## planet.

### **Radiometric Calibration of SkySats**

using Near-Simultaneous Crossovers with Sentinel-2 over Calibration Sites

Hannah Bourne, Arin Jumpasut and Alan Collison

Monte Fitz Roy, Patagonia – March 19, 2018





01 | Introduction to Planet SkySats

02 | Interoperability Challenges

03 | Calibration Methodology

04 | Calibration Validation

05 | Summary



### Introduction to Planet SkySats

A PROPERTY AND A PROPERTY

Singapore Strait, Singapore – July 29, 2016 🔪



р





© Planet 2021. All Rights Reserved.

### + SkySat Scenes vs. PlanetScope Scenes

### SkySat Collect

- C class 5 km swath width
- A class 8 km swath width
- 10 km-100 km length



SkySat Collect



Over the Years



### + Effects of Differing Responses SuperDove



### A lawn grass spectrum from a spectral library

© Planet 2021. All Rights Reserved.

### + Effects of Differing Responses SkySat



### A lawn grass spectrum from a spectral library

SBAF<br/>Corrections<br/>SkySat + Sentinel-2Blue to<br/>Band 2Green to<br/>Band 3Red to<br/>Band 4NIR to<br/>Band 80.89090.89931.19400.9682

© Planet 2021. All Rights Reserved.

р

### **Calibration Methodology**

## **Overview** Original Methodology

Calibrations based on gathering a dataset of **RadCalNet** site crossovers.

 $Rad = \frac{DN}{IntTime} \cdot gain + offset$ 







Original calibration done in November 2017 Updated every 6 months

## Overview Original Methodology

### SkySat

- Calibrations are based on gathering a dataset of RadCalNet site crossovers.
- As calibration site footprint is so small, calibration is only done for the central detector.
- The other 2 sensors are calibrated relative to the central sensor.



Railroad Valley and target for which RadCalNet TOAR spectra are representative

SkySat Collect over Railroad Valley

From radcalnet.org



Sentinel 2 TOA Reflectance vs RadCalNet for B Band



- Differences between Sentinel 2 and RadCalNet as a reference
- For consistent methodology and interoperability, the goal is to use same reference source throughout all payloads

## Overview New Methodology

• Calibrations are based on gathering a dataset of near simultaneous crossovers with

### a reference satellite

- A simultaneous crossover is when there is **less than three hours difference** between a reference image and a Planet image for the same point
- Same reference satellite for all: **Sentinel-2**
- Dove Classic/SkySat
  - Standard set of calibration sites, "homogeneous" sample regions
  - Hyperion spectra for characterizing the surface reflectance to calculate SBAFs
  - Simultaneous crossovers with Sentinel-2 over standard calibration sites
- SuperDove/Dove-R
  - **Global** simultaneous crossovers with Sentinel-2





- Number of simultaneous crossovers with Sentinel 2 over calibration sites for a single Dove Classic (0f4e) compared to a single SkySat (s4) over a one month period (July 2021)
- Dove Classics crossover calibration sites regularly
- Even with daily tasking, far fewer SkySat crossovers
- Only use SkySat data taken <10 degrees off Nadir



Locations of Pseudo-Invariant Calibration (PIC) sites and Rapid Eye Calibration sites



© Planet 2021. All Rights Reserved.

## Sample Areas / Details Dove Classic & SkySat

- Sample size is 1000 x 1000 Pixels (~3.5 km resolution)
- Sampling in spectrally homogenous locations within calibration site
- Spectra is characterized using Hyperion Imagery



Example Calibration Site sample grids



### + Update Calibration / Details RadCalNet & SkySat

- Crossovers collected and analyzed for whitelist periods
- **Existing calibrations** updated for time period they fall inside of
- Calculate gain adjustments using crossovers with Sentinel 2 over calibration sites



Railroad Valley Site Overlain with calibration grid

### **Crossover Analysis / Details** Dove Classic & SkySat

- Sample size is ~3.5 km x 3.5 km resolution
- Sampling in spectrally "homogenous" locations within calibration site
- Sample spectrum is characterized using Hyperion Imagery
- Statistics are gathered and recorded for each crossover, in particular the **joint mode** of the sample reflectance distribution for both the Dove and Sentinel collects.

### SkySat S1 TOAR





## **Gain Adjustments / Details** SkySat

Calibration gain adjustment is based on scatter plot fits of the **joint modes** from individual crossovers.

Each plot on the right represents ~130 simultaneous crossovers with Sentinel-2 of one of an individual SkySats.

SkySat s104, sensor 2 Entire whitelist period







### **Calibration Data Set**





### Validation Data Set





green

1.0

## Sensor Differences / Details



### SkySat s110

- Slight differences between three sensors on a single SkySat
- Some of the difference is due to the different geometry of the camera affecting stray light
- Goal is to remove some of the differences by calibrating each camera individually

### + Individual Sensors / Details SkySat



S104 Training Data

p



1.2 1.0 Sensor 3 0.8 Gain 9.0 0.4 0.2 0.0 s'ı \$3 S4 S103 S104 SkySat ID

**Blue Band** 

Sensor 1 Sensor 2

| Blue      |          |          |          |
|-----------|----------|----------|----------|
| SkySat id | Sensor 1 | Sensor 2 | Sensor 3 |
| sl        | 0.997    | 0.998    | 0.998    |
| s2        | 0.883    | 0.975    | 0.999    |
| s4        | 0.87     | 0.879    | 0.867    |
| s103      | 0.946    | 0.921    | 0.892    |
| s104      | 0.892    | 0.883    | 0.884    |



1.2 1.0 Sensor 3 0.8 Gain 9.0 0.4 0.2 0.0 s'ı \$3 S4 S103 S104 SkySat ID

**Green Band** 

Sensor 1 Sensor 2

|           | Green    |          |          |
|-----------|----------|----------|----------|
| SkySat id | Sensor 1 | Sensor 2 | Sensor 3 |
| sì        | 1.051    | 0.996    | 1.065    |
| s2        | 0.84     | 0.867    | 0.906    |
| s4        | 0.816    | 0.803    | 0.824    |
| s103      | 0.914    | 0.877    | 0.861    |
| s104      | 0.885    | 0.879    | 0.867    |



1.2 1.0 0.8 ... 0.6 0.4 0.2 0.0 

**Red Band** 

Sensor 1 Sensor 2 Sensor 3

| Red       |          |          |          |
|-----------|----------|----------|----------|
| SkySat id | Sensor 1 | Sensor 2 | Sensor 3 |
| sl        | 1.189    | 1.146    | 1.127    |
| s2        | 0.989    | 1.016    | 1.022    |
| s4        | 1.011    | 1.02     | 1        |
| s103      | 1.06     | 1.019    | 1.005    |
| s104      | 0.993    | 0.989    | 0.983    |



1.2 1.0 0.8 0.6 0.4 0.2 0.0 51 53 54 5103 5104 5104

**NIR Band** 

Sensor 1 Sensor 2

Sensor 3

|           | NIR      |          |          |
|-----------|----------|----------|----------|
| SkySat id | Sensor 1 | Sensor 2 | Sensor 3 |
| sl        | 1.124    | 1.092    | 1.073    |
| s2        | 0.926    | 0.93     | 0.953    |
| s4        | 0.982    | 0.979    | 0.961    |
| s103      | 1.035    | 0.981    | 0.99     |
| s104      | 0.955    | 0.955    | 0.959    |



Validation Data Set Original

1.0

Gain: 0.924

Offset: 0.000



#### R2: 0.962 U 0.8 Refl 0.6 5 0.4 Top . 7-lai 0.2 0.0 ⊑ 0.0 0.2 0.4 0.6 0.8 1.0 Skysat Top of Atmosphere Reflectance nir Gain: 1.007 Offset: 0.000 R2: 0.959 0.8 0.6 Atm 5 0.4 -2 Top ( · 0.2 0.0 ∟ 0.0 0.2 0.4 0.6 0.8 1.0

Skysat Top of Atmosphere Reflectance

areen



blue

1.0

### Per Sensor Corrections Applied

1.0



green





Measurements of accuracy and uncertainty for the validation against Sentinel 2 reflectances

## Off Nadir Imaging

Klyuchevskaya Sopka, Russia - March 11, 2018

© Planet 2021. All Rights Reserved.

### + Off Nadir Imaging Sentinel-2 Crossover Sites s104



### **10 Degrees**





### 20 Degrees



## Off Nadir Imaging Radiometric Accuracy to References

# s104: Comparison of radiometric accuracy to references

**10 Degrees** 

|       | Accuracy % | Uncertainty% |
|-------|------------|--------------|
| Blue  | -2.242     | 6.399        |
| Green | 3.867      | 9.181        |
| Red   | -0.425     | 4.610        |
| NIR   | 1.240      | 5.408        |

© Planet 2021. All Rights Reserved.

# s104: Comparison of radiometric accuracy to references

|       | Accuracy % | Uncertainty% |
|-------|------------|--------------|
| Blue  | -0.791     | 6.881        |
| Green | 5.594      | 8.804        |
| Red   | 0.651      | 4.300        |
| NIR   | 3.111      | 6.028        |

### 20 Degrees

p

### Summary

London Array Wind Farm, United Kingdom – April 17, 2016



- Update methodology throughout Planet's fleet to use Sentinel 2 as our calibration reference
- Calibrate satellites per sensor
- Radiometric accuracy guaranteed at view angles less than 10 degrees

### Future Work

- Further BRDF characterization
- Using Planet's Fusion product as a calibration source where simultaneous crossovers are limited
  - Recently launched Block III satellites
- Further characterization of the three detectors in general imagery

### Scan to Register

### Save the date: October 12-13 Planet Explore 2021 Global Connection



## planet. explore 2021

Virtual & accessible wherever you work Free to attend



© Planet 2021. All Rights Reserved.

## For more information, you may find us here:



**Official Website** 



@planet-labs

0

© Planet 2021. All Rights Reserved.

Great Barrier Reef, Australia – July 8, 2016