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ABSTRACT 

Fine Structural Aspects of the Developing Eye 

of the Honey Bee 

by 

Judith Susan Eisen, Master of Science 

Utah State University, 1977 

Major Professor: Dr. Nabil N. Youssef 
Department: Biology 

The post-embryonic development of the compound eye of the 

worker honey bee was investigated with the light and electron 

microscopes. The cells of the optic primordium were reorganized 

into preommatidial cell clusters during the late third and early 

fourth larval instars. Each cluster contained nine prospective 

retinula cells, the ninth was centrally located and shorter than 

the other eight; four prospective cone cells; and an undetennined 

number of prospective pigment cells. 

Rhabdomere development began in the eight peripherally located 

retinula cells just prior to pupation. Following pupation, each 

ommatidium elongated. During ommatidial elongation, the short 

ninth retinula cell moved from its central location to a peripheral 

location within the ommatidium and also developed a rhabdomere. 

The shape of each prospective crystalline cone also changed from 

teardrop-shaped to spherical to the typical cone shape of the adult 

during differentiation. 



xii 

The involvement of junctional specializations of membranes and 

of microtubules in the processes of differentiation, including 

elongation, cellular migration, and cellular organization, have 

been raised. Also, the role of multivesicular bodies in the 

process of lens formation has been discussed. 

(84 pages) 
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INTRODUCTION 

The numerous morphological investigations on the compound eye 

of the adult honey bee have provided an excellent description of 

the spatial relationships between the different cell types forming 

the compound eye, but have failed to provide any description of the 

temporal relationships between these cells during post-embryonic 

development. Developmental studies on holometabolous insects 

(Phillips, 1905; Wolsky, 1949, 1955-56; Waddington and Perry, 1961; 

White, 1961, 1963; Perry, 1968; Ready et al., 1976) suggest that 

during the time between the appearance of primordial eye tissue and 

the emergence of an adult with a fully developed compound eye, there 

are remarkable changes not only within each cell but also in the 

relationships between cells of the optic region. 

In the present study, the morphogenetic events during the post

embryonic development of the compound eye of the worker honey bee 

have been observed by means of the transmission electron microscope. 

An effort has been made to provide a precise description of each 

of the four cell types composing the compound eye and the relation

ships between them from the late third larval instar through the 

end of the pupal period. 



LITERATURE REVIEW 

In his extensive light microscopic investigation on the 

development and morphology of the compound eye of the worker honey 

bee, Phillips (1905) indicated that the eye consisted of several 

thousand ommatidia. Each ommatidium was composed of eight or 

rarely nine retinula cells surrounding a rhabdom, four cone cells, 

two corneal pigment cells, about 12 outer pigment cells, and 

covered by a corneal lens facet. He considered the rhabdom to be 

an intracellular secretion of the retinula cells, the crystalline 

cone to be an intracellular secretion of the cone cells, and the 

2 

lens to be an extracellular ~ecretion of the corneal pigment cells, 

possibly in conjunction with the outer pigment cells. He also 

stated that the only cells of the compound eye to receive innerva

tion were the retinula cells. They were innervated by small fibrils 

which extended into the rhabdom from fibers located in the cytoplasm 

just peripheral to the rhabdom. He considered these fibers to be 

actual differentiations of the retinula cell cytoplasm which 

extended proximally from the retinula cells towards the supra

esophageal ganglion. 

No apparent elaboration on the morphology of the compound eye 

of the honey bee was reported in the literature until that of 

Goldsmith (1962). He investigated the morphology of the retinula of 

the adult honey bee worker adult eye at the level of the electron 



3 

microscope. He described the rhabdom as composed of numerous, 

closely-packed arrays of microvilli which originated from the cell 

membranes of the eight retinula cells. These microvilli were 

perpendicular to the long axis of the rhabdom, and each rhabdom was 

composed of four parts, one part from each of two adjacent cells. 

The microvilli in adjacent quadrants were mutually perpendicular. 

He also described a central region of the cytoplasm, just peripheral 

to the rhabdom, which contained membranous endoplasmic reticulum in 

an approximately radial orientation with respect to the axis of the 

ommatidium, and a more peripheral region which contained numerous 

mitochondria. Contrary to Phillips (1905), Goldsmith (1962) found 

each retinula cell to be innervated by an axon which arose from 

the proximal portion of the cell and pierced the basement membrane 

underlying the optic region, extending proximally towards the optic 

lobe of the supraesophageal ganglion. 

Varela and Porter (1969), Skrzipek and Skrzipek (1971) and 

Gribakin (1967a, 1967b) also considered each retinula to be composed 

of only eight retinula cells. However, it was Perrelet (1970) who 

first suggested that the retinula of the worker was consistently 

composed of nine retinula cells, one of which was shorter than the 

other eight, and which Perrelet designated as the basal retinula 

cell. Subsequently, Skrzipek and Skrzipek (1974), Schinz (1975), 

Ribi (1975a, 1975b), Sommer and Wehner (1975), Wehner et al. (1975), 

Wehner (1976), and Gribakin (1975) have all recognized that each 

retinula is composed of eight long retinula cells and one short, 

basal retinula cell. 



Fyg (1961) investigated the development of the honey bee 

crystalline cone at the light microscopic level and concluded that 
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it arose as an intracellular accumulation of glycogen and proto

plasmic ground substance during elongation and differentation of the 

four cone cells. He also indicated that the cone cell nuclei were 

displaced to the distal cell borders. Electron microscopic 

investigations of the adult eucone by both Varela and Porter (1969) 

and Skrzipek and Skrzipek (1971) have further indicated that other 

cell organelles, such as mitochondria, were displaced peripherally 

and that the portion of the cone not occupied by organelles con

tained a granular-appearing substance. 

Varela and Porter (1969) and Skrzipek and Skrzipek (1971) both 

indicated that each ommatidium contained three types of screening 

pigment cells. The long pigment cells extended from the cuticular 

1 ens overlying the eye to the underlying basement membrane. The 

principal pigment cells were associated with the crystalline cone. 

The basal pigment cells were located between the proximal end of 

each 011111atidium and the underlying basement membrane. Gribakin 

(1975) suggested that the so-called basal pigment cells were, in 

fact, inflated, pigment granule containing portions of the cone 

cell processes, and not separate pigment cells. 

Sommer and Wehner (1975) and Wehner et al. (1975) described 

two types of retinulae within the adult worker honey bee compound 

eye. The first type was composed of nine long retinula cells, did 

not exhibit twisting, and was restricted to the most dorsal 4-5 
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horizontal rows of ommatidia. The second type was composed of eight 

long and one short retinula cells, exhibited twisting, and composed 

the remaining ommatidia. Retinulae appeared to twist either clock

wise or anticlockwise and the distribution of the two types of 

retinulae appeared to be random. Twisting has been hypothesized to 

be involved in polarized light detection by the short ninth retinula 

cell (Sommer and Wehner, 1975). Phillips (1905), at the light 

microscopic level, and Varela and Porter (1969), at the electron 

miscroscopic level, described the interommatidial bristles, found in 

conjunction with the honey bee worker compound eye, as being with out 

innervation. In their electron microscopic investigation, Skrzipek 

and Skrzipek (1971) indicated that these bristles were innervated, 

and Nesse (1965) indicated t,;at a scopale body was present. 

The eight long retinula cells of the adult worker honey bee 

compound eye have been numbered in a variety of ways by different 

authors. These numbering systems have been summarized in Figure 1. 

Goldsmith (1962) numbered each of the retinula cells from one 

to eight in the clockwise direction. Varela and Porter (1969) also 

numbered each of the retinula cells from one to eight, but in the 

anticlockwise direction. Because they based their numbering system 

on the location of the "eccentric" (ninth) cell and considered the 

retinula to consist of only eight retinula cells, retinula cells 

were numbered in two different ways (Figure 1). 

Menzel and Snyder (1974) and Ribi (1975a, 1975b) used a 

numbering system based on that used by Perrelet (1970) for the 
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Goldsmith (1962) Varela and Porter (1969) 

II I 

Perrelet (1970) 
Menzel and Snyder (1974) 
Ribi (1975a,b) Gribakin (1967a, 1969, 1972, 1975) 

TRA 
3 1 

TRA 

Sommer and Wehner (1975) 
Wehner et al. (1975) 

1 1 

2 8 

Hehner (1976) 

Figure 1. The numbering system used by various authors for the eight 
long retinula cells of the worker honey bee compound eye. 
For explanation, see text. 
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compound eye of the adult drone honey bee. Of the eight long 

retinula cells, six were observed to be larger and two to be smaller. 

The six larger cells were numbered one to six in the clockwise 

direction and the two smaller cells numbered seven and eight in the 

anticlockwise direction. 

Gribakin (1967a) numbered the eight long retinula cells in pairs 

with the members of each pair being situated oppositely from one 

another. He also proposed that there were three distinct cell types 

based on electrophysiological considerations. Subsequently, 

Gribakin (1969, 1971, 1975) devised a numbering system based on both 

morphological and electrophysiological data. He divided the eight 

long retinula cells into the three following types: type I, two 

oppositely situated cells with parallel rhabdomeric microvilli which 

met along the onunatidial axis, having fewer pigment granules and 

mitochondria in the distal third of each of the cells, having the 

most distally located tier of nuclei, and sensitive to light of 

340 nm; type II, four cells situated alternately with type I and 

type III cells, having the second tier of nuclei, and sensitive to 

light of 530 nm; type III, two oppositely situated cells with 

parallel microvilli which did not meet along the ommatidial axis, 

having the third tier of nuclei, and sensitive to light of 530 nm. 

The short ninth cell replaced one of the type III cells in the 

proximal third of the retinula. 

Sommer and Wehner (1975) and Wehner et al. (1975) have defined 

their numbering system according to the following considerations: 
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1) Oppositely situated retinula cells having microvilli 

running in the same direction and having the same spectral sensitivity 

were numbered in pairs 1-2, 3-4, 5-6, 7-8; 

2) A transverse axis (TRA) has been defined for the rhabdom, 

and cells 1 and 2 were defined by having microvilli parallel to the 

transverse axis and also by their location; 

3) Numbering proceeding either in a clockwise or anticlockwise 

direction, depending on the direction of twisting of the retinula; 

4) A coordinate system has been proposed for the eye and each 

retinula cell can be recognized by its position within the coordinate 

system; 

5) In the proximal region of the retinula the ninth retinal 

cell replaced either retinula cell number 1 or number 2. 

Wehner (1976) also proposed a simpler numbering system in which 

cell number 1 was the same as in the previously-described system, 

and the remaining cells, with the exception of the ninth, were 

serially numbered in either the clockwise or anticlockwise direction, 

depending on the direction of retinula twisting. 

In several different groups of insects, both light and electron 

microscopic investigations of the developing compound eye have 

indicated that at a specified time during the larval period, a wave 

of cell proliferation followed by a wave of cell differentiation 

passed along the prospective eye tissue, leaving preommatidial cell 

clusters in its wake. This phenomenon was first described in Bombyx 

mori (Wolsky, 1949) at the light microscopic level. This was 
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followed by investigations on other insects including Ephastia, 

Nolenecta, Drosophila (Wolsky, 1955-56) and Aedes aegypti (White, 

1961, 1963). Electron microscopic investigations of Drosophila 

(Campos-Ortega and Gateff, 1976; Ready et al., 1976) have indicated 

that the preommatidial cell clusters which arose just behind the 

wave of differentiation were not formed by a clonal mechanism but 

rather by cell recruitment at the morphogenetic furrow formed by 

the differentiation wave. Similar cell recruitment has been 

demonstrated in the eye of Oncopletus fasciatus (Shelton and 

Lawrence, 1974; Green and Lawrence, 1975). 

Electron microscopic investigations on the developing eye of 

Drosophila have revealed some of the specific cellular interactions 

of an eye with an open type of rhabdom and a pseduocone. Rhabdomere 

development appeared to be similar in both Drosophila (Waddington 

and Perry, 1961; Perry, 1968) and Bombyx (Eguchi et al., 1962), an 

insect with a closed type of rhabdom. In both cases, rhabdornere 

development began with irregular infoldings of the retinula cell 

plasma membranes along the ommatidial axis. As development 

progressed, the irregular infoldings were transformed into highly 

regular microvilli. Early in development the rhabdomeres of both 

types were fused. Separation of rhabdomeres occurred secondarily 

in Drosophila (Waddington and Perry, 1961). 

According to Waddington and Perry (1961), the pseudocone of 

Drosophila developed either as an extracellular secretion, or as a 

degenerated region of the cone cells. Perry (1968) clarified this 

position by detailing the development of the cone cells and their 
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subsequent contraction away from the cuticular lens to form the 

pseudocone extracellular space. She indicated that the microtubules 

which were involved in the morphogenetic process persisted in the 

cone cell cytoplasm. 

Elongate processes extending from the proximal tip of each cone 

cell to the basement membrane underlying the compound eye and 

located between adjacent retinula cells have been observed in the 

honey bee (Goldsmith, 1962; Varela and Porter, 1969; Gribakin, 1975; 

Skrzipek and Skrzipek, 1971) and in the locust (Horridge, 1965). 

Both of the aforementioned insects have compound eyes of the 

apposition type (Exner, 1891), in which the distal tip of the rhabdom 

contacts the proximal tip of the crystalline cone. Both also have 

closed types of rhabdoms, in which the tips of oppositely-situated 

rhabdomeric microvilli contact one another along the ommatidial 

axis and eucone types of crystalline cones. Varela and Porter (1969) 

and Horridge (1965) have speculated that the functions of these 

processes are mechanical support and anchoring of the dioptric 

system to the receptor system. 

In several insect compound eyes of the superposition (Exner, 

1891) or clear-zone (Horridge, 1971; Walcott, 1975) type, in which 

the rhabdom and crystalline cone do not contact one another at all 

times and in which there may be movement of either the cone cells 

or retinula cells during light/dark adaptation, crystalline tracts 

have been observed extending from the proximal tip of the crystalline 

cone towards the rhabdom (Horridge, 1968, 1971, 1975; Horridge and 
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Giddings, 1971a, 1971b; Dcving and Miller, 1969; Walcott, 1975). It 

has been demonstrated that these tracts function as light guides 

(Horridge, 1971; Dcving and Miller, 1969; Carricaburu, 1975) from 

the crysta1line cone to the underlying rhabdom. The extensive 

literature on clear-zone eyes has been reviewed by Walcott (1975), 

Carricaburu (1975) and Horridge (1975). 

Neville (1970) pointed out that both lamellate and nonlamellate 

types of cuticular lens facets lack pore canals. However, the 

adjacent cuticle may contain pore canals in abundance. 

Locke (1966) described the deposition of cuticulin, which arose 

from the tips of microvilli along the apices of the epidermal cells. 

Locke (1969, 1973) and Delachambre (1970, 1971a) both described 

plaque-like structures located at the tips of the apical microvilli 

and indicated that the plaque-like structures were involved both in 

cuticulin formation and in fibrous cuticle deposition. These two 

events were separated by a period during which secretory vesicles 

from the Golgi complexes discharged their contents into the extra

cellular space between the cuticulin layer and the epidermal cell 

apices by fusing with the plasma membrane between adjacent microvilli. 

Locke (1976) and Delachambre (1971a) also proposed that in periods 

during which the plaque-like structures of the apical microvilli 

were not involved in cuticulin or fibrous cuticle formation, the 

plasma membrane composing the microvilli flattened and then 

involuted. The plaque-like structures were apparent in the membranes 

of multivesicular bodies in the apical epidermal cell cytoplasm 
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during these periods. Locke (1976) also indicated that the appearance 

of apical microvilli with the plaque-like structures at their tips 

was a cyclical process, alternating with the appearance of multi

vesicular bodies with plaque-like structures in their membranes, 

during each moult/intermoult cycle. 
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MATERIALS AND METHODS 

Combs of capped and uncapped bee brood were obtained from the 

Bee Biology and Systematics Laboratory ARS-USDA in Logan, Utah. To 

facilitate observation of gross developmental changes, some larvae 

and prepupae were isolated from the combs and placed in size O or 

00 gelatin capsules. The combs, in retential frames, and the 

gelatin capsules were maintained at 32 ± 1 °c and 50 ± 5 percent 

relative humidity. 

Larvae, prepupae, and pupae of various ages (Table 1) were 

removed from the gelatin capsules or from the comb according to 

stage characteristics defin=d in Table 1 and fixed immediately. 

Fixation was accomplished by decapitating insects under Karnovsky's 

fixative (Karnovsky, 1965), pH 7.2. Each head was then bisected 

sagitally and excess tissues including integument, muscles and 

glands, were removed from around the eye. Pupal eyes were cut 

into thirds (Figure 2) and only the portion with eight long and one 

short retinula cell (Schinz, 1975) was utilized by this study. Eyes 

remained in the fixative from 2.5 to 24 hours. Following fixation 

they were placed in cacodylate buffer at pH 7.2 for up to several 

weeks. Most of the eyes were, however, rinsed in three 5-minute 

changes of cacodylate buffer, post-fixed in cold 1 percent Os04 in 

cacodylate buffer, and then dehydrated in an ascending series of 

ethanols. They were cleared in propylene oxide, and embedded in 



Table 1. The sequential stages in the development of the compound eye of the worker honey bee. 

stage l 2 3 4 5 6 7 8 9 10 11 12 

active defeca- spin- early white light- pink dark- light- brown dark- black 
name uncap- ting ning pharate eyed pink eyed pink brown eyed brown eyed 

ped larva larva pupa pupa eyed pupa eyed eyed pupa eyed pupa 
larva puµa pupa pupa pupa 

-->--

duration 12 12 12 48 36 12 24 12 24 35 24 24 
{hours) 

I 

period 0-12 12-24 24-36 36-84 84-120 120-132 132-156 156-168 168-192 192-228 228-252 252-276 
(hours) 

I l I 

...... 

.+:>, 



Figure 2. Schematic drawing of pupal honey bee eye. Only the 
middle area which contained ommatidia with one short 
and eight long retinula cells was used in the present 
investigation; d, dorsal region of eye; m, middle 
region of eye; v, ventral region of eye; ol, optic 
lobe. 

15 



16 

Spurr's low viscosity embedding medium (Spurr, 1969) at 70 °c for 

12 hours. 

For light microscopy, serial one µm sections were obtained with 

glass knives on a Porter-Blum MT-2 ultramicrotome, picked up 

individually from the water surface, placed on glass microslides, 

and stained with Azure B-Methylene Blue. 

For electron microscopy, gold to silver sections were also 

obtained with glass knives on a Porter-Blum MT-2 ultramicrotome, 

expanded with chloroform vapour, picked up on bare 200-mesh copper 

grids, stained with saturated uranyl acetate and Reynolds' lead 

citrate (Reynolds, 1963), and examined with a Zeiss 9A electron 

microscope. 

In the course of the study, over 50 bees and more than 1000 

micrographs representing samples from over 100 blocks were used as 

documentation. 
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RESULTS 

Although morphogenesis is a dynamic process, its description 

is facilitated by dividing it into discrete stages. After reviewing 

the literature, it was concluded that the stages used by Daly (1964) 

in his description of the skeleto-muscular morphogenesis of the 

thorax and wings of the honey bee were most suitable for studying 

compound eye morphogenesis. Table 1 summarizes the characteristics 

of the different stages. 

Cells differentiating into preommatidial cell clusters 

(Figures 5, 6, 7) were first recognized at the end of the third 

larval instar (stage 1) following reorganization of the cells of 

the optic primordium. This reorganization progressed across the 

optic primordium from posterior to anterior (Figure 5) and was 

similar in appearance to the morphogenetic furrow described by 

Ready et al. (1976) in Drosophila. Prior to this stage, the 

primordial visual cells were indistinguishable from one another, 

although the optic primordia were visible along the dorso-lateral 

portions of the head. 

Prior to pupation (stage 4), preonmatidial cell clusters were 

closely apposed to one another within the primordial optic region 

(Figure 7). After pupation and following the enlargement of the 

head to adult proportions (stage 5), the relative positions of the 

optic primordia were unchanged, although they had increased to their 
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final adult size. By this time, due to the increase in the size of 

the head and the optic primordia, ommatidia were observed to be less 

closely apposed to one another and were surrounded by extracellular 

space, not present prior to pupation. By stage 10 the ommatidia 

had reached their final, adult proportions (Figure 4f). 

For the sake of clarity and brevity the cell types composing 

the dioptric system, the receptor system and the interommatidial 

bristle complex have been described separately. 

Briefly, the dioptric system consisted of four cone cells, often 

referred to as Semper's cells (Goldsmith, 1964) which comprised the 

crystalline cone, and the two cone-adjunct pigment cells,* variously 

called principle pigment cells (Varela and Porter, 1969), primary 

or corneal pigment cells (Goldsmith, 1964) or corneagen cells 

{Phillips, 1905). 

The receptor system consisted of the nine retinula cells which 

comprised the retinula and the 12 to 14 retinula-adjunct pigment 

cells,* variously called secondary pigment cells, accessory pigment 

cells, iris cells, or secondary iris cells (Goldsmith, 1964), outer 

pigment cells (Phillips, 1905) or long pigment cells (Varela and 

Porter, 1969). 

*In the present study the terms cone-adjunct pigment cell and 
retinula-adjunct pigment cell have been introduced to replace 
numerous currently used terms which do not appear to describe these 
two cell types either morphologically or physiologically. 
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The interommatidial bristle complex was composed of four cell 

types including a sense cell, a neurilemma cell, a tonnogen cell, 

and a trichogen cell. 

The Dioptric System 

Cone cells 

The four cone cells were first recognized during the late third 

larval instar (stage 1) by their peripheral position within each 

newly formed preommatidial cell cluster (Figure 6). They surrounded 

the distal portion of the nine retinula cells of the prospective 

retinula and extended to the distal edge of the optic primordium. 

Following formation of preommatidial cell clusters over the entire 

optic primordium (stage 3), the cone was teardrop-shaped with the 

retinula protruding into the wide, proximal end (Figure 3). At this 

stage, each cone cell was shaped like a slightly flattened cone of 

approximately 20 µmin length, bulging in the region of the nucleus, 

and becoming narrower more distally. Two oppositely situated cone 

cells contacted one another in the central region of the cone distal 

to the retinula, while the remaining two cone cells did not (Figure 

15). Each cone cell contained an ovoid nucleus of approximately 4 µm 

by approximately 7 µm. Nuclei were located in the proximal portion 

of each cone cell with the long axis of each nucleus parallel to 

the ommatidial axis (Figure 3). Extensive granular endoplasmic 

reticulum and some free polyribosomes were scattered throughout the 

cytoplasm along with numerous mitochondria, several multivesicular 

bodies, and a few Golgi complexes. Microtubules oriented 
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Figure 3. Diagrammatic representation showing the changes in the 
shape of the crystalline cone at different developmental 
stages. c, cone cell; c-a, cone-adjunct pigment cell; 
cl, corneal lens; pc, pupal cuticle; r, retinula cell. 
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perpendicularly to the ommatidial axis were observed in the periph

eral region of the cone (Figures 15, 16). Longitudinally oriented 

microtubules were observed in the distal portion of the cone cell 

cytoplasm prior to pupation. They disappeared by the end of stage 4. 

Each cone cell was united to the three adjacent cone cells and also 

to the cells surrounding the cone by junctions of the adherens type, 

similar to those described by Farquhar and Palade (1963), located 

just proximal to the distal tips of the cells (Figure 8). Occasional 

septa were also apparent between the plasma membranes of the cone 

cells and the surrounding cone-adjunct pigment cells. 

During formation of the fourth larval instar cuticle (stage 2), 

microvilli were observed along the distal end of each cone cell 

(Figure 8). Each microvill~s had an electron-dense, plaque-like 

structure at its distal tip, similar to those described by Locke 

(1976) in Calpodes ethlius larvae. Vesicles, similar to the 

secretory vesicles also described by Locke (1976), were evident in 

the cytoplasm just proximal to the rnicrovillous surface, and 

occasionally appeared to be fusing with the plasma membrane between 

adjacent microvilli. The microvilli persisted until the completion 

of cuticle formation when most of them disappeared (Figure 10), 

reappearing again at the beginning of cuticle secretion in the 

next instar. In the period preceeding apolysis, during which the 

old cuticle was being digested, few microvilli were evident along 

the apical cone cell surface (Figure 10). Multivesicular bodies 

which contained plaque-like structures embedded in their membranes 
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(Figure 9), similar to those described by Locke (1976), were observed 

within the distal cone cell cytoplasm in close proximity to the 

apical surface. These multivesicular bodies were visible during 

all stages of the moult/intermoult cycle, but were apparently more 

abundant during the digestive phase than during the secretory phase. 

This apparent cycle of microvilli appearance, disappearance, 

and reappearance, coupled with the increased quantity of multi

vesicular bodies with plaque-like structures embedded in their 

membranes, was repeated during each larval moult/intermoult cycle. 

Following the larval/pupal moult, persistent microvilli were 

observed along the apical borders of the cone cells from stage 5 

through stage 12, although these microvilli exhibited a more regular 

appearance after stage 8 (Figures 12, 14). 

During stage 6, the shape of the cone changed from teardrop

shaped to spherical, and became located distal to the retinula 

(Figure 3). Each of the cone cells comprised approximately one 

quarter of the sphere, although two oppositely situated cone cells 

were still somewhat larger than the other two, and contacted one 

another in the central region of the cone. 

During stage 6, the organization and distribution of cytoplasmic 

organelles also changed markedly from the preceeding stages. The 

nuclei appeared to be migrating towards the distal portion of each 

cone cell. Organelles formerly located in the central region of 

the cone were now located more peripherally. The quantity of 

granular endoplasmic reticulum contained within each cone cell 



23 

appeared to be markedly reduced and the peripherally located 

microtubules observed during stage 5 were apparently absent. 

The processes arising from the proximal end of each cone cell 

were first recognized near the end of stage 6 (Figures 23, 24). The 

four processes of each ommatidium extended proximally along the 

retinula periphery, lying in grooves between alternate adjacent 

retinula cells (Figure 23). In cross-section, each process was 

circular to ovoid and ranged from approximately 0.5-1.0 µm across. 

Processes contained numerous longitudinally oriented microtubules, 

at least some of which were continuous with microtubules located 

in the proximal portion of each cone cell (Figure 24), and an 

occasional vesicle, mitochondrion, or electron dense body (Figures 

23, 24). 

The shape of the cone continued to change during stages 7-8 

from a sphere approximately 20 µmin diameter, to an elongate cone 

approximately 70 µmin length, approximately 20 µm across at its 

wide distal end, and approximately 4 µm across at its narrow proximal 

end (Figures 3, 33, 34, 35, 36, 37, 38). When viewed in cross

section, it was apparent that two of the cone cells, oppositely 

situated, contacted one another along the ommatidial axis, while 

the two remaining cone cells did not (Figures 34, 35, 36). 

During stage 7, the nuclei continued their apparent distal 

migration, reaching the distal third of each cone cell (Figure 3). 

Mitochondria, granular endoplasmic reticulum, and free polyribosomes, 

with the exception of a few located distal to the nuclei, were all 

located near the cone periphery. 
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Concurrent with the elongation of the cone during stage 8, the 

distal migration of the nuclei reached completion. Each nucleus 

was kidney bean-shaped and lay along the periphero-distal border of 

its cone cell (Figures 33, 34). Also during stage 8 a granular 

appearing substance, glycogen according to Fyg (1961), began to 

accumulate in the central region of the cone. 

Simultaneously with the narrowing of the proximal end of the 

cone, the cone cell processes were observed to be located more 

centrally within each retinula, between alternate adjacent retinula 

cells. Septate desmosomes were apparent between cone cell processes 

and adjacent retinula cells (Figure 27). Each process came to lie 

just peripheral to the junctional complex between the alternate 

adjacent retinula cells (Fiyures 26, 27, 29, 30, 31, 32). In cross

section, processes appeared to change shape during centerward 

movement from circular or slightly ovoid to distinctly ovoid 

(Figures 29, 30, 31). However, occasional circular processes were 

still observed during stage 12 (Figure 32). 

Cone cell differentiation was nearly complete by stage 10. 

The granular substance had completely filled the cone interior, 

leaving only a narrow peripheral region of cytoplasm. This region 

contained the distally located nuclei, the peripherally located 

mitochondria, and free polyribosomes, and the proximally located 

longitudinally oriented microtubules, some of which appeared to 

extend farther proximally into the cone cell processes (Figures 3, 

33). However, at this stage the cone did not exhibit the differential 
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staining observed by Varela and Porter (1969) and Skrzipek and 

Skrzipek (1971). The junctional complexes between adjacent cone 

cells disappeared, although at intervals around the entire periphery 

the cone remained joined to the surrounding cone-adjunct pigment 

cells by adherens junctions. 

Following completion of crystalline cone differentiation, the 

proximal 8-10 µm of each cone cell process were observed to be 

inflated to a diameter of approximately 1.5 µm. Electron-opaque 

pigment granules, similar to those previously described by Gribakin 

(1975), were observed to be located within the inflated portion of 

each cone cell process. 

Cone-adjunct pigment cells 

During the prepupal period (stage 4) the cone cells were 

observed to be surrounded by two laterally located cone-adjunct 

pigment cells (Figure 15). These cells were very similar in appear

ance to the cone cells. They contained ovoid nuclei of similar size 

and orientation to those of the cone cells, abundant granular 

endoplasmic reticulum, some free polyribosomes, and mitochondria. 

Just proximal to the distal cell borders (Figure 8), the two cone

adjunct pigment cells of each ommatidium were united with one 

another and also with the four cone cells by junctions of the 

adherens type similar to those uniting the four adjacent cone cells. 

At the stage during which these cells were active in cuticle 

formation, microvilli similar to those described for the cone cells 

were observed along the apical borders of the cone-adjunct pigment 
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cells. The microvilli were observed alternately to appear, disap

pear, and reappear through the moult/intermoult cycle, in synchrony 

with those of the cone cells. Multivesicular bodies containing 

plaque-like structures embedded in their membranes became more 

numerous in the distal cone-adjunct pigment cell cytoplasm simul

taneously with their increase in quantity in the cone cells. 

During stage 6, the distribution and organization of cytoplasmic 

organelles changed from that of the preceeding stages. The nuclei, 

mitochondria, free polyribosomes, and granular endoplasmic reticulum 

appeared to be more concentrated towards the proximal portion of 

the cytoplasm. 

The cone-adjunct pigment cells maintained their relationship 

with the elongating cone, forming a complete, elongating cylinder 

around it during stages 7-8. As the shape of the cone changed from 

a sphere to an elongate cone, the shape of the cone-adjunct pigment 

cells changed as well. The outside diameter of the cylindrical 

sheath remained fairly constant, while the cone-adjunct pigment 

cells became inflated proximally and narrower distally (Figures 3, 33). 

Pigment granules, similar to those described by Varela and 

Porter (1969) in the adult honey bee compound eye, were first 

observed in the proximal portion of the cone-adjunct pigment cells 

during stage 8. Also during this stage a granular-appearing 

substance, similar to that of the cone cells but more diffuse, began 

to appear in the distal region of the cytoplasm. Accumulation of 

this granular material continued through stage 9, but the material 

remained diffuse, never becoming as concentrated as in the cone cells. 



By stage 10 the dioptric apparatus was essentially fully 

differentiated. It was approximately 70 µmin length and had an 

almost uniform outside diameter of about 25 µm. The cone-adjunct 

pigment cell cytoplasm was concentrated in the proximal third of 
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each cell and contained the nucleus, mitochondria, pigment granules, 

free polyribosomes, and granular endoplasmic reticulum. The nucleus 

was kidney bean-shaped and extended almost completely around the 

cone-adjunct pigment cell periphery. Distally the cone-adjunct 

pigment cells became narrower, and the distal two-thirds of the 

cytoplasm contained granular material similar to that of the cone 

cells, but less concentrated in appearance. 

Lens formation 

The synchronous appearance of microvilli, vesicles, and multi

vesicular bodies in the cone, cone-adjunct pigment, and retinula

adjunct pigment cells suggests that the cuticle covering the eye 

was secreted jointly by cells of these three types. The mechanism 

of cuticle secretion appeared to be similar in each of the three 

cell types, and closely resembled that described by Locke (1969, 

1976) and Delachambre (1970, 1071a). 

The first indication of cuticle formation was the appearance 

of a trilaminar structure of approximately 25 nm thickness (Figure 

11). This constituted the cuticulin layer which arose at the 

surface of specialized plaques located on the distal tips of the 

apical microvilli (for details, refer to sections on the cone, 

cone-adjunct pigment, and retinula-adjunct cells). Following 
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cuticulin deposition, coated vesicles ranging in size from approxi

mately 180 nm to 240 nm in diameter were evident in the distal 

cytoplasm of all three cell types. These vesicles occasionally 

appeared to fuse with the plasma membrane at the base of adjacent 

microvilli and to discharge their contents into the extracellular 

space between the microvilli and the cuticulin layer. Microvilli 

with apical plaques and coated vesicles which appeared to fuse with 

the plasma membrane between adjacent microvilli persisted from 

stages 5-12 (Figures 12, 13, 14). 

Although each cuticular lamella of the corneal lens was con

tinuous over the entire eye surface, its thickness was not constant. 

Cuticle was thickest at the center of each hexagonal lens facet and 

was thinnest in the interle11s regions. It was observed that for the 

first several lamellae (approximately 10), the portion of each 

lamella over the cone cells was 5 µm thick and that the thickness of 

this cuticle graded to 7 µmover the retinula-adjunct pigment cells. 

During this period the microvilli of the cone-adjunct and retinula

adjunct pigment cells were more pronounced than those of the cone 

cells (Figures 12, 14). As a consequence of the shape of these 

lamellae, each lens facet was meniscus-shaped and the interlens 

regions were located more proximally than the lens regions, forming 

distinct boundaries between adjacent lens facets. 

In the remaining lamellae, the central portion, overlying the 

cone cells, was 8 µm thick and graded to 5 µmover the retinula

adjunct pigment cells. During this period, the microvilli of the 
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cone cells were not distinguishable from those of the cone-adjunct 

and retinula-adjunct pigment cells (Figure 14). After several of 

these lamellae had been secreted, each lens facet was biconvex in 

shape. In interlens regions the lamellae still formed distinct 

boundaries between individual lens facets and appeared as though 

they were compressed. 

It is of interest to note that the developing cuticular lens 

lacked pore canals and the cuticle of the lens was not differentiated 

into endocuticle and exocuticle. However, pore canals were 

observed in the cuticle surrounding the eye. 

The Receptor System 

Retinula cells 

These cells were first recognized during the late third larval 

instar (stage 1) as a group of nine cells occupying the central 

portion of each preommatidial cell cluster surrounded by the four 

cone cells (Figure 6). One of these cells was centrally located, 

while the other eight cells were concentrically arranged around the 

central one. The entire group of nine retinula cells appeared 

spindle-shaped in longitudinal section (Figure 4a). The nucleus of 

the centrally located cell was located near that cell's middle 

region, while the nuclei of the eight concentrically arranged cells 

were generally more proximally located (Figure 4a), although 

occasionally a nucleus was observed to be more distally located. 

The portion of each cell containing the nucleus was larger in 

diameter than the remaining portion (Figures 6, 7). 
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To facilitate description of the retinula, each of the retinula 

cells has been numbered according to the system used by Gribakin 

(1969, 1971, 1975) as either a type I, type II, type III, or ninth 

cell (Figure 16). Also the retinula has been divided into three 

regions along its longitudinal axis: a distal region, a middle 

region, and a proximal region. Each region comprised approximately 

one-third of the length of the retinula. 

Following formation of preommatidial cell clusters over the 

entire optic prirnordium (stage 3), the three regions were dis

tinguished by the following characteristics. The distal region of 

each retinula contained only the eight concentrically arranged 

retinula cells which were observed to extend more distally than the 

ninth retinula cell (Figure 16). The middle region contained eight 

retinula cells concentrically arranged around the centrally located 

ninth retinula cell (Figure 17). In the proximal region the two 

oppositely situated type III cells became narrower and gave rise to 

axons which extended proximally along the retinula periphery, leaving 

six retinula cells concentrically arranged around the centrally 

located ninth cell, and two peripherally located axons (Figure 18). 

Just prior to pupation (stage 4) the distal region was 

characterized by the beginning of rhabdomere development. This was 

evident by: 1) the presence of irregular indentations in the portions 

of the plasma membranes along the ommatidial axis (Figure 16), 

2) the development of an ommatidial cavity along the ommatidial 

axis into which the plasma membrane infoldings extended, and 3) the 

appearance in the proximity of the invaginating plasma membranes 
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of cytoplasmic vesicles, which ranged in diameter from approximately 

0.8 µm to 2.0 µm (Figures 16, 21). 

In conjunction with the development of irregular plasma 

membrane indentations, screening pigment granules, similar to those 

described by Varela and Porter (1969) in the adult, appeared in the 

distal cytoplasm of six of the eight retinula cells. Few or no 

screening pigment granules were observed in the distal cytoplasm of 

the two type I cells (Figure 16). 

At this stage the distal retinula cell cytoplasm also contained 

free polyribosomes, a few mitochondria, and numerous longitudinally 

oriented microtubules which were concentrated near the retinula 

periphery (Figure 16). The eight concentrically arranged retinula 

cells were connected to one another by junctional complexes of the 

adherens type located just peripheral to, and extending the entire 

length of, the developing rhabdomeres (Figure 16, 19). Adherens 

junctions also connected each of the eight concentrically arranged 

cells to the ninth centrally located cell at that cell's distal 

tip (Figure 19). Occasional septa were observed both between the 

plasma membranes of adjacent retinula cells and between the plasma 

membranes of the retinula cells and the surrounding retinula-adjunct 

pigment cells (Figure 16, 19, 21). 

The nuclei of all nine of the retinula cells were contained 

within the middle region. The two type III cell nuclei were 

located in the more distal part of the middle region, while in the 

remaining seven retinula cells the nuclei were more proximal. 



Homogeneously electron dense structures, similar in appearance to 

lipid droplets, were located just distal and proximal to each 

nucleus (Figure 18). These droplets ranged from approximately 

0.3 µm to approximately 1.0 µmin diameter and were not membrane 

bound. 
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The majority of the retinula cell mitochondria were contained 

within the cytoplasm of the middle region of the cell. Although 

they were distributed throughout the middle region cytoplasm, the 

mitochondria exhibited a slight tendency to congregate in the 

peripheral portion of this region (Figures 17, 19). 

Randomly distributed free polyribosomes and granular endoplasmic 

reticulum were abundant in the middle region (Figure 17). Occasional 

Golgi complexes were also observed. Vesicles, possibly portions of 

agranular endoplasmic reticulum, were also scattered throughout the 

cytoplasm of the middle region. 

Paired, parallel centrioles (Figure 22), similar to those of 

the epipharyngeal sense organ of the honey bee (Youssef, personal 

communication), were observed in appropriately oriented sections of 

the retinula cell cytoplasm along the distal border of the middle 

region (Figures 21, 22). Several multivesicular bodies were 

located in the middle region cytoplasm of each retinula cell 

(Figures 17, 19, 21, 22), and some of them contained plaque-like 

structures in their membranes similar to those of the cone, cone

adjunct, and retinula-adjunct pigment cells. Longitudinally 

oriented microtubules concentrated near the periphery of the middle 

region appeared to be continuous with those of the distal retinula 
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cell cytoplasm (Figures 17, 21). 

At the distal border of the proximal region the two type III 

cells became narrower, giving rise to axons which contained abundant 

longitudinally oriented microtubules. Most of these microtubules 

were not continuous with those of the middle and distal regions. 

Axons also contained a few polyribosomes, occasional mitochondria, 

and some vesicles (Figure 18). Longitudinally oriented microtubules 

were also located within the other seven axons. The nine axons 

from each retinula formed an axon bundle, just distal to the basement 

membrane, which pierced the basement membrane and extended proximally 

towards the optic lobe of the supraesophageal ganglion. 

As the retinulae continued to differentiate, elongation, 

twisting, and proximal movement (sinking) took place (stage 6). In 

conjunction with elongation, the distal cytoplasm of the eight 

concentrically arranged retinula cells began to reorganize. This 

reorganization was evidenced by the migration of mitochondria and 

pigment granules from the cytoplasm directly surrounding the 

developing rhabdomeres towards the retinula periphery. Simultaneously, 

microtubules became more concentrated in the central portion of the 

cytoplasm. 

During stage 6, the formation of the rhabdomeres continued in 

the distal portion of the retinula. The plasma membrane infoldings 

began to exhibit more regularity, appearing more similar to 

irregular microvilli. 

During elongation, there was an approximately three-fold increase 

in the number of microtubules throughout the retinula cell cytoplasm 
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(Figure 23). These microtubules were oriented along the longitudinal 

axis of each cell. 

During the process of elongation, the retinula cell nuclei 

appeared to become stratified within the middle region of the 

retinula, fanning four tiers. The most distal tier contained the 

nuclei of the type III cells, the second tier contained the nuclei 

of the type II cells, the third tier contained the nuclei of the 

type I cells, and the most proximal tier contained the ninth cell 

nucleus. 

During the later part of the period of proximal sinking (stage 

6), cone cell processes extended in grooves between alternate 

adjacent retinula cells (Figure 23). See the section on the cone 

cells for a more complete description of these processes. 

During stage 7 the cellular activity appeared to be concen

trated in the middle region of each retinula. To allow for cellular 

rearrangement, junctional complexes between each of the eight concen

trically arranged cells and the ninth cell disassociated. The distal 

tip of the centrally located ninth cell began to move laterally into 

the position formerly occupied by the one of the two type III cells 

(Figure 26), while the more proximal portion remained centrally 

located (Figure 27). One of the type III cells remained adjacent to 

the distal portion of the ninth cell; more proximally both of the 

type I II cell axons extended in grooves along opposite sides of. the 

retinula periphery. 

The distal portion of the ninth cell moved laterally, followed 
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by the proximal portion. The entire ninth cell was situated 

lateral to the ommatidial axis by the beginning of stage 9 

(Figures 31, 32). Lateral movement of the ninth cell was probably 

mediated in part by pressure exerted by the other eight cells. 

Rhabdomere development in the ninth retinula cell began, as in 

each of the other eight retinula cells, with irregular indentation 

of the distal portion of the plasma membranes along the ommatidial 

axis {Figure 26). Rhabdomere development in all nine of the cells 

followed ninth cell lateral migration, starting at the distal tip 

and extending proximally. Each rhabdomere ended just distal to the 

region where its retinula cell gave rise to an axon. 

The junctional complexes connecting the distal portions of 

adjacent retinula cells, with the exception of those associated with 

the two type III cells, all extended along the developing rhabdomeres 

into the middle region of the retinula. The junctional complexes 

connecting type III cells with adjacent cells ended where the type 

III cells gave rise to axons. Junctional complexes developed just 

peripheral to the rhabdomeres along the point of contact between the 

ninth cell and its two adjacent cells (Figure 26). 

Simultaneously with the cellular rearrangements occurring 

during this stage, the elongating cone cell processes began to move 

between the alternate adjacent retinula cells and halted just 

peripheral to the junctional complexes (Figure 26). See the section 

on cone cells for further details. 

During stage 8, the proximal, axon-like portion of each 

retinula cell elongated (Figures 4d, 28). It is possible that this 
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elongation, coupled with the sinking of the retinulae, was instru

mental in pushing the underlying basement membrane towards the optic 

lobe of the supraesophageal ganglion. Elongation of the retinula 

was completed during stage 9. 

Rhabdomeres began to have the appearance more typical of adults 

as previously described by Goldsmith (1962), Gribakin (1967a, 1975), 

Skrzipek and Skrzipek (1971), and Varela and Porter (1969) during 

stages 10-12. This was apparently accomplished by the organization 

of the irregular infoldings of the plasma membrane of each retinula 

cell into regular microvilli oriented perpendicularly to the long 

axis of the rhabdom. 

During stages 10-12 the differentiation of the retinula 

cytoplasm into central and ~eripheral regions, first observed during 

stage 6, was apparent along the entire length of the retinula. The 

majority of the retinula pigment granules, mitochondria, granular 

endoplasmic reticulum, and other organelles migrated from the central 

cytoplasm to the retinula periphery (Figures 29, 30, 31, 32). The 

microtubules, previously abundant in the central and peripheral 

cytoplasm, were much reduced in number. 

Portions of agranular endoplasmic reticulum were observed to 

have enlarged in the central region cytoplasm, forming the inflated 

cisternae previously described in the adult (Goldsmith, 1962; 

Gribakin, 1967b, 1975; Varela and Porter, 1969). Also during 

stages 10-12, adjacent retinula cells separated from one another 

near the retinula periphery, often extending as far centrally as the 
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junctional complexes. Leaf-like processes from the retinula-adjunct 

pigment cells, previously described in the adult (Gribakin 1967b), 

invaded the spaces between adjacent retinula cells (Figures 29, 31). 

The lipid-like droplets previously located distally and proximally 

to each retinula cell nucleus were no longer apparent during stages 

10-12. 

Retinula-adjunct pigment cells 

The retinula-adjunct pigment cells were not discernible from 

other cell types of the optic primordium until the beginning of the 

pupal period (stage 5). During this period the retinula-adjunct 

pigment cells appeared, in cross-section, as a ring of 12 to 14 

cells surrounding both the dioptric and receptor systems of each 

ommatidium (Figure 18). These cells extended from the distal edge 

of the optic primordium to the underlying basement membrane and 

completely ensheathed each ommatidium. 

Each retinula-adjunct pigment cell contained a spheroidal 

nucleus of approximately 8-9 µmin diameter, located in the distal 

half of the cell. Numerous mitochondria, some free polyribosomes, 

and occasional vesicles and multivesicular bodies, some with plaque

like structures in their membranes, were scattered throughout the 

retinula-adjunct pigment cell cytoplasm. Septa were occasionally 

apparent between the plasma membranes of adjacent retinula-adjunct 

pigment cells. 

Probably the most striking feature of the cytoplasm was the 

extensive arrays of granular endoplasmic reticulum, concentrically 
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arranged around the nucleus {Figure 19). Although the majority of 

the granular endoplasmic reticulum was located around the nucleus, 

some parallel arrays were also located in more distal and proximal 

portions of the cytoplasm. 

Microvilli, similar to those of the cone and cone-adjunct 

pigment cells, appeared along the retinula-adjunct pigment cell 

apices during the secretion of pupal cuticle. These microvilli, 

along with multivesicular bodies located in the distal cytoplasm, 

appeared to cycle in synchrony with those of the cone and cone

adjunct pigment cells. Junctional complexes of the adherens type 

just proximal to the microvillous surface joined retinula-adjunct 

pigment cells to one another and to adjacent cone-adjunct pigment 

cells. 

As elongation of the retinulae progressed during stage 6, the 

retinula-adjunct pigment cells also elongated, but maintained their 

position both relative to the retinulae and relative to the axis of 

elongation. 

During stage 7 the retinula-adjunct pigment cell cytoplasm 

often appeared to contain large vacuoles surrounded by glycogen 

(Figures 26, 27). It is not known if these vacuoles were actual 

features of the retinula-adjunct pigment cell cytoplasm, or were 

artifacts resulting from poor fixation. Other cell types appeared 

to be adequately fixed even when the vacuoles were present in the 

retinula-adjunct pigment cells (Figures 26, 27). By stage 8 the 

extensive arrays of granular endoplasmic reticulum were no longer 

apparent within the retinula-adjunct pigment cell cytoplasm. 
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Screening pigment granules, similar in appearance to those 

described in the adult eye by Varela and Porter (1969), were first 

observed in the retinula-adjunct pigment cell cytoplasm during 

stage 10 (Figure 32). At this stage, after the completion of 

elongation, the retinula-adjunct pigment cells appeared to form a 

cylindrical sheath surrounding the dioptric system and only the 

distal portion of the receptor system. At the level of the middle 

region of the retinula each retinula-adjunct pigment cell became 

narrower so that these cells no longer contacted one another around 

the retinula periphery (Figure 28). 

During stages 10-12, leaf-like processes of the retinula-adjunct 

pigment cells extended into the spaces between adjacent retinula 

cells. See the section on the retinula cells for more details. 

The Interommatidial Bristles 

Although the intermommatidial bristles were not directly p�rt 

of the visual system of the honey bee compound eye, it was felt that 

in light of their spatial relationship to the other elements of the 

eye a brief description of their development would be appropriate. 

Intero1m1atidial bristle-forming complexes were first recognized 

at the beginning of stage 6. Each complex was located at the 

junction of three ommatidia and was surrounded by the retinula

adjunct pigment cells of the adjacent ommatidia. It is of interest 

to note that bristle-forming complexes were not located at all 

such junctions and appeared to be randomly distributed. 
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In cross-section each complex appeared as a group of four cells, 

two large cells of approximately 6-10 µm diameter and two small 

cells, one of which was ensheathed by the other (Figures 44, 45). 

The centrally located small cell has been recognized as a sensory 

cell, similar to those of other insect sensilla (Lawrence, 1966). 

The cell ensheathing the sense cell has been recognized as a neuri

lemma cell. The two large cells were adjacent to one another. The 

complex fonned by the two small cells extended in a groove along 

the length of one of the large cells (Figures 44, 45), which has 

been recognized as a trichogen or bristle-forming cell. The remain

ing large cell has been recognized as a tormogen or socket-forming 

eel l. 

The neurilemma and sens€ cells both contained numerous longi

tudinally oriented microtubules, several mitochondria, and a few 

vesicles. The neurilemma cell also contained some free polyribo

somes {Figure 44). The somata of these two cells were not distin

guished from among the surrounding retinula-adjunct pigment cells 

and neither was ever located. It is possible that these somata 

were located below the level of the basement membrane. 

The tormogen and trichogen cells contained spheroidal nuclei 

in the proximal portion of each cell, numerous ovoid mitochondria, 

free polyribosomes, and extensive arrays of granular endoplasmic 

reticulum. In the trichogen cell the granular endoplasmic reticulum 

was arranged in concentric layers located either just lateral to the 

nucleus or surrounding it (Figure 44). 
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Extensive cellular rearrangements of the four bristle-forming 

cells occurred during stage 7. The trichogen cell appeared to extend 

laterally around the small cell complex and surrounded it completely 

(Figure 42). Simultaneously, the tormogen cell appeared to extend 

laterally around the complex formed by the other three cells, 

completely ensheathing it (Figure 42). As these rearrangements were 

occurring, longitudinally oriented microtubules appeared in the 

cytoplasm of both the trichogen and tormogen cells (Figure 42). 

Following cellular rearrangements, septate desmosomes connected 

each of the cells of the bristle-forming complex to the adjacent 

bristle-forming cells and also to the adjacent retinula-adjunct 

pigment cells (Figure 43). 

Microvilli, similar in appearance to those described for the 

cone, cone-adjunct pigment, and retinula-adjunct pigment cells, 

appeared along the apical surface of the tormogen cell during stage 

8. The multivesicular bodies with plaque-like structures embedded 

in their membranes, characteristic of the other three cuticle 

secreting cells of the compound eye, were only occasionally observed 

in the tormogen cell. 

The trichogen cell also developed microvilli along its apical 

surface. Simultaneously it began to protrude through the ring

shaped apical region of the tormogen cell. Longitudinally oriented 

microtubules extended from the distal trichogen cell cytoplasm into 

the protruding portion of the cell. 
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The sense cell elongated simultaneously with the elongation of 

the trichogen cell. Because cross-sections of the bristle distal 

to the level of the developing lens were not observed, the extent 

to which the sense cell extended into the bristle was not known. 

The neurilemma cell did not appear to extend distally beyond the 

level of the socket (Figure 40). 

An electron-dense material, similar in appearance to that of 

insect sensillum scolopale, began to accumulate around the periphery 

of the sense cell in the region of the socket and just distal to it 

(Figures 39, 40, 41) during stage 8. 

As the bristle increased in length during stage 9, the diameter 

of the entire bristle-forming complex decreased. Both the trichogen 

and the tonnogen cells appeJred smaller and the diameter of the 

complex, approximately 12 µm during stage 6, was reduced to 

approximately 8 µmat the level of the distal region of the cone. 

By stage 12 the bristle had attained its final length. The 

size of the bristle-forming complex continued to decrease to 

approximately 5 µmin diameter. Although the somata of the neuri

lemma and sense cells continued to elude observation, solitary 

neurite-like structures were occasionally observed at the level of 

the proximal region of the retinula (Figure 30). These may 

possibly represent dendrites or axons of the bristle sense cells. 
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DISCUSSION 

The results of the present investigation on the development of 

the compound eye of the worker honey bee suggest that the genesis 

of the relationships between the cells of the dioptric and receptor 

systems involved numerous morphogenetic events which occurred in a 

precise temporal sequence. 

When the cells composing each preommatidial cell cluster first 

appeared during the late third larval instar, they were distinguish

able from the surrounding epidermal cells primarily by their location 

and spatial arrangement. There were no pronounced cytoplasmic or 

membrane specializations to ~istinguish them from the adjacent 

epidermal cells. Following formation of preommatidial cell clusters 

over the entire optic primordium, the precise morphogenetic movements 

and elongation of the primordial optic cells were mediated by the 

sequential appearance of both cytoplasmic and membrane specializations. 

These specializations included membrane junctions, microtubules, 

microvilli, vesicles, and multivesicular bodies. 

Junctional specializations of the plasma membrane first 

appeared in the cells of the worker honey bee optic primordium 

following the formation of preommatidial cell clusters over the 

entire region. The adherens type of junctions between the eight 

concentrically arranged retinula cells, just peripheral to the 

developing rhabdomeres, probably served to anchor these cells to 

one another. Attachment of adjacent cells by specialized junctional 



regions of their plasma membranes has been demonstrated to be an 

important process during vertebrate (Campbell and Campbell, 1971; 

Staehelin, 1974) and invertebrate (Gustafson, 1963; Wolpert and 

Mercer, 1963) ontogenetic development. Junctions of the adherens 
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type have been generally considered to be involved in mechanical 

attachment (Farquhar and Palade, 1963; Gilula, 1974; Staehelin, • 

1974), rather than in isolation of separate extracellular compart

ments. Perrelet's (1969) work on the drone honey bee has demon

strated that adherens junctions did not function to isolate the 

extracellular compartment surrounding the rhabdom from the extra

cellular compartment between adjacent retinula cells. It is probable 

that adherens junctions played a similar role in the developing eye 

of the worker honey bee. 

Junctional regions similar to those attaching adjacent concen

trically arranged retinula cells to one another also appeared to 

anchor these cells to the centrally located ninth cell, at that 

cell's distal tip. These junctions were observed to disappear just 

prior to the period of ninth cell lateral migration. Disappearance 

of these junctions accordingly freed the ninth cell from those 

surrounding it, allowing it to migrate laterally. Disappearance 

of cell junctions has been reported to be a normal occurrence during 

vertebrate ontogenetic development (Campbell and Campbell, 1971) 

and probably plays a similar role during ontogenetic development of 

the honey bee compound eye. Following migration, new junctions 

formed between the ninth cell and the two adjacent cells, probably 

anchoring it into its lateral position within the retinula. 
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The junctional specializations observed along the distal points 

of contact between adjacent cone cells and between cone and cone

adjunct pigment cells probably served to anchor these cells to one 

another during the reorganization and elongation of the dioptric 

system. Each developing cone was apparently strongly anchored to 

the surrounding cone-adjunct pigment cells distally by junctional 

specializations of adjacent membranes, and to the retinula proximally 

by the cone cell processes. Each cone cell was also anchored 

distally to the three adjacent cone cells by membrane junctional 

specializations. As the retinulae continued to move proximally, 

the cone cells elongated. It is probable that the distally located 

adherens junctions prevented the cone cells from being pulled free 

from the surrounding pigment cells, and held the distal portion of 

the cone essentially rigid with respect to the cells adjacent to it. 

The portion of the cone proximal to the membrane junctional 

specializations was apparently neither held in place by attachments 

to the surrounding cells nor stabilized by an internal microtubular 

cytoskeleton. This portion of the cone was apparently stretched by 

the proximal movement of the underlying retinula, becoming narrower 

proximally. It is of interest that the volume of the cone did not 

change during elongation. 

In the developing eye of the worker honey bee septate desmosomes 

were not present in the early preommatidial cell clusters. They 

were first observed between adjacent retinula cells, retinula and 

retinula-adjunct pigment cells, and cone and cone-adjunct pigment 

cells following formation of preommatidial cell clusters over the 
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entire optic primordium. Their appearance was irregular, usually 

consisting of only a few isolated septa between adjacent plasma 

membranes. They remained throughout the course of development and 

were still apparent between retinula cells and adjacent cone cell 

processes just prior to adult emergence. 

Septate desmosomes appeared to be involved in cellular adhesions 

in the developing honey bee compound eye. Eley and Shelton (1976) 

have postulated a similar role for septate desmosomes during the 

development of the compound eye of Schistocerca gregaria. However, 

the course of septate desmosome development in Schistocerca gregaria 

was similar to that of the honey bee only during the early stages 

of development. During the later stages, septate desmosomes were 

still apparent in the ommaticiia of the honey bee, but had disappeared 

from the ommatidia of Schistocerca gregaria (Eley and Shelton, 1976). 

Although the development of septate desmosomes between adjacent 

cells suggests that they functioned in cell-to-cell adhesions, the 

irregularity of their appearance seemed to indicate that their role 

in adhesions was not so precise as that of the adherens junctions. 

Microtubules were observed to sequentially appear and disappear 

within both the retinula and the cone cells. Prior to the pronounced 

ommatidial elongation, the acquisition of a 180° clockwise or anti

clockwise twist, and the proximal movement of the retinulae, longi

tudinally oriented microtubules appeared within the peripheral and 

central regions of the retinula cytoplasm. These microtubules 

persisted throughout elongation, twisting, and proximal movement, 

but showed approximately a 2.5-fold decrease in quantity following 
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these events. Although the spatial distribution of microtubules 

was somewhat different in the honey bee from that described by 

Perry (1968) in the developing retinula cells of the Drosophila 

compound eye, the temporal sequences of microtubule appearance and 

disappearance were similar in the two insects. 

As the retinulae moved proximally, the distal tip of each 

retinula no longer extended into the proximal end of the overlying 

group of cone cells. It is probable that the presence of micro

tubules oriented perpendicularly to the ommatidial axis and arranged 

around the cone periphery mediated a contraction of the proximal 

region of the cone and a bulging of the middle region, as the 

retinula moved proximally. When the retinula was located entirely 

proximal to the group of four cone cells, the cone was nearly 

spherical in shape and the cone cell microtubules had disappeared. 

Elongation of the cells of both the dioptric and receptor 

systems was probably accomplished with the aid of microtubules. 

The development of a process containing numerous longitudinally 

oriented microtubules, from the proximal tip of each cone cell, was 

also probably mediated by the assembly of the microtubules. The 

role of microtubules in elongation has also been postulated in 

sperm (Porter, 1966; Tilney, 1971; Blood good, 1974; Wilkinson et 

al., 1974; Youssef et al., 1974), in protozoan axostyles (Porter, 

1966; Tilney, 1971; Bloodgood, 1974), and in cilia (Porter, 1966; 

Tilney, 1971; Bloodgood, 1974). 

Although there is no direct physiological evidence to indicate 
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which cell types of the developing compound eye were involved in 

cuticle secretion, indirect morphological evidence suggests that the 

cone, cone-adjunct pigment, and retinula-adjunct pigment cells were 

all involved in cuticle secretion. While larval and pupal cuticle 

were being formed, microvilli were apparent on the apical surfaces 

of the cone, cone-adjunct pigment, and retinula-adjunct pigment 

cells. The microvilli appeared to participate in membrane recycling 

with cytoplasmic multivesicular bodies and vesicles, similar to that 

ascribed to c~ticle secreting cells by Locke (1969, 1976) in his 

description of cuticle secretion in Calpodes ethlius and by 

Delchambre (1970, 1971a) in Tenebrio molitor. 

Contrary to the hypothesis of Phillips (1905), the cone cells 

did appear to participate in cuticular lens secretion along with 

the cone-adjunct pigment and retinula-adjunct pigment cells. The 

thickness of each cuticular lens facet appeared to be controlled by 

two factors: the degree of rotation of each cuticular lamina with 

respect to those adjacent to it, determined by the number and thick

ness of chitin-protein microfibrils composing each lamina (Bouligand, 

1965; Locke, 1967; Neville, 1969, Neville and Luke, 1969a, 1969b), 

and the morphology of the apical microvilli of the cone, cone-adjunct 

pigment, and the retinula-adjunct pigment cells. During the 

secretion of the first several cuticular lamellae the apical micro

villi of the cone cells were apparently shorter, less regular, and 

less dense, than those of the pigment cells. Less apical surface 

area and therefore probably fewer plaque-like structures were 

available to participate in fibrous cuticle deposition by the cone 
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cells during this period. Thus, the portion of each cuticular 

lamella overlying the cone cells was not as thick as the portion 

overlying the two types of pigment cells. During the secretion of 

the remaining lamellae the apical microvilli of the cone cells were 

observed to be morphologically similar to those of the pigment cells 

and the portion of each cuticular lamella overlying the cone was 

also of a similar thickness to the portion overlying the pigment 

cells. The underlying mechanism(s) which detennined the degree of 

lamina rotation and the morphology of the apical microvilli have 

not yet been elucidated. 

During the course of the present investigation, several 

questions were raised. First, pore canals, abundant in the cuticle 

adjacent to the honey bee worker compound eye, were not present in 

the cuticle of the lens facets. It is conceivable that pore canals 

might interfere in some manner with light perception, or that the 

cells of the optic region have become so specialized for other 

functions that the ability to form pore canals has been lost. Second, 

the cone cell processes of the honey bee compound eye resembled 

the crystalline tracts of some insects having eyes of the clear-

zone type. These tracts have been demonstrated to act as light 

guides, conveying light to the rhabdom (Horridge, 1971; D�ving and 

Miller, 1969; Carricaburu, 1975). Whether the cone cell processes 

of the honey bee function in a similar manner is still to be 

detennined. 

In conclusion, the differentiation of indistinguishable 

primordial optic cells into adult ommatidia represented a striking 
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example of the precise timing of cellular processes during develop

ment. Cell membrane junctions served to anchor adjacent cells to 

one another, while junction disappearance allowed for free cell 

migration. Transient microtubules appeared to be involved in 

elongation in both the dioptric and receptor systems, while 

persistent microtubules within the cone cell processes appeared to 

function in anchoring the dioptric and receptor systems together. 
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Figure 4. Longitudinal 
compound eye 
a) stage 4 

b) stage 5 

c) stage 7 

d) stage 8 

e) stage 10 

f) adult 

sections of portions of the worker honey bee 
at different developmental stages. 
The retinula is spindle-shaped and the 
cone cells surround the distal portion. 

X 723 
The retinula is still spindle shaped and 
the cone cells surround the distal portion. 
The optic primordium has expanded and the 
retinulae are not as closely apposed to one 
another as in the preceding stage. X 613 
The retinulae have elongated and have sunk 
proximally. The cone is spherical. X 591 
Note the elongate, axon-like portion of the 
distal region of the retinulae. X 324 
Oblique section, differentiation is essen
tially complete. X 193 
Note biconvex shape of each lens facet. 

X 148 

Figure 5. Region of the optic primordium in which cells are reorgan
izing to forni pre-ommatidial cell clusters. The area of 
the morphogenetic furrow is indicated by an arrow, pre
ommatidial cell clusters (p-o) are located to the right, 
and the entire region is underlain by a basement membrane 
(bm). X 385 
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Figure 6. Stage 1. Cross-section through a preommatidial cell 
cluster composed of one centrally located and eight con
centrically arranged retinula cells (rl-9), surrounded 
by four cone cells (cl-4). X 10073 

Figure 7. Stage 1. Cross-section through the optic primordium 
showing portions of several preornmatidial cell clusters 
(arrows). X 5348 
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Figures 8-14. Cuticle secretion 

Figure 8. Stage 2. Apices of cone (c) and cone-adjunct pigment (c-a) 
cells showing microvilli with plaque-like structures at 
their tips. Note: adherens junctions between adjacent 
cone and those between cone and cone-adjunct pigment cells 
are (single arrow). X 22000 

Figure 9. Stage 3. A multivesicular body (mvb) with a plaque-like 
structure in its membrane (arrow). Similar multivesicular 
bodies are abundant in the distal cytoplasm of cone, cone
adjunct pigment, and retinula-adjunct pigment cells during 
this stage. X 36250 

Figure 10. Stage 3. Microvilli have disappeared from the apical sur
faces of the cone and cone-adjunct pigment cells, and 
multivesicular bodies with plaque-like structures in 
their membranes (mvb) have appeared in the distal cytoplasm. 

X 9300 

Figure 11. Stage 6. Cuticulin deposition. Note the trilaminar struc
ture formed by deposition of material by the plaque-like 
structures of the apical microvilli. X 35325 

Figure 12. Stage 8. Microvilli along the cone cell (c) apex, under
lying the developing cuticular lens (cl). Microvilli are 
smaller than those of the cone-adjunct and retinula-adjunct 
pigment cells. X 63000 

Figure 13. Stage 8. Microvilli along the cone-adjunct (c-a) and 
retinula-adjunct (r-a) pigment cell apices underlying 
the interlens (il) portion of the cuticle. Microvilli 
are larger than those of the cone cell. X 40000 

Figure 14. Stage 11. Microvilli along the apices of the cone (c) 
and cone adjunct (c-a) pigment cells. Microvilli are 
similar in size in both cell types X 49000 
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Figure 15. Stage 5. Cross-section through the dioptric system 
showing the four cone cells (c) surrounded by two cone
adjunct pigment (c-a) cells. Two of the cone cells meet 
along their inner surfaces. X 8266 

Figure 16. Stage 5. Cross-section through the distal region of the 
retinula. The eight concentrically arranged retinula 
cells are surrounded by four cone cells (c) which contain 
microtubules oriented perpendicular to the ommatidial axis. 
The rhabdomeres of the eight retinula cells contain few 
pigment granules (pg). Numerous longitudinally oriented 
microtubules are contained in the peripheral portion of 
the retinula cytoplasm. Several multivesicular bodies 
(mvb} with plaque-like structures in their membranes are 
seen within the retinula cells. Numbering of the retinula 
cells is according to the scheme of Gribakin (1967a, 1969, 
1972, 1975). X 10913 



 



59 



Figure 17. Stage 5. Cross-section through the junction of the 
distal and middle regions of the retinula showing the 
centrally located ninth retinula cell surrounded by the 
eight concentrically arranged retinula cells. Note: 
adherens junctions between the ninth retinula cell and 
the surrounding eight. Numerous microtubules are located 
near the retinula periphery. X 11257 

Figure 18. Stage 5. Cross-section through the junction of the middle 
and proximal regions of the retinula showing the two type 
III cells narrowing to form axons. X 7619 
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Figure 19. Stage 6. Cross-section through the retinula and 
surrounding retinula-adjunct pigment cells (r-a) 
at the level of the boundary between the distal 
and middle levels. The tip of the ninth retinula cell 
is present only at this level. X 8250 

Figure 20. Stage 5. Cross-section through several retinula-adjunct 
pigment cells at the level of their nuclei showing the 
concentric arrays of granular endoplasmic reticulum (ger). 

X 5931 
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Figure 21. Stage 5. Oblique-section through the retinula. Note 
vesicles (single arrow), centrioles (ce) and multi
vesicular bodies (mvb) in the cytoplasm surrounding 
the developing rhabdomeres. X 13035 

Figure 22. Stage 5. A multivesicular body (mvb) shown at high 
magnification with several plaque-like structures in 
its membrane (arrows) and parallel paired centrioles 
(ce) from the retinula cell cytoplasm. X 65250 
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Figure 23. 

Figure 24. 

Figure 25. 

Stage 6. Slightly-oblique section through the retinula 
distal region showing the cone cell processes (cp). Note 
the numerous longitudinally oriented microtubules located 
within both the peripheral and central retinula cytoplasm. 

X 13035 

Stage 6. Longitudinal section through the proximal region 
of a cone cell showing the cone cell process (cp} contain
ing numerous longitudinally oriented microtubules. 

X 7244 

Stage 6. Cross-section through the boundary between the 
middle and distal regions of the retinula showing the 
peripherally located cone cell processes (cp). Structures 
similar in appearance to lipid droplets (li) are present 
at this stage within the retinula cell cytoplasm. 

X 6944 
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Figure 26. Stage 7. Cross-section through the middle region of 
the retinula showing the cone cell processes (cp) 
located just pe�ipheral to the junctional complexes 
between adjacent retinula cells. The ninth retinula 
cell is no longer centrally located, and is beginning 
to develop a rhabdomere. Numerous longitudinally oriented 
microtubules are located in the peripheral and central 
regions of the retinula cytoplasm. X 9844 

Figure 27. Stage 7. Cross-section through the middle region of 
the retinula below the level of the developing rhabdom. 
The ninth retinula cell is located more laterally than 
in preceeding stages, and the cone cell processes (cp) 
are more centrally located. 

X 6256 

Figure 28. Stage 8. Cross-section through the proximal, axon-like 
portion of the retinula showing the nine retinula cells, 
the four cone cell processes (cp) and the surrounding 
retinula-adjunct pigment cells (r-a). 

X 8838 
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Figure 29. Stage 11. Cross-section through the distal portion of the 
retinula showing the ovoid cone cell processes (cp) located 
close to the junctional complexes between adjacent retinula 
cells. Inflated cisternae (arrows) of the endoplasmic reti
culum are located in the central retinula cytoplasm, while 
most of the mitochondria are more peripherally located. 
Fewer microtubules are seen within the retinula cell cyto
plasm than in preceeding stages. Leaf-like processes of 
the retinula-adjunct (r-a) cells are located the space be-
tween adjacent retinula cells. X 12443 

Figure 30. Stage 11. Cross-section through the middle region of the 
retinula at the level where the two type III cells have 
formed axons. An axon-like structure, possibly a bristle 
sense cell neurite (bn) is located adjacent to the retinula. 

X 13944 
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Figure 31. Stage 12. Cross-section through the middle region of the 
retinula at the level of the distal tip of the ninth reti-
nula cell. X 13035 

Figure 32. Stage 12. Cross-section through the proximal region of 
the retinula showing the two type I, four type II, and 
ninth cells contributing to the rhabdom. At this stage, 
the two type III cells have formed peripherally located 
axons. Note that the cone cell processes (cp) are almost 
round in cross-section. X 16590 
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Figure 33. Stage 11. Slightly-oblique-section through the 
crystalline cone. Lines indicate approximate 
levels of cross-sections. X 5088 

Figure 34. Stage 11. Cross-section through the cone at· level a. 
Note the location of the cone cell nuclei along the 
distal cone cell periphery. X 3214 

Figure 35. Stage 11. Cross-section through the cone at level b. 
Two of the cone cells meet along the ommatidial axis. 

X 5925 

Figure 36. Stage 11. Cross-section through the cone at level c. 
X 5925 

Figure 37. Stage 11. Cross-section through the cone at level d. 
X 5925 

Figure 38. Stage 11. Cross-section through the cone at level e. 
Junctional complexes can be seen where the retinula 
cells contact one another, and where they contact the 
proximal tip of the cone (arrow). X 9813 
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Figures 39 - 45. Bristle -forming complex. 

Figure 39. 

Figure 40. 

Figure 41. 

Figure 42. 

Figure 43. 

Figure 44. 

Figure 45. 

Stage 11. Longitudinal section (tangential) through an 
interommatidial bristle. The bristle is located at the 
junction of three ommatidia and pierces the cuticle 
in the interlens region, between adjacent corneal lens 
(cl) facets. Scolopale indicated by arrow. X 7300 

Stage 11. Cross-section of a bristle-forming complex 
just proximal to the socket. The neurilemma cell does 
not extend this far distally. The sense cell (s) is 
surrounded by the trichogen (tr) and tormogen (to) 
cells. The scolopale is indicated by an arrow. 

X 888 

Stage 11. Enlargement of a portion of figure 40 
showing the sense (s), trichogen (tr) and tormogen 
(to) cells. X 35550 

Stage 11. Cross-section of a bristle-forming complex 
at the level of the distal portion of the crystalline 
cone. The sense (s) cell is surrounded by neurilemma (n), 

, trichogen (tr), and tormogen (to) cells. The entire 
bristle-forming complex is surrounded by several re-
tinula-adjunct pigment (r-a) cells. X 17000 

Stage 11. Enlargement of a portion of figure 42 showing 
the septate desomosomes between the neurilemma (n), 
trichogen (tr), and tormogen (to) cells. X 60000 

Stage 8. Cross-section of a bristle-forming complex 
proximal to the level of the tormogen cell. The sense 
(s) and neurilemma (n) cells are surrounded by the 
trichogen (tr) cell which contains extensive concen
tric arrays of granular endoplasmic reticulum (ger). 

X 5400 
Inset. Enlargement of sense (s) and neurilemma (n) 

cells. X 19800 

Stage 6. Cross-section of a bristle-forming complex 
showing the adjacent trichogen (tr) and tormogen (to) 
cells. The sense (s) and neurilemma (n) cells extend 
in a groove along the trichogen cell. X 5700 
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