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ABSTRACT 

A Comparison of Dewpoint and Psychrometric Mode 

in Leaf Water Potential Measurements 

by 

Gladys Durand-Campero, Master of Science 

Utah State University, 1977 

Major Professor: Herman H. Wiebe 
Department : Biology 

Leaf water potential of two maize plants (Zea mays L. ) two 

chlorophytum plants (Ch lor ophy twn capense , Kuntze), a schefflera 

(Brassaia actinophylla ) and one aspen (Populus tremuloides Michx.), 

were measured under laboratory conditions with aluminum block in situ 

leaf hygrometers and with stainless steel single junction chamber 

hygrometer using excised entire leaves. Plants were subjected to a 

drying cycle . The hygrometers were controlled with a dewpoint micro

voltmeter and all readouts were recorded on a chart recorder. A 

typical reading and control schedule included 20 second cooling 

before a first psychrometric reading allowing the output to return 

to zero, followed by 20 seconds cooling and switching to DEWPOINT 

function. Dewpoint was recorded for periods up to 300 seconds. 

Finally, the instrument was switched directly to READ function and 

i x 

a second psychrometric reading was recorded, again allowing the output 

to return to zero. The area under the psychrometric trace, measured 

during evaporation phase, was taken as a measurement of the amount 

of water condensed on the thermocouple. 



It was found that the cooling coefficient (n) of in situ leaf 
V 

hygrometers had to be lowered, · compared to rr values found 
V 

in dry air, as plant water potentials decreased. This lowering was 

X 

necessary to set the reading at dewpoint temperature without serious 

drifting. The areas under pre- and post- dewpoint psychrometric 

outputs were thus nearly equal and the dewpoint could be read for 

extended periods, confirming that equilibrium conditions were possible. 

When water potential was measured in both the psychrometric and 

dewpoint mode with in situ leaf hygrometers, lower water potentials 

were found in the dewpoint mode than in the psychrometric mode and 

this difference tended to increase at lower water potentials. Con

versely, in the Merrill uriits the water potentials ~etermined on the 

psychrometric mode were consistently slightly lower than those based 

on the dewpoint readings. The greater agreement between psychrometric 

and dewpoint determinations obtained with Merrill units may well be 

explained by a manyfold higher leaf surface area exposed to the 

junction as corrµared to the limited leaf area sampled by the in situ 

leaf hygrometers. A greater area would contribute to a lesser total 

leaf resistance influencing the psychrometric determination. 

The shape of hygrometer output traces ·in the psychrometric mode 

over standard solution generally had the typical, relatively flat 

shoulder, while over drier leaves it often had a more or less steady 

decline to zero. This difference was much more pronounced with in situ 

leaf hygrometers than with the chamber units which sampled larger leaf 

area. 



xi 

The data suggest that the dewpoint mode, using proper precautions, 

measures water potential under equilibrium or isopiestic conditions, 

under which epidermal resistance is not a problem. Nonisopiestic 

conditions occur in the psychrometric mode. It appears that, immediately 

after cessation of the cooling current the evaporation of water from 

the wet junction elevates chamber vapor pressure above that of the 

mesophyll. This discrepancy would be zero over standard solutions 

and increases with increasing leaf resistance and with smaller leaf 

surface in the hygrometer. 

(69 pages) 



INTRODUCTION 

Psychrometric techniques offer a convenient means for the deter

mination of free energy status of water, the water potential, in plants, 

soils and other rredia. The development of miniature thermocouples by 

Spanner (1951) and Richards and Ogata (1958) has facilitated water 

potential determination. The Spanner psychrometer alters the initial 

equilibrium of temperature and water vapor concentration in the chamber 

for the short time during which an electrical current is passed in the 

direction that causes cooling of the measuring junction below the dew

point by the Peltier effect. This results in the condensation of a 

small amount of water on the junction. When the current is disconnected 

water starts to evaporate and the junction temperature is then 

depressed by the evaporative cooling; the amount of depression is a 

function of relative vapor pressure inside the chamber. The drier the 

atmosphere in the chamber the more rapid will be the evaporation rate 

and consequently the time available for psychrometric reading is 

shortened. Longer cooling periods are for this reason desirable to 

increase the accuracy and reliability of the reading on drier samples. 

The validity of the psychrorretric measurement has been questioned 

because leaf tissue sometimes apparently behaves differently than the 

wet filter paper generally used to calibrate the instrument. One 

possible cause of this different behavior is that leaf epidermal and 

stomatal resistance result in a smaller amount of water available for 

condensation on the thermocouple junction when leaf tiss~e is used. 



It appears that accuracy depends largely on how closely conditions 

during calibration are reproduced during the measurement. 

2 

Neumann and Thurtell (1972) developed a technique for determining 

leaf water potential from the dewpoint measurement. This technique 

was later roodified by Campbell, Campbell and Barlow (1973) who developed 

the theory and design necessary to construct a dewpoint meter based upon 

maintaining the thermocouple at dewpoint temperature. The method 

offers the advantage that at the dewpoint temperature no net water 

exchange occurs at the wet thermocouple junction and the measurement 

can be made at water vapor equilibrium between the chamber and the 

junction. Besides, the dewpoint measurement is relatively independent 

of such factors as the size and shape of the wet surface at the junction 

which affect the rate of water vapor exchange. 

Since in the dewpoint method the water potential ·may be measured 

when no water vapor is moving between the sample and the hygrometer 

chamber, the measurement would be made at equilibrium conditions, 

equivalent to isopiestic conditions. Thus the equilibrium dewpoint 

method might be expected to more nearly measure the leaf water poten

tial when leaf resistance is high. 

The present study explores the possibility of the application of 

the dewpoint method to determine leaf water potential in plants 

subjected to drought and investigates the adjustments that are required 

for more accurate measurements. 

The objectives of this study are: 

1. To determine the influence on water potential measurement of 
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various factors such as cooling coefficient and duration in dewpoint 

mode, using various plant species at various water potentials. 

2. To determine if the volume of water transmitted by the leaf 

area to the thermocouple junction varies under different conditions. 

3. To ascertain if the dewpoint method actually measures water 

potential under isopiestic condition, i.e. zero water movement or 

equilibrium. 
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LITERATURE REVIEW 

The theory, development and design criteria of the psychrometer 

and its application to research in water relations have received 

considerable attentio~ during the last two decades. 

The development of a psychrometer that measures the vapor pressure 

depression of a liquid sample began with Spanner (1951). The subsequent 

application of the psychrometer has revealed that many factors other 

than the water potential of the sample may influence the reading 

obtained with thermocouple psychromete~. For example, Barrs (1964) 

showed that the liberation of heat accompanying aerobic respiration by 

the tissue could influence psychrometric readings. Klute and Richards 

(1962) found psychrometer sensitivity depends on temperature. 

Peck (1968) indicated two causes that may be involved in the 

increase of sensitivity: (1) the increase in the wet junction radius 

bec~us2 of dew formation and (2) the increase in the apparent tempera

ture depression of the measuring junction as a result of heat dissipation 

at the massive reference junction. Peck recommended a 1 cm3 block of 

copper as a suitable massive junction to dissipate the heat produced 

during the cooling phase. Scotter (1972) criticized Peck's recorrrnenda

tions ccncludi~g they are misleading because massive reference junctions 

fail to account fully for conduction away from the junctions during 

cooling. 

Rawlins (1964) suggested that if vapor diffusion between the 

sample and the chamber air is obstructed by a barrier such as the leaf 

epidermis, observations of water potential can be in error as a result 



of nonequilibrium between the sample and the chamber air if either 

sources or sinks for water vapor are present in the chamber. 

5 

Neumann and Thurtell (1972) developed an instrument that detects 

dewpoint depressions rather than wet bulb depressions. The 

dewpoint temperature measures the vapor pressure of water in the system 

rather than the ratio e/e 0 (relative humidity). The dewpoint tempera

ture is, howeve~, ccmpared to the dry junction temperature, just as is 

the psychrometric temperature. Rawlins (1976) has indicated water 

potential determination based on dewpoint temperature as preferable to 

the wet bulb temperature because: 

l. The relation of dewpoint temperature to water potential is 

less dependent upon the ambient temperature than is that 0f wet bulb 

temperature. 

2. No net water condenses or evaporates from the wet junction 

during dewpoint measurement. 

3. Psychrometric measurements are influenced by the wetting 

characteristics of the junction and the size and shape of the water 

droplet formed on the junction, whereas the dewpoint should be independ

ent of these factors. 

To measure dewpoint temperature Neumann and Thurtell (1972) used 

four terminal Peltier cooled thermocouple psychrometers. The dewpoint 

meter designed by Campbell et al. (1973) permits dewpoint measurement 

with the conventional two wire thermocouple. The circuitry of this 

dewpoint meter may be operated in such a wuy that cooling and sensing 

functions are time shared on the same thermocouple. Additionally, the 

electronic switching enables the dewpoint temperature to appear as a 

continuous reading on a panel meter or on a recorder chart. 
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Even though, in the theoretical design considerations, it is 

assumed that a wet thermocouple junction maintained precisely at dew

point temperature will neither gain water through condensation nor 

lose water through evaporation, Campbell et al. (1973) admitted that 

under practical conditions it is not possible for a thermocouple 

junction to be absolutely independent of heat transfer mechanisms. This 

implies that errors in dewpoint measurement may arise by changes in 

sensitivity and cooling coefficient with temperature. 

The cooling coefficient, (n ) represents the maximum junction 
V 

temperature depression resulting from the passage of an optimum value 

of cooling current . This parameter is repor ted to be constant for a 

given thermocouple, environment and cooling current, and the dewpoint 

method requires the electronic gain of the duty cycle control circuitry 

be matched to the cooling coefficient (nv) of the thermocouple being 

used (Campbell et al. 1973) . Usually the evaluation of nv is done with 

the thermocouple equilibrated in a dry chamber. Whether changes in 

cooling coefficient are necessary when the thermocouple is used in a 

humid chamber and if this influences leaf water potential measurement 

has not been reported. 

The proper duration of cooling current seems to be more difficult 

to specify because it depends on the water potential of the sample. A 

cooling time considered adequate for low water potentials is much 

longer than required for high water potentials (Wiebe et al., 1971). 

If an adequate cooling period and cooling current are not used, 

reliability in measurement will be lost. The cooling period should 

not be made longer than is required because the error introduced by 



changing dry electromotive force (e.m.f.) is in proportion to the 

length of cooling period (Merrill and Rawlins, 1972). 

7 

Rawlins (1966) and Peck (1968) pointed out that the wet area of 

the junction varies in size and shape depending on the duration of 

cooling, the time elapsed following the cooling cycle, and geometry 

of the junction and lead wires. 

Peck (1969) derived the equations to estimate the maximum time for 

which the thermojunction of a Spanner psychrometer may be cooled or 

allowed to evaporate with negligible effect of cuticular resistance. 

It is explained that in the case of very low cuticular resistances the 

restraints to the pennissible cooling period will be set by the heat 

capacity of the sample or its change of water potential resulting from 

depletion of moisture content . 

Since the resistance of leaf tissue to cede water to the thermo

couple junction is likely to increase in plants subjected to variable 

drying periods, the use of longer cooling periods has been adopted to 

obtain leaf psychrometric measurements of plants under water stress. 
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MATERIALS AND METHODS 

Volume and Rate of Water Condensation Measurement 

A microscope with a calibrated ocular micrometer was used to 

measure junction bead and water drop diameter of two leaf hygrometers: 

a model L51 (Wescor Inc., Logan, Utah) and one produced by EMCO (EMCO, 

Angola, Indiana). 

The leaf hygrometer, surrounded by wet filter paper, was fixed in 

a stoppered clear bottom glass vial and mounted in inverted position 

on the microscope stage. The junction bead and condensed water drop 

could be observed and measured through the bottom of the vial using 

incident illumination. Light was used only for the short time in which 

the measurement was made to avoid heating of the junction and cause 

water evaporation, thus minimizing the error in the determination. 

When the microvoltmeter was in COOL function it was possible to observe 

and measure the diameter of water droplet condensing on the junction. 

The drop enlarged to diameter as much as 4x that of the junction bead 

before it fell off from the bead . This might require from 20 to over 

40 minutes. The results were used to calculate rate of water condensa

tion on the thermocouple assuming spherical drop shape. 

Leaf Water Potential Measurements 

Measurements were made on two maize plants (Zea mays L. ), two 

chlorophytum plants (Chlorophytwn c«pense , Kuntze), a schefflera 

(Brassaia actinophylla ) and one aspen (Populus t remuloides Michx.). 
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Plants were grown on soil in pots in a glass house. Leaf water 

potential was monitored under laboratory conditions with aluminum block 

leaf hygrometers L51, throughout a drying cycle until the entire plant 

showed severe wilting. Plants were given 16 hours daily illumination 

of up to 185 µeinsteins/m2/sec using both fluorescent and incandescent 

lights. Illumination was interrupted during the period in which the 

measurements were made. 

Leaves were gently washed with distilled water and a sponge and 

pennitted to dry an hour before the hygrometers were attached. The 

hygrometer mounting procedure was that used by Wiebe and Prosser (1977) 

except in our case the hygrometers were attached on different leaves of 

the plant instead of on one leaf. At least four in situ leaf hygro

meters were rrounted on upper surface near the edge of leaves and left 

overnight before readings were taken. 

Wiebe and Prosser (1977, p. 256) described the mounting procedure 

as follows: 

Prior to attachment, a rubber washer (cut from 0.2 mm 
sheet rubber-dental dam) was cemented inside the leaf slit 
of the aluminum block to provide a base, or back stop, to 
press the leaf firmly but gently against the hygrometer unit. 
The aluminum block hygrometer housing, mounted on wooden 
dowels on a Styrofoam block base, were then assembled along 
both sides of the leaf with care to avoid leaf twisting or 
injury. Then the hygrometers cylinders themselves, each 
with a Parafilm gasket lightly coated on both surfaces with 
petrolatum, were inserted in the aluminum blocks, seated 
firmly against the leaf (with the rubber washer on the 
other side of the leaf), and secured with the setscrew. 

By this procedure I have been able to attach and get satisfactory 

readings from most of the hygrometers on most species used throughout 

the drying cycle. An exception was Brassaia whose leaves are normally 

·somewhat succulent but which became thinner and often slipped within 
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the unit on drying. Consequently, it was necessary to repeat the 

mounting procedure on other leaves as the plant dried. 

Simultaneous determinations were made for comparative purposes 

with stainless steel single junction Merrill psychrometer placed in the 

center of a stainless steel chamber {J. R. D. Merrill Specialty 

Equipment, Logan, Utah) using excised entire leaves. In case of maize 

a strip was cut from the edge of the leaf minimizing in this way the 

cut surface. The leaf or portion of the leaf was wrapped around the 

hygrometer cylinder and allowed to uncoil against the side walls of 

the chamber. The stainless steel chamber assembled to the hygrometer 

unit was immediately sealed and immersed in a water bath at 25C. 

Readings were begun after two hour equilibration. 

The configuration in which the psychrometer is concentric to the 

sample surface favors thermal equilibrium. Besides, it provides a 

maximum surface of the sample exposed to the thermocouple hygrometer 

and facilitates a rapid vapor pressure equilibrium. 

The hygrometers were controlled and read with a Wescor HR33 dew

point microvoltmeter (Wescor Inc.) and all readouts were recorded on 

a chart recorder. 

Cooling coefficients were determined for all hygrometers in a dry 

atmosphere according to Wescor Instruction Manual for dewpoint micro

voltmeter. A typical reading and control schedule was: 

l. Zero instrument on READ. 

2. COOL for 20 seconds . 

3. READ allowing output to return to zero. The relatively level 

reading attained in about 5 seconds, was recorded as the usual psychro

metric reading, here termed P1. 



11 

4. COOL for 20 seconds, then to DEW POINT function. The dewpoint 

reading was recorded at 30, 120 and 300 seconds. These observations 

were tenred DP1 , DP 2 and DP 3, respectively. 

5. After 120 or 300 seconds, the instrument was switched directly 

to the READ function, and a second psychrometric reading, recorded as 

P2, was obtained. Again the output was allowed to return to zero. 

In addition to the psychrometric and dewpoint readings, the area 

under each psychrometric recorder trace was measured with a compensating 

polar planimeter. These areas were termed the P1 area (P1A) and the P2 

area (P 2A), respectively. Since the main dewpoint method requirement is 

to have a steady dewpoint output I proceeded in this way: if drifting 

during dewpoint reading indicated excess cooling of the measuring 

junction this resulted in excess water condensation and was reflected 

in the area under psychrometric P2 (P 2A) for being greater than P1 area 

(P 1A). To correct this drifting, before starting the next reading 

schedule, I increased the value of cooling coefficient by one, two or 

more units depending on how great the drifting was. If drifting indi

cated warming of the junction, water evaporated from it and the P2 area 

was smaller than P1 area. To correct this drifting, before starting 

the next reading schedule, I lowered the cooling coefficient by one, 

two or more units. Changes in cooling coefficient values made it 

possible to obtain dewpoint readings without drifting through 30, 120, 

300 seconds or even longer. The cooling coefficient for which dewpoint 

was steady could generally be used in successive readings during one 

day and sometimes during the next two or three days, but when the plant 

water stress was increasingly high drifting in dewpoint often indicated 



12 

evaporation for which more frequent changes in cooling coefficient had 

to be made. 

Measure~nts obtained with hygrometers were compared with periodic 

detennination of leaf water potential made in the pressure bomb. 

Calibration of Leaf Hygrometers 

Aluminum block leaf hygrometers were calibrated over sodium 

chloride solutions at -9.2 bars, -22.8 bars and -46.4 bars at 25C. 

The calibration procedure was designed to simulate leaves. Tightly 

folded aluminum foil envelopes were prepared, each one having a 6 rrm 

diameter hole on one surface and enclosing three 16 mm diameter filter 

paper discs. The paper was wetted with standard solution and the 

envelope so prepared was mounted in the slit of the aluminum block 

hygrometer housing. The mounting procedure was the same as that used for 

leaves. Readings were obtained beginning after two hour temperature 

and water vapor equilibration. 

Calibration of the Merril hygrometers was made following the 

mounting procedure already described for leaves but substituting a 

strip of filter paper wetted with the standard solution. 

Cooling coefficient determined in dry chamber as per Wescor 

Instruction Manual for dewpoint microvoltmeter, did not work well in 

measure~nts with standard solutions. The procedure used to determine 

rrv was the same followed with plants, except once dewpoint output was 

steady for a given cooling coefficient it could be used in successive 

readings on all the standard solutions and no drifting in dewpoint was 

observed. The reading schedule followed in .calibration was the same 

described for plants. 
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Water Condensation Measurement at Low Water Potentials 

Wescor C52 sample chamber hygrometers were calibrated using 

standard solutions: NaCl at -22.8 and -46.4 bars and LiCl at -100, 

-300 and -600 bars. The method used was that developed by Wilson and 

Harris (1968) and by Campbell and Wilson (1972) in which the Spanner 

psychrometer is used basically like a Richards and Ogata wet loop 

psychrometer. A large drop of water is condensed by Peltier cooling; 

following this, the sample is moved into the thermocouple chamber and 

its water potential determined. 

One of the two sample positions of the chamber was lined with 

filter paper saturated with distilled water. Water was condensed on 

the thermocouple for variable period of time up to 20 minutes; then 

the second position sample holder slide was charged with filter paper 

saturated with one of the different standard solutions and slid softly 

but quickly to place in the thermocouple chamber. Extreme care was 

taken to minimize exposure of the sample to the atmosphere and thus 

water loss which might change the actual water potential. The water 

potential was taken as the maximum deflection achieved within a minute 

or less. 

The same procedure was followed with standard solutions NaCl at 

-22.8 and -46.4 bars. These were also cooled for variable periods 

over the respective solutions to compare the amount of water condensed 

over various water potentials when evaporation occurred at standard 

potentials. 

All readouts were recorded on a chart recorder and the area under 



each psychrornetric trace was measured with a polar planimeter, thus 

both water potential and water volume measurement were made. 

14 
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RESULTS 

Volume and Rate of Water Condensation 

Volume and rate of water condensation were calculated from micro

scopic measurement during the first 21 minutes in the COOL function 

assuming the drop of water was a perfect sphere. A condensation rate 

-2 of 1.24x10 µg/sec for the Wescor leaf hygrometer and a rate of 1.7 x 

-2 10 µg/sec for the EMCO psychrometer were found. 

Water condensation rate obtained for EMCO hygrometer was assumed 

to be the same as that of the stainless steel screen Merrill hygrometer, 

taking into consideration that both hygrometers have nearly the same 

dimensions. Unfortunately, the measurement could not be made on the 

Merrill hygrometer without removing the stainless steel screen. The 

measurement involves some error due to evaporation caused by the heating 

effect of the light used to illuminate the thermocouple at the moment 

in which the measurements were made. This evaporation was minimized by 

keeping light off at other times. 

Calibration of Hygrometers 

Since considerable variability in hygrometer characteristics exist, 

they were individually calibrated. Results are given in Tables l and 

2. Linear regression equations were calculated and plotted to predict 

water potential based on P1 and DP2 readings for all Wescor leaf 

hygrometers and for two Merrill hygrometers. Although the regression 

analysis was made with only two degrees of freedom, determination 



Table l. Calibration data for Wescor and Merrill hygrometers 

Hygrometer No.a 

Cooling Coefficient 
(µvolts) 

P2 area/P1 area at 

L6 LB L9 Ll0 Lll Ll2 Ll3 Ll4 Ll5 Ml M2 

74 76 70 72 67 72 70 73 69 65 78 

- 9. 2 bars 0.94 0.99 0.96 0.97 0.96 0.94 0.96 0.93 0.88 0.95 1.00 
-22.8 bars 0.97 1.00 1.00 1.01 0.94 0.98 0.96 0.97 0.98 0.98 1.00 
-46.4 bars 0.99 1.00 0.96 0.96 0.96 l .00 0.90 1.09 0.86 l .00 1.05 

- 9.2 bars 1.00 1.00 1.01 1.00 0.99 1.06 1.00 0.99 1.00 1.00 1.00 
-22.8 bars 1.00 1.00 1.00 1.00 1.00 l .00 1.00 0.98 1.00 1.00 1.00 
-46.4 bars 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.01 1.00 1.00 

- 9.2 bars 1.01 1.03 l .03 0.96 1.03 0.97 0.96 1.04 0.96 0.99 0.99 
-22.8 bars 1.01 1.02 1. 12 1.04 1.03 0.98 0.94 1.17 0.94 0.94 0.98 
-46.4 bars 0.80 0.81 o.72 0.81 0.89 0.87 0.82 0.98 0.71 0.60 0.81 

al or M denote Wescor or Merrill hygrometer, respectively 



Table 2. Regression coefficients obtained to predict water potential (bars ) ba sed in psychrometric 
(µvolts) and dewpoint readings (µvolts) and water condensation data for Wescor and Merrill 
hygrometers. 

Hygrometer No. a 

Psy. intercept bo (bars) 
Slope bl (bars/ µvolts) 2 Determination Coeff. r 

DP 2 Intercept bo (bars) 
Slope bl (bars/µvolts) 2 Determination Coeff. r 

Area (in2) at ~ = 0 
at 20 sec cooling 

µg H20 cond. per 20 sec= 

in2 x factor 

L6 L8 L9 Ll0 Lll Ll2 Ll3 Ll4 Ll5 Ml M2 

3.38 2.37 3.98 3.83 3.07 2.06 3.18 4.96 4.64 2.32 0. 18 
-2.73 -2.53 -2.64 -2.73 -2.87 -2.63 -2.87 -2.91 -2.95 -2.24 -2.31 
0. 98 1.00 1.00 0. 98 1.00 l .00 1.00 0.98 0.96 1.00 1.00 

0.58 l .51 0.40 0.38 -0 .48 0.85 -0. 12 l. 12 2.43 2.64 1. 66 
-l.24 -l.32 -l. 20 -l.25 -l.19 -l.31 -l.20 -l. 21 -l.34 -1.28 -l.13 

.92 l.00 l.00 1.00 l.00 l.00 1.00 1.00 1.00 1.00 1.00 

1.48 l.67 1.50 1.49 1.40 1.53 1.37 l.67 1.23 1.41 1.34 

. 169 . 150 . 16 7 . 168 . 179 . 163 . 182 . 150 . 203 . 242 . 254 

al or M denote Wescor or Merrill hygrometer, respectively 
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coefficient r2 values ranging from 0.92 to 1.00 were highly signifi

cant. 

Since all calibration curves were similar, only two typical curves 

for Wescor leaf hygrometers are shown in Figures 1 and 2. Calibration 

curves for two Merrill hygrometers are _given in Figures 3 and 4. Plots 

of area under psychrometric reading P1 versus water potential (~) in 

Figures 1, 2, 3, and 4 indicate that less water is condensed on the 

thermocouple as water potential decreases. In the graphs each point 

represents the average P1 area of four points obtained with each of the 

standard solutions. Visual inspection was used to join the average 

points and to extrapolate the line to the interception on the Y axis 

assuming that maximum condensation would occur over distilled water. 

This point cannot be measured since over distilled water evaporation 

time approaches infinity. 

Comparison of Recorder Traces Obtained on Standard 

Solution and on Plants 

In Figure 5 are reproduced selected recorder traces obtained 

with LB and 'Merrill hygrometer (Ml) on NaCl solution at -22.8 bars and 

on two different plant species. The recorder traces under psychrometric 

readings obtained with LB on NaCl solution at -22.8 bars and on a 

Brassaia leaf had similar shapes with pronounced nearly steady P1 

readings. In both cases the evaporation rate was slower than when the 

thermocouple was on a Chlorophytum leaf even though its water potential 

was only 1.4 bars lower than the water potential of the standard 

solution. The output curve of the Chlorophytum leaf was far steeper 





t 

Figure 5. Selected recorder traces of hygrometer obtained on standard solution and on plants. 
P1 and P? represent first and second psychrometric readings and DP dewpoint reading. 
Graphs (a), (b), and (c) were obtained with a Wescor leaf hygrometer (LB) on a 
Brassaia leaf, a Chlorophytum leaf and on NaCl solution at -22.8 bars, respectively. 
Graphs (d), (e) and (f) show the same sequence of traces obtained with a Merrill 
hygrometer (Ml). 



p2 

120 
sec 

DP 

(f) 

-
P, 

-17.1 
bar 

-22.8 
bars 

"' .5 
<D 
C\! 

P2 

N 

,-... 
C\! 

DP P, 

(e) 

--~-- DIRECTION OF CHART MOVEMENT 

120 
1sec' 

-20.4 L__..) 
bars 

-19.0 ( 
bars 

N 
.5 
IC) 

J 

p2 DP 

(d) 

' 

-21.4 
/ bars 

N 
.5 
0 

P, 

N 
.5 
(I) 

"' 
p2 

120 
sec 

DP 

(c) 
P, 

-22.8 
bars 

-28.2 
bars 

.5 
IC) 
q 

p2 DP 

(b) 

5 
0 
9 

P, 

-16.8 
bars 

-24.2 
bars 

N 
.E 
,-... 
"I 

p2 

,120, 
sec 

DP 

(o) 

5µ.V 

N 
.5 
IC) 

C\! 

pl 

-16.9 
bars 

N 
+:> 



25 

and contained no relatively stable or level portion as with the unit 

over standard solution. 

Comparing the water potentials measured in psychrometric readout 

in both Chlorophytum leaf and NaCl solution there was only 1.4 bars 

difference but the water potential measured in the dewpoint mode was 

4 bars lower than the psychrometric water potential. The volume of 

water condensed on the junction, as indicated by P1 area, was also 

much lower than the volume condensed on standard solution even though 

water potential difference was small. The cooling coefficient used in 

the three different determinations was the same, rr = 75, but 5 units 
V 

lower than the cooling coefficient determined in dry chamber. Since 

P2 area did not differ of P1 area it is evident that during dewpoint 

mode neither evaporation nor water condensation occurred at the junction. 

The recorder traces selected for Merrill hygrometer show that 

slightly different profiles were obtained with the thermocouple over 

standard solution and on a Brassaia leaf at nearly the same water 

potentials. The measurements made on plants resulted in higher water 

potentials determined in the dewpoint mode than in the psychrometric. 

The P1 area recorded on the leaf was nearer to that obtained with 

NaCl solution at -22.8 bars, i.e., actual area was closer to the 

expected area. 

Water Condensation Measurement at Low Water Potentials 

Results are given in Figure 6. Area under psychrometric output 

recorded during the evaporation phase is considered to be a function of 

the amount of water condensed on the thermocouple. This assumption is 





I 

Figure 6. Relationship between duration of cooling, over water or solution, to the area under 
the psychrometric trace over solution ranging to f = -600 bars. 
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supported by the fact that the area under the curve was nearly constant 

when evaporation occurred at a low rate for a long time over -22.8 bar 

solution or at a rapid rate and short time over -600 bar solution. 

Expressing the amount of water condensed as a function of the water 

potential of the solution and cooling time, a multiple linear regression 

equation was developed to fit the data. The general equation is: 

where Y = expected area under psychrometric output recorded during 

evaporation phase (in2); 

x1 = water potential (bars) of evaporating solution 

x2 = cooling time (minutes) over water or over solution as 

indicated. 

For chamber C52 No. 2, the data obtained by cooling over water fit 

the equation 

-2 -6 -3 v = 4.4 x 10 + 9.8 x 10 x1 - ,. 1 x 10 x2 

Determination coefficient r2 
= 0.79 

For chamber C52 No. 2, the data obtained by cooling over the 

respective standard solution fit the equation 

v = 5.4 x ,o- 3 + 6.3 x ,o-4 x - 7.5 x ,o-4 x 
l 2 

r 2 
= 0.81 

[l] 

[2] 

For chamber C52 No. 4 the data obtained by cooling over water fit 

the equation: 



Y = 5.6 x 10- 2 - l. l x 10- 5 X1 - 5.7 x 10-4 X2 

r2 
= 0.44 

29 

[3] 

Comparison of the equations with higher determination coefficients 

r 2 , [l] and [2], indicates that the amount of water condensed on the 

junction decreased somewhat with the cooling time and that the decrease 

was greater when the cooling was done over H2o than over standard 

solutions . The effect of water potential of evaporating solution on the 

amount of water condensed was negligible when the cooling was done over 

water but a significant decrease was obtained when cooling was done 

over solution as water potential lowered. In Figure 6 it is clear that 

for any given cooling time the amount of water condensed on the junction 

was greater when the cooling was done over H20 rather than over standard 

solution . 

Leaf Water Potential Measurements 

Results obtained from individual hygrometers throughout the drying 

cycle for the various plants studied are shown in Figure 7 through 

Figure 16 . Each point in the graphs represents the average of at 

least four determinations. In each graph are illustrated the response 

of leaf water potential to increased water stress. Leaf water potential 

was monitored in both psychrometric and dewpoint mode and both are 

plotted for comparative purposes. Also, the volume of water condensed 

on the junction measured during evaporation phase is plotted; and 

finally the ratio P1 area actually measured during evaporation phase 

to P1 area expected at the same water potential (P1Aa/P1Ae) is 

illustrated. 
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Zea mays No. l 

Figure 7 shows the results obtained with two Wescor leaf hygro

meters (L6, LB). Leaf water potential measurements do not agree the 

first two days of the drying period but they do the last three days. 

Lower water potentials were obtained from dew point mode than from the 

psychrometric mode. The difference increased as the plant water stress 

increased, becoming finally 4.4 bars for L6 and 2.2 bars for LB. 

Decreases of about 25 percent and 30 percent compared to initial volume 

of water condensed on the thermocouple were obtained in L6 and LB, 

respectively. The ratio P1.Aa;P1Ae decreased in both hygrometers 

throughout the drying cycle. 

Zea mays No. 2 

In Figures -a and 9, fair agreement is shown in leaf water 

potentials measured with Wescor hygrometers the 1st, 2nd, and 5th day 

of the drying period. Between the Merrill hygrometers agreement in 

water potential detenninations was obtained only during the first 

three days. Leaf water potential measurements taken with both type of 

hygrometers were in general agreement. Water potentials as determined 

by the dewpoint mode were generally lower than potentials simultaneously 

determined by the psychrometric mode; the discrepancy was generally 

about l bar throughout the drying cycle in Wescor hygrometers, but no 

appreciable difference was obtained in Merrill hygrometers. 1-Jater 

potential measured in the pressure bomb decreased from -3 to -13 bars. 

Measurement of water volume condensed on the junction obtained with 

Wescor hygrometer indicated a decrease range from 14 percent to 30 

percent. In Merrill hygrometer that decrease ranged from 12 percent tci 

L.. 
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to 16 percent. The ratio P1Aa/P1Ae obtained with Wescor hygrometers was 

initially close to l but as the plant water stress increased the ratio 

decreased from 9 percent to 21 percent. With the ~errill hygrometer the 

decrease was less marked . 

The entire plant showed wilting signs at a soil water potential 

of -13 bars. No additional readings could be obtained after the fifth 

day of the drying period but the plant recovered after rewatering. 

Chlorophytum capense No. l 

In comparing the leaf water potential as measured by vJescor leaf 

hygrometers, (Figures 10 and ll) , it is evident that L8 and L9 were 

in agreement throughout the drying period while the determinations by 

LlO were consistently higher but still in fair agreement with the 

measurements obtained in Merrill hygrometers. Generally, lower water 

potentials were measured in dewpoint mode than in psychrometric mode 

with Wescor hygrometers; the opposite tendency was evident in Merrill 

hygrometers. In both types of hygrometers such differences were not 

greater than 2.5 bars. Decreases in volume of water condensed on the 

junction compared to the initial volume ranged from 38 percent in 

Wescor uni ts to 14 percent in Merri 11 hygrometers.. 

Among Wescor hygrometers the initial ratios P1Aa:P
1

Ae ranged from 

0.96 to 0.81; toward the end of drying period a decrease of about 20 

percent was found. In Merri 11 hygrometer the ratio changed from 0. 96 

to 0.88 during the same period. The lowest water potentials measured 

in the last day were about -22 bars; however, the plant recovered 

after rewatering. 
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Chlorophytum capense No. 2 

Leaf water potentials determined in Wescor hygrometers were in 

close agreement (Figures 12 and 13). Lower water potentials were 

obtained in dewpoint mode than in the psychrometric mode and the 

difference was greater at the lowest water measured. The lowest water 

potential (-17 bars) determined in the Merrill unit was much higher 

than the lowest value obtained in Wescor leaf hygrometers and it was 

only l bar higher than a corresponding measurement done with the 

pressure bomb that same day . The differences in water potential 

obtained in both psychrometric and dew point mode in the Merrill hygro

meter were not greater than 2 bars, but there was a tendency to lower 

water potentials in the psychrometric mode. Fluctuations in the 

volume of water condensed on the thermocouple do not correlate well 

with the changes in water potential in Wescor hygrometer measurements. 

but they do resemble those done with the Merrill hygrometer. Both types 

of hygrometers showed a decrease in volume of water condensed as water 

stress increased. The ratio P1Aa/P1Ae remained nearer l in the 

Merrill hygrometer than in the Wescor units. However, the decrease 

was not steady as the drought progressed. 

Populus tremuloides 

Water potential diminished rapidly from values ranging from -9.9 

to -13.7 bars in the first day to values ranging from -22.4 to -36.8 

bars according to measurements obtained with Wescor Units (Figure 

14). Simultaneous water potential determinations monitored with the 

Merrill hygrometer indicated a decrease from -8 bars to aboue -40.6 

bars. A general agreement in determinations made with both types of 



00 2 4 
TIME (days) 

I 8 / / 19 0 2 4 I 8 I 20 
I I I 1 r I I I 1 1.8 .36 

'Pi 
LS~ ~-10 ~----~-- ♦ • <&:: :=!:::-- .32 

J 
-- --

o/op· ... _ 

~ ~ 

~-20 .. 
~ 

~ 
~-30 

r5 
~ 
t) 
Cl-40 

~ 
~ 
l-'5o 

~ 
lij-60 
~ 

-70 

Figure 12. 

~ --v 1.4~ .28~ -----v 
~ ~ 

1.2~ 
P1 Cond 

.24~ 

~ ..... 6 ..... 
~ .... ... 

~ ..... 
'A "' . 1.0...., .20~ 

~ ... --
.8Q 

G 

~,~: 
...... -. .16 C\.' 

... ~ =~ .6~ J2 -----~ ---
C\.' 

LB L9 .4 .08 

Relationship between time in days and leaf water potential ('1'}, measured in the . _ 
psychrometric ('l'P) and dewpoint mode ('l'DP), ratio P1 area actual/P1 area expected 
and volume of water condensed on the thermocouple for Chlorophytum capense No. 2. 
L denotes Wescor hygrometer. 

w 
co 



TIME (days) 
00,..,_-r-___,2;,_,__--....4--1 _, _a __ _,

1
,

1
, 19

1 
o ___ ...... .__.2;,_,_ ______ 4___, , a , 20 r , ,>-......... , -~, ,._----.--1.a 

~ -10 
t:i 
~ 
~-20 .. 
...J 

~ 
~-30 

~ 
C) 
C(.-40 

~ 
1-50 

~ 
lil-60 
...J 

-70 

......... 

-----v 

P
1 

Cond. 

~--
~ ...... 

Area "o,__ ......... * __ 
Ratio · 

-----o--· 
--lit --o 

LIO Ml .4 

.36 

.32 

~ .28~ 

.24~ 

~ 
~ 

.20~ 

8 
.16 Cl ...... 

.12 

.08 

Figure 13. Relationship between time in days and leaf water potential ( '¥ ), measured in the 
psychrometric ( '¥ P) and the dewpoint mode ( '¥ DP), ratio P1 area actual/P] area 
expected and volume of water condensed on the thermocouple for Chloropnytum 
capense No. 2. Lor M denote Wescor or Merrill hygrom~ter. 
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Figure 14. Relationship between time in days and leaf water potential ( '¥ ), measured in the 
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and volume of water condensed on the thermocouple for Populus tremuloides. Lor 
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hygrometers was obtained. Dewpoint readings indicated lower water 

potentials than those obtained from the psychrometric mode; the 

differences increased with increasing water stress, ranging on the last 

day from 4.1 to 9.1 bars in Wescor units and less than l bar in the 

Merrill unit. · Variations in water volume condensed on the junction 

correlated well with the changes in leaf water potential; a decrement 

of about 43 percent was obtained in Wescor hygrometers and a correspond

ing decrease of 32 percent was measured in the Merrill unit. The P
1 

area 

actually was closer to the P1 area expected at the same water potential 

at the beginning, but decreased from 0.94 to 0.62 in L9. 

As an effect of the temporary drought the plant lost all its 

leaves but new leaves developed a few days after rewatering. 

Brassaia actinophylla 

Poor agreement is observed among data obtained from the different 

hygrometer units (Figures 15 and 16). However, in Ll3 and Merrill 

hygrometer (M1) fair agreement was obtained in water potentials 

measured in both psychrometric and dewpoint mode. In general, the 

resistance of the leaf tissue to cede water to the thermojunction, as 

measured by the ratio P1Aa/P1Ae, seemed to lower until the thirteenth 

day of the drying cycle. Although, data obtained from the thirteenth 

day suggested an apparent recovery in the water status, the plant 

continued progressively showing the drought effects in such a way that 

on the sixteenth day necrosis was observed in leaf veins of the entire 

plant, stem looked sunken and no additional readings could be obtained. 

The plant did not recover after rewatering. 
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L denotes Wescor leaf hygrometer. 
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Figure 16. Relationship between time in days and leaf water potential (IJI), measured in the 
psychrometric (IJIP) and dewpoint mode (IJI DP), ratio P1 area actual/P1 area expected 
and volume of water condensed on the thermocouple for Brassaia actinophylla . 
M denotes Merrill hygrometer . 



Generalizations 

After examining all the plant data some generalizations may be 

obtained: 
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1. The trend in leaf water potential (o/) as drought developed 

decreased, but with some variation among the different species. Populus, 

two Zea plants and Chlorophytum No. 1 showed a steady decrease in water 

potential throughout the drying cycle but Brassaia and to a lesser 

degree Chlorophytum No. 2 showed a variable behavior. 

2. From psychrometric determinations of Wescor units plotted 

against simultaneous dewpoint determinations (Figure 17) it is apparent 

that the dewpoint consistently gives a lower estimate of the o/, and 

that this discrepancy progressively increases at lower o/ values. A 

similar plot made with the water potential data obtained in Merrill units 

(Figure 18) shows that they are very close to the line of equality. The 

difference indicates that the water potential read in psychrometric 

mode is 0.66 bars lower than that in dewpoint mode. A statistical test 

used to compare regression lines (Neter and Wasserman, 1974) showed the 

lines fitting the data above indicated for each type of hygrometer 

(Figures 17 and 18) to be different (0.1 percent level of significance). 

3. The trend in P1 area, here used as a measurement of the volume 

of water condensed on the thermocouple, was variable as the water stress 

increased in the different plant species. Measurements done with 

Wescor hygrometers indicated steady decreases in the P1/Aa as drought 

developed in both Zea plants, Chlorophytum No. 1 and Populus, but in 

Brassaia and Chlorophytum No. 2 a greater variability was obtained. 

Measurements obtained from Merrill hygrometers ~hawed a consistent 
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~Figure 17. Relationship between leaf water potential obtained from 
psychrometric model (fP) and leaf water potential obtained 
from dewpoint mode (fDP) with Wescor leaf hygrometers; 
pooled data from all the plants 
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Figure 18. Relationship between leaf water potential obtained from 
psychrometric mode (~P) and leaf water potential obtained 
from dewpoint mode (~DP) with Merrill hyg rometers ; pooled 
data from all the plants. 



decrease in actual P1 area in all the plants studied as the water 

stress increased. 

4. Plots of ratio P1 area actual/Pl area expected against ~ 
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using the data obtained with Wescor hygrometers on each plant (Figures 

19 and 20) indicated a definite tendency for the ratio to decrease as 

water potential decreased in the two Zea plants, Chlorophytum No. l 

and Populus. No tendency was obtained in Chlorophytum No. 2 and 

Brassaia plants. A higher rate of decrease was obtained in Chloro

phytum No. l than in Zea and Populus. A similar plot (Figure 21) with 

data obtained in the Merrill units shows a clear teridency of the P1 area 

ratio to decrease at lower water potentials in Zea No. 2, the two 

Chlorophytum plants and Brassaia. Not enough data were obtained on 

Populus. The highest rate of decrease in P1 area ratio was obtained 

in Chlorophytum No. 2; similar rates of decrease were obtained in Zea 

and Chlorophytum No. l and the lowest rate was measured in Brassaia. 

Since Chlorophytum No. l looked younger than the Chlorophytum No. 2, 

age differences may explain the different behaviors observed . 
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Figure 19. Relationship between the leaf water potential obtained 
from psychrometric mode (~P) and the ratio P area 
actual/P

1 
area expected with Wescor leaf hygfometers 

for Zea mays and Chlorophytum capense plants. 
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Figu re 20. Relationship between the leaf water potential obtained 
from psychrometric mode (~P) and the ratio P1 area 
actual/PJ area expected with lfoscor leaf hygrometers 
for Populus tremuloides and Brassaia acti ·nophylla . 
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Figure 21. Relationship between leaf water potential obtained from 
psychrorretric mode (~P) and ratio P1 area actual/P1 area 
expected with Merrill _hygrometers -fbr-zea IT!ays·· No . 2, 
Chlorophytum capense and Populus tremuloides. 
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DISCUSSION 

One of the main objectives of this study was to ascertain if the 

dewpoint method actually measures water potential under conditions of 

zero water movement, i.e . isopiestic conditions. There are several 

lines of evidence that such equilibrium occurred. First, water 

potential measurements on both standard solution and leaves in the 

dewpoint mode, remained steady for periods up to 300 seconds and even 

longer . Also, the area under psychrometric output P2 recorded during 

evaporation phase after several minutes in the dewpoint phase was 

generally nearly equal to the psychrometric output P1 (Figure 5). 

These support the conclusion that little net water evaporation or 

condensation was occurring from the wet junction during the dewpoint 

measu rement. It was found, however, that the cooling coefficient for 

in situ leaf hygrometers needed to be lowered in reference to those 

found in dry air, as the plant water deficit increased to ensure the 

energy balance necessary to maintain the junction at dewpoint tempera

ture. Theoretically, it is expected that the cooling coefficient, n , 
V 

once it has been determined for a given hygrometer should remain 

constant, but my own experience indicates that with lower relative 

humidity inside the chamber a lower temperature coefficient is necessary 

to set the junction more precisely at dewpoint temperature. It was 

easy to find the correct cooling coefficient and to match it in the 

circuitry, once this was done, the dewpoint might reflect the actual 

leaf water potential since the output could be read for a long time . 
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However, at the lowest water potentials, it was generally difficult 

to hold the junction at dewpoint telll)erature. I do not know if changes 

in sensitivity of the therroojunction can be introduced by substantial 

changes of the cooling coefficient from the value obtained in dry 

chamber. 

Comparison of Dewpoint and Psychrometric Detenninations 

of Leaf Water Potential 

When water potential was measured in both the psychrometric and 

dewpoint mode with Wescor units, lower water potentials were found in 

dewpoint mode than in the psychrometric mode with a definite trend to 

increase the discrepancy at lower water potentials (Figure 17). Merrill 

hygrometer data indicated 0.66 bar lower when the water potential was 

determined in the psychrometric mode than in the dewpoint mode (Figure 

18). The differences in leaf surface area exposed to the junction may 

have contributed to the different behavior of the two types of units. 

The leaf surface area in Merrill hygrometer is about lOx that of the 

Wescor unit which means that a lesser total leaf resistance will 

influence the psychrometric water potential determination in the 

Merrill unit. It may well be for that reason that psychrometric and 

dewpoint determinations agreed closer even at lower water potentials. 

When the temperature of the junction in a hygrometer is depressed 

by Peltier cooling, water vapor and heat will start to flow into it 

from the surrounding environment, this process decreases chamber vapor 

pressure. When GOoling ceases water will start to evaporate from the 

wet junction and the chamber has higher vapor pressure than the mesophyll. 

-
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If leaf resistance is high a psychrometric reading made at 5 seconds, 

when the output becomes level, has enough time to bring the chamber 

vapor pressure above leaf vapor pressure. The greater the leaf 

resistance the greater the difference in humidity between the chamber 

and the mesophyll spaces (Wiebe and Prosser, 1977). As a result water 

potential monitored in the psychrometric mode may be erroneously too 

high. Since little water moves during the dewpoint mode, resistance is 

not limiting and the determination might be expected to be more accurate. 

When leaf resistance is sufficiently high to seriously restrict 

water moverTEnt, an additional error may be involved in the psychrometric 

determination. Since leaf water movement is limited, a smaller volume 

of water will be condensed on the thermocouple by the cooling current, 

when it ceases water evaporation will initiate at a higher rate, 

shortening the psychrometric reading time. In such situations to have 

a steady output as that obtained in dewpoint mode would increase the 

accuracy in the water potential measurement (Figure 5). The regression 

line obtained with pooled data of Wescor units in which the differences 

between water potential determined in psychrometric and that on the 

dewpoint mode was smaller at high water potentials and increased 

toward the lower water potentials measured are evidence of such 

behavior. 

If the leaf water potential measured in the dewpoint mode reflects 

the true water potential, it could be speculated that in the Merrill 

hygrometers the psychrometric reading underestimated the true water 

potential of the leaf by a constant value (0.66 bars) and in the Wescor 

units the psychrometric reading overestimated the true water potential 



in a larger value that, moreover, increased the water potential 

decreased. 

Influence of Leaf Water Potential on Amount 

of Water Condensed 
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Measurements of water volume condensed on the thermocouple over 

standard solutions demonstrated decreasing water condensation at lower 

water potentials. Data obtained with plants revealed the decrease in 

volume of water condensed on the junction was even greater than the 

decrease obtained on standard solutions. This was reflected in 

decreases of ratio P1A actual: P1A expected, in most cases, going 

farther below to 1.00 as water stress increased. 

An analysis of the Figures 19, 20, and 21 shows ratio P1 area 

decreases with decreasing water potential were variable among plants 

and also in measurements done on the same plant with the two type of 

units. If the volume of water condensed on the juntion were only a 

function of the water potential of the leaf, the ratio P1 area should 

have been near l.00 throughout the drying period but, the decreases 

observed and the variability among plant species suggested that an 

additional factor other than the water potential influences the actual 

area under the psychrometric reading. Or said in another way, some 

other factor influences the amount of water condensed on the junctton. 

The interpretation is that ·such decrease is the expression of the 

increasing leaf~esistance as the stomates close in response to 

progressive plant water stress. Differences among species could also 

be a function of different leaf resistances. Inasmuch as leaf 
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leaf resistance increased and consequently less water was transferred 

to the junction at lower water potentials, the reliability of the leaf 

water potential determination in the psychrometric readout was more 

limited than those determinations in the dewpoint mode in which 

isopiestic conditions could be reached. 
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CONCLUSIONS 

In situ monitoring of leaf water potential in the psychrometric 

mode gives an erroneously high estimate of leaf water potential whe n 

water vapor diffusion through the leaf is limited. This error is 

attributed to the fact that the leaf surface area exposed to free 

junction in an in situ leaf hygrometer is small, and it is not found 

in sample chambers which enclose larger leaf surfaces. The error 

beco me s progressively higher at high leaf resistances. Because signi

ficant errors in leaf water potential could result from severe thermal 

gradients if the leaf area sampled in an ~n situ leaf hygrometer is 

increased, such area must be kept small. Under conditions of high 

leaf resistance and small sampling area the dewpoint method is preferred 

to the psychrometric mode for more accurate leaf water potential 

measurements. 

If a large area surface of the leaf can be used both the psychro-

met r ic and the dewpoint methods can be used interchangeably without 

obtaining significant differences . 
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