
FAILY, S., LYLE, J., NAMILUKO, C., ATZENI, A. and CAMERONI, C. 2012. Model-driven architectural risk analysis using 
architectural and contextualised attack patterns. In Proceedings of the 1st Model-driven security workshop (MDsec 

2012), co-located with the 15th International conference on model-driven engineering languages and systems 
(MoDELS 2012), 1-5 October 2012, Innsbruck, Austria. New York: ACM [online], article number 3. Available from: 

https://doi.org/10.1145/2422498.2422501 

 
 
 
 

This file was originally hosted by the University of Oxford: https://ora.ox.ac.uk/objects/uuid:fce5fb83-ca32-
4288-8b9c-738d5ca04e25 

This document was downloaded from 
https://openair.rgu.ac.uk 

Model-driven architectural risk analysis using 
architectural and contextualised attack patterns. 

FAILY, S., LYLE, J., NAMILUKO, C., ATZENI, A. and CAMERONI, C. 

2012 

https://doi.org/10.1145/2422498.2422501
https://ora.ox.ac.uk/objects/uuid:fce5fb83-ca32-4288-8b9c-738d5ca04e25
https://ora.ox.ac.uk/objects/uuid:fce5fb83-ca32-4288-8b9c-738d5ca04e25


Model-driven architectural risk analysis using architectural
and contextualised attack patterns

Shamal Faily
University of Oxford

Oxford, UK
shamal.faily@cs.ox.ac.uk

John Lyle
University of Oxford

Oxford, UK
john.lyle@cs.ox.ac.uk

Cornelius Namiluko
University of Oxford

Oxford, UK
cornelius.namiluko@cs.ox.ac.uk

Andrea Atzeni
Politecnico di Torino

Torino, Italy
andrea.atzeni@polito.it

Cesare Cameroni
Politecnico di Torino

Torino, Italy
cesare.cameroni@polito.it

ABSTRACT

A secure system architecture is often based on a variety of 
design and security model elements. Without some way of 
evaluating the impact of these individual design elements in 
the face of possible attacks, design flaws may weaken a soft-
ware architecture. This paper illustrates how architectural 
and contextualised attack patterns can be used to formalise 
the elements of architectural attacks and possible defences. 
We illustrate how these patterns, and tool-support building 
upon them, can be used to automate an architectural risk 
analysis process. We demonstrate this approach using an 
example from the EU FP7 webinos project.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—
methodologies,tools

General Terms

Security, Design

Keywords

architectural risk analysis, patterns, CAIRIS

1. INTRODUCTION
It is often the case that the design of a software system 

does not start with a blank page, but with a bricolage of
different model elements. For example, by re-using exist-
ing software components, we introduce design elements into 
our architecture. Assumptions about possible attacks might 
also influence architectural decision making. Even designers 
with a good understanding of both the problem and solution 
domains may not appreciate the implications of protocol se-
lection, or the wording of requirements. Moreover, because

the abstractions used by a designer don’t always match those
used by an attacker then flaws missed by the former may be
found and exploited by the latter. Consequently, we need
tools that help us assess the security consequences of bring-
ing together different model elements.

In recent years, we developed the IRIS (Integrating Re-
quirements and Information Security) meta-model to inte-
grate concepts from Usability, Security, and Requirements
Engineering [5] practice. The meta-model, which is de-
scribed in detail in [3], is centered around a number of con-
cepts which are common in each of these areas and was de-
vised to help structure and manage usability and security
design activities for different system contexts of use. This
work has contributed to the development of the open-source
Computer Aided Integration of Requirements and Informa-
tion Security (CAIRIS) requirements management tool [4],
which has been validated using real-world case studies, e.g.
[6]. While the IRIS meta-model can deal with risks in the
broader socio-technical environment within which a software
system is situated, two further augmentations are needed for
undertaking a more detailed analysis of software architec-
tures. First, although the IRIS meta-model provides sub-
stantial support for modelling the problem domain, solution
domain concepts are limited to the notion of assets. While
modelling assets is necessary for architectural risk analysis,
it is not sufficient as many features of an architecture war-
rant analysis in their own right; these include the architec-
ture’s attack surface – the measure of its exposure to attack
– and the properties of connections between its elements.
Second, model representations are needed for specifying the
elements of software architecture and the attacks these need
to resist. These representations need to match the think-
ing that designers might have about different perspectives
of a system, and it should be possible for them to quickly
evaluate the consequences that attack and defence elements
might have on each other.

In this paper, we illustrate how modest extensions to the
IRISmeta-model, together with complementary tool-support,
can be used to automate an architectural risk analysis. In
Section 2 we introduce meta-models for architectural pat-
terns and contextualised attack patterns; these formalise the
elements necessary to facilitate an architectural risk analy-
sis. We show how these elements are applied in practice in
Section 3. We discuss related work that complements this
approach in Section 4, before concluding in Section 5.



Component

Interface

1..*

1..*

*

*

Asset

*

*

Connector

1..*

2

Protocol

Access 
Right

Privilege
1

1

1

1

*

*

*

*

*

*

Requirement

*

Role

*

*

concerns

responsibility

Figure 1: Architectural patterns meta-model

2. APPROACH
The aim of an architectural risk analysis is to identify

design-level flaws in a software architecture. This process
was first described by McGraw [14], and motivated by the
claim that design flaws account for a significant number of
security problems; such flaws cannot be identified by code-
inspection alone. An architectural risk analysis shares many
of the characteristics of classic risk analysis: it emphasises
tangible assets of business value and, as a process, is knowl-
edge intensive, requiring knowledge of both the problem do-
main and security expertise about potential flaws and at-
tacks. In other respects, however, architectural risk anal-
ysis is more challenging. It relies on additional knowledge
about solution-based models that form the basis of a soft-
ware architecture, along with a sense of the requirements
and constraints implicitly assumed when these are adopted.

The approach prescribed by McGraw for carrying out an
architectural risk analysis involves carrying out three steps.
In the first step, an attack resistance analysis is carried out
to identify general flaws from the literature and knowledge
bases of known attacks and, based on these, identifying po-
tential risks and their viability. In the second step an ambi-
guity analysis is carried out to discover new risks resulting
from ambiguity and inconsistency in a design. In the final
step, a weakness analysis identifies weaknesses that might
arise due to the impact of the architecture’s dependencies.
Interested readers may wish to refer to [14] for a more de-
tailed presentation of this process, although Khan et al. [11]
provide a more recent illustrative example based on an anal-
ysis of the Chromium browser.

Our approach involves carrying out a model-driven archi-
tectural risk analysis. The process for carrying out this anal-
ysis, which is based on that proposed by McGraw, is cen-
tred around the creation and analysis of two model-based
constructs: architectural patterns and contextualised attack
patterns. Once these models are created, these are amenable
to automated analysis to determine whether a software ar-
chitecture addresses known attacks, and whether any aspect
of the architecture requires further investigation. The fol-
lowing sections describe how these constructs are defined
and used.

2.1 Architectural patterns
Architectural patterns were proposed by Buschmann et

al. [2] to express a model of a software system, provide a
set of pre-defined sub-systems, specify responsibilities, and
include rules and guidelines for organising the relationships
between model elements. To capture the elements of an

architectural design pattern, we introduce new concepts to
the IRIS meta-model, while making use of existing concepts
and relationships. Collectively, the architectural patterns
meta-model in Figure 1 provides three conceptual different
views of an architectural pattern.

The first of these is a component and connector view,
which is expressed using UML component diagrams. This
captures the runtime attributes of a system in terms of its
computational elements (components) and the interaction
pathways between them. Components are attached to con-
nectors via interfaces; these are services or methods through
which component interaction takes place. Interfaces are as-
sociated with an access right to indicate the level of autho-
risation needed to use the interface. Interfaces also have a
particular privilege level. Connectors, like components, are
characterised by their access rights and also by the protocol
upon which the connector runs. These meta-model compo-
nents are closely aligned with the model of software archi-
tecture described by Gennari & Garlan, which was recently
adapted to capture the elements of a software architecture’s
attack surface [8]. This involves specifying the model ele-
ments associated with components and connectors, and as-
signing numeric privilege, access right, and protocol values
to these elements. These values range between 0 and 10 and
represent an element’s exposure to attack; the higher the
value, the greater the exposure. These values make it pos-
sible to formally evaluate the damage potential associated
with interfaces, data transmitted through a connector, and
untrusted data items with respect to restrictions placed on
the data they contain. This formal model is described in
more detail in [8].

The second is a goal view, and is characterised by the
system requirements that motivate or constrain the archi-
tectural components; within the IRIS meta-model, these
system requirements are expressed using KAOS (Knowl-
edge Acquisition in automated Specification) goal trees [19].
KAOS responsibility links describe the roles responsible for
satisfying the behaviour associated with requirements, while
concern links are used to describe instances where require-
ments reference or constrain assets.

The third view is based on a module view of assets. These
assets are salient concepts of value that are specific to com-
ponents or connectors; this view is expressed using UML
class diagrams.

2.2 Contextualised attack patterns
Attack patterns are descriptions of common methods for

exploiting software that both provide an attacker’s perspec-
tive, together with guidance towards mitigating them [17].
In recent years, work on attack patterns has been popu-
larised by the development of open-source intelligence Com-
mon Attack Pattern Enumeration and Classification (CAPEC)
[17] and CommonWeakness Enumeration (CWE) [18] repos-
itories. Although these repositories offer a wealth of useful
attack data, the patterns are deliberately abstract in order
that they can be applicable in as many contexts as possi-
ble. To provide this context and re-use as much existing
model data as possible when applying these patterns, we
have developed a meta-model for contextualised attack pat-
terns. These model both the attack and design elements
necessary to instantiate an attack within a specific context
of use.

The model upon which contextualised attack patterns are



Security 
Property

Environment

Structure

Threat Vulnerability

Attacker

Asset

Attack 
Pattern

Misuse 
Case

Implementation

1

1

1..*

1 1

1..*

1..*

Obstacle
*

*

1..*

Role

1..*

*

*
*

1

Collaboration

Motivation

Pattern Goal

Target/
Exploit

Attack Exploit

Consequences

Participant

Risk

1

Intent

Applicability

Figure 2: Contextualised Attack Patterns meta-

model

based is the Gang of Four design pattern template [7]. How-
ever, the meta-model is based exclusively on existing con-
cepts and associations in the IRIS meta-model. As such,
when a contextualised attack pattern is introduced into CAIRIS,
it introduces a new risk, together with the IRIS model ele-
ments that act as its rationale. The relationship between the
contextualised attack pattern structure and the meta-model
is illustrated in Figure 2 by the grey UML comment nodes;
these nodes denote the name of the Gang of Four pattern
elements.

The intent and consequences elements are used to describe
the overall intent of the attack, and the external impact of
the attack being successful. This impact is broader than
the impact of a particular architectural pattern and is de-
scribed using terminology that all system stakeholders can
understand. The applicability element states the environ-
ment within which the attack pattern will be introduced.
This is also the same environment within which architec-
tural patterns will be situated to determine whether the de-
sign elements are resistant to this or other attack patterns
within the environment.

The structure element describes the details of the attack
itself. Attacks and Exploits are drawn from both CAPEC
and CWE. The structure is closely complemented by the
participant element, which models information about the
attack; this includes the attacker’s capabilities and motives
for carrying out the attack. This information is derived from
personas that have been created for possible attackers. Per-
sonas are specifications of archetypical user behaviour that
are grounded in empirical data collected from representative
users [15]. These add a substantial amount of context to the
analysis because not only do these add a human face to the
attackers behind attack patterns, these are grounded in data
sources about real attackers.

To describe how the attack defined by the structure might
be implemented, leaf obstacles are associated with threats
and vulnerabilities and a KAOS obstacle model is defined
to describe how these might arise. Like the KAOS goal
model in the architectural pattern, these obstacles might

concern assets, and responsibility associations describe the
roles responsible for satisfying obstacles.

As Letier has observed [20], a KAOS obstacle model can
be seen as a goal-driven form of a fault tree. However, unlike
fault trees, our approach to obstacle modelling is closely tied
to other artifacts such as previous knowledge about attacks
and information about the attackers that might carry these
out. Collectively, where useful statistical data about possi-
ble attacks exists, this information can help us predict the
likelihood of particular obstacles being satisfied. When a
probability value is specified for this likelihood then a ratio-
nale statement also needs to be provided to justify it. This is
necessary because, when attack patterns are imported into a
CAIRIS model, it may not be immediately obvious that the
obstacle or the obstacle model arose from them. By proving
this justification, we have some way of understanding the
thinking that motivated this value. Based on these values,
we can evaluate the probability of a particular cut of an ob-
stacle tree based on the same equations used to evaluate the
faults in a fault tree. For example, for an obstacle Ox with
non mutually exclusive leaf goals O1 and O2, the probability
of Ox (i.e. P (Ox)) where O1 and O2 are AND-refinements is
O1 ×O2; where O1 and O2 are OR-refinements then P (Ox)
is O1 +O2.

Like classic design patterns, the collaboration concept de-
scribes the classes necessary to achieve the designer’s intent.
However, in the case of attack patterns, the classes are assets
and the designers are attackers. As such, the collaborating
assets are those which are targeted by threats or exploited by
vulnerabilities. Closely aligned with this concept are moti-
vating security properties of interest to an attacker realising
this pattern.

2.3 Architectural Risk Analysis
We have modified CAIRIS to support the aforementioned

changes to the IRIS meta-model. We have also modelled
architectural patterns and contextualised attack patterns as
XML Data Type Descriptions; these facilitate the import of
both types of artifact directly into CAIRIS. As our approach
is contingent on access to knowledge bases about possible
attacks and exploits, we have also developed scripts which
import information from CAPEC and CWE as directories
of potential threats and vulnerabilities respectively. More
information about CAIRIS’s facilities for importing threat
and vulnerability directories can be found in [3].

Before an architectural risk analysis can be carried out,
pre-existing security, usability, and requirements models need
to be created in CAIRIS. These include information about
known system assets, the type of roles supported by the sys-
tem’s personas, along with supporting artifacts such as use
cases and requirements. At this stage, it is also useful to
elicit architectural attack surface meta-data for protocols,
privileges, and access rights, and agree numeric values for
each type.

The architectural risk analysis process itself is iterative,
and entails the following four steps:

• Architectural pattern specification: For a specific area
of architectural significance, an architectural pattern
is created to encompass the component and connec-
tor, requirement, and asset views associated with this
area. As McGraw suggests [14], this is the most in-
tellectually demanding part of the process because the
information necessary to populate the pattern needs



to be elicited from various sources, including design
documentation and source code. It is also necessary
to involve other designers and domain experts to val-
idate the architectural pattern as it is specified. For
this reason, although this is first step in the process,
the pattern itself will invariably be revised throughout
the process.

• Attack resistance analysis: In this step, we begin to
populate the contextualised attack pattern template
based on potential security concerns that may be as-
sociated with the pattern. This includes searching the
imported knowledge bases for the pattern structure
elements, and identifying attacker personas with the
ability to carry out the identified attack. If the ex-
isting attacker personas do not have either the capa-
bilities or motives for carrying out the attack, then it
may be necessary to create a new, more meaningful
attacker persona. The process for doing this is beyond
the scope of this paper, but is described in more detail
by [1].

• Ambiguity analysis: this involves eliciting potential
causes of the attack using the obstacle models in the
contextualised attack pattern. The threat and vulner-
ability elements act as initial leaf obstacles and, by
considering the attack from the perspective of the at-
tack persona, the leaf obstacles are abstracted to iden-
tify why these occur. As further obstacles are elicited,
these are refined to identify other potential threats and
vulnerabilities. As this model evolves then, where pos-
sible, probability values are assigned to obstacles, and
potential goal and responsibility links are assigned to
known system assets and roles referenced in the con-
textualised attack pattern.

• Weakness analysis: to understand the impact that the
environment has on the architectural pattern, we im-
port the contextualised attack pattern into CAIRIS,
and introduce the previously created architectural pat-
tern into the same environment as the attack pattern.
In addition to automatically generating diagrams such
as those shown in Figures 3 and 4, the damage po-
tential across the interfaces, channels, and untrusted
surfaces associated with architectural pattern are also
calculated. Where assets are associated with both the
architectural and contextualised attack pattern, po-
tential threats and vulnerabilities to the architectural
pattern are highlighted, and — where concern and re-
sponsibility links are common to both requirements
and obstacles — potential obstacles that obstruct ar-
chitectural patterns are highlighted. As the number of
potential obstacles might be large, these are ordered by
probability, where the most likely obstacles are listed
first.

After the final step, any identified threats and vulnerabil-
ities which are adequately treated by architectural pattern
requirements are marked by the designer, together with how
effective the treating requirement is. Similarly, goals which
are obstructed by candidate obstacles are also marked. At
this point, we repeat the process to refine the architectural
pattern based on new information about components, con-
nectors, assets, or requirements.

Component & Connector View

Goal
View

Asset 
View

Figure 3: Asset, Goal, and Component and Connec-

tor View of Policy Manager Architectural Pattern

3. EXAMPLE
To demonstrate our approach, we show how it can be

used to support the architectural risk analysis of the policy
framework for the EU FP 7 webinos project. webinos is
a federated software platform for running web applications
consistently and securely across mobile, PC, home media,
and in-car systems. More information about the project is
described in [22].

3.1 Architectural pattern
The Policy Manager architectural pattern illustrated in

Figure 3 specifies the policy framework developed for webi-
nos. The policy framework is summarised in [13], and it is
from this that the asset view was derived. To develop the
requirements view, it was necessary to review other sources
of information such as prototype code for the policy man-
agement software itself.

Following subsequent validation of this pattern with the
authors of [13], a component and connector view was devised
to illustrate how other webinos components might interact
with the Policy Manager component. In the component and
connector view in Figure 3, a software application (Discov-
ery Client) on a device may wish to discover other similar
applications running on other devices. However, before we-
binos’ discovery capabilities can be invoked, the Discovery
Module component needs to establish if the application is
authorised to access the requisite resources.

Once the architectural pattern was imported into CAIRIS,
the attack surface metrics were automatically calculated and
used to colour the component nodes in the component and
connector view. Shades of red are used to determine the
comparative size of the exploitable attack surface, where
components coloured with a darker shade have a larger sur-
face than those with a lighter shade.

3.2 Attack Resistance Analysis
For this example, we assumed that test APIs had been un-

intentionally introduced into the webinos platform. Based
on keywords associated with this reason, we search the CAPEC



Figure 4: Obstacle model derived from CAPEC-121

and CWE-770

and CWE knowledge bases imported into CAIRIS and iden-
tified a potential attack, i.e. CAPEC-121: Locate and Ex-
ploit Test APIs; this attack takes advantage of the associ-
ated weakness CWE-770: Allocation of resources without
limits or throttling. Based on the associated information
in CAPEC and CWE, we determined that one of the we-
binos attack personas — Ethan — has both the capability
and motives for carrying out this attack. It was also de-
termined that the threat would target application data by
taking advantage of possible weaknesses that might arise in
the access request itself. More information about Ethan and
other webinos attacker personas can be found in [21].

3.3 Ambiguity Analysis
Figure 4 shows the obstacle model developed on the basis

of the initial leaf obstacles Test API enabled (arising from
CAPEC-121) and Unrestricted request specification (arising
from CWE-770). Reflecting on why both these obstacles
might have occurred led to the elicitation of obstacles that
gave rise to them. For the first obstacle, this was the in-
clusion of superfluous installation data as part of a webinos
platform release; this included not only test APIs, but also
test configuration data. In the case of the second obstacle,
this arose as a result of a usage request for a policy resource
being misspecified. The model indicates that this misspeci-
fication might also arise because of ambiguity in the request,
or ambiguity about the policy resource itself. However, the
probability of each of these leaf goals is not the same. No
probability was set for the other leaf obstacles of Misspec-
ified usage request, however, based on the implementation
logic for handling request specifications, there is a surpris-
ingly high probability (70%) that the Unrestricted request
specification obstacle might be satisfied. Because the leaf
obstacles to Misspecified usage request are OR-refinements
(as denoted by the filled black circle), then its probability is
the sum of its leaf goals which, in this case, is also 70%.

As the figure also shows, the obstacles are coloured in
shades of red based on their probability; the higher the prob-
ability of an obstacle occurring, the darker the shade.

The process of carrying out the ambiguity analysis also
gave more clarity about what Ethan’s goals might be in car-
rying out this attack based on possible cuts of the obstacle
model. As the obstacle model shows, misspecified usage re-
quests might arise because a webinos application developer
anonymised (perhaps unintentionally) data usage requests.

3.4 Weakness Analysis
Because the access request asset is part of the asset view

and is also targeted by the attack pattern then, when the
architectural pattern is imported, CAIRIS asks for a require-
ment which treats this attack.

CAIRIS also identifies that the data usage request require-
ment in the architectural pattern shares the same responsi-
bility link and concern links as the anonymous data usage
obstacle in the attack pattern. As the requirement states
that users shall specify how the data being requested will be
used, and the obstacle is satisfied when users do not spec-
ify how they will use the data they are requesting, then the
obstacle is a reasonable obstruction to the goal.

There is no obvious requirement associated in the archi-
tectural pattern to address either the attack or the obstacle.
For this reason, it is necessary to iterate the process in order
to refine the architectural pattern.

4. RELATED WORK
The approach taken by IRIS for addressing risks is simi-

lar to that adopted by CORAS: a model-driven approach for
risk analysis [12]. Both approaches are grounded in a meta-
model encompassing the elements necessary to perform a
risk analysis, and both are supplemented by a software tool.
However, IRIS has a weaker focus on risk modelling; its
meta-model is much broader and primarily concerned with
the concepts necessary to support interactive secure system
design; this includes information about possible attackers
and various other elements of a system’s context of use.
Moreover, because its scope is much broader, IRIS does not
prescribe any particular method; instead, it relies on a pro-
cess framework that practitioners can instantiate based on
the characteristics within which IRIS will be used; this pro-
cess framework is described in more detail by [3].

The approach we take for eliciting exploitable assump-
tions relies on KAOS and, in particular, obstacle models.
Work by Heyman et al. [9] propose an alternative approach
for eliciting such assumptions by formally specifying require-
ments using Alloy [10], together with the assumptions these
rely on. These security requirements act as assertions that
reference an architectural model of components that is sim-
ilarly modelled in Alloy. Our conceptual model for architec-
tural patterns is a super-set of the architectural meta-model
proposed by Heyman et al., suggesting the efficacy of their
approach for providing additional analysis of architectural
patterns. Heyman et al. also imply further alignment with
our work by drawing on the usefulness of KAOS obstacle
models for discovering analysable assumptions.

Our approach for incorporating probabilities into contex-
tualised attack pattern obstacles is inspired by recent work
by Sabetzadeh et al. [16]. In comparison, our approach is
less sophisticated in that it says little about how probability
values are independently validated beyond providing indi-
vidual rationale statements. However, our approach does
benefit from the close relationship between obstacles and
other model elements; these provide additional evidence for
making claims about individual probability values. More-
over, our approach does not necessarily preclude a more so-
phisticated strategy, such as that prescribed by Sabetzadeh
and his colleagues.



5. CONCLUSION
This paper has presented an approach for carrying out

a model-driven architectural risk analysis. In doing so, we
have made several contributions. First, we have shown how,
with the aid of pre-existing requirements and usability mod-
els, and only modest extensions to the IRIS meta-model, it is
possible to specify the elements of a software architecture.
By doing so, we can also automate some of the drudgery
associated with analysing an architecture’s attack surface,
and identifying obstacles that conflict with architectural re-
quirements. Second, we have shown that by leveraging pre-
existing model data and the IRIS meta-model, it is possible
to create contextualised attack patterns that can be used
to evaluate potential weaknesses in a software architecture.
Third, we have shown that building and applying these pat-
terns aligns with McGraw’s architectural risk analysis pro-
cess, as demonstrated by an illustrative example.

Based on architectural patterns we have created to encap-
sulate different parts of the webinos software architecture,
we have recently applied this approach to explore how resis-
tant webinos is to different types of known web application
attack, as well as particular security concerns raised by the
project team. The results of this study will be described in
future work.

6. ACKNOWLEDGEMENTS
The research described in this paper was funded by the

EU FP7 webinos project (FP7-ICT-2009-05 Objective 1.2).

7. REFERENCES

[1] A. Atzeni, C. Cameroni, S. Faily, J. Lyle, and
I. Fléchais. Here’s Johnny: a Methodology for
Developing Attacker Personas. In Proceedings of the
6th International Conference on Availability,
Reliability and Security, pages 722–727, 2011.

[2] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented software
architecture: a system of patterns. Wiley, 1996.

[3] S. Faily. A framework for usable and secure system
design. PhD thesis, University of Oxford, 2011.

[4] S. Faily. CAIRIS web site.
http://github.com/failys/CAIRIS, July 2012.

[5] S. Faily and I. Fléchais. A Meta-Model for Usable
Secure Requirements Engineering. In Proceedings of
the 6th International Workshop on Software
Engineering for Secure Systems, pages 126–135. IEEE
Computer Society, 2010.

[6] S. Faily and I. Fléchais. User-centered information
security policy development in a post-stuxnet world.
In Proceedings of the 6th International Conference on
Availability, Reliability and Security, pages 716–721,
2011.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1995.

[8] J. Gennari and D. Garlan. Measuring attack surface in
software architecture. Technical Report
CMU-ISR-11-121, Carnegie Mellon University, 2012.

[9] T. Heyman, R. Scandariato, and W. Joosen. Security
in context: Analysis and refinement of software
architectures. In Computer Software and Applications

Conference (COMPSAC), 2010 IEEE 34th Annual,
pages 161 –170, july 2010.

[10] D. Jackson. Software abstractions: logic, language and
analysis. MIT Press, Cambridge, Mass., 2006.

[11] M. Khan, M. Munib, U. Manzoor, and S. Nefti.
Analyzing risks at architectural level. In Information
Society (i-Society), 2011 International Conference on,
pages 231 –236, 2011.

[12] M. S. Lund, B. Solhaug, and K. Stølen. Model-Driven
Risk Analysis: The CORAS Approach. Springer, 2010.

[13] J. Lyle, S. Monteleone, S. Faily, D. Patti, and
F. Ricciato. Cross-plaform access control for mobile
web applications. In Policies for Distributed Systems
and Networks (POLICY), 2012 IEEE International
Symposium on, pages 37–44, 2012.

[14] G. McGraw. Software Security: Building Security In.
Addison-Wesley, 2006.

[15] J. Pruitt and T. Adlin. The persona lifecycle: keeping
people in mind throughout product design. Elsevier,
2006.

[16] M. Sabetzadeh, D. Falessi, L. Briand, S. Alesio,
D. McGeorge, V. Ahjem, and J. Borg. Combining goal
models, expert elicitation, and probabilistic simulation
for qualification of new technology. In High-Assurance
Systems Engineering (HASE), 2011 IEEE 13th
International Symposium on, pages 63 –72, nov. 2011.

[17] The MITRE Corporation. Common Attack Pattern
Enumeration and Classification (CAPEC) web site.
http://capec.mitre.org, July 2012.

[18] The MITRE Corporation. Common Weakness
Enumeration (CWE) web site.
http://cwe.mitre.org, July 2012.

[19] A. van Lamsweerde. Requirements Engineering: from
system goals to UML models to software specifications.
John Wiley & Sons, 2009.

[20] A. Van Lamsweerde and E. Letier. Integrating
obstacles in goal-driven requirements engineering.
pages 53–62, Apr 1998.

[21] webinos Consortium. User expectations on privacy
and security. http://webinos.org, February 2011.

[22] webinos Consortium. webinos web site. Available from
http://webinos.org, March 2012.

http://github.com/failys/CAIRIS
http://capec.mitre.org
http://cwe.mitre.org
http://webinos.org
http://webinos.org

	coversheet_template
	FAILY 2012 Model-driven architectural risk

