
LYLE, J., NILSSON, C., ISBERG, A. and FAILY, S. 2013. Extending the web to support personal network services. In 
Proceedings of the 28th Annual ACM symposium on applied computing (SAC 2013), 18-22 March 2013, Coimbra, 

Portugal. New York: ACM [online], volume 1, pages 711-716. Available from: 
https://doi.org/10.1145/2480362.2480499 

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Extending the web to support personal network 
services. 

LYLE, J., NILSSON, C., ISBERG, A. and FAILY, S. 

2013 

https://doi.org/10.1145/2480362.2480499


Extending the web to support personal network services

John Lyle
Department of Computer

Science, University of Oxford
Oxford, UK

john.lyle@cs.ox.ac.uk

Claes Nilsson and
Anders Isberg

Sony Mobile
Lund, Sweden

Claes1.Nilsson@sonymobile.com
Anders.Isberg@sonymobile.com

Shamal Faily
Department of Computer

Science, University of Oxford
Oxford, UK

shamal.faily@cs.ox.ac.uk

ABSTRACT
Web browsers are able to access resources hosted anywhere 
in the world, yet content and features on personal devices 
remain largely inaccessible. Because of routing, addressing 
and security issues, web applications are unable to use lo-
cal sensors, cameras and nearby network devices without 
resorting to proprietary extensions. Several projects have 
attempted to overcome these limitations yet none provide 
a full solution which embraces existing web concepts and 
scales across multiple devices. This paper describes an im-
proved approach based on a combination of Web Intents for 
discovery, a custom local naming system and routing pro-
vided by the webinos framework. We show that it can be 
applied to existing services and that improves upon the state 
of the art in privacy, consistency and flexibility.

Categories and Subject Descriptors
D2.11 [Software Engineering]: Software Architectures

General Terms
Architecture, Standards, Design, Security

Keywords
Browser, Web, Intents, Personal Network, APIs

1. INTRODUCTION
Mobile web applications will only compete with their na-

tive counterparts when they have access to the same capa-
bilities. While native applications can access sensors, cam-
eras and NFC readers, the slow introduction of equivalent 
browser APIs means that web applications remain second-
class citizens. Despite this, the web offers interoperabil-
ity and compatibility advantages that many argue make 
browsers the application platform of the future [12]. As a 
result, several initiatives exist to create new browser APIs 
or develop new web application environments [21, 17, 13, 1].

At the same time, the increasing number of personal de-
vices creates a need for web applications to access private
network resources as well as device features [3]. Unfortu-
nately, browsers have generally failed to penetrate home
networks. This is partly due to difficulties routing behind
firewalls but also because there is no standard way of discov-
ering or using local network resources. This is even harder
for devices on mobile networks with frequently varying ad-
dresses. However, this situation is changing: there are many
use-cases involving multi-device interaction which could be
satisfied by web applications. For example, games which use
both the large display on a television as well as the motion
sensors on a smartphone [9]. This is one of the motivations
behind the webinos project [22].

While attempts have been made to provide access to local
and network features from web browsers, all have limita-
tions. Many introduce new browser APIs [17, 21], which
are convenient but do not extend beyond the local device.
JavaScript APIs also require every browser to implement for
compatibility. Other approaches successfully provide access
to resources within a local area network but fail to route be-
tween different networks and do not provide a way for web
applications to discover services [9].

In this paper we present an approach which combines the
best aspects of existing systems without breaking the ab-
stractions expected by web browsers and applications. Our
solution places a server on each device, introduces a new set
of local domain names and uses the webinos system to create
a virtual personal network accessible from the web browser.
This network can then be accessed using either HTTP or
WebSockets in order to use device features. Each server
can be secured using a combination of existing techniques
and simple rules based on web origins. The emerging Web
Intents standard is proposed to allow services to be anony-
mously connected to web applications.

The paper is structured as follows: in section 2 we provide
background material on web applications. In section 3 we
describe existing systems and, based on their limitations, in
section 4 we define requirements for a successful system. In
section 5 and 6 we outline our proposal and implementation
before evaluating against our requirements in section 7. In
section 8 we conclude.

2. BACKGROUND

2.1 Web applications and browser security
Web applications are ‘a web page or collection of web

pages delivered over HTTP which use server or client-side



processing to produce an application-like experience’ [14].
Web browsers isolate content by origin – the DNS name,

port and scheme they are served with – such that JavaScript
belonging to one origin cannot access any other, with some
exceptions [25]. This is known as the same-origin policy.
When cross-origin communication is desired, several mech-
anisms exist to support it. As well as new APIs discussed
in the next section, web servers can use the Cross Origin
Resource Sharing (CORS) protocol to indicate which other
origins may access the resource being served [18].

Browsers sandbox web applications to limit their access to
the underlying device. However, several new browser APIs
have been proposed to let web application access local re-
sources, such as orientation sensors, address books and ge-
olocation [19].

2.2 Cross-origin browser communication
The WebSocket API and protocol allows web applications

to establish two-way communication with a remote host [20].
WebSockets overcome limitations with HTTP that make it
difficult for client web pages to receive messages from the
server without frequent polling.

Channel messaging enables direct communication between
web applications from different origins running in different
browser contexts (such as different frames) [24]. Connec-
tions are created using a MessageChannel object and mes-
sages are received and posted using MessagePorts.

The Web Intents specifications let a web application re-
quest an abstract action be performed — e.g., share, or view
a resource — and let services register their intention to han-
dle such actions [23]. The browser acts as a broker, anony-
mously connecting the client web application to a compatible
service, with a user consent and selection step. Web Intent
services register to handle an intent based on the action
name and a ‘type’ field which allows the browser to differ-
entiate the request to view, say, a Word document from an
image or video.

2.3 Personal and home networks
Home and personal networks provide interoperability be-

tween multiple personal computers. Perhaps the most sig-
nificant personal network technology is UPnP [16], a set
of protocols which allows home network devices to discover
each other and share resources. UPnP is widely supported
but offers no standard API for applications and is not suf-
ficient for accessing resources which are behind firewalls or
on mobile networks. Another relevant technology is Multi-
cast DNS (mDNS) [8], which allows individual devices on a
local network to register a link-local host name of the form
devicename.local. without a central name server.

3. EXISTING APPROACHES
There are several proposals for how web applications may

gain access to both device resources and local networks. We
focus on two common approaches: the use of a privileged
web server on each device and the extension of browsers
through new JavaScript APIs.

3.1 Device servers
Lin et al. [9] propose Gibraltar, as a system where each

device has a web server running at localhost capable of ac-
cessing native resources. Other web pages can access the
server via standard HTTP, CORS and AJAX. The authors

demonstrate that this is adequate for several use cases. They
also propose additional security controls with the aim of re-
ducing the trust in the browser.

Similarly, the now-defunct Opera Unite [15] bundled a web
server with the browser, enabling personal devices to connect
to one-another via an online proxy. Devices were exposed
through a URI pattern http://device.user.operaunite.

com and Opera Unite applications were made available on
pages hosted at this domain. APIs were provided to access
file systems and other resources.

However, Gibraltar does not provide a solution to routing
or discovery. It is not clear how a web application would dis-
cover nearby devices or access those on different networks.
This is a reasonable omission, as the problem is orthogonal,
but presents an opportunity for improvement. In Opera
Unite, users were required to have a MyOpera account and
use the Opera browser, limiting adoption. Furthermore, it
was based on a DNS system managed by Opera and was dif-
ficult for users to create their own domains. Most use-cases
involved personal file servers and widgets, and it is difficult
to tell whether it was suitable for accessing or discovering
other services.

3.2 Browser APIs
Web applications could gain access to local device re-

sources through new JavaScript APIs in browsers. As well
as the widely supported Geolocation API [19], various ini-
tiatives [17, 21, 13] have proposed APIs for calendars, media
capture, battery status and more. These APIs have the ad-
vantage of integration with the browser, allowing custom
security and privacy controls to be applied. Browser APIs
also arguably provide an easier abstraction for developers
compared with HTTP and AJAX.

There are several drawbacks. It is not clear how APIs
extend to multiple devices. We argue that this is because
device APIs are not aligned with the rest of the web: con-
cepts such as hosts, domains and request/response protocols
already exist and it would be conceptually cleaner to reuse
them. Another issue is privacy: many browsers APIs and
extensions enable user fingerprinting [5]. The combination
of browser names, versions and capabilities make it possible
for websites to re-identify an individual without requiring
an explicit user log-in process. The more APIs implemented
by browsers, the worse this may become.

Moreover, implementations may vary by browser vendor
and version, particularly in how access control is managed.
Browser APIs require a completely new access control frame-
work for user consent, with which web applications must be
able to interact. If existing protocols and concepts were
re-used to provide access to device features, it seems more
likely that a standard, interoperable solution would exist.

3.3 webinos
The webinos project is a hybrid: it provides new JavaScript

APIs which contact a device server to access local resources.
Its implementation is similar to Gibraltar but uses WebSock-
ets. Like Opera Unite, the server can contact other devices
via an online hub. However, it can also use other bearers and
local networks. The webinos system supports several device
APIs as well as a service discovery API, allowing devices to
be dynamically queried for available services. webinos uses
an XACML-based policy system for access control [10].

The main disadvantage of webinos is the introduction of

devicename.local.
http://device.user.operaunite.com
http://device.user.operaunite.com


a new, proprietary discovery protocol and device address-
ing scheme. This abandons existing web abstractions. It
also makes fingerprinting worse, as the set of discovered ser-
vices may allow re-identification of users. The access con-
trol system also diverges from web concepts of origins and
sandboxes, although it does provide more potential for in-
teroperability than current browser access control.

3.4 Other approaches
Ford et al. [6] propose the ‘Unmanaged Internet Archi-

tecture’ (UIA) which implements a domain name system
for personal devices with no central authorities. Names are
independent of location and automated routing between de-
vices in the same namespace is possible. UIA solves many
routing and addressing issues but does not attempt to solve
problems surrounding discovery of services, or how to in-
tegrate with web applications. UIA is complementary our
work and provides a generalisation of the webinos routing
approach.

IPv6 may help with addressing entities on different net-
works but does not help with discovery, nor does it help
connect devices that exist behind firewalls.

Finally, a proposed addendum to Web Intents [3] allows
web applications to access local network services exposed
via mDNS, UPnP and potentially other methods. This work
provides inspiration for our proposals but requires additional
infrastructure to route across different networks.

3.5 Summary
Existing systems provide almost all the required function-

ality but each has limitations. In particular, we argue that
browser APIs are attractive but are not appropriate for ac-
cessing remote resources because they are inconsistent with
web concepts. Personal servers are a browser-agnostic way
to expose resources to other devices on the local network, but
need additional routing capabilities and a discovery system.
Consistent access control should be provided throughout.

4. REQUIREMENTS AND CHALLENGES
Based on the analysis of previous work we highlight the

following requirements for a system designed to give browsers
access to local and networked resources.

Routing and addressing. Web browsers must be able
to access services from any personal device, including those
on mobile networks, using address translation, or available
over bearers such as Bluetooth. Addresses should remain
consistent regardless of how the device is reached, and local
network services should still be available when there is no
internet connection.

Discovery. Web applications must be able to discover
available devices and services. Discovery must be dynamic:
internet connections can be unreliable and nearby computers
may be switched on or off. However, to make this usable
by web applications it must be possible to discover services
using a consistent vocabulary and mechanism.

Browser lock-in. The ability to access local resources
should, where possible, not be coupled with a specific browser.
Web browsers are in fierce competition and a solution sup-
ported by only one could fail due to the browser’s other
features. Integrating with browsers has advantages, but re-
maining loosely-coupled would allow for faster uptake and
interoperability.

APIs. Features should be accessed in a standard way by

all personal devices. APIs should allow for synchronous and
asynchronous functions, and support server-side events.

Evolutionary. While a radical refactoring of the web [4]
would have long-term benefits, arguably success is more
likely if web browsers are extended using the same abstrac-
tions that they use today. For example, addressing personal
devices with URLs rather than arbitrary identities returned
by JavaScript APIs. Using existing protocols and concepts
would let web applications remain agnostic as to whether
they are accessing services on the device, over a local net-
work or via the public internet. This means that web ap-
plications need little modification and ought to make future
upgrades (such as IPv6) easier.

Privacy-friendly. Giving web applications access to more
resources should not have an adverse impact on user privacy
either due to fingerprinting or a lack of access control.

Security. Introducing new browser capabilities increases
the risk to users of exposing security-sensitive data or func-
tions to malicious web applications. It should therefore
be possible to integrate new proposals for generic mitiga-
tions [2, 9] as well as service-specific access controls. At the
same time, the existing security model of browsers should be
respected for compatibility and to avoid introducing new,
subtle errors. Where suitable, origin-based access control
methods ought to be re-used.

5. SOLUTION: THE BEST OF BOTH
We propose the following solution based on the combina-

tion of prior art in browser APIs, personal device servers
and Intent-based service discovery. From Gibraltar [9] and
webinos we require each device to run an HTTP and Web-
Socket server. Based on mDNS [8] and Ford et al. [6] we
propose that a local DNS server resolves all domains with
suffix ‘.zone’ to localhost, with subdomains for user, device
and service. Connecting to a ‘.zone’ address will connect to
the device server, which will use the webinos overlay network
to route to the user, device and service requested. Because
webinos already implements service discovery and routing
across multiple users and networks we do not need to re-
implement this. Discovery of services is primarily imple-
mented via Web Intents. Access control is managed either
implicitly through Web Intents, via CORS for HTTP re-
quests or via policies based on origins for WebSockets.

5.1 Services
Our solution allows for local services to be accessed over

HTTP or via WebSockets and channel messaging. HTTP al-
lows local services to be accessed in the same way as web ser-
vices, whereas WebSockets and channel messaging support
server-side events for APIs which need to provide frequent
updates. For service implementations we used the webinos
project which defines APIs for features including messaging,
sensors, actuators and more.

5.1.1 Access over HTTP
Each service is hosted on a domain with the pattern service.

device.user.zone, resolving to the local device server. Ser-
vice methods are invoked using GET or POST requests to a
path /methodName and with parameters in the usual format
(argument1=value1). For example, the Geolocation API’s
‘getCurrentPosition’ method on Alice’s phone would be at
http://location.phone.alice.zone/getCurrentPosition,
with the returned HTTP body containing a JSON-encoded

service.device.user.zone
service.device.user.zone
http://location.phone.alice.zone/getCurrentPosition


success or error response. It should be noted that this does
not match the asynchronous existing API and does not use
callbacks. However, Lin et al. [9] show that this approach is
adequate for accessing most device resources.

5.1.2 Bidirectional communication
For bidirectional and server-side communication, web ap-

plications can open WebSocket connections to the service
domain. This corresponds with suggestions by Lin et al. [9]
and is similar to the webinos implementation. The proto-
col for communicating with each service is dependent on
the API being implemented, but can use JSON-RPC for
requests and responses.

WebSocket communication can be wrapped using JavaScript
APIs. These may be easier for developers to use and pro-
vides a way to mimic browser-defined APIs while not requir-
ing browser support. It also allows for the rapid introduction
of new APIs for new services.

5.2 Discovery and selection
We suggest most applications use Web Intents to discover

services. The local device server hosts a page at http://

zone/registry containing mark-up for each supported type
as a new ‘discover’ intent. E.g.:

1 <intent
2 action="http :// intents.w3.org/discover"
3 type="geolocation"
4 href="http :// zone/registry/geolocation"/>

A web application would then declare that it wanted ac-
cess to a service of the type ‘geolocation’ as per Figure
1. The intent service is hosted at http://zone/registry/

geolocation and, upon being loaded by the browser, uses
the webinos framework to find the currently available ser-
vices of this type. If several services are available, the user
may choose between them. Having selected an option, the
page connects to the local server via a WebSocket. This con-
nection is wrapped by a MessagePort object and returned to
the requesting page which can then access the service as de-
fined in section 5.1.2. For services which may be accessed via
HTTP, the intent can return the URL of the service rather
than just a MessagePort. This is less desirable, however, as
it reveals the address of the service to the web application.

5.3 Security

5.3.1 Browser access control
For HTTP requests the use of separate subdomains for

services gives each a unique origin and means that no web
application has access to any service by default. In order
to permit access to certain web applications, the web server
at localhost will return CORS headers dictating permitted
origins. CORS is primarily used for interoperability and
consistency – The server will also need to implement access
control, as CORS does not prevent the initial HTTP request
being made, only the response.

Access via WebSockets can be mediated by inspecting the
origin of the calling page. An access control policy system
such as the one implemented in webinos [10] can be queried
to make this decision. How to populate the access control
policies is beyond the scope of this paper. If the origin’s
domain is zone, then the WebSocket request has been in-
voked via Web Intents. As such, permission can be implicitly
granted unless a policy explicitly denies it. The WebSocket

communication from zone must therefore include the calling
page’s origin.

We do not define a user authentication method. This can
be provided at a lower layer, as in webinos [11], or through
standard web approaches. For example, if Alice were ac-
cessing Bob’s services over HTTP, Bob’s service could in-
dicate that Alice must first visit http://service.pc.bob.

com/authenticate and present a credential, granting a ses-
sion cookie. Because this approach is the same as normal
web services, the full range of techniques are available.

Threats such as cross-site scripting (XSS) and cross-site
request forgery (CSRF) remain. Solutions are orthogonal to
our proposals, Lin et al. [9] give suggestions although these
may be less successful in cross-device scenarios. Google
Chrome introduce several mitigations [2] which constrain
packaged applications and extensions. These may be suc-
cessfully adapted to our solution as we do not introduce
new metaphors or abstractions.

5.3.2 Outside the browser
The disadvantage of placing a web server on each device is

that applications other than browsers may attempt to mis-
use them. Because access control is primarily based around
the browser reporting the origin of the requesting applica-
tion, malware can impersonate any origin and gain access
to any resource. We suggest that the local server could re-
quest a certificate from clients connecting to it, and trusted
browsers could have a suitable key and certificate installed.
However, this is only as secure as the key storage mecha-
nism, and it seems likely that malware would be able to
bypass this mechanism. On operating systems offering a
secure IPC primitive, such as Android, the WebSocket pro-
tocol could be replaced with an alternative, providing mu-
tual authentication of the browser and the local server. This
would require changes to the browser and would not be plat-
form agnostic. We note that any system designed to provide
inter-device connectivity will suffer from this problem.

5.3.3 Accessing external resources
Web applications can request access to domains referring

to users, e.g. location.pc.bob.zone and the underlying
webinos system will route requests to the correct endpoint.
A translation step is required to convert these local domain
names into full user identities but this is a straightforward
mapping assuming the user is known to the system.

So that access control is still based on origin, in inter-user
communication the origin of the application is replaced with
an origin referring to the requesting user (such as alice.

zone). Further restrictions based on the requesting applica-
tion or device are also possible, but users may be unwise to
trust this information.

5.4 Example
We imagine Alice is using a web application at http://

example.com/ on her PC which wants to access her location.
Alice is with Bob, who has his mobile phone with a GPS.
Example application code is shown in figure 1.

1. http://example.com uses Web Intents to request a ge-
olocation service.

2. A browser prompt asks Alice to select a service. She
clicks on the ‘webinos’ service, which loads a page
hosted at http://zone/registry/geolocation/.

http://zone/registry
http://zone/registry
http://zone/registry/geolocation
http://zone/registry/geolocation
http://service.pc.bob.com/authenticate
http://service.pc.bob.com/authenticate
location.pc.bob.zone
alice.zone
alice.zone
http://example.com/
http://example.com/
http://example.com
http://zone/registry/geolocation/


1 /* define an intent to ’discover ’ a
geolocation service */

2 var intent = new Intent(
3 "http :// intents.w3.org/discover",
4 "geolocation");
5 window.navigator.startActivity(intent ,

on_success);
6 function on_success(data , ports) {
7 // Wrap the returned MessagePort
8 geo = new GeolocationHelper(ports [0]);
9 geo.getCurrentPosition(found);

10 }
11 function found(position){/* Render map */}

Figure 1: A web application accessing geolocation

3. This page finds available services by creating a Web-
Socket connection to discovery.pc.alice.zone (us-
ing the webinos service discovery API) and displays
the results. Because Alice and Bob have communi-
cated before, Bob’s mobile phone is available.

4. Alice selects this service and the page initiates a Web-
Socket connection to geolocation.phone.bob.zone.

5. Behind the scenes, Alice’s PC’s device server proxies
the connection via the webinos system, which estab-
lishes a bluetooth connection to Bob’s device.

6. Depending on his policy, Bob will be asked whether
alice.zone may access his location. Alice’s server did
not prompt her because the Web Intents process is
used as implied consent.

7. The WebSocket connection is wrapped using a HTML5
MessagePort and returned to http://example.com.

8. http://example.com can send messages to this service
directly or access it through a helper library, convert-
ing the message interface to a JavaScript object.

6. IMPLEMENTATION
The proposed architecture has been implemented (with

minor exceptions) as a proof-of-concept extension to webinos
using Ubuntu 12.04 and Google Chrome.

6.1 Device server
The domain name scheme was prototyped using marlon-

tools DNS proxy1. We developed the device server using
nodejs2 and used it to interface with the webinos personal
zone proxy3 over a WebSocket connection. We have used
webinos successfully for multi- device and user interaction.
Because our extension only wrapped this capability, we are
confident that the approach is sound.

For discovery we prototyped the Web Intents approach,
demonstrating that the solution proposed in section 5.2 was
feasible. Due to the limited support for channel messag-
ing and Web Intents in current browsers we had to use a
JavaScript Shim4 to implement the service registration and
selection. It was also necessary to simulate the passing of
MessagePorts through use of the postMessage API. A dis-
advantage of our approach is the need for two steps of user
1http://code.google.com/p/marlon-tools/
2http://nodejs.org/
3https://github.com/webinos/Webinos-Platform
4http://webintents.org

input: when an intent was requested by an application, users
must select our handler and then select the service that they
want. As an alternative we implemented a single dynamic
service registration page which populated the intent registry
directly with the user’s available services. This saves a step
but requires this page to be regularly navigated to in order
to find new services.

Access control for HTTP requests was prototyped success-
fully using CORS, although the translation from webinos
XACML policies was not implemented; we expect this to
be straight-forward. Similarly, access control for WebSocket
connections is trivial to implement as webinos already con-
tains a policy decision point which may be queried about
web application permissions.

6.2 Services
We experimented with turning the APIs provided by webi-

nos into services based on our scheme. This included Geolo-
cation, the DeviceStatus API and the W3C File APIs. For
APIs with more complex inputs and methods we encoded all
JSON objects using JSON-RPC 2.0 encoding proposals5.

7. EVALUATION AND DISCUSSION
We now evaluate our proposal and implementation based

on the requirements identified in section 4. In this paper
we do not analyse the performance of our implementation.
There are no new processing steps compared with related
work, and Lin et al. [9] and Gutwin et al. [7] have demon-
strated that HTTP/AJAX and WebSockets, respectively,
have reasonable performance when accessing local network
and device services.

Routing and addressing. Our solution employs the
same routing mechanism as webinos but could also be adapted
to use UIA [6] or mDNS [8]. Devices are accessible on any
network, thanks to the persistent connection between each
device and the central hub. In addition, local service access
is possible as a fall-back when there is no internet access.
Multi-device and multi-user scenarios are supported.

Discovery. Service selection via Web Intents and we-
binos-based discovery was effective. While the implementa-
tion needed to adapt due to limited browser support, this ap-
proach successfully provided dynamic service discovery using
a soon-to-be standardised mechanism. However, dynamism
is limited to the point of discovery: after a service is selected,
changes to the local network will not affect the application.

Browser lock-in. Our architecture uses standard proto-
cols and APIs (or those expected to be standardised shortly)
and is therefore theoretically independent of browser im-
plementation. While WebSockets, channel messaging and
Web Intents have varying support in different browsers, this
should improve in the near future.

APIs. Our system allows for synchronous, asynchronous
and server-side events. Both HTTP services and channel
messaging (wrapped by JavaScript APIs) are supported,
meaning that the most appropriate can be used at any time.

Evolutionary. The approach described in this paper uses
existing concepts such as domains and origins and intro-
duces no new changes to browsers beyond those currently
in progress elsewhere. Furthermore, via the RESTful inter-
face, this architecture exposes local network services in the

5http://www.simple-is-better.org/json-rpc/
jsonrpc20-over-http.html#encoded-parameters

discovery.pc.alice.zone
geolocation.phone.bob.zone
alice.zone
http://example.com
http://example.com
http://code.google.com/p/marlon-tools/
http://nodejs.org/
https://github.com/webinos/Webinos-Platform
http://webintents.org
http://www.simple-is-better.org/json-rpc/jsonrpc20-over-http.html#encoded-parameters
http://www.simple-is-better.org/json-rpc/jsonrpc20-over-http.html#encoded-parameters


same way that normal web services might be. However, the
naming system is only consistent for the current user as user-
names are not unique. This constraint is due to limitations
on the format of domain names. For the most part, simple
translation solves the problem.

Privacy. Web Intents maintain the anonymity of the
service being used, which ought to limit the fingerprinting
capability of web applications. Intents could also be used to
protect user privacy by giving web applications access to fake
services than do not return real data. This would allow users
to trial applications without revealing private information.
However, in practice, the presence of a device server may be
detectable by web applications through timing attacks.

Security. For Web Intents, security depends on users giv-
ing web applications consent at runtime to access services.
Security for other access methods depends on the existence
of a policy dictating whether a particular origin should be
allowed access to a resource. This approach should be com-
patible with other origin-based mechanisms such as CORS.
However, the need for some new infrastructure to create poli-
cies is unavoidable. A disadvantage of our approach is that
it does not allow for API-specific security controls. For this
reason we expect it would be improved with further integra-
tion into the browser, despite all the related standardisation
and compatibility challenges.

Security for users and service providers is still dependent
on web applications being trustworthy and resistant to at-
tack. A history of vulnerabilities make this an unreason-
able assumption. The problem is independent of our work
but implies that adoption of our approach for more security-
sensitive resources must coincide with general improvements
to browser and web application security.

8. CONCLUSION AND FUTURE WORK
We have presented a practical approach to accessing local

device features and network resources from web browsers.
Our system combines existing proposals to provide services
in a consistent way with no significant modifications to browsers
or applications. It is based on a custom DNS scheme, ser-
vice access via HTTP and WebSockets, and Web Intent dis-
covery. Our approach solves problems in addressing, dis-
covery, browser lock-in, security and privacy and considers
issues around standardisation and adoption. Having devel-
oped an implementation and prototyped several services we
have shown this approach to be feasible.

For future work we intend to address some of the integra-
tion challenges that prevent our proposals from being incor-
porated into webinos, including the lack of browser support
for some features. We will also investigate how this ap-
proach can be extended to support custom authentication
and authorisation schemes for services.

9. ACKNOWLEDGEMENTS
The research described in this paper was funded by EU

FP7 webinos Project (FP7-ICT-2009-5 Objective 1.2).

10. REFERENCES
[1] Adobe. PhoneGap. http://phonegap.com/, 2012.

[2] N. Carlini, A. P. Felt, and D. Wagner. An evaluation
of the google chrome extension security architecture.
In Proceedings of the USENIX Security Symposium
2012, August 2012.

[3] Web Intents Addendum - Local Services (W3C
Editor’s Draft).
http://dvcs.w3.org/hg/dap/raw-file/tip/wi-

addendum-local-services/Overview.html,
September 2012.

[4] J. R. Douceur, J. Howell, B. Parno, M. Walfish, and
X. Xiong. The web interface should be radically
refactored. In Proceedings of HotNets ’10. ACM, 2011.

[5] Electronic Frontier Foundation. Web Browsers Leave
’Fingerprints’ Behind as You Surf the Net.
https://www.eff.org/press/archives/2010/05/13,
May 2010.

[6] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. Persistent Personal
Names for Globally Connected Mobile Devices. In
Proceedings of OSDI ’06. USENIX, 2006.

[7] C. A. Gutwin, M. Lippold, and T. C. N. Graham.
Real-time groupware in the browser: testing the
performance of web-based networking. In Proceedings
of CSCW’11, pages 167–176. ACM, 2011.

[8] IETF. Multicast DNS.
http://files.multicastdns.org/draft-cheshire-

dnsext-multicastdns.txt, December 2011.

[9] K. Lin, D. Chu, J. Mickens, L. Zhuang, F. Zhao, and
J. Qiu. Gibraltar: exposing hardware devices to web
pages using ajax. In Proceedings of WebApps’12.
USENIX, 2012.

[10] Lyle et al. Cross-platform access control for mobile
web applications. In Policy 2012. IEEE, July 2012.

[11] Lyle et al. Personal PKI for the Smart Device Era. In
Proceedings of EuroPKI’12, LNCS. Springer, 2012.

[12] T. Mikkonen and A. Taivalsaari. Reports of the web’s
death are greatly exaggerated. Computer, 44(5):30
–36, may 2011.

[13] Mozilla. Boot to Gecko Project Website.
http://www.mozilla.org/en-US/b2g/, 2012.

[14] The W3C. Mobile Web Application Best Practices.
http://www.w3.org/TR/2010/REC-mwabp-20101214/,
December 2010.

[15] H. S. Tømmerholt. Opera Unite developer’s primer.
Available on http://dev.opera.com/, October 2009.

[16] UPnP Forum. http://upnp.org/, 2012.

[17] W3C. The Device APIs Working Group Website.
http://www.w3.org/2009/dap/, 2012.

[18] Cross-Origin Resource Sharing (W3C Working Draft).
http://www.w3.org/TR/cors/, April 2012.

[19] Geolocation API (W3C Proposed Recommendation).
http://www.w3.org/TR/geolocation-API/, 2012.

[20] The WebSocket API (W3C Editor’s Draft).
http://dev.w3.org/html5/websockets/, Sep. 2012.

[21] The Wholesale Applications Community (WAC)
Website. http://www.wacapps.net/, 2012.

[22] The webinos project. http://webinos.org/, 2012.

[23] Web Intents (W3C Working Draft).
http://www.w3.org/TR/web-intents/, June 2012.

[24] HTML Living Standard: 10.4 Cross-document
messaging. http://www.whatwg.org/specs/web-
apps/current-work/multipage/web-messaging.html,
September 2012.

[25] M. Zalewski. The Tangled Web: A Guide to Securing
Model Web Applications. No Starch Press, 2011.

http://phonegap.com/
http://dvcs.w3.org/hg/dap/raw-file/tip/wi-addendum-local-services/Overview.html
http://dvcs.w3.org/hg/dap/raw-file/tip/wi-addendum-local-services/Overview.html
https://www.eff.org/press/archives/2010/05/13
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://www.mozilla.org/en-US/b2g/
http://www.w3.org/TR/2010/REC-mwabp-20101214/
http://dev.opera.com/
http://upnp.org/
http://www.w3.org/2009/dap/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/geolocation-API/
http://dev.w3.org/html5/websockets/
http://www.wacapps.net/
http://webinos.org/
http://www.w3.org/TR/web-intents/
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html

	coversheet_template
	LYLE 2013 Extending the web to support personal
	Introduction
	Background
	Web applications and browser security
	Cross-origin browser communication
	Personal and home networks

	Existing approaches
	Device servers
	Browser APIs
	webinos
	Other approaches
	Summary

	Requirements and challenges
	Solution: the best of both
	Services
	Access over HTTP
	Bidirectional communication

	Discovery and selection
	Security
	Browser access control
	Outside the browser
	Accessing external resources

	Example

	Implementation
	Device server
	Services

	Evaluation and discussion
	Conclusion and future work
	Acknowledgements
	References


