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Abstract

Tractor Connections for Killing Tensors and their Generalizations
by
Benjamin D. Shaw, Master of Science

Utah State University, 2021

Major Professor: Dr. Ian Anderson
Department: Mathematics and Statistics

We create new symbolic software tools for the analysis of Killing tensors.
Central to our work is the construction of the tractor connection defined on
the tractor bundle, which allows one to obtain information about the space of
Killing tensors without solving the Killing equations—an approach termed the
tractor approach. We give a new application of the tractor approach which
allows one to more easily check explicitly for linear independence of a given set
of Killing tensors. We develop software to implement such methods in the case
of rank 2 Killing tensors; similarly, we develop software to implement analogous
methods in the study of Killing-Yano tensors and conformal Killing vectors.
Using our newly developed software, we find examples of rank 2 irreducible
Killing tensors for exact solutions to Einstein’s field equations. We also make
an in-depth study of various other methods of constructing Killing tensors of
rank 2 and find that these algorithms most often do not produce Killing tensors
which are linearly independent of the reducible Killing tensors and the metric,

with the Kerr metric being one of the only known sources of examples.
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Public Abstract

Tractor Connections for Killing Tensors and their Generalizations

Benjamin D. Shaw

We create new symbolic software tools for the analysis of Killing tensors.
Central to our work is the construction of the tractor connection defined on
the tractor bundle, which allows one to obtain information about the space of
Killing tensors without solving the Killing equations—an approach termed the
tractor approach. We give a new application of the tractor approach which
allows one to more easily check explicitly for linear independence of a given set
of Killing tensors. We develop software to implement such methods in the case
of rank 2 Killing tensors; similarly, we develop software to implement analogous
methods in the study of Killing-Yano tensors and conformal Killing vectors.
Using our newly developed software, we find examples of rank 2 irreducible
Killing tensors for exact solutions to Einstein’s field equations. We also make
an in-depth study of various other methods of constructing Killing tensors of
rank 2 and find that these algorithms most often do not produce Killing tensors
which are linearly independent of the reducible Killing tensors and the metric,

with the Kerr metric being one of the only known sources of examples.
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1 Introduction

In this thesis, we create new symbolic software tools for the analysis of Killing
tensors. Central to our work is the construction of the tractor connection defined
on the tractor bundle, which allows one to obtain information about the space of
Killing tensors without solving the Killing equations—an approach termed the tractor
approach. We give a new application of the tractor approach which allows one to
more easily check explicitly for linear independence of a given set of Killing tensors.
We develop software to implement such methods in the case of rank 2 Killing tensors;
similarly, we develop software to implement analogous methods in the study of Killing-
Yano tensors and conformal Killing vectors. Using our newly developed software, we
find examples of rank 2 irreducible Killing tensors for exact solutions to Einstein’s
field equations.

Killing vectors are quantities of remarkable interest in differential geometry and
mathematical physics. Named after Wilhelm Killing, Killing vectors on Riemannian
or pseudo-Riemannian manifolds are vector fields which Lie-differentiate the metric to
zero. Additionally, the set of all Killing vector fields is isomorphic to the Lie algebra
of the isometry group of the metric. Explicitly finding the Killing vectors for a given
metric can prove to be elusive, as doing so requires one to solve a system of linear,
first order, partial differential equations known as the Killing equations for Killing
vectors.

Killing tensors are generalizations of Killing vectors. Killing tensors appear,
among other places, as first integrals of the geodesic equation (Stephani et al., 2003).
Additionally, they have been used in the separation of variables for the Hamilton-
Jacobi equation (Kalnins and Miller, 1981) and in the separation of variables for the
Dirac equation (Carignano et al., 2011). Notwithstanding their utility in physics,

finding them explicitly involves solving a system of linear, first order, partial differ-
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ential equations—as with Killing vectors—which we refer to as the Killing equations
for Killing tensors. However, Killing tensors are generally more difficult to solve for
than Killing vectors. In the case of Killing vectors, the Killing equations become a
system of finite type differential equations after one differentiation: that is, all second
derivatives of the components of the Killing vectors are written in terms of lower order
derivatives. With Killing tensors of rank k£, however, k derivatives must be taken be-
fore the Killing equations become a system of finite type: that is, k& derivatives must
be taken before all derivatives at order k& are written in terms of lower-order deriva-
tives (Houri et al., 2018). On a manifold of dimension 4, the Killing equations for
Killing vectors become a finite system of 10 equations, whereas the Killing equations
for Killing tensors of rank 2 become a finite system of 50 equations.

The two other generalizations of Killing vectors examined in this thesis are con-
formal Killing vectors and Killing-Yano tensors. Both have utility, among other uses,
in explicitly constructing Killing tensors of rank 2 (Popa and Ovidiu, 2007; Edgar et
al., 2004). Killing-Yano tensors have also been used in the separation of the Dirac
equation (Carter and McLenaghan, 1979; Fels and Kamran, 1990). As with Killing
vectors and Killing tensors, finding conformal Killing vectors and Killing-Yano tensors
requires solving a system of linear, first order, partial differential equations—known
also as Killing equations—and so they too can prove difficult to solve for explicitly.

Other generalizations of Killing vectors include higher rank conformal Killing
forms, conformal Killing tensors, and Killing spinors (M. Walker and R. Penrose,
1970). These will not be treated in this thesis, though they too are of interest in
differential geometry and mathematical physics.

Having identified objects of interest, and having pointed to the difficulty of ex-
plicitly finding those objects due to the requirement of solving the associated Killing
equations, we will present a method for studying solutions of systems of differential

equations which need not involve solving the Killing equations directly (Houri et al.,
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2018). This method is sometimes referred to, in the mathematical literature, as the
tractor approach, as it will be referred to in this thesis.

The tractor approach entails the construction of a vector bundle known as the
tractor bundle, as well as the construction of a linear connection defined on the
bundle known as the tractor connection. The tractor approach allows us to write
the original system of equations as the equations which define a smooth, parallel
section on the tractor bundle with respect to the tractor connection. A section in
the nullspace of the k* and lower order derivatives of the curvature tensor is called
quasi-parallel to order k, and the set of quasi-parallel sections of order k form what
is known as the k" order reduced tractor bundle. The dimension of the nullspace
of the curvature tensor and its derivatives give us an upper bound on the number of
parallel sections. The curvature tensor and its derivatives determine the holonomy
algebra of the tractor connection.

In some cases, the tractor approach also allows one to get the independent so-
lutions explicitly where a direct approach to solving the Killing equations fails. In
cases where a sub-maximal number of independent solutions exist, the quasi-parallel
sections as well as the condition of parallelism with respect to the tractor connection
allow one to form a reduced system of equations which may be more practical to solve
explicitly than the original system of equations.

The reduced system of equations is generated as follows. After computing a basis
for the &' order reduced tractor bundle, one forms an arbitrary linear combination of
the basis elements using unknown functions as scalars. A system of equations for the
unknown functions is then generated by applying the condition of parallelism. The
resulting system of differential equations is thought to be easier to solve explicitly,
since it may contain fewer unknown functions than the parallel equations, which
equations are equivalent to the original Killing equations.

It is known that the set of Killing tensors of a particular metric forms an alge-
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bra with respect to the symmetric tensor product (Thompson, 1986). Killing tensors
which cannot be algebraically generated by Killing tensors of lower rank are known
as irreducible Killing tensors. Accordingly, one seeks to find all irreducible Killing
tensors for a particular metric. To our knowledge, this has only been accomplished for
metrics of constant sectional curvature (Thompson, 1986). As irreducible Killing ten-
sors seem to be scarce (Kruglikov and Matveev, 2016), the discovery of an irreducible
Killing tensor is of significance.

A novel application of the tractor approach is the ability to more easily check
the linear independence of a set of Killing tensors. The issue of determining the
number of independent, reducible Killing tensors of a given rank is, conceptually, an
elementary question of basic linear algebra. And yet, it can be difficult in practice!
to check linear independence when the components of the Killing tensor fields are not
rational functions of the coordinates. However, our novel application is that a set of
Killing tensors is linearly independent over R if and only if their lifts to the tractor
bundle are linearly independent at a single point. Thus, with the tractor approach,
checking linear independence for Killing tensor fields can be reduced to checking linear
independence for vectors in R”.

This novel application is of paramount importance in the search for metrics which
admit irreducible Killing tensors. The tractor approach is known, as we have ex-
plained, to produce an upper bound on the number of linearly independent Killing
tensors of a given rank. On the other hand, the number of independent, reducible
Killing tensors, together with the metric, which may or may not be reducible, gives
us a lower bound on the number of linearly independent Killing tensors. For example,
we consider the case of rank 2 Killing tensors. If a metric admits p Killing vectors, we
can generate @ reducible Killing tensors of rank 2 by means of the symmetric

tensor products of the (covariant) Killing vectors. Coupled with the metric, we can

li.e. in a computer algebra system.
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easily generate plp+ + 1 Killing tensors of rank 2, and, for the purposes of this
illustration, we call this set S. Each element of S can be lifted up to the tractor
bundle to form the set S. The set S evaluated at a point z¢ can be checked for linear
independence: in fact, the number of linearly independent elements of S evaluated at
xo can be computed in Maple using rudimentary principles of linear algebra. Suppose
this number is ¢: our novel application then informs us that the dimension of the span
of §'is g, thus providing a lower bound on the number of Killing tensors admitted by
a particular metric. If, by means of the tractor approach, we determine that an upper
bound on the number of Killing tensors of rank 2 is k, then we know that there are at
most k — q Killing tensors of rank 2 which are not in the span of S. Thus, this novel
application will allow us to determine which metrics may admit irreducible Killing
tensors of rank 2, and it will provide an upper bound on the number of independent,
irreducible Killing tensors of rank 2 which can be admitted.

One more application of the tractor approach stems from homogeneous spaces. If
a manifold M is a homogeneous space G/H and the metric is G-invariant, then the
tractor approach allows one to determine the number of Killing tensors without the
need to introduce coordinates. Thus, the tractor approach can produce meaningful
information about the space of Killing tensors where one cannot find the Killing
tensors explicitly.

The tractor approach has been successfully applied to Killing vectors, and some
examples are included in this thesis. While the equations that define the tractor
connection for Killing vectors are well known, lesser-known are the equations which
define the tractor connections for Killing tensors of rank 2, Killing-Yano tensors, and
conformal Killing vectors. These equations are presented in this thesis, and software
is created which constructs the tractor connections explicitly.

There are also existing formulas for constructing Killing tensors of rank 2 from

objects such as Killing-Yano tensors (Popa and Ovidiu, 2007) and conformal Killing
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vectors (M. Walker and R. Penrose, 1970), as well as for type D vacuum solutions to
the Einstein field equations (Stephani et al., 2003). We have tested these formulas
extensively and found that in almost every case, each Killing tensor which was pro-
duced was a linear combination of reducible Killing tensors and the associated metric.
Only one Killing tensor of rank 2 was produced which was not a linear combination of
reducible Killing tensors and the metric, and the metric which admitted this Killing
tensor was the Kerr metric.

This thesis is organized as follows. In chapter 2, we give our conventions and offer
a description of some important properties of Killing tensors, Killing vectors, Killing-
Yano tensors, and conformal Killing vectors. In chapter 3, we give a more detailed
description of the tractor approach and illustrate the tractor approach with regard
to Killing vectors and to a particular system of partial differential equations. The
fourth chapter of this thesis details our application of the tractor approach to Killing
vectors, and the fifth chapter details the tractor approach applied to conformal Killing
vectors. In the sixth chapter, we recover the equations used to define the tractor
connection (Thompson, 1986). We then identify many metrics which cannot admit
rank 2 irreducible Killing tensors, and we find new examples of metrics which admit
rank 2 irreducible Killing tensors. We identify other metrics which may admit rank
2 irreducible Killing tensors, though we do not find these Killing tensors explicitly.

Also included in chapter 6 is a treatment of Killing tensors of rank 2 for metrics in
the plane. We apply the Darboux-Koenings theorem and offer necessary and sufficient
conditions for the existence of precisely four Killing tensors of rank 2 for a metric in
the plane with a single Killing vector. We also find that the maximum number of
Killing tensors of rank 2 for a plane metric with no Killing vectors is three.

In chapter 7, we apply the tractor approach to Killing-Yano tensors of rank 2,
first reproducing the known (Houri et al., 2018) equations which define the tractor

connection. For many exact solutions, we obtain a count of the number of Killing-
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Yano tensors, and, in some cases, we obtain them explicitly in cases for which a direct
approach appears to be more problematic.

Finally, we allude to future projects of interest and then give a brief overview of
how our software programs are to be used. After we offer a few software demonstra-
tions, the thesis is concluded after the inclusion of the source code for the software

programs that have been developed.



2 Conventions and Basic Properties

2.1 Conventions

The conventions used in this thesis are those used in the Differential Geometry soft-
ware package (Anderson and Torre, 2016). Let V be a connection on an n-dimensional
manifold M. With respect to a system of local coordinates z”, the connection coeffi-

cients I/, are given as

vﬁmu axﬁ = Fvﬁ“a’ﬂ .

Let T be a type (g) tensor defined on M. We denote the covariant derivative of T'
with respect to a connection using the “semicolon” notation, so that the first covariant

derivative of T is written, in terms of the components, as

8 T
QY ...00 _ aq...00 6] ay...Ot —1 VOt 1...00
Ty = g (T ) T2 TNT Br...Bs
t=1

S
v ai...0
- Z F /B’w'yT Bl---ﬂwfll’ﬁuhkl---ﬂs '
w=1

When more derivatives are taken, more indices appear on the right of the semicolon.
For example, the second covariant derivative of T is written as T, 5 ;.

If M is taken to be a Riemannian or pseudo-Riemannian manifold endowed with
a metric g, covariant differentiation is taken with respect to the Christoffel symbols
{ BWM}, which are the components of the unique, torsion free connection for which
the metric is covariantly constant. In local coordinates, these components can be

expressed in terms of the metric by



1 0%
{,BWM} = 59 ! (gaﬁ,u + Yo — gﬁu,a) J

where the “comma’” notation denotes partial differentiation. Let X be a contravariant
vector field defined on M. The curvature tensor R*5 s of the connection defined by
the Christoffel symbols is defined by the commutator of the covariant derivatives. For

a contravariant vector field, we have

« « _ « v
X%y — Xy = B 507,

while the commutator of the covariant derivative of a covariant vector field Y is given

as

Y;Bv _Y;vﬁ = R"

e} «

Y,.

afy

The two preceding equations give rise to the following Bianchi identities:

R%%n5 + R, + %55 = 0,
R0 + 1% + RBgux = 0.

Applying the commutator formula to the metric, we find that

9aprys — Japins = 9up Ruoms T go‘MRMB'Y‘s’

giving us, since g,5., = 0,

Rﬁa'y(s + R 5 — 0

aBy

We use 5,‘;‘5 to denote the generalized Kronecker-Delta symbol, which can be written

in terms of the ordinary Kronecker-Delta symbols as follows:
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555 = 53(55 — 5355.
Parenthesis will be used to denote the symmetrization of the indices of a tensor, which

for a type (g) tensor T is given as

Tap) = 5 (Tag + Tsa) -

N[ —

Square brackets will be used to denote skew-symmetrization, so that

1
T[ozﬁ] = 5 (Tocﬁ - Tﬁoc) :

In the case of a type (g) tensor T', the symmetrization formulas are given as

1
T(aﬂv) ~ 3 (Taﬂv T Tap T Tsya T Thay T 10 + Tavﬁ)

and

1
Tiapr) = 37 (Tagy + Toas + Tina = Thary ~ Topa = Tans) -

It is sometimes convenient to use an alternate means of indicating the symmetriza-
tion of tensors. In such cases, the operator Y; is used, where t is a Young tableau from
which the symmetrization is determined: one first applies (symmetric) symmetriza-
tion according to the rows of the tableau, then subsequently skew-symmetrization
according to the columns of the tableau. For example, consider the following sym-

metrization operator applied to a tensor F' of type (2):

Yoo Fans -
~y[d

To compute this explicitly, one first computes the symmetrization over the pairs (3, «)
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and (7, d). The result is then skew-symmetrized over the pairs (5,7) and («, d):

Gaﬁ'yé = Yg Fa,@v(s

a
~|[é

1
=1 @Y (Fugys + Foans + Fapsy + Fpasy)

1
= 3¥ (Faprs + Foars + Fapsy + Fsasy = Fopra — Fasva = Fsgar — Fasar)

1
- E (Faﬁvé + Fﬁa’yts + Faﬁ5'y + Fﬁa&y - F5B'ya - F,B§'ya - F&Ba'y - Fﬁﬁa'y)

1
BT (Favss + Fraps + Fansp + Frass = Foypa — Frspa = Fivap = Frsap) -

The tensor G satisfies a cyclic identity on any three indices:

G ) + Ga&ﬂ'y + Ga'y&ﬂ - O

aBy

We also note that

1
T (Fians + Fspay + Frsga + Farss)

1
I3 (Fygas + Fyga T Fasyp + Foasy) s

so that if 55 = Fl, 55,

1
F[aﬂvé] - é_l (Faﬁwﬁ + FMﬂv + F'y5ozﬁ + Fﬁwéa) : (2'1)

Equation (2.1) will be referenced in chapter 7. Our final demonstration using the
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Young symmetrization operators is the following, applied to a type ([3)) tensor L.

1
Y ~ Logy = §Y (Laﬁv + Lvﬁ&)

= [

(Laﬁv o Lﬁow + Lvﬁa - Lwﬁ) :

These Young symmetrization operators map tensors into the various irreducible rep-

resentations of the general linear group.

Let T be a tensor of type (2) The tensor T is said to be a symmetric tensor of
type (S) if

The tensor T is said to be a skew-symmetric tensor of type (0) if

T

o..ar T'[al...ozr] .

The dimension of the space of rank r symmetric tensors on a manifold of dimension
o (n+r—1)
n is ( )

I o and the dimension of the space of rank r skew-symmetric tensors
rl(n —1)!

n!
on a manifold of dimension n is ——.
ri(n —r)!
Now let S be a tensor of type (8): S is said to be symmetric if

Gotar S(al...ar).

Similarly, S is said to be skew-symmetric if

Sal'"aT — S[al.--ar]_
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2.2 The Theorem of Frobenius

In this section, we will present a theorem which is attributed to Frobenius, which
theorem can be found on page 254 of (Spivak, 1979). This theorem will eventually
lead to our novel application of the tractor approach.

Let V C R™ be open, and let U be an open neighborhood of 0 € R™. For
i1=1,....m,let f; : U xV — R"™ be C* functions. Let o : W — V', where W is a
neighborhood of 0 € R™. We consider a system of equations, defined for all t € W,
of the form

0olt) _ 11, a(t), (2.2)

with initial conditions a(0) = z. We will refer to such a system of equations as a

Frobenius system of equations.

Theorem 2.1. For every x € V', there is at most one function o : W — V' satisfying
equation (2.2): that is, any two functions oy and ay defined on neighborhoods Wy and
Wy, respectively, agree on the component of Wi N Wy containing 0. Moreover, such
a function exists and is automatically C*° if and only if there is a neighborhood of

(0,x2) € U x V' on which the following equation is satisfied, fori,j=1,...,m:

0fi 0fi ~=0fi o ~=0fi o
ot 8tj+;8kfi 2 gl =0

The proof of theorem 2.1 is documented in the literature (Spivak, 1979) and has

been omitted in this thesis. The theorem does, however, allow us to make the following

observation.

Corollary 2.1.1. Let each f;(t,a) as in equation (2.2) be linear in «, and suppose

that a(0) = 0. Then the unique solution satisfying (2.2) is a(t) = 0.

Proof. Because each f; is linear in o, a(t) = 0 is a solution of equation (2.2) with
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initial conditions «(0) = 0. By theorem (2.1), the solution a(t) = 0 is unique. O

2.3 Properties of Killing tensors and their Generalizations
In this section, we will present important properties of Killing tensors, Killing-Yano
tensors, and conformal Killing vectors.

2.3.1 Properties of Killing tensors

Let K be a symmetric tensor of type (2) K is said to be a rank r Killing tensor of

a connection V if (Stephani et al., 2003)

K(oz1...ozr;ar+1) = 0. (23)

This is known as the Killing equation. A special case of this is when r = 1, giving us

Ka;,@ + K,B;a - O (24)

A rank 1 tensor satisfying equation (2.4) is a Killing tensor of rank 1, and if the index
of K is raised, it is called a Killing vector. In general, if the indices «; are raised
in equation (2.3), K is called a contravariant Killing tensor of rank . One reason
Killing tensors are of interest is due to the fact that they can be associated with first
integrals of the geodesic equation as follows (Stephani et al., 2003). Let 2%(s) be the

coordinates of an affinely parameterized geodesic. Then

D [(dx? d?aP dx® dz”
Ds ( ds ) iz ' {C” ds ds 0 (2:5)

Equation (2.5) is the geodesic equation. We recall that the absolute differential of a

type (g) tensor field K is given as

DK,z = K 5., dz7,
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so that if K is a Killing tensor of rank 2, we get

D dz® dzP B dz® dx® dz B
Ds B ds ds ) TP ds ds ds
dx® da’ : : : : o
Thus, Kaﬁd—d— is a quadratic first integral of the geodesic equation. Similarly,
s ds

Killing tensors of higher rank define cubic and higher first integrals.
Let T" be a covariant tensor of rank p, and let S be a covariant tensor of rank
q. The symmetric tensor product of 7" and S, denoted T ® S, is the completely

symmetric part of the tensor product of T" and S:

ToS = T(al...ap Sﬂlnﬂq)'

Similarly, the symmetric tensor product is defined for two contravariant tensors. Now
suppose that 7" and S are symmetric tensors: it is evident that the symmetric tensor
product of two symmetric tensors is a symmetric tensor. Thus, the set of symmetric
tensors on M, together with the operations of scalar multiplication, addition of ten-
sors, and the symmetric tensor product, forms an infinite dimensional, commutative
algebra (Thompson, 1986).

The notion of the Lie bracket of vector fields generalizes to the Schouten bracket
on the algebra of symmetric (contravariant) tensor fields (Thompson, 1986). Let T" be
a contravariant symmetric tensor of rank p, and let S be a contravariant symmetric

tensor of rank ¢q. The Schouten bracket is defined as

[T’ S]ﬁlmﬁp-&-q—l — pT‘X(/Bl”ﬂp—l Sﬁp“ﬂpﬂz—l),a _ qSO‘(fBl~~~5q—1Tf84~~5p+q—1) (26)

705.

The tensorial nature of equation (2.6) is due to the fact that, on a pseudo-Riemannian

manifold, one can replace the partial derivatives with covariant derivatives with re-
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spect to the Christoffel symbols, since the connection is torsion free. Additionally,
if the tensors T and S are defined on a Riemannian or a pseudo-Riemannian mani-
fold, the Schouten bracket can also be defined for covariant symmetric tensors by the
lowering of indices.

The interaction of the structure of the symmetric tensor product and the structure

of the Schouten bracket is captured in the following formula, for symmetric tensors

T, S, and Y (Thompson, 1986):

ToSY]=[TY]oS+Tol[s,Y] (2.7)

Additional properties of the Schouten bracket include skew-symmetry,

[T, 5] = =[5, 7],

and the Jacobi identity (Woodhouse, 1975)

[T7 [Sv Y“ + [Y7 [T7 SH + [Sv [K TH =0.

Thus, it is clear that the Schouten bracket endows the space of symmetric tensors
with the structure of a real, infinite dimensional Lie algebra (Thompson, 1986).
Killing tensors are symmetric tensors themselves, and so it is natural to consider
the operations of the symmetric tensor product and of the Schouten bracket on the
space of Killing tensors of a particular metric. Let T" and S be Killing tensors of a

metric g, and let W =T © S.

1

W(al-“apﬁlnﬂp?’)’) = m (qTal...ap S(Bln-ﬂqﬁ) + pT(al~-~ap§’Y) Sﬁlnﬂq) - O’

and so the symmetric tensor product of two Killing tensors is a Killing tensor. Thus,
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the symmetric tensor product defined on the space of symmetric tensors restricts to
the space of Killing tensors of a particular metric, making the set of Killing tensors
of a given metric an infinite dimensional, commutative algebra.

A Killing tensor of g may be defined as a tensor which commutes (with respect
to the Schouten bracket) with g (Thompson, 1986; Woodhouse, 1975). Let T" and S
be two Killing tensors of g. The notion that the Schouten bracket endows the space
of symmetric tensors with the structure of a Lie algebra, along with the notion that

Killing tensors of g commute with g, give rise to the following:

[97 [T7 SH = _[87 [gvTH - [T7 [Svg]] = 0.

Thus, the Schouten bracket of two Killing tensors of ¢ is also a Killing tensor of g,
and so the space of Killing tensors of g forms an infinite dimensional Lie subalgebra
of the Lie algebra of symmetric tensors (Woodhouse, 1975).

A Killing tensor is called a reducible Killing tensor if it can be written as a linear
combination of the symmetric tensor products of Killing tensors of lower rank. An
irreducible Killing tensor is a Killing tensor which is not reducible. For the special
case of rank 2 Killing tensors, we say that a Killing tensor is metric reducible if it can
be written as a linear combination of reducible Killing tensors and the metric itself.
We introduce the term metric reducible due to the fact that the metric itself may be
expressible as a linear combination of the reducible Killing tensors: a Killing tensor
is not particularly interesting if it is metric reducible. A Killing tensor which is not
metric reducible will be called metric irreducible.

By definition, the set of irreducible Killing tensors of a particular metric does
not form an algebra with respect to the symmetric tensor product. Additionally, the
Schouten bracket of two irreducible Killing tensors is, in general, not an irreducible
Killing tensor. However, the set of Killing tensors is algebraically generated by the

irreducible Killing tensors, which set is presumably finite.
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2.3.2 Properties of Killing-Yano tensors

Equation (2.3) may be seen as one possible generalization of equation (2.4). There
is another generalization, applicable to skew-symmetric tensors. Let F' be a skew-
symmetric tensor of rank p: F' is said to be a rank p Killing-Yano tensor with respect

to a connection V if (Houri et al., 2018)

Fal...(apgﬁ) = 0. (28)

As with Killing tensors, the collection of Killing-Yano tensors of rank p has the
structure of a real vector space. It is natural to consider what additional algebraic
structure can be put on the set of Killing-Yano tensors, since the Schouten-Nijenhuis
bracket for skew-symmetric tensors is given, for skew-symmetric, contravariant tensors

A and B of ranks p and ¢, respectively, as (Kastor et al., 2007)

[A, B}O&l-..agﬂ—q—l _ pA/B[oc1...ocp_1Bap---ap-«—q—l]ﬁ +q (_1)pq Bﬁ[alu-aq—lAaq---apﬂ—l]

)

However, Killing-Yano tensors do not, in general, form a Lie algebra with respect
to the Schouten-Nijenhuis bracket (Kastor et al., 2007). In any case, Killing-Yano
tensors are of interest (Popa and Ovidiu, 2007) due to the fact that if x%(s) are
coordinates of an affinely parameterized geodesic, the p —1 form field F, , 4 %

is parallel transported along affine geodesics (Stephani et al., 2003):

dx? dx? dx
Vi (Fal...aplﬁ E) =Fo a1y s a5 Y

Killing-Yano tensors have also been used in the separation of the Dirac equation
(Carter and McLenaghan, 1979; Fels and Kamran, 1990). Additionally, when the

connection is defined in terms of Christoffel symbols of a metric, the product of two
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Killing-Yano tensors is of interest in the search for Killing tensors. This is due to
the fact that the following product of Killing-Yano tensors F and F' defines a Killing

tensor of rank 2 which is not necessarily reducible (Popa and Ovidiu, 2007):

Ag=F" p‘l(,y Fgyarap - (2.9)

It can be checked that the symmetric tensor A is a Killing tensor of rank 2:

1
A(vﬁ;u) = 3 (Avﬂ;u + AM;B + Aﬁ#;’Y)

1 [0 .0 [0 .0 [T Op—1
- 6 <F ' 17 Fﬁal...apfl;,u + T 1# F'yal...ap,l;ﬁ + F ﬁFMOél. apfl;v)
1 Q1. Qp— [0 ...Qp— [O0] ...
+6 ( b lﬁ F’Yal...ap—uu + et lvFual...ap—uB + Feetr lu F,Boz1~..ap_1;'y>
1 [ ...0lpy— Q] ...Qlp—1 MO Oy 1
—1—6 ( e Fﬁal...ap_l + F P 15 lemap_l +F » - ;wq...ap_1>
1 Q1 ...0p—1 Q] ...0p 1 [0 ...0—
+6 ( ! B;,U« F"/al...ozp,1 + F ! 'Y;ﬁ Fp,oq...ap,l + F ' r 1.““;’7 Fﬁal ap*l)
(_1)1)—1 [100]...0p [0 ... Ol
- 3 (F e 17 Fal'"o‘pfl(ﬁﬂl) + 1u al---ap—1(7;6)>
(_1)19—1 Q... Qp—1
+TF ’ B FaL--Oép—l(u;v)
+1 F~10¢1---Oép—1 F + Fﬁal...ocpfl F + Fal...apfl F
3 (yip) © Paa..op— (B) = yer-.op—1 (Bi7) ~ pon-op—y )0

=0.

2.3.3 Properties of conformal Killing vectors

There is another generalization of Killing vectors, namely conformal Killing vectors,
for which the defining equation (Ashtekar and Magnon-Ashtekar, 1978) is, for A =
Alz),
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By taking the trace of equation (2.10), it can be shown that A = %X"’W While
conformal Killing vectors are of interest in their own right (U. Semmelmann, 2002), it
has been shown that they can be used to construct Killing tensors of rank 2 (Stephani
et al., 2003; Edgar et al., 2004) as follows. If X is a non-null conformal Killing vector
field (i.e. equation (2.10) is satisfied and g,, X*X” # 0) which is not also a Killing

vector field, and if

X5 X" = (X

« «

(2.11)

for some smooth function ¢ = ((z)-that is, if X is geodesic—then the following defines

a Killing tensor of rank 2 (Edgar et al., 2004):

[0}

To show this, we first note that by contracting equation (2.10) with X*X? and
applying equation (2.11), we get
CX, X* = AX, X,

so that, since X is not null, ( = X\. Next, we note that

Xop = Xjag) T Xap)

so that, using equation (2.10),

B _ B B
XagX _X[a;b’}X t Agap X"

«

Applying equation (2.11), and the fact that ¢ = A\, we get

AX, = X5 X7+ AX,,,

[e%
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which implies that

Thus,

Xop X' = X5, X", (2.13)

«

Now, we apply the Killing equation to (2.12):

1
K(Oéﬁ;u) = 3 (Kaﬁ;u + Kua;ﬂ + Kﬁu;oc)

1

- § (Xa;uX,B + XaXB;u - XV;ungaﬂ - XWXW;ugaﬁ)
1

+§ (Xu;BXa + XuXa;B - XW;ﬁngua B XWXW;Bgua)
1

+§ (XB;aXu + X/J’Xu;a - XW;angBu - XWXv;agﬂu)

(X5 X (ay + Xa X + Xy X(wip))

Wl N

2
3 (XWXV;ugaB + XX, 590 + XWXv;agﬁu) :

Applying equations (2.10), (2.11), and (2.13), we get

A—(
Koy = T3 (X,Bgau + X9 + Xugaﬁ) =0, (2.14)

since A = (. In chapter 5 of this Thesis, we use equation (2.12) in an effort to
construct Killing tensors from conformal Killing vectors.

Conformal Killing vectors also generalize to conformal Killing tensors (Edgar et
al., 2004). A conformal Killing tensor @ of rank r is a symmetric tensor which

satisfies, for some rank r — 1 tensor A,
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Q(al...ar;ﬁ) = A(al...a(rfl) garﬁ) .

Conformal Killing tensors, along with other generalizations of Killing vectors, such as
conformal Killing forms (U. Semmelmann, 2002) and Killing spinors (M. Walker and

R. Penrose, 1970), while of interest in their own right, are not treated in this thesis.

2.4 Literature Review

The purpose of this section is to summarize the list of references used. We will begin
with our general references, the first of which is the Differential Geometry Software
Package (Anderson and Torre, 2016), after which we pattern our own conventions.
We find useful properties of Killing tensors in chapter 35 of the second edition of
Ezact Solutions to Einstein’s Field Equations (Stephani et al., 2003), including the
algorithm for constructing Killing tensors for Petrov type D vacuum solutions, which
formula is proven in (M. Walker and R. Penrose, 1970). The theorem of Frobenius
is found in (Spivak, 1979). We apply the tractor approach to several exact solutions
contained in (Stephani et al., 2003) as well as to some exact solutions contained in
chapter 5 of The Large Scale Structure of Space-Time (Hawkings and Ellis, 1973).
Other references deal with additional useful properties of Killing tensors, including
their algebraic structure and the notion that the Schouten bracket endows the space of
contravariant Killing tensors with the structure of an infinite dimensional Lie algebra
(Thompson, 1986; Woodhouse, 1975). As it is known that one can associate Killing
tensors with first integrals of the geodesic equation (Stephani et al., 2003), another
set of references deals with the use of Killing tensors in the separation of variables for
the Hamilton-Jacobi equations (Kalnins and Miller, 1981; Woodhouse, 1975) as well
as for the Dirac equation (Carignano et al., 2011; Fels and Kamran, 1990).

The next set of references deals with Killing tensors in spaces of constant curva-
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ture. The first of these contains the theorem which specifies the maximum number
of Killing tensors of rank n on a manifold of dimension m (Thompson, 1986), which
maximum is achieved on spaces of constant curvature. In the case of rank 2 Killing
tensors, this has been independently verified by means of directly examining the
structure equations (Hauser and Malhiot, 1975b).

The next set of references deal with what we are referring to as the tractor ap-
proach. For one reference, we find general information about parallel sections on
vector bundles (Atkins, 2011). The equations which define the tractor connection
for Killing vectors, as well as the equations which define the tractor connection for
conformal Killing vectors, are given (Ashtekar and Magnon-Ashtekar, 1978) and are
called the “Killing data:” we pattern our own construction according to these equa-
tions. This reference also gives the maximum number of conformal Killing vectors,
which number coincides with the more general maximum number of conformal Killing
p-forms (U. Semmelmann, 2002). Similar equations are given in the case of Killing
tensors of ranks 1 and 2 (Hauser and Malhiot, 1975a), from which we pattern our
own tractor approach. Another reference (Houri et al., 2018) gives an alternate way
of constructing the tractor connection for Killing tensors using Young decomposi-
tion, though from this reference we use only the equations which define the tractor
connection for Killing-Yano tensors. This reference (Houri et al., 2018) also gives
a procedure for constructing the tractor connection for higher rank Killing tensors,
though the equations are only explicitly given through rank 3. Other attempts have
also been made to construct the tractor connection for Killing tensors of higher rank
(Wolf, 1998).

The interest in Killing tensors of higher rank is evident not just in the attempts
made to construct the tractor connections for them. For one particular metric in
dimension 4, all Killing tensors have been found through rank 6 (Kruglikov and

Matveev, 2012), though no irreducible Killing tensors were identified. In fact, it
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appears that irreducible Killing tensors are generally rare (Kruglikov and Matveev,
2016). Notwithstanding, irreducible Killing tensors have been explicitly identified for
several pp-wave spacetimes (Keane and Tupper, 2010).

Our next set of references deal primarily with Killing-Yano tensors. Killing-Yano
tensors are found to be parallel propagated along affine geodesics (Popa and Ovidiu,
2007). In contrast to Killing tensors, Killing-Yano tensors do not appear to form a
Lie algebra (Kastor et al., 2007), though a particularly interesting reference (Popa
and Ovidiu, 2007) uses Killing-Yano tensors of rank 3 to construct irreducible Killing
tensors of rank 2: in this reference, we also learn that Killing-Yano tensors of any
rank can be used to construct Killing tensors of rank 2.

A few other references give us information about conformal Killing vectors. From
the reference that gives the equations which define the tractor connection for Killing
vectors (Ashtekar and Magnon-Ashtekar, 1978), we also find the maximum number
of conformal Killing vectors which a manifold of dimension n > 2 can admit: this
number coincides with the more general maximum number of conformal Killing p-
forms (U. Semmelmann, 2002). One reference outlines the method by which certain
conformal Killing vectors can be used to construct Killing tensors of rank 2 (Edgar
et al., 2004).

Other references deal primarily with 2 or 3 dimensions. From one reference (Krug-
likov, 2008), we get the statement and proof of the Darboux-Koenig theorem, as well
as criterion for whether a metric is Liouville. We also find that there are many
examples of plane metrics which admit irreducible Killing tensors (Darboux, 1972).
Systems of finite type with regard to Killing tensors have been treated in dimension 2
(G. Thompson, 1999), and elsewhere we find the criterion for the existence of Killing

vectors in dimension 3 (Kruglikov and Tomoda, 2018).
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2.5 The Barbance-Delong-Takeuchi-Thompson Theorem on

the Maximum number of Killing Tensors.

Let g be a metric on a Riemannian or pseudo-Riemannian manifold M of dimension
m. The maximum dimension of the space of Killing tensors of g is known (Thomp-
son, 1986): the purpose of this section is to give the formula and a summary of its
derivation. The following Theorem has been given by Thompson, but has also been

attributed to Barbance, Delong, and Takeuchi (Houri et al., 2018).

Theorem 2.2. The set of Killing tensors of rank n of the metric g is a vector space

with dimension less than or equal to

1/m+4+n\/m+n-1
n\n-+1 n ’
where we have equality in the case of constant curvature.

We have previously explained that the set of Killing tensors of rank n is a vector
space, and so we will give an outline of the proof that the maximum dimension of
this space is given as in Theorem (2.2). Equation (2.3) can be written as

7;1-~~7:n§in+1) i1..0n—1 inin+1)'

Next, we consider the set of equations obtained by differentiating equation (2.15) at

most n times: the result is a homogeneous system of linear equations with unknowns

K

11...0n;71 7

K

il..‘in;jljg ’

. K

113l Jnt1

The number of unknowns is given as

HZH (m +:_ 1) (m +:_ 1), (2.16)

r=0
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while the number of independent linear equations is given as

() 217

r=1

Subtracting equation (2.17) from equation (2.16) gives us

g;l m+r—1 m+n-—1 _nZH m+r—2\/m+n
e T n — r—1 n+1

(m+n—1)!(m+n)!

(m — D)!minl(n+1)I"

from which the conclusion follows. Thus, the dimension of the space of Killing tensors
of rank n is given as in the statement of Theorem (2.2).
In general, compatibility conditions constrain the second and higher order deriva-

tives of the tensor K due to the fact that the second covariant derivative of the

i 0
Killing tensor may be written in terms of the curvature tensor and the Killing ten-
sor itself: thus, in general, the dimension of the space of Killing tensors is less than
the given formula. However, in a space in which the curvature tensor is zero, the
compatibility conditions are satisfied identically, and so the dimension of the space of

Killing tensors is given by the above formula. It is also shown that the compatibility

conditions are satisfied identically in spaces of constant curvature (Thompson, 1986).

Theorem 2.3. Let (M, g) be a Riemannian or pseudo-Riemannian manifold of con-
stant curvature. Any Killing tensor on (M, g) consists of sums of symmetrized prod-

ucts of Killing vectors.

That is to say, there are no irreducible Killing tensors in spaces of constant cur-

vature (Thompson, 1986).
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3 The Tractor Approach

The purpose of this section is to illustrate the method for constructing the tractor
connection from a given Frobenius system of equations and to illustrate the utility of
doing so.

Let M be a manifold, and let X'(M) denote the vector space of smooth vector
fields on M. Let 7 : E — M be a vector bundle: E, = 7~!(z) is the fiber of E at the
point x. A map o : M — F is said to be a section of the vector bundle if 7 o ¢ is the
identity map on M. Let S(FE) denote the vector space of smooth sections of the vector
bundle. A connection on the bundle is a linear mapping V : X (M) x S(E) — S(E)
such that, for any smooth function f on M, any vector field X € X (M), and any

smooth section o € S(E),

Vix(o) = fVx(0), Vx(fo) = X(f)o + [Vx(0). (3.1)

If {E;} is a local basis of sections of E, and if {x*} are local coordinates for M, then
the connection coefficients IV, are defined by

Vo, Bi =17, E;. (3.2)

Let 0 = S'E;. Equation (3.1) implies that

Vx0o = Vxaga (S'E;) = X*0pe (S E; + X*S'TY,  E;. (3.3)

In terms of the components of o, equation (3.3) gives us

o

o = Oz

+1,97. (3.4)

A section ¢ is said to be parallel if, for all X € X(M), Vxo = 0. By equations
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(3.3) and (3.4), the condition of parallelism results in the following condition on the

coefficients of o

08!
ox™

+17,,87 =0. (3.5)

Let L(S) denote the set of linear mappings from S(F) to itself. Given the connec-
tion V, we can introduce the curvature tensor K : X(M) x X (M) — L(S) by virtue

of

K(X,Y)(0) = VxVy(0) = VyVx(c) = Vixy(0), (3.6)

where Y € X(M). We can also write K as a matrix of 2-forms:

f(ij = Kijaﬂdxo‘ Adz? = fijavﬁdxo‘ A dz? — fikaf’kmdwa A dz”. (3.7)

If a section ¢ is parallel, then it is clear from equation (3.6) that

K(X,Y)(o) =0. (3.8)

In coordinates, this condition can be written as

SZK]ZQIB — 0.
Equation (3.8) implies that, for any positive integer r, for 1 < i < r, and for Z; €
X (M),
VoV, ..V, (f((X, Y)(a)) —0. (3.9)

Due to the fact that Vo = 0, equation (3.9) represents additional algebraic constraints

on S°.
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Definition 3.1. A section o is said to be quasi-parallel to order k if, for each integer

0<r<k,

VoV .V, (f((X, Y)<o)) —0.

Definition 3.2. Let 7 : E — M be a vector bundle, let r be a non-negative integer,
and let B! C E, denote the subspace of elements which are quasi-parallel to order r.
We assume that E" has constant dimension, and we call 7 : E* — M the r'" order

reduced vector bundle.
These definitions motivate the following inclusion statement.

Corollary 3.0.1. Let SV(E) C S(E) be the vector space for which a basis is the set
of parallel sections with respect to the connection V. Then for every non-negative

integer r, we have

SY(E)CS(E)CS(E")C---CS(E'")CS(E) CS(E).

The utility of this observation is that it allows one to obtain an increasingly tighter
upper bound on the number of independent parallel sections by computing bases for
sets of quasi-parallel sections of increasingly higher order. The iterative process of

doing so terminates, due to the following (Atkins, 2011):

Lemma 3.1. There is a non-negative integer k such that

SY(E) =S (EY).

The question of what non-negative integer k is required so that the dimension of
S(E*) is that of the dimension of SV (E) is addressed as follows.
Suppose that a matrix A is smoothly parameterized by ¢ € (a, b), and suppose that

A(t) has constant rank r on (a,b). It can be shown that the nullspace of A, denoted
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{N;(t)} for i = 1,... N (where r + N is the number of columns of A), consists of
vectors which depend smoothly on ¢ in the open interval (a,b).
Now suppose that the nullspace of A(t) is contained within the nullspace of A(t)

Then for every N; in the nullspace of A(t),

(AN;) = AN; + AN; = 0,

which implies that ANi = 0, since N; is contained within the nullspace of A: this in

turn implies that AN; = 0. On the other hand, we have

which implies that AN; = 0, since AN; = 0. In the context of our reduced tractor

bundles, we have the following.

Lemma 3.2. Suppose that there is a non-negative integer v such that

S(E) =8 (E™).
Then S (E™2%) = S (E").

Proof. Let 0 € S(E"). By assumption,

Vs ...V (f((X, Y)(a)) —0, (3.10)

and

V2. V2 ...V (fc(x, Y)(a)> —0. (3.11)

Equation (3.11) implies that

Vs (@ZM@ZT Y ( (X, Y)(o)>) —0, (3.12)
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so that

Vi V2 (f{(X, Y)(a)) Vs V2, (k(x Y)) V., (0)=0. (3.13)
On the other hand, equation (3.10) implies that

Vs (@ZT Vg (f((X, Y)@))) —0, (3.14)

so that

V2aVz Vo (ROXCY)0)) + V. Vg (K(X,Y)) V2,0 (0) = 0. (3.15)

Since 0 € S (E") = S (E"!), equation (3.15) gives us

Vs ...V (f((X, Y)) V2., (0) = 0. (3.16)
Equation (3.16) implies that V, ,(c) € S (E"), so that, by assumption, V., (o) €

S (E™1). Coupled with equation (3.13), this implies that

Vs V2, ( ) (3.17)

so that ¢ € S(E™"?). This implies that S(E") C S(E™"?). The conclusion then

follows from corollary (3.0.1). O

Theorem 3.1. If, for some non-negative r, E" = E™, then
SY(E) =S(E").

Proof. Since there is a non-negative integer k such that Sﬁ(E) =S (Ek) by lemma
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(3.1), it follows from lemma (3.2) that if k > r, then SV(E) = S (E¥) =S (E"). It

k < r, the conclusion follows from corollary (3.0.1). O

Thus, when for some non-negative integer r we have E" = E"*! the number of
independent parallel sections of V is the dimension of S(E").

The ultimate purpose of the tractor approach applied to Killing tensors is to
establish a one-to-one correspondence between the solutions of the Killing equations
and the parallel sections of a vector bundle E with respect to a connection V on E.
This is done by creating a vector bundle where the components of the smooth sections
of the vector bundle represent the unspecified functions in the Killing equation.

We will now illustrate the tractor approach to Killing tensors in the simpliest of
cases, which is the case of rank 1 Killing tensors on a pseudo-Riemannian manifold
of dimension 2. Let M be such a manifold with local coordinates (u,v), let g be the
metric on M, let V be the connection defined by the Christoffel symbols, and let R
be the curvature tensor of V. The tensor X is a rank 1 Killing tensor of the metric

g if and only if

X()c;ﬁ + X[)’;oc — O (318)

However, equation (3.18) is not a Frobenius system of equations. This is due to
the fact that there are only three independent equations and yet four first order
derivatives. Thus, we will need to derive a Frobenius system from equation (3.18).

We define the tensor w4 as follows:

Thus,

waﬁw = X[a;m,y. (320)
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We note that, using the commutator of covariant derivatives,

(on;ﬁv N Xocwﬁ) + (Xﬁ;ow - Xﬂwa) + (Xv;ocﬁ - Xv;ﬁa) (3.21)

= (Rya/g,y + R + Ry,yaﬁ) XV.

Bary

If X is a Killing vector, we can apply equation (3.18) for the left hand of equation

(3.21), and, using the Bianchi identity on the right hand side, we get

2X s = 2X05 = 2R 50, X,,. (3.22)

Thus, the Frobenius system for (covariant) Killing vectors is given as

Xop = Wag (3.23a)

Wepny = R 5, X, (3.23b)

This system is a Frobenius system of partial differential equations due to the fact
that the derivatives of X and w are fully specified: compare with equation (2.2).

We note that in two dimensions, w, 4 has only one independent component, namely

Wy, . We also note that the curvature tensor has only one independent component,

which we denote as R'y,, = k. Using equation (3.23a), we find that

X2;1 = X2,1 - {211}X1 - {221}X2 = Wy (3-24)

Similarly, we find that

Xip = X1 — {112}X1 - {122}X2 = Wia- (3.25)

Subtracting equation (3.25) from equation (3.24) gives us
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Wy —wip = Xop — Xio — {X0 — {1 + {0 X + {50 X, (3.26)

which implies, due to the symmetry of the Christoffel symbols and the fact that

Wo1 =

(X5, — X12)- (3.27)

N | —

The tractor bundle is 7 : T — M, where T = T*(M) & A*(M). The Killing
tensor X = p(u, v)du + q(u,v)dv on M is lifted to the local section X = p(u,v)E; +
q(u,v)Ey + a(u,v)E3 on T, where a(u,v) = % (Gu — Do)-

The system of equations (3.23) becomes

(po —{ ' Jp— {2 }a=0 (3.28a)
po—{,p—{%}a+a=0 (3.28b)
a—{ p—{}a—a=0 (3.28¢)
G = {,9}p — {55} =0 (3.284)
a, — {2 fa—{\}a+rqg=0 (3.28¢)
Lo = {,hta—{ L a—mp=0. (3.281)

Matching system (3.28) with equation (3.5), we find that
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_{111} _{121} 0

I, = )
i _{211} _{221} —1

_{112} _{122} 1

F]iQZ _{212} _{222} 0

Using equation (3.2), we find that

@%El = _{111}E1 - {211}E27 @BvEl = _{112}E1 - {212}E2 — by, (3.29)

Vo, B = {4 B = {, } Be + KB, Vo, Ez = {7 B = {, ) e,
@&LE:% = —Fs — ({221} + {111}) s, @3«)E3 =L - ({222} + {112}) B,
thus defining the tractor connection V on T. By construction, X is a rank 1 Killing
tensor of g if and only if X is parallel with respect to V.
Now, suppose that the metric g could be written as

g = Adu® + \dv? (3.30)

for some smooth function A = A(u,v). The non-vanishing Christoffel symbols are
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{111} = {122} = {221} = _{212} = ;\_;L\’ {112} = {211} - _{121} = {222} = ;\—;

In this example, we find that

AU 0 AU 1
20 2 2\ 2\
f]zl - _ﬁ _ﬁ —1 1 fin - ﬁ _ﬁ 0
2\ 2\ 2\ 2\
Au Av
0 oo —K 0 Y

0 0 0
K.=1 0 0 0l dundo, (3.31)
—Xk, —Mk, O

where k = k(u,v) is the sectional curvature of g, which is given, in this case, as

K
k= 1

If k is a constant, we see that the dimension of T°, the 0 order reduced tractor
bundle, is three, since the curvature matrix is identically zero. The derivatives of the
curvature matrix would also be identically zero, making the dimension of T three as
well. Thus, T° = T', which, by Theorem (3.1), implies that the dimension of SV (T)
is three, which in turn implies that the metric g admits precisely 3 Killing tensors of

rank 1.

On the other hand, if k2 4+ k2 # 0, a basis of the local sections of T? is given as
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{kvEl — kuE2> E3} ’

which implies that g admits no more than two rank 1 Killing tensors. Having obtained
an upper bound at curvature order 0, we now endeavor to obtain an upper bound at
curvature order 1. In order to calculate a basis for the local sections of T', we will
need to find all sections X = b(u,v) (kyEy — kyFs) 4 c(u, v) E5 for which the following

conditions hold:

Ki X7 =0, Vo, K4 X7 =0, Vo, K X7 =0. (3.32)

The matrices K7, Vp, K*

', and @avf(ij can also be stacked, so that equation (3.32)

is equivalent to the following:

0 0 0 0
0 0 0 0
— ey —\k, 0 0
0 0 0 keub 0
Ay Ak, 0 | [—ked| =|0]- (3:33)
VL T R Tk L R .
2 2
— ey —\k, 0 0
0 0 0 0
| Mo + w Ak — M M | 0]

Equation (3.33) is equivalent to Ay = 0, where
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Mok, — Mk Ak k
(—Akw n %> K, + (Akw n %)‘vv) kM

3.34)
)\uku )\’Ukv )\ukv - /\ka ’ (
_ ()\kw n +> K, + (Akw T ) K, —\k,

A=

and where y = (b, ¢). Thus, the number of independent rank 1 Killing tensors of ¢ is
no greater than the dimension of the nullspace of A. If the rank of A is 2, then we
must have b = 0 and ¢ = 0, which means that there are no (non-zero) rank 1 Killing
tensors of g. The rank of A cannot be zero, since this would imply that k, = 0
and k, = 0 and, subsequently, that k2 + k? = 0, which we are assuming is not true.
Therefore, the rank of A must be 1 or 2, and g cannot admit more than a single rank
1 Killing tensor.

If the rank of A is 1, det(A) = 0, giving us, along with k2 + k2 # 0, the following

additional condition:

A3, ey A K2 ey Ao k2 A3,
N E2 Ky — # — N Eykykyy — 2 N2k ey Ko T” N2k Ky + ; =0.
(3.35)
Dividing equation (3.35) by A2, since A # 0, our conditions can be written as
1
§WO‘;Q — 7y — Sy =0, (3.36)

where W' = r(u,v) = —k,(k? + k%), W? = s(u,v) = k,(k* + k?), and k2 + k2 # 0.
If these conditions are satisfied, then ¢ admits a single rank 1 Killing tensor. If
k% 4+ k? # 0 but equation (3.36) is not satisfied, g admits no rank 1 Killing tensors.
If k2 + k=0, k, =0 and k, = 0, and so g admits three independent rank 1 Killing
tensors. This result confirms the findings of previous dealings with Killing vectors in

two dimensions (Kruglikov, 2008).
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The utility of the tractor approach extends beyond the study of Killing tensors,
which we illustrate with a simple example. Suppose we had the following system of

equations for the functions f = f(u,v) and h = h(u,v), where F' = F'(u) is given:

(fu—Ff=0 (3.37a)
fo=0 (3.37h)
hy =0 (3.37c)

L hy — f=0. (3.37d)

Formally, the tractor bundle is 7 : T — R?, with coordinates (u,v, Ey, Ey), and where
T =R®R. A pair (f,h) is lifted to the section fFE; + hE5, and, using the methods

described above, we see that

. —F 0 . 0 0
r i1 — ) I 2 = . (338)
0 0 -1 0

Thus, the tractor connection is defined by

Vo,B1 = —FFE,, Vy,F = —E,. (3.39)

At this point, we see that the condition that the section X = fE; +hE, is parallel
with respect to V is equivalent to the original system of equations, since the covariant

derivative of X is given as

(fu—Ff)Ey®@du+ fuFy @ dv+ h,Ey @ du+ (hy — f) By ® dv. (3.40)

We find that the curvautre matrix of 2-forms is given as
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du A dv. (3.41)
—F 0

The nullspace of this matrix is a basis for the set of sections which are quasi-parallel
to order 0. Assuming F' # 0, this basis is generated by a single element, namely FEs.
This in turn implies that there is at most one independent parallel section, which
implies that the space of solutions of (3.37) is at most 1-dimensional.

The tractor approach can also be used to reduce the original system of equations.

We begin by constructing the section Y as follows:

Y = q(u,v)Ey;

that is, in general, a linear combination of the basis elements of S(E°) using unknown
function coefficients as scalars. The condition VY = 0 gives us the following system

of equations:

¢y = 0. (3.42b)

We see that ¢ = ¢; for some constant ¢, so that Y is a parallel section if and only if
Y = ¢ F5. As the parallel sections are in one-to-one correspondence with the solutions

of the original system of equations, we see that the general solution is f =0, h = ¢;.
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4 The Tractor Connection for Killing vectors

4.1 Constructing the Tractor Connection

The tractor equations for Killing vectors are relatively well known, and are given
in existing literature (Ashtekar and Magnon-Ashtekar, 1978; Hauser and Malhiot,
1975a). We derived these formulas in the previous chapter—see equation (3.23)-and

they are, for a Killing vector X, given as

XOé;ﬁ = waﬁ (41&)
waﬁ;,y = RV’YBOLXV7 (41b)
where the tensor w is defined as
Wap = Xja,)-

Let M be a manifold with local coordinates z®. For (covariant) Killing vectors
defined on M, the tractor bundle is 7 : T — M, where T = T*(M) & N\*(M).

Coordinates for T are (2%, a,,b,5), where b5 = —bg,. Thus, it is clear that the fibers

1 Yo Yaf
of T have dimension n + (3) = n(n +1)/2. If X is a Killing vector, then the lift of
X to a section X on T is given by a(z) = X, (z), bos() = wys(x): by construction,
this is a parallel section. Conversely, given a parallel section (a,, b,s), the (covariant)
vector defined by X, (2) = a,(z) is a Killing vector, since a5 = b5 = 0. The

tractor connection and the tractor curvature are defined by equations (3.2), (3.7),

and (3.5).

Lemma 4.1. Let X be a Killing vector, and suppose that X is the lift of X up to the

tractor bundle. X vanishes at a point if and only if X = 0.
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This is due to the fact that equations (4.1a) and (4.1b) define a system of equations
which is Frobenius in the sense of equation (2.2): the lemma follows as a direct result
of Corollary (2.1.1).

Lemma 4.1 gives rise to the following useful application of the tractor approach.

Corollary 4.0.1. The Killing vectors X; ... Xy are linearly independent over R if
and only if their lifts up to the tractor bundle are linearly independent at a single

point.

Proof. Let X, ...X; be Killing vectors, and let X; ... X, be their lifts up to the
tractor bundle at a point. By the previous lemma, a1)~(1 + a2)~(2 +... akf(k = 0 if and
only if a1 X7 + asXs + ... ap X = 0. Thus, the linear independence of one set implies

the linear independence of the other. O

Once Killing vector fields are explicitly identified, the task of determining their
linear independence is, in principle, a rudimentary linear algebra problem when the
coefficient functions are rational functions. If the coefficient functions are, for in-
stance, trigonometric, exponential, or square-root functions, then a direct approach
often fails, even when symbolic software is used. In this case, Corollary (4.0.1) can

be used to complete the task.?

4.2 Killing vectors on spacetimes

In this section, we apply the tractor approach to finding Killing vectors for a few
metrics taken from the literature (Stephani et al., 2003; Hawkings and Ellis, 1973).
Our goal is to determine the number of Killing vectors which are admitted by these
metrics, which goal is obtained as follows. Using the tractor approach, we will obtain
an upper bound on the number of linearly independent Killing vectors which can

exist: when possible, we will use Theorem (3.1) to determine the precise number.

2We will demonstrate this novel application for Killing tensors of rank 2 in Appendix F.
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If we cannot apply Theorem (3.1), we will obtain a lower bound on the number of
Killing vectors which exist by exhibiting solutions to the Killing equation. A summary

is given in Table 1.

Known | dim(T%) | dim(T") | dim(T?) | Direct | Tractor | T'
Isometry pdsolve | pdsolve

5.29 2 4 X X X v 2
35.80(1) 1 5 1 - X V|1
35.80(i) 3 6 1 3 v v |3
35.80(ii1) 3 6 1 3 v v |3
35.80(iv) 1 6 1 1 v VR
35.80(v) 4 6 4 4 v v 4
35.80(vi) 1 6 2 1 x v |1
12.32 4 4 4 - X X 4

Table 1: The tractor approach for Killing vectors for a few metrics.

We indicate the number of Killing vectors known previous to the application
of the tractor approach by means of the “Known Isometry” column. The “Direct
pdsolve” column indicates whether the Killing vectors could be found by solving
the Killing equations directly in Maple using the “pdsolve” command: a checkmark
indicates that the Killing equations were solved directly, and an “x” indicates that
the Maple computation was aborted. Maple computations were aborted either due
to the seemingly abnormal amount of required time or due to memory constraints
imposed by the computer used. The “Tractor pdsolve” column indicates whether
the Killing vectors could be found by means of the reduced Killing equations. A
checkmark in this column indicates that this computation was achieved by means of
the Maple “pdsolve” command, while an “x” indicates that this Maple computation
was aborted. The column 7' indicates the number of independent Killing vectors we

obtain using the tractor approach. Dashes indicate that the associated computation

is not needed.
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The metric in the first entry is the Kerr metric, given explicitly in local coordinates

(t,r,0,¢) as (Hawkings and Ellis, 1973)

A—=2mr , damr sin?(9) A

——dt dtd
A A o+ a? — 2mr +

s dr? + Ado?
;

+sin2(9) (—2a*mr cos*(0) + 2a*mr + A(a® + r?))
A

d¢?,

where a and m are parameters, and where A = r? + a?cos?(f). This metric will
appear again in section 6.2. It can be easily determined that two Killing vectors of
this metric are 9, and 0y, since the components of the metric neither depend on ¢ nor
on ¢. This observation does not answer the question, however, of whether the metric
admits more independent Killing vectors. Our method for determining the precise
number of independent Killing vectors for this metric is as follows.

First, we find a basis for the local sections of TY: that is, a basis for the local
sections of the 0" order reduced tractor bundle. There are four basis elements, which
we denote as Wy, Wy, W3, and Wy. Unfortunately, we were not able to compute a
basis for the local sections of T* for the Kerr metric: notwithstanding, we still attempt
to find the Killing vectors. We construct a linear combination of the basis elements

of the local sections of TY (the coefficients being smooth functions):

S = q1 (ta r, 07 ¢)W1 + qQ(ta r, 07 ¢)W2 + q3(t7 r, 97 ¢)W3 + q4(t7 T, Qa ¢)W4

The section S is a parallel section if and only if its covariant derivative with respect
to the tractor connection V vanishes. The equations generated by V.S = 0 can be
solved explicitly using Maple, and it is determined that the dimension of the space of
solutions is 2. Thus, J; and 0,4 constitute a basis for the space of Killing vectors.
The metric 35.80(i) is simply 35.80 (Stephani et al., 2003), which is given in local

coordinates (z,y,u,v) as
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dz? + dy* — 2H (z, y, u)du® — 2dudv.

It is clear that 0, is a Killing vector of this metric, and our methods demonstrate
that, absent additional conditions on the function H, no additional Killing vectors can
exist. However, conditions on H can be imposed which grant the metric additional
Killing vectors. 35.80(ii) is 35.80 with the condition that H, = 0: in this case, our

methods show that the Killing vectors are

Oy, Oy, u0y + y0,.

Similarly, if H, = 0, which condition is imposed in 35.80(iii), we get the following

Killing vectors:

O, Oy, w0y + 10,.

The metric 35.80(iv) has H, = 0 and H, = 0, giving us the Killing tensor 0, in
addition to those specified for entry 35.80(ii). The metric 35.80(v) has H, = 0 and
H, =0, giving us a Killing vector of 9, in addition to those in entry 35.80(iii).

Our last examined case of 35.80 is 35.80(vi), where we impose the condition H,, +
H,, = 0. We find that, at order 2, the metric admits a maximum of 1 Killing vector,
so that 0, is the single Killing tensor. It should also be pointed out that there are
other conditions which can be imposed which may yield a higher number of Killing
vectors; for example, H, = 0 and H, = 0.

For the metric 12.32 (Stephani et al., 2003), we have s = V2 and a = 1, so that

ﬁ?:_:s,k:?,b:zandF:—L
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5 The Tractor Connection for Conformal Killing

Vectors.

5.1 Constructing the Tractor Connection

Let M be a pseudo-Riemannian manifold of dimension n > 2.3 A conformal Killing

vector is a vector X which satisfies

1
X(asp) = HXﬁ/WgaB' (5.1)

The equations which define the tractor connection for conformal Killing vectors can be
found in the literature (Ashtekar and Magnon-Ashtekar, 1978) and are also presented

in this section. We define the skew-symmetric tensor Y as

e

Yop = Xiass)» (5.2)

and the scalar function F = %X 7., so that for a conformal Killing vector X,

XOé;ﬁ = X[Oc;,B] + X(oa;,B) = YaB + Fgaﬁ' (53)

With our definition of Y, we also have

Y,

By = (Xa;ﬁ'y - Xﬁ;av) )

N | —

which becomes, after using the formula for the commutator of the covariant derivative

for X,

1 ) )
Yocﬁw ~ 9 (Xawﬁ - Xﬁwa + R Oéﬁ’Yst - R ﬁowXé) :

3An account of the n = 2 case will be given in section 5.1.1.
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Using equation (5.1), we interchange the first two indices of the terms involving X to
rewrite this as

1
Yose = 2030t 5 (Xypa = X

af; Y T8

+ R 45,X,) . (5.4)
Lastly, we use the commutator of the covariant derivatives of X to obtain

Y By — 2gv[aF;B] + Ry'yﬁan

«,

so that

Yosy = 20,102 + R50 X0, (55)

o

where we have defined the tensor Z, as

Z,=F,. (5.6)

This definition also implies, using the commutator of covariant derivatives of X, that

nZ,B;a — XIJ/;Mﬁa

(5.7)
- (Xuﬁ,u + RMVB;U«XFY);(J

— Y o i
= X" +R# +R +R Wﬁu;aXﬁy_'_R "/BMX’Y

Bap Bua

We find, using equations (5.3) and (5.2), that

XM

Bap

= (Y +9"%F0),,
= (RVQBMXV + gaMF;,B - gaﬁEégéu + guﬁEa)

e

_ 1
= R X+ R X+ 00" 2 — 9052509+ 95



Applying this to equation (5.7), we get

1) _ pV v
nZﬁ;a - ga“Zﬁ;u + gaﬁZ&ug f - g#BZa;u = R4 XV +R ocB#XV;u

aB ;p

¥ ¥ I I
R X+ R X F R XT R X

Buer VB

The left side of equation (5.8) can be written as

Zs (00304 = 9"05 + 9apg™" — 9"500)
= Zs.,, (n030k — 016% + gp9°" — 6402)
- Z&;,u, ((n - 2)5265 + gaﬁgéu) )

so that

9*°Zs,, ((n —2)8308 + gopg™) = (2n —2)2Z*, .
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On the other hand, the right side of equation (5.8) can be written, using equation

(5.3), as

~Ro5 X" — 2R, 4F — RV,Y.; — R",Y.

a”yB Brya -

Thus,

(2n —2)2", = —R, X" — 2FR,

and so, for n # 2,

(5.9)
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1 , 1 1
n—2 <_X (Raﬁ T - 2Rg“5). - (R‘”B T - 2Rg“ﬁ> +2RV(QYB”> '

Equations (5.3), (5.5), (5.6), and (5.9) define the Frobenius system from which the

tractor connection is constructed. In the present case, and for a manifold M with
coordinates z°, the tractor bundle is 7 : T — M, with T = T*(M) & \*(M) &
R @ T*(M). The coordinates are (2%, a,,b,s,¢,d,), where b5 = —b,5: thus, the
dimension of the fibers is n(n + 3)/2 + 1 for n > 2.

The lift up to the tractor bundle is given by a,(z) = X, (), b,s(x) = Y, 4 (2),
c(x) = F(z), and d,(z) = Z,(z). If X, is a conformal Killing vector, the lift is a
parallel section by construction. Conversely, given the parallel section (a,,b,4,¢,d,,),

the covariant vector defined by X, = a,, is a covariant conformal Killing vector.

As with Killing vectors, we have an important application of the lift.

Lemma 5.1. Let X be a conformal Killing vector, and suppose that X is the lift of

X up to the tractor bundle. X vanishes at a point if and only if X = 0.

As in the case of Killing vectors, the equations which define the tractor connection
for conformal Killing vectors is Frobenius. Thus, lemma (5.1) follows from corollary

(2.1.1).

Corollary 5.0.1. The conformal Killing vectors X, ... Xy are linearly independent
over R if and only if their lifts up to the tractor bundle are linearly independent at a

single point.

Proof. Let X ... Xy be conformal Killing vectors, and let X; ... X, be their lifts up
to the tractor bundle at a point. By the previous lemma, ale + aQX'Q +.. .aka =0
if and only if a1 X7 + a3 X5 + ... ap X, = 0. Thus, the linear independence of one set

implies the linear independence of the other. O

As with Killing vectors, this simplifies the issue of determining linear independence

for conformal Killing vector fields.
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5.1.1 Conformal Killing vectors in dimension 2
Our discussion of the tractor connection for conformal Killing vectors has been limited
to the case where the dimension of the manifold is strictly greater than 2. We now
briefly consider conformal Killing vectors on a manifold of dimension n = 2.

For a metric g in the plane, there exist coordinates (x,y) so that g can be written

in the form

g =X (dz* + dy?) (5.10)

for some smooth function A = A(z,y). A metric go are said to be conformally equiva-
lent to a metric g; if there exists a positive function ¢ such that g; = ¢go (Dairbekov
and Sharafutdinov, 2011). Thus, every metric in the plane is conformally equivalent

to the metric

g= dx? + dy2.

In particular, any metric in the plane will have the same conformal Killing vectors as

g. We define X as

X = pdx + qdy

for p = p(x,y) and ¢ = q(x,y). In light of equation (5.1), X is a conformal Killing

vector of g if and only if the following system of equations is satisfied:

Pr— ¢y =0 (5.11a)
Py + ¢ = 0. (5.11b)

(5.11) is equivalent to the Cauchy-Riemann equations for z(z,y) = p(z,y) + iq(z, y).

Thus, the solution space for (5.11) is infinite dimensional.
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On the other hand, the number of parallel sections for any linear connection on a
finite-dimensional vector bundle is always finite. Therefore, for n = 2, equation (5.1)
cannot give us the interpretation of parallel sections of a finite dimensional vector

bundle.

5.2 Conformal Killing vectors on non-conformally flat solu-

tions

We will now employ the tractor approach to the study of conformal Killing vectors
for exact solutions appearing in section 35.4.4 of Fxact Solutions to Finstein’s Field
FEquations (Stephani et al., 2003). Our goal is to determine the precise number of
conformal Killing vectors which various metrics admit. As with Killing vectors, we
will employ the tractor approach not only to determine an upper bound on the number
of conformal Killing vectors, but also in hopes of applying theorem (3.1) to get the
precise count. If theorem (3.1) cannot be applied, we will obtain a lower bound on the
number of conformal Killing vectors by exhibiting solutions to the Killing equation

for conformal Killing vectors. Our calculations in Maple are summarized in Table 2.

Killing | dim(T°) | dim(T") | dim(T?) | Direct | Tractor | C' | T
vectors pdsolve | pdsolve
35.74 4 6 6 - v v 210
35.75(1) 4 6 6 - v v 2 | r
35.75(ii) 4 6 6 - v v 2 | r
35.76(1) 4 6 5 5 v v 110
35.76(ii) 4 6 5 5 v v 110
35.77 2 4 4 - v v 210
35.78 1 3 3 - v v 210
35.79 0 4 1 0 - - 010
35.80 1 8 X - X X

Table 2: Metrics from section 35.4.4.
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We indicate, for each metric, the number of independent Killing vectors, as well as
the dimensions of T" for n = 0, 1, 2. We indicate whether the conformal Killing vectors
were found by solving the Killing equation directly as well as whether they were
found by solving the tractor-simplified Killing equations with the columns “Direct
pdsolve” and “Tractor pdsolve,” respectively. A checkmark indicates the affirmative
result in the respective column, whereas an “x” indicates that the Maple calculation
was aborted after a reasonable time with no results. Similarly, an “x” in other
columns indicates that the Maple computation was aborted after some time. Column
C' denotes the number, as determined by the tractor approach, of conformal Killing
vectors which are not also Killing vectors. Column 7" indicates the number of Killing
tensors that were generated from the conformal Killing vectors using equation (2.12):
an “r” indicates that only metric reducible Killing tensors were found.

Metric 35.80 appeared in section 4.2, and it was determined that the space of
Killing vectors had dimension 1, at least where there are no additional constraints on
the function H(u,z,y). We find that the metric 35.80 admits at most 8 conformal
Killing vectors, including the Killing vector itself, though we are unable to determine
whether the dimension of the space of conformal Killing vectors is precisely 8.

For metric 35.74, we have chosen n = 2. 35.75(i) is metric 35.75 with k£ = 1, while
35.75(ii) has k = —1. 35.76(i) is metric 35.76 with b = a, ¢ = 4a(1l — a)(1 — 2a);
35.76(ii) has b = (a—1)/(2a — 1) and ¢ = 4a. For 35.76(i) and 35.76(ii), a = 2. 35.77
has a =1 = b, and 35.78 has o = 2.

Metric 35.75(i) is given as

6
Ar? +3

dr® 4 rdz?® 4 r*sin’ (x)dy? — r’dt®.

The covariant conformal Killing vector from which we constructed a Killing tensor is
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and the associated Killing tensor is

r rsin?(z) ri
——da? — ———dy? + —dt’.
6" NG

It can be shown that this Killing tensor is expressible as a linear combination of the
reducible Killing tensors and the metric itself. Metric 35.75(ii) is similar, and is given

explicitly as

6
Ar?2 —3

dr® 4 r2da® 4 r?sinh?(z)dy? — r*dt?.

The covariant conformal Killing vector from which we constructed a Killing tensor is

—
Ar?2 —3
and the associated Killing tensor is
r 4 sinh? () r
——da? — ————"dy? + —dt*.
6" 6 VTG

As in the previous case, it can be shown that this Killing tensor is expressible as a

linear combination of the reducible Killing tensors and the metric itself.
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6 Killing tensors of rank two

6.1 Constructing the Tractor Connection

The equations that define the Tractor connection for Killing tensors of rank two
are already known (Hauser and Malhiot, 1975a). In this section, we rederive these
equations for arbitrary torsion free connections. The tractor connection equations are
then further simplified in the case of metric connections.

Let K be a symmetric tensor of rank 2. By definition, K is a Killing tensor of

rank 2 if

We now define the tensor L as
LCMB’Y = _QYOé ,yl K’)’CM;B’ (62)
18]
and the tensor M as
Maﬂ'y(s == _2YCY'-OY K,ya;ﬁg. (63)
Je)

We note that L[aﬁh =1L and that L[am} = 0. Similarly, we note that the tensor

apy

M has the symmetries of the Riemann curvature tensor:

Magys = Mpagipye) = Mysap- (6.4)

« v

The derivation of the tractor equations has been organized into three parts. In
the first part, we give the covariant derivative of K in terms of L. Next, we give the

covariant derivative of L in terms of K and M, valid for any torsion free connection—
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the equations for the metric connection are then derived. Lastly, we give the covariant

derivative of M in terms of both K and L, first for any torsion free connection and

then in the case of the metric connection.

6.1.1 The First Tractor Equation

We will now assume that K is a Killing tensor, and we will derive the formula for the

covariant derivative of K. From the definition of the tensor L,

Lab’v = Kﬁv;a — Koys-

a’y7

From equation (6.5), we have

Kpya = Lagy T Kayg-

Using the fact that K,; = K, as well as the fact that K, ) =0, we get

Ky = Lapy = Bapry = Kpyia-
By equation (6.5), K 5. = —L,,5 + K 3., so that equation (6.7) becomes
Koya = Lagy T Lays = Kypa = Kpyas

which implies that

2
Kﬁv;a = gLa(ﬁv)‘

(6.5)

(6.6)

(6.9)

Equation (6.9) is the first equation which will define the tractor connection for Killing

tensors of rank 2. We note that this equation is valid when covariant differentiation

is taken with respect to any symmetric connection.
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6.1.2 The Second Tractor Equation

We now turn our attention to the covariant derivative of L. Due to equation (6.9),

and by the definition of the tensor M in (6.3), we have

My, = _2Yoz’]( K. ops = —;Ya,y Lgyayss (6.10)
8lo 510
_ 2y y; (Latars + Lsrars)
3 % % Bya); (ye);B
- 1 (Laﬁ[v;tﬂ - Lw[a;ﬂ]) + ly b (Lwﬂa;é + Laév;ﬁ) :
3 3 [
Using the fact that L[am =0, we get
1
3 % Y (Lvﬂa;é T LaM;b’) (6.11)

1
12 (L%Ba;J o Lvaﬁ;é = Lsgay + Léaﬁw + Laév;b’ - L/J’M;a - Lavé;/ﬁ - Lﬁv&a)

—_

- 6 (Laﬁh;tﬂ + L%[O&;ﬁ]) :

Combining equations (6.10) and (6.11), we can express the tensor M in terms of the

tensor L as follows:

1
Maps = 5 (Lagia) + Losfass)) (6.12)

Next, we note that, using equation (6.5),

1
Laptys) = 92 (KB’WCMS — Koyps + Kpsiay — Ka&ﬁw) ’ (6.13)

and since K(a,ﬁé) =0= _K(Bv;é)’
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1
Lagys) = 9 (Kﬁv;aé — Kayps + Kpsiay = Kasigy + 3K (ayis)s — 3K(5v;5)a) , (6.14)
which, after expanding the terms K(cw;ﬁ)ﬁ) and K(B%é)a), can we written as

Lastie) = Kortas) T Kayiog) T Koaiiys) T Kpsjon) + Kosfag)- (6.15)

The terms on the right are simply commuting covariant derivatives of K4,

1 v v
Kpgyjas) = 5 (R 05 Ky + R 105B,) - (6.16)

Thus, equation (6.15) becomes

1 1
Loaﬁ(’y;é) = 5 (Ryﬁa5KV’y + Ry’yaéKﬁu) + 3 (RyaéﬁKV'y + RV'y(S,BKoaV)

\V)

1
(Rsy5Koa + B anpKs,) + 5 (R gar Kous + R0y K,

N | —

+

+= (R 0p K5 + R0k, -

yapB

N —

Collecting the terms above on K4, and using the symmetries of the Riemann curva-

ture tensor, we find that

Lagtys) = Koy Bsap + Kos 150p + 2R (5500 (6.17)

On the other hand, equation (6.5) gives us

Laﬁ[v;tﬂ B Lvé[a;ﬁl

1
(Korias = Fanigs = Kasiar + Kasioy) = 5 (Koas = Koaws = Ksgoa + Kopsa)

[\'JIH

which can be written as



La/ﬂ’[v;tﬂ B LWJ[a;B} - Kﬁv;[aél B Kav;[ﬁtﬂ + Kaé;[ﬁv} - Kﬂé;[ow]'

o8

Using equation (6.16) and the symmetries of the Riemann curvature tensor, we find

that

1 14 14 124 124
Lagta) = Lnstoss) = 5 (Kow Rsas + Ko R g+ Kigy R g+ Koy B35,

By equation (6.12),

Lagtyal + Laslasp) = 2Mapss-

Adding equations (6.18) and (6.19) gives us

1 14 v 14 14
Lagpis) = Magns + 7 (Ko Rsap + K5y B o + K, B ons + Koy R s5,)

Adding equations (6.20) and (6.17) gives us

Loprs = Koy Bs0p + Kos B 05 + 2R 5y 5K + Mgy

yaB

+ (K'yy RV&aﬂ + Kél/ R” + Kﬂu Rya'yé + Kau Ryﬂéfy) )

YBa

A~ =

which can be rewritten as

5 14 3 14 3 14 1 14
Lopyis = Mapys + 1Koy fWsap + 1 Kis Bsap + 5 R s5Kapy + 5 R 55K

v

(6.18)

(6.19)

(6.20)

(6.21)
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Equation (6.21) is the second equation which will define the tractor connection, and
is valid for any symmetric connection. Before addressing the third and final equation,
we wish to show how equation (6.21) can be rewritten in the presence of a metric

connection. Returning to equation (6.15), we write

1 1
Lapro) = 5 (K" R + K Rygas) + 5 (Ko Rygs + K Ruass) - (6.22)

1
(KMJRWW + Kua RMMB) + 5 (KMBR + KMtS Ruﬁav)

ooy

N | —

+

+ (KﬂvRuMﬂ + Ku&Rwaﬁ) :

1
2

This can be re-written as

1 1
Laﬁ(v;r?) - §KH5 (Rucwﬁ + Ruﬂow + Rwaﬂ) + §K”7 (_Rﬁuaé o Rauéﬁ - Rﬁuaﬁ)

(6.23)
1
+§ (Kuﬁ Ru”/acs + Kua Ru%ﬂ + Kua Rﬂévﬁ + Kuﬁ Ru&w) )
which can be written, using the Bianchi identity, as
Lag(ys) = K" Ryypo + K" Ropa + K7, Ry — Kuﬂ Rosyyus (6.24)
or simply
Laﬁ(v;cs) - QKM(’Y R5)u6a + 2Ku[a RB](WS)W (6.25)

On the other hand, equation (6.5) gives us

Lagpya) = Lrofass (6.26)
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1
(Kias = Kanips = Kpsiar T Kasign) = 5 Ksans = Koass = Kspoa + Kossa)

N | —

which can be written as

Lagra) = Lastass) = Konlas) = Kanios) + Kasisy) ~ Kpsjar) - (6.27)

Applying equation (6.16) and the Bianchi identity to equation (6.27) gives us

afyp + Kuv Rﬂaéu + K#B Rvéua + Kua R5w,8) ) (6'28)

1
Lato) = Lnstass) = 5 (K5 R

which can be written as

Lagiye) = Lastasa) = RWM[CMK,B]” - RaﬁuhK(S]”' (6.29)
By equation (6.12),
Lagiye) T Lrsfasg) = 2Mapys- (6.30)
Adding equations (6.29) and (6.30) implies that
1 L1 )
Laglyis) = §R75u[aK6] N §RaﬁuhK5] + Magys- (6.31)
Adding equations (6.31) and (6.25) gives us
L =2K" R 2K" R 1R K" 1R K "+ M 6.32
afyd (v L6)upo T o Y81 (v o oulatrp] o T tabuly T +Mp,s- (6.32)

We will now rewrite this expression, starting with expanding the right hand side:
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1 1 1
5K, Rﬁ%u + §Kua Rﬂéw - §Kuﬂ Rcwcsu

5 (6.33)

Logys = Mogys + QK“(V R5)uﬂa +

a

1 1 1
——K'u R + R _RWJNBKO‘!L - _R

1
o
9 B radyu vﬁw _4 4 aﬁwKé +1Raﬁu5Kvu

Using the symmetries of the Riemann curvature tensor, we write this as

1 1
5+ 2K Reype — SK'5R “K" R, (6.34)

Laﬁv;é =M abyp 9

afy

(K R + K#ﬁ Réaw + K7, Rﬁéw)

3
é_l afyp
1
4

(K" Ropsy+ K"5 R s, + K" Ry s,) .

yadp

Finally, we write equation (6.34) as

3
K, + 2K* Ry (6.35)

9
Laﬁw;é = Maﬁvé + 3Ra6u(7 "+ 4K Raﬁ]w 4

9)

Equation (6.35) bears a stronger resemblance than equation (6.21) to that which is
found in existing literature (Hauser and Malhiot, 1975a). Nevertheless, our software
program will incorporate equation (6.21), which is valid for any torsion free connec-

tion.

6.1.3 The Third Tractor Equation

Finally, we will derive the formula for the covariant derivative of M. Differentiating

equation (6.17) gives us

Loptyms = Koo B o + Koy B oo + Kops B 0p + K B0 + Koy BY (66
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R (B — K, BY K, s R

y)azd T Yo

so that, using equation (6.9) and simplifying, we get

Lastrms = Lager = B uasgLow + 28 wag s B + B apLsquw) = sasLogu) (6.36)

TR s Lsa) = B Guyslywa) = B uwalsws) T+ B 6uwalyws)
+Kvu (Rywﬁ;é o RV&WW) + Koy (Ry(w)ﬁ;ti - Ry(fSu)ﬁw) — K, (Ry(w)a;5 N Ry(éu)aw) :

Meanwhile, by expanding each term and, subsequently, writing commuting covariant

derivatives in terms of the Riemann curvature tensor, we find that

1 1 1 1
Lagtyws ~ Lagmyy = §La67;u5 + §Laﬁu;75 o §Laﬁ5;w o §La6u;5v (6.37)
1 1
= Locb’u;hé] + §Laﬂv;u6 9 apsiuy
1 1 1 1 1 1
= Laﬁu;[vfﬂ + §Laﬁv;u5 - §La65;w - §Laﬂv;5u + §Laﬂv;5u + §La55;w - §Laﬁ5;w
- Laﬁu;['w?] + Laﬁv;[/ﬁ] + Laﬁé;[w] + Laﬁ[wﬁ]u
1 v 4 v 1% v 4
- § ( VB#R ayd + LavuR B8 + LuﬁvR apsd + LawR Bud + LVﬂéR ayp + Loyst Bw)

+Laﬂ[v;5]# + LaﬁvRyw&

Differentiating equation (6.20) and applying equation (6.9) gives us

1 v 14 v v
Logysin = 4 (R sap L) T Bow B sapy + B ypaliyue) + Ko B Wﬁa;u) (6.38)
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+ (Rycw&L#(l/B) + Kﬁu R + Ryﬁéw[’u(va) + K, RVﬁM;#) + M, afydp -

ayd;u

A~ =

Combining equations (6.36), (6.37), and (6.38), we get

Mg = B paploy, + 217

[0

uasils B T B yap Loy — B sap L u) (6.39)

TR s Lsa) = B Guyslywe) = B ualsws) T B 6uwalyws)

+Kvu (Rywﬁ;é o RV&WW) + Koy (Ry(w)ﬁ;ti - Ry(fSu)ﬁw) — K, (Ry(w)a;5 N Ry(éu)aw) :

v a5 F Loawu B 505 + Ly B s + Lavn B g5 + Lugs R oy + Laws R 51,)

1
-3 (L

1 14 14 174 14
_Z (R SaﬁLu(w) + KWR dafBiu + R Lu(v5) + K5, R vﬁa;u)

YBa

1 1% 12 v 17 1%
_Z (R a75Lu(V5) + KﬂvR + R BMLu(W) + K, R de;u) - LaﬁvR pyo

ayd;u

Equation (6.39) is the third and final equation which defines the tractor connection
for Killing tensors of rank 2, and is valid for any torsion free connection. As with
the second equation, we wish to rewrite this equation under the assumption that the
connection on the base manifold is the metric connection. Differentiating equation

(6.25) gives us

L = (2K Ryype + 2K 10 Ryy,) (6.40)

af(y;u)d vt

1
_Kyﬁ;é (R

5 +R

yuv ocuw)

1 14
- §K ;6 (Rﬁwv + Rﬁwu) -

1 1% 1 1%
+§K a (Rﬁww;ﬁ + Rﬁuw;é) - §K B (Rawwé + Rauw;é)

+KVV;6 RWBoc - KVV RuVﬁa;5 - KVM;(S Rwﬁa - KVM Rwﬁa;5'

This implies, after rearranging terms, that
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Lastms — Las@uwy = Buwsa (Kyv;é - KVJ;V) (6.41)

+KV# (Rwﬁa;é - R5V5a§7) + (KVV Rwﬁa;5 - Kyé Rulfﬂcm)
1 1%
+§K a (RWBWS + RBWWS - Rulfﬂ&w - R/BM5V;7)
1 14
+§K B (me;é + Rauvvsé B Ruméw B Rauévm)

_Raﬁvy pv;d + Raﬁ(SVK vy + Rﬁ(w)qua 4

o
_Ra(w)VKwﬁ - Rﬂ(M)VKm;V + Ra(ué)l’KVﬁﬁ

Using equation (6.5), the fact that the tensor K is symmetric, and symmetries of the

Riemann curvature tensor, we rewrite this as

Lagtys = Lapoiyy = Bapu Losy = Bagysw Ky + 2R 0, Ky (6.42)

TR KB]V - Ky[a Rg)ysi0

pvydsa

m

_Raﬁvy pv;d + RaﬁéyK vy + RB(W)VK
_Ra(w)VKVB;é - Rﬂ(w)uKm;v + Ra(M)VKVBW'

However, using equation (6.9), we see that

Pw v v
§(5§§5,y5 (Rsoxw Lw(w) + 2R<P(#’l/)) Lw(vx)) (6'43)

= —Ra v ;s + RO[B(S K’u + R,B(M’Y)VK

_Ra(w)VKuﬁ;é - Rﬂ(w)VKm;v + Ra(M)VKVB;w

so that equation (6.42) can be written as
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Lastms = Las@y = Basu Lasw = Raprsn K+ 2Ruva5;hK§]V + Ruwﬁ;[aKﬂ}y (6.44)
K", R Lsoxste (R, VL 2R, " L
T 0 gy — 3 aB%y6 ( oxvr Loy T 28 () w(Vx)) :
Meanwhile, by expanding each term, we see that
1 1 1 1
Loy — Lapioy = §Laﬁv;u5 + §Laﬁu;75 o §La55;w o §Laﬂu;5v (6.45)
1 1
- Laﬁu;htﬂ + §La/3%u5 - §Laﬂ5;uv'
However,
1 1
Laﬂu;hd} + §Laﬁv;u5 - ELOZB(S;MW = (6.46)

1 1 1 1 1 1
Lagurs) + §Laﬁ'y;u5 - §La65;w o §Laﬂ7;6u + §Laﬂv;5u + §Laﬁ5;w - §Laﬁé;w

= Laguye) T Lapyiius) + Lagsvul + Lol

1 14 14 14
= Logpya + §Laﬁv (R ps TR 5+ R 5’7#)

(LVBMRVOMS + LOWMRVBMS + LVﬁvRyaué + LawRVﬁM + LVBJRVaw + LOMSRVBw) :

DN | —

_l_

We see that we can rewrite the second term in the final expression on equation (6.46)

as follows:
1 14 14 14 1 14
§Laﬁv (R puys T R yus T R Mu) - §La6 (R/WM + Rwéu + Révw) <6'47)

1 14 14
- §La,3 (RMV5’Y - Ruwé) = _vam Logy-
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Additionally, we see that

1 1
Pw v v
56523(575 (me vaw - §waw vau) (6.48)
1 1% 1% 1% 1%
= 5 (Bua"Lows = Rusa Loy = Bys" Laws + Ruuss” Lawr)
1 v 1% 1% 1%
4 (Rvéa Lﬂvu B Réw Lﬁw B R%B Lavu + Réaﬂ Lavn)
1 4 v v v v v
- 9 (LVﬂuR ays + LavuR Bys T LVﬁ’YR aps + LawR Bus + LVﬁéR ayp T+ LosR ﬂw) :

Applying equations (6.47) and (6.48) to equation (6.46), we are left with

1 1
_ v Pw v v
Lagyims ~ Lapoy = ~Fren Laﬁu+Laﬁ[v;5}u_§5g§575 (Ruww Ly = §wa¢ vau) :
(6.49)
Differentiating equation (6.31) gives us
1 , 1 y 1 , 1 Y
Lol = Mapysyn + ZRvéva;uKﬁ + ZR'WSWK Bim — ZRVM&MK& o ZR’Y(SV/BK oip

(6.50)

1 , 1 5 1 , 1 5

_ZRaﬁw;uK5 B ZRaﬁw s T ZRaﬁvé;qu + ZRaﬁl/SK i

Now, we apply equation (6.9) to write the terms involving the covariant derivative of

K as terms involving the tensor L. The result is

1 Y 1 Y 1 Y 1
Lagyssin = Mopysy — ngéa Lyws) + ngéﬂ Lywa) + gRaﬁv Lyws) = gRaﬁévLu(w)
(6.51)
1 v v v v
4 (R'yéua;uKB ™ RVJBV;uKa T Raﬁw;uKtS - Raﬁw;uKV ) ‘

We now combine equations (6.44), (6.49), and (6.51) to obtain the following:
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M

aByd;p

= —Rop5 K", (6.52)

afyo;v
1 1 1 2
Pw v v v v
+5§§575 (§Rm/)<p vaw B ZRWUSO vau - gR@xw Lw(w) B gR@(/ﬂb) LW(”X))

v 14 1 14 1 14 1 14 1
+R75u Laﬁv+Raﬁu LW5V+_R’Y504 Lu@ﬁ)_gRﬁﬂ Lu(va)__Raﬁv Lu(v5)+6

6 6 R0155VLAL(

vy)

12 1 v

Ky + Ko Rgjnsy + 11 92

+ KV[’Y Rtﬂl/ab’;u) :

wvaBsly (A THIE alvyd;p

While equation (6.52) is valid if covariant differentiation is taken with respect to
the metric connection, and more closely resembles the equations found in existing
literature (Hauser and Malhiot, 1975a), it is equation (6.39) that is implemented in
the software program. This is due to the fact that equation (6.39) is valid not only

for the metric connection, but for any torsion free connection.

6.1.4 Summary

For Killing tensors of rank 2, and for a manifold M with coordinates z“, the tractor
bundle is 7 : T — M, where T = S*(M) @& Y3(M) @ Yi(M), Y3 is the set of type

(0, 3) tensors whose symmetry is that of L and where Y} is the set of type (0,4)

afy
tensors whose symmetry is that of M4 ;. For a general torsion free connection,
the equations which define the tractor connection are (6.9), (6.21), and (6.39). The
coordinates are (xa,aaﬂ, bam,cam&), where a,; = ag,, and the symmetries of b5,

and ¢, 4.5 are that of L5 and M, s, respectively. The dimension of the fibers of T

By
is n(n + 1)*(n + 2)/12, which for n = 2 is 6 and for n = 4 is 50.

The lift onto the tractor bundle is then given by a,45(z) = K, 5(2), b,s,(z) =
Log, (%), and ¢,z 5(v) = M,z 5(x). By construction, this lift is a parallel section
if K5 is a Killing tensor. Conversely, given a parallel section (a,s,b,5,,Capys)s the
tensor K4 defined by K 4(7) = a,4(z) is a Killing tensor of rank 2. This is due to

the fact that, by equation (6.9),
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2
K(ap) = Uaps) = 3R Lasn =0

by the symmetries of b4, .
As with Killing vectors and conformal Killing vectors, we have an important ap-

plication of the lift of Killing tensors (of rank 2):

Lemma 6.1. Let X be a Killing tensor of rank 2, and suppose that X is the lift of

X up to the tractor bundle. X vanishes at a point if and only if X = 0.

As in the case of Killing vectors and conformal Killing vectors, the equations which
define the tractor connection for Killing tensors of rank 2-namely (6.9), (6.21), and
(6.39)—form a Frobenius system of equations in the sense of equation (2.2). Thus,

lemma (6.1) follows from corollary (2.1.1).

Corollary 6.0.1. The rank 2 Killing tensors X; ... Xy are linearly independent over
R if and only if their lifts up to the tractor bundle are linearly independent at a single

point.

Proof. Let X, ... X be rank 2 Killing tensors, and let X ... X, be their lifts up to
the tractor bundle at a point. By the previous lemma, alf(l + ang + .. .akf(k =0
if and only if a1 Xy + as Xo + ... a; X, = 0. Thus, the linear independence of one set

implies the linear independence of the other. O

This result is of particular importance to us: though it closely resembles results
for Killing vectors and conformal Killing vectors, it is of particular importance in the
study of Killing tensors of rank 2. When we apply the tractor approach to Killing
tensors, we will examine metrics for which the Killing vectors are already known.
One can always use the (covariant) Killing vectors to generate a set of Killing tensors;
however, it is not always clear whether the resulting set is linearly independent. As

the tractor approach allows us to obtain upper bounds on the number of independent
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Killing tensors, it is of paramount importance for us to know the dimension of the
space of reducible Killing tensors, as it allows us to identify those metrics for which
irreducible Killing tensors may exist. Though computing a basis for the space of
reducible Killing tensors is often impractical using a direct approach, corollary (6.0.1)
provides a computationally efficient way to find the number of basis elements for the
set of reducible Killing tensors. When this number matches the upper bound obtained

by the tractor approach, no additional Killing tensors can exist.
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6.2 Rank 2 Killing tensors on type D vacuum solutions

Rank 2 Killing tensors are of particular interest in the study of General Relativity,
and not only for the reason of being first integrals of the geodesic equation (Kalnins
and Miller, 1981). We will examine Rank 2 Killing tensors in General Relativity in
this section, the next, and again in section 7.2. In this section, we will calculate
rank 2 Killing tensors for various Petrov type D vacuum solutions of the Einstein
equations. In particular, we will determine whether the Killing tensors generated by
equation (35.51) in the second edition of Ezact Solutions to Finstein’s Field Equa-
tions (Stephani et al., 2003) are metric irreducible, and we will attempt to determine
whether there are Killing tensors beyond those found from this equation.

We begin by recalling the definition of a null tetrad. Let M be a Lorentzian

«

manifold, and let g be the metric on M. Let [*, n% m®

, and m® be null vectors,
where m® is the complex conjugate of m®. The set {I{* k* m®, m*} is called a null

tetrad if it is a basis for the space M and the following relations hold:

gaﬁl“mﬁ = gaﬁlamﬁ = gaﬁkamﬁ = gaﬁkamﬁ = 0;
gaﬂlak_ﬂ - 1, gaﬁmamﬁ - _1

This gives rise to the following derivative operators: D = V;, A =V, § = V,,,

and 6 = V. Let W be the Weyl tensor of g. The Weyl scalars are defined as:

\IIO = _Waﬁ"/(s lamﬁl’ym67 \Ijl = — aBvys lanﬁl’ym(s, \IJQ = _Waﬁ'yé lamﬁmﬂyn(s,
0

Uy =Wl n’mn’, Uy =—-W_,g n*m’n’m’.

A principle null direction is a null vector k& which satisfies the following equation:
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Bry —
ki Wassis ki b7k = 0.

For a metric of Petrov type D, there are two distinct principal null directions, which
are important in the study of Killing tensors due to the following, previously known

(Stephani et al., 2003) method of constructing Killing tensors.

Theorem 6.1. Let g be a Petrov type D vacuum solution which is not the charged
Kerr metric, and let k* and [* be the two distinct principle null directions. The

following defines a Killing tensor of g,

K5 = (A*+ B?) (ks + k,lg) + B?g,s,

W=

with A +iB = const(V)" 3 and DA = AA =B =0.

The proof of this theorem makes use of the two-component spinor formalism (M.
Walker and R. Penrose, 1970). We note that this theorem does not imply that all
Killing tensors of a given type D vacuum solution take this form, nor does it imply
that the Killing tensor so defined is irreducible.

Accordingly, we examine the utility of this result by examining several known
vacuum type D solutions of the Einstein field equations, producing, for each metric,
Killing tensors of rank 2 using theorem (6.1). We have examined metrics from Ezact
Solutions to Einstein’s Field Equations (Stephani et al., 2003) and from The Large
Scale Structure of Space-Time (Hawkings and Ellis, 1973). We will list the examined
metrics by chapter and equation number before explaining the results.

We will begin with metrics from Fzact Solutions to Finstein’s Field Equations.
From chapter 13, equation 49; from chapter 15, equations 19, 22, 23, 24, 26, 27, 29,
and 30; from chapter 28, equations 21, 24, and 25. The metrics from The Large Scale
Structure of Space-Time come from chapter 5, and are equations 21 and 29.

With only one exception, each of the Killing tensors produced using theorem (6.1)
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are metric reducible, the exception being the Kerr metric in equation 29 from chapter
5 of The Large Scale Structure of Space-Time. Explicitly, this metric is given in

coordinates (t, 7,60, ¢) as

A- 2M7“dt2 _ daMr sin?(6)

_ A 2 2
g=——7— 1 dtde + dr® + Adf (6.53)

a? —2Mr + r?

+Sin2(9) (—2a*Mr cos?(0) + 2a>Mr + A(a® + r?))

2
y ¢,

where a and M are parameters, and where A = r? + a? cos*(f). The null tetrad is

given with k£ and [ defined by

b a’ + r? (9+\/cz2—2M7"—|—7'28
V@A —2Mr +12)) 24 "
N a
\/QA(a2 — 2Mr +r?) ¢
. a? + r? a_\/a2—2Mr+r26
V@A —2Mr £ 7)) 2A "
N a
\/2A(a2 —2Mr +1r?) @
and with m defined as
iasin(f) 1 i

m = — 0,

+——0p +
V24 T VRATTT sin(0)vRA

The principle null directions are k and [. Using theorem (6.1), we recover the following

Killing tensor:

204 9 2N (o 2 2 2 2
a* (A 2717;7”005 <9))dt2—2 (asm (0) (—2a m’r’c;)ls 0)+a*A+r A))dtd¢
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— a* cos*(9) A dr? + r2 Adf?
a? —2mr + 12

sin®(6) (2a*mr cos?(0) sin®(0) — a* Asin®(0) — 2a*r? A + a’r? cos*(0) — r°) 05
_ 1 _

Knowing from section 4.2 that the metric given in (6.53) admits precisely two
independent Killing vectors, namely 0, and d,, we can construct the reducible Killing
tensors and find, using Maple, that the Killing tensor defined in equation (6.54) is
indeed metric irreducible (see Appendix E).

Our conclusion for this section is that while theorem (6.1) has been verified to
produce Killing tensors for several known Petrov type D vacuum solutions, it may
not be an efficient tool in the search for metric irreducible Killing tensors as all but

one of the Killing tensors produced were found to be metric reducible.
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6.3 Rank 2 Killing tensors on Homogeneous Exact solutions

In this section, we will present the results of examining many of the homogeneous
spacetimes found in chapter 12 of FEzxact Solutions to Finstein’s Field Equations
(Stephani et al., 2003). For each metric, we have calculated the tractor connec-
tion as well as the dimensions of T" for n = 0, 1, 2, where applicable. We have looked
for additional Killing tensors in cases where dim(T™) is greater than the number of
known, linearly independent, Killing tensors.

We found that, of the 39 metrics examined, 33 of them were found to admit no
metric irreducible Killing tensors. Of the remaining 6, the dimension of the corre-
sponding reduced tractor bundle T? exceeds the number of metric reducible rank 2
Killing tensors, allowing for the possibility of metric irreducible Killing tensors. Of
these 6 metrics, we have been able to establish the existence of metric irreducible
Killing tensors for 3, namely metric 12.12 with ¢ = 0 and v = 0 (known as metric
12.12(ii)), metric 12.13, and metric 12.37 with C'(u)? = u? + 2u+uz. Of these three
metrics, we have explicitly identified the single metric irreducible tensor associated
with metric 12.12(ii). No other metric irreducible Killing tensors have been identified
explicitly.

We organize our calculations based on the dimensions of the isometry group. Table
3 contains the summary of the calculations for metrics with precisely 4 Killing tensors,
Table 4 contains metrics with isometry dimension 5, Table 5 contains metrics with
isometry dimension 6, and Table 6 contains the metrics with isometry dimension 7.
The first column of each table denotes the dimension of the space of metric reducible
Killing tensors of rank 2. The next three columns indicate the dimension of T™ for
n =0,1,2: an entry of “z” indicates that the Maple computation was aborted, either
due to computational memory constraints or due to the computation seeming to take
an abnormal amount of time. A dash in any column indicates that the associated

computation was not attempted.
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A checkmark or an z in the “Direct pdsolve” column indicates that the Killing
equation was solved (resp. unable to be solved) directly in Maple; these symbols are
also used to indicate, in the “Tractor pdsolve” column, whether the reduced Killing
equations were solved. In the final column, denoted T', we indicate the number of
metric irreducible Killing tensors which our methods demonstrate exist.

For a few of the metrics we have examined admitting 6 or 7 Killing vectors, we
have reproduced the known results of (Keane and Tupper, 2010). Therein, rank 2
metric irreducible Killing tensors have been considered and, in many cases, explicitly

calculated, specifically for pp-wave spacetimes of the form

g = —2H(u,y,z)du* — 2dudv + dy* + d=*. (6.55)

The results of (Keane and Tupper, 2010) also show that metric 12.12 with ¢ = 1
and v = 0 (known as 12.12(iii)) admits no metric irreducible Killing tensors, which

result we obtain in Table 5.

6.3.1 Isometry dimension 4

We begin by examining a few metrics from chapter 12 of (Stephani et al., 2003)
admitting precisely four, previously known Killing vectors. From the Killing vectors,
we generate % = 10 Killing tensors, which combine with the metric itself to produce
11 independent Killing tensors: in each case, the metric is irreducible.

A summary of our results is given in Table 3. We note that for metric 12.30, we
have made choices for the constants appearing in the metric, which choices are A = 1,
B =2, and F = 3. For these metrics, we conclude that no Killing tensors of rank 2

beyond that of the reducible Killing tensors and the metric itself can exist.



Reducibles | dim(T?) | dim(T!) | dim(T?) | Direct | Tractor | T'

and metric pdsolve | pdsolve
12.21 11 15 11 - X v 0
12.14 11 16 11 - X v 0
12.30 11 13 11 - X v 0
12.35 11 18 11 - v v 0
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Table 3: Metrics from chapter 12 with isometry dimension 4.

6.3.2 Isometry dimension 5

We now turn our attention to metrics from chapter 12 of (Stephani et al., 2003) which
admit precisely five Killing vectors, which are previously known. These metrics are
12.26, 12.34, 12.36, and 12.38. Four variations of the metric 12.38 are examined. We
denote 12.38 with k£ = 1 as 12.38(ii); 12.38 with e = 1 and k = 2 as 12.38(iii); 12.38
with € = —1 and k = 2 as 12.38(iv); 12.38 with k£ = 3/2 as 12.38(v).

We can build % = 15 Killing tensors from products of rank 1 Killing tensors. For
metric 12.26, the metric is reducible, and in all other cases, the metric is irreducible:
therefore, we can build 15 or 16 independent, metric reducible Killing tensors, respec-
tively.

We find that in each case, the Killing equations can be dealt with directly, without
the need of the tractor construction. For these cases, we verify that the number of
independent Killing tensors is no more than the dimension of metric reducible Killing
tensors, which is also the number of Killing tensors we find by solving the Killing

equations directly. A summary is made in Table 4.

6.3.3 Isometry dimension 6

We now turn our attention to metrics from chapter 12 (Stephani et al., 2003) which
admit precisely 6 Killing vectors. These metrics are 12.6, 12.18, 12.19, 12.8, 12.16,
12.37 (generically), 12.9, 12.12, and 12.13.

12.8(i) has X(x,k) =

We examine eight variations of the metric 12.8. sin(z)
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Reducibles | dim(T%) | dim(T") | dim(T?) | Direct | Tractor | T'

and metric pdsolve | pdsolve
12.26 15 23 15 - v v 0
12.34 16 26 16 - v v 0
12.36 16 33 17 16 v v 0
12.38(ii) 16 31 17 16 v v |0
12.38(iii) 16 26 16 - v v 0
12.38(iv) 16 26 16 - v v 0
12.33(v) 16 26 16 - v v |0

Table 4: Metrics from chapter 12 with isometry dimension 5.

and X(z, k) = sin(z); 12.8(ii) has X(z,k) = sin(z) and 3(z,k) = z; 12.8(iii) has

( 7

k) = sin(z) and 3(z, k) = sinh(z); 12.8(iv) has X(x, k) = x and X(z, k) = sin(z);
12.8(v) has ¥(z,k) = x and X(z,k) = sinh(z); 12.8(vi) has ¥(x, k) = sinh(x) and

k) =

k) =

( 7
Xz,

sin(z); 12.8(vii) has ¥(x,k) = sinh(z) and X(z,k) = z; 12.8(viii) has
= sinh(x) and X(z, k) = sinh(z).

We also examine three variations of the metric 12.9. 12.9(i) has 3(r, k) = sin(r);
12.9(ii) has X(r, k) = r; 12.9(iii) has X(r, k) = sinh(r). For these metrics, we make
no restrictions on the function a(t) at this time, though it should be noted that it is
possible to obtain different results for different choices of a(t). 12.12(iii) is 12.12 with
e=1and v =0.

For metrics with isometry dimension 6, we can generate a maximum of % +1=22
independent Killing tensors. However, it appears that, with the exceptions of 12.6
and 12.12(iii), only 21 of these Killing tensors are independent.

Two of our candidates for admitting metric irreducible Killing tensors have isom-
etry dimension 6, namely the metrics 12.37(i) and 12.13. 12.37(i) is 12.37 where C'(u)
is treated as an arbitrary function: as such, our findings concerning this metric are
rather inconclusive and results may vary greatly depending on the function C/(u)?.

Thus, it is recommended that a particular C(u) be chosen for future study.”

4in fact, the number of Killing vectors themselves appears to depend on the choice of the function
C(u).

®Metric 12.37 is a special case of metric 12.7, though 12.7 is not examined in this thesis.
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Reducibles | dim(T?) | dim(T!) | dim(T?) | Direct | Tractor | T'
and metric pdsolve | pdsolve

12.6 22 26 22 - v v 0
12.18 21 34 22 21 v v 0
12.19 21 34 22 21 v v 0
12.8(i) 21 34 22 21 X - 0
12.8(ii) 21 36 24 21 X - 0
12.8(iii) 21 34 22 21 X - 0
12.8(iv) 21 36 24 21 X - 0
12.8(v 21 36 24 21 X - 0
12.8(vi) 21 34 22 21 X - 0
12.8(vii) 21 36 24 21 X - 0
12.8(viii) 21 34 22 21 X - 0
12.16 21 34 22 21 X - 0

12.37(1) 21 35 28 24 - -
12.9(i) 21 31 21 - X - 0
12.9(ii) 21 31 21 - X - 0
12.9(iii) 21 31 21 - X - 0
12.12(iii) 22 31 22 - X - 0
12.13 21 31 22 22 X X 1

Table 5: Metrics from chapter 12 with isometry dimension 6.

At the time of writing, we are unable to explicitly identify the metric irreducible
Killing tensors for metric 12.13, though our methods demonstrate that precisely one
exists, given that dim(T)! = dim(T)? = 22, whereas the dimension of the space of
metric reducible Killing tensors is 21. We find that the remaining metrics in Table 5

cannot admit metric irreducible Killing tensors.

6.3.4 Isometry dimension 7

Finally, we examine several metrics with isometry dimension 7. Metric 12.9 was
examined previously, but if we now choose a(t) to be a constant, we find that 12.9(i)
and 12.9(iii) admit seven Killing vectors. 12.9(ii) admits 10 Killing vectors if a(t) is
constant, and is thus a space of constant curvature. 12.12(ii) is 12.12 with € = 0 and
v =0, and 12.12(iv) is equation 12.12 with ¢ = 1 and a = 0. We also examine a few
variations of the metric 12.37. 12.37(iii) is 12.37 with C'(u) = sinh(v/—2bu); 12.37(iv)
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has C'(u) = sin(v/2bu): 12.37(v) has C(u)? = u? +2u+u2; 12.37(vii) has C(u) = /u;
12.37(viii) has C(u) = yuln(u); 12.37(ix) has C(u) = /usin(cln(u)).

The metric 12.12(ii) is given as

—2b%¢Cdu® — 2dudv + 2dCdC,

and we have identified the following Killing tensor as being the single metric irre-

ducible Killing tensor of this metric:

— (bQCQTu — v) du* — ududv — (dud( + udCdC.

We find that other metrics of isometry dimension 7 may admit metric irreducible
Killing tensors, though at the time of writing we are unable to identify them explicitly.
These metrics are 12.37(iii) and 12.37(iv). Metric 12.37(v) is shown to admit precisely
6 metric irreducible Killing tensors, since the dimension of T! is that of T2, which is

6 greater than the dimension of the space of metric reducible Killing tensors.

Reducibles | dim(T°) | dim(T") | dim(T?) | Direct | Tractor | T
and metric pdsolve | pdsolve
12.9(i) 27 37 28 27 X - 0
12.9(iii) 27 37 28 27 v v 0
12.12(ii) 27 37 29 28 v v 1
12.12(iv) 28 35 29 28 v v 0
12.37(iii) 27 37 29 28 X X
12.37(iv) 27 37 29 28 X X
12.37(v) 28 35 34 34 X X 6
12.37(vii) 28 35 29 28 X - 0
12.37(viii) 28 35 29 28 v v 0
12.37(ix) 28 35 29 28 X - 0

Table 6: Metrics from chapter 12 with isometry dimension 7.

We now point to results we have recovered from (Keane and Tupper, 2010). First,
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we have recovered the result that metric 12.12(iv) does not (generically) admit metric
irreducible Killing tensors, which result is evident in Table 6. We have also confirmed
the result that metric 12.12(iii) does not admit metric irreducible Killing tensors,
which result is evident in Table 5.

We note that our discovery of the metric irreducible Killing tensor of 12.12(ii)
confirms the result that a metric in the form of equation (6.55) with 2H = ay?* +
byz+cz? admits an irreducible Killing tensor, where a, b, and c are constants: indeed
metric 12.12(ii) takes this form under a convenient coordinate transformation.

Our conclusion for this section is that the tractor approach is useful for deter-
mining an upper bound for the number of independent Killing tensors for at least
certain exact solutions. This upper bound is useful in the search for metrics which
admit metric irreducible Killing tensors, since a lower bound can be obtained from
known Killing vectors. There are even a number of metrics for which the tractor
approach can be used to simplify the Killing equations themselves and allow one to
obtain the Killing tensors explicitly, where solving the Killing equations without such

simplification may be less practical.
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6.4 Killing tensors in dimension 2

Killing tensors of rank 2, though useful in the context of general relativity, have also
been considered exclusively in dimension 2 (G. Thompson, 1999). In fact, there are
many examples of metrics in the plane which are known to admit irreducible Killing
tensors (Darboux, 1972). In this section, we will apply the tractor connection to
metrics in the plane in order to derive differential conditions from which the number
of Killing tensors may be inferred. It is expected that the derivation of such conditions
is more simple in dimension 2 than in dimension 4, since the dimension of the fibers
of the tractor bundle is 6 instead of 50.

In section 3 of this thesis, we reestablished the result that a plane metric admits
either 3, 1, or 0 Killing vectors (Kruglikov, 2008). By theorem (2.2), a plane metric
has 3 Killing vectors when the space is one of constant curvature. Accordingly, we
will examine the cases in which the metric admits either 1 or 0 Killing vectors.

When there is a single Killing vector, the result is given by the Darboux-Koening
theorem (Kruglikov, 2008). In section 6.4.1, we give a partial proof of the Darboux-
Koening theorem using the tractor approach, arriving at differential conditions which
guarantee the existence of precisely 4 Killing tensors of rank 2. In section 6.4.2, we
give a proof of the Darboux-Koening theorem using a more conventional approach—
that is, dealing with the Killing equations directly.

The case of no Killing vectors does not seem to be resolved in existing literature.
In section 6.4.3, we prove that a plane metric with no Killing vectors has a maximum
of 3 Killing tensors of rank 2. Examples of metrics with 3, 2, and 1 Killing tensor(s)

are explicitly given.

6.4.1 One Killing vector: the tractor approach

We begin with a normal form for metrics in the plane with a single Killing vector.
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Lemma 6.2. If g is a metric in the plane which admits a Killing vector X, then

there exist coordinates (u,v) such that X = 0, and

g = Adu? + \dv?
for some nonzero function A = \(u).

Proof (Sketch). Since X is a Killing vector, there exist coordinates (z,y) such that

X =m(x,y)0, + n(x,y)0,.

We now apply a change of coordinates u = A(z,y), v = B(u,v), where mA,+nB, =0

and mB, +nA, = 1. This gives us

X(A)=mA, +nB, =0= X(u), X(B) =mB, +nA,=1=X(v),

and so X = 0, in (u, v) coordinates. This in turn implies that the components of the
metric do not depend on v. Subsequently, it can be shown that the metric can be

written as in the statement of the lemma.
O

Accordingly, we will study metrics in this form. Also of interest is the following

theorem, which is referred to as the Darboux-Koening theorem (Kruglikov, 2008):

Theorem 6.2. Let g be a metric in the plane which admits a single Killing vector.
The metric g admits precisely 4 Killing tensors of rank 2 if and only if it admits a
Killing tensor of rank 2 which is not algebraically generated by the (covariant) Killing

vector and the metric itself.

In this section, we will use the tractor approach to provide a partial proof of this



83

theorem. In the next section, we will provide a proof of this theorem using a more
conventional approach.

For n = 2, we note that with respect to the general equations (6.9), (6.21), and
(6.39), the tensor K has 3 independent components, the tensor L has two independent
components (namely Ly, and L,,), and the tensor M has a single independent
component (namely M, ), having the same symmetries as the Riemann curvature

tensor. Thus, the equations which define the tractor connection are given as

(

K1, =0 (6.56a)
Ky — §L211 =0 (6.56b)
K12;1 + %LQH =0 (6.56¢)
Kiog — %L212 =0 (6.56d)
Ko + ng —0 (6.56¢)
Kyp =0 (6.56f)
< Lyjyq — 3kAK ), =0 (6.56g)
L211;2 + ?(Kn - K22) + My =0 (6'56}1)
Lgig + ?(Kn = Kyy) = Myy5 =0 (6.561)
Lyyoo + 3kAK ), =0 (6.56))
Myy9, + ?(Kll — Kyy) +3kALy;, =0 (6.56k)
\MQHZ;Q + 3K'\K |y — 3kALyy; = 0, (6.561)
NA — (N)?

where k£ = is the sectional curvature of g expressible in terms of the single

2)3
independent component of the curvature tensor. After writing out the covariant
derivatives in terms of the partial derivatives and the Christoffel symbols, we can

construct the matrices which define the tractor connection. The columns of the

matrix are associated with the unknown functions in (6.56) as follows:



Kll KIZ K22 L211 L212 M2112

The matrices which define the tractor connection are given explicitly as

)\/
-2 0 0 0 0 0
)
N 1
o -5 0 3 0 0
N p
0 o - 0 - 0
=i A 3
I, = . ,
3
0 -3k 0 -2 0 0
2\
3k 3k 3N
P
3K\ 3K/ 2N
_ 0 - 0 3k\ -5
N 2
0 -5 0 -5 00
N Y 1
S L L
/
B 0 AX 0 0 0 0
Fl]2_ .
3k 3k A
o 2 BN
5 ! 2 0 2\
A/
0 3k\A O 5 00
0 3\ 0 —=3kx 0 0

We find the curvature matrix to be given as



0
0
0
0
0
0

0
0

3AK" —

3k N

0

0 0
0 0
0 0
0 0
0 0
—5K'A 0

0
0
0
0
0
0
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Consequently, if k is constant, then K ij = 0 and the metric g admits precisely 6

Killing tensors of rank 2. If &’ # 0, the rank of the curvature matrix is 1, which implies

that g admits no more than 5 rank 2 Killing tensors. Having obtained an upper bound

at curvature order 0, we now endeavor to obtain an upper bound at curvature order

1. In order to count the number of basis elements for the local sections of T!, we will

need to find the rank of the stacked matrix

J

Vo K,

Vo K

Removing rows of zeros and duplicate rows, the stacked matrix becomes

0
0

—-P

—5K'\

—6AK —

0

SNE

2

)\k//

3 (5kK'A3 + K'(XN)2 — K"AN)

0 3" —3K'N
A — O P1
P 0
where
P=
and

2\

Py = —9kE'N? + 3NK" — 3NE".

_TNE

S5k'A
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Lemma 6.3. Let ()1 be defined as

9(]{',)2()\/)2 _ 3]6/]%'”)\)\,
2

Q1 = —45k(K')?N* + 15K K'\* + — 18(K")2\%

The rank of A is 3 if and only if Q1 # 0. The rank of A is 2 if and only if Q1 = 0.
Proof. The third row of the matrix A gives us a pivot, since Az4 = 5k’A, which is

nonzero by assumption. The number of pivots we get from the first and second rows

of A is controlled by the number of pivots in the matrix

Ay Ay 3AK" — 3K/ N —5k'A

3Nk

Thus, Rank(A) = 1 4+ Rank(A). The matrix A is not identically zero, since A;, =
—5K'\ # 0: thus, the rank of A is at least 1. The rank of A is 2 if and only if
det(A) # 0. The conclusion follows since det(A) = Q;. O

If the rank of A is 3, the metric admits no more than 3 Killing tensors of rank 2.
If the rank of A is 2, the metric admits no more than 4 Killing tensors of rank 2.
We now wish to consider the following stacked matrix, the nullspace of which is

representative of T?:

i
Vo K
VoK,
B=|9,VsK,
Vo, Vo, K,
Vo, Vo, K

Voo

Removing rows of zeros and duplicate rows, we have the matrix



0 3ME"—3K'N 0 —Bk'\ 0 0
11.1
0 P 0 —6AE" — 3)\2k 0
/kl
P 0 —-P 0 MK — & 5k'\
11K’ N
B 0 b 0 12\k" + 5 0 0
0 P 0 P 0 0
0 B 0 —6NK" — 4K’ N 0 0
k,/ /
B 0 — b 0 P 6AE" + 3 2)\
0 B 0 Py 0 0
where
P 3 (12)\3k’k — ANZE" 4 K" AN + k’()\’)z)
2 — 2)\ )
INEK' N
Py = =30\ kK" — 9N*(K)? — + 3K — 3NE",
B AN Kk — 28 \2k" — 14K" AN — 3k’()\’)2
4 — 4)\ ’
P 3 (6)\3k’k: —INZEM" - KN + k;’(/\’)Q)
5 — 2)\ )
po_ 3 (12)\3kk” + ONEE' N — 2N E" + k”(X)Q)
6 — 4)\ )
P —12X3K' Kk + AN2K" — 16K AN — 3k’(A’)2
7T — 4)\ )
P 38k”A4k + 10A4(k’)2 — 23NNk + 2k”)\()\’)2 — 2k’(X)3
8 — 2)\2 bl
and
P 14003k k — 6E" AN + 11k’()\’)2
9 = .

4N

Lemma 6.4. If the rank of A is 3, then the rank of B is 4.

87
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Proof. The first three rows of B are the three rows of A, and so the first three rows
of B yield three pivots. The only other row of B which can yield a pivot is row 7.
We consider the matrix which consists of the fifth and sixth columns of the third and

seventh rows of B:

TNE

K" — D)

C =
23
Py oM + 2

The determinant of C'is 3Q;. Thus, the seventh row of B yields another pivot if and

only if Q1 # 0, and so the conclusion follows from lemma 6.3. [
This allows us to make the following observation.

Corollary 6.2.1. If Q1 # 0, then the metric g admits precisely 2 Killing tensors
of rank 2, namely the metric itself and the square of the single (covariant) Killing

vector.

Proof. Q1 # 0 implies that Rank(B) = 4 by lemma 6.3 and lemma 6.4, so that the
metric g admits no more than 2 Killing tensors of rank 2. However, g admits at least

two Killing tensors of rank 2, namely A\?dv? and the metric itself. O

Proposition 6.1. Let

Qs = 60kK" XK + 90NN ()% — 100A* (K')? — 6A2N (k)2 = BAN 2K K" + 9(\)3 (k)2

If Q1 =0 and Qy = 0, the rank of B is 2.

Proof. Since ()1 = 0, there is precisely one pivot between the third and seventh rows
of B by the proof of lemma 6.4. Let By, By, Bs, Bg, and Bg denote the 2 x 2 matrices
where the first rows consist of the first two non-zero entries in the first row of B and
where the second rows are constructed from the first two non-zero entries of rows 2,

4,5, 6, and 8 of B, respectively. Explicitly, these matrices are given as
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5 3AE" — 3K/ N —5k'\ i
2= 3NE| T
P, —6AE" — 5
5 3AE" — 3K/ N —5k/\ 5 SAE" — 3K'N —5k'\
4= LINE 5= )
Py 12\K" + Ps Py
3AE" — 3K/ N —5k/\ SAE" — 3k'N —5k/\
BG - ) B8 -
Ps —6AE" — ANE Py Py

It can be shown that if ()1 = 0, the determinants of By, By, Bs, and Bg are identically
zero. It can also be shown that the determinant of By is identically )5. Thus, if
Q; = 0 and Q, = 0, there is precisely one pivot among rows 1, 2, 4, 5, 6, and 8 of B.

Thus, there are two pivots of B, and the rank of B is 2. O

Corollary 6.2.2. If Q1 = 0 and Q3 = 0, then the metric g admits precisely 4 Killing

tensors of rank 2.

Proof. Since the ranks of A and B are both 2 by assumption, dim(T") = dim(T?) = 4,

and so there are precisely 4 Killing tensors of rank 2 by theorem 3.1. O]

Thus, we have established necessary and sufficient conditions for the existence of
precisely 4 Killing tensors. However, the tractor approach has, so far, only led us to
a partial proof of the Darboux-Koening theorem as it is not clear that the conditions
)1 = 0 and ) = 0 are degenerate. The remainder of this section will be devoted to
showing that if Q2 =0, )1 = 0.

Let fi, f2, and h be defined as follows:
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3 (—20)\3k’k + (X)Zk’ +4K"NX) 3
— — h — k:/)\/ )\k//‘
fl 2002k ) f2 10)\]{,7 7 + 8
It can be shown that
(Q2)" = hfaQo — f1Q1 = 0. (6.57)

Lemma 6.5. If k' # 0, The conditions Q1 = 0 and h = 0 are incompatible.

Proof. Assume that &' #£ 0, h = 0 and Q; = 0. The assumption that A = 0 allows us

to write

_TE'X
8\

K = (6.58)

The expression above can be substituted into the equation (; = 0, which expression

can be simplified to the following:

15(k')2 (—192kX® + T1(V)2 — 56"\
64

=0,

which implies, since k' # 0, that

— 192kN* + 7T1(\V)? — 56"\ = 0. (6.59)

First of all, equation (6.59) implies that

TL(N)2 — 56\ A

b= 19223

(6.60)

Secondly, the expression for k in terms of A can be applied to equation (6.59), leaving

us with
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TSN\ 3T5(N)? 0
8 64

which implies that

5(}\/)2
8\

(6.61)

Meanwhile, the assumption that (); = 0 and that h = 0 implies, in light of equation
(6.57), that (Q2)’ = 0. Applying equations (6.60) and (6.61), we find that

297,675 (A’
A 2 62
@ 262, 144 <)\) (6.62)

Thus,

2,679,075 (\)3
262,144 A0

(Q2) =0= () =X"A) . (6.63)

Equation (6.63) is satisfied if and only if (\)? — X" = 0, which occurs if and only if

k = 0: thus, assuming that & # 0, we cannot have both Q; = 0 and h = 0. n
Lemma 6.6. Suppose that k' #0. If Q3 =0, then Q1 = 0.

Proof. Tf Q3 = 0, equation (6.57) becomes

— [1Q1 = 0. (6.64)

Now suppose that Q); # 0. By equation (6.64), we must have f; = 0. Additionally,
by lemma 6.5, h = 0. Thus, equation (6.58) can be applied to the equation f; = 0,

resulting in the following:

3 (8kN% + (X)?)

o ~ 0. (6.65)

This implies that
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()

k=— SR (6.66)
and, after writing k& in terms of A,
5 )\/ 2
N = <4>\) . (6.67)

However, applying equations (6.66) and (6.67) into the equation Q) = 0 results in

the following;:

75(\)?
T a006n0 (6.68)

thus requiring that A’ = 0 and thereby contradicting the assumption that & # 0.
Thus, if ¥ # 0 and Q2 =0, Q1 = 0. O

Corollary 6.2.3. If Q5 = 0, the metric g admits precisely 4 Killing tensors of rank
2.

Proof. The metric g has the property that &’ # 0 since g admits a single Killing
vector. Thus, if Q3 = 0, @1 = 0 by lemma 6.6. The conclusion follows from corollary

6.2.1. O

6.4.2 One Killing vector: a conventional approach

We now wish to compare the results of the tractor approach in the case of a single
Killing vector to that of a more conventional approach. In doing so, we will prove the

Darboux-Koening theorem. Let the symmetric tensor 1" be defined by

T = pdu® + qdudv + rdv?,

where p = p(u,v), ¢ = q(u,v), and r = r(u,v) are smooth functions. Applying

T () =0 results in the following system of equations:
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( )\/
ry + 2—;1 =0 (6.692)
P Ng | qu
R (6.69D)
9y /
QoA + Ty A 3/\2)\ r+ Np _0 (6.69¢)
)\/
Pu— Tp — 0. (6.69d)

Proposition 6.2.

The assumption that q # 0 is equivalent to the assumption that T is a metric

wrreducible, rank 2 Killing tensor.

Proof. Let us assume that ¢ = 0, so that

T = pdu® + rdv?.
Applying the Killing equation to T', we get the following system of equations.

(

/

9
py = 2P =2r) (6.70a)

)
ry =0 (6.70b)
Py =0 (6.70¢)
pu = 2P, (6.70d)

\ X\

This system can be solved directly for p and r, the solution of which is p = ¢,
r = A+ A2 Thus, if ¢ = 0, T is a linear combination of the metric and the
reducible Killing tensor \?dv?. It is evident that if T is such a linear combination,

then ¢ = 0. O

Proposition 6.3.
If T is a metric irreducible Killing tensor, then there is a constant d such that \

satisfies the following equation:
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(6.71)

Proof. Equation (6.69d) can be solved to obtain p = d\, where ¢ is a function of v.

We will now rewrite (6.69) with this substitution.

( _)\/q
TN
I Ng  qu
FREE W T
ONA+ 1 A = 2N + g\ 0
\ 3\ -

(6.72a)
(6.72Db)

(6.72¢)

We can algebraically solve for § in equation (6.72¢), then differentiate with respect

to v. The result, combined with equation (6.72a), is

' —2que N2 + N'g\ — 3(V)%q + N\

g 202\

On the other hand, we know ¢’ directly from equation (6.72b):

3Nq — 2q, A

I
0= 2)\2

Thus, subtracting (6.73) from (6.74) and multiplying by 2)\?, we get

2¢uu A2 — q(N'X — 6(N)?) — 3N g\ = 0.

(6.73)

(6.74)

(6.75)

However, we can also differentiate equation (6.74) with respect to u to obtain, after

multiplying by 23,

— 2Guu)® + (BN X — 6(N)?) + 5N g\ = 0.

(6.76)

Now, we will take the second derivative of (6.75) with respect to u and add this to

the second derivative of (6.76). Then, we will substitute the values of g,, and gy,
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from (6.75) and (6.76). After multiplying the result by A\?, we obtain the following:

_q()\””>\3 — 12N N2\ — 4(/\//)2/\2 + 45>\///\(>\/)2 _ 30()\/)4)

= BABV)® — ANNX + A7) (6.77)
We note that for our metric g, the Ricci Scalar is
)\//)\ _ ()\/)2
K = - (6.78)
With this, (6.77) can be written as
_ q(K"X—=6K'X)
Qu = NI ; (6.79)

which motivates us to define A = 5 AK’, B = K"A—6K'XN, and C' = B/A. With this,

we can rewrite (6.79), (6.75), and (6.76) to obtain the following system of equations:

(
(KN +3CAN 4+ 5(XN)?)
Qoo = 2)\2 (6.80&)
~ q(BEXN 4+ 50AN +3(X)?)
G = e (6.80b)
qu = —qC (6.80c)
(G = —¢,C, (6.80d)

where (6.80d) has been obtained by differentiating (6.80c) with respect to v. Since we
are assuming that 7" is a metric irreducible rank 2 Killing tensor, ¢ # 0 by proposition

6.2, and so we can rewrite (6.80c) as

= _C, (6.81)

or
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a% <%‘) = 0. (6.82)

Solving (6.82) for ¢, we get ¢ = a8, where « is a function of v and § is a function

of v. Now, we will substitute ¢ = o into (6.80a):

L aB(EN 430N +5())?)

"o
af’ = 2 (6.83)
Since we are assuming that ¢ # 0, a« # 0 and S # 0. Thus,
"KM —30AN — 5()\)?
r_ G0 (6.84)

B 2)2
Since the left hand side of equation (6.84) is a function only of v, and since the right

hand side is a function only of u,

g

7= ¢ (6.85)

and

— K3 — 3CAN — 5(\)?
e —d (6.86)

for some constant d. Now if we substitute ¢ = o into (6.80b), we get

o' —3KXN — 50N — 3(X)?

- 2 (6.87)
Now, we will substitute the value of K from (6.86) into (6.87):
" 200N 4 3dA? 4 6(N)?
¢ + 3N+ 6N (6.88)

«Q A2

However, we know that C' = ¢,/q = o//«, and so (6.88) can be written as
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" 3d\2a + 6(N)%a — 2V /A
of _ 3dNa+6(N)a = 2Xa'A (6.89)

«Q a\?

With equation (6.89) in hand, we will now backtrack to obtain a solution for «,
which solution will subsequently be substituted into equation (6.89). Substituting

g = af into system (6.72), we obtain

( Al Sy /

- af’'A (i\)\)\—i-Q)\r (6.90a)
Nap
o = — 6.90b
r 2 (6.90b)
BBNa —2a'\)
I __
\5 = e . (6.90c)
Since we are assuming that § # 0, equation (6.90¢) can be written as

i’_3/\’a—2a’)\ (6.91)

I6; 22
The left hand side of this equation is a function only of v, while the right hand side

is a function only of u. Thus,

=c, (6.92)

| %2

and

3Na —2a'\
2—)\2 =C, (693)

for some constant ¢. We now cross-differentiate equations (6.90a) and (6.90b): that
is, we take the v-derivative of equation (6.90a) and subtract from it the u-derivative

of equation (6.900), giving us

—2a8"22 + BadN’ — 3Ba(N)? + Ba/AN — 20 \2N
2\2 N

0. (6.94)
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However, we know ¢ from equation (6.90c), which we substitute into (6.94) to get

—2a8" N2 4+ B(N'aX + 3N '\ — 6(N)2a)
2)\2

— 0. (6.95)

Since we are assuming that a and [ are nonzero, we can rewrite this as

B (Nad+3Na'A —6(N)%a)

7 ST (6.96)

Using our familiar trick, both sides of this equation are equal to a constant (d, in
fact): the left hand side is only a function of v, while the right hand side is only a
function of u. While the fact that the left hand side is a constant is nothing new for

us, we now know that

NaX + 3N\ — 6(N)%a
2a)?

—d. (6.97)

From this equation, we can obtain the following solution for «, since X' # 0:

2d22 -2 A+6(0)2 du

o = cleIT (698)

for some constant ¢y, which solution we now substitute into equation (6.89). After

we simplify, we are left with

4N2d? — 10AN"d + 15(\)2d — 3NN + 4(\")* = 0, (6.99)
as in the statement of the proposition. O

Proposition 6.4.

(i) If the scalar curvature of g is not a constant, then g admits a metric irreducible,
rank 2 Killing tensor if and only if there is a constant d such that equation (6.99) is
satisfied.

(i) If the scalar curvature of g is not a constant, then there is at most one constant
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d such that equation (6.99) is satisfied.
(#3) If the scalar curvature of g is not a constant, then the space of rank 2 Killing

tensors is at most four.

Proof. (i) Our previous work demonstrates that if 7" is an irreducible Killing tensor
of rank 2, then there is a constant d such that equation (6.99) is satisfied. Now, we
will prove that if there is a constant d such that equation (6.99) is satisfied, there
is a rank two Killing tensor which is not a linear combination of the metric or the
product of Adv with itself. Let S(v) be a non-zero solution of equation (6.85). Now,

recall equations (6.93) and (6.97), which can each be algebraically solved for o':

;o a(2dN? = NMA+6(V)?%) —2eA? + 3N«
— — , 6.100
“ BN ) (6.100)
Solving algebraically for o, we find that
A2\
o= bc (6.101)

4dN2 = 2N\ + 3(N)%

Of course, the reader may well be concerned that the denominator could be zero.
However, it can be shown that if this is the case, the Ricci scalar of the metric is
constant, and so we can assume that the denominator in equation (6.101) is nonzero.
Let a(u) be defined as in equation (6.101), with ¢ = 1, and define ¢ = af. Since
both a and (8 are nonzero by construction, ¢ is nonzero, and so the tensor we are
constructing will not be a linear combination of the metric and A2dv? by proposition
(6.2).

Let p = d\, where ¢ is defined by equation (6.92), with ¢ = 1. Finally, let r be
defined to be

_)\’aé
2N\

r =

With T = pdu® + qdudv + rdv?, our previous work shows that 7" is an irreducible
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Killing tensor. O]

Proof. (ii) Let d; and dy be two constants such that equation (6.99) is satisfied (for

the same metric). This occurs if and only if

AN*d3 — 10AN"dy + 15(N)%dy — 3NN + 4(X\")? (6.102)
= 4X3d5 — 10AN"dy + 15(N)2dy — 3NN + 4(\")%

However, equation (6.102) holds if and only if

(dy — do)(4d1 N + 4dA* — 10NN + 15()\)?) = 0, (6.103)

which is true if and only if either dy = dy or

4di N + 4da A — 10N\ + 15(\)2 = 0. (6.104)

However, it can be shown that if A satisfies (6.104), then the Ricci scalar of the
metric is constant. Therefore, if the metric has nonconstant scalar curvature, then

there is only one constant d such that equation (6.99) is satisfied. ]

Proof. (iii) By (ii), there is one constant d such that equation (6.99) is satisfied. Asin
the proof of (i), we can construct a Killing tensor; however, we can construct precisely
two independent Killing tensors, since there are precisely two independent solutions
for B in equation (6.85), and only one constant d. With the tensor A?dv?, along with

the metric itself, we see that the space of rank two Killing tensors is at most 4. [

Corollary 6.2.4. If g admits three rank 2 Killing tensors, then g admits four rank 2

Killing tensors.

Proof. If g admits three rank 2 Killing tensors, then by our previous work, one of

them is a metric irreducible Killing tensor. By proposition 6.4, there is a constant d
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such that equation (6.99) is satisfied. However, there are two independent solutions
for the equation f” = df, and so two (independent), metric irreducible, rank 2
Killing tensors. Thus, where the known irreducible Killing tensor will incorporate
one solution to 8" = df, we can construct another irreducible Killing tensor from the
other solution, and so if g admits three rank 2 Killing tensors, g admits four rank 2

Killing tensors. O

The proof of the Darboux-Koening theorem is now evident. We have shown that
the metric g admits precisely 4 Killing tensors of rank 2 if and only if there is a
constant d such that equation (6.99) is satisfied, and that g admits precisely 2 Killing
tensors of rank 2 otherwise.

We will now demonstrate the utility of equation (6.99) in two examples taken from

existing literature (Darboux, 1972). First, let

g =u(du®+dv?). (6.105)

It can be shown that udv is the only rank 1 Killing tensor for this metric. It can
also be shown that A\ = w satisfies equation (6.99) for d = 0: Thus, a = —2u?, by
equation (6.101), and we can have either § = v or § = 1. In the case where 5 = v,
§ =v?/2, and so p = “7”2 We can find r from the original system of equations, since
all other functions are known: r = 2u? + “—’2’2 In the case where § =1, § = v, p = uv,
and r = wv. Thus, the dimension of the space of rank 2 Killing tensors of the metric
given in equation (6.105) is 4.

As our second example, consider the metric

~acos(u/2) +b

T (a/2) (du® + dv?), (6.106)

where a and b constants, with a # 0. It can be shown that equation (6.99) is

satisfied for d = ;11. Using the formulation described above, it can be shown that the



102

following symmetric tensors are the metric irreducible, rank 2 Killing tensors, where

the minus signs are taken in the case of the second:

+v/2 +v/2
e*"*(acos(u/2) + b) d2 4 € (acos(u/2) +b)

= 2sin?(u/2) asin®(u/2)

dudv

e*/2(a cos?(u/2) + 2bcos(u/2) + a)(acos(u/2) + b)

dv?.
2asin*(u/2) !

+

We will conclude this section with a short comparison of the tractor approach
with the conventional approach. With the tractor approach, there was no need to ex-
plicitly solve any differential equations, whereas the conventional approach ultimately
resorted to doing so. With the tractor approach, we offer two equations which, com-
bined with the condition that the sectional curvature is not a constant, constitute
necessary and sufficient conditions for the existence of precisely 4 Killing tensors of
rank 2. These conditions are conditions of derivative orders 5 (@) and 4 (Q)y) with
respect to A, since they involve the third and second derivatives of the scalar cur-
vature, respectively. On the other hand, equation (6.99) is a third order condition:
however, equation (6.99) may be more difficult to check due to the requirement of
solving the equation for the constant d. Equation (6.99) offers a distinct advantage,
however, in that if the constant d can be solved for, the irreducible Killing tensors
can be constructed explicitly.

In summary, the tractor approach can be of use when a more direct approach may
avail us nothing; however, there are appear to be certain metrics for which a more

direct approach can be fruitful.

6.4.3 No Killing vectors

We now turn our attention to metrics of the form
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g = Adu? + \dv?

with A = A(u, v). We will also assume that g admits no Killing vectors. By equation
(3.34), the assumption that g admits no Killing vectors is equivalent to the assumption

that the following 2 x 2 matrix has full rank:

(_)\kuv + M k, + ()\kw + M k., Mk,
A= ;
_ ()\kuu+w) k, + ()\kuv+M> k., —M\k,

where k = k(u,v) is the sectional curvature of g. Equivalently,

AK3,
2

A3 Ny A K2
2

v 'U«_)\Qk k k - )\ku)\vk,g
2 vtutvv 2

N E2 Ky — + N2k ko Ky + Nk Ky + # 0.
(6.107)

This condition is, of course, in addition to the condition that k2 + k2 # 0.
We begin, as in the case of a single Killing vector, by computing the tractor
connection for Killing tensors of rank 2 for the metric above. We then find the

curvature matrix to be given as

0 0 0 0 0 0
0 0 0 0 0 0
y 0 0 0 0 0 0
K = , (6.108)
0 0 0 0 0 0
0 0 0 0 0 0
P, P, —P, =5k, —5kA 0

where



104

(kodu + kudo) — 3kuohs P = 3(kodo — kuoh + Kuwh — Kudu).

DN W

P =

We now consider the following stacked matrix:

After removing rows of zeros as well as duplicate rows, we have

P, P, —P, =5k, —5k,A 0
B=|p, P, -P, O Oy —bk\| 5 (6.109)
Ps Ps =P O O, 5k

where

1
Py = o\ (IN*kky — 6N Ky + 6AN Kuu — 3AAKuy + 3A Aok + 3XM ke — 3A k)

1 2
+53 (6(X)%ky — 6 AKy)

Py =~ (=9Nkky + 3Xkuuu — 3N kuws + I kuw + 3A Aok — 3AA Ky + 3A k)

> =

—% (6(X0)?ky + 6A Ay )

3
P = o\ (5N kky — 2N kuwe + Aokuo + Muvks — Aukuy + 2A00 K00 + Auoky)

+ﬁ (_(/\U)zku + ()\u)2ku - 2)\U>\uk:v) 9

1

3 (3)\2kwv — 32 % kypn — 3Nk + 3A ks — MKy + 3A\ Ky, + 15)\3161%)

P

1
+5 (3(Aa)?ky — 3(Ao)ky + 6AAKL)
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Aoky + 3Nk
O1 = —6kyy + koA — ’ +3 ,

2
Aoky — 3\
02:—7)\kuv+7 vk — 3 -,
2
3Apky — TAuky
O3 = =TAkyy — 5 ,

and

3k + TAuky

Oy = Akyy — 6k A 5

Proposition 6.5. The metric g admits no more than three Killing tensors of rank 2.

Proof. The submatrix C' of B given by

B14 B15 B16 —5]{?“)\ —5]€v)\ 0
C = B24 ng, B26 = 01 02 —5]00)\
Bsy Bss Bsg Os Oy Sky A

has full rank, since

det(B) = 175Adet(A).

Therefore, the rank of B is at least 3, and so the metric g admits no more than three

Killing tensors of rank 2. O

It is natural to consider whether a tighter upper bound on the number of Killing
tensors of the metric g exists. We will now provide an example from the literature
(Kruglikov, 2008) of a metric in the plane which, despite admitting no Killing vectors,
admits precisely three Killing tensors of rank 2. We will subsequently provide an
example of a metric with no Killing vectors which admits precisely two Killing tensors,
followed by an example which admits only one Killing tensor. For the first example,
the metric is g with A(u,v) = u? + 4v?. The matrices which define the tractor

connection are given as follows:



Fi, =
2u 8v
- — 0 0 0
A A
4v 2u 4v 1 0
A A A 3
v 2u 2
0 DY DY 0 3
9u? — 3602 3u 4o
0 0 ot e
A2 A A
9u? — 3602 0 9u? — 3602 4y 3u
22 272 A A
18u(u? — 8v?)  288uv(u® —20?)  18u(u® — 8v°) 0  9u® — 3607
S e e 2N
v 2u 2
i _z 0 _z 0
A A 3
U - v u 0 _ 1
A A A 3
2u 8v
0 — — 0 0
A A
9u? — 3602 0 9u? — 3602 120 u
272 22 A A
9u? — 3602 U 12v
0 B 0 Y Y
A2 A A
144v(u? — 20%)  36u(u? — 8v?) 144v(u? — 2v%)  9u® — 3602
B 23 A3 23 22 0

The curvature matrix is given as equation (6.108) with

P

2160u3v — 8640uv?

Bk = =3

60u(u® — 8v?)

~ 540(u! — 28u*v® + 320)

9 =

. Bk =

\
480v(u? — 2v?%)

>\3

I
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With the tractor connection and curvature matrix, we can compute the matrices

@aukij, @aykij, @auﬁauf(ij, ﬁau@avf(ij, 637]@3”}?2, and 6%63”[%2. These ma-
trices can be stacked, and a basis for the nullspace of the resulting stacked matrix—a

basis for the local sections of T?-is given as

{WlaW27W3}a
where
12v 3u 9
Wy=F,+—FE+—F — —F,
1 1+ \ 4+ N s T o b
9u? + 1202 24 36
WQZEQ— Y + Y E4+ UE5+ UEG,
U A U
and
12v 3u 9
Wy=F;— —F,— —F-+ —F.
3 3 N T 5 + o)\ 6

We have already shown that dim(T') < 3, and so, since it is now apparent that
dim(T?) = 3, the metric g with A = u? + 4v? has precisely three Killing tensors of
rank 2. We will now identify them explicitly. This is done by imposing the condition
of parallelism on an arbitrary linear combination of the basis elements of T? and

solving for the coefficient functions. Let

S = q1(u, V)W1 + g2 (u, v)Wa + g3 (u, v) Ws.

The condition V.S = 0 results in a system of first order, linear, partial differential
equations in the functions ¢, g2, and ¢3. The general solution is found, using Maple,

to be

Q= <—4clvu2 — 8cyv® + %21)2 + 63) A, qo = cruN?,
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)\ 2 2
4 =—3 (16c1vu” + cou® — 8cs)

for constants ¢, ¢o, and c3: thus, there are three independent solutions. A basis for
SV (T) is given as {51, S2, S5}, where each S; is generated by setting ¢; = 1 and ¢; = 0

for i # 5:

Sy = —4X (vu? + 20°) By + uN’Ey — 20w’ E3 — 9N Ey + 18 \uw Es + 45 v Eg,

S Ay Nl Ay 5
Sa 5 83+24+85

A2 Au? 3\v 3\u u?  9?
-— + E67
16 4

S = AE] + \Es.
The Killing tensors associated with these parallel sections are, repectively,
(u2 + 41}2) (—41} (u2 + 2@2) du® + 2u (u2 + 41}2) dudv — 2vu2dv2) ,
2 2

(u2 + 41)2) <%du2 — %dzﬁ) ,

(u2 + 4?}2) (du2 + va) )

Our next example is the metric ¢ with A = wv. The matrices which define the

tractor connection are given as follows:



1 1
—— — 0 0 0
U v
1 1 1 1
S — —— — - 0
2v U 2v 3
1 2
0 - - 0 .
= v U
r 1=
0 B 3u? + 302 0 3 1
2u2p? 2u 20
3u? + 302 0 B 3u? + 302 1 3
4u2v? 4u2e? 20 2u
3u? + 92 9u? + 3v?  3u® 4+ N2 3u? + 302
4u3p? 2u2vy3 4u3p? 2u2p?
1 1 2
= - 0 -z 0
v U
1 1 1
- _- _ 0 _
2u ) 2u 3
1 1
0 a —— 0 0
= v
r 2=
3u? 4 302 0 3u? + 302 3 1
4u2e? 4u2y? 20 2u
3u? 2 1
0 _Sut+ 3 0 — _3
2u2v? 2u 20
9u? 4 3v? 3u? + 9? 9u? + 30?2 3u? + 30° 0
4u2y3 2u3v? 4u2y3 2u2v?

The curvature matrix is given in equation (6.108) with

P — _15u2 + 151127
233

5u? 4 1502

Sk A\ = ————,
2023

9 =

45u* — 45p*
2utvt
15u? + 5v?

Sk, =
2u2v3

)
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As in the example before, a basis for the local sections of T? can be computed.
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We find this basis to be given as

{W17W2}7

where

3 3 3
Wi = Ey + Ej, Wy =Ey — —Ey+ —FEs + —E.
u (% uv

With S = ¢ (u, v)W; 4 go(u, v) W3, the condition VS = 0 can be solved for ¢; and ¢s.
The general solution is
wv (1 (u? + v?) — 2¢3) )

2
q1 = — 5 , gos = Cc1v"U”,

for constants ¢; and ¢,. Thus, a basis for the parallel sections of T is given as {57, 2},

where

S — Cw(u? 4 0?) B+ v’ E, — uv(u? + v?)

5 5 Es — 3v*uFE, + 3vu*Es + 3uvEg,
S = uwvEy + uvEs.

The Killing tensors associated with these parallel sections are given, respectively, as

uv(u® + v?)

——— 2 du® + 2u*v?dudv — M
2

dv?,
2

uv(du® + dv?).
For the metric g with A\ = wwv, it should also be noted that under the coordinate

change u = x + y and v = x — y, the metric transforms to become

(2:152 — 2y2) (da:2 + dyz) .
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Thus, the metric g with A(u, v) = uv is a Liouville metric, as any metric which can be
transformed into the following form is considered to be a Liouville metric (Kruglikov,

2008):

(f 4+ h) (da® + dy?)

where f = f(z) and h = h(y). The tractor approach can be applied to metrics in
this form, so that, absent additional conditions on the functions f(z) and g(y)®, the
dimension of TY is 5, the dimension of T! is 3, and the dimension of T? is 2. A local

basis of T? is given by

{W17W2}7
where

3h/ Sf/ 3f// — 3p"
wWy=H+—"-F+——FE+———F
1 1+2(f—|—h) 4+2(f+h) 5+ W +h) 65

3h/ 3f/ 3f// _ 3h//
Wo=F3———-F ———F — ———F.
LU 20f+ ) A(f+h) "

From the local basis of T?, we find that the metric as well as the following symmetric

tensor are Killing tensors of rank 2 for any Liouville metric:

(f + h) (hdz® + fdy?).

Our final example is the metric g with A = (uv) 5. The matrices which define

the tractor connection are given as follows:

SNote that the metric g with A = u? + 402 is also Liouville.



2
— S— 0 0
3 3v
1 2 1 1
3v 3u 3v 3
2 2
0 — — 0
3v 3u
2 2
1
w2v U
u? + v? 0 w0 1
2u2vp? 2u2v? 3v
—u? 4+ 202 Au® — 207 u? — 202 0
Susv? 3u2v3 3usv?
2 2 0 2
3v 3u
1 2 1
R — — 0
3u 3v 3u
0 2 2 0
3u 3v
u? + v? 0 u? + v? 1
2u2v? 2u2v? v
0 u? +v? 0 1
uZy? 3u
—2u? + 0% 22U+ 40 2uP — 0 WP+ 0P
3u2v3 3udv? 3u2v3 u2p?
P 10u? + 101127 P, — _20u4 — 2004
Qy3v3 Quivt
10u? — 2002 20u? — 1002
Sky\ = —————, Sk = ——-—
923 923

The curvature matrix is given with

and the metric itself is the only independent Killing tensor for g with A = (uwv)
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As in the previous examples, we will now compute a basis for the local sections of

T2. We find this basis to be given as {W;}, where Wi = E) + F5. Thus, dim(T?) = 1,

2
3.
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However, and rather interestingly, this metric admits the following Killing tensor

of rank 3:

1 3 1 3

We now summarize the topic of Killing tensors of rank 2 for metrics in the plane

by means of the following proposition.

Proposition 6.6. Let g be a metric in the plane. If g admits one Killing vector, g
admits either two or four Killing tensors of rank 2. If g admits no Killing vectors, g

admits either one, two, or three Killing tensors of rank 2.
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7 Killing-Yano tensors

7.1 Constructing the Rank 2 Tractor Connection

For Killing-Yano tensors of any rank, the equations that define the tractor connection
are known (Houri et al., 2018). In this section, we will derive the equations which
define the connection for Killing-Yano tensors of rank 2, though we note that our
software program for constructing the tractor connection is operative for Killing-Yano
tensors of any rank.

Let V be a connection on a manifold M. A Killing-Yano tensor of rank 2-hereafter
denoted simply as a Killing-Yano tensor-is a skew symmetric tensor F,,; such that

Fotgryy =05

where differentiation is taken with respect to the connection V: we say that F, 5 is a
Killing-Yano tensor of V. If the connection is a metric connection, we say that F,g
is a Killing-Yano tensor of the associated metric. In this section, we will assume that

V is a torsion free connection. In general,

Fogy = F(Oéﬁw) + F[Oéﬁw}

1
+ (Faﬁ;’y +Fﬂa;v _Fva;ﬁ _F'yﬁ;a> +§(Faﬁ;7 +F75;a _Fﬁaw _Fﬁw;a)’

W =

but with F, 5 =0 and F,; = —Fg,, we find that

Fapy = Flapn) - (7.1)

«

We define the skew symmetric tensor F, 5 as
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Fapy = Flaga)

giving us, by equation (7.1).

Faﬂv;é = Faﬂ;vé .

We note that by equation (2.1),

1
Y Fapne = 4 (Faﬁ;'yﬁ + Fyaipy + Fisap + Fﬂv;&v)
]
9]
1
= 7 Faros + Fasiar + Foyias + Figa)
1
1 (Prass = Frass + Figoa = Fogar )
so that
1
Y Fapiys = 4 (Fuﬁ R o+ Fyy B+ B s + B, Ruvéﬁ) ’ (7.2)
]
6]

where the symmetrization operators Y are defined in the Conventions section of this

thesis. We also note that

1
Yigtal Fasne = §Y (Fagirs + Fpacs) = 0, (7.3)

B
]
0] 9]

since F 5 = —F},. Additionally,

1
Yo Fogno = §Y (Fags + Fans) =0, (74)

8
ol
0] 5]

since F, 5. = —F, 5. We also find that
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1
Y15 Fapins = §Y (Faﬁ;'yé - Fa&vﬁ) (7.5)
] B
1 1 1 1
- éFaﬁ;% + 12 (Fa&”vﬁ o Fa&ﬂv) + 12 (FB&M o Fﬁ&'ya) + 12 (F'M;ﬂa - Fvé;aﬂ)

1
kK Rﬂavﬁ + Fau RMMB + FM Ruﬁav + Fﬁu Ruécw + FM Ruwﬂa + Fw Ruéﬁa)

:E( 7
1
+§Faﬁ;75
= 1F 1 F_R" F, R! F,_R"
) aﬁ;%_l_ﬁ( ap 576"{_ B 6aw+ Y E,Ba)'

Since

Fogns = Vg Faps
o
]

we find, using equations (7.3) and (7.4), that

B]~] +Y5 5] Faﬁw5

[+[2
Rle

Using equations (7.2) and (7.5), we get

1

Fapro = 7Y
o

(Fuﬁ R#Ma + Féu Rﬂﬁw + Fw Ruaéb’ + Fa# R“'wSB)

1 1

5 e T 15 (Fop B'50 + Fap RV5o + F RV 55,

_ 1 14 1 1Y 1 1 1Y

: : :
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which implies that, using the Bianchi identity,

‘] ‘]

=Yg (—FsR' 5 — FisR'os) + Y5 YE Fy B oss
m o

- 2Y Y@ F R s
G

Therefore, the equations which define the tractor connection are the following:

Fagy = Fapys (7.6)
‘i

For Killing-Yano tensors of higher rank, it has been shown that similar formulas
hold (Houri et al., 2018).

For Killing-Yano tensors of rank 2 on an n-dimensional manifold M with coordi-
nates = and n > 2, the tractor bundle is 7 : T — M, where T = \*(M) & A\*(M).

The coordinates are (2% a,g5,b,4,), Where a,3 = a5 and byg, = b4, The lift is

given as a,5(z) = F,5(z) and b4 (z) = F,

wpy (2), and we see that the dimension of

the fibers of T is given as (}) + () = %n (n* —1). If F,4 is a Killing-Yano tensor
of rank 2, then (a,g, baﬁ,y) is a parallel section by construction. Conversely, given a
parallel section (a,gs,0,4,), the tensor F, 5 = a4 is a Killing tensor of rank 2, since
Fa

Br) = Ca(sm) = Da(sy) = 0

Lemma 7.1. Let X be a Killing-Yano tensor of rank 2, and suppose that X is the

lift of X up to the tractor bundle. X vanishes at a point if and only if X = 0.

As in the case of Killing vectors, conformal Killing vectors, and Killing tensors of

rank 2, the equations which define the tractor connection for Killing-Yano tensors of
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rank 2 is Frobenius in the sense of equation (2.2). Thus, lemma (7.1) follows from

corollary (2.1.1).

Corollary 7.0.1. The rank 2 Killing- Yano tensors X ... Xy are linearly independent
over R if and only if their lifts up to the tractor bundle are linearly independent at a

single point.

Proof. Let X; ... X}, be rank 2 Killing-Yano tensors, and let X; ... X} be their lifts up
to the tractor bundle at a point. By the previous lemma, alX'l + CLQXQ + .. .aka =0
if and only if a1 X7 + a9 X5 + ... ap X, = 0. Thus, the linear independence of one set

implies the linear independence of the other. O

Thus, as with Killing vectors, Killing tensors, and conformal Killing vectors, the

tractor approach is fruitful for the purpose of determining linear independence.
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7.2 Rank 2 Killing-Yano tensors in General Relativity

Our primary interest in Killing-Yano tensors is in the construction of Killing tensors
of rank 2. While Killing-Yano tensors are of interest in the study of General Relativity
for this reason, it should be noted that Killing-Yano tensors have also been used in the
separation of the Dirac Equation (Carter and McLenaghan, 1979; Fels and Kamran,
1990), and so the utility of Killing-Yano tensors extends beyond that of constructing
Killing tensors.

We have examined many metrics from chapter 14 of Exact Solutions to Einstein’s
Field Equations (Stephani et al., 2003) using the tractor approach for Killing-Yano
tensors of rank 2. Using our methods, we have found two metrics admitting precisely
one Killing-Yano tensor each: these Killing-Yano tensors have been identified explic-
itly, where solving the Killing equation directly using Maple appears to have failed in
that the Maple computation was not able to be performed in a seemingly reasonable
time frame. The metrics are 14.22 and 14.24. Another metric, 14.10, has been found
to admit no Killing-Yano tensors, where arriving at this conclusion by attempting
to solve the Killing equation using Maple appears to have failed. Tables 7, 8, and 9
summarize our calculations for metrics admitting 3, 4, and 6 Killing vectors (none of
the metrics examined had precisely 5 Killing vectors).

For each table, the column “Known Killing-Yano tensors” denotes the number of
Killing-Yano tensors obtained from solving the Killing equations directly: an entry
of 0 indicates that either no attempt was made or that no solutions were found. The
next two columns indicate the dimensions of T" for n = 0, 1, where applicable: a dash
indicates that this computation was not attempted. The “Direct pdsolve” column
indicates whether the Killing equations were solved directly. A checkmark indicates
that, using Maple, the Killing equations were solved directly, and an “x” indicates that
the Maple computation was aborted either due to memory constraints or due to the

computation appearing to take an unusually long amount of time. A dash indicates
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that no attempt was made. These same indicators—the checkmark, the “x”, and the
dash—are used in the “Tractor pdsolve” column, which column indicates whether the
reduced system of equations was solved. Column Y indicates the number of rank
2 Killing-Yano tensors which our methods demonstrate exist. Column 7' indicates
whether the Killing tensors generated from the Killing-Yano tensors, according to
equation (2.9), are metric reducible: an entry of “r” indicates that all Killing tensors
are metric reducible, while a numeric entry indicates the number of Killing tensors

which are metric irreducible.

7.2.1 Isometry dimension 3

Beginning with metrics in chapter 14 (Stephani et al., 2003) which admit precisely 3
Killing vectors, we apply the tractor connection. We examine metrics 14.26, 14.27,
14.29, 14.30, 14.31, 14.32, 14.33, 14.34, 14.35, 14.41, 14.42, 14.44, 14.45, and 14.46.

Table 7 summarizes our results.

!
~

Known Killing- | dim(T") | dim(T") | Direct | Tractor
Yano tensors pdsolve | pdsolve
14.26 0
14.27
14.29
14.30
14.31
14.32
14.33
14.34
14.35
14.41
14.42
14.44
14.45
14.46

(o=} Ren) Heu) Hen) Hev) Neo] Hev) Hev) oo Nev] Jev] Nan]

(e} Hen) Hew) Hen]l Hev] Nen) Neo) ool Revl Hen) Nev) Nanl

(Gl Hen] Nenl Her] Hen) Neo] Ren) Henl Hev] Hen) Nevll Ran] Nean)
1
1
1

=}

0 - - 01 -

Table 7: Metrics from chapter 14 with isometry dimension 3.
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All but one of the examined metrics admitting precisely three Killing vectors have
been found to admit no Killing-Yano tensors. In most cases, this can be verified at
curvature order 0. At the time of writing, we were not able to apply the tractor
approach for metric 14.45 due to the inability to compute the tractor connection in

a timely fashion.

7.2.2 Isometry dimension 4

We now present the summary of our calculations for metrics from chapter 14 (Stephani
et al., 2003) which admit precisely 4 Killing vectors. We examine 14.14, 14.15, 14.16,
14.17, 14.18, 14.19, 14.20, 14.21, 14.22, 14.23, 14.24, and 14.25.

14.14(i) is metric 14.14, and 14.14(ii) interchanges sinh(u) and cosh(u). 14.16(i)
has k = —1, while 14.16(ii) has k = 1. 14.21(i), 14.21(ii), and 14.21(iii) have k = 1,0,
and —1, respectively.

All of the examined metrics with precisely four Killing vectors admit either 1 or
0 Killing-Yano tensors. In all but two metrics admitting a Killing-Yano tensor, the
Killing-Yano tensor has been found by solving the Killing equation directly. The
two exceptional metrics are found to be 14.22 and 14.24. Table 8 summarizes our
calculations.

The metric 14.22 is

a* (g — bg)* da® + g*e > dy* + g*e*dz* — di?,

where g = g(bx + t). The Killing-Yano tensor is given as

g*e ¥ dy N dz,

from which the following Killing tensor of rank 2 is generated:



122

Known Killing- | dim(T?) | dim(T") | Direct | Tractor | Y | T
Yano tensors pdsolve | pdsolve

14.14(1) 0 0 - - - 0] -
14.14(ii) 0 0 - - - 0] -
14.15(a) 1 1 1 v v 1|r
14.15(b) 1 1 1 v v 1|r
14.16(i) 1 1 1 v v 1|r
14.16(ii) 1 1 1 v v 1|r
14.17 1 1 1 v v 1|r
14.18(a) 0 0 - - - 0] -
14.18(b) 0 0 - - - 0] -
14.19 1 1 1 v v 1|r
14.20 0 0 - - - 0| -
14.21(i) 0 0 - - - 0| -
14.21(ii) 0 0 - - - 0] -
14.21(iii) 0 0 - - - 0] -
14.22 0 1 1 X v 1|r
14.23 0 0 - - - 0] -
14.24 0 1 1 X v 1|r
14.25 0 0 - - - 0| -

Table 8: Metrics from chapter 14 with isometry dimension 4.

—e oyt (dy2 + sz) :

However, this Killing tensor is reducible, since it is generated by the rank 1 Killing
tensors e~2*g2dy and e **g?dz.

The metric 14.24 is

2 2
dy2+ ¢

¢’ (U/>2 2 ¢ 2
a2U2 dt +ﬁd$ + 202 thde,

where U = U(t + ). The Killing-Yano tensor is given as

1
egm—mdy N dZ,

from which the following rank 2 Killing tensor is generated:
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(dy? + dz=?) .

C 2etalA
However, this Killing tensor is reducible, since it can be generated by the following

rank 1 Killing tensors:

1 1
BZJ:UQ dy’ eQzU? dz.

7.2.3 Isometry dimension 6

We now examine metrics from chapter 14 (Stephani et al., 2003) which admit precisely

6 Killing vectors. We examine metrics 14.7, 14.10, and 14.12. A summary is given in

Table 9.
Known Killing- | dim(T°) | dim(T") | Direct | Tractor | Y | T
Yano tensors pdsolve | pdsolve

14.7 4 4 4 v v 4 |r

14.10 0 4 1 X v 0| -
14.12(a) 4 4 4 v v 4 r
14.12(b) 1 1 1 v v 4
14.12(c) 4 4 4 v v 4 |1

Table 9: Metrics from chapter 14 with isometry dimension 6.

With the exception of 14.10, all of the metrics admitting 6 Killing vectors were
found to admit 4 Killing-Yano tensors by solving the Killing equation directly. For
metric 14.10, we were unable to compute dim(T?); however, we solved the reduced
system at at T! directly to show that no non-zero solutions can exist.

It is apparent that although the Killing equations for Killing-Yano tensors of rank
2 can be solved directly more often than the Killing equations for Killing tensors of
rank 2, the tractor approach may still grant useful insight with regard to Killing-

Yano tensors. In the infrequent cases in which the Killing-Yano tensors cannot be
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solved for directly, the tractor approach can be used to obtain a count of the number
of Killing-Yano tensors, and, in certain cases, the tractor approach can be used to
obtain the Killing-Yano tensors explicitly.

It is also apparent that the ability to generate meaningful Killing tensors of rank 2
from Killing-Yano tensors of rank 2 is limited, as all of our examined cases yield only
metric reducible Killing tensors. It is possible that meaningful Killing tensors (i.e.
metric irreducible Killing tensors) are more easily generated by Killing-Yano tensors
of rank 3, as examples exist in the literature of metric irreducible Killing tensors
generated from Killing-Yano tensors of rank 3 (Popa and Ovidiu, 2007).

We will conclude this section by providing an example of a metric irreducible
Killing tensor generated by a Killing-Yano tensor of rank 2. The Kerr metric given in
equation (6.53) has been shown to admit the metric irreducible Killing tensor given
in equation (6.54). This Killing tensor is also generated by the following Killing-Yano
tensor, which Killing-Yano tensor we obtained by solving the Killing equation (for

rank 2 Killing-Yano tensors) directly using Maple:

—acos(0)dt A dr + ar sin(0)dt A df — a® cos(6) sin*(0)dr A dg +r(a* +12) sin(0)df A de.
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8 Future Work

We have applied the tractor approach to Killing vectors, Killing tensors of rank 2,
Killing-Yano tensors of rank 2, and conformal Killing vectors. In each case, we have
built supportive programs in Maple. We have also built software which is supportive of
applying the tractor approach for Killing-Yano tensors of any rank up to the dimension
of the base manifold. Formulas for tractor connections for Killing tensors of rank
greater than 2 have been proposed (Houri et al., 2018), making the construction of
computer programs capable of implementing them explicitly a project of interest.
However, designing such a program is problematic, since the existing formulas which
define the tractor connection are not explicitly given. Other formulas have been
proposed (Wolf, 1998), and yet the explicit manifestation of the tractor connection
formulas is likewise absent.

Notwithstanding, it may be possible to construct the required Frobenius system
for higher rank Killing tensors if attention is restricted to a low-dimensional case,
such as dimension 2, 3, or 4. Thus, the development of software for low-dimensional,
higher-rank Killing tensors is of interest.

Constructing tractor connections for conformal Killing forms and tensors is also of
interest, though we have yet to find any literature concerning the maximum number
or the prolongation of conformal Killing tensors.

It may also be of interest to apply the tractor approach more completely to Killing
tensors of rank 2. Finding irreducible Killing tensors for many other exact solutions
of the Einstein equations may be of interest, and it may also be of interest to search
for irreducible Killing tensors outside of the context of general relativity. In this case,
the software tools developed in this thesis can serve as an exceptional aide.

Our apparent lack of success in constructing interesting Killing tensors of rank

2 from Killing-Yano tensors and conformal Killing vectors is troubling, and may be
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cause to suspect that such Killing tensors are a particularly rare phenomenon. An
interesting project would be the examination of many exact solutions to Einstein’s
equations for the purpose of constructing Killing tensors from Killing-Yano tensors
and conformal Killing vectors—Killing tensors which are not generated from Killing
vectors or the metric itself. Special attention should be given to metrics which have
been shown to admit metric irreducible Killing tensors, with the question in mind
being whether the Killing tensors produced using Killing-Yano tensors and conformal
Killing vectors are metric reducible or not.

It may also be of interest to write a program which constructs the tractor con-
nection for Killing spinors (M. Walker and R. Penrose, 1970). Ideally, Killing spinors
could then be identified without the need to solve the associated equations directly.

Another useful project is the optimization of existing software. In this thesis, we
have built software which allows us to apply the tractor approach in many cases, but
the nominal time required of Maple to construct the tractor connection for Killing
tensors of rank 2 in dimension 4 is 55 seconds. While this amount of time may not
seem to be impractical, the amount of time required to compute tractor connections
for Killing tensors increases dramatically as the dimension of the base space increases.
It would be useful to look for programming inefficiencies in the code, in hopes that
the required time to complete the computations needed for the tractor approach can
be significantly reduced.

As Killing vectors and conformal Killing vectors have been treated, it would also
be of interest to examine homothetic Killing vectors. These are conformal Killing

vectors for which, in light of equation (5.1), X7 is a constant. It is thought that

oy
homothetic Killing vectors can be treated as conformal Killing vectors, though with
the lift onto the tractor bundle having Z, = 0, making the treatment of homothetic

Killing vectors attainable, ideally, using existing methods.

In a few tables, it is evident that while we were often able to compute a basis
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for the 0"-order reduced tractor bundle, the higher order reduced tractor bundles
sometimes proved elusive on account of the need to check the nullspaces of additional
matrices. In particular, it is desirable to compute the 1%!-order reduced tractor bundle
for Killing vectors for the Kerr metric. It may be possible to use our basis for the
0%-order reduced bundle to get the desired result for the Kerr metric, and, if this
proves to be successful, it is reasonable to assume that whatever successful technique
was used in this case can be applied more generally.

As we have stated earlier, it is only for metrics of constant curvature that the
algebra of Killing tensors is completely known, and this due to the fact that no
irreducible Killing tensors of rank 2 or greater can exist (Thompson, 1986). The
problem of finding a generating set for the algebra of Killing tensors in general,
however, is open. Thus, it may be of interest to attempt to, for a particular metric

or for a class of metrics, find all irreducible Killing tensors.
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9 Maple Programs

We will now describe the utility of the programs which were developed for this

Thesis. For examples of their use or the source code itself, see the Appendices.

9.1

Programs for Killing vectors

e rnkl1TracConn(I', N). This program will construct the tractor connection for

9.2

rank 1 Killing tensors. It requres a connection I' defined on the base space as

well as the bundle N itself.

liftrnk1 (X, ', N). This program is intended to lift a rank 1 Killing tensor X to
a section on N which is parallel with respect to the rnk1TracConn connection.

This procedure also requires a connection I' defined on the base space.

getRnk1 (X, N). This program is intended to take a section X on the bundle
N which is parallel with respect to the rnk1TracConn connection and output

the associated rank 1 Killing tensor defined on the base space.

Programs for conformal Killing vectors

ConfTracConn(g, N). This program will construct the tractor connection for
conformal Killing 1-forms. This program requires a metric g defined on the
base space of the vector bundle N rather than a connection, since the equations
which define the tractor connection for conformal Killing vectors are given in

terms of the metric itself.

lift ConfKV (X, g, N). This program is intended to lift a conformal Killing 1-
form X to a section on N which is parallel with respect to the ConfTracConn

connection. This procedure also requires a metric g as input.
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e getConfKV (X, N). This program is intended to take a section X on the

9.3

94

bundle N which is parallel with respect to the ConfTracConn connection and

output the associated conformal Killing 1-form.

CKVtoKT(X,g). This program takes as input a (covariant) conformal Killing
vector X and metric g and constructs a tensor using equation (2.12). Certain
conditions on X must be satisfied in order for the resulting tensor to be a Killing

tensor.

Programs for Killing tensors of rank 2

HauserTractorConnection(I',N). This program takes as input a connection
defined on the base space and the base space itself, and outputs the tractor con-
nection on the bundle using the Hauser tractor equations(Hauser and Malhiot,

1975a).

HauserTractorLift2(K,I',N). This program is intended to perform the lift of
a Killing tensor K of rank 2 to a parallel (with respect to the Hauser connection)

section on the bundle N. A connection I' on the base space is also required.

getHauserKT2(X, N). This program is intended to do the opposite of the
HauserTractorLift2 command: it is intended to take a parallel section X on
the Tractor bundle NV and push it down to a rank 2 Killing tensor on the base

space.

Programs for Killing-Yano tensors

KYTracCon(I', k, N). This program will construct the tractor connection for
Killing-Yano tensors(Houri et al., 2018) of rank k. This program requires a

Connection I' on the base space, an integer k, and an initialized vector bundle
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N. Tt is not recommended that this program be used for Killing-Yano tensors

of rank 1.

lift KY (F, ', N). This program is intended to lift a Killing-Yano tensor F' to
a section on N which is parallel with respect to the KYTracCon connection.

This procedure also requires a connection I' defined on the base space.

getKY (X, k, N). This program is intended to take a section X on the bundle
N which is parallel with respect to the KYTracCon connection and output

the associated Killing-Yano tensor of rank k.

KYtoKT(g,h, KY1, KY2). This command computes the rank 2 Killing tensor
formed by Killing-Yano tensors KY'1 and KY2 using equation (2.9). A metric

g and the inverse metric h are also required.

Utility programs

MaxKT (m,n). This program takes as input two integers, namely the dimen-
sion of the base manifold (m) and the desired Killing tensor rank (n), and out-
puts the maximum number of Killing tensors of the desired rank in the desired
dimension(Hauser and Malhiot, 1975a). Before initializing the vector bundle in

Maple, this command is used to compute the required size of the fibers.

MaxKY (m,n). This program is entirely analogous to the program MaxKT,

but for Killing-Yano tensors.

MaxCF(m,n). Another program analogous to MaxKT, but for conformal

Killing forms of rank n.

MaxSym(m,n). This program calculates the number of independent compo-

nents of a completely symmetric, rank n tensor in m dimensions.
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e MaxSkew(m,n). This program calculates the number of independent compo-

nents of a rank n, completely skew-symmetric tensor in m dimensions.

e KillingTensorLibrary(n,name,output:=[]). This command loads in known
Killing tensors from a Killing tensor database. This procedure requires at least
two arguments: an integer n and a name of the user’s choosing. Specifying only
these two arguments will return the metric of the database entry given by the
integer on the procedure-initialized Manifold whose name is given as the second

input value.

A third possible input takes the form output = [|, where the values in the
list are given by the user. If the only input in the list is an integer, then the
procedure will return the known irreducible Killing tensors of the associated
database entry metric, the rank of which Killing tensors are equal to the integer
specified. If the user inputs output = [“KillingTensors” k| for some integer k,
then the program returns all known Killing tensors of rank k for the associ-
ated database entry. The user can also specify output = [“IrreducibleRank” |
to generate a list of integers which will inform the user of what rank(s) of ir-
reducible Killing tensors associated with the database entry metric are known.
[“KillingYanoTensors” k| will return the known Killing-Yano tensors of rank £,
and [“ConformalKillingForms” k| will return the known conformal Killing forms

of rank k.

The user may also specify the output as one of a few keywords: “Notes”, “Ref-
erence”, and “Coordinates” to display relevant information about the database
entry. Some entries come from the MetricSearch library in the Differential Ge-
ometry software package’: for these database entries, the reference is given so

that they may be retrieved from the MetricSearch library.

"For more information, see https://digitalcommons.usu.edu/dg/.
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the output option may also be used to retrieve known tractor connections and
their associated curvature tensors. [“TractorConnection” k,Q] will return the
tractor connection for Killing tensors of rank k on the procedure-initialized vec-
tor bundle @, and [“TractorCurvature” k,Q] retrieves the associated curvature
tensor. Similar commands are available for Killing-Yano tensors and for confor-
mal Killing forms by specifying the output as [“YanoTractorConnection” k,Q],
[“YanoTractorCurvature” k,Q], [“ConformalFormTractorConnection” k,Q], and

[“ConformalFormTractorCurvature” k,Q).

BundleLift(7, N). This command is intended to redefine the object 7" as an
object in the environment N. The most common application for us is to take a

metric g defined on a manifold M and redefine it on the base space of a vector

bundle N by way of the following: BundleLift(g, V).
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11 Appendix A: Software demonstration for

Killing vectors

We will now provide a small demonstration of how our software may be imple-
mented in the study of Killing vectors. Our example will be given on a 2-dimensional
Riemannian manifold with metric u?(du?®+ dv?). We will construct the tractor bundle
and tractor connection, calculate the curvature tensor, and then find bases for the
reduced tractor bundles to explicitly identify the Killing vectors themselves. We will
verify the one-to-one correspondence of parallel sections on the tractor bundle and

Killing vectors on the base space.



_Appendix A: Software demonstration for Killing
lvectors

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxKT, BundleLift, rnk1TracConn, getRnkl, and liftrnk1.

First, we will read in the file which contains the programs we have written and load
in other necessary packages.

[ > read "TractorPrograms.txt";
with(DifferentialGeometry):
with(Tensor):

Now, we will initialize a 2-dimensional manifold.

[ > DGEnvironment[Coordinate]([u,v], M);
Manifold: M (D

Next, we will define a simple metric.

M>g := evalDG( u”p * (du &t du + dv &t dv) );
g=uwdu®du+u’dvedy (2)

We need to know the required size of the fibers of the tractor bundle. We find this to
be 3:

=M > MaxKT(2, 1);
3 (3)

Now we initialize the required environments.

(M > DGEnvironment[VectorSpace](3, V);

Vector Space: V (4)
V > DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N (5)

Now that the vector bundle has been initialized, it is convenient to redefine the
metric on this bundle:

N >G := BundleLift(g, N);
G:=wdu®du+uv’dve dv (6)




We will also need the Christoffel symbols:

[N >Gamma := Christoffel(G);

— __P - P - P - _ P
Fi=V,0,= 5 -0, V,0,= 5-0,9,0,=-"-0,V,0, = d (7)

u u A% A%

Now we can compute the tractor connection:

(N >C := rnklTracConn(Gamma, N);
C=vV Fl=—-LF1,v, F2=—-P 2+ P E3v F3=—-E2-PF3 8
o 2u o 2u 2 P o u )

p p p
,V. El =" FE2——+= E3,V, E2=——"FEI1,V, E3=EI
av 2 U 2 av 2 u av

We can also represent this connection as a matrix of 1-forms:

_N >convert(C, DGMatrix);

—idu —Ldv dv

2u 2u
iz __pP _
2udv 2udu du (9)

We now compute the Curvature tensor for the tractor connection.

(N > K := CurvatureTensor(C);

K:=%E3®@1®du®dv—%£3®@1®dv®du (10)
u u

It is interesting to note that p=0 and p=-2 are the only values of p for which the
curvature tensor vanishes identically.

We can represent this tensor as a collection of (1,1) tensors by contracting the
curvature tensor with the coordinate vectors of the base manifold. In our 2-
dimensional case, there is only one such (1,1) tensor, but there may be others in
higher dimensions.

[N > k1 := Contractindices(K, evalDG(D_u &t D_v), [[3,1],[4,2]] );

Kl = % E3® 61 (11)
u




We can think of this as a matrix

_N >K1 :=convert(kl, DGMatrix);

0

0 00
1 pR+p
;3 00

and subsequently find the basis for the Oth order reduced tractor bundle:

=N >|TO := LieAlgebras:-InvariantTensors([K1], [seq(E]|]i,i=1..3)]
) ;
ITO := [E2, E3] (13)

This calculation is assuming that p is not 0 or 2: caution is advised when examining
metrics with unknown constants as exponents. Assuming that p is not 0 or 2, there
are a maximum of 2 Killing vectors of the metric g, since there are 2 invariants.

We will now try to get a tighter upper bound using the 1st order reduced tractor
bundle. We begin by differentiating the curvature tensor.

=N >dK1 := CovariantDerivative(kl, C);
k1= PLAP) p1gor@dv— PLEtP) prgoredu— PLETPLIOED) by (14

2u 2u 4ut
2
®@1®du+%£3®@2®dv—%£3®@3®d\/
u u

We now generate a set of (1,1) tensors by contraction:

N >D1K1 := Contractindices(dK1, D_u, [[3,1]] );

DIKI == — PL2EP) pprg g - PL2tP) (01 D) 34 ¢, (15)
i 2u 4u
N >D2K1l := Contractindices(dK1, D_v, [[3,1]] );
2
D2K1 ::%El@@ht%ﬁ@@—%m@@s (16)
u u u

Now we will convert them to matrices.

N >Md1k1 := convert(D1K1, DGMatrix):




0 00|

1 pR2+p) 0 0
Md1k] = 2 0 (17)
1 p(2+p) (6+p)
- 00
4 i

[N > Md2k1 := convert(D2K1, DGMatrix):;

1 p(2+p)
o e 0 0
2 4
Md2k1 = 0 0 0 (18)
0 1p@2+p 1 p2+p

And now we can compute a basis for the 1st order reduced tractor connection.

[N >1T1 := LieAlgebras:-InvariantTensors([K1,Md1k1,Md2k1], [seq
(Elli,i=1..3)] );
IT1 = |E2+ P~ E3 19
E2+ 3 (19)

Thus, we get a maximum of 1 Killing vector. Let's be sure that our calculation doesn't
depend on p not being 6, since p=6 appears, from looking at the matrices above, to
be an exceptional value.

_N > LieAlgebras:-InvariantTensors( eval([K1,Md1k1l,Md2k1], p=6),

[seq(E[]i,i=1..3)]);
[E2+ % E3 (20)
Now let's see if we can get the Killing vector explicitly. First, we form a linear
combination of the 1st order reduced tractor basis elements with function
coefficients.
N >sl1 := DGzip([seq(q]li(u,v), i=1..nops(IT1))] ,IT1, "plus™);
s1=ql(u v)E2+ WAV P ps (21)

2U

Next, we take the covariant derivative.

(N >s2 := CovariantDerivative(sl, C);

(221



§2 = — _(i gl(u, v)) +W Ez®du+a% gl(u, v) E2® dv (22)

v((ﬁ ql(u,v))u—ql(u,\/)p) Frod (% ql(u, v)
® du +

E
E3®d
> 2 > u 3®dv

+

Let's look at the equations we need to solve.

N >s3 := DGinformation(s2, "CoefficientSet");

p((% al(uy, v))u—ql(ua V) p) (%ql(u’ V))p,_ql(u, V) (23)

§3 = 1 1
2 e © 2 u ou

_aluvip 9 40, V)]
u av

How many equations are there?

=N >nops(s3);
4 (24)

This is an easier system to solve than the Killing equations themselves, which has 3
equations and 2 unknown functions.

Let's get the solution:

=N >s4 := pdsolve(s3, q||1(u,v));
s4:= {ql(u, v) = _Cl1u"} (25)

Here is then what the parallel sections should look like:

[N >s5 := DETools:-dsubs(s4, sl);
Clup

s5=_Clu"E2+ T E3 (26)

We may as well evaluate this at _C1=1.

N >s6 1= eval(sb, Cl=1);

p
s6:= ul E2 + % E3 (27)




We check that it's a parallel section:

N > CovariantDerivative(s6, C);
OElI ®du (28)

Now we drop this parallel section down:

N >T := getRnk1(s6, N);
T:=u’dv (29)

Let's check that this is a Killing tensor of rank 1.

(N > CheckKillingTensor (G, T);
0du®du (30)

If the contravariant vector is desired, we can simply raise indices:

N >X := RaiseLowerindices( InverseMetric(G), T, [1] );
Xzzav (31)

Now let's check that we can lift the Killing tensors of the metric to parallel sections.
We begin by calculating the Killing tensors conventionally.

=N >ktl := KillingTensors(G, 1);
ktl :== [u’ dv] (32)

As there is only one, we will lift this individually rather than lift the list. Note that the
Christoffel symbols of G are needed.

[N > liftktl := liftrnk1(kt1[1], Gamma, N);

; P wp
liftkt += w” E2+ %P E3 (33)

Let's check that this is a parallel section.

(N > CovariantDerivative(liftktl, C);
0El ® du (34)

But are there more parallel sections?

N > CovariantlyConstantTensors(C, [seq(E]||i,i=1..3)] );

p
27” E2+u 'E3 (35)




Since there is only 1, which corresponds with our known parallel section, the parallel
sections and the Killing vectors are in one-to-one correspondence.
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12 Appendix B: Software demo for conformal

Killing vectors

We will now feature a 3-dimensional example to demonstrate our software for
the tractor approach for conformal Killing vectors. We will construct the tractor
bundle and calculate the tractor connection and tractor curvature. Then we will
calculate bases for the reduced tractor bundles of orders 0 and 1-we will then obtain
the conformal Killing vectors explicitly. We will compare these computed conformal

Killing vectors to the conformal Killing vectors calculated conventionally.



_Appendix B: Software demo for conformal Killing
vectors.

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxCF, BundleLift, ConfTracConn, getConfKV, and liftConfKV.

First, we will read in the file which contains the programs we have written and load
in other required packages.

[ > read "TractorPrograms.txt";
with(DifferentialGeometry):
with(Tensor):

Now, we will initialize a 3-dimensional manifold.

[ > DGEnvironment[Coordinate]([x,y,z], M);
Manifold: M (D

Next, we will define a simple metric.

M >g := evalDG(dx &t dx + dy &t dy + x * dz &t dz);
g=dxdx+dy®dy+xdz® dz (2)

We need to know the required size of the fibers of the tractor bundle. We find this to
be 10:

M > MaxCF(3, 1):
10 (3)

Now we initialize the required environments.

M > DGEnvironment[VectorSpace](10, V);

Vector Space: V (4)
V > DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N (5)

Now that the vector bundle has been initialized, it is convenient to redefine the
metric on this bundle:

N >G := BundleLift(g, N);
G=dx®dx+dy®dy+xdz® dz (6)




Now we can compute the tractor connection:

_N > C := ConfTracConn(G, N);
1 1 1 1

Ci=V,El = — — E8,V, E3 = — - E3+ — E5,V, F4 = —E2— — E9
o 4x° O 2 x 4% o 4%
v, E5= —E3— - E5,V, E6 = — -~ E6,V, E7 = El — — E8,V, E§ = E7
X 2x X 2x X X X
v, E9 = E4,V, E10 = E5 — —— E10,V, El = — E9,V, F4 = E1 — — E8
X X 2x y 4 x y 4 x
v, E6 = —E3+ 7 E10,V, E7 = E2+ — E9,V, E§ = — F4,V, E9 = E7
y 4 X y 4 x y y
1 1 1 1
v, E10=E6,v, El = |+ | E3— 1 ps— L F10,v, E3= — L I
y . 2 4 x 4 %2 . 2 X
v, E4=—|~| E6,V, E5 = E1,V, E6 = E2+ -~ E4+ —— E9,V, E7 = xE3
2 0 0 2 X 4X2 0
Z VA Z Z

1 1 1
— 4 E10,9,E8 = —xE5+[E] E10,V, E9 = —xE6,V, E10 = E7 — - E§

Z zZ zZ

We now compute the Curvature tensor for the tractor connection.

_N > K := CurvatureTensor(C);

1 1 1

Ki=—7FE8®030dx®@dz— — E8®03®dz0dx+ —— E8® &4 ® dx® dy

8 x 8 x 4 x

-1 rseodedyedi— 1 88058 dxedz+ —— E8® 05® dz® dx
4 x 4 x 4 x

——ézE9®@1®dx®dy+—§2E9®81®dy®dx——lzE9®@3®dy®dz
4 x 4 x 8 x

+—lzE9®@3®dz®dy+—l§E9®85®dy®dz——l§E9®@5®dz®dy
8 X 4 x 4 x

——lgE9®@6®dx®dz+—l§E9®@6®dz®dx——§§E9®@7®dx®dy
2 X 2 X 4 x

+ 2 E9007@dy@dx+ 5 E10© 61 ®dx® dz— 5 E10® 0 8 dz
4 x 4 x 4 x

® dx+ 5 E10© 04 @ dy® dz— — E10® 04® dz® dy— —— E10® 66

4 x 4 x 2 X
® dx® dy+ —= E108 068 dy® dx+ — E10® 078 dx® dz— —> E10
2 X 4 x 4 x

®O7®dz® dx

(")

(8)



We can represent this tensor as a collection of (1,1) tensors by contracting the
curvature tensor with the coordinate vectors of the base manifold.

(N > k1 := Contractindices (K, evalDG(D_x &t D_vy), [[3,1],[4,2]] );

Kl= . E8® 04— >, E98 0l — - F9® 07— - F10® 66 9)
4 x 4 x 4 x 2 X
N >k2 := Contractindices(K, evalDG(D_x &t D_z), [[3,1],[4,2]] );
k2= 1 E8® 03— 1. E8s 05— 1. F9® 06+ - EI0®01 + 5 EI0  (10)
8 x 4 x 2 X 4 x 4 x
® 67
(N >k3 := Contractindices(K, evalDG(D_y &t D_2z), [[3,1],[4.,2]] );
k3= — 1 E98 @3+ 5 E9® 05+ — F10® 04 (12)
8 X 4 X 4 X

We can think of these as matrices

N > K1

= convert(kl, DGMatrix);

K2 := convert(k2, DGMatrix);

K3 := conve(t(k3, DGMatrix);
0 00 O O O 0 000
0 00 O O O 0 000
0 00 O 0 O 0 000
0 00 O O O 0 000
0 00 O O O 0 000
0 00 O O O 0 000
Ki=1 "9 00 0 0 o0 0 000
0 00 -0 0 0 000

4 x
300 0 0 0 -3.000
4 x 4 x
0 00 0 0-—= 0 000
2 X




0 0 0 0 O 0 0 000
0 0 0 0 O 0 0 000
0 0 0 0 O 0 0 000
0 0 0 0 O 0 0 000
0O 0 0 0 O 0 0 000
0O 0 0 0 O 0 0 000
K2=1 "9 0 0 0 0 0 0 000
0 0 -50- 0 0 000
8 x 4 x
0 0 0 0 0 -— 0 000
2 X
S0 0 0 0 0 2,000
4 x 4 X
‘00 0 0 0 000O0O,]
00 O 0 0 000O0O
00 O 0 0 000O0O
00 O 0 0 000O0O
00 O 0 0 0000 O
k3|00 0 0 0 000O0O (12)
00 O 0 0 00000
00 O 0 0 000O0O
00-—- 0o 00000
8 x 4 x
00 0 -1 0 00000
4 x
and subsequently find a basis for the Oth order reduced tractor bundle.
=N >|TO := LieAlgebras:-InvariantTensors([K1,K2,K3], [seq(E]|]i,i=
1..10)]):
170 = El—%EZ E2, 53+i55, E8, E9, E10 (13)

How many are there?




N >nops(ITO);
6 (14)

Thus, there are a maximum of 6 conformal Killing vectors of the metric g.

Now let's see if we can get the Killing vectors explicitly. We begin by forming a
function-coefficient linear combination of these basis elements.

=N >sl1 := DGzip([seq(q]||i(x,y,z), i=1..nops(ITO))], ITO, "plus");

sl:=ql(x, v, z) E1+q2(x, y, z) E2+q3(x, y, z) E3 + w E5 (15)

_ ql(x’xy’ z) E7 + C]4(X, Y, Z) E8—|—q5(x, Y, z) E9 + q5(X, W z) E10

Next, we take the covariant derivative.

(N >s2 := CovariantDerivative(sl, C);

9 9 9
2= L glixy, 20— LI D g1 o+ 2 gi(x v, 2) El@dy+ — ql(x,  (16)
0x X ay 0z

0 0
v, Z) E1 ®dz+& q2(x,y, z) E2Q® dx + 5 q2(x, y, z) —w E2® dy

q3(x, y, z)
X

0 0 0
+—q2(x,y,z) E2®dz+ P q3(x, y, z) — E3® dx+ 5 q3(x,

0z

d
v, z) E3®@dy+ e q3(x, y, z) —w E3®dz+q5(x, v, z) E4 ® dx

(6—‘1 4360 2) ) x

_aq3x Y, 2)
_g4(x, v, z) E4® dy + 2 . 2 +g6(x v, 2)| E5
X
5
— q3(x, ¥, 2)
y

® dx + E5® dy

2 X




d
4g4(x, ¥, z) X’ +ql(x, y, Z) — 2 (a_ a3(x, y, Z))
X Z E5®dz+ q6(x,y, z) E6

-(i ql(x,y, Z)) xX+ql(x, z)

®dy—q5(x,y, z) XE6Q dz + X 5 +qg4(x, y, z)
X
0 0
Y ql(x, y, z) — ql(x, ¥, 2)
E7®@dx+| - . +g5(xy, 2) | E7®@ dy+| - .
0 0
+q6(x,y,z) | E7®dz+ P qg4(x,y, z) E8® dx + 5} qg4(x,y, z) E8® dy+| —

_q6(x, y, z)
q4(x, y, z) X

0 0
E8® dz + P q5(x,y, z) E9Q® dx + 5} q5(x, y, z) E9

q6(x, y, z)

0
®dy+ — qg5(x,y, z) E9®dz+
0z 2 X

0
ae q6(X1 y’ Z) -
0x

0
EI0®dx+ —
)%

d
q6(x,y, z) EI0O® dy—i—[& q6(x, y, z) + w El0®dz

Let's look at the equations we need to solve.

[N >s3 := DGinformation(s2, "CoefficientSet");

9 9
—q3(x, y, z) 4g4xy, 2) X +q1(x, Y, z) — 2 (— q3(x, y, Z))
s3:= 11 & L oz .
2 X 4 X
0 0
5 ql(x, y, z) P ql(x, y, z)
_qS(X’)/lZ) X’ _q4(X1 )’, Z)1 - X +q5(X, )’, Z)1 - X
R
(& al(x, y, z)) X+ql(x y, )
+q6(x, Y, z), 5 +94(x, y, z),
X
1 /0 1
- (— q3(x, y, 2)) X——q3(x, Y z)
2 L ox 2 0
+4g6(x,y, z), — ql(x Y, z)
X2 OX
R R
_alxyz) 9 oy - AAxnz) 9 g 43y 2)
X oy X 0x X

) 1 0 1 g6(x, Y, 0
a3y, 2) — L gl v, 2), — gd(x, y, 2) — £ AN 2D O pa g
0z 2 0z 2 X o0x



1 g6(x, y, 0 1 0 0
L6y 2) © 6ix v 2+ gdix v, 2), — al(x y, 2), — ql(x, v,
2 X 0z 2 oy 0z

R R 0 R R
z), — a2, ¥, z), — q2(x, ¥, 2), — q3(x, ¥, 2), — q4(X, ¥, 2), — q4(X, ),
0x 0z oy 0x oy

R R 0 R
z), —a5(x, ¥, z), — q5(x, ¥, ), — q5(x, ¥, 2), — q6(X, ¥, z), q5(Xx, y, Z),
ox oy 0z ay

q6(x, , Z)}

How many equations are there?

=N >nops(s3);
28 (18)

This system may be easier to solve than the Killing equation itself. Let's get the
solution.

=N >s4 := pdsolve(s3, {seq(q]||i(x,y,z), i=1..nops(ITO))} );
s4:={ql(x, y,2) =2_CIx q2(x,y,2z) =2 _Cly+_C3,q3(x,y,z) = (_Clz (19)

+_C2)x,g4(x,y,z) =0,q95(x,y,z) =0, q6(x,y,z) =0}

How many independent solutions are there?

N > has(s4, C3);
true (20)

(N > has(s4, C4);
false (21)

Thus, there are 3 independent solutions. Here is then what the parallel sections
should look like:

[N >s5 := DETools:-dsubs(s4, s1);

§5:=2_CIXEIl+ _Clz C2

2_C1y+_C3]Ez+(_C1z+_cz)x53+[ o+ = ]E5 (22)

—2_CIE7+0E8+0E9+0EIO

Now we will generate a list of parallel sections according to the independent
solutions.

N >t1 -

= eval(s5, [_C1=1,_C2=0,_C3=0]);
t2 := eval(s5, [_C1=0,_C2=1,_C3=0]);
t3 := eval(s5, [_C1=0,_C2=0,_C3=1]);




tl ==2XxEI +2yE2+ZXE3+§E5—2E7+OE8+OE9+OE10

t2:= 0 El +OE2+xE3+[%JE5+OE7+OE8+OE9+OE10

t3=0EI+E2+0E3+0E5+0E7+0E8+0E9+0EIO (23)

We check that they're parallel sections:

=N >map(CovariantDerivative, [t1,t2,t3], C);
[0EI ® dx, 0 E1 ® dx, 0 E1 ® dx] (24)

Now we drop these parallel sections down to the base space:

N >T := map(getConfKV, [t1,t2,t3], N);
T:=[2xdx+2ydy+zxdz xdz dy] (25)

These are the (covariant) conformal Killing vectors of the metric. Now let's check that
we can lift the conformal Killing vectors of the metric to parallel sections. We begin
by calculating them conventionally.

[N >ckv := ConformalKillingVectors(G);
ckv = [2 X0 +2y0 +za], [a a] (26)
X y z Z 7y

Let's get the covariant versions:

[N > ckt := ListTools:-FlattenOnce([map2(RaiseLowerlndices, G, ckv
[1], [1]), map2(RaiseLowerindices, G, ckv[2], [1])] );
ckt:= [2xdx+2ydy+zxdz xdz dy] (27)

Now let's lift them to sections.

=N >liftckt := map(liftConfKV, ckt, G, N);
liftckt == 2xE1+2yEZ+sz3+§E5—2E7,xE3+[%]ES, EZ] (28)

Let's check that these are parallel sections.

N >map(CovariantDerivative, liftckt, C);
[0El ® dx, 0 E1 ® dx, 0 E1 ® dx] (29)

But are there more parallel sections?

(N > CovariantlyConstantTensors(C, [seq(E]||i,i=1..10)]);




—xEl—yEZ—%ES’—iES—i—E?,2xE3+E5, E2 (30)

(N > nops(%);
3 (31)

Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.
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13 Appendix C: Software demonstration for

Killing tensors of rank 2

We will return to the metric u?(du? + dv?®) to demonstrate our software for imple-
menting the tractor approach for Killing tensors. We will, as done previously, con-
struct the bundle, compute the tractor connection, compute the tractor curvature,
and compute bases for the reduced tractor bundles in order to explicitly identify the
Killing tensors of rank 2. However, we will also illustrate the point that certain values

of p may yield different results and we will identify an exceptional value of p.



_Appendix C: Software demonstration for Killing
tensors of rank 2.

In this demonstration, we will illustrate the utility of the programs with the following
names: MaxKT, BundleLift, HauserTractorConnection, getHauserKT2, and
HauserTractorLift2.

First, we will read in the file which contains the programs we have written and also
load in the required packages.

[ > read "TractorPrograms.txt";
with(DifferentialGeometry):
with(Tensor):

Now, we will initialize a 2-dimensional manifold.

[ > DGEnvironment[Coordinate]([u,v], M);
Manifold: M (1)

Next, we will define a simple metric.

M >g :=evalDG(u”*p * (du &t du + dv &t dv) );
g=uwdu®du+u’dvedv (2)

We need to know the required size of the fibers of the tractor bundle. We find this to
be 6:

=M > MaxKT(2, 2);
6 (3)

Now we initialize the required environments.

(M > DGEnvironment[VectorSpace](6, V);

Vector Space: V (4)
V > DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N (5)

Now that the vector bundle has been initialized, it is convenient to redefine the
metric on this bundle:

N >G := BundleLift(g, N);
G=1vdudu+ v dve dv (6)




We will also need the Christoffel symbols:

[N >Gamma := Christoffel(G);
— __pP - P __bp - __b
BV 0= 50 % e 0= 5 N 6= 5 N 4= 5 (7)
Now we can compute the tractor connection:
=N > C := HauserTractorConnection(Gamma, N);
Co=v, El=—P 14 38 g5 3PLED) g g o Ppp_ 3P py (8)
u u 41/1 4” u u Zu
v, E3=—P E3- BPES+ME6,V6E4=[1]E2—ME4
u u 4u° 4u u 3 2u
vaES:[z E3— 3P g5+ 3P g6,y E6 - —E5— 2P g6,v, F1 - P E2
u 3 2u 2L12 u u v 2u
+ 3P gy B2~ PE1+ P 3y 3P g5 3PEED) pg g gz
417 , u u 2 U 2 U .

p 3p 2 p 3p 1
———FE2—— FE4,V. F4=—-|— |El+ — E5——5 E6,V. E5=—| = | E2
A LS T AT B

p
— —+—F4,V. E6 = E4
2u o
We can also represent this connection as a matrix of 1-forms
N >convert(C, DGMatrix);
H—%du,—%dv,Odu,— —1dv,0du, 0 du|, (9)
P gy, — Py — P gy Llay -[L]avo0d
A T R Y Al Y R
Odu,%dv pduOdu du, 0 du
[ 3p 3p
—dv,— d dv,— du ——dvdv
|40 2 Al 2u 2u
3pzdu,3pzdv, 3p du—dv—ﬁdu,—du,
4 u 2 u 41 2u 2u
_3v(2;r19) du, _3p(2;rp) v, 3v(2;r19) du, — 3P 4y 3r)2 du,
4u 2 u 4u 21 2u
—Qdu
u



We now compute the Curvature tensor for the tractor connection.

(N > K := CurvatureTensor(C);

K= 3’9(“5)4(3*2’9) E6®02® du® dv— 3’7(“5)}3””) E6®02®0d (10)
u u

v®du+WE6®@4®du®dv—W56®@4®dv®du
u u

It is interesting to note that p=0 and p=-2 are the only values of p for which the
curvature tensor vanishes identically.

We can represent this tensor as a collection of (1,1) tensors by contracting the
curvature tensor with the coordinate vectors of the base manifold. In our 2-
dimensional case, there is only one such (1,1) tensor, but there may be others in
higher dimensions.

(N > k1 := Contractindices(K, evalDG(D_u &t D_v), [[3,1],[4,2]] );

Kl = 3’9(2+2p)4(3+2”) E6®@2+—5’92(23“’) E6 © 04 (11)
u u

We can think of this as a matrix

(N > K1 := convgrt(kl, DGMatrix);

0 0 0 0 00|
0 0 0 0 00
0 0 0 0 00
K1:=10 0 0 0 00 (12)
0 0 0 0 00
0 3 PR+p)B+2p) 5 pREp
2 ut 2 0w
and subsequently find the basis for the Oth order reduced tractor bundle:
=N >|TO := LieAlgebras:-InvariantTensors([K1], [seq(E]|]i,i=1..6)]
) ;

1m0 = |E1, E2— 3B +2P) g4 3 E5 E6 (13)

How many are there?




N >nops(ITO);
5 (14)

This calculation is assuming that p is not 0 or 2: caution is advised when examining
metrics with unknown constants as exponents. Assuming that p is not 0 or 2, there
are a maximum of 5 Killing tensors of the metric g..

We will now try to get a tighter upper bound. We begin by differentiating the
curvature tensor.

N >dK1 := CovariantDerivative(kl, C);

k1= 3PEFP) BH2D) pygorgav+ 2PL2EP) pygei0ay (15)
2U 2 U
_ 3PP BH2P) psgerdu— 2P TP psge40du
2U 2 U
3P (2+p) (11+4p) oo ol ody_ 3P (2+D) (4p° +17 p+24) 6
8 u’ 4

(2+§)§11+4p) E6® 03 dv— 9}9(2—2]9)4(44—;?) 6
u u

3’9(“5)4(“3’”) E5®@5®dv—w%®@6®dv
u u

2
® 020 du+ P

4 ®du+

We now generate a set of (1,1) tensors by contraction:

[N >D1K1 := Contractindices(dK1, D_u, [[3,1]]);
DIK] = — SPL2APIBHEP) psggy P 21D g5 ey
2u 2u
2
_3p(2+p) (4p5+17p+24) E6®@2_9p(2+p)4(4+p) F6® o4
i 4u 4u
N >D2K1 := Contractindices(dK1, D_v, [[3,1]]);
D2kl = 3PEEP) BH2D) pygepy 2PIEEP) pyg ey (17)
2u 2u
2
2+p)é11+4p) E6® 0] + 3p (2+p)§11+4p)
8u 8u
3}9(2—1—5)4(2—1—319) E6®@5——5p22;p) E6 ® 66
u u

(16)

3P

E6® O3

+

Now we will convert them to matrices.

[N > Md1k1 := convert(D1K1, DGMatrix):



Mdikl = Ho, 0,0, 0,0, o], (18)

0,0,0,0,0,0|
0,0,0,0,0,0|
0,0,0,0,0,0|
v 3 p(2+p) 3+2p) 5 p(2+p)
O’__ ,O,__—,0,0,
_ 2 Ll4 2 Ll3
[ 3 p(2+p) (4pP+17p+24) 9 p(2+p) (4+p)
Oa__ 10’__ 50’0
_ 4 LIS 4 114

N > Md2k1 := convert(D2K1, DGMatrix);

Md2k1 = Ho, 0,0,0,0, ol, (19)
0,0,0,0,0, ol,
0,0,0,0,0, ol,
(w3 P2+p)(3+2p) 5 p(2+p)

N lOl_—!(),O,
0, 2 i 2 = l
0,0,0,0,0, 0],
3 PP(24+p) (114+4p) . 3 P 2+p) (11+4p)

TS 101_ ’0’
» 8 LlS 8 LIS
3 p2+p)(2+3p) 5 p(2+p)
4 i '’ D =

And now we can find a basis for the 1st order reduced tractor bundle:

[N > 171 := LieAlgebras:-InvariantTensors([K1,Md1k1l,Md2k1], [seq

(Elli,i=1..6)]);
i 20 0’ 10u
N >nops(IT1);
3 (21)

We are led to believe that there is a maximum of 3 Killing tensors. However, if p=1,



we get 4 basis elements:

N >riIT1 := LieAlgebras:-InvariantTensors(eval([K1,Md1k1l,Md2k1],

p=1), [seq(E]|]i,i=1..6)]);
AT1 = |E1 — —2 F6, E2— 3 F4, E3+ 2 E6, E5+ = E6 (22)
4 u u 4 u 2u
N >nops(riTl);
4 (23)

Thus, it is not advisable to work with metrics which have unknown exponents, unless
the exceptional values for those exponents are being sought.

Now let's see if we can get the Killing tensors explicitly for p=1. We begin by forming
a function-coefficient linear combination of the basis elements of the 1st order
reduced tractor bundle.

=N >sl1 := DGzip([seq(q]||i(u,v), i=1..nops(rIT1))], rIT1, "plus");

sl:=ql(u,v) E1 +q2(u, v) E2+q3(u, v) E3 — %uu,v) E4+g4(u, v) E5+[ (24)
" 9qg1(u, v) n 94g3(u, v) " 3 g4(u, v) E6
417 41 2u
Next, we take the covariant derivative.
(N >s2 := CovariantDerivative(sl, eval(C, p=1) );
0 0
s2= |~ qi(u,v) - LBV g1 aus| = giuv) + 928V prodve  (25)
ou u ov u
0
— q2(u, v)——2 q2(1, V) E2®du
ou u
0
-2g4(u, v) u+6 (a— q2(u, V)) u+3qgllu v)—3qg3(u,v)
n v E2®dv+| —
6u
0
g3y, v) — BBV 240 V) |\ pa o g1 O a3y + PPUAY) | 364
u 3 ov u
0
3 ((a— q2(u, v)) u+2g2(u v))
v+ U E4 ® du

iy




2 g4(u, v) u+6 (% a2(u, v)) u+3qgl(uv)—3q3(u,v)

— 3 E4®dv
2 U
0

(a— g4(u, v)) u2—3q4(u, viu+3qgl(u v)—3qg3(u, v) 3
FRRNLLL > E5@du+ —
u ov

1 0 0

g4(u, v) E5®dv—|——3(3 (2 (— g4(u, v)) u2—4q4(u, viu—3 (—

4 u ou ou

ql(u, v)) u+3 (% q3(u, v)) u+9qgl(u v) —9qg3(u, v))) E6 ® du

(oo (o) ],

Let's look at the equations we need to solve.

=N >s3 :g DGinformation(s2, "CoefficientSet");
(—q4(u, v)j u2—3q4(u, viu+3ql(u v) —3qg3(u, v)
ou
S3!: uz ’ (26)

3 ((% a2(u v)) u+2q2(u, v))

’
L12

2 (a_av g4(u, v)) u+3 (a% al(u, v)) -3 (a% a3(u, v))
y. ,

-2g4(u, v) u+6 (% q2(u, v)) u+3qgllu v)—3qg3(u v
y. ,

-2g4(u, V) u+6 (a_av a2(u, v)) u+3qluv) —3 a3 v)

3
4

1
2

1

6 u
0 0 0

3 %(2 (— q4(u, v)) W —4g4(u, v) u—3 (— ql(u, v)) u+3 (— q3(u,

4 u ou ou ou

V)| u+9ql(uv) -9 a3 v)),—a gi(u v) — A8V 0 )
ou u oV

4 92u.y) V),—aa g2 v) — 282 V) 0 gy Q2 Y) 9 g

u u ov u ou

_aswy) |2 Kl
+ 3 g4(u, v), v g4(u, V)}




How many equations are there?

N > nops(s3);
12

solution.

=N >s4 := pdsolve(s3, {seq(q]||]i(u,v),i=1..nops(riT1))} );
o4 = {ql(u, V) = (% _C1\?—_C2v+_C3) U, g2(u, v) = (_LC1v+_C2) P

q3(u, v) = -% u(12_C1P+3_CIV+6_C2v+4_C4du—6_C3), g4(u, v)

_6_CliP+_C4 u}

How many independent solutions are there?

N > has(s4, C4);
true

(N > has(s4, C5);
false

should look like:

_N >s5 := DETools:-dsubs(s4, s1);
(_CIV+2_C2v—-2_C3) u

§5 = — 5 El+ (_Clv+_C2) W E2
B u(12_C1u2+3_C1\F+g_czv+4_c4u—6_cs) E3—3u(.Clv
4 C2)E4+|6_Cli+ _C4u| E5+ 9”’2-C1 F6

Now we will generate a list of parallel sections according to the independent
solutions.

N >t1

= eval(s5, [_C1=1,_C2=0,_C3=0,_C4=0]);

t2 := eval(s5, [_C1=0,_C2=1,_C3=0,_C4=0]);

t3 := eval(s5, [ C1=0, C2=0, C3=1, C4=0]);

t4 := eval(s5, [_C1=0,_C2=0,_C3=0,_C4=1]);
t1 = _—‘é” El +vit 2— 4112 “2*3‘;) E3—3qu4+6u255+%E6

This system may be easier to solve than the Killing equation itself. Let's get the

Thus, there are 4 independent solutions. Here is then what the parallel sections

(27)

(28)

(29)

(30)

(31)



t2:= —uvEl + W E2—uvE3—3uF4+0FE5+0E6
t3:=uFl+0FE2+uE3+0E4+0E5+0E6

t4—OE1+OE2—ZTME3+OE4+L1E5+OE6 (32)

We check that they're parallel sections:

=N >map(CovariantDerivative, [t1,t2,t3,t4], eval(C, p=1) );
[OEI ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du] (33)

Now we drop these parallel sections down:

>T := map(getHauserKT2, [t1,t2,t3,t4], N);

\? u (4 u° +V)

N
T:= du®du+vir du®dv+vu dve du— >

dve dv, (34)

—uvdu@du—i—uzdu®dv+u2dv®du—uvdv®dv, udu®du+udved

vV, —Z—Md\/@dv

3

Let's check that these are Killing tensors of rank 2.

=N >map2(CheckKillingTensor, eval(G, p=1), T);
[Odu®du®du 0du®du®du, 0 du® du® du, 0 du® du ® du] (35)

Now let's check that we can lift the Killing tensors of the metric to parallel sections.
We begin by calculating the Killing tensors conventionally.

=N >kt2 := KillingTensors(eval(G, p=1), 2);
ke2 := ‘;2” du® du—vi‘ du® dv— vuzdv®du+[—\;u+2u

dvedv,uvd (36)

u® du— v du® dv—u’ dvedu+uvdvedv,udu®du+udve dy, uw dv
® dv|

Note that the Christoffel symbols of G are needed for the lift.

[N > liftkt2 := map(HauserTractorLift2, kt2, eval(Gamma, p=1), N);

liftkt2 = ﬂﬂ— “E2 + %\?u+2u3 E3+3qu4—6u2E5—%E6 (37)

UVEl — P E2+ uvE3 +3 uE4, uEl + uE3, 2 E3 — % E5




Let's check that these are parallel sections.

N >map(CovariantDerivative, liftkt2, eval(C, p=1) );
[OEI ®du, 0 El1 ®du, 0 E1 ® du, 0 E1 ® du] (38)

But are there more parallel sections?

N > CovariantlyConstantTensors(eval(C, p=1), [seq(E]|]i,i=1..6)]);

2
Vg, 2vi 152—”(4“;“;) E3— 24V gy AW g5 ks, (39)

9 9 3 3

—%Esﬂws, ﬂEl—ﬁE2+ﬂE3+uE4, uEl + uE3

3 3 3

(N > nops(%);
4 (40)

Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.
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14 Appendix D: Software demonstration for

Killing-Yano tensors

Our last software demonstration illustrates the utility of our software in the study
of Killing-Yano tensors of rank 2. We will demonstrate our software on a manifold
of dimension 3, and we will use the same metric as in Appendix B. We will use the

tractor approach to explicitly identify the single Killing-Yano tensor of rank 2.



_Appendix D: Software demonstration for Killing-
Yano tensors.

In this demonstration, we will illustrate the utility of the programs with the following
names: KillingTensorLibrary, MaxKY, BundleLift, KYTracCon, getKY, liftKY, and
KYtoKT.

First, we will load in the required packages and read in the file which contains the
programs we have written.

[ > read "TractorPrograms.txt";
with(DifferentialGeometry):
with(Tensor):

Now, we will read in an example metric in 3 dimensions. In using the
KillingTensorLibrary command, we will initialize a coordinate environment M.

> gl := KillingTensorLibrary(3, M);
gl =dx®dx+dy®dy+x'dze dz (1)

The metric we will use will have p=1.

M>g := eval(gl, p=1);
g =dx®dx+dy®dy+xdz®dz (2)

We need to know the required size of the fibers of the tractor bundle. We find this to
be 10:

=M > MaxKY(3, 2);
4 (3)

Now we initialize the required environments.

M > DGEnvironment[VectorSpace](4, V);

Vector Space: V (4)
V > DGEnvironment[VectorBundle](M, V, N);
Vector Bundle: N (5)

Now that the vector bundle has been initialized, it is convenient to redefine the
metric on this bundle:

N >G := BundleLift(g, N);
(R)



G=dx®dx+dy®dy+xdz®dz (6)

We also need the Christoffel symbols.

_N > Gamma = Christoffel(G);
L _ 1 _ 1 __[1
r= vaxaz_ 5% O vazax_ 5 vazaz_ [ > ] G 7

Now we can compute the tractor connection. Note that the rank of the Killing-Yano
tensor must be specified.

_N > C := KYTracCon(Gamma, 2, N);

Ci=V,E2=— "~ E2,V E3= — "~ E3— —\ F4,V, F4=E3— - F4 (8)
X 2X X 2 X 8 x % 2 X
v, E4=—E2,Y, El = —| S| E3— 1 F4,v E3= '~ EI,v, E4=EI
¥ ., 2 8 x . 2 X .,

We now compute the Curvature tensor for the tractor connection.

(N > K := CurvatureTensor(C);

K= -1 Fl®03@dx®ds+ 5 El®@038dz@dx+ - E2@0l@dyed  (9)

8 x 8 x 8 X

72— p2eoledzedy— -5 20030 dx@dy+ —— 20030 dyod
8 x 8 X 8 x

X+ 1 E380l®dxedz— 2 E30 0l ®dz®dx+ — 48 6] 8 dx® dz
8 X 8 X 4 x

- L F4e0l®dz® dx
4 x

We can represent this tensor as a collection of (1,1) tensors by contracting the
curvature tensor with the coordinate vectors of the base manifold.

N > K1

= Contractindices(K, evalDG(D_x &t D_y), [[3,1],[4,2]]);
kl= — 1 F2@03 (10)
8 X
=N >k2 := Contractindices(K, evalDG(D_x &t D_z), [[3,1],[4,2]]);
k2 = —8%51®@3+$E3®@1+ﬁm®@1 (11)
=N >k3 := Contractindices(K, evalDG(D_y &t D_z), [[3,1],[4,2]]);
1

k3= —— E2® 61 12
gx °® (12)



We can think of these as matrices

_N > K1 :

= convert(kl, DGMatrix);
K2 := convert(k2, DGMatrix);
K3 := convert(k3, DGMat_rix); )
00 0 0
00 -— 0
Kl := 8 x
0 0
0 0--1 0
8 x
0 O 0 0
R I S
8 x
L0 0 o
4 x
0 00 0]
— 000
K3:=| 8X (13)
0O 00O
0O 00O
and subsequently find the basis of the Oth order reduced tractor bundle:
=N >|TO := LieAlgebras:-InvariantTensors([K1,K2,K3], [seq(E]|]|i,i=
1..4)]);
i ITO := [E2, E4] (14)
How many are there?
N >nops(ITO);
2 (15)

Thus, there are a maximum of 2 rank 2 Killing Yano tensors.

Now let's see if we can get the Killing-Yano tensors explicitly. We begin by forming a
function-coefficient linear combination of the basis elements.




[N >s1 := DGzip([seq(q]]i(x,y,z), i=1..nops(ITO))], ITO, "plus");
sl:=ql(x,y, z) E24+q2(Xx, y, z) E4

Next, we take the covariant derivative.

(N >s2 := CovariantDerivative(sl, C);

G
s2:=4q2(x,y, z) EI®dz+ o Xy 2) —% E2@dx+

0
— ql(x,y, z)
oy

0 0
—q2(x,y,z) | E2®dy+ Py gl(x,y,z) E20dz+q2(x, y, z) E3®dx+ P

a2(x, ¥, z)
X

q2(x, y, z) —

0 0
E4 ® dx + a} q2(x, y, z) E4 ® dy + P q2(x, y, z) E4

®dz

Let's look at the equations we need to solve.

[N >s3 := DGinformation(s2, "CoefficientSet");

9 9 9
s3= 12 gqi(x y,2) — L ALXN2) 9 1y ) g2(x v, 2), — q2(x, v, 2)
0x 2 X ay 0x

1 g2 0 0 0
- a2 %72 0 a1x 0y, 2), — q2(x, v, 2), — a2(x, ¥, 2), 42(x, ¥, 2)
X 0z ay 0z

How many equations are there?

N > nops(s3);

This system may be easier to solve than the Killing equation itself. Let's get the
solution.

=N >s4 := pdsolve(s3, {seq(ql|li(x,y,z),i=1..nops(ITO))} );
s4:={ql(x v, z) = _C1JX, q2(x,y, z) = 0}

How many independent solutions are there?

N > has(s4, C1);
true

(N > has(s4, C2);
false

Thus, there is 1 independent solution and, consequently, a single Killing-Yano
tensor. Here is then what the parallel section should look like:

(16)

(17)

(18)

(19)

(20)

(21)

(22)



_N >s5 := DETools:-dsubs(s4, sl);
s5:=_CIJx E2+0 F4 (23)

We can evaluate this at _C1=1.

N >t1 := eval(s5, [ C1=1]):
tl:=x E2+0E4 (24)

We check that it's a parallel section:

_N > CovariantDerivative(tl, C);
0El ® dx (25)

Now we drop this parallel section down. Note that the rank of the Killing-Yano
tensor must again be specified.

N >T := getKY(tl, 2, N);
Ti=Jx dx A dz (26)

Now let's check that we can lift the Killing-Yano tensors of the metric to parallel
sections. We begin by calculating them conventionally.

=N > ky := KillingYanoTensors(G, 2);
ky = [\/de/\dz] 27)

Now let's lift it to a section. The rank is not required here.

=N >liftky = liftKY(ky[1], Gamma, N);
liftky := ' x E2 (28)

Let's check that this is a parallel section.

(N > CovariantDerivative(liftky, C);
0 El1 ® dx (29)

But are there more parallel sections?

(N > CovariantlyConstantTensors(C, [seq(E]|]i,i=1..4)]);

|/ x E2] (30)

1 (31)

N > nops(%);




Thus, the parallel sections and the Killing tensors are in one-to-one correspondence.

We will now construct a Killing tensor of rank 2 from the known Killing-Yano tensor.

=N >KT := KYtoKT(G, InverseMetric(G), ky[1], ky[1]);
KT:= —dx®dx—xdz®dz (32)

Let's check that this is a Killing tensor of G.

(N > CheckKillingTensor(G,KT);
0dx®dx® dx (33)

The KillingTensorLibrary command can also be used to call other known quantities
of a metric, such as the Killing tensors of rank 1:

N > ktl := eval(map(BundleLift, KillingTensorLibrary(3, M,
output=["KillingTensors", 1]), N), p=1);
ktl = [xdz, dy] (34)

Now, let's get a basis for the space of known Killing tensors, including the metric. In
principle, this can be done using the tractor approach, but a more conventional
command exists and alliviates the need to construct the tractor bundle for Killing
tensors of rank 2.

(N > reds := SymmetricProductsOfKillingTensors([ktl, [G]], 2);

reds = |X° dz® dz, % dy®dz+ % dzedy, dy@dy, dx®@ dx+dy®dy+xdz (35)

®dz

Now we will determine, conventionally, whether the Killing tensor we've newly
constructed is a linear combination of the known Killing tensors.

N > GetComponents(KT, reds);
[0,0,1, -1] (36)

Thus, the Killing tensor so constructed is a linear combination of the Killing tensors
which are already known. It is, however, not a linear combination of only the
reducible Killing tensors, and is therefore irreducible--the metric itself is irreducible,
in this case.

For the sake of curiosity, and since irreducible Killing tensors are of such interest, we
will calculate all Killing tensors of rank 2 for the metric G. In principle, this can be




done by means of the tractor approach; however, this particular metric presents no
obstacles in computing the Killing tensors directly:
(N > kt2 := KillingTensors(G, 2);
X X ZX ZX
kt2 := |ydx ® dx — 5 dx® dy — 5 dy ® dx — 1 dy®dz— e dz@ dy+xydz (37)

®dz, dx® dx+xdz® dz, X¥* dz® dz, % dy®dz+§ dze dy, dy® dy

We now find which Killing tensors, if any, are not linear combinations of the metric
and of the reducible Killing tensors.

[N >irreds := IndependentKillingTensors(kt2, reds);
irreds := ydx®dx—§dx®dy—%dy®dx—%dy®dz—%dz®dy (38)
+xydz®dz

Thus, the Killing tensor above is not a linear combination of the metric and the
reducible Killing tensors. In particular, it is irreducible.
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15 Appendix E: an irreducible Killing tensor for
the Kerr metric

In section 6.2, we searched many vacuum type D solutions to the einstein field equa-
tions for Killing tensors which were not linear combinations of the reducible Killing
tensors and the metric itself. We found such a Killing tensor in the case of the Kerr
metric. Below is a demonstration of the technique that was used to conduct the

search among the several metrics which were searched.



_Appendix E: an irreducible Killing tensor for the
Kerr metric.

We will now demonstrate the method by which vacuum type D solutions were
searched for irreducible Killing tensors, as explained in section 6.2.

Here is the Kerr metric, which is found in the MetricSearch library in the Differential
Geometry software package.

M >g := Library:-Retrieve("HawkingEIllis", 1, [5,29,1],
manifoldname=M, output=["Metric"])[1]
a cos(e)2—2 r_m+r’ 2_m r_asin(ﬁ)2
— 5 > dt® dt— 5 5
¥+ _a° cos(0) ¥+ _a° cos(0)
1’2+_a‘2cos(e)2
A =2r_.m+7
. 2
B 22_mr_2asln(e)2 do ® dt + 21 .
r“+ _a“ cos(0) cos(0)
2

-2 COS(G)Z_a _mr+ COS(G)Z_aZ F4+2rm_a+_ar+r)) doeds

g= dt® do (1)

dr® dr+ o ® do

¥+ _a cos(e)2

(sin(8)* (cos(8)® _a*

¥+ _a

obtaining the coordinates will be useful later.

M >coords := Library:-Retrieve("HawkingEIllis", 1, [5,29,1],
manifoldname=M, output=["Coordinates"])[1]

coords == [t, 1,0, 0] (2)
M >Coords := seqg(coords]Ji], i=1..nops(coords));
Coords =1, 1,0, ¢ 3)

Below are the Killing vectors for this metric:

M >kv := Library:-Retrieve("HawkingEllis", 1, [5,29,1],
manifoldname=M, output=["KillingVectors"])[1]
kvi= [0, ] (4)

We now lower the indices to get the rank 1 Killing tensors.

=M >kt := map2(RaiseLowerlindices, g, kv, [1]);

2 2 ) 2

ke | - =42 cos(0) : 2r_n;+r2 di— 2_mr_2asm(6)2 do, (5)
¥+ _a’ cos(0) ¥+ _a’ cos(0)




2_mr_asin(6)2 di+ 1

- 1’2+_azcos(€))2 ¥+ _a° cos(0)

5 (sin(8)* (cos(8)® _a*

—2cos(0)°_d> _mr+cos(0)’ @ +2r_m_a*+_a ¥ +r')) do

The Null Tetrad for this metric has been computed previously, and is available in the
MetricSearch library.

(M >NT := Library:-Retrieve("HawkingEllis", 1, [5,29,1],
manifoldname=M, output=["NullTetrad"])[1]

NT i J2 (L& +7) at+\/?\/_a2—2r_m+r2 5 ®)
2\/_612—21’_m+l’2\/I’Z—I—_CIZCOS(G)Z 2\/r2+_azcos(9)2
+ V2 a 9,
2V _a—-2r_-m+r° \/rz—i-_azcos(e)z \
J2 (La’+7r°) o 2V a@—2rm+r
2\/_c12—2r_m-|—r2\/1'2-1—_azcos(e)2 t 2\/1’2-|—_azcos(6)2
| :
) /7 a a E\/?sm(e)_a ;
2V _ & —-2r_-m+r° /rz—k_azcos(e)2 \ \/I’Z—i-_aZCOS(G)Z t
|
V2
+ \/7 ae+ 2 0,
2\/1’2 +_d Cos(e)2 \/r2+_a2 cos(e)2 sin(0)
1 .
) 2\/7sm(e)_a - /7 ;
\/r2+_azcos(e)2 t 2\/}’2+_612COS(9)2 °
I
) 22 :
\/rz-l—_az Cos(e)2 sin(0) \
We now compute the Principal Null directions.
=M >PND := PrincipalNullDirections(NT, "D");
PND i— J2 (Ld*+71%) 5 +\/7\/_a2—2r_m+r2 5 e

2V & —-2r_-m+r° \/r2+_azcos(e)2 t

2\/1’2 + a (:os(e)2



J2 _a 5

+ )
2V _ & -2r_-m+r° /rz—k_azcos(e)2 \
J2 (_d® +7°) a_ﬁ\/_az—Zr_m+i'2 5
2\/_a2—2r_m+r2\/1’2+_azcos(9)2 t 2\/1'2-|—_612cos(6)2
- /2 .a 0
] 2V _ & —-2r_-m+7r° \/r2+_azcos(e)2 \
We will call the first one K,
M >K := PND[1];
K J2 (Ld+7) at+\/7\/_a2—2r_m+r2 3 ()
2V _a* =2 r_m+r2\/r2+_azcos(e)2 2\/1’2-1—_612cos(6))2
- /2 .a 0
] 2V _d*—-2r_-m+r° \/r2+_azcos(e)2 \
and the second L:
M >L := PND[2];
[ J2 (Ld*+ 1) a_\/?\/_az—Zr_m-i—rz 5 )
2\/_112—21’_771-|—r2\/1’2-1—_azcos(e)2 t 2\/1’2-|—_azcos(e)2
- /2 .a 0

2V _ & -2r_-m+r° \/rz +_a Cos(e)2

Now we will apply theorem 6.1 to construct Killing tensors. We will construct them
as in the theorem, only keeping A and B arbitrary for the moment.

(M >T := evalDG( A(Coords)*RaiseLowerindices(g, K &s L, [1,2]) +
B(Coords)*g);

T:= 1 (-2B(t,r,0,0) cos(8)° _d>+A(t, r,8,0) _a>—2A(t, (10)

2 (F* + _d’ cos(8)°)
10,0) _mr+A(t16,0) ¥ +4B(t 1 6,0) _mr—2B(t1,6,0) ) dte®d
o 2 (¥ +_a12 COS(G)Z) ((Cos(e)2 —1) _a(A(tr,6,0) @ —2A(5r6,

0) _mr+A(tre,0)r+4B(t 10, 0) _mr)) dt®do




B (1’2+_a2CoS(g)2a)2(:44(lt;’r,n3,—'(—b)2:ZZB(t, % 0,4)) drodriB(ir6,0) (¥
1
(P + _d* cos(8)?)
0,0) a®—2A(t10,0) _mr+A(tr0,0) ¥ +4B(tr0,0)_mr))do®dt
_ 1 . 2 2 4
2 (P + deos(6)]) (sin(0)“ (A(t, 1,6, 0) cos(8)” _a* —2 A(t, r, 6,

o) cos(e)z_a2 _mr+A(t 1,0, 0) COS(G)Z_aZ ¥ —2B(t 8, 0) cos(e)z_a4
+4B(t 1,6, 0) COS(G)Z_CIZ _mr—2B(t 16, 0) Cos(6)2_612 ¥ —A(t 1, 0,
o) _a4+2A(t, 1, 0,0) _az_mr—A(t, 1, 0,0) _a2r2—4B(t, 1, 0,0) _d*_mr

—2B(t10,0) _ar"—2B(t 16 0)r")) do®do

+_a’cos(0)%) do ® do + > ((cos(8)°=1) _a(A(t

Now we will compute Killing tensors for the metric which have the form given in
theorem 6.1 for arbitrary functions A and B. We find that there are 2 (a common trait
with other metrics).

(M > KT := KillingTensors(g, ansatz = T, unknowns = [A, B](Coords)
) ;

: 2
KT e 2_mr_asin(0)

- dt® do (11)

2 2
_ _a cos(8) : 2r_n;+r2 die di— 2
¥+ _a’ cos(0) ¥+ _a’ cos(0)
rz—i—_azcos(e)2

do ® do
A -2r_-m+7r

dre dr+| ¥ +_a° Cos(e)2

_I_

_2_mr_a sin(e)2
¥+ _a COS(6)2

1
¥ +_a’ cos(0)

5 (sin(e)2 (Cos(e)2 a

do ® dt +

-2 COS(G)Z_GIZ _mr+ Cos(6)2_612 F4+2rm_a +_ar+r')) doeds,
& (_d’ cos(8)° =2 cos(0) _mr+r?)

dt® dt
¥+ _a cos(e)2

1
¥+ _a cos(e)2

(_a sin(e)2 (cos(e)2 a2 cos(e)2 & _mr

(¥ +_d° COS(G)Z) a Cos(e)2 dr

+cos(8)°_d P+ _d P +rt)) diedy— L2 mir

dr+r (¥ +_d° cos(e)z) e ® de




_ 1
¥+ _a’ cos(0)

2 2

a _mr

5 (_a sin(6)° (cos(8)” _a* —2 cos(8)*

+cos(0)’ P+ _adr+rt)) doedt

1
¥+ _a Cos(e)2
+ a'r Cos(e)4 —Cos(e)2 42 Cos(e)2 _a'_m r—cos(e)2 ar-_ar
—2_ar—1°)) dy e do]

(sin(e)2 (Cos(e)4 a2 COS(9)4_614 _mr

Having obtained all Killing tensors of the metric g which are of the form of theorem
6.1, we construct a basis of known Killing tensors from the Killing tensors of rank 1
and the metric itself.

;M >S2 := SymmetricProductsOfKillingTensors([kt, [g]], 2):
We are expecting a maximum of 4, and in fact there are:

=M >nops(S2);
4 (12)

We now ask: which of the Killing tensors constructed by theorem 6.1 can be written
as a linear combination of the known Killing tensors?

(M > GetComponents(KT[1], S2, method="real");

i [0,0,0,1] (13)
M > GetComponents(KT[2], S2, method="real");
[] (14)

The first is apparently the metric, which although irreducible, is uninteresting. It is
the second which is of interest, and which is included in section 6.2:

M >irredKT := KT[2]:
az(_azcos(e)z—Zcos(e)Z_mH- )

irredKT := =
¥4 cos(e)2

dt® dt (15)

B 1
¥ +_a’ cos(0)

(_a sin(e)2 (Cos(e)2 a -2 Cos(e)2 & _mr

(P + _d* cos(8)?) _a’ cos(0)*
& -2r_.m+r

—l—cos(e)z_a2 F4+_ar+r'))ditedo—

dr+r (¥ +_d° cos(e)z) e ® do




1
¥+ _a Cos(e)2
+cos(8)’ _ad P+ _dr+rY)) doedt
1
¥ +_a’ cos(0)
+_a'r cos(e)4 —cos(e)2 _a’+2 Cos(e)2 _a _m r—cos(e)2 ar-_ar
—2_ar—1%) do®do

(_asin(8)” (cos(8)° _a*—2 cos(0)* _d* _mr

(sin(e)2 (COS(9)4_616 -2 COS(9)4_a4 mr
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16 Appendix F: Killing tensors on Frames

In this appendix, we will construct a frame on which the tractor approach will be
applied. Then, we will demonstrate how the novel application of the tractor approach

is used.



;Appendix F: Killing tensors on Frames

Anholonomic frame.

First, we read in the required programs.
;> read "stage4 _programs.txt";
Next, we load in a suitable candidate.

M >9g26 := KillingTensorLibrary(26, M);
g26:= —du®dv—dvedu+(u T-+2u+u' " dx® dx +(u

+u -9 dyedy

I+Cyou

We will actually evaluate this at c=1/2:

=M >g36 := eval(g26, c=1/2);
g36 := —du®dv—dv®du+(u3/2+2u+\/7) dx®dx+(u3/2+2u+\/7) dy
® dy

This metric is also in the MetricSearch database:

M > KillingTensorLibrary(26, M, output=["Reference"]);
["Stephani”, 1, [12, 37, 5]]

Thus, we can get the Killing vectors.

IY >kvg36 := Library:-Retrieve("Stephani", 1, [12,37,5],
manifoldname=M, output=["KillingVectors"])[1];

Cl 0, —_CXx0 + 1
u“+1 7 v

0

kvg36:=[qﬂagay'—YQ{+Xay —_cyd + o %

—uo +
u

1 2 1 x(u+u_c+1—-_c
vt 2y +—_c2)2]a ; 5
2 2 v 2 (u€+1) X

n y(u‘+u_c+1—_c
2 (u+1) y

We can also get the orhonormal tetrad.

M > L := eval(Library:-Retrieve("Stephani", 1, [12,37,5],
manifoldname=M, output=["OrthonormalTetrad"])[1], c¢=1/2);

In this worksheet, we will demonstrate the application of the tractor approach to an

(1)

(2)

(3)

(4)



Next, we will need to compute the lie brackets of our orthonormal tetrad.

=M >DF36 := FrameData(L, P36);
DF36 = |E1, E2| = — (Bu+davu+1)J2 E2 |E1, E3

2

8u3/2/i+ﬁ+2/—(ﬁ+1)

u Ju
_ Bu+tdVu+1)J2 E3,[El, E4] = 0, [E2, E3] = 0,
2
8u3/2/L+5+2/M
Ju Ju
J2 Bu+4yu +1) >
2 J
Su(Ju+1)

J2 Bu+4yu +1) 3
8u(\/7+1)2

E2, E4 E3, E4

Now, we can initialize our frame.

M > DGEnvironment[AnholonomicFrame](DF36);
Anholonomic Frame: P36

we define the identity transformation:

(P36 > 1D := Transformation(P36, M, [x=x, u=u, y=y, v=Vv]);
ID=u=uv=v,X=X,y=Yy

and now we bring the metric onto this frame.

(P36 > G36:=simplify(Pullback(ID, g26), useassumptions);

u3/2—|-2 u+\/;

3/
G36:= o1l + L TZUEIU 6y o), :

Ju (Ju+1)° Ju (Ju+1)

® 64

03 ® 03+ &4

©)

(6)

(")

(8)

(9)

Maple seems to refuse to simplify this expression: (the numerator and denominator




are apparently equal)

(P36 > simplify(expand(denom(DGinformation(G36,
"CoefficientList", [[2,2]]1)[1])))

u3/2+2u+\/f

(P36 > numer(DGinformation(G36, "CoefficientList", [[2,2]])[1])
u3/2+2u+\/7

Thus, we will help it along directly:

_P36 >realG36 := DG([["tensor", P36, [["cov_bas", "cov_bas"],

yﬂﬁf)ﬁ[[l, 1], -1, [[2, 2], 1], [[3, 3], 1], [[4, 4],
realG36 = — 0l ® O] + 02® 62+ 63 ® O3 + 04 ® 04

(10)

(11)

(12)

Now, we seek to build the tractor bundle. The required size of the fibers is 50, but we
label the forms and vectors as W and Phi, respectively, to avoid a conflict of notation

with the frame labels.

_P36 > DGEnvironment[VectorSpace](50, V36, vectorlabels=[W],
formlabels=[Phi]);
Vector Space: V36

_P36 > DGEnvironment[VectorBundle] (P36, V36, N36);
Vector Bundle: N36

Now we realize the metric on the base space.

[N36 > G36n:=BundleLift(realG36, N36):
G36ni= —0l®6] +O2® 62+ 031 03 + 604 ® &4

Next, we get the Christoffel symbols.

N36 > Gamma:=eval(Christoffel(G36n), c¢c=1/2);

J2 Bu+4a/u+1) £2,v f2 - V2 (Bu+dVu+1)

[=Vp,El = 2 2
81,1(\/74—1) 8u(\/7+1)
_J?f3u+4fﬂ+1)BLV}%=J513u+4fE+1)E?
gu(Vu+1)° : gu(yu+1)°
v L= V2 Bu+4/u+1) £3,V, F3 - V2 (Bu+dVu+1)

8u(\/7+1)2 81,1(\/74-1)2

(13)

(14)

(15)

(16)



J2 (Bu+4Vu +1) E4,V, 4 - J2 Bu+4yu +1) 3
8u(Vu+1)° . gu(yu+1)°

We can now compute the tractor connection and the curvature tensor. We will
suppress the output of each.

[N36 > C36 :
[N36 > K36 :

eval(HauserTractorConnection(Gamma, N36), c¢=1/2):
CurvatureTensor(C36):

Let's be sure we have c=1/2 for the curvature tensor.

[N36 > k36 := eval (K36, c=1/2):

V¥ Applying the tractor approach
Below are the (1,1) tensors associated with the curvature tensor.

=N36 >K1 := Contractindices(k36, evalDG(E1 &t E2), [[3,1],[4,
N36 >i]2]): Contractindices(k36, evalDG(E1 &t E3), [[3,1],[4,
=N36 >i]3]): Contractindices(k36, evalDG(E1 &t E4), [[3,1],[4,
=N36 >i]4]): Contractindices(k36, evalDG(E2 &t E3), [[3,1],[4,
=N36 >i]5]): Contractindices(k36, evalDG(E2 &t E4), [[3,1],[4,
=N36 >;61;: Contractindices(k36, evalDG(E3 &t E4), [[3,1],[4,

Next, we convert them to matrices.

(N36 >1HO := map(convert,_[K_l,K2,K3,K4,K5,K6],_ DGMatrix);
50 x 50 Matrix 50 x 50 Matrix

1HO Data Type: anything Data Type: anything
Storage: sparse ’ Storage: sparse ’

Order: Fortran_order Order: Fortran_order

(1.1)



50x 50Matrix || 50x 50 Matrix
Data Type: anything Data Type: anything
Storage: sparse Storage: sparse

Order: Fortran_order Order: Fortran_order
50x50Matrix || 50 x 50 Matrix
Data Type: anything Data Type: anything

Storage: sparse Storage: sparse

Order: Fortran_order Order: Fortran_order

Let's compute a basis for the shared nullspace.

_N36 >LAO := LieAlgebras:-InvariantTensors(eval(IHO, _c=1/2),
[seq(W]|]|i,i=1..50)]):

How many are there?

(N36 > nops(LAO);
35 (1.2)

Thus, the metric admits at most 35 Killing tensors of rank 2.

This is the method by which the tractor approach can be applied to frames.

We have applied the tractor approach to determine an upper bound on the
dimension of the space of rank 2 Killing tensors. Now, we will use our novel
application of the tractor approach to determine a lower bound.

We begin by recalling the Killing vectors, now making sure to evaluate at c=1/2.

M > Kvg36 := eval(kvg36, _c=1/2);

d +—— 0 (17)
1




Let's be sure each of these is a Killing vector.

=M >LieDerivative(Kvg36, g36);
[0du®du 0 du®du, O du® du, 0 du® du, 0 du® du, 0 du® du, 0 du ® du]

We will need to lower the indices of these.

"M >ktlg36 := map2(RaiseLowerlindices, g36, Kvg36, [1]);
K= [ —du, (B2 +2u+Vu)dx, (B2 +2urVu) dy, - (B2 +2u

3 /2
w’ +2u+Ju dy’ﬁ

+\/E)ydx+(u3/2+2u+\/7)xdy,Xdqu du
2 Ju +1 2
3 /2 2
+ 4 +2u+u dx, — v+x—+ﬁ du+udv
Ju +1 8 8
+(u3/2+2u+\/;)x(3\/7+1) dx+(u3/2+2u+\/7)y(3\/f+l)d
4(Vu+1) 4 (Vu+1)
y

(18)

(19)

Now we will form a set consisting of all symmetric tensor products of the (covariant)

Killing vectors and the metric.

M>S := [seq( seq( evalDG( kt1lg36[i] &s ktlg36[j] ), i=1..j) ,
j=1..nops(ktlg36) ), g36]:

There should be 29 Killing tensors in this set.

(M > nops(S);
29

Now we will initialize the tractor bundle. Recall that the size of the fibers is 50.

M > DGEnvironment[VectorSpace](50,V);
Vector Space: V

(v > DGEnvironment[VectorBundle](M,V,N2);
Vector Bundle: N2

Now we will redefine the metric on the base space of the bundle.

(N2 >g36n := BundleLift(g36, N2):

(20)

(21)

(22)

(2



g36n = —du®dv—dv®du+(u3/2+2u+\/7) dx®dx+(u3/2+2 u+\/7) dy (23)
®dy

We also need the Christoffel symbols.

(N2 > Gamma2 := Christoffel(g36n);

r2==vaaxz 33/;1+4\/E+1 avaaa _ 33/;1+4\/7+1 3 (24)
u 4(u +2u+\/7)\/7 u” 4(u +2u+\/7)\/7 Y
V.o - 3u+4yJu+1 Va_3L1+4J7+1a

— a’ —
ax” 4(u3/2+2u+\/7)\/7 X axx 4\/7 v
Su+4Ju +1 ) Va:3L1+4J7+16

VAP e2ur ) Y aya

We will also need to redifine the set S on the base space of the bundle.
[N2 >S2 := map(BundleLift, S, N2):

Now we will lift the set S2 to the set S3--the set of sections consisting of the lifted
Killing tensors of S.

;NZ > S3 := map(HauserTractorLift2, S2, Gamma2, N2):
Let us ensure that we didn't miss any: there should be 29 of these sections.

(N2 > nops(S3);
29 (25)

Now, we evaluate S3 at a convenient point.
[N2 >S4 := eval(S3, [u=1, v=0, x=0, y=0]):
And now we ask: how many are in a basis?

[N2 > b1 := DGbasis(S4):
N2 >nops(bl),
28 (26)

Thus, the true minium number of Killing tensors is 28 instead of 29.

In this particular example, this novel application is not of paramount importance,
since we can check for linear independence directly:




;NZ >pb2 := DGbasis(S2, method="real"):
N2 >nops(b2);
28 (27)

However, this novel application is quite useful when the linear independence of the
Killing tensor fields is difficult to compute directly.

We can also double-check that each of these sections is parallel. We must first
calculate the tractor connection.

;NZ > C2 := HauserTractorConnection(Gammaz2, N2):
Now we can check that all of these sections (in S3) are parallel.

=N2 > map(CovariantDerivative, S3, C2);
[OEI®du, 0OE1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1  (28)

®du, 0OFE1 ®du, 0 El1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1
®du, 0OFE1 ®du, 0El ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1
®du, 0FE1 ®du, 0El1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1 ® du, 0 E1
® du]
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17 Appendix G: Maple source code

We will now give the raw source code for the programs we have built to apply
the tractor approach to Killing vectors, conformal Killing vectors, Killing tensors of
rank 2, and Killing-Yano tensors. Additional refinements may be made before the

programs are distributed.

rnk1TracConn:=proc (Gamma,T) local Bv,Bf,CT,dimbase ,Fv,X1,Y1,
numX, X, X2, Y2, numW,W, getsome , XA, WA, Comps, Comps2 , Comps3,
Comps4d , realX ,realW  XR, Xc2, Xcl ,Wc2,Wcl, Xclb, Xcle,Welb, Welce,
m, BigMat ;

Bv:=DGinformation (T,” FrameBaseVectors”) ;
Bf:=DGinformation (T,” FrameBaseForms” ) ;

CT:=CurvatureTensor (Gamma) ;

dimbase:=nops (Bv) ;
Fv:=DGinformation (” FrameFiberVectors”) ;

#First , create an arbitrary vector:

X1:=GenerateDGobjects [DGtensors | ([[” cov_bas”]| ,[]]) ;

Y1:=DGbasis ([ seq( Tensor:—YoungSymmetrizer (a, Matrix ([[1]])),
a = X1)]);

numX:=nops (Y1) ;

X:=DGzip ([seq(z]|]i,i=1..numX)],Y1,” plus”);

#Now, create an arbitrary rank 2 tensor with the required
symmetry .

X2:=GenerateDGobjects [ DGtensors | ([[” cov_bas” " cov_bas” ]| ,[]]) ;
Y2:=DGhbasis ([ seq( Tensor:—YoungSymmetrizer (a, Matrix
([T, 0211)), a = X2)]);
nmmW:=nops (Y2) ;
W:=DGzip ([seq(z || i, i=l+numX. . numX+umW) | ,Y2,” plus”) ;

#The following procedure is a bit overkill for the Killing
vector case. It is intended to give us the index list from
which we pick off the independent components of each
tensor defined above.
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getsome:=proc(T,Y) local AB,g,A2,inds ,B2,thing , bracket ,term;

Ai=Array ([]);

for thing in op(2,op(T)) do

if nops(op(1l,op(1,thing[2]))) = 2 then ArrayTools:—Append(A,
op(1,thing));

fi;

od;

B:=[seq(A[i],i=op(2,A))];

#we now have the bads.

g:=seq (op(2,op(Y[i])),i=1..nops(Y));

A2:=Array ([]) ;

inds:=seq ([seq(g[j][1][1],i=1..nops(g[j]))],j=1..nops([g]));

for bracket in inds do

for term in bracket do

if has(B,[term]|)=false then if has(A2,bracket)=false then
ArrayTools:—Append (A2, [term|) ;

fi;

fi;

od;

od;

B2:=ListTools:—FlattenOnce ([seq(A2[i],i=op(2,A2))]);

end ;

XA:=getsome (X,Y1) ;
#if dimbase = 2 then XA:= [1,2] else XA:=getsome (X,Y1) fi;
if dimbase = 2 then WA:=[[1,2]] else WA:=getsome (W,Y2) fi;
#AVA:=getsome (W, Y2) ;

#Now, we will get rid of the scalars: terms like z12/2 will
be turned into yl2.

Comps:=ListTools:—FlattenOnce (|| seq (DGinformation (X,”
CoefficientList” ,[a]) [1],a=XA) ] ,[seq(DGinformation (W,”
CoefficientList” ,[a]) [1],a=WA) ]]) ;

Comps2:=[seq(y|]i,i=1..nops(Comps)) |;

Comps3:=[seq(Comps|[i] = Comps2[i], i=1..nops(Comps)) |;

Comps4:=solve (Comps3,{seq(z||i,i=1..nops(Comps))});

realX:=evalDG (simplify (subs(Comps4,X)));
realW:=evalDG (simplify (subs (Compsd ,W)) ) ;

XR:=ContractIndices (CT,realX ,[[1,1]]);

#Now, we build each piece to the matrix of 1—forms.
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for m in seq(i,i=1..dimbase) do
Xclb:=DirectionalCovariantDerivative (Bv[m] ,realX ,Gamma) ;
Xcle:=[seq( DGinformation (Xclb,” CoefficientList” ,[[a[1]]])

[1] 73’:XA)];
Xc2:=[seq(DGinformation (realW,” CoefficientList” ,[[a[l] ,m]])
[1], a=XA)];

Xcl:=[seq(Xc2[i]+Xclec[i],i=1..nops(Xclc)) |;

Welb:=DirectionalCovariantDerivative (Bv[m] ,real W ,Gamma) ;

Wele:=[seq( DGinformation (Wclb,” CoefficientList” ,[[a[l],a
[2]1]) [1],a=WA) |;

We2:=[seq (DGinformation (XR,” CoefficientList” ,[[m,a[2],a[1]]])
(1], a=WA) |;

Wel:=[seq (We2[i] +Weclc[i],i=1..nops(Wclc)) ];

Equns | |m:=ListTools:—Flatten ([Xcl,Wcl]) ;

Mat | jm:=evalDG (LinearAlgebra:—GenerateMatrix (Eqns | |m, Comps2) *
Bf [m]) ;

od;

#Lastly , we will piece together the matrix and build the
connection from it.

BigMat:=add (Mat||i,i=1..dimbase) ;
Connection (BigMat) ;
end:

liftrnk1:=proc(X,Gamma,Q) local Bf,dimbase, Bft ,Fv, forms2,
Xcomps , omega , Omega , Omegacomps ,COMPS, lifted K'V ;

Bf:=DGinformation (Q,” FrameBaseForms” ) ;

dimbase:=nops (Bf) ;

Bft:=map(convert , Bf , DGtensor) ;

Fv:=DGinformation (Q,” FrameFiberVectors”) ;

forms2:=GenerateForms (Bf,2) ;

Xcomps:=GetComponents (X, Bft) ;
#HdummyX:=DGzip ([seq(z||i,i=1..dimbase) | ,Bf,” plus”);

omega:=evalDG(—CovariantDerivative (X,Gamma) ) ;
Omega:=convert (omega , DGform) ;
Omegacomps:=GetComponents (Omega, forms2) ;
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COMPS:=ListTools:—FlattenOnce ([ Xcomps , Omegacomps| ) ;
lifted KV :=DGzip (COMPS, Fv,” plus”) ;
end:

getRnkl:=proc(X,Q) local Bf,dimbase,Fv,Xcomps, Xcomps2,realX;
Bf:=DGinformation (Q,” FrameBaseForms” ) ;

dimbase:=nops (Bf) ;

Fv:=DGinformation (Q,” FrameFiberVectors”) ;
Xcomps:=GetComponents (X, Fv) ;

Xcomps2:=[seq (Xcomps|[i],i=1..dimbase)];

real X:=DGzip (Xcomps2, Bf,” plus”) ;

end:

ConfTracConn:=proc(g,T) local Bv,Bf,Gamma,CT,RT,RS, dimbase ,Fv
X1, Y1, numX, X, X2, Y2, mumW, W, getsome , XA, WA, Comps , Comps2,
Comps3, Comps4 , realX | realW ,XR, Xc2, Xcl ,Wc2,Wcl, Xclb, Xclc,
Welb, Wele,m, BigMat , gin , Y, numY,F,Z YA, realY ,realF ,realZ ,YR,
term ,terml ,term2 ,Xc3,Yclb,Yclce,Yce2,Ye3,Yed,Yel,Fe2,Fel,
Zclb ,Zclc ,Zcl ,Zc2 ,7c3 ,Zc4 ,7cH;

Bv:=DGinformation (T,” FrameBaseVectors”) ;
Bf:=DGinformation (T,” FrameBaseForms” ) ;

Gamma:= Christoffel (g);
CT:=CurvatureTensor (Gamma) ;
RT:=RicciTensor (CT) ;
RS:=RicciScalar(g);
gin:=InverseMetric(g);

dimbase:=nops (Bv) ;
Fv:=DGinformation (” FrameFiberVectors”) ;

#First , create an arbitrary vector:

X1:=GenerateDGobjects [DGtensors | ([[” cov_bas™] ,[]]) ;
#Y1:=DGbasis ([ seq (Tensor:—YoungSymmetrizer (a, Matrix ([[1]])),
a = X1)]);

#numX:=nops (Y1) ;

numX:=nops (X1) ;

#X:=DGzip ([seq(z]|]i,i=1..numX)],Y1,” plus”);
X:=DGzip ([seq(z||i,i=1..numX)],X1,” plus”);
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#Now, create an arbitrary rank 2 tensor with the required
symmetry .

X2:=GenerateDGobjects [ DGtensors ] ([[” cov_bas”,” cov_bas”] ,[]]) ;

Y2:=DGhbasis ([seq( Tensor:—YoungSymmetrizer (a, Matrix
((1],12]1)), a = X2)]) ;

numY:=nops (Y2) ;

Y:=DGzip ([seq(z]|]1i, i=1+numX .. numX+numY) | ,Y2,” plus”) ;

Fi=z||(1+numX+numY) ;

Z:=DGzip ([seq(z |1, i=24numX+mumY .. 1+ numX+numY+dimbase ) | ,X1,”
plus”);

#The following procedure is a bit overkill for the Killing
vector case. It is intended to give us the index list from
which we pick off the independent components of each
tensor defined above.

getsome:=proc (T,Y) local A/ B,g,A2,inds ,B2,thing ,bracket ,term;

Ar=Array ([]) ;

for thing in op(2,o0p(T)) do

if nops(op(1l,op(1,thing[2]))) = 2 then ArrayTools:—Append(A,
op(1l,thing));

fi;

od;

Bi=[seq(A[i],i=op(2,4))];

#we now have the bads.

gi=seq(op(2,0op(Y[i])),i=1..nops(Y));

A2:=Array ([]) ;

inds:=seq ([seq(g[j][i][1],i=1..nops(g[j]))],j=1..nops([g]));

for bracket in inds do

for term in bracket do

if has(B,[term])=false then if has(A2, bracket)=false then
ArrayTools:—Append (A2, [term|) ;

fi;

fi;

od ;

od;

B2:=ListTools:—FlattenOnce ([seq(A2[i],i=op(2,A2))]);

end ;

XA:=getsome (X,X1) ;
#if dimbase = 2 then XA:= [1,2] else XA:=getsome (X,Y1) fi;
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if dimbase = 2 then YA:=[[1,2]] else YA:=getsome(Y,Y2) fi;
#AVA:=getsome (W, Y2) ;

#Now, we will get rid of the scalars: terms like z12/2 will
be turned into yl2.

Comps:=ListTools:—FlattenOnce ([[ eq (DGinformation (X,”
CoefficientList” ,[a]) [1],a=XA) ] ,[seq(DGlnformatlon(Y,”
CoefficientList” ,[a]) [1], a_YA)] F,[seq(DGinformation (Z,”
CoefficientList” ,[a]) [1],a=XA)]]) ;

Comps2:=[seq(y||i,i=1.. nops(Comps))]

Comps3:=[seq(Comps|[i] = Comps2[i], i=1..nops(Comps)) |;

Compsd:=solve (Comps3,{seq(z||i,i=1..nops(Comps))});

realX:=evalDG (simplify (subs(Comps4,X)));
realY:=evalDG(simplify (subs(Comps4,Y)));
realF:=evalDG (simplify (subs(Compsd,F)))

realZ:=evalDG (simplify (subs(Compsd,Z)))

I

I

XR:=ContractIndices (CT,realX ,[[1,1]]);
YR:=ContractIndices ( RalseLowerIndlces (gin ,RT,[1]) ,realY
J01,2]0)

term:=evalDG (RT-evalDG ((RS/(2%(dimbase—1)))*g) ) ;

CovariantDerivative (term ,Gamma) ;

evalDG ( CovariantDerivative (term ,Gamma) &t realX);

gin ;

ContractIndices (evalDG(CovariantDerivative (term ,Gamma) &t
realX) ,gin,[[1,1],[2,2]]);

terml:=evalDG(—(—1)xContractIndices (evalDG(
CovariantDerivative (term ,Gamma) &t realX ), gin
1351, 14,2]1) )5

term2:=evalDG(—2xrealF xterm) ;
#Now, we build each piece to the matrix of 1—forms.

for m in seq(i,i=1..dimbase) do
Xclb:=DirectionalCovariantDerivative (Bv[m], realX ,Gamma) ;
Xcle:=[seq( DGinformation (Xclb,” CoefficientList” ,[[a[1]]])
[1] 7a:XA)];
Xc2:=[seq(DGinformation (realY ,” CoefficientList” ,[[a[l] ,m]])
(1], a=XA) |;
Xc3:=[seq(DGinformation (evalDG (realFxg) ,” CoefficientList” ,[[m
ya[1]]]) [1],a=XA) ];
Xcl:=[seq(Xc2[i]+Xc3[i]+Xclc[i],i=1..nops(Xclc))];
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Yclb:=DirectionalCovariantDerivative (Bv[m|,realY ,Gamma) ;

Yclc:=[seq( DGinformation(Yclb,” CoefficientList” ,[[a[l],a
[2]11) [1], a=YA) 1

Yc2:=[seq(DGinformation (XR,” CoefficientList” ,[[m,a[2],a[1]]])
(1], a=YA) ]

Yc3:=[seq(DGinformation (evalDG (g &t realZ),” CoefficientList
Vo llmal1]a[2]]]) [1],a=YA) |;

Yc4:=[seq(DGinformation (evalDG(—g &t realZ),” CoefficientList
VolImyaf2],a[1]]]) [1], a=YA) |;

Ycl:=[seq(Yc2[i] + Ye3[i] + Yc4[i] + Yclec|i],i=1..nops(Yclc))

#Fclb:=DirectionalCovariantDerivative (Bv[m],realF  ,Gamma) ;
#Fclc:=[seq(DGinformation (Fclb,” CoefficientList” ,[[m]]) [1],a=
XA) ]

Fc2:=[DGinformation (realZ ,” CoefficientList” ,[[m]]) [1]];
Fcl:=[seq(Fc2[i],i=1..nops(Fc2))];

Zclb:=DirectionalCovariantDerivative (Bv[m],realZ ,Gamma) ;
Zclc:=[seq( DGinformation(Zclb,” CoefficientList” ,[[a[l]]])
(1], a=XA) |;

Zc2: —[seq(DGlnformatlon(evalDG((1)/(dlmbase 2)xterml) )’
CoefficientList” ,[[b[1] ,m]]) [1], b=XA)];

Zc3: —[seq(DGmformaMon(evalDG((1)/(dlmbase 2)xterm2) ,”
CoefficientList” ,[[b[1] ,m]]) [1], b=XA)];

Zc4: —[seq(DGlnformatlon(evalDG((1) /(dlmbase— )*YR) ,”
CoefficientList” ,[[b[1] ,m]]) [1], b=XA)];

Zc5:z[seq(DGinformatlon(evalDG((1)/(dlmbase 2)xYR) ,”
CoefficientList” ,[[m,b[1]]]) [1], b=XA)];

Zel:=[seq(Zc2[i] + Zc3[i] + Zcd[i] + Zch[i] + Zele[i],i=1..

nops(Zcle)) |;

Eqns | |m:=ListTools:—Flatten ([Xcl,Ycl,Fcl,Zcl]) ;

Mat | jm:=evalDG (LinearAlgebra:—GenerateMatrix (Eqns | |m, Comps2) *
Bf [m]) ;

od;

#Lastly , we will piece together the matrix and build the
connection from it.

BigMat:=add (Mat||i,i=1..dimbase);
Connection (BigMat ) ;
end:
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lift ConfKV:=proc (X,g,Q) local Bf,dimbase, Bft ,Fv,forms2 ,Gamma,
gin , Xcomps , omega , Omega , Omegacomps , F, Fcomps ,Z, Zcomps , COMPS,
liftedKV ;

Bf:=DGinformation (Q,” FrameBaseForms”) ;

dimbase:=nops (Bf) ;

Bft:=map(convert , Bf ,DGtensor) ;

Fv:=DGinformation (Q,” FrameFiberVectors”) ;

forms2:=GenerateForms(Bf,2) ;

Gamma:= Christoffel (g);
gin:=InverseMetric(g);

Xcomps:=GetComponents (X, Bf) ;
#HdummyX:=DGzip ([seq(z||i,i=1..dimbase) | ,Bf,” plus”);

omega:=Symmetrizelndices (evalDG(— CovariantDerivative (X,Gamma)
),[1,2],” SkewSymmetric”) ;

Omega:=convert (omega , DGform) ;

Omegacomps:=GetComponents (Omega, forms2 ) ;

F:=evalDG(—(1/dimbase)*xContractIndices (CovariantDerivative (
RaiseLowerIndices (gin ,X,[1]) ,Gamma) ,[[1,2]]));
Fcomps:=[F];

Z:=evalDG(—CovariantDerivative (F,Gamma) ) ;
Zcomps:=GetComponents (Z, Bft) ;

COMPS:=ListTools:—FlattenOnce ( [ Xcomps, Omegacomps , Fcomps ,
Zcomps|) ;
lifted KV :=DGzip (COMPS, Fv,” plus”) ;

end :

getConfKV:=proc(X,Q) local Bf,dimbase,Fv,Xcomps,Xcomps2, realX
Bf:=DGinformation (Q,” FrameBaseForms” ) ;

dimbase:=nops (Bf) ;

Fv:=DGinformation (Q,” FrameFiberVectors”) ;
Xcomps:=GetComponents (X, Fv) ;

Xcomps2:=[seq (Xcomps|[i],i=1..dimbase)];

real X:=DGzip (Xcomps2, Bf ,” plus”) ;

end:
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HauserTractorConnection:=proc (Gamma,T) local Bv,Bf CT,dimbase
,Fv,ktb ,KA, 1tb , Ltb ,LA, mtb, Mtb ,MA, numK, numL ,numM, K1,K2,L1,
L2 ,M1,M2, Comps, Comps2 , Comps3 , Compsd , realK , reall ,realM KR,
Lel ,dR,KdR,RL2,RL3,Mcl, Eqns , Kcla,Kc2,Ke3, Lela, Le2, Le3 |, Led
Leb, Le6 , Le7,Le8 , Le9, Lel0 , Mcla, Mc2, Mc3, Mc4, Mc5, Mc6, Mc7, McS8,
Mc9,Mc10,Mcl1,Mc12,Mcl13,Mcl4,Mcl5,Mcl6,Mcl7,Mcl18,Mc19, Mc20
, Mc21 ,Mc22 , Mc23 , Mc24 , Mc25, Mc26 , Mc27, Mc28 , Mc29 , Mc30 , Mc31
Me32,Mc33 ,Mc34 , Mc35, Mc36 , Mc37 , Mc38, Mc39, Mc40 , Mc41 , Mc42,
Mc43 , Mc44 ,Mc45 , Mc46 , Mc47 , Mc48 , Mc49 , Mc50, Mcb1 , McdH2 , McdH3,
Mcb4 ,Mcb5,Kel ,Kelb, Kele, Lelb, Lele ,Mclb,Mcle,m, BigMat ;

Bv:=DGinformation (T,” FrameBaseVectors”) ;
Bf:=DGinformation (T,” FrameBaseForms” ) ;

CT:=CurvatureTensor (Gamma) ;

dimbase:=nops (Bv) ;
Fv:=DGinformation (T,” FrameFiberVectors”) ;

#Here we get the independent components list for each tensor.

ktb:=YoungTableauBasis ([2] , dimbase , output="Matrix”) ;

KA:=[seq ([ktb[i][1][1] ,ktb[i][1][2]],i=1..nops(ktb))];

Itb:=YoungTableauBasis ([2,1] ,dimbase , output="Matrix” ) ;

Ltb:=map(LinearAlgebra:—Transpose,ltb);

LA:=[seq ([Ltb[i][1][1],Ltb[i][1][2],Ltb[i][2][1]],i=1..nops(
Ltb)) ];

mtb:=YoungTableauBasis ([2,2] ,dimbase , output="Matrix”) ;

Mtb:=map( LinearAlgebra:—Transpose ,mtb) ;

MA:=[seq ([Mtb[i][1][1] ,Mth[i][1][2] ,Mtb[i][2][1] ,Mtb[i
1[2][2]] ,i=1..nops (Mib))

numK:=nops (KA) ;
numl:=nops (LA) ;
numM:=nops (MA) ;

K1:=DG ([[” tensor”, T, [[” cov_bas”, "cov_bas”], []]], [seq(]
KA[i],z||i],i=1..numK) |]) ;
K2:=YoungSymmetrizer (K1, Matrix ([[1,2]]));

L1:=DG([[” tensor”, T, [[” cov_bas”, "cov_bas”,” cov_bas”],
[11], [seq([LA[i—numK],z||i],i=l+numK..numK4numL) |]) ;
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L2:=YoungSymmetrizer (L1, Matrix ([[1,3],[2]]));

=DG([[” tensor”, T, [[” cov_bas”, "cov_bas”,” cov_bas”,”
cov_bas”], []]], [seq([MA[i—numLnumK],z || 1] : 1_1+nmnK+numL
.. numK4numlAnumM) | 1) ;

M2:=YoungSymmetrizer (M1, Matrix ([[1,3],[2,4]]));

Comps:=ListTools:—FlattenOnce ([[ seq (DGinformation (K2,”
CoefficientList” ,[a]) [1],a=KA) ] ,[seq(DGinformation (L2,”
CoefficientList” ,[a]) [1], a—LA)] [seq (DGinformation (M2,”
CoefficientList” ,[a]) [1], a:MA)]])

Comps2:=[seq(y||i,i=1..nops(Comps))|;
Comps3:=[seq(Comps[i]| = Comps2[i], i=1..nops(Comps)) |;
Compsd:=solve (Comps3,{seq(z||i,i=1..nops(Comps))});

realK:=evalDG (simplify (subs (Comps4 ,K2)));
reallL:=evalDG(simplify (subs(Comps4,L2)));
realM:=evalDG (simplify (subs (Comps4 ,M2)));

#Having constructed K, L, and M, we give the first structure
equation .

KR:=ContractIndices ( realK ,CT,[[2,1]]):
dR:=CovariantDerivative (CT,Gamma) ;

KdR:=ContractIndices (realK ,dR,[[2,1]]) ;
RL2:=ContractIndices (CT,reall ,[[1,2]]) ;
RL3:=ContractIndices (CT, reall ,[[1,3]]) ;

for m in seq(i,i=1..dimbase) do
Kclb:=DirectionalCovariantDerivative (Bv[m] , realK ,Gamma) ;
Kcle:=[seq( DGinformation(Kclb,” CoefficientList” ,[[a][l],a
(2]]]) (1], a=KA) |
[seq (DGinformation (evalDG(1/3xreall),” CoefficientList
(mal1],a[2]]]) [1], a=KA)
Ke3:=[seq (DGlnformatlon(evalDG(
[fm,af2],a[1]]]) [1], a=KA)
Kel:=[seq(Kc2[i]+Ke3[i] + Kcle[i],i=1..nops(Kclc)) ];
#was the last sign a minus??

Y

1

J;

1/3xreall),” CoefficientList
I;

i

bM

#End of first structure equation.

#The next Structure equation is as follows. First, we give
all of the terms.
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Lelb:=DirectionalCovariantDerivative (Bv[m] ,reall ,Gamma) ;
Lele:=[seq( DGinformation(Lclb,” CoefficientList” ,[[a[l],a[2],
a[3]]]) [1],a=LA) ]
Lc2:=[seq(DGinformation (evalDG
[3] m,all],af2]]]) [1], a=LA
Lc3:=[seq(DGinformation (evalDG
al3],all],a[2]]]) [1], a=LA)
Lcd:=[seq(DGinformation (evalDG
[1] m,a[3],af2]]]) [1], a=LA
Lch:=[seq(DGinformation (evalDG
[2] m,a[3],all]]]) [1], a=LA

(5/4+KR) ,” CoefficientList” |[[a
)
(
I
(
)
1
Lc6: —[seq(DGlnformatlon(evalDG(l’/Z KR),” CoefficientList” ,[[a
) 1
(
)
(
)
(
)

)
I;
3/4xKR) ,” CoefficientList” ,[[m,
1/2xKR) ,” CoefficientList” ,[[a
J;

1/2«KR) ,” CoefficientList” ,[[a

(1], a[3] ,m,af2]]]) [1], a=LA
Le7:=[seq(DGinformation (evalDG(—1/2%KR) ,” CoefficientList” ,[[a
(2] ,a[3] ,m,al1]]]) [1], a=LA
Lc8:=[seq(DGinformation (evalDG
(2] ,a[1],a[3] ,m]]) [1], a=LA
Lc9:=[seq(DGinformation (evalDG(—
[1],a[2],a[3] ,m]]) [1], a=LA)];
Lcl0:=[seq(DGinformation (realM ,” CoefficientList” ,[[a[l],a[2],
a[3] m]]) [1], a=LA)];

I;
1/4%KR) ,” CoefficientList” ,[[a
I;

1/4«KR) ,” CoefficientList” ,[[a

7

#Now we ”zip” the terms together.
Lel:=[seq(Le2]i

] + Le3[i] + Led[i] + Leb[i] + Le6[i] + Le7[i]
+ Le8[i] + Le9

[i] + Lcl0[i] + Lele[i],i=1..nops(Lclc))];

#Having constructed the second structure equation, we
construct the last.

#Now we give each term separately , as before.

#’easy” part:

Mclb:=DirectionalCovariantDerivative (Bv[m] ,realM ,Gamma) ;

Mclc:=[seq( DGinformation(Mclb,” CoefficientList” ,[[a[l],a[2],
a[3],a[4]]]) [1],a=MA) ];

#KdR terms:

Me2:=[seq (DGinformation (evalDG((—1)*KdR) ,” CoefficientList” ,[]
m,a[3],all],a[2],a[4] ]])[1], a=MA)];

Me3:=[seq (DGinformation (evalDG (( — 1)*KdR) ,V CoefficientList” |[]
m,al4],a[2],a[1],a[3] ]]) [1], a=MA)];

Mc4:=[seq (DGinformation (evalDG((—1)*KdR) ,” CoefficientList " ,[]
al4] ym,af2],a[l],a[3] ]])[1], a=MA)];

Mc5:=[seq (DGinformation (evalDG(—(—1)*KdR) ,” CoefficientList
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#End of line 1
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Mc6:=[seq (DGinformation (evalDG(1/2x(—1)*KdR) ,” CoefficientList
Tl all] al3] moaf2] al4] ) [1], a=MA) [;

Mc7:=[seq (DGinformation (evalDG(1/2x(—1)*KdR) ,” CoefficientList
Tl afl] al4]al2] moaf3] 1) [1], a=MA) |5

Mc8:=[seq (DGinformation (evalDG(1/2%(—1)*KdR) ,” CoefficientList
VLl al2]al3] all] mal4] J]) (1], a=MA) |

Mc9:=[seq (DGinformation (evalDG(1/2x(—1)*KdR) ,” CoefficientList
Tl af2]al4] mall] af3] 1) [1], a=MA) ];

Mcl10:=[seq (DGinformation (evalDG(1/2%(—1)*KdR) ,”
CoefficientList” ,[[ a[2],m,a[4],a[3],a[1l] ]])[1], a=MA)];

#End of line 2
Mcll:=[seq(DGinformation (evalDG(—1/2x(—1)*KdR) ,”
CoefficientList” ,[]

| m,ald],a[3],a[2] ]])[1], a=MA)];

Mc12::[seq(DG1nformat10n evalDG(l/Zl*(—l)*KdR)
CoefficientList” ,[] 2] ;all],a[4],a[3] ,m |])[1], a=MA) |;
evalDG(—1/4x(—1)«KdR) ,”
CoefficientList” ,[] ],a[2],a[4],a[3] ,m ]])[ |, a=MA) |;
Mcl4: —[seq(DGlnformatlon evalDG(1/4%(—1)«KdR) ,”

CoefficientList” ,[] ],af[4],a[2],a[1l] ,m ]])
Meclb: —[seq(DGlnformatlon evalDG(—1/4x(—1)«KdR) ,”

CoefficientList” [[[ a[4],a[3],a[2],a[l] ,m |])
#End of line 3: end of KdR terms.

(
all
g
Mc13: —[Seq(DGlnformatlon(
all
(
a3
(

#Beginning of RL2 terms.
Mcl6:=[seq(DGinformation (evalDG(1/2xRL2) ,” CoefficientList”

all],a[3] ,mal2],al4] ]])[1], a=MA)];
Mcl7: —[seq(DGlnformation(evalDG(—l/Q*RLQ) ;" CoefficientList
VLI afl]al4] moaf2],af3] 1) [1], a=MA)];
Mcl8:=[seq(DGinformation (evalDG(—1/2«RL2) ,” CoefficientList
"I af2],al3] moall] af4] 1) [1], a=MA)J;
Mc19:=[seq(DGinformation (evalDG(1/2xRL2) ,” CoefficientList”
a[2],al4] mall],a[3] ]]) [1], a=MA)];
Mc20: —[seq(DGlnformatlon(evalDG( 1/2xRL2) ,” CoefficientList
"Ll afl] al4],al3] a [(] m J]) [1], a=MA)];

Mc21:=[seq(DGinformation (evalDG(1/2xRL2) ,” CoefficientList”
al2],al4],a[3],a[1],m J]) [1], a=MA)];
#End of line 4

Mc22:=[seq(DGinformation (evalDG(—1/3«RL2) ,” CoefficientList
"Ll af3],al2],all]al4] m J]) [1], a=MA) |5

Mc23: —[seq(DGlnformatlon(evalDG(1/3*RL2) " CoefficientList”
al4],al2],a[l],a[3] ,m J]) [1], a=MA)];

[1], a=MA) ];

(1], a=MA) |;
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#Mc22:=[seq(DGinformation (evalDG(—1/6xRL2) ,” CoefficientList
"L all]sal2],al3]al4] m J]) [1], a=MA) |;

#Mc23:=[seq (DGinformation (evalDG(1/6+RL2) ,” CoefficientList
VLI afl] al2],al4] af3] m J]) [1], a=MA)|;

#Mc24:=[seq (DGinformation (evalDG(1/6«RL2) ,” CoefficientList
"Ll al2] all] al3] al4] m J]) [1], a=MA)J;

#Mc25:=[seq (DGinformation (evalDG(—1/6%RL2) ,” CoefficientList
TLI0 al2],all]af4] ,a 3] m |]) [1], a=MA) |y

#End of line 5

Mc26:=[seq (DGinformation (evalDG(—1/6%RL2) ,” CoefficientList
7oL al3] moall] al4],af2] ]])[1], a=MA)];

Mc27:=[seq(DGinformation (evalDG(—1/6«RL2) ,” CoefficientList
VLl moal3]),all] al4],af2] J]) [1], a=MA)];

Mc28:=[seq (DGinformation (evalDG(1/6«RL2) ,” CoefficientList” ,[]

al4] ,m,all],a[3],a[2] ]])[1], a=MA)J;
Mc29: —[Seq(DGlnformatlon(evalDG(l/G*RLQ) ,V CoefficientList” |[]
m,al4] a[l],a[3],a[2] ]])[1], a=MA)];

#End of line 6

Mc30:=[seq (DGinformation (evalDG(1/6«RL2) ,” CoefficientList” ,[]
a[3],m,al2],al4],a[1l] ]])[1], a=MA)T;

Me31: —[seq(DGlnformatlon(evalDG(l/G*RLQ) ,V CoefficientList” |[]
m,a[3],a[2] al4],a[l] ]]) [1], a=MA)];

M032::[seq(DGinformation(evalDG(—1/6*RL2) ;7 CoefficientList
VLI al4] moal2],a[3],all] J])[1], a=MA)];

Me33:=[seq (DGinformation (evalDG(—1/6«RL2) ,” CoefficientList
"ol moal4],al2],a[3],a1] J]) [1], a=MA)];

#End of line 7

Me34:=[seq(DGinformation (evalDG(1/12xRL2) ,” CoefficientList
VL[ all] al4] al3] moaf2] ]]) [1], a=MA)J];

[
Mce35:=[seq (DGinformation (evalDG(—1/12«RL2) ,” CoefficientList
"SI al2],al4] al3] moall] ]]) [1], a=MA)];
Me36:=[seq (DGinformation (evalDG(—1/12«RL2) ,” CoefficientList
VLl al3]sal2] all] imoal4] 1) [1], a=MA)[;
Me37: :[seq(DGlnformatlon(evalDG(l/lZ*RLQ) 7 CoefficientList

"I al4],al2] all] ,mal3] ]]) [1], a=MA)];
#End of line 8 and end of RL2 terms.

#Beginning of RL3 terms.

Me38:=[seq(DGinformation (evalDG(—1/3«RL3) ,” CoefficientList
"Ll af3],al2],all] al4] m J]) [1], a=MA) |;

Me39: —[seq(DGlnformatlon(evalDG(1/3*RL3) 7" CoefficientList ” ,[]
al4],al2],all],a[3],m J])[1], a=MA)];
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#Mc38:=[seq (DGinformation (evalDG(—1/6xRL3) ,” CoefficientList
"Ll all]sal2],al3]al4] m J]) [1], a=MA) [;

#Mc39:=[seq (DGinformation (evalDG(1/6+RL3) ,” CoefficientList
VLML afl]sal2]al4]af3] m J]) [1], a=MA)[;

#Mc40:=[seq (DGinformation (evalDG(1/6+RL3) ,” CoefficientList
"Ll al2] all] al3] al4] m J]) [1], a=MA) |5

#Mcdl:=[seq (DGinformation (evalDG(—1/6%RL3) ,” CoefficientList
TLI0 al2],all]af4] ,a 3] m |]) [1], a=MA) |y

#End of line 9

Mc42:=[seq (DGinformation (evalDG(—1/6«RL3) ,” CoefficientList
"I al3] moall],al4],af2] J])[1], a=MA)];

Mc43:=[seq(DGinformation (evalDG(—1/6«RL3) ,” CoefficientList
VLl moal3]),all] al4],af2] J]) [1], a=MA)];

Mc44:=[seq(DGinformation (evalDG(1/6%RL3) ,” CoefficientList” ,[]

al4] ,m,all],a[3],a[2] ]])[1], a=MA)J;
Mec4b: —[Seq(DGlnformatlon(evalDG(l/G*RL?)) ,V CoefficientList” |[]
m,al4] a[l],a[3],a[2] ]])[1], a=MA)];

#End of line 10

Mc46:=[seq (DGinformation (evalDG(1/6«RL3) ,” CoefficientList” ,[]
a[3],m,al2],al4],a[1] ]])[1], a=MA)];

McAT: —[seq(DGlnformatlon(evalDG(l/G*RLi’)) ,V CoefficientList” |[]
m,a[3],a[2] al4],a[l] ]]) [1], a=MA)];

Mc48::[seq(DGinformation(evalDG(—1/6*RL3) ,” CoefficientList
TLI0 al4] mal2],al3],all] J])[1], a=MA)];

Mc49:=[seq (DGinformation (evalDG(—1/6«RL3) ,” CoefficientList
"ol moal4],a2],a[3],a1] J]) [1], a=MA)];

#End of line 11

Mc50:=[seq (DGinformation (evalDG(1/12%RL3) ,” CoefficientList
VLI all]al4]al3] moaf2] ]]) [1], a=MA)J];

:=[seq (DGinformation (evalDG(—1/12«RL3) ,” CoefficientList

[[ af2],a[4],a[3] m,all] ]])[1], a=MA)];

Mch2:=[seq(DGinformation (evalDG(—1/12«RL3) ,” CoefficientList

[l al3],al2],afl] mal4] J])[1], a=MA)];

:[seq(DGlnformatlon(evalDG(l/lZ*RL?)) 7 CoefficientList
[[ af4],af2],all] ma[3] ]])[1], a=MA)];

Mcbh4 —[seq(DGinformation(RL3,” CoefficientList” ,[[ m,a[4],a
[3],all],al2] ]])[1], a=MA)];

Mcbhh:=[seq(DGinformation (RL3,” CoefficientList” ,[[ m,a[2], a
(1] al3],al4] ]]) [1], a=MA)];

#End of line 12

#End of terms.

Mc6[i] + Mc7[i

#Mcl:=[seq(Mc2[i] + Mc ] +
] i] + Mcll[i] + Mcl12[i] + Mcl3[i

+ Mcd[i] + Mc5|i
] + Me8[i] + Mc9][i [

3[1]
+ Mc10
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] + Mcl4[i] + Mcl5[i] + Mcl6[i] + Mcl7[i] + Mcl8[i] + Mcl9
[i] + Mc20[i] + Mc21[i] + Me22[i] + Me23[i] + Mc24[i] +
Mc25[i] + Mc26[i] + Mc27[i] + Mc28[i] + Mc29[i] + Mc30[i]
+ Mce31[i] + Me32[i] + Me33[i] + Me34[i] + Me35[i] + Me36]1
] + Me37[1] + Me38[i] + Me39[i] + Mcd40[i] + Medl[i] + Mc4d2
(1] + Mc43[i] + Mcdd[i] + Mcd5[i] + Mcd6[i] + Med7[i] +
Mc48[i] + Mc49[i] + Mc50[i] + Mcbl[i] + Mc52[i] + Mch3[1i]
+ Mcb4[i] + Mcb5[i] + Mcle[i],i=1..nops(Mclc))];

Mcl:=[seq(Mc2[i] + Mc3[i] + Mc4[i] + Mc5[i] + Mc6[i] + Mc7[1i]
+ Mc8[i] + Mc9[i] + MclO[i] + Mcll[i] + Mcl2[i] + Mcl3[1i]
+ Mcl4[i] + Mcl5[i] + Mcl6[i] + Mcl7[i] + Mcl8[i] + Mc19[
1] + Mc20[i] 4+ Me21[i] + Mc22[i] + Me23[i] + Mce26[i] +

Mc27[i] + Mc28[i] + Mc29[i] + Mc30[i] + Mc31[i] + Me32][i]
+ Mc33[1] + Me34[i] + Me35[i] + Me36[i] + Me37[i] + Me38[1i
] + Mce39[i] + Mcd2[i] + Mc43[i] + Mcd4[i] + Med5[i] + Mcd6
[i] + Mcd7[i] + Med8[i] + Med9[i] + Mc50[i] + Mc51[i] +
Mcb52[i] + Mceb3[i] + Mch4[i] + Mceb5[i] + Mcle[i],i=1..nops(
Mcle)) ]

Eqns | |m:=ListTools:—Flatten ([Kecl,Lel ,Mcl]) ;

Mat | [m:=evalDG (LinearAlgebra:— GenerateMatrix (Eqns | |m, Comps2 ) *
Bf{m]) ;

od;

BigMat:=add (Mat||i,i=1..dimbase);
Connection (BigMat ) ;

end :

HauserTractorLift2:=proc (K,Gamma,Q) local Bv,Bf, dimbase, Fv,
ktb,ytb,Ytb,mtb, Mth,KA,LA ,MA,dK, L ,numK, numL ,numM, dL., dLs , M,
Kcomps, Lcomps , Mcomps , COMPS;, lifted KT ;

Bv:=DGinformation (Q,” FrameBaseVectors”) ;

Bf:=DGinformation (Q,” FrameBaseForms” ) ;

dimbase:=nops (Bv) ;
Fv:=DGinformation (Q,” FrameFiberVectors”) ;

#Here we get the independent components list for each tensor.

ktb:=YoungTableauBasis ([2] , dimbase , output="Matrix”) ;
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KA:=[seq ([ktb[i][1][1] ,ktb[i][1][2]],i=1..nops(ktb))];

ytb:=YoungTableauBasis ([2,1],dimbase ,output="Matrix”) ;

Ytb:=map( LinearAlgebra:—Transpose ,ytb);

LA:=[seq ([Ytb[i][1][1],Ytb[i][1][2],Ytb[i][2][1]],i=1..nops(
Ytb)) J;

mth:=YoungTableauBasis ([2,2] ,dimbase , output="Matrix”) ;

Mtb:=map( LinearAlgebra:—Transpose ,mtb) ;

MA:=[seq ([Mtb[i][1][1] ,Mtb[i][1][2] ,Mtb[i][2][1] ,Mtb]i
[2](2]] i =1..nops (Mtb)) ]

dK:=CovariantDerivative (K,Gamma) ;

L:=evalDG(2%(—1)*Rearrangelndices (Symmetrizelndices (dK
,[2,3],” SkewSymmetric”) [ [[3,1],[2]]));

dL:=CovariantDerivative (L,Gamma) ;
dLs:=Symmetrizelndices (dL,[3 ,4],” SkewSymmetric”) ;

M:=evalDG(1/2%(—1)*( dLs + Rearrangelndices(dLs
035105 0452]]) )

Kcomps:=DGinformation (K,” CoefficientList” KA);
Lecomps:=DGinformation (L,” CoefficientList” ,LA);
Mcomps:=DGinformation (M,” CoefficientList” MA);
COMPS:=ListTools:—FlattenOnce ( [ Kcomps, Lcomps , Mcomps | ) ;

lifted KT :=DGzip (COMPS, Fv,” plus”) ;

end :

getHauserKT2:=proc (KT,Q) local Bv,dimbase,Fv, ktb K1, K2 numK,
Kcomps , KA, Comps, Comps2 , Comps3 , Comps4 , Compsb , realK , RealK,
ZFERO:;

Bv:=DGinformation (Q,” FrameBaseVectors”) ;

dimbase:=nops (Bv) ;

Fv:=DGinformation (Q,” FrameFiberVectors”) ;

ktb:=YoungTableauBasis ([2] , dimbase , output="Matrix”) ;

KA:=[seq ([ktb[i][1][1] ,ktb[i][1][2]],i=1..nops(ktb))];

numK:=nops (KA) ;

K1:=DG ([[” tensor”, Q, [[” cov_bas”, "cov_bas”], []]]. [seq(]
KA[i],z||i],i=1..numK) |]) ;

K2:=YoungSymmetrizer (K1, Matrix ([[1,2]]) );
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Kcomps:=[seq (GetComponents (KT,Fv) [i],i=1..numK) |;

Comps:=[seq(DGinformation (K2,” CoefficientList” ,[a]) [1],a=KA)
I

Comps2:=[seq(y||i,i=1..nops(Comps)) |;

Comps3:=[seq(Comps|[i] = Comps2[i], i=1..nops(Comps)) |;

Compsd:=solve (Comps3,{seq(z||i,i=1..nops(Comps))});

realK:=evalDG (simplify (subs (Compsd ,K2)));
Comps5:=[seq (Comps2[i] = Kcomps[i], i=1..nops(Kcomps)) |;

ZERO:=DG ([[” tensor”, Q, [[” cov_bas”, "cov_bas”], []]], [[[1,
1, 0J]]);

RealK:=evalDG (evalDG (simplify (subs (Comps5, realK) ) )+ZERO) ;
end:

KYTracCon:=proc (Gamma, k ,Q) local Bv,dimbase,Bf,Fl numF, F11,
numF1, Ff Ft FA F1f F1t ,F1A,CT,CTF,m,Fclb, Fclc,Fc2,Fcl,
Flclb,Flcle,Flcl ,Flc2,BigMat, flc2a ,flc2b;

Bv:=DGinformation (Q,” FrameBaseVectors”) ;
dimbase:=nops (Bv) ;

Bf:=DGinformation (Q,” FrameBaseForms”) ;
Fl:=GenerateDGobjects [ DGforms | ( Bf , k) ;
numF:=nops (F1);

if dimbase=k then

#This first part deals with the case in which the dimension
is equal to the rank.

Ff:=DGzip ([seq(z||i,i=1..numF)]|,F1,” plus”);
Ft:=convert (Ff, DGtensor) ;
FA:=[seq(op(1l,op(2,0op(F1[i]))[1]),i=1..numF)];

F1f:=DGzip ([0] ,F1,” plus”);
Flt:=convert (F1f,DGtensor) ;

for m in seq(i,i=1..dimbase) do
Fclb:=DirectionalCovariantDerivative (Bv[m], Ft ,Gamma) ;

I

Fcle:=[seq( DGinformation(Fclb,” CoefficientList” ,[a]) [1],a=FA
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)]s

Fc2:=DGinformation (F1t,” CoefficientList” ,[seq(ListTools:—
FlattenOnce ([[m],a]) ,a=FA)]);
Fcl:=[seq(Fc2[i]+Fclc[i],i=1..nops(Fclec))|;

Eqns | |m:=ListTools:—Flatten ([Fecl]) ;

Mat | |m:=evalDG (LinearAlgebra:—GenerateMatrix (Eqns | |m,[seq(z ||
i,i=1..numF)|)*«Bf[m]) ;

od;

#Lastly , we will piece together the matrix and build the
connection from it.

BigMat:=add (Mat ||i,i=1..dimbase) ;
Connection (BigMat ) ;

#Now we handle all other cases.

else

Fll:=GenerateDGobjects [ DGforms| ( Bf ,k+1);
numFl:=nops (F11);

Ff:=DGzip ([seq(z||i,i=1..numF)|,F1,” plus”);
Ft:=convert (Ff, DGtensor) ;
FA:=[seq(op(l,op(2,0op(FI[i]))[1]),i=1..nmumF)];

F1f:=DGzip ([seq(z || i, i=l4numF .. numF+numF1) ], F11,” plus”);
Flt:=convert (F1f,DGtensor) ;
F1A:=[seq(op(l,op(2,0op(F11[i]))[1]),i=1..numF1)];

CT:=CurvatureTensor (Gamma) ;
CTF:=ContractIndices (CT,Ft,[[1,1]]);

for m in seq(i,i=1..dimbase) do

Fclb:=DirectionalCovariantDerivative (Bv[m] ,Ft ,Gamma) ;

Fcle:=[seq( DGinformation(Fclb,” CoefficientList” ,[a]) [1],a=FA
)15

Fc2:=DGinformation (F1t,” CoefficientList” [seq(ListTools:—
FlattenOnce ([[m],a]) ,a=FA)]);

Fel:=[seq(Fc2[i]+Fclc[i],i=1..nops(Fclc))];

Flclb:=DirectionalCovariantDerivative (Bv[m],F1t,Gamma) ;
Flclc:=[seq( DGinformation(Flclb,” CoefficientList”  [a])[1l], a=
F1A) J;
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flc2a:=evalDG ((1)*Symmetrizelndices (CTF,[seq(k+2—i,i=0..k—2)
,1],” SkewSymmetric”) ) ;

flc2b:=evalDG(((—1) "kx(k+1)/k)*Symmetrizelndices (flc2a ,[seq(k
+2-1,i=0..k—2),2,1],” SkewSymmetric”) ) ;

Flc2:=[seq(DGinformation (evalDG (kxflc2b) ,” CoefficientList” |[]
a[2],a[l] ,m,seq(a[i],i=3..k+1)]]) [1], a=F1A)];

Flcl:=[seq(F1lc2[i] +Flclc|[i],i=1..nops(Flclc))];

Eqns | |m:=ListTools:—Flatten ([Fcl ,Flecl]) ;

Mat | |m:=evalDG (LinearAlgebra:—GenerateMatrix (Eqns | |m,[seq(z ||
i,i=1..numF4numF1)|)*«Bf[m]) ;

od;

#Lastly , we will piece together the matrix and build the
connection from it.

BigMat:=add (Mat ||i,i=1..dimbase) ;
Connection (BigMat) ;
fi;

lift K'Y :=proc (F,Gamma,Q) local Bv,dimbase,Bf k,Fl numF,6 F11,
numF1,Fv FA F1A dF,dFs,F1,Fcomps, Flcomps,COMPS, liftedKY ;

Bv:=DGinformation (Q,” FrameBaseVectors”) ;
dimbase:=nops (Bv) ;
Bf:=DGinformation (

(

)

Q,” FrameBaseForms”) ;
Q,” FrameFiberVectors”) ;

Fv:=DGinformation
k:=op (1,0p(F)) [3]

if k=dimbase then

evalDG (DGinformation (F,” CoefficientSet”) [1]*Fv[1]) ;
else

Fl:=GenerateDGobjects [ DGforms | ( Bf , k) ;
numF:=nops (F1) ;

Fll:=GenerateDGobjects [ DGforms | ( Bf ,k+1);
numF1l:=nops (F11);
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Fv:=DGinformation (Q,” FrameFiberVectors”) ;
FA:=[seq (op(1,0p(2,0p(F1[i])) [1]) ,i=1..mumF)
FlA:=[seq(op(1,op(2,op(F11[i]))[1]),i=1..numF1)];

dF:=CovariantDerivative (F,Gamma) ;

dFs:=evalDG (Symmetrizelndices (dF,[seq(i,i=1..k+1)].”
SkewSymmetric”) ) ;

Fl:=Rearrangelndices (dFs,[seq(k+2—i,i=1..k+1)]);

Fcomps:=DGinformation (F,” CoefficientList” FA);
Flcomps:=DGinformation (F1,” CoefficientList” F1A);
COMPS:=ListTools:—FlattenOnce ([Fcomps, Flcomps]) ;

liftedKY :=DGzip (COMPS, Fv,” plus”) ;
fi;
end:

getKY:=proc (KY,k,Q) local Fv, Bf, 6 dimbase ,numF, Fl, K Fcomps, Ff,
ZERO, RealF ;

Fv:=DGinformation (

Bf:=DGinformation (Q,” FrameBaseForms” ) ;

dimbase:=nops (Bf) ;

Q,” FrameFiberVectors”) ;

Fl:=GenerateDGobjects [ DGforms | ( Bf , k) ;
numF:=nops (F1);
Fcomps:=[seq (GetComponents (KY,Fv) [i],i=1..numF) |;

Ff:=DGuzip ([seq(z||i,i=1..numF)],Fl,” plus”);

ZERO:=DG ([[” form”,Q,k] ,[[[1,1],0]]]);
RealF:=evalDG (subs ([seq(z || i=Fcomps[i],i=1..numF) |, Ff)4+ZERO) ;

end :
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MaxKY:=proc(n,k) local numF,numF1;
numF:=binomial (n,k);
numFl:=binomial (n,k+1);
numbF4numkF1;

end:

MaxSym:=proc (m,n)

#Calculates the number of independent components of a
completely symmetric tensor.

(mn—1)!/(n!x(m—1)!)

end:

MaxSkew:=proc (m,n)

#Calculates the number of independent components of a
completely skew—symmetric tensor (should be the binomial
formula) .

m!/(n!*(mn)!);

end:

MaxCF:=proc (n,p) ;

#Calculates the maximum number of conformal Killing forms in
n dimensions of rank p.

binomial (n+2,p+1);

end:

KillingTensorLibrary:=module () export ModuleApply;

#The following read command would read in the entire database
, which is now quite large. Thus, this program has been
amended to read in only the file required.

#read " Database_table.txt”;

ModuleApply := proc(n,name,{output:=[]}) local filename
filenamestr ,C,V,outl ,out2 ,name2, list ,1ist2 ,list3; # name
of manifold.
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filename:= kt||n;
filenamestr:=cat (” kt_entries /”  cat(convert (filename ,string)
Jotxt ) )

read filenamestr;

V := Ben[n]|[” Coordinates”];

DGEnvironment [ Coordinate | (V,name) ;

C := Ben[n][” Metric”];

if output <> [] then outl:=op(1,output) fi;

if nops(output) >= 2 then out2:=op(2,output) fi;
if nops(output) >= 3 then name2:=op(3,output) fi;

if output = [] then return

DG ([[” tensor” ,name, [[” cov_bas”,” cov_bas”]| ,[]]] ,C]); #change
the lprint to name;

fi;

if type(outl,integer) then #return #then return the
irreducible killing tensors of order k.

list:=Ben[n][” IrreducibleKillingTensors” ,outl |;

return [seq (DG ([[” tensor” ,name, [[seq(” cov_bas” ,i=1..outl)

LI st 11 g =1emops(1ist)) s

if output = [”" KillingTensors” ,out2]| then
list:=Ben[n][outl,out2];

return [seq(.DG([[” tensor” ,name, [[seq(” cov_bas” ,i=1..0ut2)
LIt 5 =Les(15t)

i

)

if output = [”" KillingYanoTensors” ;out2]| then
list:=Ben[n][outl, 6 out2];
return [seq (DG ([[” form” jname,out2],list [j]]),j=1..nops(list)

)]s
fi;

if output = [” ConformalKillingForms” jout2| then
list:=Ben[n]|[outl,out2];
return [seq (DG ([[” form” jname,out2],list [j]]),j=1..nops(list)

) 1
fi;

if output = [” IrreducibleRank”] then
list :=[seq(lhs (op(op(Ben)[n])[i]),i=1..nops(op(op(Ben)[n])))
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list2:=[ListTools:—SearchAll (” IrreducibleKillingTensors”, list
)]s

list3 :=[seq(list [list2[i]+1],i=1..nops(list2))];

return list3;

fi;

if output = [” Notes”] then return Ben[n][” Notes”| fi;

if output = [” Reference”]| then return Ben|[n][” Reference”] fi;

if output = [” Coordinates”]| then return Ben[n]|[” Coordinates” ]
fi;

if output = [” TractorConnection” ,out2,name2] then

DGEnvironment [ VectorSpace | (MaxKT(nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs) ;

DGEnvironment [ VectorBundle | (name, name2_vs ,name2) ;

return

DG([[” connection”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas
"1, []]1], Ben[n][” TractorConnection” ,out2]]) ;

fi;

if output = [” TractorCurvature” ,out2 ,name2]| then

DGEnvironment [ VectorSpace | (MaxKT (nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs);

DGEnvironment [ VectorBundle | (name, name2_vs ,name2) ;

return

DG ([[” tensor”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas”, ”
cov_bas”], []]], Ben[n][” TractorCurvature” ,out2]]) ;

fi;

if output = [” YanoTractorConnection” ,out2 ,name2] then

DGEnvironment [ VectorSpace | (MaxKY(nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs);

DGEnvironment [ VectorBundle | (name , name2_vs ,name2) ;

return

DG ([[” connection”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas
"1, []]], Ben[n][” YanoTractorConnection” ,out2]]) ;

fi;

if output = [” YanoTractorCurvature” ,out2 ,name2] then

DGEnvironment [ VectorSpace | (MaxKY(nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs) ;

DGEnvironment [ VectorBundle ] (name, name2_vs ,name2) ;

return

DG([[” tensor”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas”,

2
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cov_bas”], []]], Ben[n][” YanoTractorCurvature” jout2]]) ;
fi;
if output = [”" ConformalFormTractorConnection” ,out2 ,name?2 |
then

DGEnvironment [ VectorSpace ] (MaxCF (nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs);

DGEnvironment [ VectorBundle | (name, name2_vs ,name2) ;

return

DG ([[” connection”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas
"1, []]], Ben[n][” ConformalFormTractorConnection” ,out2]]) ;

fi;

if output = [’ ConformalFormTractorCurvature” jout2 ,name2| then

DGEnvironment [ VectorSpace | (MaxCF (nops (Ben[n][” Coordinates”]) ,
out2) ,name2_vs) ;

DGEnvironment [ VectorBundle ] (name, name2_vs ,name2) ;

return

DG([[” tensor”, name2, [[” con_vrt”, "cov_vrt”, "cov_bas”,6 ”
cov_bas”]|, []]], Ben[n][” ConformalFormTractorCurvature”,
out2]]);

fi;

end proc;

end module:

BundleLift:=proc(T,Q) local liftedT;
lifted =G ([[op(T) 1[1].Qop(1) (111311 o0 (T) (21

KYtoKT:=proc (g, gin ,KY1,KY2) local r,sl, s2;

r:=op (KY1) [1][3];

sl:=evalDG((—1) "(r—1)xTensorInnerProduct (g,KY1,KY2,
inversemetric=gin , tensorindices=[seq(i,i=1..tr—1)]));

s2:=Symmetrizelndices(sl,[1,2],” Symmetric”);

end:

CKVtoKT:=proc (X,g) local sl,gin,Xu,F, s2 s3;



sl:=evalDG (X &t X);
gin:=InverseMetric(g);
Xu:=RaiseLowerIndices (gin ,X, |
F:=ContractIndices (Xu,X,[[1,1
s2:=evalDG (Fxg) ;
s3:=evalDG(s1-s2);

end:

]

1
]

)
)

I
)
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