 + 71(λ′)2 − 56λ′′λ)

64
= 0,

which implies, since k′ 6= 0, that

− 192kλ3 + 71(λ′)2 − 56λ′′λ = 0. (6.59)

First of all, equation (6.59) implies that

k =
71(λ′)2 − 56λ′′λ

192λ3
. (6.60)

Secondly, the expression for k in terms of λ can be applied to equation (6.59), leaving

us with
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75λ′′λ

8
− 375(λ′)2

64
= 0,

which implies that

λ′′ =
5(λ′)2

8λ
. (6.61)

Meanwhile, the assumption that Q1 = 0 and that h = 0 implies, in light of equation

(6.57), that (Q2)′ = 0. Applying equations (6.60) and (6.61), we find that

Q2 =
297, 675

262, 144

(
λ′

λ

)9

. (6.62)

Thus,

(Q2)′ = 0 =
2, 679, 075

262, 144

(λ′)8

λ10

(
(λ′)2 − λ′′λ

)
. (6.63)

Equation (6.63) is satisfied if and only if (λ′)2 − λ′′ = 0, which occurs if and only if

k = 0: thus, assuming that k′ 6= 0, we cannot have both Q1 = 0 and h = 0.

Lemma 6.6. Suppose that k′ 6= 0. If Q2 = 0, then Q1 = 0.

Proof. If Q2 = 0, equation (6.57) becomes

− f1Q1 = 0. (6.64)

Now suppose that Q1 6= 0. By equation (6.64), we must have f1 = 0. Additionally,

by lemma 6.5, h = 0. Thus, equation (6.58) can be applied to the equation f1 = 0,

resulting in the following:

3 (8kλ3 + (λ′)2)

8λ2
= 0. (6.65)

This implies that
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k = −(λ′)2

8λ3
, (6.66)

and, after writing k in terms of λ,

λ′′ =
5(λ′)2

4λ
. (6.67)

However, applying equations (6.66) and (6.67) into the equation Q2 = 0 results in

the following:

− 75(λ′)9

4096λ9
= 0, (6.68)

thus requiring that λ′ = 0 and thereby contradicting the assumption that k′ 6= 0.

Thus, if k′ 6= 0 and Q2 = 0, Q1 = 0.

Corollary 6.2.3. If Q2 = 0, the metric g admits precisely 4 Killing tensors of rank

2.

Proof. The metric g has the property that k′ 6= 0 since g admits a single Killing

vector. Thus, if Q2 = 0, Q1 = 0 by lemma 6.6. The conclusion follows from corollary

6.2.1.

6.4.2 One Killing vector: a conventional approach

We now wish to compare the results of the tractor approach in the case of a single

Killing vector to that of a more conventional approach. In doing so, we will prove the

Darboux-Koening theorem. Let the symmetric tensor T be defined by

T = pdu2 + qdudv + rdv2,

where p = p(u, v), q = q(u, v), and r = r(u, v) are smooth functions. Applying

T(αβ;γ) = 0 results in the following system of equations:
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

rv +
λ′q

2λ
= 0

pv
3
− λ′q

2λ
+
qu
3

= 0

qvλ+ ruλ− 2λ′r + λ′p

3λ
= 0

pu −
λ′p

λ
= 0.

(6.69a)

(6.69b)

(6.69c)

(6.69d)

Proposition 6.2.

The assumption that q 6= 0 is equivalent to the assumption that T is a metric

irreducible, rank 2 Killing tensor.

Proof. Let us assume that q = 0, so that

T = pdu2 + rdv2.

Applying the Killing equation to T , we get the following system of equations.



ru = −λ
′(p− 2r)

λ

rv = 0

pv = 0

pu =
λ′p

λ
.

(6.70a)

(6.70b)

(6.70c)

(6.70d)

This system can be solved directly for p and r, the solution of which is p = c1λ,

r = c1λ + c2λ
2. Thus, if q = 0, T is a linear combination of the metric and the

reducible Killing tensor λ2dv2. It is evident that if T is such a linear combination,

then q = 0.

Proposition 6.3.

If T is a metric irreducible Killing tensor, then there is a constant d such that λ

satisfies the following equation:



94

4λ2d2 − 10λλ′′d+ 15(λ′)2d− 3λ′λ′′′ + 4(λ′′)2 = 0. (6.71)

Proof. Equation (6.69d) can be solved to obtain p = δλ, where δ is a function of v.

We will now rewrite (6.69) with this substitution.



rv =
λ′q

2λ
δ′λ

3
− λ′q

2λ
+
qu
3

= 0

δλ′λ+ ruλ− 2λ′r + qvλ

3λ
= 0.

(6.72a)

(6.72b)

(6.72c)

We can algebraically solve for δ in equation (6.72c), then differentiate with respect

to v. The result, combined with equation (6.72a), is

δ′ =
−2qvvλ

2 + λ′′qλ− 3(λ′)2q + λ′quλ

2λ2λ′
. (6.73)

On the other hand, we know δ′ directly from equation (6.72b):

δ′ =
3λ′q − 2quλ

2λ2
. (6.74)

Thus, subtracting (6.73) from (6.74) and multiplying by 2λ2, we get

2qvvλ
2 − q(λ′′λ− 6(λ′)2)− 3λ′quλ = 0. (6.75)

However, we can also differentiate equation (6.74) with respect to u to obtain, after

multiplying by 2λ3,

− 2quuλ
2 + q(3λ′′λ− 6(λ′)2) + 5λ′quλ = 0. (6.76)

Now, we will take the second derivative of (6.75) with respect to u and add this to

the second derivative of (6.76). Then, we will substitute the values of qvv and quu
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from (6.75) and (6.76). After multiplying the result by λ2, we obtain the following:

qu = −q(λ
′′′′λ3 − 12λ′′′λ2λ′ − 4(λ′′)2λ2 + 45λ′′λ(λ′)2 − 30(λ′)4)

5λ(3(λ′)3 − 4λ′′λ′λ+ λ′′′λ2)
. (6.77)

We note that for our metric g, the Ricci Scalar is

K = −λ
′′λ− (λ′)2

λ3
. (6.78)

With this, (6.77) can be written as

qu = −q(K
′′λ− 6K ′λ′)

5λK ′
, (6.79)

which motivates us to define A = 5λK ′, B = K ′′λ−6K ′λ′, and C = B/A. With this,

we can rewrite (6.79), (6.75), and (6.76) to obtain the following system of equations:



qvv = −q(Kλ
3 + 3Cλλ′ + 5(λ′)2)

2λ2

quu = −q(3Kλ
3 + 5Cλλ′ + 3(λ′)2)

2λ2

qu = −qC

quv = −qvC,

(6.80a)

(6.80b)

(6.80c)

(6.80d)

where (6.80d) has been obtained by differentiating (6.80c) with respect to v. Since we

are assuming that T is a metric irreducible rank 2 Killing tensor, q 6= 0 by proposition

6.2, and so we can rewrite (6.80c) as

qu
q

= −C, (6.81)

or
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∂

∂v

(
qu
q

)
= 0. (6.82)

Solving (6.82) for q, we get q = αβ, where α is a function of u and β is a function

of v. Now, we will substitute q = αβ into (6.80a):

αβ′′ = −αβ(Kλ3 + 3Cλλ′ + 5(λ′)2)

2λ2
. (6.83)

Since we are assuming that q 6= 0, α 6= 0 and β 6= 0. Thus,

β′′

β
=
−Kλ3 − 3Cλλ′ − 5(λ′)2

2λ2
. (6.84)

Since the left hand side of equation (6.84) is a function only of v, and since the right

hand side is a function only of u,

β′′

β
= d, (6.85)

and

−Kλ3 − 3Cλλ′ − 5(λ′)2

2λ2
= d (6.86)

for some constant d. Now if we substitute q = αβ into (6.80b), we get

α′′

α
=
−3Kλ3 − 5Cλλ′ − 3(λ′)2

2λ2
. (6.87)

Now, we will substitute the value of K from (6.86) into (6.87):

α′′

α
=

2Cλλ′ + 3dλ2 + 6(λ′)2

λ2
. (6.88)

However, we know that C = qu/q = α′/α, and so (6.88) can be written as
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α′′

α
=

3dλ2α + 6(λ′)2α− 2λ′α′λ

αλ2
. (6.89)

With equation (6.89) in hand, we will now backtrack to obtain a solution for α,

which solution will subsequently be substituted into equation (6.89). Substituting

q = αβ into system (6.72), we obtain



ru =
−αβ′λ− δλ′λ+ 2λ′r

λ

rv = −λ
′αβ

2λ

δ′ =
β(3λ′α− 2α′λ)

2λ2
.

(6.90a)

(6.90b)

(6.90c)

Since we are assuming that β 6= 0, equation (6.90c) can be written as

δ′

β
=

3λ′α− 2α′λ

2λ2
. (6.91)

The left hand side of this equation is a function only of v, while the right hand side

is a function only of u. Thus,

δ′

β
= c, (6.92)

and

3λ′α− 2α′λ

2λ2
= c, (6.93)

for some constant c. We now cross-differentiate equations (6.90a) and (6.90b): that

is, we take the v-derivative of equation (6.90a) and subtract from it the u-derivative

of equation (6.90b), giving us

−2αβ′′λ2 + βαλλ′′ − 3βα(λ′)2 + βα′λλ′ − 2δ′λ2λ′

2λ2
= 0. (6.94)
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However, we know δ′ from equation (6.90c), which we substitute into (6.94) to get

−2αβ′′λ2 + β(λ′′αλ+ 3λ′α′λ− 6(λ′)2α)

2λ2
= 0. (6.95)

Since we are assuming that α and β are nonzero, we can rewrite this as

β′′

β
=

(λ′′αλ+ 3λ′α′λ− 6(λ′)2α)

2αλ2
. (6.96)

Using our familiar trick, both sides of this equation are equal to a constant (d, in

fact): the left hand side is only a function of v, while the right hand side is only a

function of u. While the fact that the left hand side is a constant is nothing new for

us, we now know that

λ′′αλ+ 3λ′α′λ− 6(λ′)2α

2αλ2
= d. (6.97)

From this equation, we can obtain the following solution for α, since λ′ 6= 0:

α = c1e
∫ 2dλ2−λ′′λ+6(λ′)2

3λ′λ du (6.98)

for some constant c1, which solution we now substitute into equation (6.89). After

we simplify, we are left with

4λ2d2 − 10λλ′′d+ 15(λ′)2d− 3λ′λ′′′ + 4(λ′′)2 = 0, (6.99)

as in the statement of the proposition.

Proposition 6.4.

(i) If the scalar curvature of g is not a constant, then g admits a metric irreducible,

rank 2 Killing tensor if and only if there is a constant d such that equation (6.99) is

satisfied.

(ii) If the scalar curvature of g is not a constant, then there is at most one constant
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d such that equation (6.99) is satisfied.

(iii) If the scalar curvature of g is not a constant, then the space of rank 2 Killing

tensors is at most four.

Proof. (i) Our previous work demonstrates that if T is an irreducible Killing tensor

of rank 2, then there is a constant d such that equation (6.99) is satisfied. Now, we

will prove that if there is a constant d such that equation (6.99) is satisfied, there

is a rank two Killing tensor which is not a linear combination of the metric or the

product of λdv with itself. Let β(v) be a non-zero solution of equation (6.85). Now,

recall equations (6.93) and (6.97), which can each be algebraically solved for α′:

α′ =
α(2dλ2 − λ′′λ+ 6(λ′)2)

3λ′λ
=
−2cλ2 + 3λ′α

2λ
. (6.100)

Solving algebraically for α, we find that

α = − 6cλ2λ′

4dλ2 − 2λ′′λ+ 3(λ′)2
. (6.101)

Of course, the reader may well be concerned that the denominator could be zero.

However, it can be shown that if this is the case, the Ricci scalar of the metric is

constant, and so we can assume that the denominator in equation (6.101) is nonzero.

Let α(u) be defined as in equation (6.101), with c = 1, and define q = αβ. Since

both α and β are nonzero by construction, q is nonzero, and so the tensor we are

constructing will not be a linear combination of the metric and λ2dv2 by proposition

(6.2).

Let p = δλ, where δ is defined by equation (6.92), with c = 1. Finally, let r be

defined to be

r = −λ
′αδ

2λ
.

With T = pdu2 + qdudv + rdv2, our previous work shows that T is an irreducible
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Killing tensor.

Proof. (ii) Let d1 and d2 be two constants such that equation (6.99) is satisfied (for

the same metric). This occurs if and only if

4λ2d2
1 − 10λλ′′d1 + 15(λ′)2d1 − 3λ′λ′′′ + 4(λ′′)2 (6.102)

= 4λ2d2
2 − 10λλ′′d2 + 15(λ′)2d2 − 3λ′λ′′′ + 4(λ′′)2.

However, equation (6.102) holds if and only if

(d1 − d2)(4d1λ
2 + 4d2λ

2 − 10λ′′λ+ 15(λ′)2) = 0, (6.103)

which is true if and only if either d1 = d2 or

4d1λ
2 + 4d2λ

2 − 10λ′′λ+ 15(λ′)2 = 0. (6.104)

However, it can be shown that if λ satisfies (6.104), then the Ricci scalar of the

metric is constant. Therefore, if the metric has nonconstant scalar curvature, then

there is only one constant d such that equation (6.99) is satisfied.

Proof. (iii) By (ii), there is one constant d such that equation (6.99) is satisfied. As in

the proof of (i), we can construct a Killing tensor; however, we can construct precisely

two independent Killing tensors, since there are precisely two independent solutions

for β in equation (6.85), and only one constant d. With the tensor λ2dv2, along with

the metric itself, we see that the space of rank two Killing tensors is at most 4.

Corollary 6.2.4. If g admits three rank 2 Killing tensors, then g admits four rank 2

Killing tensors.

Proof. If g admits three rank 2 Killing tensors, then by our previous work, one of

them is a metric irreducible Killing tensor. By proposition 6.4, there is a constant d
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such that equation (6.99) is satisfied. However, there are two independent solutions

for the equation β′′ = dβ, and so two (independent), metric irreducible, rank 2

Killing tensors. Thus, where the known irreducible Killing tensor will incorporate

one solution to β′′ = dβ, we can construct another irreducible Killing tensor from the

other solution, and so if g admits three rank 2 Killing tensors, g admits four rank 2

Killing tensors.

The proof of the Darboux-Koening theorem is now evident. We have shown that

the metric g admits precisely 4 Killing tensors of rank 2 if and only if there is a

constant d such that equation (6.99) is satisfied, and that g admits precisely 2 Killing

tensors of rank 2 otherwise.

We will now demonstrate the utility of equation (6.99) in two examples taken from

existing literature (Darboux, 1972). First, let

g = u
(
du2 + dv2

)
. (6.105)

It can be shown that udv is the only rank 1 Killing tensor for this metric. It can

also be shown that λ = u satisfies equation (6.99) for d = 0: Thus, α = −2u2, by

equation (6.101), and we can have either β = v or β = 1. In the case where β = v,

δ = v2/2, and so p = uv2

2
. We can find r from the original system of equations, since

all other functions are known: r = 2u3 + uv2

2
. In the case where β = 1, δ = v, p = uv,

and r = uv. Thus, the dimension of the space of rank 2 Killing tensors of the metric

given in equation (6.105) is 4.

As our second example, consider the metric

g =
a cos(u/2) + b

4 sin2(u/2)

(
du2 + dv2

)
, (6.106)

where a and b constants, with a 6= 0. It can be shown that equation (6.99) is

satisfied for d = 1
4
. Using the formulation described above, it can be shown that the
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following symmetric tensors are the metric irreducible, rank 2 Killing tensors, where

the minus signs are taken in the case of the second:

±e
±v/2(a cos(u/2) + b)

2 sin2(u/2)
du2 +

e±v/2(a cos(u/2) + b)

a sin3(u/2)
dudv

±e
±v/2(a cos2(u/2) + 2b cos(u/2) + a)(a cos(u/2) + b)

2a sin4(u/2)
dv2.

We will conclude this section with a short comparison of the tractor approach

with the conventional approach. With the tractor approach, there was no need to ex-

plicitly solve any differential equations, whereas the conventional approach ultimately

resorted to doing so. With the tractor approach, we offer two equations which, com-

bined with the condition that the sectional curvature is not a constant, constitute

necessary and sufficient conditions for the existence of precisely 4 Killing tensors of

rank 2. These conditions are conditions of derivative orders 5 (Q1) and 4 (Q2) with

respect to λ, since they involve the third and second derivatives of the scalar cur-

vature, respectively. On the other hand, equation (6.99) is a third order condition:

however, equation (6.99) may be more difficult to check due to the requirement of

solving the equation for the constant d. Equation (6.99) offers a distinct advantage,

however, in that if the constant d can be solved for, the irreducible Killing tensors

can be constructed explicitly.

In summary, the tractor approach can be of use when a more direct approach may

avail us nothing; however, there are appear to be certain metrics for which a more

direct approach can be fruitful.

6.4.3 No Killing vectors

We now turn our attention to metrics of the form
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g = λdu2 + λdv2

with λ = λ(u, v). We will also assume that g admits no Killing vectors. By equation

(3.34), the assumption that g admits no Killing vectors is equivalent to the assumption

that the following 2× 2 matrix has full rank:

A =


(
−λkuv +

λukv − λvku
2

)
kv +

(
λkvv +

λuku + λvkv
2

)
ku λku

−
(
λkuu +

λuku + λvkv
2

)
kv +

(
λkuv +

λukv − λvku
2

)
ku −λkv

 ,
where k = k(u, v) is the sectional curvature of g. Equivalently,

λ2k2
vkuv−

λk3
vλu
2
−λ2kvkukvv−

λkvλuk
2
u

2
+λ2kukvkuu+

λkuλvk
2
v

2
−λ2k2

ukuv+
λk3

uλv
2
6= 0.

(6.107)

This condition is, of course, in addition to the condition that k2
u + k2

v 6= 0.

We begin, as in the case of a single Killing vector, by computing the tractor

connection for Killing tensors of rank 2 for the metric above. We then find the

curvature matrix to be given as

K̃i
j =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

P1 P2 −P1 −5kuλ −5kvλ 0


, (6.108)

where
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P1 =
3

2
(kvλu + kuλv)− 3kuvλ, P2 = 3(kvλv − kvvλ+ kuuλ− kuλu).

We now consider the following stacked matrix:


K̃i

j

∇̃∂uK̃
i
j

∇̃∂vK̃
i
j

 .
After removing rows of zeros as well as duplicate rows, we have

B =


P1 P2 −P1 −5kuλ −5kvλ 0

P3 P4 −P3 O1 O2 −5kvλ

P5 P6 −P5 O3 O4 5kuλ

 , (6.109)

where

P3 =
1

2λ

(
9λ3kkv − 6λ2kuuv + 6λλvkuu − 3λλvkvv + 3λλuvku + 3λλukuv − 3λλvvkv

)
+

1

2λ

(
6(λv)

2kv − 6λvλuku
)
,

P4 =
1

λ

(
−9λ3kku + 3λ2kuuu − 3λ2kuvv + 9λλvkuv + 3λλuvkv − 3λλukuu + 3λλvvku

)
−1

λ

(
6(λv)

2ku + 6λvλukv
)
,

P5 =
3

2λ

(
5λ3kku − 2λ2kuvv + λλvkuv + λλuvkv − λλukuu + 2λλukvv + λλvvku

)
+

3

2λ

(
−(λv)

2ku + (λu)
2ku − 2λvλukv

)
,

P6 =
1

λ

(
3λ2kuuv − 3λ2kvvv − 3λλuvku + 3λλvvkv − 9λλukuv + 3λλvkvv + 15λ3kkv

)
+

1

λ

(
3(λu)

2kv − 3(λv)
2kv + 6λvλuku

)
,
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O1 = −6λkuu + kvvλ−
7λvkv + 3λuku

2
,

O2 = −7λkuv +
7λvku − 3λukv

2
,

O3 = −7λkuv −
3λvku − 7λukv

2
,

and

O4 = λkuu − 6kvvλ−
3λvkv + 7λuku

2
.

Proposition 6.5. The metric g admits no more than three Killing tensors of rank 2.

Proof. The submatrix C of B given by

C =


B14 B15 B16

B24 B25 B26

B34 B35 B36

 =


−5kuλ −5kvλ 0

O1 O2 −5kvλ

O3 O4 5kuλ


has full rank, since

det(B) = 175λdet(A).

Therefore, the rank of B is at least 3, and so the metric g admits no more than three

Killing tensors of rank 2.

It is natural to consider whether a tighter upper bound on the number of Killing

tensors of the metric g exists. We will now provide an example from the literature

(Kruglikov, 2008) of a metric in the plane which, despite admitting no Killing vectors,

admits precisely three Killing tensors of rank 2. We will subsequently provide an

example of a metric with no Killing vectors which admits precisely two Killing tensors,

followed by an example which admits only one Killing tensor. For the first example,

the metric is g with λ(u, v) = u2 + 4v2. The matrices which define the tractor

connection are given as follows:
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Γ̃ij1 =

−2u

λ

8v

λ
0 0 0 0

−4v

λ
−2u

λ

4v

λ

1

3
0 0

0 −8v

λ
−2u

λ
0

2

3
0

0
9u2 − 36v2

λ2
0 −3u

λ

4v

λ
0

−9u2 − 36v2

2λ2
0

9u2 − 36v2

2λ2
−4v

λ
−3u

λ
−1

18u(u2 − 8v2)

λ3

288v(u2 − 2v2)

λ3
−18u(u2 − 8v2)

λ3
0 −9u2 − 36v2

2λ2
−4u

λ



,

Γ̃ij2 =

−8v

λ
−2u

λ
0 −2

3
0 0

u

λ
−8v

λ
−u
λ

0 −1

3
0

0
2u

λ
−8v

λ
0 0 0

−9u2 − 36v2

2λ2
0

9u2 − 36v2

2λ2
−12v

λ
−u
λ

1

0 −9u2 − 36v2

λ2
0

u

λ
−12v

λ
0

−144v(u2 − 2v2)

λ3

36u(u2 − 8v2)

λ3

144v(u2 − 2v2)

λ3

9u2 − 36v2

λ2
0 −16v

λ



.

The curvature matrix is given as equation (6.108) with

P1 =
2160u3v − 8640uv3

λ4
, P2 = −540(u4 − 28u2v2 + 32v4)

λ4
,

5kuλ =
60u(u2 − 8v2)

λ3
, 5kvλ =

480v(u2 − 2v2)

λ3
.
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With the tractor connection and curvature matrix, we can compute the matrices

∇̃∂uK̃
i
j , ∇̃∂vK̃

i
j , ∇̃∂u∇̃∂uK̃

i
j , ∇̃∂u∇̃∂vK̃

i
j , ∇̃∂v∇̃∂uK̃

i
j , and ∇̃∂v∇̃∂vK̃

i
j . These ma-

trices can be stacked, and a basis for the nullspace of the resulting stacked matrix–a

basis for the local sections of T2–is given as

{W1,W2,W3},

where

W1 = E1 +
12v

λ
E4 +

3u

λ
E5 −

9

2λ
E6,

W2 = E2 −
9u2 + 12v2

uλ
E4 +

24v

λ
E5 +

36v

uλ
E6,

and

W3 = E3 −
12v

λ
E4 −

3u

λ
E5 +

9

2λ
E6.

We have already shown that dim(T1) ≤ 3, and so, since it is now apparent that

dim(T2) = 3, the metric g with λ = u2 + 4v2 has precisely three Killing tensors of

rank 2. We will now identify them explicitly. This is done by imposing the condition

of parallelism on an arbitrary linear combination of the basis elements of T2 and

solving for the coefficient functions. Let

S = q1(u, v)W1 + q2(u, v)W2 + q3(u, v)W3.

The condition ∇̃S = 0 results in a system of first order, linear, partial differential

equations in the functions q1, q2, and q3. The general solution is found, using Maple,

to be

q1 =
(
−4c1vu

2 − 8c1v
3 +

c2

2
v2 + c3

)
λ, q2 = c1uλ

2,
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q3 = −λ
8

(
16c1vu

2 + c2u
2 − 8c3

)
,

for constants c1, c2, and c3: thus, there are three independent solutions. A basis for

S∇̃ (T) is given as {S1, S2, S3}, where each Si is generated by setting ci = 1 and cj = 0

for i 6= j:

S1 = −4λ
(
vu2 + 2v3

)
E1 + uλ2E2 − 2λvu2E3 − 9λ2E4 + 18λuvE5 + 45λvE6,

S2 =
λv2

2
E1 −

λu2

8
E3 +

3λv

2
E4 +

3λu

8
E5 −

(
9u2

16
+

9v2

4

)
E6,

S3 = λE1 + λE3.

The Killing tensors associated with these parallel sections are, repectively,

(
u2 + 4v2

) (
−4v

(
u2 + 2v2

)
du2 + 2u

(
u2 + 4v2

)
dudv − 2vu2dv2

)
,

(
u2 + 4v2

)(v2

2
du2 − u2

8
dv2

)
,

(
u2 + 4v2

) (
du2 + dv2

)
.

Our next example is the metric g with λ = uv. The matrices which define the

tractor connection are given as follows:
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Γ̃ij1 =



−1

u

1

v
0 0 0 0

− 1

2v
−1

u

1

2v

1

3
0 0

0 −1

v
−1

u
0

2

3
0

0 −3u2 + 3v2

2u2v2
0 − 3

2u

1

2v
0

3u2 + 3v2

4u2v2
0 −3u2 + 3v2

4u2v2
− 1

2v
− 3

2u
−1

−3u2 + 9v2

4u3v2
−9u2 + 3v2

2u2v3

3u2 + 9v2

4u3v2
0

3u2 + 3v2

2u2v2
−4

u



,

Γ̃ij2 =



−1

v
−1

u
0 −2

3
0 0

1

2u
−1

v
− 1

2u
0 −1

3
0

0
1

u
−1

v
0 0 0

3u2 + 3v2

4u2v2
0 −3u2 + 3v2

4u2v2
− 3

2v
− 1

2u
1

0 −3u2 + 3v2

2u2v2
0

1

2u
− 3

2v
0

9u2 + 3v2

4u2v3
−3u2 + 9v2

2u3v2
−9u2 + 3v2

4u2v3
−3u2 + 3v2

2u2v2
0 −2

v



.

The curvature matrix is given in equation (6.108) with

P1 = −15u2 + 15v2

2u3v3
, P2 = −45u4 − 45v4

2u4v4
,

5kuλ =
5u2 + 15v2

2v2u3
, 5kvλ =

15u2 + 5v2

2u2v3
.

As in the example before, a basis for the local sections of T2 can be computed.
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We find this basis to be given as

{W1,W2},

where

W1 = E1 + E3, W2 = E2 −
3

u
E4 +

3

v
E5 +

3

uv
E6.

With S = q1(u, v)W1 + q2(u, v)W2, the condition ∇̃S = 0 can be solved for q1 and q2.

The general solution is

q1 = −uv (c1(u2 + v2)− 2c2)

2
, q2 = c1v

2u2,

for constants c1 and c2. Thus, a basis for the parallel sections of T is given as {S1, S2},

where

S1 = −uv(u2 + v2)

2
E1 + u2v2E2 −

uv(u2 + v2)

2
E3 − 3v2uE4 + 3vu2E5 + 3uvE6,

S2 = uvE1 + uvE3.

The Killing tensors associated with these parallel sections are given, respectively, as

−uv(u2 + v2)

2
du2 + 2u2v2dudv − uv(u2 + v2)

2
dv2,

uv(du2 + dv2).

For the metric g with λ = uv, it should also be noted that under the coordinate

change u = x+ y and v = x− y, the metric transforms to become

(
2x2 − 2y2

) (
dx2 + dy2

)
.
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Thus, the metric g with λ(u, v) = uv is a Liouville metric, as any metric which can be

transformed into the following form is considered to be a Liouville metric (Kruglikov,

2008):

(f + h)
(
dx2 + dy2

)
,

where f = f(x) and h = h(y). The tractor approach can be applied to metrics in

this form, so that, absent additional conditions on the functions f(x) and g(y)6, the

dimension of T0 is 5, the dimension of T1 is 3, and the dimension of T2 is 2. A local

basis of T2 is given by

{W1,W2},

where

W1 = E1 +
3h′

2(f + h)
E4 +

3f ′

2(f + h)
E5 +

3f ′′ − 3h′′

4(f + h)
E6,

W2 = E3 −
3h′

2(f + h)
E4 −

3f ′

2(f + h)
E5 −

3f ′′ − 3h′′

4(f + h)
E6.

From the local basis of T2, we find that the metric as well as the following symmetric

tensor are Killing tensors of rank 2 for any Liouville metric:

(f + h)
(
hdx2 + fdy2

)
.

Our final example is the metric g with λ = (uv)−
2
3 . The matrices which define

the tractor connection are given as follows:

6Note that the metric g with λ = u2 + 4v2 is also Liouville.
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Γ̃ij1 =



2

3u
− 2

3v
0 0 0 0

1

3v

2

3u
− 1

3v

1

3
0 0

0
2

3v

2

3u
0

2

3
0

0
u2 + v2

u2v2
0

1

u
− 1

3v
0

−u
2 + v2

2u2v2
0

u2 + v2

2u2v2

1

3v

1

u
−1

−u2 + 2v2

3u3v2

4u2 − 2v2

3u2v3

u2 − 2v2

3u3v2
0 −u

2 + v2

u2v2

4

3u



,

Γ̃ij2 =



2

3v

2

3u
0 −2

3
0 0

− 1

3u

2

3v

1

3u
0 −1

3
0

0 − 2

3u

2

3v
0 0 0

−u
2 + v2

2u2v2
0

u2 + v2

2u2v2

1

v

1

3u
1

0 −u
2 + v2

u2v2
0 − 1

3u

1

v
0

−2u2 + v2

3u2v3

−2u2 + 4v2

3u3v2

2u2 − v2

3u2v3

u2 + v2

u2v2
0

4

3v



.

The curvature matrix is given with

P1 = −10u2 + 10v2

9u3v3
, P2 = −20u4 − 20v4

9u4v4
,

5kuλ =
10u2 − 20v2

9v2u3
, 5kvλ = −20u2 − 10v2

9u2v3
.

As in the previous examples, we will now compute a basis for the local sections of

T2. We find this basis to be given as {W1}, where W1 = E1 +E3. Thus, dim(T2) = 1,

and the metric itself is the only independent Killing tensor for g with λ = (uv)−
2
3 .
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However, and rather interestingly, this metric admits the following Killing tensor

of rank 3:

1

uv2
du3 − 1

vu2
dv3.

We now summarize the topic of Killing tensors of rank 2 for metrics in the plane

by means of the following proposition.

Proposition 6.6. Let g be a metric in the plane. If g admits one Killing vector, g

admits either two or four Killing tensors of rank 2. If g admits no Killing vectors, g

admits either one, two, or three Killing tensors of rank 2.
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7 Killing-Yano tensors

7.1 Constructing the Rank 2 Tractor Connection

For Killing-Yano tensors of any rank, the equations that define the tractor connection

are known (Houri et al., 2018). In this section, we will derive the equations which

define the connection for Killing-Yano tensors of rank 2, though we note that our

software program for constructing the tractor connection is operative for Killing-Yano

tensors of any rank.

Let∇ be a connection on a manifold M . A Killing-Yano tensor of rank 2–hereafter

denoted simply as a Killing-Yano tensor–is a skew symmetric tensor Fαβ such that

Fα(β;γ) = 0,

where differentiation is taken with respect to the connection ∇: we say that Fαβ is a

Killing-Yano tensor of ∇. If the connection is a metric connection, we say that Fαβ

is a Killing-Yano tensor of the associated metric. In this section, we will assume that

∇ is a torsion free connection. In general,

Fαβ;γ = F(αβ;γ) + F[αβ;γ]

+
1

3

(
Fαβ;γ + Fβα;γ − Fγα;β − Fγβ;α

)
+

1

3

(
Fαβ;γ + Fγβ;α − Fβα;γ − Fβγ;α

)
,

but with Fα(β;γ) = 0 and Fαβ = −Fβα , we find that

Fαβ;γ = F[αβ;γ] . (7.1)

We define the skew symmetric tensor Fαβγ as
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Fαβγ = F[αβ;γ] ,

giving us, by equation (7.1).

Fαβγ;δ = Fαβ;γδ .

We note that by equation (2.1),

Y
β
α
γ
δ

Fαβ;γδ =
1

4

(
Fαβ;γδ + Fδα;βγ + Fγδ;αβ + Fβγ;δα

)

=
1

4

(
Fαγ;δβ + Fβδ;αγ + Fβγ;αδ + Fδβ;γα

)
=

1

4

(
Fγα;βδ − Fγα;δβ + Fδβ;γα − Fδβ;αγ

)
,

so that

Y
β
α
γ
δ

Fαβ;γδ =
1

4

(
FµβR

µ
δγα + FδµR

µ
βγα + FµγR

µ
αδβ + FαµR

µ
γδβ

)
, (7.2)

where the symmetrization operators Y are defined in the Conventions section of this

thesis. We also note that

Y
β α
γ
δ

Fαβ;γδ =
1

2
Y
β
γ
δ

(
Fαβ;γδ + Fβα;γδ

)
= 0, (7.3)

since Fαβ = −Fβα . Additionally,

Y
β γ
α
δ

Fαβ;γδ =
1

2
Y
β
α
δ

(
Fαβ;γδ + Fαγ;βδ

)
= 0, (7.4)

since Fαβ;γ = −Fαγ;β . We also find that
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Y
β δ
α
γ

Fαβ;γδ =
1

2
Y
β
α
γ

(
Fαβ;γδ + Fαδ;γβ

)
(7.5)

=
1

2
Fαβ;γδ +

1

12

(
Fαδ;γβ − Fαδ;βγ

)
+

1

12

(
Fβδ;αγ − Fβδ;γα

)
+

1

12

(
Fγδ;βα − Fγδ;αβ

)
=

1

12

(
FµδR

µ
αγβ + FαµR

µ
δγβ + FµδR

µ
βαγ + FβµR

µ
δαγ + FµδR

µ
γβα + FγµR

µ
δβα

)
+

1

2
Fαβ;γδ

=
1

2
Fαβ;γδ +

1

12

(
FαµR

µ
δγβ + FβµR

µ
δαγ + FγµR

µ
δβα

)
.

Since

Fαβ;γδ = Y
β
α
γ

Fαβ;γδ ,

we find, using equations (7.3) and (7.4), that

Fαβ;γδ = Y
β
α
γ

Y βα
γ
δ

+ Y
β α
γ
δ

+ Y
β γ
α
δ

+ Y
β δ
α
γ

Fαβ;γδ

= Y
β
α
γ

Y
β
α
γ
δ

Fαβ;γδ + Y
β δ
α
γ

Fαβ;γδ .

Using equations (7.2) and (7.5), we get

Fαβ;γδ =
1

4
Y
β
α
γ

(
FµβR

µ
δγα + FδµR

µ
βγα + FµγR

µ
αδβ + FαµR

µ
γδβ

)

+
1

2
Fαβ;γδ +

1

12

(
FαµR

µ
δγβ + FβµR

µ
δαγ + FγµR

µ
δβα

)
=

1

4
Y
β
α
γ

FµβR
µ
δγα +

1

2
Y
β
α
γ

Y
α
γ

FµγR
µ
αδβ +

1

2
Fαβ;γδ +

1

4
Y
β
α
γ

FβµR
µ
δαγ ,
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which implies that, using the Bianchi identity,

Fαβ;γδ = Y
β
α
γ

FµβR
µ
δγα + Y

β
α
γ

Y
α
γ

FµγR
µ
αδβ

= Y
β
α
γ

(
−FµβR

µ
γδα − FµβR

µ
αδγ

)
+ Y

β
α
γ

Y
α
γ

FµγR
µ
αδβ

= 2Y
β
α
γ

Y
α
γ

FµγR
µ
αδβ .

Therefore, the equations which define the tractor connection are the following:

Fαβ;γ = Fαβγ , (7.6)

Fαβγ;δ = 2Y
β
α
γ

Y
α
γ

FµγR
µ
αδβ . (7.7)

For Killing-Yano tensors of higher rank, it has been shown that similar formulas

hold (Houri et al., 2018).

For Killing-Yano tensors of rank 2 on an n-dimensional manifold M with coordi-

nates xα and n > 2, the tractor bundle is π : T → M , where T =
∧2(M) ⊕

∧3(M).

The coordinates are (xα, aαβ, bαβγ), where aαβ = a[αβ] and bαβγ = b[αβγ]. The lift is

given as aαβ(x) = Fαβ (x) and bαβγ(x) = Fαβγ (x), and we see that the dimension of

the fibers of T is given as
(
n
2

)
+
(
n
3

)
=

1

6
n (n2 − 1). If Fαβ is a Killing-Yano tensor

of rank 2, then (aαβ, bαβγ) is a parallel section by construction. Conversely, given a

parallel section (aαβ, bαβγ), the tensor Fαβ = aαβ is a Killing tensor of rank 2, since

Fα(β;γ) = aα(β;γ) = bα(βγ) = 0.

Lemma 7.1. Let X be a Killing-Yano tensor of rank 2, and suppose that X̃ is the

lift of X up to the tractor bundle. X̃ vanishes at a point if and only if X = 0.

As in the case of Killing vectors, conformal Killing vectors, and Killing tensors of

rank 2, the equations which define the tractor connection for Killing-Yano tensors of
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rank 2 is Frobenius in the sense of equation (2.2). Thus, lemma (7.1) follows from

corollary (2.1.1).

Corollary 7.0.1. The rank 2 Killing-Yano tensors X1 . . . Xk are linearly independent

over R if and only if their lifts up to the tractor bundle are linearly independent at a

single point.

Proof. Let X1 . . . Xk be rank 2 Killing-Yano tensors, and let X̃1 . . . X̃k be their lifts up

to the tractor bundle at a point. By the previous lemma, a1X̃1 +a2X̃2 + . . . akX̃k = 0

if and only if a1X1 + a2X2 + . . . akXk = 0. Thus, the linear independence of one set

implies the linear independence of the other.

Thus, as with Killing vectors, Killing tensors, and conformal Killing vectors, the

tractor approach is fruitful for the purpose of determining linear independence.
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7.2 Rank 2 Killing-Yano tensors in General Relativity

Our primary interest in Killing-Yano tensors is in the construction of Killing tensors

of rank 2. While Killing-Yano tensors are of interest in the study of General Relativity

for this reason, it should be noted that Killing-Yano tensors have also been used in the

separation of the Dirac Equation (Carter and McLenaghan, 1979; Fels and Kamran,

1990), and so the utility of Killing-Yano tensors extends beyond that of constructing

Killing tensors.

We have examined many metrics from chapter 14 of Exact Solutions to Einstein’s

Field Equations (Stephani et al., 2003) using the tractor approach for Killing-Yano

tensors of rank 2. Using our methods, we have found two metrics admitting precisely

one Killing-Yano tensor each: these Killing-Yano tensors have been identified explic-

itly, where solving the Killing equation directly using Maple appears to have failed in

that the Maple computation was not able to be performed in a seemingly reasonable

time frame. The metrics are 14.22 and 14.24. Another metric, 14.10, has been found

to admit no Killing-Yano tensors, where arriving at this conclusion by attempting

to solve the Killing equation using Maple appears to have failed. Tables 7, 8, and 9

summarize our calculations for metrics admitting 3, 4, and 6 Killing vectors (none of

the metrics examined had precisely 5 Killing vectors).

For each table, the column “Known Killing-Yano tensors” denotes the number of

Killing-Yano tensors obtained from solving the Killing equations directly: an entry

of 0 indicates that either no attempt was made or that no solutions were found. The

next two columns indicate the dimensions of Tn for n = 0, 1, where applicable: a dash

indicates that this computation was not attempted. The “Direct pdsolve” column

indicates whether the Killing equations were solved directly. A checkmark indicates

that, using Maple, the Killing equations were solved directly, and an “x” indicates that

the Maple computation was aborted either due to memory constraints or due to the

computation appearing to take an unusually long amount of time. A dash indicates
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that no attempt was made. These same indicators–the checkmark, the “x”, and the

dash–are used in the “Tractor pdsolve” column, which column indicates whether the

reduced system of equations was solved. Column Y indicates the number of rank

2 Killing-Yano tensors which our methods demonstrate exist. Column T indicates

whether the Killing tensors generated from the Killing-Yano tensors, according to

equation (2.9), are metric reducible: an entry of “r” indicates that all Killing tensors

are metric reducible, while a numeric entry indicates the number of Killing tensors

which are metric irreducible.

7.2.1 Isometry dimension 3

Beginning with metrics in chapter 14 (Stephani et al., 2003) which admit precisely 3

Killing vectors, we apply the tractor connection. We examine metrics 14.26, 14.27,

14.29, 14.30, 14.31, 14.32, 14.33, 14.34, 14.35, 14.41, 14.42, 14.44, 14.45, and 14.46.

Table 7 summarizes our results.

Known Killing- dim(T0) dim(T1) Direct Tractor Y T
Yano tensors pdsolve pdsolve

14.26 0 0 - - - 0 -
14.27 0 0 - - - 0 -
14.29 0 0 - - - 0 -
14.30 0 0 - - - 0 -
14.31 0 0 - - - 0 -
14.32 0 0 - - - 0 -
14.33 0 0 - - - 0 -
14.34 0 0 - - - 0 -
14.35 0 0 - - - 0 -
14.41 0 0 - - - 0 -
14.42 0 0 - - - 0 -
14.44 0 0 - - - 0 -
14.45 0 x - x x
14.46 0 2 0 - - 0 -

Table 7: Metrics from chapter 14 with isometry dimension 3.
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All but one of the examined metrics admitting precisely three Killing vectors have

been found to admit no Killing-Yano tensors. In most cases, this can be verified at

curvature order 0. At the time of writing, we were not able to apply the tractor

approach for metric 14.45 due to the inability to compute the tractor connection in

a timely fashion.

7.2.2 Isometry dimension 4

We now present the summary of our calculations for metrics from chapter 14 (Stephani

et al., 2003) which admit precisely 4 Killing vectors. We examine 14.14, 14.15, 14.16,

14.17, 14.18, 14.19, 14.20, 14.21, 14.22, 14.23, 14.24, and 14.25.

14.14(i) is metric 14.14, and 14.14(ii) interchanges sinh(u) and cosh(u). 14.16(i)

has k = −1, while 14.16(ii) has k = 1. 14.21(i), 14.21(ii), and 14.21(iii) have k = 1, 0,

and −1, respectively.

All of the examined metrics with precisely four Killing vectors admit either 1 or

0 Killing-Yano tensors. In all but two metrics admitting a Killing-Yano tensor, the

Killing-Yano tensor has been found by solving the Killing equation directly. The

two exceptional metrics are found to be 14.22 and 14.24. Table 8 summarizes our

calculations.

The metric 14.22 is

a2 (g − bġ)2 dx2 + g2e−2xdy2 + g2e2xdz2 − dt2,

where g = g(bx+ t). The Killing-Yano tensor is given as

g3e−3xdy ∧ dz,

from which the following Killing tensor of rank 2 is generated:
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Known Killing- dim(T0) dim(T1) Direct Tractor Y T
Yano tensors pdsolve pdsolve

14.14(i) 0 0 - - - 0 -
14.14(ii) 0 0 - - - 0 -
14.15(a) 1 1 1 X X 1 r
14.15(b) 1 1 1 X X 1 r
14.16(i) 1 1 1 X X 1 r
14.16(ii) 1 1 1 X X 1 r

14.17 1 1 1 X X 1 r
14.18(a) 0 0 - - - 0 -
14.18(b) 0 0 - - - 0 -

14.19 1 1 1 X X 1 r
14.20 0 0 - - - 0 -

14.21(i) 0 0 - - - 0 -
14.21(ii) 0 0 - - - 0 -
14.21(iii) 0 0 - - - 0 -

14.22 0 1 1 x X 1 r
14.23 0 0 - - - 0 -
14.24 0 1 1 x X 1 r
14.25 0 0 - - - 0 -

Table 8: Metrics from chapter 14 with isometry dimension 4.

−e−4xg4
(
dy2 + dz2

)
.

However, this Killing tensor is reducible, since it is generated by the rank 1 Killing

tensors e−2xg2dy and e−2xg2dz.

The metric 14.24 is

−c
2 (U ′)2

a2U2
dt2 +

c2

U2
dx2 +

c2

e2xU2
dy2 +

c2

e2xU2
dz2,

where U = U(t+ x). The Killing-Yano tensor is given as

1

e3xU3
dy ∧ dz,

from which the following rank 2 Killing tensor is generated:
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− 1

c2e4xU4

(
dy2 + dz2

)
.

However, this Killing tensor is reducible, since it can be generated by the following

rank 1 Killing tensors:

1

e2xU2
dy,

1

e2xU2
dz.

7.2.3 Isometry dimension 6

We now examine metrics from chapter 14 (Stephani et al., 2003) which admit precisely

6 Killing vectors. We examine metrics 14.7, 14.10, and 14.12. A summary is given in

Table 9.

Known Killing- dim(T0) dim(T1) Direct Tractor Y T
Yano tensors pdsolve pdsolve

14.7 4 4 4 X X 4 r
14.10 0 4 1 x X 0 -

14.12(a) 4 4 4 X X 4 r
14.12(b) 4 4 4 X X 4 r
14.12(c) 4 4 4 X X 4 r

Table 9: Metrics from chapter 14 with isometry dimension 6.

With the exception of 14.10, all of the metrics admitting 6 Killing vectors were

found to admit 4 Killing-Yano tensors by solving the Killing equation directly. For

metric 14.10, we were unable to compute dim(T2); however, we solved the reduced

system at at T1 directly to show that no non-zero solutions can exist.

It is apparent that although the Killing equations for Killing-Yano tensors of rank

2 can be solved directly more often than the Killing equations for Killing tensors of

rank 2, the tractor approach may still grant useful insight with regard to Killing-

Yano tensors. In the infrequent cases in which the Killing-Yano tensors cannot be
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solved for directly, the tractor approach can be used to obtain a count of the number

of Killing-Yano tensors, and, in certain cases, the tractor approach can be used to

obtain the Killing-Yano tensors explicitly.

It is also apparent that the ability to generate meaningful Killing tensors of rank 2

from Killing-Yano tensors of rank 2 is limited, as all of our examined cases yield only

metric reducible Killing tensors. It is possible that meaningful Killing tensors (i.e.

metric irreducible Killing tensors) are more easily generated by Killing-Yano tensors

of rank 3, as examples exist in the literature of metric irreducible Killing tensors

generated from Killing-Yano tensors of rank 3 (Popa and Ovidiu, 2007).

We will conclude this section by providing an example of a metric irreducible

Killing tensor generated by a Killing-Yano tensor of rank 2. The Kerr metric given in

equation (6.53) has been shown to admit the metric irreducible Killing tensor given

in equation (6.54). This Killing tensor is also generated by the following Killing-Yano

tensor, which Killing-Yano tensor we obtained by solving the Killing equation (for

rank 2 Killing-Yano tensors) directly using Maple:

−a cos(θ)dt∧dr+ar sin(θ)dt∧dθ−a2 cos(θ) sin2(θ)dr∧dφ+ r(a2 + r2) sin(θ)dθ∧dφ.
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8 Future Work

We have applied the tractor approach to Killing vectors, Killing tensors of rank 2,

Killing-Yano tensors of rank 2, and conformal Killing vectors. In each case, we have

built supportive programs in Maple. We have also built software which is supportive of

applying the tractor approach for Killing-Yano tensors of any rank up to the dimension

of the base manifold. Formulas for tractor connections for Killing tensors of rank

greater than 2 have been proposed (Houri et al., 2018), making the construction of

computer programs capable of implementing them explicitly a project of interest.

However, designing such a program is problematic, since the existing formulas which

define the tractor connection are not explicitly given. Other formulas have been

proposed (Wolf, 1998), and yet the explicit manifestation of the tractor connection

formulas is likewise absent.

Notwithstanding, it may be possible to construct the required Frobenius system

for higher rank Killing tensors if attention is restricted to a low-dimensional case,

such as dimension 2, 3, or 4. Thus, the development of software for low-dimensional,

higher-rank Killing tensors is of interest.

Constructing tractor connections for conformal Killing forms and tensors is also of

interest, though we have yet to find any literature concerning the maximum number

or the prolongation of conformal Killing tensors.

It may also be of interest to apply the tractor approach more completely to Killing

tensors of rank 2. Finding irreducible Killing tensors for many other exact solutions

of the Einstein equations may be of interest, and it may also be of interest to search

for irreducible Killing tensors outside of the context of general relativity. In this case,

the software tools developed in this thesis can serve as an exceptional aide.

Our apparent lack of success in constructing interesting Killing tensors of rank

2 from Killing-Yano tensors and conformal Killing vectors is troubling, and may be
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cause to suspect that such Killing tensors are a particularly rare phenomenon. An

interesting project would be the examination of many exact solutions to Einstein’s

equations for the purpose of constructing Killing tensors from Killing-Yano tensors

and conformal Killing vectors–Killing tensors which are not generated from Killing

vectors or the metric itself. Special attention should be given to metrics which have

been shown to admit metric irreducible Killing tensors, with the question in mind

being whether the Killing tensors produced using Killing-Yano tensors and conformal

Killing vectors are metric reducible or not.

It may also be of interest to write a program which constructs the tractor con-

nection for Killing spinors (M. Walker and R. Penrose, 1970). Ideally, Killing spinors

could then be identified without the need to solve the associated equations directly.

Another useful project is the optimization of existing software. In this thesis, we

have built software which allows us to apply the tractor approach in many cases, but

the nominal time required of Maple to construct the tractor connection for Killing

tensors of rank 2 in dimension 4 is 55 seconds. While this amount of time may not

seem to be impractical, the amount of time required to compute tractor connections

for Killing tensors increases dramatically as the dimension of the base space increases.

It would be useful to look for programming inefficiencies in the code, in hopes that

the required time to complete the computations needed for the tractor approach can

be significantly reduced.

As Killing vectors and conformal Killing vectors have been treated, it would also

be of interest to examine homothetic Killing vectors. These are conformal Killing

vectors for which, in light of equation (5.1), Xγ
;γ is a constant. It is thought that

homothetic Killing vectors can be treated as conformal Killing vectors, though with

the lift onto the tractor bundle having Zα = 0, making the treatment of homothetic

Killing vectors attainable, ideally, using existing methods.

In a few tables, it is evident that while we were often able to compute a basis
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for the 0th-order reduced tractor bundle, the higher order reduced tractor bundles

sometimes proved elusive on account of the need to check the nullspaces of additional

matrices. In particular, it is desirable to compute the 1st-order reduced tractor bundle

for Killing vectors for the Kerr metric. It may be possible to use our basis for the

0th-order reduced bundle to get the desired result for the Kerr metric, and, if this

proves to be successful, it is reasonable to assume that whatever successful technique

was used in this case can be applied more generally.

As we have stated earlier, it is only for metrics of constant curvature that the

algebra of Killing tensors is completely known, and this due to the fact that no

irreducible Killing tensors of rank 2 or greater can exist (Thompson, 1986). The

problem of finding a generating set for the algebra of Killing tensors in general,

however, is open. Thus, it may be of interest to attempt to, for a particular metric

or for a class of metrics, find all irreducible Killing tensors.
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9 Maple Programs

We will now describe the utility of the programs which were developed for this

Thesis. For examples of their use or the source code itself, see the Appendices.

9.1 Programs for Killing vectors

• rnk1TracConn(Γ, N). This program will construct the tractor connection for

rank 1 Killing tensors. It requres a connection Γ defined on the base space as

well as the bundle N itself.

• liftrnk1(X,Γ, N). This program is intended to lift a rank 1 Killing tensor X to

a section on N which is parallel with respect to the rnk1TracConn connection.

This procedure also requires a connection Γ defined on the base space.

• getRnk1(X,N). This program is intended to take a section X on the bundle

N which is parallel with respect to the rnk1TracConn connection and output

the associated rank 1 Killing tensor defined on the base space.

9.2 Programs for conformal Killing vectors

• ConfTracConn(g,N). This program will construct the tractor connection for

conformal Killing 1-forms. This program requires a metric g defined on the

base space of the vector bundle N rather than a connection, since the equations

which define the tractor connection for conformal Killing vectors are given in

terms of the metric itself.

• liftConfKV(X, g,N). This program is intended to lift a conformal Killing 1-

form X to a section on N which is parallel with respect to the ConfTracConn

connection. This procedure also requires a metric g as input.
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• getConfKV(X,N). This program is intended to take a section X on the

bundle N which is parallel with respect to the ConfTracConn connection and

output the associated conformal Killing 1-form.

• CKVtoKT(X, g). This program takes as input a (covariant) conformal Killing

vector X and metric g and constructs a tensor using equation (2.12). Certain

conditions on X must be satisfied in order for the resulting tensor to be a Killing

tensor.

9.3 Programs for Killing tensors of rank 2

• HauserTractorConnection(Γ,N). This program takes as input a connection

defined on the base space and the base space itself, and outputs the tractor con-

nection on the bundle using the Hauser tractor equations(Hauser and Malhiot,

1975a).

• HauserTractorLift2(K,Γ,N). This program is intended to perform the lift of

a Killing tensor K of rank 2 to a parallel (with respect to the Hauser connection)

section on the bundle N . A connection Γ on the base space is also required.

• getHauserKT2(X,N). This program is intended to do the opposite of the

HauserTractorLift2 command: it is intended to take a parallel section X on

the Tractor bundle N and push it down to a rank 2 Killing tensor on the base

space.

9.4 Programs for Killing-Yano tensors

• KYTracCon(Γ, k,N). This program will construct the tractor connection for

Killing-Yano tensors(Houri et al., 2018) of rank k. This program requires a

Connection Γ on the base space, an integer k, and an initialized vector bundle
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N . It is not recommended that this program be used for Killing-Yano tensors

of rank 1.

• liftKY(F,Γ, N). This program is intended to lift a Killing-Yano tensor F to

a section on N which is parallel with respect to the KYTracCon connection.

This procedure also requires a connection Γ defined on the base space.

• getKY(X, k,N). This program is intended to take a section X on the bundle

N which is parallel with respect to the KYTracCon connection and output

the associated Killing-Yano tensor of rank k.

• KYtoKT(g, h,KY 1, KY 2). This command computes the rank 2 Killing tensor

formed by Killing-Yano tensors KY 1 and KY 2 using equation (2.9). A metric

g and the inverse metric h are also required.

9.5 Utility programs

• MaxKT(m,n). This program takes as input two integers, namely the dimen-

sion of the base manifold (m) and the desired Killing tensor rank (n), and out-

puts the maximum number of Killing tensors of the desired rank in the desired

dimension(Hauser and Malhiot, 1975a). Before initializing the vector bundle in

Maple, this command is used to compute the required size of the fibers.

• MaxKY(m,n). This program is entirely analogous to the program MaxKT,

but for Killing-Yano tensors.

• MaxCF(m,n). Another program analogous to MaxKT, but for conformal

Killing forms of rank n.

• MaxSym(m,n). This program calculates the number of independent compo-

nents of a completely symmetric, rank n tensor in m dimensions.
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• MaxSkew(m,n). This program calculates the number of independent compo-

nents of a rank n, completely skew-symmetric tensor in m dimensions.

• KillingTensorLibrary(n,name,output:=[]). This command loads in known

Killing tensors from a Killing tensor database. This procedure requires at least

two arguments: an integer n and a name of the user’s choosing. Specifying only

these two arguments will return the metric of the database entry given by the

integer on the procedure-initialized Manifold whose name is given as the second

input value.

A third possible input takes the form output = [], where the values in the

list are given by the user. If the only input in the list is an integer, then the

procedure will return the known irreducible Killing tensors of the associated

database entry metric, the rank of which Killing tensors are equal to the integer

specified. If the user inputs output = [“KillingTensors”,k] for some integer k,

then the program returns all known Killing tensors of rank k for the associ-

ated database entry. The user can also specify output = [“IrreducibleRank”]

to generate a list of integers which will inform the user of what rank(s) of ir-

reducible Killing tensors associated with the database entry metric are known.

[“KillingYanoTensors”,k] will return the known Killing-Yano tensors of rank k,

and [“ConformalKillingForms”,k] will return the known conformal Killing forms

of rank k.

The user may also specify the output as one of a few keywords: “Notes”, “Ref-

erence”, and “Coordinates” to display relevant information about the database

entry. Some entries come from the MetricSearch library in the Differential Ge-

ometry software package7: for these database entries, the reference is given so

that they may be retrieved from the MetricSearch library.

7For more information, see https://digitalcommons.usu.edu/dg/.
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the output option may also be used to retrieve known tractor connections and

their associated curvature tensors. [“TractorConnection”,k,Q] will return the

tractor connection for Killing tensors of rank k on the procedure-initialized vec-

tor bundle Q, and [“TractorCurvature”,k,Q] retrieves the associated curvature

tensor. Similar commands are available for Killing-Yano tensors and for confor-

mal Killing forms by specifying the output as [“YanoTractorConnection”,k,Q],

[“YanoTractorCurvature”,k,Q], [“ConformalFormTractorConnection”,k,Q], and

[“ConformalFormTractorCurvature”,k,Q].

• BundleLift(T,N). This command is intended to redefine the object T as an

object in the environment N . The most common application for us is to take a

metric g defined on a manifold M and redefine it on the base space of a vector

bundle N by way of the following: BundleLift(g,N).
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11 Appendix A: Software demonstration for

Killing vectors

We will now provide a small demonstration of how our software may be imple-

mented in the study of Killing vectors. Our example will be given on a 2-dimensional

Riemannian manifold with metric up(du2 +dv2). We will construct the tractor bundle

and tractor connection, calculate the curvature tensor, and then find bases for the

reduced tractor bundles to explicitly identify the Killing vectors themselves. We will

verify the one-to-one correspondence of parallel sections on the tractor bundle and

Killing vectors on the base space.



(2)(2)

(1)(1)

M  >  M  >  

V  >  V  >  

M  >  M  >  

>  >  

M  >  M  >  

N  >  N  >  

(4)(4)

(3)(3)

>  >  

(5)(5)

(6)(6)

Appendix A: Software demonstration for Killing 
vectors

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxKT, BundleLift, rnk1TracConn, getRnk1, and liftrnk1.

First, we will read in the file which contains the programs we have written and load 
in other necessary packages.

read "TractorPrograms.txt";
w i th (D i f fe rent ia lGeometry ) :
wi th (Tensor ) :

Now, we will initialize a 2-dimensional manifold.

DGEnvironment[Coordinate]([u,v] ,  M);
Manifold: M

Next, we will define a simple metric.

g  : =  e v a l D G (  u ^ p  *  ( d u  & t  d u  +  d v  & t  d v )  ) ;

We need to know the required size of the fibers of the tractor bundle. We find this to 
be 3:

MaxKT(2,  1) ;
3

Now we initialize the required environments.

DGEnvironment[VectorSpace](3, V);
Vector Space: V

DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N

Now that the vector bundle has been initialized, it is convenient to redefine the 
metric on this bundle:

G  : =  B u n d l e L i f t ( g ,  N ) ;



(8)(8)

N  >  N  >  

N  >  N  >  

N  >  N  >  

(10)(10)

(9)(9)

N  >  N  >  

(11)(11)

(7)(7)

N  >  N  >  

We will also need the Christoffel symbols:

Gamma := Christoffel (G);

Now we can compute the tractor connection:

C := rnk1TracConn(Gamma, N);

We can also represent this connection as a matrix of 1-forms:

convert (C,  DGMatr ix) ;

We now compute the Curvature tensor for the tractor connection.

K := CurvatureTensor(C);

It is interesting to note that p=0 and p=-2 are the only values of p for which the 
curvature tensor vanishes identically.

We can represent this tensor as a collection of (1,1) tensors by contracting the 
curvature tensor with the coordinate vectors of the base manifold. In our 2-
dimensional case, there is only one such (1,1) tensor, but there may be others in 
higher dimensions.

k 1  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ u  & t  D _ v ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ]  ) ;



(17)(17)

N  >  N  >  

N  >  N  >  

(13)(13)

N  >  N  >  

(12)(12)

N  >  N  >  

(14)(14)

N  >  N  >  

N  >  N  >  

(15)(15)

(16)(16)

We can think of this as a matrix

K1 :=  conver t (k1 ,  DGMatr ix ) ;

and subsequently find the basis for the 0th order reduced tractor bundle:

I T 0  : =  L i e A l g e b r a s : - I n v a r i a n t T e n s o r s ( [ K 1 ] ,  [ s e q ( E | | i , i = 1 . . 3 ) ]
) ;

This calculation is assuming that p is not 0 or 2: caution is advised when examining 
metrics with unknown constants as exponents. Assuming that p is not 0 or 2, there 
are a maximum of 2 Killing vectors of the metric g, since there are 2 invariants.

We will now try to get a tighter upper bound using the 1st order reduced tractor 
bundle. We begin by differentiating the curvature tensor.

dK1 :=  Covar ian tDer iva t ive (k1 ,  C ) ;

We now generate a set of (1,1) tensors by contraction:

D 1 K 1  : =  C o n t r a c t I n d i c e s ( d K 1 ,  D _ u ,  [ [ 3 , 1 ] ]  ) ;

D 2 K 1  : =  C o n t r a c t I n d i c e s ( d K 1 ,  D _ v ,  [ [ 3 , 1 ] ]  ) ;

Now we will convert them to matrices.

Md1k1 := convert(D1K1, DGMatrix);



(17)(17)

N  >  N  >  

(21)(21)

(18)(18)

(20)(20)

N  >  N  >  

(19)(19)

(22)(22)

N  >  N  >  

N  >  N  >  

N  >  N  >  

Md2k1 := convert(D2K1, DGMatrix);

And now we can compute a basis for the 1st order reduced tractor connection.

IT1 := LieAlgebras:- Invar iantTensors([K1,Md1k1,Md2k1] ,  [seq
( E | | i , i = 1 . . 3 ) ]  ) ;

Thus, we get a maximum of 1 Killing vector. Let's be sure that our calculation doesn't
depend on p not being 6, since p=6 appears, from looking at the matrices above, to 
be an exceptional value.

LieAlgebras: - Invar iantTensors(  eval ( [K1,Md1k1,Md2k1] ,  p=6) ,  
[ s e q ( E | | i , i = 1 . . 3 ) ] ) ;

Now let's see if we can get the Killing vector explicitly. First, we form a linear 
combination of the 1st order reduced tractor basis elements with function 
coefficients.

s 1  : =  D G z i p ( [ s e q ( q | | i ( u , v ) ,  i = 1 . . n o p s ( I T 1 ) ) ]  , I T 1 ,  " p l u s " ) ;

Next, we take the covariant derivative.

s 2  : =  C o v a r i a n t D e r i v a t i v e ( s 1 ,  C ) ;



(17)(17)

N  >  N  >  

(25)(25)
N  >  N  >  

N  >  N  >  

(23)(23)

(22)(22)

N  >  N  >  
(24)(24)

N  >  N  >  

(26)(26)

(27)(27)

Let's look at the equations we need to solve.

s3  :=  DGin format ion(s2 ,  "Coef f ic ien tSet" ) ;

How many equations are there?

nops(s3) ;
4

This is an easier system to solve than the Killing equations themselves, which has 3 
equations and 2 unknown functions.

Let's get the solution:

s 4  : =  p d s o l v e ( s 3 ,  q | | 1 ( u , v ) ) ;

Here is then what the parallel sections should look like:

s5 :=  DETools: -dsubs(s4 ,  s1) ;

We may as well evaluate this at _C1=1.

s6  :=  eva l (s5 ,_C1=1 ) ;



N  >  N  >  

(34)(34)

N  >  N  >  

(33)(33)

(28)(28)

(22)(22)

N  >  N  >  

(29)(29)

(35)(35)

(17)(17)

(32)(32)

N  >  N  >  

N  >  N  >  

N  >  N  >  

(31)(31)

N  >  N  >  

(30)(30)

N  >  N  >  

We check that it's a parallel section:

Covar ian tDer iva t ive (s6 ,  C ) ;

Now we drop this parallel section down:

T  :=  ge tRnk1 (s6 ,  N ) ;

Let's check that this is a Killing tensor of rank 1.

CheckKi l l ingTensor(G,  T) ;

If the contravariant vector is desired, we can simply raise indices:

X  : =  R a i s e L o w e r I n d i c e s (  I n v e r s e M e t r i c ( G ) ,  T ,  [ 1 ]  ) ;

Now let's check that we can lift the Killing tensors of the metric to parallel sections. 
We begin by calculating the Killing tensors conventionally.

k t 1  : =  K i l l i n g T e n s o r s ( G ,  1 ) ;

As there is only one, we will lift this individually rather than lift the list. Note that the
Christoffel symbols of G are needed.

l i f t k t 1  : =  l i f t r n k 1 ( k t 1 [ 1 ] ,  G a m m a ,  N ) ;

Let's check that this is a parallel section.

C o v a r i a n t D e r i v a t i v e ( l i f t k t 1 ,  C ) ;

But are there more parallel sections?

C o v a r i a n t l y C o n s t a n t T e n s o r s ( C ,  [ s e q ( E | | i , i = 1 . . 3 ) ]  ) ;



(17)(17)

(22)(22)

N  >  N  >  

Since there is only 1, which corresponds with our known parallel section, the parallel 
sections and the Killing vectors are in one-to-one correspondence.
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12 Appendix B: Software demo for conformal

Killing vectors

We will now feature a 3-dimensional example to demonstrate our software for

the tractor approach for conformal Killing vectors. We will construct the tractor

bundle and calculate the tractor connection and tractor curvature. Then we will

calculate bases for the reduced tractor bundles of orders 0 and 1–we will then obtain

the conformal Killing vectors explicitly. We will compare these computed conformal

Killing vectors to the conformal Killing vectors calculated conventionally.



N  >  N  >  

(1)(1)
>  >  

V  >  V  >  
(5)(5)

>  >  

M  >  M  >  

(4)(4)

(6)(6)

M  >  M  >  

(3)(3)

(2)(2)

M  >  M  >  

Appendix B: Software demo for conformal Killing 
vectors.

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxCF, BundleLift, ConfTracConn, getConfKV, and liftConfKV.

First, we will read in the file which contains the programs we have written and load 
in other required packages.

read "TractorPrograms.txt";
w i th (D i f fe rent ia lGeometry ) :
wi th (Tensor ) :

Now, we will initialize a 3-dimensional manifold.

DGEnvironment[Coordinate]( [x ,y ,z] ,  M);
Manifold: M

Next, we will define a simple metric.

g  : =  e v a l D G ( d x  & t  d x  +  d y  & t  d y  +  x  *  d z  & t  d z ) ;

We need to know the required size of the fibers of the tractor bundle. We find this to 
be 10:

MaxCF(3,  1) ;
10

Now we initialize the required environments.

DGEnvironment[VectorSpace](10, V);
Vector Space: V

DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N

Now that the vector bundle has been initialized, it is convenient to redefine the 
metric on this bundle:

G  : =  B u n d l e L i f t ( g ,  N ) ;



N  >  N  >  

(7)(7)

(8)(8)

N  >  N  >  

Now we can compute the tractor connection:

C := ConfTracConn(G, N);

We now compute the Curvature tensor for the tractor connection.

K := CurvatureTensor(C);



N  >  N  >  

N  >  N  >  

(10)(10)

N  >  N  >  

(12)(12)

N  >  N  >  

(9)(9)

(11)(11)

We can represent this tensor as a collection of (1,1) tensors by contracting the 
curvature tensor with the coordinate vectors of the base manifold.

k 1  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ x  & t  D _ y ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ]  ) ;

k 2  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ x  & t  D _ z ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ]  ) ;

k 3  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ y  & t  D _ z ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ]  ) ;

We can think of these as matrices

K1 :=  conver t (k1 ,  DGMatr ix ) ;
K2  :=  conver t (k2 ,  DGMatr ix ) ;
K3  :=  conver t (k3 ,  DGMatr ix ) ;



(13)(13)

N  >  N  >  

(12)(12)

and subsequently find a basis for the 0th order reduced tractor bundle.

I T 0  : =  L i e A l g e b r a s : - I n v a r i a n t T e n s o r s ( [ K 1 , K 2 , K 3 ] ,  [ s e q ( E | | i , i =
1 . . 1 0 ) ] ) ;

How many are there?



N  >  N  >  

N  >  N  >  

(16)(16)

(12)(12)

N  >  N  >  

(14)(14)

(15)(15)

nops( IT0 ) ;
6

Thus, there are a maximum of 6 conformal Killing vectors of the metric g.

Now let's see if we can get the Killing vectors explicitly. We begin by forming a 
function-coefficient linear combination of these basis elements.

s 1  : =  D G z i p ( [ s e q ( q | | i ( x , y , z ) ,  i = 1 . . n o p s ( I T 0 ) ) ] ,  I T 0 ,  " p l u s " ) ;

Next, we take the covariant derivative.

s 2  : =  C o v a r i a n t D e r i v a t i v e ( s 1 ,  C ) ;



N  >  N  >  

(16)(16)

(12)(12)

(17)(17)

N  >  N  >  

(14)(14)

Let's look at the equations we need to solve.

s3  :=  DGin format ion(s2 ,  "Coef f ic ien tSet" ) ;



N  >  N  >  

N  >  N  >  

(16)(16)

(18)(18)

N  >  N  >  

N  >  N  >  

N  >  N  >  

(12)(12)

(20)(20)

(14)(14)

(19)(19)

N  >  N  >  

N  >  N  >  

(21)(21)

(17)(17)

(23)(23)

(22)(22)

How many equations are there?

nops(s3) ;
28

This system may be easier to solve than the Killing equation itself. Let's get the 
solution.

s 4  : =  p d s o l v e ( s 3 ,  { s e q ( q | | i ( x , y , z ) ,  i = 1 . . n o p s ( I T 0 ) ) }  ) ;

How many independent solutions are there?

has(s4,_C3);
true

has(s4,_C4);
false

Thus, there are 3 independent solutions. Here is then what the parallel sections 
should look like:

s5 :=  DETools: -dsubs(s4 ,  s1) ;

Now we will generate a list of parallel sections according to the independent 
solutions.

t1  :=  eva l (s5 ,  [_C1=1 ,_C2=0 ,_C3=0] ) ;
t2  :=  eva l (s5 ,  [_C1=0 ,_C2=1 ,_C3=0] ) ;
t3  :=  eva l (s5 ,  [_C1=0 ,_C2=0 ,_C3=1] ) ;



N  >  N  >  

(16)(16)

(24)(24)

N  >  N  >  

(29)(29)

(28)(28)

(14)(14)

N  >  N  >  

(17)(17)

(30)(30)

(27)(27)

(25)(25)

N  >  N  >  

N  >  N  >  

(12)(12)

N  >  N  >  

N  >  N  >  

(26)(26)

(23)(23)

N  >  N  >  

We check that they're parallel sections:

m a p ( C o v a r i a n t D e r i v a t i v e ,  [ t 1 , t 2 , t 3 ] ,  C ) ;

Now we drop these parallel sections down to the base space:

T  : =  m a p ( g e t C o n f K V ,  [ t 1 , t 2 , t 3 ] ,  N ) ;

These are the (covariant) conformal Killing vectors of the metric. Now let's check that
we can lift the conformal Killing vectors of the metric to parallel sections. We begin 
by calculating them conventionally.

ckv :=  ConformalKi l l ingVectors(G);

Let's get the covariant versions:

ckt  :=  ListTools: -Flat tenOnce([map2(RaiseLowerIndices,  G,  ckv
[ 1 ] ,  [ 1 ] ) ,  m a p 2 ( R a i s e L o w e r I n d i c e s ,  G ,  c k v [ 2 ] ,  [ 1 ] ) ]  ) ;

Now let's lift them to sections.

l i f t c k t  : =  m a p ( l i f t C o n f K V ,  c k t ,  G ,  N ) ;

Let's check that these are parallel sections.

m a p ( C o v a r i a n t D e r i v a t i v e ,  l i f t c k t ,  C ) ;

But are there more parallel sections?

Covar ian t l yCons tan tTensors (C ,  [ seq (E | | i , i =1 . . 10 ) ] ) ;



N  >  N  >  

(16)(16)

N  >  N  >  

(12)(12)

(17)(17)

(23)(23)

(31)(31)

(30)(30)

(14)(14)

nops(%);
3

Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.
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13 Appendix C: Software demonstration for

Killing tensors of rank 2

We will return to the metric up(du2 + dv2) to demonstrate our software for imple-

menting the tractor approach for Killing tensors. We will, as done previously, con-

struct the bundle, compute the tractor connection, compute the tractor curvature,

and compute bases for the reduced tractor bundles in order to explicitly identify the

Killing tensors of rank 2. However, we will also illustrate the point that certain values

of p may yield different results and we will identify an exceptional value of p.



>  >  

>  >  

N  >  N  >  

(3)(3)

(1)(1)

M  >  M  >  

M  >  M  >  

(2)(2)

V  >  V  >  
(5)(5)

(4)(4)

M  >  M  >  

(6)(6)

Appendix C: Software demonstration for Killing 
tensors of rank 2.

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxKT, BundleLift, HauserTractorConnection, getHauserKT2, and 
HauserTractorLift2.

First, we will read in the file which contains the programs we have written and also 
load in the required packages.

read "TractorPrograms.txt";
w i th (D i f fe rent ia lGeometry ) :
wi th (Tensor ) :

Now, we will initialize a 2-dimensional manifold.

DGEnvironment[Coordinate]([u,v] ,  M);
Manifold: M

Next, we will define a simple metric.

g  : =  e v a l D G ( u ^ p  *  ( d u  & t  d u  +  d v  & t  d v )  ) ;

We need to know the required size of the fibers of the tractor bundle. We find this to 
be 6:

MaxKT(2,  2) ;
6

Now we initialize the required environments.

DGEnvironment[VectorSpace](6, V);
Vector Space: V

DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N

Now that the vector bundle has been initialized, it is convenient to redefine the 
metric on this bundle:

G  : =  B u n d l e L i f t ( g ,  N ) ;



N  >  N  >  

(8)(8)

(9)(9)

N  >  N  >  

N  >  N  >  

(7)(7)

We will also need the Christoffel symbols:

Gamma := Christoffel (G);

Now we can compute the tractor connection:

C := HauserTractorConnection(Gamma, N);

We can also represent this connection as a matrix of 1-forms:

convert (C,  DGMatr ix) ;



(12)(12)

N  >  N  >  

N  >  N  >  

(11)(11)

N  >  N  >  

(13)(13)

(10)(10)

N  >  N  >  

We now compute the Curvature tensor for the tractor connection.

K := CurvatureTensor(C);

It is interesting to note that p=0 and p=-2 are the only values of p for which the 
curvature tensor vanishes identically.

We can represent this tensor as a collection of (1,1) tensors by contracting the 
curvature tensor with the coordinate vectors of the base manifold. In our 2-
dimensional case, there is only one such (1,1) tensor, but there may be others in 
higher dimensions.

k 1  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ u  & t  D _ v ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ]  ) ;

We can think of this as a matrix

K1 :=  conver t (k1 ,  DGMatr ix ) ;

and subsequently find the basis for the 0th order reduced tractor bundle:

I T 0  : =  L i e A l g e b r a s : - I n v a r i a n t T e n s o r s ( [ K 1 ] ,  [ s e q ( E | | i , i = 1 . . 6 ) ]
) ;

How many are there?



(16)(16)

(17)(17)

N  >  N  >  

N  >  N  >  

(14)(14)
N  >  N  >  

(15)(15)

N  >  N  >  

(18)(18)

N  >  N  >  

nops( IT0 ) ;
5

This calculation is assuming that p is not 0 or 2: caution is advised when examining 
metrics with unknown constants as exponents. Assuming that p is not 0 or 2, there 
are a maximum of 5 Killing tensors of the metric g..

We will now try to get a tighter upper bound. We begin by differentiating the 
curvature tensor.

dK1 :=  Covar ian tDer iva t ive (k1 ,  C ) ;

We now generate a set of (1,1) tensors by contraction:

D1K1  :=  Cont rac t Ind ices (dK1 ,  D_u ,  [ [ 3 ,1 ] ] ) ;

D2K1  :=  Cont rac t Ind ices (dK1 ,  D_v ,  [ [ 3 ,1 ] ] ) ;

Now we will convert them to matrices.

Md1k1 := convert(D1K1, DGMatrix);



N  >  N  >  

(19)(19)

(20)(20)

N  >  N  >  

(14)(14)
N  >  N  >  

N  >  N  >  

(18)(18)

(21)(21)

Md2k1 := convert(D2K1, DGMatrix);

And now we can find a basis for the 1st order reduced tractor bundle:

IT1 := LieAlgebras:- Invar iantTensors([K1,Md1k1,Md2k1] ,  [seq
( E | | i , i = 1 . . 6 ) ] ) ;

nops( IT1 ) ;
3

We are led to believe that there is a maximum of 3 Killing tensors. However, if p=1, 



N  >  N  >  

N  >  N  >  

N  >  N  >  

(25)(25)

(14)(14)
N  >  N  >  

(22)(22)

N  >  N  >  

(23)(23)

(18)(18)

(24)(24)

we get 4 basis elements:

r IT1 :=  L ieAlgebras: - Invar iantTensors(eval ( [K1,Md1k1,Md2k1] ,  
p = 1 ) ,  [ s e q ( E | | i , i = 1 . . 6 ) ] ) ;

n o p s ( r I T 1 ) ;
4

Thus, it is not advisable to work with metrics which have unknown exponents, unless
the exceptional values for those exponents are being sought.

Now let's see if we can get the Killing tensors explicitly for p=1. We begin by forming
a function-coefficient linear combination of the basis elements of the 1st order 
reduced tractor bundle.

s 1  : =  D G z i p ( [ s e q ( q | | i ( u , v ) ,  i = 1 . . n o p s ( r I T 1 ) ) ] ,  r I T 1 ,  " p l u s " ) ;

Next, we take the covariant derivative.

s 2  : =  C o v a r i a n t D e r i v a t i v e ( s 1 ,  e v a l ( C ,  p = 1 )  ) ;



(25)(25)

N  >  N  >  

(14)(14)
N  >  N  >  

(26)(26)

(18)(18)

Let's look at the equations we need to solve.

s3  :=  DGin format ion(s2 ,  "Coef f ic ien tSet" ) ;



(30)(30)
N  >  N  >  

N  >  N  >  

(31)(31)

N  >  N  >  

(18)(18)

N  >  N  >  
(29)(29)

N  >  N  >  

(28)(28)

(25)(25)

(14)(14)

(27)(27)

N  >  N  >  

(32)(32)

N  >  N  >  

How many equations are there?

nops(s3) ;
12

This system may be easier to solve than the Killing equation itself. Let's get the 
solution.

s 4  : =  p d s o l v e ( s 3 ,  { s e q ( q | | i ( u , v ) , i = 1 . . n o p s ( r I T 1 ) ) }  ) ;

How many independent solutions are there?

has(s4 ,  _C4) ;
true

has(s4 ,  _C5) ;
false

Thus, there are 4 independent solutions. Here is then what the parallel sections 
should look like:

s5 :=  DETools: -dsubs(s4 ,  s1) ;

Now we will generate a list of parallel sections according to the independent 
solutions.

t1  :=  eval (s5 ,  [_C1=1,_C2=0,_C3=0,_C4=0] ) ;
t2  :=  eval (s5 ,  [_C1=0,_C2=1,_C3=0,_C4=0] ) ;
t3  :=  eval (s5 ,  [_C1=0,_C2=0,_C3=1,_C4=0] ) ;
t4  :=  eval (s5 ,  [_C1=0,_C2=0,_C3=0,_C4=1] ) ;



N  >  N  >  

(36)(36)

(37)(37)

(35)(35)

N  >  N  >  

(18)(18)

N  >  N  >  

(34)(34)

N  >  N  >  

(33)(33)

N  >  N  >  

(25)(25)

(14)(14)

N  >  N  >  

(32)(32)

We check that they're parallel sections:

m a p ( C o v a r i a n t D e r i v a t i v e ,  [ t 1 , t 2 , t 3 , t 4 ] ,  e v a l ( C ,  p = 1 )  ) ;

Now we drop these parallel sections down:

T  : =  m a p ( g e t H a u s e r K T 2 ,  [ t 1 , t 2 , t 3 , t 4 ] ,  N ) ;

Let's check that these are Killing tensors of rank 2.

map2(CheckKi l l ingTensor ,  eval (G,  p=1) ,  T ) ;

Now let's check that we can lift the Killing tensors of the metric to parallel sections. 
We begin by calculating the Killing tensors conventionally.

k t 2  : =  K i l l i n g T e n s o r s ( e v a l ( G ,  p = 1 ) ,  2 ) ;

Note that the Christoffel symbols of G are needed for the lift.

l i f t k t2  :=  map(HauserTrac torL i f t 2 ,  k t2 ,  eva l (Gamma,  p=1 ) ,  N ) ;



(40)(40)

(38)(38)

(39)(39)

N  >  N  >  

N  >  N  >  

N  >  N  >  

(25)(25)

(14)(14)
N  >  N  >  

(32)(32)

(18)(18)

Let's check that these are parallel sections.

m a p ( C o v a r i a n t D e r i v a t i v e ,  l i f t k t 2 ,  e v a l ( C ,  p = 1 )  ) ;

But are there more parallel sections?

C o v a r i a n t l y C o n s t a n t T e n s o r s ( e v a l ( C ,  p = 1 ) ,  [ s e q ( E | | i , i = 1 . . 6 ) ] ) ;

nops(%);
4

Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.
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14 Appendix D: Software demonstration for

Killing-Yano tensors

Our last software demonstration illustrates the utility of our software in the study

of Killing-Yano tensors of rank 2. We will demonstrate our software on a manifold

of dimension 3, and we will use the same metric as in Appendix B. We will use the

tractor approach to explicitly identify the single Killing-Yano tensor of rank 2.



(4)(4)

M  >  M  >  

M  >  M  >  

(3)(3)

(6)(6)

(1)(1)

V  >  V  >  

>  >  

M  >  M  >  

(5)(5)

>  >  

N  >  N  >  

(2)(2)

Appendix D: Software demonstration for Killing-
Yano tensors.

In this demonstration, we will illustrate the utility of the programs with the following
names: KillingTensorLibrary, MaxKY, BundleLift, KYTracCon, getKY, liftKY, and 
KYtoKT.

First, we will load in the required packages and read in the file which contains the 
programs we have written.

read "TractorPrograms.txt";
w i th (D i f fe rent ia lGeometry ) :
wi th (Tensor ) :

Now, we will read in an example metric in 3 dimensions. In using the 
KillingTensorLibrary command, we will initialize a coordinate environment M.

g 1  : =  K i l l i n g T e n s o r L i b r a r y ( 3 ,  M ) ;

The metric we will use will have p=1.

g  : =  e v a l ( g 1 ,  p = 1 ) ;

We need to know the required size of the fibers of the tractor bundle. We find this to 
be 10:

MaxKY(3,  2) ;
4

Now we initialize the required environments.

DGEnvironment[VectorSpace](4, V);
Vector Space: V

DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N

Now that the vector bundle has been initialized, it is convenient to redefine the 
metric on this bundle:

G  : =  B u n d l e L i f t ( g ,  N ) ;



N  >  N  >  

(12)(12)

N  >  N  >  

N  >  N  >  

(9)(9)

(8)(8)

N  >  N  >  

(10)(10)

(6)(6)

(11)(11)

(7)(7)

N  >  N  >  

N  >  N  >  

We also need the Christoffel symbols.

Gamma := Christoffel (G);

Now we can compute the tractor connection. Note that the rank of the Killing-Yano 
tensor must be specified.

C := KYTracCon(Gamma, 2, N);

We now compute the Curvature tensor for the tractor connection.

K := CurvatureTensor(C);

We can represent this tensor as a collection of (1,1) tensors by contracting the 
curvature tensor with the coordinate vectors of the base manifold.

k 1  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ x  & t  D _ y ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ] ) ;

k 2  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ x  & t  D _ z ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ] ) ;

k 3  : =  C o n t r a c t I n d i c e s ( K ,  e v a l D G ( D _ y  & t  D _ z ) ,  [ [ 3 , 1 ] , [ 4 , 2 ] ] ) ;



N  >  N  >  

N  >  N  >  

(14)(14)

(15)(15)

(6)(6)

N  >  N  >  

(13)(13)

We can think of these as matrices

K1 :=  conver t (k1 ,  DGMatr ix ) ;
K2  :=  conver t (k2 ,  DGMatr ix ) ;
K3  :=  conver t (k3 ,  DGMatr ix ) ;

and subsequently find the basis of the 0th order reduced tractor bundle:

I T 0  : =  L i e A l g e b r a s : - I n v a r i a n t T e n s o r s ( [ K 1 , K 2 , K 3 ] ,  [ s e q ( E | | i , i =
1 . . 4 ) ] ) ;

How many are there?

nops( IT0 ) ;
2

Thus, there are a maximum of 2 rank 2 Killing Yano tensors.

Now let's see if we can get the Killing-Yano tensors explicitly. We begin by forming a 
function-coefficient linear combination of the basis elements.



N  >  N  >  

N  >  N  >  

N  >  N  >  

N  >  N  >  

(16)(16)

(19)(19)

(18)(18)

(6)(6)

N  >  N  >  

(20)(20)

(21)(21)

N  >  N  >  

N  >  N  >  

(22)(22)

(17)(17)

s 1  : =  D G z i p ( [ s e q ( q | | i ( x , y , z ) ,  i = 1 . . n o p s ( I T 0 ) ) ] ,  I T 0 ,  " p l u s " ) ;

Next, we take the covariant derivative.

s 2  : =  C o v a r i a n t D e r i v a t i v e ( s 1 ,  C ) ;

Let's look at the equations we need to solve.

s3  :=  DGin format ion(s2 ,  "Coef f ic ien tSet" ) ;

How many equations are there?

nops(s3) ;
7

This system may be easier to solve than the Killing equation itself. Let's get the 
solution.

s 4  : =  p d s o l v e ( s 3 ,  { s e q ( q | | i ( x , y , z ) , i = 1 . . n o p s ( I T 0 ) ) }  ) ;

How many independent solutions are there?

has(s4 ,  _C1) ;
true

has(s4 ,  _C2) ;
false

Thus, there is 1 independent solution and, consequently, a single Killing-Yano 
tensor. Here is then what the parallel section should look like:



(30)(30)

N  >  N  >  

(27)(27)

(29)(29)
N  >  N  >  

N  >  N  >  

(28)(28)

(6)(6)

(31)(31)

(24)(24)

N  >  N  >  

N  >  N  >  

N  >  N  >  

N  >  N  >  

N  >  N  >  

(26)(26)

(23)(23)

N  >  N  >  

(25)(25)

s5  :=  DETools: -dsubs(s4 ,  s1) ;

We can evaluate this at _C1=1.

t 1  : =  e v a l ( s 5 ,  [ _ C 1 = 1 ] ) ;

We check that it's a parallel section:

C o v a r i a n t D e r i v a t i v e ( t 1 ,  C ) ;

Now we drop this parallel section down. Note that the rank of the Killing-Yano 
tensor must again be specified.

T  : =  g e t K Y ( t 1 ,  2 ,  N ) ;

Now let's check that we can lift the Killing-Yano tensors of the metric to parallel 
sections. We begin by calculating them conventionally.

ky  :=  K i l l ingYanoTensors(G,  2 ) ;

Now let's lift it to a section. The rank is not required here.

l i f t k y  : =  l i f t K Y ( k y [ 1 ] ,  G a m m a ,  N ) ;

Let's check that this is a parallel section.

C o v a r i a n t D e r i v a t i v e ( l i f t k y ,  C ) ;

But are there more parallel sections?

C o v a r i a n t l y C o n s t a n t T e n s o r s ( C ,  [ s e q ( E | | i , i = 1 . . 4 ) ] ) ;

nops(%);
1



N  >  N  >  
(36)(36)

(35)(35)

(6)(6)

(32)(32)

N  >  N  >  

(34)(34)

N  >  N  >  

(33)(33)

N  >  N  >  

N  >  N  >  

Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.

We will now construct a Killing tensor of rank 2 from the known Killing-Yano tensor.

KT :=  KYtoKT(G ,  InverseMet r i c (G) ,  ky [1 ] ,  ky [1 ] ) ;

Let's check that this is a Killing tensor of G.

CheckKill ingTensor(G,KT);

The KillingTensorLibrary command can also be used to call other known quantities 
of a metric, such as the Killing tensors of rank 1:

k t1  :=  eva l (map(Bund leL i f t ,  K i l l i ngTensorL ib ra ry (3 ,  M ,  
o u t p u t = [ " K i l l i n g T e n s o r s " ,  1 ] ) ,  N ) ,  p = 1 ) ;

Now, let's get a basis for the space of known Killing tensors, including the metric. In 
principle, this can be done using the tractor approach, but a more conventional 
command exists and alliviates the need to construct the tractor bundle for Killing 
tensors of rank 2.

reds  :=  Symmetr icProductsOfKi l l ingTensors( [k t1 ,  [G] ] ,  2 ) ;

Now we will determine, conventionally, whether the Killing tensor we've newly 
constructed is a linear combination of the known Killing tensors.

GetComponents(KT, reds);

Thus, the Killing tensor so constructed is a linear combination of the Killing tensors 
which are already known. It is, however, not a linear combination of only the 
reducible Killing tensors, and is therefore irreducible--the metric itself is irreducible,
in this case.

For the sake of curiosity, and since irreducible Killing tensors are of such interest, we
will calculate all Killing tensors of rank 2 for the metric G. In principle, this can be 



N  >  N  >  

(6)(6)

N  >  N  >  

(38)(38)

(37)(37)

done by means of the tractor approach; however, this particular metric presents no 
obstacles in computing the Killing tensors directly:

k t 2  : =  K i l l i n g T e n s o r s ( G ,  2 ) ;

We now find which Killing tensors, if any, are not linear combinations of the metric 
and of the reducible Killing tensors.

i r reds  :=  IndependentK i l l ingTensors (k t2 ,  reds ) ;

Thus, the Killing tensor above is not a linear combination of the metric and the 
reducible Killing tensors. In particular, it is irreducible.
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15 Appendix E: an irreducible Killing tensor for

the Kerr metric

In section 6.2, we searched many vacuum type D solutions to the einstein field equa-

tions for Killing tensors which were not linear combinations of the reducible Killing

tensors and the metric itself. We found such a Killing tensor in the case of the Kerr

metric. Below is a demonstration of the technique that was used to conduct the

search among the several metrics which were searched.



M  >  M  >  

M  >  M  >  

(2)(2)

(5)(5)

(4)(4)

M  >  M  >  

(1)(1)

M  >  M  >  

M  >  M  >  
(3)(3)

Appendix E: an irreducible Killing tensor for the 
Kerr metric.

We will now demonstrate the method by which vacuum type D solutions were 
searched for irreducible Killing tensors, as explained in section 6.2.

Here is the Kerr metric, which is found in the MetricSearch library in the Differential 
Geometry software package.

g  : =  L i b r a r y : - R e t r i e v e ( " H a w k i n g E l l i s " ,  1 ,  [ 5 , 2 9 , 1 ] ,  
manifoldname=M, output=["Metric"])[1]

obtaining the coordinates will be useful later.

c o o r d s  : =  L i b r a r y : - R e t r i e v e ( " H a w k i n g E l l i s " ,  1 ,  [ 5 , 2 9 , 1 ] ,  
manifoldname=M, output=["Coordinates"])[1]

Coords  :=  seq(coords[ i ] ,  i =1 . .nops(coords) ) ;

Below are the Killing vectors for this metric:

k v  : =  L i b r a r y : - R e t r i e v e ( " H a w k i n g E l l i s " ,  1 ,  [ 5 , 2 9 , 1 ] ,  
manifoldname=M, output=["Ki l l ingVectors"]) [1]

We now lower the indices to get the rank 1 Killing tensors.

k t  :=  map2 (Ra iseLower Ind ices ,  g ,  kv ,  [ 1 ] ) ;



M  >  M  >  

(6)(6)

M  >  M  >  

(7)(7)

(5)(5)

The Null Tetrad for this metric has been computed previously, and is available in the 
MetricSearch library.

N T  : =  L i b r a r y : - R e t r i e v e ( " H a w k i n g E l l i s " ,  1 ,  [ 5 , 2 9 , 1 ] ,  
manifoldname=M, output=["NullTetrad"])[1]

We now compute the Principal Null directions.

PND :=  Pr inc ipa lNul lD i rec t ions(NT,  "D") ;



(8)(8)

(9)(9)

M  >  M  >  

M  >  M  >  

(10)(10)

(5)(5)

M  >  M  >  

(7)(7)

We will call the first one K,

K :=  PND[1] ;

and the second L:

L  :=  PND[2 ] ;

Now we will apply theorem 6.1 to construct Killing tensors. We will construct them 
as in the theorem, only keeping A and B arbitrary for the moment.

T :=  eva lDG(  A(Coords) *RaiseLower Ind ices(g ,  K  &s  L ,  [1 ,2 ] )  +  
B(Coords)*g);



(11)(11)

(7)(7)

(10)(10)

M  >  M  >  

(5)(5)

Now we will compute Killing tensors for the metric which have the form given in 
theorem 6.1 for arbitrary functions A and B. We find that there are 2 (a common trait
with other metrics).

KT :=  Ki l l ingTensors(g ,  ansatz  =  T ,  unknowns =  [A,  B] (Coords)
) ;



M  >  M  >  

M  >  M  >  

(15)(15)

(12)(12)

(10)(10)

(5)(5)

M  >  M  >  

(11)(11)

(13)(13)

(14)(14)

M  >  M  >  

(7)(7)

M  >  M  >  

Having obtained all Killing tensors of the metric g which are of the form of theorem 
6.1, we construct a basis of known Killing tensors from the Killing tensors of rank 1 
and the metric itself.

S2 :=  Symmetr icProductsOfKi l l ingTensors ( [k t ,  [g ] ] ,  2 ) :

We are expecting a maximum of 4, and in fact there are:

nops(S2);
4

We now ask: which of the Killing tensors constructed by theorem 6.1 can be written 
as a linear combination of the known Killing tensors?

GetComponents(KT[1], S2, method="real");

GetComponents(KT[2], S2, method="real");

The first is apparently the metric, which although irreducible, is uninteresting. It is 
the second which is of interest, and which is included in section 6.2:

i r r e d K T  : =  K T [ 2 ] ;



(11)(11)

(7)(7)

(15)(15)

(10)(10)

(5)(5)
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16 Appendix F: Killing tensors on Frames

In this appendix, we will construct a frame on which the tractor approach will be

applied. Then, we will demonstrate how the novel application of the tractor approach

is used.



(4)(4)

M  >  M  >  

(5)(5)

>  >  

(3)(3)

M  >  M  >  

(2)(2)

M  >  M  >  

M  >  M  >  

M  >  M  >  

(1)(1)

Appendix F: Killing tensors on Frames

In this worksheet, we will demonstrate the application of the tractor approach to an 
Anholonomic frame.

First, we read in the required programs.

read "stage4_programs.txt";

Next, we load in a suitable candidate.

g26  :=  K i l l ingTensorL ib ra ry (26 ,  M) ;

We will actually evaluate this at c=1/2:

g 3 6  : =  e v a l ( g 2 6 ,  _ c = 1 / 2 ) ;

This metric is also in the MetricSearch database:

Ki l l ingTensorL ibrary (26 ,  M,  output=["Reference"] ) ;

Thus, we can get the Killing vectors.

k v g 3 6  : =  L i b r a r y : - R e t r i e v e ( " S t e p h a n i " ,  1 ,  [ 1 2 , 3 7 , 5 ] ,  
manifoldname=M, output=["Ki l l ingVectors"] ) [1] ;

We can also get the orhonormal tetrad.

L  : =  e v a l ( L i b r a r y : - R e t r i e v e ( " S t e p h a n i " ,  1 ,  [ 1 2 , 3 7 , 5 ] ,  
manifoldname=M, output=["OrthonormalTetrad"])[1] ,  _c=1/2);



(7)(7)

(5)(5)

(6)(6)

(9)(9)

P 3 6  >  P 3 6  >  

(8)(8)

M  >  M  >  

P 3 6  >  P 3 6  >  

M  >  M  >  

Next, we will need to compute the lie brackets of our orthonormal tetrad.

DF36 := FrameData(L,  P36);

Now, we can initialize our frame.

DGEnvironment[AnholonomicFrame](DF36);
Anholonomic Frame: P36

we define the identity transformation:

I D  : =  T r a n s f o r m a t i o n ( P 3 6 ,  M ,  [ x = x ,  u = u ,  y = y ,  v = v ] ) ;

and now we bring the metric onto this frame.

G36:=simpl i fy(Pul lback( ID,  g26) ,  useassumptions);

Maple seems to refuse to simplify this expression: (the numerator and denominator 



(15)(15)

(13)(13)

(14)(14)

N36  >  N36  >  

(5)(5)

P 3 6  >  P 3 6  >  

P 3 6  >  P 3 6  >  

N36  >  N36  >  

P 3 6  >  P 3 6  >  

(16)(16)

(12)(12)

P 3 6  >  P 3 6  >  

P 3 6  >  P 3 6  >  

(10)(10)

(11)(11)

are apparently equal)

simplify(expand(denom(DGinformation(G36, 
" C o e f f i c i e n t L i s t " ,  [ [ 2 , 2 ] ] ) [ 1 ] ) ) )

numer (DGin fo rmat ion (G36 ,  "Coe f f i c ien tL is t " ,  [ [ 2 , 2 ] ] ) [ 1 ] )

Thus, we will help it along directly:

rea lG36  :=  _DG( [ [ " tensor" ,  P36 ,  [ [ "cov_bas" ,  "cov_bas" ] ,  
[ ] ] ] ,  [ [ [ 1 ,  1 ] ,  - 1 ] ,  [ [ 2 ,  2 ] ,  1 ] ,  [ [ 3 ,  3 ] ,  1 ] ,  [ [ 4 ,  4 ] ,  
1 ] ] ] ) ;

Now, we seek to build the tractor bundle. The required size of the fibers is 50, but we
label the forms and vectors as W and Phi, respectively, to avoid a conflict of notation 
with the frame labels.

DGEnvironment[VectorSpace](50, V36, vectorlabels=[W], 
fo rmlabe ls= [Ph i ] ) ;

Vector Space: V36

DGEnvironment[VectorBundle](P36, V36, N36);
Vector Bundle: N36

Now we realize the metric on the base space.

G36n:=BundleLif t (realG36,  N36);

Next, we get the Christoffel symbols.

Gamma:=eval(Christoffel (G36n),  _c=1/2);



N36 >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

(5)(5)

(16)(16)

(1.1)(1.1)

N36  >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

N36  >  N36  >  

We can now compute the tractor connection and the curvature tensor. We will 
suppress the output of each.

C36 := eval(HauserTractorConnection(Gamma, N36),  _c=1/2):
K36 := CurvatureTensor(C36):

Let's be sure we have c=1/2 for the curvature tensor.

k 3 6  : =  e v a l ( K 3 6 ,  _ c = 1 / 2 ) :

Applying the tractor approach

Below are the (1,1) tensors associated with the curvature tensor.

K 1  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 1  & t  E 2 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :
K 2  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 1  & t  E 3 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :
K 3  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 1  & t  E 4 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :
K 4  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 2  & t  E 3 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :
K 5  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 2  & t  E 4 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :
K 6  : =  C o n t r a c t I n d i c e s ( k 3 6 ,  e v a l D G ( E 3  & t  E 4 ) ,  [ [ 3 , 1 ] , [ 4 ,
2 ] ] ) :

Next, we convert them to matrices.

IH0 :=  map(convert ,  [K1,K2,K3,K4,K5,K6] ,  DGMatr ix) ;



(17)(17)

M  >  M  >  

N36  >  N36  >  
(1.2)(1.2)

(5)(5)

(16)(16)

(1.1)(1.1)

N36  >  N36  >  

Let's compute a basis for the shared nullspace.

LA0 :=  L ieAlgebras: - Invar iantTensors (eva l ( IH0 ,  _c=1 /2 ) ,
[ s e q ( W | | i , i = 1 . . 5 0 ) ] ) :

How many are there?

nops(LA0);
35

Thus, the metric admits at most 35 Killing tensors of rank 2.

This is the method by which the tractor approach can be applied to frames.

We have applied the tractor approach to determine an upper bound on the 
dimension of the space of rank 2 Killing tensors. Now, we will use our novel 
application of the tractor approach to determine a lower bound.

We begin by recalling the Killing vectors, now making sure to evaluate at c=1/2.

Kvg36  :=  eva l (kvg36 ,  _c=1 /2 ) ;



N 2  >  N 2  >  

V  >  V  >  

(18)(18)

(20)(20)

M  >  M  >  

M  >  M  >  

(5)(5)

(19)(19)

M  >  M  >  

(16)(16)

(23)(23)

M  >  M  >  

(1.1)(1.1)

(22)(22)

M  >  M  >  

(21)(21)

Let's be sure each of these is a Killing vector.

LieDer ivat ive (Kvg36 ,  g36) ;

We will need to lower the indices of these.

kt1g36 :=  map2(RaiseLowerIndices,  g36,  Kvg36,  [1] ) ;

Now we will form a set consisting of all symmetric tensor products of the (covariant) 
Killing vectors and the metric.

S  : =  [ s e q (  s e q (  e v a l D G (  k t 1 g 3 6 [ i ]  & s  k t 1 g 3 6 [ j ]  ) ,  i = 1 . . j )  ,  
j = 1 . . n o p s ( k t 1 g 3 6 )  ) ,  g 3 6 ] :

There should be 29 Killing tensors in this set.

nops(S);
29

Now we will initialize the tractor bundle. Recall that the size of the fibers is 50.

DGEnvironment[VectorSpace](50,V);
Vector Space: V

DGEnvironment[VectorBundle](M,V,N2);
Vector Bundle: N2

Now we will redefine the metric on the base space of the bundle.

g36n  :=  Bund leL i f t (g36 ,  N2 ) ;



(25)(25)

(26)(26)

(16)(16)

(23)(23)

N 2  >  N 2  >  

N 2  >  N 2  >  

N 2  >  N 2  >  

N 2  >  N 2  >  

N 2  >  N 2  >  

(5)(5)

N 2  >  N 2  >  

N 2  >  N 2  >  

(24)(24)

(1.1)(1.1)

We also need the Christoffel symbols.

Gamma2 := Christoffel (g36n);

We will also need to redifine the set S on the base space of the bundle.

S2 :=  map(Bund leL i f t ,  S ,  N2 ) :

Now we will lift the set S2 to the set S3--the set of sections consisting of the lifted 
Killing tensors of S.

S3 := map(HauserTractorLift2,  S2,  Gamma2, N2):

Let us ensure that we didn't miss any: there should be 29 of these sections.

nops(S3);
29

Now, we evaluate S3 at a convenient point.

S 4  : =  e v a l ( S 3 ,  [ u = 1 ,  v = 0 ,  x = 0 ,  y = 0 ] ) :

And now we ask: how many are in a basis?

b1 :=  DGbasis(S4):
nops(b1);

28

Thus, the true minium number of Killing tensors is 28 instead of 29.

In this particular example, this novel application is not of paramount importance, 
since we can check for linear independence directly:



(5)(5)

(16)(16)

(23)(23)

(28)(28)

(1.1)(1.1)

N 2  >  N 2  >  

(27)(27)

N 2  >  N 2  >  

N 2  >  N 2  >  
N 2  >  N 2  >  b2 := DGbasis(S2,  method="real") :

nops(b2);
28

However, this novel application is quite useful when the linear independence of the 
Killing tensor fields is difficult to compute directly.

We can also double-check that each of these sections is parallel. We must first 
calculate the tractor connection.

C2 := HauserTractorConnection(Gamma2, N2):

Now we can check that all of these sections (in S3) are parallel.

map(Covar iantDer ivat ive ,  S3,  C2) ;
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17 Appendix G: Maple source code

We will now give the raw source code for the programs we have built to apply

the tractor approach to Killing vectors, conformal Killing vectors, Killing tensors of

rank 2, and Killing-Yano tensors. Additional refinements may be made before the

programs are distributed.

rnk1TracConn:= proc (Gamma,T) l o c a l Bv , Bf ,CT, dimbase , Fv , X1 , Y1 ,
numX,X, X2 , Y2 ,numW,W, getsome ,XA,WA, Comps , Comps2 , Comps3 ,
Comps4 , realX , realW ,XR, Xc2 , Xc1 ,Wc2,Wc1, Xc1b , Xc1c , Wc1b, Wc1c ,
m, BigMat ;

Bv:=DGinformation (T, ” FrameBaseVectors ”) ;
Bf :=DGinformation (T, ” FrameBaseForms ”) ;

CT:= CurvatureTensor (Gamma) ;

dimbase :=nops (Bv) ;
Fv:=DGinformation (” FrameFiberVectors ”) ;

#Fi r s t , c r e a t e an a r b i t r a r y vec to r :

X1:= GenerateDGobjects [ DGtensors ] ( [ [ ” cov bas ” ] , [ ] ] ) ;
Y1:=DGbasis ( [ seq ( Tensor :−YoungSymmetrizer ( a , Matrix ( [ [ 1 ] ] ) ) ,

a = X1) ] ) ;
numX:=nops (Y1) ;
X:=DGzip ( [ seq ( z | | i , i =1. .numX) ] , Y1, ” p lus ”) ;

#Now, c r e a t e an a r b i t r a r y rank 2 tenso r with the r equ i r ed
symmetry .

X2:= GenerateDGobjects [ DGtensors ] ( [ [ ” cov bas ” ,” cov bas ” ] , [ ] ] ) ;
Y2:=DGbasis ( [ seq ( Tensor :−YoungSymmetrizer ( a , Matrix

( [ [ 1 ] , [ 2 ] ] ) ) , a = X2) ] ) ;
numW:=nops (Y2) ;
W:=DGzip ( [ seq ( z | | i , i=1+numX . . numX+numW) ] , Y2, ” p lus ”) ;

#The f o l l o w i n g procedure i s a b i t o v e r k i l l f o r the K i l l i n g
vec to r case . I t i s intended to g ive us the index l i s t from
which we pick o f f the independent components o f each

tenso r de f ined above .
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getsome := proc (T,Y) l o c a l A,B, g , A2 , inds , B2 , thing , bracket , term ;
A:=Array ( [ ] ) ;
f o r th ing in op (2 , op (T) ) do
i f nops ( op (1 , op (1 , th ing [ 2 ] ) ) ) = 2 then ArrayTools :−Append(A,

op (1 , th ing ) ) ;
f i ;
od ;
B:=[ seq (A[ i ] , i=op (2 ,A) ) ] ;
#we now have the bads .
g:= seq ( op (2 , op (Y[ i ] ) ) , i =1. . nops (Y) ) ;
A2:=Array ( [ ] ) ;
inds := seq ( [ seq ( g [ j ] [ i ] [ 1 ] , i =1. . nops ( g [ j ] ) ) ] , j =1. . nops ( [ g ] ) ) ;
f o r bracket in inds do
f o r term in bracket do
i f has (B , [ term ] )=f a l s e then i f has (A2 , bracket )=f a l s e then

ArrayTools :−Append(A2 , [ term ] ) ;
f i ;
f i ;
od ;
od ;
B2:= Li s tToo l s :−FlattenOnce ( [ seq (A2 [ i ] , i=op (2 ,A2) ) ] ) ;
end ;

XA:=getsome (X, Y1) ;
#i f dimbase = 2 then XA:= [ 1 , 2 ] e l s e XA:=getsome (X, Y1) f i ;
i f dimbase = 2 then WA: = [ [ 1 , 2 ] ] e l s e WA:=getsome (W, Y2) f i ;

#WA:=getsome (W, Y2) ;

#Now, we w i l l get r i d o f the s c a l a r s : terms l i k e z12 /2 w i l l
be turned in to y12 .

Comps:= Li s tToo l s :−FlattenOnce ( [ [ seq ( DGinformation (X, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=XA) ] , [ seq ( DGinformation (W, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=WA) ] ] ) ;

Comps2 :=[ seq ( y | | i , i =1. . nops (Comps) ) ] ;
Comps3 :=[ seq (Comps [ i ] = Comps2 [ i ] , i =1. . nops (Comps) ) ] ;
Comps4:= s o l v e (Comps3 ,{ seq ( z | | i , i =1. . nops (Comps) ) }) ;

realX :=evalDG ( s i m p l i f y ( subs (Comps4 ,X) ) ) ;
realW:=evalDG ( s i m p l i f y ( subs (Comps4 ,W) ) ) ;

XR:= Contrac t Ind i ce s (CT, realX , [ [ 1 , 1 ] ] ) ;

#Now, we bu i ld each p i e c e to the matrix o f 1−forms .
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f o r m in seq ( i , i =1. . dimbase ) do
Xc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realX ,Gamma) ;
Xc1c :=[ seq ( DGinformation (Xc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ] ] )

[ 1 ] , a=XA) ] ;
Xc2 :=[ seq ( DGinformation ( realW , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ,m] ] )

[ 1 ] , a=XA) ] ;
Xc1 :=[ seq (Xc2 [ i ]+Xc1c [ i ] , i =1. . nops ( Xc1c ) ) ] ;

Wc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realW ,Gamma) ;
Wc1c:=[ seq ( DGinformation (Wc1b, ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a

[ 2 ] ] ] ) [ 1 ] , a=WA) ] ;
Wc2:=[ seq ( DGinformation (XR, ” C o e f f i c i e n t L i s t ” , [ [m, a [ 2 ] , a [ 1 ] ] ] )

[ 1 ] , a=WA) ] ;
Wc1:=[ seq (Wc2[ i ] +Wc1c [ i ] , i =1. . nops (Wc1c) ) ] ;

Eqns | |m:= Li s tToo l s :− Flat ten ( [ Xc1 ,Wc1 ] ) ;
Mat | |m:=evalDG ( LinearAlgebra :−GenerateMatrix ( Eqns | |m, Comps2) ∗

Bf [m] ) ;
od ;

#Last ly , we w i l l p i e c e toge the r the matrix and bu i ld the
connect ion from i t .

BigMat:=add (Mat | | i , i =1. . dimbase ) ;
Connection ( BigMat ) ;
end :

############################################################

l i f t r n k 1 := proc (X,Gamma,Q) l o c a l Bf , dimbase , Bft , Fv , forms2 ,
Xcomps , omega , Omega , Omegacomps ,COMPS, l i f tedKV ;

Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
dimbase :=nops ( Bf ) ;
Bft :=map( convert , Bf , DGtensor ) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
forms2 :=GenerateForms ( Bf , 2 ) ;

Xcomps:=GetComponents (X, Bft ) ;
#dummyX:=DGzip ( [ seq ( z | | i , i =1. . dimbase ) ] , Bf , ” p lus ”) ;

omega:=evalDG(−Covar iantDer ivat ive (X,Gamma) ) ;
Omega:= convert ( omega , DGform) ;
Omegacomps:=GetComponents (Omega , forms2 ) ;
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COMPS:= Li s tToo l s :−FlattenOnce ( [ Xcomps , Omegacomps ] ) ;
l i f tedKV :=DGzip (COMPS, Fv , ” p lus ”) ;
end :

#######################################################

getRnk1:= proc (X,Q) l o c a l Bf , dimbase , Fv , Xcomps , Xcomps2 , realX ;
Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
dimbase :=nops ( Bf ) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
Xcomps:=GetComponents (X, Fv) ;
Xcomps2 :=[ seq (Xcomps [ i ] , i =1. . dimbase ) ] ;
realX :=DGzip (Xcomps2 , Bf , ” p lus ”) ;
end :

########################################################

ConfTracConn:= proc (g ,T) l o c a l Bv , Bf ,Gamma,CT,RT,RS, dimbase , Fv
, X1 , Y1 ,numX,X, X2 , Y2 ,numW,W, getsome ,XA,WA, Comps , Comps2 ,
Comps3 , Comps4 , realX , realW ,XR, Xc2 , Xc1 ,Wc2,Wc1, Xc1b , Xc1c ,
Wc1b, Wc1c ,m, BigMat , gin ,Y,numY, F, Z ,YA, realY , realF , rea lZ ,YR,
term , term1 , term2 , Xc3 , Yc1b , Yc1c , Yc2 , Yc3 , Yc4 , Yc1 , Fc2 , Fc1 ,
Zc1b , Zc1c , Zc1 , Zc2 , Zc3 , Zc4 , Zc5 ;

Bv:=DGinformation (T, ” FrameBaseVectors ”) ;
Bf :=DGinformation (T, ” FrameBaseForms ”) ;

Gamma:= C h r i s t o f f e l ( g ) ;
CT:= CurvatureTensor (Gamma) ;
RT:= Ricc iTensor (CT) ;
RS:= R i c c i S c a l a r ( g ) ;
g in := Inver s eMet r i c ( g ) ;

dimbase :=nops (Bv) ;
Fv:=DGinformation (” FrameFiberVectors ”) ;

#Fi r s t , c r e a t e an a r b i t r a r y vec to r :

X1:= GenerateDGobjects [ DGtensors ] ( [ [ ” cov bas ” ] , [ ] ] ) ;
#Y1:=DGbasis ( [ seq ( Tensor :−YoungSymmetrizer ( a , Matrix ( [ [ 1 ] ] ) ) ,

a = X1) ] ) ;
#numX:=nops (Y1) ;
numX:=nops (X1) ;
#X:=DGzip ( [ seq ( z | | i , i =1. .numX) ] , Y1, ” p lus ”) ;
X:=DGzip ( [ seq ( z | | i , i =1. .numX) ] , X1, ” p lus ”) ;
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#Now, c r e a t e an a r b i t r a r y rank 2 tenso r with the r equ i r ed
symmetry .

X2:= GenerateDGobjects [ DGtensors ] ( [ [ ” cov bas ” ,” cov bas ” ] , [ ] ] ) ;
Y2:=DGbasis ( [ seq ( Tensor :−YoungSymmetrizer ( a , Matrix

( [ [ 1 ] , [ 2 ] ] ) ) , a = X2) ] ) ;
numY:=nops (Y2) ;
Y:=DGzip ( [ seq ( z | | i , i=1+numX . . numX+numY) ] , Y2, ” p lus ”) ;

F:=z | | (1+numX+numY) ;

Z:=DGzip ( [ seq ( z | | i , i=2+numX+numY..1+numX+numY+dimbase ) ] , X1, ”
p lus ”) ;

#The f o l l o w i n g procedure i s a b i t o v e r k i l l f o r the K i l l i n g
vec to r case . I t i s intended to g ive us the index l i s t from
which we pick o f f the independent components o f each

tenso r de f ined above .

getsome := proc (T,Y) l o c a l A,B, g , A2 , inds , B2 , thing , bracket , term ;
A:=Array ( [ ] ) ;
f o r th ing in op (2 , op (T) ) do
i f nops ( op (1 , op (1 , th ing [ 2 ] ) ) ) = 2 then ArrayTools :−Append(A,

op (1 , th ing ) ) ;
f i ;
od ;
B:=[ seq (A[ i ] , i=op (2 ,A) ) ] ;
#we now have the bads .
g:= seq ( op (2 , op (Y[ i ] ) ) , i =1. . nops (Y) ) ;
A2:=Array ( [ ] ) ;
inds := seq ( [ seq ( g [ j ] [ i ] [ 1 ] , i =1. . nops ( g [ j ] ) ) ] , j =1. . nops ( [ g ] ) ) ;
f o r bracket in inds do
f o r term in bracket do
i f has (B , [ term ] )=f a l s e then i f has (A2 , bracket )=f a l s e then

ArrayTools :−Append(A2 , [ term ] ) ;
f i ;
f i ;
od ;
od ;
B2:= Li s tToo l s :−FlattenOnce ( [ seq (A2 [ i ] , i=op (2 ,A2) ) ] ) ;
end ;

XA:=getsome (X, X1) ;
#i f dimbase = 2 then XA:= [ 1 , 2 ] e l s e XA:=getsome (X, Y1) f i ;
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i f dimbase = 2 then YA: = [ [ 1 , 2 ] ] e l s e YA:=getsome (Y, Y2) f i ;
#WA:=getsome (W, Y2) ;

#Now, we w i l l get r i d o f the s c a l a r s : terms l i k e z12 /2 w i l l
be turned in to y12 .

Comps:= Li s tToo l s :−FlattenOnce ( [ [ seq ( DGinformation (X, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=XA) ] , [ seq ( DGinformation (Y, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=YA) ] , F , [ seq ( DGinformation (Z , ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=XA) ] ] ) ;

Comps2 :=[ seq ( y | | i , i =1. . nops (Comps) ) ] ;
Comps3 :=[ seq (Comps [ i ] = Comps2 [ i ] , i =1. . nops (Comps) ) ] ;
Comps4:= s o l v e (Comps3 ,{ seq ( z | | i , i =1. . nops (Comps) ) }) ;

realX :=evalDG ( s i m p l i f y ( subs (Comps4 ,X) ) ) ;
realY :=evalDG ( s i m p l i f y ( subs (Comps4 ,Y) ) ) ;
r ea lF :=evalDG ( s i m p l i f y ( subs (Comps4 ,F) ) ) ;
r ea lZ :=evalDG ( s i m p l i f y ( subs (Comps4 , Z) ) ) ;

XR:= Contrac t Ind i ce s (CT, realX , [ [ 1 , 1 ] ] ) ;
YR:= Contrac t Ind i ce s ( RaiseLowerIndices ( gin ,RT, [ 1 ] ) , realY

, [ [ 1 , 2 ] ] ) ;
term:=evalDG (RT−evalDG ( (RS/(2∗ ( dimbase −1) ) ) ∗g ) ) ;
Covar iantDer ivat ive ( term ,Gamma) ;
evalDG ( Covar iantDer ivat ive ( term ,Gamma) &t realX ) ;
g in ;
Cont rac t Ind i ce s ( evalDG ( Covar iantDer ivat ive ( term ,Gamma) &t

realX ) , gin , [ [ 1 , 1 ] , [ 2 , 2 ] ] ) ;
term1:=evalDG(−(−1)∗ Contrac t Ind i ce s ( evalDG (

Covar iantDer ivat ive ( term ,Gamma) &t realX ) , gin
, [ [ 3 , 1 ] , [ 4 , 2 ] ] ) ) ;

term2:=evalDG(−2∗ rea lF ∗ term ) ;

#Now, we bu i ld each p i e c e to the matrix o f 1−forms .

f o r m in seq ( i , i =1. . dimbase ) do
Xc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realX ,Gamma) ;
Xc1c :=[ seq ( DGinformation (Xc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ] ] )

[ 1 ] , a=XA) ] ;
Xc2 :=[ seq ( DGinformation ( realY , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ,m] ] )

[ 1 ] , a=XA) ] ;
Xc3 :=[ seq ( DGinformation ( evalDG ( rea lF ∗g ) ,” C o e f f i c i e n t L i s t ” , [ [m

, a [ 1 ] ] ] ) [ 1 ] , a=XA) ] ;
Xc1 :=[ seq (Xc2 [ i ]+Xc3 [ i ]+Xc1c [ i ] , i =1. . nops ( Xc1c ) ) ] ;
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Yc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realY ,Gamma) ;
Yc1c :=[ seq ( DGinformation (Yc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a

[ 2 ] ] ] ) [ 1 ] , a=YA) ] ;
Yc2 :=[ seq ( DGinformation (XR, ” C o e f f i c i e n t L i s t ” , [ [m, a [ 2 ] , a [ 1 ] ] ] )

[ 1 ] , a=YA) ] ;
Yc3 :=[ seq ( DGinformation ( evalDG ( g &t rea lZ ) ,” C o e f f i c i e n t L i s t

” , [ [m, a [ 1 ] , a [ 2 ] ] ] ) [ 1 ] , a=YA) ] ;
Yc4 :=[ seq ( DGinformation ( evalDG(−g &t rea lZ ) ,” C o e f f i c i e n t L i s t

” , [ [m, a [ 2 ] , a [ 1 ] ] ] ) [ 1 ] , a=YA) ] ;
Yc1 :=[ seq (Yc2 [ i ] + Yc3 [ i ] + Yc4 [ i ] + Yc1c [ i ] , i =1. . nops ( Yc1c ) )

] ;

#Fc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realF ,Gamma) ;
#Fc1c :=[ seq ( DGinformation ( Fc1b , ” C o e f f i c i e n t L i s t ” , [ [m] ] ) [ 1 ] , a=

XA) ] ;

Fc2 :=[ DGinformation ( realZ , ” C o e f f i c i e n t L i s t ” , [ [m] ] ) [ 1 ] ] ;
Fc1 :=[ seq ( Fc2 [ i ] , i =1. . nops ( Fc2 ) ) ] ;

Zc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , rea lZ ,Gamma) ;
Zc1c :=[ seq ( DGinformation ( Zc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ] ] )

[ 1 ] , a=XA) ] ;
Zc2 :=[ seq ( DGinformation ( evalDG ( ( 1 ) /( dimbase −2)∗ term1 ) ,”

C o e f f i c i e n t L i s t ” , [ [ b [ 1 ] ,m] ] ) [ 1 ] , b=XA) ] ;
Zc3 :=[ seq ( DGinformation ( evalDG ( ( 1 ) /( dimbase −2)∗ term2 ) ,”

C o e f f i c i e n t L i s t ” , [ [ b [ 1 ] ,m] ] ) [ 1 ] , b=XA) ] ;
Zc4 :=[ seq ( DGinformation ( evalDG ( ( 1 ) /( dimbase −2)∗YR) ,”

C o e f f i c i e n t L i s t ” , [ [ b [ 1 ] ,m] ] ) [ 1 ] , b=XA) ] ;
Zc5 :=[ seq ( DGinformation ( evalDG ( ( 1 ) /( dimbase −2)∗YR) ,”

C o e f f i c i e n t L i s t ” , [ [m, b [ 1 ] ] ] ) [ 1 ] , b=XA) ] ;
Zc1 :=[ seq ( Zc2 [ i ] + Zc3 [ i ] + Zc4 [ i ] + Zc5 [ i ] + Zc1c [ i ] , i =1. .

nops ( Zc1c ) ) ] ;

Eqns | |m:= Li s tToo l s :− Flat ten ( [ Xc1 , Yc1 , Fc1 , Zc1 ] ) ;
Mat | |m:=evalDG ( LinearAlgebra :−GenerateMatrix ( Eqns | |m, Comps2) ∗

Bf [m] ) ;
od ;

#Last ly , we w i l l p i e c e toge the r the matrix and bu i ld the
connect ion from i t .

BigMat:=add (Mat | | i , i =1. . dimbase ) ;
Connection ( BigMat ) ;
end :
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#######################################################

liftConfKV := proc (X, g ,Q) l o c a l Bf , dimbase , Bft , Fv , forms2 ,Gamma,
gin , Xcomps , omega , Omega , Omegacomps , F , Fcomps , Z , Zcomps ,COMPS,
l i f tedKV ;

Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
dimbase :=nops ( Bf ) ;
Bft :=map( convert , Bf , DGtensor ) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
forms2 :=GenerateForms ( Bf , 2 ) ;

Gamma:= C h r i s t o f f e l ( g ) ;
g in := Inver s eMet r i c ( g ) ;

Xcomps:=GetComponents (X, Bf ) ;
#dummyX:=DGzip ( [ seq ( z | | i , i =1. . dimbase ) ] , Bf , ” p lus ”) ;

omega:= Symmetr izeIndices ( evalDG(−Covar iantDer ivat ive (X,Gamma)
) , [ 1 , 2 ] , ” SkewSymmetric ”) ;

Omega:= convert ( omega , DGform) ;
Omegacomps:=GetComponents (Omega , forms2 ) ;

F:=evalDG(−(1/ dimbase ) ∗ Contrac t Ind i ce s ( Covar iantDer ivat ive (
RaiseLowerIndices ( gin ,X, [ 1 ] ) ,Gamma) , [ [ 1 , 2 ] ] ) ) ;

Fcomps :=[F ] ;

Z:=evalDG(−Covar iantDer ivat ive (F ,Gamma) ) ;
Zcomps:=GetComponents (Z , Bft ) ;

COMPS:= Li s tToo l s :−FlattenOnce ( [ Xcomps , Omegacomps , Fcomps ,
Zcomps ] ) ;

l i f tedKV :=DGzip (COMPS, Fv , ” p lus ”) ;
end :

######################################################

getConfKV:= proc (X,Q) l o c a l Bf , dimbase , Fv , Xcomps , Xcomps2 , realX
;

Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
dimbase :=nops ( Bf ) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
Xcomps:=GetComponents (X, Fv) ;
Xcomps2 :=[ seq (Xcomps [ i ] , i =1. . dimbase ) ] ;
realX :=DGzip (Xcomps2 , Bf , ” p lus ”) ;
end :
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#######################################################

HauserTractorConnection := proc (Gamma,T) l o c a l Bv , Bf ,CT, dimbase
, Fv , ktb ,KA, l tb , Ltb ,LA, mtb , Mtb ,MA,numK,numL,numM, K1, K2, L1 ,
L2 ,M1,M2, Comps , Comps2 , Comps3 , Comps4 , realK , realL , realM ,KR,
Lc1 ,dR,KdR, RL2 , RL3 , Mc1 , Eqns , Kc1a , Kc2 , Kc3 , Lc1a , Lc2 , Lc3 , Lc4 ,
Lc5 , Lc6 , Lc7 , Lc8 , Lc9 , Lc10 , Mc1a , Mc2 , Mc3 , Mc4 , Mc5 , Mc6 , Mc7 , Mc8 ,
Mc9 , Mc10 , Mc11 , Mc12 , Mc13 , Mc14 , Mc15 , Mc16 , Mc17 , Mc18 , Mc19 , Mc20
, Mc21 , Mc22 , Mc23 , Mc24 , Mc25 , Mc26 , Mc27 , Mc28 , Mc29 , Mc30 , Mc31 ,
Mc32 , Mc33 , Mc34 , Mc35 , Mc36 , Mc37 , Mc38 , Mc39 , Mc40 , Mc41 , Mc42 ,
Mc43 , Mc44 , Mc45 , Mc46 , Mc47 , Mc48 , Mc49 , Mc50 , Mc51 , Mc52 , Mc53 ,
Mc54 , Mc55 , Kc1 , Kc1b , Kc1c , Lc1b , Lc1c , Mc1b , Mc1c ,m, BigMat ;

Bv:=DGinformation (T, ” FrameBaseVectors ”) ;
Bf :=DGinformation (T, ” FrameBaseForms ”) ;

CT:= CurvatureTensor (Gamma) ;

dimbase :=nops (Bv) ;
Fv:=DGinformation (T, ” FrameFiberVectors ”) ;

#Here we get the independent components l i s t f o r each tenso r .

ktb :=YoungTableauBasis ( [ 2 ] , dimbase , output=”Matrix ”) ;
KA:=[ seq ( [ ktb [ i ] [ 1 ] [ 1 ] , ktb [ i ] [ 1 ] [ 2 ] ] , i =1. . nops ( ktb ) ) ] ;
l t b :=YoungTableauBasis ( [ 2 , 1 ] , dimbase , output=”Matrix ”) ;
Ltb:=map( LinearAlgebra :−Transpose , l t b ) ;
LA:=[ seq ( [ Ltb [ i ] [ 1 ] [ 1 ] , Ltb [ i ] [ 1 ] [ 2 ] , Ltb [ i ] [ 2 ] [ 1 ] ] , i =1. . nops (

Ltb ) ) ] ;
mtb:=YoungTableauBasis ( [ 2 , 2 ] , dimbase , output=”Matrix ”) ;
Mtb:=map( LinearAlgebra :−Transpose , mtb) ;
MA:=[ seq ( [ Mtb [ i ] [ 1 ] [ 1 ] , Mtb [ i ] [ 1 ] [ 2 ] , Mtb [ i ] [ 2 ] [ 1 ] , Mtb [ i

] [ 2 ] [ 2 ] ] , i =1. . nops (Mtb) ) ] ;

numK:=nops (KA) ;
numL:=nops (LA) ;
numM:=nops (MA) ;

K1:= DG ( [ [ ” t en so r ” , T, [ [ ” cov bas ” , ” cov bas ” ] , [ ] ] ] , [ seq ( [
KA[ i ] , z | | i ] , i =1. .numK) ] ] ) ;

K2:=YoungSymmetrizer (K1, Matrix ( [ [ 1 , 2 ] ] ) ) ;

L1:= DG ( [ [ ” t en so r ” , T, [ [ ” cov bas ” , ” cov bas ” ,” cov bas ” ] ,
[ ] ] ] , [ seq ( [LA[ i−numK] , z | | i ] , i=1+numK . . numK+numL) ] ] ) ;
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L2:=YoungSymmetrizer (L1 , Matrix ( [ [ 1 , 3 ] , [ 2 ] ] ) ) ;

M1:= DG ( [ [ ” t en so r ” , T, [ [ ” cov bas ” , ” cov bas ” ,” cov bas ” ,”
cov bas ” ] , [ ] ] ] , [ seq ( [MA[ i−numL−numK] , z | | i ] , i=1+numK+numL
. . numK+numL+numM) ] ] ) ;

M2:=YoungSymmetrizer (M1, Matrix ( [ [ 1 , 3 ] , [ 2 , 4 ] ] ) ) ;

Comps:= Li s tToo l s :−FlattenOnce ( [ [ seq ( DGinformation (K2, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=KA) ] , [ seq ( DGinformation (L2 , ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=LA) ] , [ seq ( DGinformation (M2, ”
C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=MA) ] ] ) ;

Comps2 :=[ seq ( y | | i , i =1. . nops (Comps) ) ] ;
Comps3 :=[ seq (Comps [ i ] = Comps2 [ i ] , i =1. . nops (Comps) ) ] ;
Comps4:= s o l v e (Comps3 ,{ seq ( z | | i , i =1. . nops (Comps) ) }) ;

realK :=evalDG ( s i m p l i f y ( subs (Comps4 ,K2) ) ) ;
r ea lL :=evalDG ( s i m p l i f y ( subs (Comps4 , L2) ) ) ;
realM:=evalDG ( s i m p l i f y ( subs (Comps4 ,M2) ) ) ;

#Having cons t ructed K, L , and M, we g ive the f i r s t s t r u c t u r e
equat ion .

KR:= Contrac t Ind i ce s ( realK ,CT, [ [ 2 , 1 ] ] ) :
dR:= Covar iantDer ivat ive (CT,Gamma) ;
KdR:= Contrac t Ind i ce s ( realK ,dR , [ [ 2 , 1 ] ] ) ;
RL2:= Cont rac t Ind i ce s (CT, realL , [ [ 1 , 2 ] ] ) ;
RL3:= Cont rac t Ind i ce s (CT, realL , [ [ 1 , 3 ] ] ) ;

f o r m in seq ( i , i =1. . dimbase ) do
Kc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realK ,Gamma) ;
Kc1c :=[ seq ( DGinformation (Kc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a

[ 2 ] ] ] ) [ 1 ] , a=KA) ] ;
Kc2 :=[ seq ( DGinformation ( evalDG (1/3∗ r ea lL ) ,” C o e f f i c i e n t L i s t

” , [ [m, a [ 1 ] , a [ 2 ] ] ] ) [ 1 ] , a=KA) ] ;
Kc3 :=[ seq ( DGinformation ( evalDG (1/3∗ r ea lL ) ,” C o e f f i c i e n t L i s t

” , [ [m, a [ 2 ] , a [ 1 ] ] ] ) [ 1 ] , a=KA) ] ;
Kc1 :=[ seq (Kc2 [ i ]+Kc3 [ i ] + Kc1c [ i ] , i =1. . nops ( Kc1c ) ) ] ;
#was the l a s t s i gn a minus ??

#End o f f i r s t s t r u c t u r e equat ion .

#The next St ruc ture equat ion i s as f o l l o w s . F i r s t , we g ive
a l l o f the terms .
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Lc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realL ,Gamma) ;
Lc1c :=[ seq ( DGinformation ( Lc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a [ 2 ] ,

a [ 3 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc2 :=[ seq ( DGinformation ( evalDG (5/4∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 3 ] ,m, a [ 1 ] , a [ 2 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc3 :=[ seq ( DGinformation ( evalDG (3/4∗KR) ,” C o e f f i c i e n t L i s t ” , [ [m,

a [ 3 ] , a [ 1 ] , a [ 2 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc4 :=[ seq ( DGinformation ( evalDG (1/2∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 1 ] ,m, a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc5 :=[ seq ( DGinformation ( evalDG(−1/2∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 2 ] ,m, a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc6 :=[ seq ( DGinformation ( evalDG (1/2∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 1 ] , a [ 3 ] ,m, a [ 2 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc7 :=[ seq ( DGinformation ( evalDG(−1/2∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 2 ] , a [ 3 ] ,m, a [ 1 ] ] ] ) [ 1 ] , a=LA) ] ;
Lc8 :=[ seq ( DGinformation ( evalDG (1/4∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 2 ] , a [ 1 ] , a [ 3 ] ,m] ] ) [ 1 ] , a=LA) ] ;
Lc9 :=[ seq ( DGinformation ( evalDG(−1/4∗KR) ,” C o e f f i c i e n t L i s t ” , [ [ a

[ 1 ] , a [ 2 ] , a [ 3 ] ,m] ] ) [ 1 ] , a=LA) ] ;
Lc10 :=[ seq ( DGinformation ( realM , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a [ 2 ] ,

a [ 3 ] ,m] ] ) [ 1 ] , a=LA) ] ;

#Now we ” z ip ” the terms toge the r .

Lc1 :=[ seq ( Lc2 [ i ] + Lc3 [ i ] + Lc4 [ i ] + Lc5 [ i ] + Lc6 [ i ] + Lc7 [ i ]
+ Lc8 [ i ] + Lc9 [ i ] + Lc10 [ i ] + Lc1c [ i ] , i =1. . nops ( Lc1c ) ) ] ;

#Having cons t ructed the second s t r u c t u r e equation , we
cons t ruc t the l a s t .

#Now we g ive each term separa t e ly , as be f o r e .

#”easy ” part :
Mc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , realM ,Gamma) ;
Mc1c :=[ seq ( DGinformation (Mc1b , ” C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a [ 2 ] ,

a [ 3 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;

#KdR terms :
Mc2:=[ seq ( DGinformation ( evalDG(( −1)∗KdR) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 3 ] , a [ 1 ] , a [ 2 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc3:=[ seq ( DGinformation ( evalDG(( −1)∗KdR) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 4 ] , a [ 2 ] , a [ 1 ] , a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc4:=[ seq ( DGinformation ( evalDG(( −1)∗KdR) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 4 ] ,m, a [ 2 ] , a [ 1 ] , a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc5:=[ seq ( DGinformation ( evalDG(−(−1)∗KdR) ,” C o e f f i c i e n t L i s t
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” , [ [ a [ 3 ] ,m, a [ 2 ] , a [ 1 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 1
Mc6:=[ seq ( DGinformation ( evalDG(1/2∗( −1)∗KdR) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 3 ] ,m, a [ 2 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc7:=[ seq ( DGinformation ( evalDG(1/2∗( −1)∗KdR) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 4 ] , a [ 2 ] ,m, a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc8:=[ seq ( DGinformation ( evalDG(1/2∗( −1)∗KdR) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 2 ] , a [ 3 ] , a [ 1 ] ,m, a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc9:=[ seq ( DGinformation ( evalDG(1/2∗( −1)∗KdR) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 2 ] , a [ 4 ] ,m, a [ 1 ] , a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc10 :=[ seq ( DGinformation ( evalDG(1/2∗( −1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 2 ] ,m, a [ 4 ] , a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 2
Mc11 :=[ seq ( DGinformation ( evalDG(−1/2∗(−1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] ,m, a [ 4 ] , a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc12 :=[ seq ( DGinformation ( evalDG(1/4∗( −1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 2 ] , a [ 1 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
Mc13 :=[ seq ( DGinformation ( evalDG(−1/4∗(−1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 1 ] , a [ 2 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
Mc14 :=[ seq ( DGinformation ( evalDG(1/4∗( −1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 3 ] , a [ 4 ] , a [ 2 ] , a [ 1 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
Mc15 :=[ seq ( DGinformation ( evalDG(−1/4∗(−1)∗KdR) ,”

C o e f f i c i e n t L i s t ” , [ [ a [ 4 ] , a [ 3 ] , a [ 2 ] , a [ 1 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 3 : end o f KdR terms .

#Beginning o f RL2 terms .
Mc16 :=[ seq ( DGinformation ( evalDG (1/2∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 1 ] , a [ 3 ] ,m, a [ 2 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc17 :=[ seq ( DGinformation ( evalDG(−1/2∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 4 ] ,m, a [ 2 ] , a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc18 :=[ seq ( DGinformation ( evalDG(−1/2∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 2 ] , a [ 3 ] ,m, a [ 1 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc19 :=[ seq ( DGinformation ( evalDG (1/2∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 2 ] , a [ 4 ] ,m, a [ 1 ] , a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc20 :=[ seq ( DGinformation ( evalDG(−1/2∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 4 ] , a [ 3 ] , a [ 2 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
Mc21 :=[ seq ( DGinformation ( evalDG (1/2∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 2 ] , a [ 4 ] , a [ 3 ] , a [ 1 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 4

Mc22 :=[ seq ( DGinformation ( evalDG(−1/3∗RL2) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 3 ] , a [ 2 ] , a [ 1 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

Mc23 :=[ seq ( DGinformation ( evalDG (1/3∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [
a [ 4 ] , a [ 2 ] , a [ 1 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
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#Mc22 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 1 ] , a [ 2 ] , a [ 3 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc23 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 1 ] , a [ 2 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc24 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 2 ] , a [ 1 ] , a [ 3 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc25 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 2 ] , a [ 1 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#End o f l i n e 5
Mc26 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 3 ] ,m, a [ 1 ] , a [ 4 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc27 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ m, a [ 3 ] , a [ 1 ] , a [ 4 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc28 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 4 ] ,m, a [ 1 ] , a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc29 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 4 ] , a [ 1 ] , a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 6
Mc30 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 3 ] ,m, a [ 2 ] , a [ 4 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc31 :=[ seq ( DGinformation ( evalDG (1/6∗RL2) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 3 ] , a [ 2 ] , a [ 4 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc32 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 4 ] ,m, a [ 2 ] , a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc33 :=[ seq ( DGinformation ( evalDG(−1/6∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ m, a [ 4 ] , a [ 2 ] , a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 7
Mc34 :=[ seq ( DGinformation ( evalDG (1/12∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 4 ] , a [ 3 ] ,m, a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc35 :=[ seq ( DGinformation ( evalDG(−1/12∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 2 ] , a [ 4 ] , a [ 3 ] ,m, a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc36 :=[ seq ( DGinformation ( evalDG(−1/12∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 3 ] , a [ 2 ] , a [ 1 ] ,m, a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc37 :=[ seq ( DGinformation ( evalDG (1/12∗RL2) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 4 ] , a [ 2 ] , a [ 1 ] ,m, a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 8 and end o f RL2 terms .

#Beginning o f RL3 terms .

Mc38 :=[ seq ( DGinformation ( evalDG(−1/3∗RL3) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 3 ] , a [ 2 ] , a [ 1 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

Mc39 :=[ seq ( DGinformation ( evalDG (1/3∗RL3) ,” C o e f f i c i e n t L i s t ” , [ [
a [ 4 ] , a [ 2 ] , a [ 1 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;
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#Mc38 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 1 ] , a [ 2 ] , a [ 3 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc39 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 1 ] , a [ 2 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc40 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 2 ] , a [ 1 ] , a [ 3 ] , a [ 4 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#Mc41 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t
” , [ [ a [ 2 ] , a [ 1 ] , a [ 4 ] , a [ 3 ] ,m ] ] ) [ 1 ] , a=MA) ] ;

#End o f l i n e 9
Mc42 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 3 ] ,m, a [ 1 ] , a [ 4 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc43 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ m, a [ 3 ] , a [ 1 ] , a [ 4 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc44 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 4 ] ,m, a [ 1 ] , a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc45 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 4 ] , a [ 1 ] , a [ 3 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 10
Mc46 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t ” , [ [

a [ 3 ] ,m, a [ 2 ] , a [ 4 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc47 :=[ seq ( DGinformation ( evalDG (1/6∗RL3) ,” C o e f f i c i e n t L i s t ” , [ [

m, a [ 3 ] , a [ 2 ] , a [ 4 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc48 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 4 ] ,m, a [ 2 ] , a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc49 :=[ seq ( DGinformation ( evalDG(−1/6∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ m, a [ 4 ] , a [ 2 ] , a [ 3 ] , a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 11
Mc50 :=[ seq ( DGinformation ( evalDG (1/12∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 1 ] , a [ 4 ] , a [ 3 ] ,m, a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc51 :=[ seq ( DGinformation ( evalDG(−1/12∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 2 ] , a [ 4 ] , a [ 3 ] ,m, a [ 1 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc52 :=[ seq ( DGinformation ( evalDG(−1/12∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 3 ] , a [ 2 ] , a [ 1 ] ,m, a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc53 :=[ seq ( DGinformation ( evalDG (1/12∗RL3) ,” C o e f f i c i e n t L i s t

” , [ [ a [ 4 ] , a [ 2 ] , a [ 1 ] ,m, a [ 3 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc54 :=[ seq ( DGinformation (RL3, ” C o e f f i c i e n t L i s t ” , [ [ m, a [ 4 ] , a

[ 3 ] , a [ 1 ] , a [ 2 ] ] ] ) [ 1 ] , a=MA) ] ;
Mc55 :=[ seq ( DGinformation (RL3, ” C o e f f i c i e n t L i s t ” , [ [ m, a [ 2 ] , a

[ 1 ] , a [ 3 ] , a [ 4 ] ] ] ) [ 1 ] , a=MA) ] ;
#End o f l i n e 12
#End o f terms .

#Mc1:=[ seq (Mc2 [ i ] + Mc3 [ i ] + Mc4 [ i ] + Mc5 [ i ] + Mc6 [ i ] + Mc7 [ i
] + Mc8 [ i ] + Mc9 [ i ] + Mc10 [ i ] + Mc11 [ i ] + Mc12 [ i ] + Mc13 [ i
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] + Mc14 [ i ] + Mc15 [ i ] + Mc16 [ i ] + Mc17 [ i ] + Mc18 [ i ] + Mc19
[ i ] + Mc20 [ i ] + Mc21 [ i ] + Mc22 [ i ] + Mc23 [ i ] + Mc24 [ i ] +
Mc25 [ i ] + Mc26 [ i ] + Mc27 [ i ] + Mc28 [ i ] + Mc29 [ i ] + Mc30 [ i ]
+ Mc31 [ i ] + Mc32 [ i ] + Mc33 [ i ] + Mc34 [ i ] + Mc35 [ i ] + Mc36 [ i
] + Mc37 [ i ] + Mc38 [ i ] + Mc39 [ i ] + Mc40 [ i ] + Mc41 [ i ] + Mc42
[ i ] + Mc43 [ i ] + Mc44 [ i ] + Mc45 [ i ] + Mc46 [ i ] + Mc47 [ i ] +
Mc48 [ i ] + Mc49 [ i ] + Mc50 [ i ] + Mc51 [ i ] + Mc52 [ i ] + Mc53 [ i ]
+ Mc54 [ i ] + Mc55 [ i ] + Mc1c [ i ] , i =1. . nops (Mc1c) ) ] ;

Mc1:=[ seq (Mc2 [ i ] + Mc3 [ i ] + Mc4 [ i ] + Mc5 [ i ] + Mc6 [ i ] + Mc7 [ i ]
+ Mc8 [ i ] + Mc9 [ i ] + Mc10 [ i ] + Mc11 [ i ] + Mc12 [ i ] + Mc13 [ i ]
+ Mc14 [ i ] + Mc15 [ i ] + Mc16 [ i ] + Mc17 [ i ] + Mc18 [ i ] + Mc19 [

i ] + Mc20 [ i ] + Mc21 [ i ] + Mc22 [ i ] + Mc23 [ i ] + Mc26 [ i ] +
Mc27 [ i ] + Mc28 [ i ] + Mc29 [ i ] + Mc30 [ i ] + Mc31 [ i ] + Mc32 [ i ]
+ Mc33 [ i ] + Mc34 [ i ] + Mc35 [ i ] + Mc36 [ i ] + Mc37 [ i ] + Mc38 [ i
] + Mc39 [ i ] + Mc42 [ i ] + Mc43 [ i ] + Mc44 [ i ] + Mc45 [ i ] + Mc46
[ i ] + Mc47 [ i ] + Mc48 [ i ] + Mc49 [ i ] + Mc50 [ i ] + Mc51 [ i ] +
Mc52 [ i ] + Mc53 [ i ] + Mc54 [ i ] + Mc55 [ i ] + Mc1c [ i ] , i =1. . nops (
Mc1c) ) ] ;

Eqns | |m:= Li s tToo l s :− Flat ten ( [ Kc1 , Lc1 , Mc1 ] ) ;
Mat | |m:=evalDG ( LinearAlgebra :−GenerateMatrix ( Eqns | |m, Comps2) ∗

Bf [m] ) ;

od ;

BigMat:=add (Mat | | i , i =1. . dimbase ) ;
Connection ( BigMat ) ;

end :

##########################################################

HauserTractorL i f t2 := proc (K,Gamma,Q) l o c a l Bv , Bf , dimbase , Fv ,
ktb , ytb , Ytb , mtb , Mtb ,KA,LA,MA,dK, L ,numK,numL,numM, dL , dLs ,M,
Kcomps , Lcomps , Mcomps ,COMPS, l i f tedKT ;

Bv:=DGinformation (Q, ” FrameBaseVectors ”) ;
Bf :=DGinformation (Q, ” FrameBaseForms ”) ;

dimbase :=nops (Bv) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;

#Here we get the independent components l i s t f o r each tenso r .

ktb :=YoungTableauBasis ( [ 2 ] , dimbase , output=”Matrix ”) ;
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KA:=[ seq ( [ ktb [ i ] [ 1 ] [ 1 ] , ktb [ i ] [ 1 ] [ 2 ] ] , i =1. . nops ( ktb ) ) ] ;
ytb :=YoungTableauBasis ( [ 2 , 1 ] , dimbase , output=”Matrix ”) ;
Ytb:=map( LinearAlgebra :−Transpose , ytb ) ;
LA:=[ seq ( [ Ytb [ i ] [ 1 ] [ 1 ] , Ytb [ i ] [ 1 ] [ 2 ] , Ytb [ i ] [ 2 ] [ 1 ] ] , i =1. . nops (

Ytb) ) ] ;
mtb:=YoungTableauBasis ( [ 2 , 2 ] , dimbase , output=”Matrix ”) ;
Mtb:=map( LinearAlgebra :−Transpose , mtb) ;
MA:=[ seq ( [ Mtb [ i ] [ 1 ] [ 1 ] , Mtb [ i ] [ 1 ] [ 2 ] , Mtb [ i ] [ 2 ] [ 1 ] , Mtb [ i

] [ 2 ] [ 2 ] ] , i =1. . nops (Mtb) ) ] ;

dK:= Covar iantDer ivat ive (K,Gamma) ;

L:=evalDG(2∗( −1)∗ RearrangeInd ice s ( Symmetr izeIndices (dK
, [ 2 , 3 ] , ” SkewSymmetric ”) , [ [ 3 , 1 ] , [ 2 ] ] ) ) ;

dL:= Covar iantDer ivat ive (L ,Gamma) ;
dLs:= Symmetr izeIndices (dL , [ 3 , 4 ] , ” SkewSymmetric ”) ;

M:=evalDG(1/2∗( −1) ∗( dLs + RearrangeInd ice s ( dLs
, [ [ 3 , 1 ] , [ 4 , 2 ] ] ) ) ) ;

Kcomps:=DGinformation (K, ” C o e f f i c i e n t L i s t ” ,KA) ;
Lcomps:=DGinformation (L , ” C o e f f i c i e n t L i s t ” ,LA) ;
Mcomps:=DGinformation (M, ” C o e f f i c i e n t L i s t ” ,MA) ;
COMPS:= Li s tToo l s :−FlattenOnce ( [ Kcomps , Lcomps , Mcomps ] ) ;

l i f tedKT :=DGzip (COMPS, Fv , ” p lus ”) ;
end :

############################################################

getHauserKT2:= proc (KT,Q) l o c a l Bv , dimbase , Fv , ktb , K1, K2,numK,
Kcomps ,KA, Comps , Comps2 , Comps3 , Comps4 , Comps5 , realK , RealK ,
ZERO;

Bv:=DGinformation (Q, ” FrameBaseVectors ”) ;
dimbase :=nops (Bv) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;

ktb :=YoungTableauBasis ( [ 2 ] , dimbase , output=”Matrix ”) ;
KA:=[ seq ( [ ktb [ i ] [ 1 ] [ 1 ] , ktb [ i ] [ 1 ] [ 2 ] ] , i =1. . nops ( ktb ) ) ] ;
numK:=nops (KA) ;
K1:= DG ( [ [ ” t en so r ” , Q, [ [ ” cov bas ” , ” cov bas ” ] , [ ] ] ] , [ seq ( [

KA[ i ] , z | | i ] , i =1. .numK) ] ] ) ;
K2:=YoungSymmetrizer (K1, Matrix ( [ [ 1 , 2 ] ] ) ) ;
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Kcomps :=[ seq ( GetComponents (KT, Fv) [ i ] , i =1. .numK) ] ;

Comps:=[ seq ( DGinformation (K2, ” C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=KA)
] ;

Comps2 :=[ seq ( y | | i , i =1. . nops (Comps) ) ] ;
Comps3 :=[ seq (Comps [ i ] = Comps2 [ i ] , i =1. . nops (Comps) ) ] ;
Comps4:= s o l v e (Comps3 ,{ seq ( z | | i , i =1. . nops (Comps) ) }) ;

realK :=evalDG ( s i m p l i f y ( subs (Comps4 ,K2) ) ) ;

Comps5 :=[ seq (Comps2 [ i ] = Kcomps [ i ] , i =1. . nops (Kcomps) ) ] ;

ZERO:= DG ( [ [ ” t en so r ” , Q, [ [ ” cov bas ” , ” cov bas ” ] , [ ] ] ] , [ [ [ 1 ,
1 ] , 0 ] ] ] ) ;

RealK:=evalDG ( evalDG ( s i m p l i f y ( subs (Comps5 , realK ) ) )+ZERO) ;
end :

############################################################

KYTracCon:= proc (Gamma, k ,Q) l o c a l Bv , dimbase , Bf , Fl ,numF, F1l ,
numF1 , Ff , Ft ,FA, F1f , F1t , F1A,CT,CTF,m, Fc1b , Fc1c , Fc2 , Fc1 ,
F1c1b , F1c1c , F1c1 , F1c2 , BigMat , f1c2a , f1c2b ;

Bv:=DGinformation (Q, ” FrameBaseVectors ”) ;
dimbase :=nops (Bv) ;
Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
Fl := GenerateDGobjects [ DGforms ] ( Bf , k ) ;
numF:=nops ( Fl ) ;

i f dimbase=k then

#This f i r s t part dea l s with the case in which the dimension
i s equal to the rank .

Ff :=DGzip ( [ seq ( z | | i , i =1. .numF) ] , Fl , ” p lus ”) ;
Ft:= convert ( Ff , DGtensor ) ;
FA:=[ seq ( op (1 , op (2 , op ( Fl [ i ] ) ) [ 1 ] ) , i =1. .numF) ] ;

F1f :=DGzip ( [ 0 ] , Fl , ” p lus ”) ;
F1t := convert ( F1f , DGtensor ) ;

f o r m in seq ( i , i =1. . dimbase ) do
Fc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , Ft ,Gamma) ;
Fc1c :=[ seq ( DGinformation ( Fc1b , ” C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=FA
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) ] ;
Fc2:=DGinformation ( F1t , ” C o e f f i c i e n t L i s t ” , [ seq ( L i s tToo l s :−

FlattenOnce ( [ [m] , a ] ) , a=FA) ] ) ;
Fc1 :=[ seq ( Fc2 [ i ]+Fc1c [ i ] , i =1. . nops ( Fc1c ) ) ] ;

Eqns | |m:= Li s tToo l s :− Flat ten ( [ Fc1 ] ) ;
Mat | |m:=evalDG ( LinearAlgebra :−GenerateMatrix ( Eqns | |m, [ seq ( z | |

i , i =1. .numF) ] ) ∗Bf [m] ) ;
od ;

#Last ly , we w i l l p i e c e toge the r the matrix and bu i ld the
connect ion from i t .

BigMat:=add (Mat | | i , i =1. . dimbase ) ;
Connection ( BigMat ) ;

#Now we handle a l l o ther ca s e s .

e l s e

F1l := GenerateDGobjects [ DGforms ] ( Bf , k+1) ;
numF1:=nops ( F1l ) ;

Ff :=DGzip ( [ seq ( z | | i , i =1. .numF) ] , Fl , ” p lus ”) ;
Ft:= convert ( Ff , DGtensor ) ;
FA:=[ seq ( op (1 , op (2 , op ( Fl [ i ] ) ) [ 1 ] ) , i =1. .numF) ] ;

F1f :=DGzip ( [ seq ( z | | i , i=1+numF . . numF+numF1) ] , F1l , ” p lus ”) ;
F1t := convert ( F1f , DGtensor ) ;
F1A:=[ seq ( op (1 , op (2 , op ( F1l [ i ] ) ) [ 1 ] ) , i =1. .numF1) ] ;

CT:= CurvatureTensor (Gamma) ;
CTF:= Contrac t Ind i ce s (CT, Ft , [ [ 1 , 1 ] ] ) ;

f o r m in seq ( i , i =1. . dimbase ) do
Fc1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , Ft ,Gamma) ;
Fc1c :=[ seq ( DGinformation ( Fc1b , ” C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=FA

) ] ;
Fc2:=DGinformation ( F1t , ” C o e f f i c i e n t L i s t ” , [ seq ( L i s tToo l s :−

FlattenOnce ( [ [m] , a ] ) , a=FA) ] ) ;
Fc1 :=[ seq ( Fc2 [ i ]+Fc1c [ i ] , i =1. . nops ( Fc1c ) ) ] ;

F1c1b:= Di r e c t i ona lCova r i an tDe r i va t i v e (Bv [m] , F1t ,Gamma) ;
F1c1c :=[ seq ( DGinformation ( F1c1b , ” C o e f f i c i e n t L i s t ” , [ a ] ) [ 1 ] , a=

F1A) ] ;



207

f1c2a :=evalDG ( ( 1 ) ∗ Symmetr izeIndices (CTF, [ seq ( k+2−i , i =0. . k−2)
, 1 ] , ” SkewSymmetric ”) ) ;

f1c2b :=evalDG((( −1) ˆk∗( k+1)/k ) ∗ Symmetr izeIndices ( f1c2a , [ seq ( k
+2−i , i =0. . k−2) , 2 , 1 ] , ” SkewSymmetric ”) ) ;

F1c2 :=[ seq ( DGinformation ( evalDG ( k∗ f1c2b ) ,” C o e f f i c i e n t L i s t ” , [ [
a [ 2 ] , a [ 1 ] ,m, seq ( a [ i ] , i =3. . k+1) ] ] ) [ 1 ] , a=F1A) ] ;

F1c1 :=[ seq ( F1c2 [ i ] +F1c1c [ i ] , i =1. . nops ( F1c1c ) ) ] ;

Eqns | |m:= Li s tToo l s :− Flat ten ( [ Fc1 , F1c1 ] ) ;
Mat | |m:=evalDG ( LinearAlgebra :−GenerateMatrix ( Eqns | |m, [ seq ( z | |

i , i =1. .numF+numF1) ] ) ∗Bf [m] ) ;
od ;

#Last ly , we w i l l p i e c e toge the r the matrix and bu i ld the
connect ion from i t .

BigMat:=add (Mat | | i , i =1. . dimbase ) ;
Connection ( BigMat ) ;
f i ;
end :

############################################################

li f tKY := proc (F ,Gamma,Q) l o c a l Bv , dimbase , Bf , k , Fl ,numF, F1l ,
numF1 , Fv ,FA, F1A, dF , dFs , F1 , Fcomps , F1comps ,COMPS, l i f tedKY ;

Bv:=DGinformation (Q, ” FrameBaseVectors ”) ;
dimbase :=nops (Bv) ;
Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
k:=op (1 , op (F) ) [ 3 ] ;

i f k=dimbase then

evalDG ( DGinformation (F, ” C o e f f i c i e n t S e t ”) [ 1 ] ∗ Fv [ 1 ] ) ;

e l s e

Fl := GenerateDGobjects [ DGforms ] ( Bf , k ) ;
numF:=nops ( Fl ) ;
F1l := GenerateDGobjects [ DGforms ] ( Bf , k+1) ;
numF1:=nops ( F1l ) ;
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Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;

FA:=[ seq ( op (1 , op (2 , op ( Fl [ i ] ) ) [ 1 ] ) , i =1. .numF) ] ;

F1A:=[ seq ( op (1 , op (2 , op ( F1l [ i ] ) ) [ 1 ] ) , i =1. .numF1) ] ;

dF:= Covar iantDer ivat ive (F ,Gamma) ;
dFs:=evalDG ( Symmetr izeIndices (dF , [ seq ( i , i =1. . k+1) ] , ”

SkewSymmetric ”) ) ;
F1:= RearrangeInd ice s ( dFs , [ seq ( k+2−i , i =1. . k+1) ] ) ;

Fcomps:=DGinformation (F, ” C o e f f i c i e n t L i s t ” ,FA) ;
F1comps:=DGinformation (F1 , ” C o e f f i c i e n t L i s t ” ,F1A) ;
COMPS:= Li s tToo l s :−FlattenOnce ( [ Fcomps , F1comps ] ) ;

l i f tedKY :=DGzip (COMPS, Fv , ” p lus ”) ;
f i ;
end :

############################################################

getKY:= proc (KY, k ,Q) l o c a l Fv , Bf , dimbase ,numF, Fl , Fcomps , Ff ,
ZERO, RealF ;

Fv:=DGinformation (Q, ” FrameFiberVectors ”) ;
Bf :=DGinformation (Q, ” FrameBaseForms ”) ;
dimbase :=nops ( Bf ) ;

Fl := GenerateDGobjects [ DGforms ] ( Bf , k ) ;
numF:=nops ( Fl ) ;
Fcomps :=[ seq ( GetComponents (KY, Fv) [ i ] , i =1. .numF) ] ;

Ff :=DGzip ( [ seq ( z | | i , i =1. .numF) ] , Fl , ” p lus ”) ;

ZERO:= DG ( [ [ ” form ” ,Q, k ] , [ [ [ 1 , 1 ] , 0 ] ] ] ) ;
RealF:=evalDG ( subs ( [ seq ( z | | i=Fcomps [ i ] , i =1. .numF) ] , Ff )+ZERO) ;

end :

############################################################

MaxKT:= proc (m, n)
( (m+n−1) ! ∗ (m+n) ! ) / ( (m−1) !∗m!∗ n ! ∗ ( n+1) ! ) ;
end :

############################################################
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MaxKY:= proc (n , k ) l o c a l numF, numF1 ;
numF:= binomial (n , k ) ;
numF1:= binomial (n , k+1) ;
numF+numF1 ;
end :

############################################################

MaxSym:= proc (m, n)
#Ca l cu l a t e s the number o f independent components o f a

complete ly symmetric t enso r .
(m+n−1) ! / ( n ! ∗ (m−1) ! )
end :

############################################################

MaxSkew:= proc (m, n)
#Ca l cu l a t e s the number o f independent components o f a

complete ly skew−symmetric t en so r ( should be the binomial
formula ) .

m! / ( n ! ∗ (m−n) ! ) ;
end :

############################################################

MaxCF:= proc (n , p) ;
#Ca l cu l a t e s the maximum number o f conformal K i l l i n g forms in

n dimensions o f rank p .
binomial (n+2,p+1) ;
end :

############################################################

Ki l l i ngTenso rL ib ra ry :=module ( ) export ModuleApply ;

#The f o l l o w i n g read command would read in the e n t i r e database
, which i s now qu i t e l a r g e . Thus , t h i s program has been
amended to read in only the f i l e r equ i r ed .

#read ” Database tab le . txt ” ;

ModuleApply := proc (n , name ,{ output : = [ ] } ) l o c a l f i l ename ,
f i l enames t r ,C,V, out1 , out2 , name2 , l i s t , l i s t 2 , l i s t 3 ; # name
o f mani fo ld .
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f i l ename := kt | | n ;
f i l e n a m e s t r := cat (” k t e n t r i e s /” , cat ( convert ( f i l ename , s t r i n g )

, ” . txt ”) ) ;
read f i l e n a m e s t r ;

V := Ben [ n ] [ ” Coordinates ” ] ;
DGEnvironment [ Coordinate ] (V, name) ;
C := Ben [ n ] [ ” Metric ” ] ;
i f output <> [ ] then out1 :=op (1 , output ) f i ;
i f nops ( output ) >= 2 then out2 :=op (2 , output ) f i ;
i f nops ( output ) >= 3 then name2:=op (3 , output ) f i ;

i f output = [ ] then re turn
DG ( [ [ ” t en so r ” ,name , [ [ ” cov bas ” ,” cov bas ” ] , [ ] ] ] , C] ) ; #change

the l p r i n t to name ;
f i ;

i f type ( out1 , i n t e g e r ) then #return #then return the
i r r e d u c i b l e k i l l i n g t e n s o r s o f order k .

l i s t :=Ben [ n ] [ ” I r r e d u c i b l e K i l l i n g T e n s o r s ” , out1 ] ;
r e turn [ seq ( DG ( [ [ ” t en so r ” ,name , [ [ seq (” cov bas ” , i =1. . out1 )

] , [ ] ] ] , l i s t [ j ] ] ) , j =1. . nops ( l i s t ) ) ] ;
f i ;

i f output = [ ” K i l l i ngTenso r s ” , out2 ] then
l i s t :=Ben [ n ] [ out1 , out2 ] ;
r e turn [ seq ( DG ( [ [ ” t en so r ” ,name , [ [ seq (” cov bas ” , i =1. . out2 )

] , [ ] ] ] , l i s t [ j ] ] ) , j =1. . nops ( l i s t ) ) ] ;
f i ;

i f output = [ ” Ki l l ingYanoTensors ” , out2 ] then
l i s t :=Ben [ n ] [ out1 , out2 ] ;
r e turn [ seq ( DG ( [ [ ” form ” ,name , out2 ] , l i s t [ j ] ] ) , j =1. . nops ( l i s t )

) ] ;
f i ;

i f output = [ ” ConformalKil l ingForms ” , out2 ] then
l i s t :=Ben [ n ] [ out1 , out2 ] ;
r e turn [ seq ( DG ( [ [ ” form ” ,name , out2 ] , l i s t [ j ] ] ) , j =1. . nops ( l i s t )

) ] ;
f i ;

i f output = [ ” I r reduc ib l eRank ” ] then
l i s t :=[ seq ( l h s ( op ( op (Ben) [ n ] ) [ i ] ) , i =1. . nops ( op ( op (Ben) [ n ] ) ) )
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] ;
l i s t 2 :=[ L i s tToo l s :− SearchAl l (” I r r e d u c i b l e K i l l i n g T e n s o r s ” , l i s t

) ] ;
l i s t 3 :=[ seq ( l i s t [ l i s t 2 [ i ]+1 ] , i =1. . nops ( l i s t 2 ) ) ] ;
r e turn l i s t 3 ;
f i ;

i f output = [ ” Notes ” ] then re turn Ben [ n ] [ ” Notes ” ] f i ;
i f output = [ ” Reference ” ] then re turn Ben [ n ] [ ” Reference ” ] f i ;
i f output = [ ” Coordinates ” ] then return Ben [ n ] [ ” Coordinates ” ]

f i ;

i f output = [ ” TractorConnect ion ” , out2 , name2 ] then
DGEnvironment [ VectorSpace ] (MaxKT( nops (Ben [ n ] [ ” Coordinates ” ] ) ,

out2 ) , name2 vs ) ;
DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” connect ion ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas

” ] , [ ] ] ] , Ben [ n ] [ ” TractorConnect ion ” , out2 ] ] ) ;
f i ;

i f output = [ ” TractorCurvature ” , out2 , name2 ] then
DGEnvironment [ VectorSpace ] (MaxKT( nops (Ben [ n ] [ ” Coordinates ” ] ) ,

out2 ) , name2 vs ) ;
DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” t en so r ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas ” , ”

cov bas ” ] , [ ] ] ] , Ben [ n ] [ ” TractorCurvature ” , out2 ] ] ) ;
f i ;

i f output = [ ” YanoTractorConnection ” , out2 , name2 ] then
DGEnvironment [ VectorSpace ] (MaxKY( nops (Ben [ n ] [ ” Coordinates ” ] ) ,

out2 ) , name2 vs ) ;
DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” connect ion ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas

” ] , [ ] ] ] , Ben [ n ] [ ” YanoTractorConnection ” , out2 ] ] ) ;
f i ;

i f output = [ ” YanoTractorCurvature ” , out2 , name2 ] then
DGEnvironment [ VectorSpace ] (MaxKY( nops (Ben [ n ] [ ” Coordinates ” ] ) ,

out2 ) , name2 vs ) ;
DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” t en so r ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas ” , ”
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cov bas ” ] , [ ] ] ] , Ben [ n ] [ ” YanoTractorCurvature ” , out2 ] ] ) ;
f i ;

i f output = [ ” ConformalFormTractorConnection ” , out2 , name2 ]
then

DGEnvironment [ VectorSpace ] (MaxCF( nops (Ben [ n ] [ ” Coordinates ” ] ) ,
out2 ) , name2 vs ) ;

DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” connect ion ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas

” ] , [ ] ] ] , Ben [ n ] [ ” ConformalFormTractorConnection ” , out2 ] ] ) ;
f i ;

i f output = [ ” ConformalFormTractorCurvature ” , out2 , name2 ] then
DGEnvironment [ VectorSpace ] (MaxCF( nops (Ben [ n ] [ ” Coordinates ” ] ) ,

out2 ) , name2 vs ) ;
DGEnvironment [ VectorBundle ] ( name , name2 vs , name2) ;
r e turn
DG ( [ [ ” t en so r ” , name2 , [ [ ” con vr t ” , ” cov vr t ” , ” cov bas ” , ”

cov bas ” ] , [ ] ] ] , Ben [ n ] [ ” ConformalFormTractorCurvature ” ,
out2 ] ] ) ;

f i ;
end proc ;

end module :

#####################################################

BundleLi f t := proc (T,Q) l o c a l l i f t e d T ;
l i f t e d T := DG ( [ [ op (T) [ 1 ] [ 1 ] , Q, op (T) [ 1 ] [ 3 ] ] , op (T) [ 2 ] ] ) ;
end :

############################################################

KYtoKT:= proc (g , gin ,KY1,KY2) l o c a l r , s1 , s2 ;
r :=op (KY1) [ 1 ] [ 3 ] ;
s1 :=evalDG(( −1) ˆ( r −1)∗ TensorInnerProduct ( g ,KY1,KY2,

i n v e r s e m e t r i c=gin , t e n s o r i n d i c e s =[ seq ( i , i =1. . r −1) ] ) ) ;
s2 := Symmetr izeIndices ( s1 , [ 1 , 2 ] , ” Symmetric ”) ;
end :

########################################################

CKVtoKT:= proc (X, g ) l o c a l s1 , gin ,Xu, F , s2 , s3 ;
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s1 :=evalDG (X &t X) ;
g in := Inver s eMet r i c ( g ) ;
Xu:= RaiseLowerIndices ( gin ,X, [ 1 ] ) ;
F:= Contrac t Ind i ce s (Xu,X, [ [ 1 , 1 ] ] ) ;
s2 :=evalDG (F∗g ) ;
s3 :=evalDG ( s1−s2 ) ;
end :


	Tractor Connections for Killing Tensors and Their Generalizations
	Recommended Citation

	tmp.1638806700.pdf.GRbSm

