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Coloring vertices on graph is one of the topics of discrete mathematics that are still 
developing until now. Exploration Coloring vertices develops in the form of a game 
known as a coloring game. Let G graph. The smallest number k such that the graph 
G can be colored in a coloring game is called game chromatic number. Notated as 
χg(G). The main objective of this research is to prove game chromatic numbers from 

graphs shack(Kn, vi, t),shack(Sn, vi, t), and shack(Kn,n, vi, t). The research method 

used in this research is qualitative. The result show that χg(shack(Kn, vi, t)) = n,

and χg(shack(Sn, vi, t)) = χg (shack(Kn,n, vi, t)) = 3. The game chromatic number 

of the shackle graph depends on the subgraph and linkage vertices. Therefore, it is 
necessary to make sure the vertex linkage is colored first. 
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A. INTRODUCTION  

Vertice coloring game on a graph is one of the topics of discrete mathematics. This topic 

continues to develop and be implemented in various fields. The application of coloring vertices 

is widely used in everyday life such as scheduling problems (Chierichetti, Kleinberg, & 

Panconesi, 2012; Maarif, 2017), setting traffic lights (Diana, Suryaningtyas, & Suprapti, 2016), 

even in the games (Bodlaender, 1991; Mycielski, 1992; Dunn, Larsen, Lindke, Retter, & Toci, 

2015; Mujib, 2019).   

Vertices coloring game was first introduced by Bodlaender (Bodlaender, 1991) who studied 

the vertices coloring on a Cartesian product graph. Research on these vertices coloring game 

continues to develop today. Various classes of graphs have been studied such as planar 

graph(Xuding, 1999), tree graph (Zhu, 2000), Cartesian product graph class (Bartnicki et al., 

2008; Mujib & Assiyatun, 2011), Cactus graph (Firmansyah & Mujib, 2013), Dense random 

graphs (Heckel, 2014), random hypergraph (Bohman, Frieze, & Sudakov, 2019), Caterpillars 

graph (Furtado, Dantas, De Figueiredo, & Gravier, 2019), and Pot Bunga and Palm tree graphs 

(Mujib, 2019). In addition, there are many other graph classes that become the subject of 

research on vertices coloring games. The interesting thing in this game is how to determine the 
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smallest color so that all vertices on the graph are colored. This number is called the game 

chromatic number. Research on chromatic numbers continues to develop today. Starting from 

graph chromatic numbers, game chromatic numbers (Bodlaender, 1991), Local irregularity 

chromatic numbers (Umilasari, Susilowati, & Slamin, 2020), to quantum chromatic numbers 

(Paulsen & Todorov, 2015). 

Let graph 𝑮 = (𝑽, 𝑬) where V is the set of vertices on the graph and E is the set of edges on 

the graph G. The set 𝑪 = {𝟏, 𝟐, 𝟑 … , 𝒌}is the set of colors provided in the vertex coloring game. 

Consider two people playing coloring on a 𝐺 graph. The first person is A (Alice) and the second 

person B (Bob). A is the first person to color the vertices on G. Whereas B, the second person to 

color the vertices on G. A aims to color all the points on G so that each neighboring vertex has a 

different color. Meanwhile, B aims to color the vertices so that at least one vertex cannot be 

colored with a different color from its neighbors. k, the smallest color so that all the vertices in 

G can be colored in the game of coloring vertices at G, called games chromatic numbers, which 

are denoted by 𝝌𝒈(𝑮). 

It has been proven before, that several graph classes have proved the game chromatic 

number. However, there are still other interesting graph classes where the chromatic number 

of the game has not been found. One of the interesting graphs to explore the chromatic number 

of the game is the resulting graph from the shackle operation. The shackle operation is an 

operation between two or more graphs which results in a new graph. The graph resulting from 

the shackling operation or called the shackle graph is denoted 𝑆ℎ𝑎𝑐𝑘(𝐺1, 𝐺2, … , 𝐺𝑡) is a shackle 

graph that is formed from 𝑡, a copy of the graph G is denoted by 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑡) with 𝑡 ≥ 2 and 𝑡 is 

natural number (Maryati, Salman, Baskoro, Ryan, & Miller, 2010a). The shackle operation in 

this research is vertex shackle. Vertex shackle operations is denoted by 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑣, 𝑡) it means 

that the graph is constructed from any graph G as many as t copies and point v as the linkage 

vertex. Shackle graphs have been widely used as the subject of discrete mathematics research, 

one of which is (Saifudin, 2020) research which examines the power domination number on 

shackle graph. However, research on game chromatic numbers on shackle graphs has not been 

found. Therefore, this study aims to explore game chromatic numbers in several classes of 

shackle graphs. 

This study examines and proves the game chromatic number of the graph class resulting 

from the shackle operation. The studied graphs are 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣𝑖 , 𝑡), graphs 𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣𝑖 , 𝑡), and 

graphs 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣𝑖 , 𝑡). The graph 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣𝑖 , 𝑡)is a complete graph 𝐾𝑛 which is copied as 

many as 𝑡 with the connecting vertex 𝑣𝑖 where   𝑖 = 1,2,3, … , 𝑛. While graph  𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣𝑖 , 𝑡) is 

circle graph with 𝑛 vertex, which is copied as many as 𝑡 with the connecting point 𝑣𝑖  where  𝑖 =

1,2,3, … , 𝑛. And graph  𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣𝑖 , 𝑡) is bipartite complete graph which is copied as many as 

𝑡 with the connecting point 𝑣𝑖 where 𝑖 = 1,2,3, … , 𝑛. 

Suppose  𝑘 ≥ 2 is integers. Define a shackle as a graph construction by connected non-

trivial graphs 𝐺1, 𝐺2, 𝐺3, … , 𝐺𝑘  therefore 𝐺𝑠  and 𝐺𝑡 don't have a common vertex for each 𝑠, 𝑡 ∈

[1, 𝑘] with  |𝑠 − 𝑡| ≥ 2 and for each 𝑖 ∈ [1, 𝑘 − 1]𝐺𝑖 and  𝐺𝑖+1  has exactly one common vertex 

called the linkage vertex, and 𝑘 − 1 the linkage vertex is different. Shackle graph  is donated by 

𝑆ℎ𝑎𝑐𝑘(𝐺1, 𝐺2, … , 𝐺𝑘) (Maryati, Salman, Baskoro, Ryan, & Miller, 2010b). Based on the above 

definition, here is the graph construction resulting from the shackle graph operation 𝐾 𝑛, 𝑆𝑛, 

dan 𝐾𝑛,𝑛. 
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Figure 1. Graph 𝒔𝒉𝒂𝒄𝒌(𝑲𝒏, 𝒗(𝒋,𝒊), 𝒕) 

Based on Figure 1, Without loss of generality, for example, we select point  𝒗(𝟏,𝒊), then 

Graph 𝒔𝒉𝒂𝒄𝒌(𝑲𝒏, 𝒗(𝒋,𝒊), 𝒕)   is a graph that has a set of vertices 𝑽 = {𝒗(𝒋,𝒌): 𝟏 ≤ 𝒋 ≤ 𝒕, 𝟏 ≤ 𝒌 ≤

𝒏, 𝒌 ≠ 𝒊} ∪ {𝒗(𝒋,𝒌): 𝟏 ≤ 𝒋 ≤ 𝒕, 𝒌 = 𝒊}  and set of edges 𝑬 = {𝒆(𝟏,𝒌,𝒍) = (𝒗(𝟏,𝒌)𝒗(𝟏,𝒍≠𝒌)): 𝟏 ≤ 𝒌 ≤

𝒏, 𝟏 ≤ 𝒍 ≤ 𝒏  } ∪ {𝒆(𝒋,𝒌,𝒍) = (𝒗(𝒋,𝒌)𝒗(𝒋,𝒍≠𝒌)): 𝟐 ≤ 𝒋 ≤ 𝒕, 𝟏 ≤ 𝒌, 𝒍 ≤ 𝒏 } ∪ {𝒆(𝒋+𝟏,𝒊,𝒍) =

(𝒗(𝒋,𝒊)𝒗(𝒋+𝟏,𝒍≠𝒊)): 𝟏 ≤ 𝒋 ≤ 𝒕 − 𝟏, 𝟐 ≤ 𝒍 ≤ 𝒏 } . Where |𝑽| = (𝒏 − 𝟏)𝒕 − 𝟏  and  |𝑬| = 𝒕𝑪𝟐
𝒏+𝟏 . In 

addition, we get ∆ (𝒔𝒉𝒂𝒄𝒌(𝑲𝒏, 𝒗(𝒋,𝒊), 𝒕)) = 𝟐(𝒏 − 𝟏)  and  𝜹 (𝒔𝒉𝒂𝒄𝒌(𝑲𝒏, 𝒗(𝒋,𝒊), 𝒕)) = 𝒏 − 𝟏 

(Firmansyah & Mujib, 2021). 

 

Figure 2. Graph 𝒔𝒉𝒂𝒄𝒌(𝑺𝒏, 𝒗(𝒋,𝒊), 𝒕) 

Figure 2 shows the construction of shack graph  𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡) . Graph 

𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡) has the set of vertices 𝑉 = {{𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖} ∪ {𝑣(𝑗,𝑘): 1 ≤

𝑗 ≤ 𝑡, 𝑘 = 𝑖}} and set of edges  𝐸 = {𝑒(𝑗,𝑘) = (𝑣(𝑗,𝑘)𝑣(𝑗,𝑘+1)): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛  } ∪ {𝑒(𝑗+1,𝑘) =

(𝑣(𝑗,𝑖)𝑣(𝑗+1,𝑘)): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 2, 𝑛  } . Obtained  |𝑉| = (𝑛 − 1)𝑡 − 1 , |𝐸| = 𝑡𝑛 , 

∆ (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 4, and 𝛿 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 2 (Firmansyah & Mujib, 2021). 
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Figure 3. Graph  𝒔𝒉𝒂𝒄𝒌(𝑲(𝒏,𝒏), 𝒗(𝒋,𝒊), 𝒕) 

 

The shack graph construction 𝑠ℎ𝑎𝑐𝑘(𝐾(𝑛,𝑛), 𝑣(𝑗,𝑖), 𝑡)  is shown in Figure 3. The shackle 

graph 𝑠ℎ𝑎𝑐𝑘(𝐾(𝑛,𝑛), 𝑣(𝑗,𝑖), 𝑡) has the set of vertices 𝑉 = {{𝑣(𝑙𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖} ∪

{𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖}} and the set of edges  𝐸 = {𝑒(𝑗,𝑘) = (𝑣(𝑙𝑗,𝑘)𝑣(𝑟𝑗,𝑖)) : 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘, 𝑖 ≤

𝑛  } ∪ {𝑒(𝑗,𝑘) = (𝑣(𝑙𝑗,𝑘)𝑣(𝑟𝑗+1,𝑖)) : 1 ≤ 𝑗 ≤ 𝑡 − 1,1 ≤ 𝑘, 𝑖 ≤ 𝑛  } .Obtained  |𝑉| = 2𝑛𝑡 , |𝐸| =

𝑡𝑛2 (𝑠ℎ𝑎𝑐𝑘 (𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 2𝑛 and 𝛿 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛 (Firmansyah & Mujib, 2021). 

 

 
B. METHODS 

 This research is qualitative research with the aim of proofing game chromatic number 

theorems. The class of graphs that is studied is the resulting graph of shackle operation on the 

complete 𝐾 𝑛 , graph, the 𝑆𝑛 , cycle graph, and the Complete Bipartite 𝐾𝑛,𝑛  graph. In terms of 

notation, research determines,  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) , 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)), 

and  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡)). The research stages are: 

1. Exploring the concept of shackle operations on graphs. 

2. Constructing the generality from the graph 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡),  𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡) 

and 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡). 

3. Exploring and simulating coloring game strategies on 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡) , 

𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡), and 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡)  

4. Making Conjecture of game chromatic numbers from graphs of   𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡) , 

𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡), and 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡). 

5. Proving the game chromatic number on the graph 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡), 𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡), 

and 𝑠ℎ𝑎𝑐𝑘(𝐾𝑛,𝑛, 𝑣(𝑗,𝑖), 𝑡). 
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C. RESULT AND DISCUSSION 

The Previous research that is related to the game chromatic number is important to be 

revealed here as a theoretical basis for determining game chromatic numbers from resulting 

graphs of shackle operations. Bartnicki, et al. (2008) have proved that the game of chromatic 

number for any graph is in the range between the chromatic numbers with 𝚫(𝑮) + 𝟏, in more 

detail is presented in the following theorem. 

Theorem 1 (Bartnicki et al., 2008) If  𝐺  is the graph with the largest degree ∆(𝐺), so 𝜒(𝐺) ≤

𝜒𝑔(𝐺) ≤ Δ(𝐺) + 1 

Proof: 

Based on the definition of 𝜒(𝐺), if the provided color is less than 𝜒(𝐺), then the graph G cannot 

be colored with k points. Thus, the game chromatic number of graph G cannot be less than 𝜒(𝐺) 

so that 𝜒𝑔(𝐺) ≥ 𝜒(𝐺) is obtained. 

Then, if the first player can color in such a way that for each point 𝑣 ∈ 𝑉(𝐺) and each neighbor 

of v has a different color, then the first player will always win. This can be done if the color 

Δ(𝐺) + 1 is available. So we get  𝜒𝑔(𝐺) ≤ Δ(𝐺) + 1. 

Thus, 𝜒(𝐺) ≤ 𝜒𝑔(𝐺) ≤ Δ(𝐺) + 1∎ 

This theorem gives the interval limitation of the game chromatic number of the graph G, 

where the lower limit of the game chromatic number is the chromatic number of the graph G 

with the upper limit being the largest degree plus one. For that, to determine the chromatic 

number of the game from graph G, first determine the chromatic number of the graph G. 

Furthermore, this theorem becomes the basis for researchers to determine the chromatic 

number from the results of the shackle operation which is proven in the following theorem. 

 

1. Game Chromatics Number of 𝒔𝒉𝒂𝒄𝒌(𝑲𝒏, 𝒗(𝒋,𝒊), 𝒕) 

 

Theorem 2.  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛 

Proof: 

Based on Figure 1, the game chromatic number will be determined from the 

graph  𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡) . It is known that 𝜒 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛 

and  ∆ (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 2(𝑛 − 1) , based on Theorem 1, then  𝑛 ≤

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 2(𝑛 − 1) . Suppose given the color set  𝐶 = {1,2,3, … , 𝑛} .  

Since  𝑑(𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖) = 𝑛 − 1 , then with n available colors vertex 

𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖 will always be colorable. For this reason, the main strategy is 

to determine the vertex 𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖 is colored first. Since 𝑑(𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖) =

2(𝑛 − 1). Therefore, it will be shown that the first player (A) always has a chance to color the 

vertex 𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖 with the color set C. 
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Without loss of generality, suppose A colors vertex 𝑣(1,𝑖) with color 1. Then vertex 𝑣(2,𝑖) cannot 

be colored with color 1. Because 𝑣(2,𝑖)   is adjacent to 𝑣(1,𝑖) . However, 𝑣(1,𝑖)  is independent 

of 𝑣(𝑗,𝑘): 3 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖. For this reason, A always has a chance to color the vertex 𝑣(𝑗,𝑘): 3 ≤

𝑗 ≤ 𝑡, 𝑘 = 𝑖  with the same color as 𝑣(1,𝑖). There are two possible first moves of the second player 

(B): 

 

Case 1. If  𝐵 colors vertex  𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖 

Without loss of generality, suppose vertex  𝑣1,1 with color 2, then  𝐴 will color vertex  𝑣(𝑗,𝑖), 3 ≤

𝑗 ≤ 𝑡. Player  𝐴 always has chance to color vertex 𝑣(𝑗,𝑖), 3 ≤ 𝑗 ≤ 𝑡  before the vertex  𝑣(𝑗,𝑘): 1 ≤

𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖. As a result, all vertices will always be able to be colored with 𝑛 color. 

Thus  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 𝑛. 

 

Case 2. If  𝐵 colors vertex 𝑣(𝑗,𝑖), 2 ≤ 𝑗 ≤ 𝑡. 

Without loss of generality, suppose vertex 𝑣(2,𝑖) with color 2, it will ease 𝐴 to ensure to color 

vertex 𝑣(𝑗,𝑖), 2 ≤ 𝑗 ≤ 𝑡   before the other vertices. So that, the next step  𝐴  will keep coloring 

vertex  𝑣(𝑗,𝑖), 3 ≤ 𝑗 ≤ 𝑡. Player  𝐴 always has chance to color vertex 𝑣(𝑗,𝑖), 3 ≤ 𝑗 ≤ 𝑡 before the 

vertices  𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖 are colored all. As a result, all vertices will always be 

able to be colored with  𝑛 color. Thus  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 𝑛. 

Based on the both case and theorem 1, then 𝑛 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 𝑛. 

Thus, 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛∎ 

 
2. Game Chromatic Number of 𝒔𝒉𝒂𝒄𝒌(𝑺𝒏, 𝒗(𝒋,𝒊), 𝒕) 

 

Theorem 3. 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3 

Proof: 

Based on Figure 2, the game chromatic numbers will be determined from 

graph  𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡) . It is known that 𝜒 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3 

and ∆ (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 4, based on theorem 1, thus 3 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 4. 

Will be shown that 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≥ 3. Suppose color set is given {1,2}. Without loss of 

generality, suppose  𝐴 colors vertex  𝑣(𝑗,𝑖)  with color 1, then 𝐵 will color vertex  𝑣(𝑗,𝑖+2)  with 

color 2. As a result, vertex  𝑣(𝑗,𝑖+1) can be colored. Therefore  3 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 4. 

Will be shown 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3. 

Suppose the set of colors is given 𝐶 = {1,2,3}. Since 𝑑(𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖) = 2, 

thus with 3 available colors vertices 𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖 can be always be colored. 

So that, the main strategy is making sure the vertices 𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖 are colored first. 
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Since 𝑑(𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖) = 4. Therefore, will be shown that first player (𝐴) always has 

chance to color vertex 𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖 with the color set 𝐶.  

Without loss of generality, suppose  𝐴 colors vertex  𝑣(1,𝑖) with color 1. Since  𝑣(1,𝑖) is separated 

from each other 𝑣(𝑗,𝑘): 2 ≤ 𝑗 ≤ 𝑡, 𝑘 = 𝑖. For that, 𝐴 always has chance to color vertex  𝑣(𝑗,𝑘): 2 ≤

𝑗 ≤ 𝑡, 𝑘 = 𝑖 with the same color as 𝑣(1,𝑖). There are two possible steps of the second player (𝐵): 

 

Case 1. If 𝐵 colors vertex  𝑣(𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑖 

Since 𝑣(1,𝑖)  is colored with color 1, the vertex that is possibly colored by  𝐵  is vertex 

 𝑣(𝑗,𝑖−1), 𝑣(𝑗,𝑖+1), 𝑣(𝑗+1,2) 𝑎𝑡𝑎𝑢 𝑣(𝐽+1,𝑛), 2 ≤ 𝑗 ≤ 𝑡 . Without loss of generality, suppose vertex 

𝑣(2,𝑖−1)  with color 2, then 𝐴  will color vertex  𝑣(2,𝑖)  with color 1. Thus, player 𝐴  always has 

chance to color vertex 𝑣(𝑗,𝑖), 1 ≤ 𝑗 ≤ 𝑡  before its neighbor’s vertex is colored. 

Thus 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 3. 

 

Case 2. If  𝐵 colors vertex  𝑣(𝑗,𝑖), 2 ≤ 𝑗 ≤ 𝑡. 

Without loss of generality, suppose vertex 𝑣(2,𝑖) with color 2, it will ease 𝐴 to ensure coloring 

vertex 𝑣(𝑗,𝑖), 2 ≤ 𝑗 ≤ 𝑡   before the other vertices. So that, the next step  𝐴  will keep coloring 

vertex 𝑣(𝑗,𝑖), 3 ≤ 𝑗 ≤ 𝑡. Regardless of the next move of player 𝐵. Player  𝐴 always has chance to 

color vertex 𝑣(𝑗,𝑖), 3 ≤ 𝑗 ≤ 𝑡 before the neighboring vertex is colored. As a result, all the vertices 

can always be colored with 3 colors. Thus, 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 3. 

Based on the both cases, thus3 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) ≤ 3. 

Thus,  𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3∎ 

 

3. Game Chromatics Number of 𝒔𝒉𝒂𝒄𝒌 (𝑲(𝒏,𝒏), 𝒗(𝒓𝒋,𝟏), 𝒕) 

 

Theorem 4. 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 3 

Proof: 

The game of chromatics numbers will be determined by the graph 𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡) 

Noted that 𝜒 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 2  and  ∆ (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 2𝑛 , based on 

theorem 1, thus 2 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≤ 2𝑛. 

It will be shown that 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≥ 3. Suppose the set of colors is given {1,2}. 

Without loss of generality, suppose  𝐴 colors vertex  𝑣(𝑟𝑗,𝑖) with color 1, then  𝐵 will color vertex 

𝑣(𝑙𝑗,𝑖+2)  with color 2. As the result, vertex 𝑣(𝑟𝑗,𝑖+1)  cannot be colored. Therefore, 3 ≤

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≤ 2𝑛. Will be shown 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 3. 
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Suppose it is given the color set  𝐶 = {1,2,3} . Since 𝑑 (𝑣(𝑙𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 1 ≤ 𝑘 ≤ 𝑛, ) = 𝑛 and 

(𝑣(𝑟𝑗,𝑘): 1 ≤ 𝑗 ≤ 𝑡, 2 ≤ 𝑘 ≤ 𝑛) = 𝑛  are separated each other, thus, with the three colors 

available, those vertices are always able to be colored. For that, the main strategy is making 

sure that vertex  𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡  is colored first. Since𝑑 (𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡) = 2𝑛 , thus, first 

player  (𝐴) always has chance to color point  𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡 with the color set 𝐶.  

Without loss of generality, suppose 𝐴 colors vertex  𝑣(𝑟1,1) with color 1. Since 𝑣(𝑟1,1) is separated 

each other to 𝑣(𝑟𝑗,1): 3 ≤ 𝑗 ≤ 𝑡 thus, 𝐴 always have chance to color vertex  𝑣(𝑟𝑗,1): 3 ≤ 𝑗 ≤ 𝑡 with 

the same color as 𝑣(𝑟1,1). There are two possible first steps of second player (𝐵): 

 

Case 1. If  𝐵 color other than the vertex 𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡  

Since  𝑣(𝑟1,1) is colored with color 1, the vertex that is possibly colored by  𝐵 is vertex  𝑣(𝑙2,𝑘), 2 ≤

𝑘 ≤ 𝑛 or 𝑣(𝑟3,𝑘), 2 ≤ 𝑘 ≤ 𝑛 . Without loss of generality, suppose point  𝑣(𝑙2,𝑘) with color 2, thus 𝐴 

will color vertex 𝑣(𝑟2,1) with color 3. Therefore, Player 𝐴 has chance to color vertex  𝑣(𝑟𝑗,1), 1 ≤

𝑗 ≤ 𝑡 before all the neighbors are colored. Thus, 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≤ 3. 

 

Case 2. If  𝐵 color vertex 𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡. 

Without loss of generality, suppose vertex  𝑣(𝑟2,1) with color 2, it will ease 𝐴 to ensure coloring 

vertex 𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡  before the other vertices. For that, the next step of  𝐴 will keep coloring 

vertex 𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡. Regardless of the next step of player𝐵. Player  𝐴 always has chance to 

color vertex 𝑣(𝑟𝑗,1): 1 ≤ 𝑗 ≤ 𝑡 before the neighboring vertex is colored. As a result, all vertices 

can always be colored with 3 colors. Thus 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≤ 3. 

Based on the both cases, thus 3 ≤ 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) ≤ 3. 

Thus, 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 3∎ 

Based on the research results, it is known that 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛,  

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3.  , and 𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 3. This shows that the game 

chromatic number of the shackle graph depends on the chromatic number of the constructing 

subgraph. In addition, the vertex linkage which has the maximum degree must be colored first. 

Several classes of graphs resulting from operations between graphs have been shown to have 

the game chromatic number. For example, a cartesian product graph (Bartnicki et al., 2008), a 

tensor product graph (Mujib & Assiyatun, 2011), an amalgamation graph (Maryati et al., 2010b), 

and even a hypergraph (Bohman et al., 2019). Therefore, this study contributes to the class of 

graphs that have proven the chromatic number of the game. For further research, it is expected 

to prove the generalization of game chromatic numbers from shackle graphs.  
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D. CONCLUSION AND SUGGESTIONS 
Based on the research, it is obtained that game chromatics number of shackle graph 

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝐾𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 𝑛.  Game chromatics number of shackle graph 

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘(𝑆𝑛, 𝑣(𝑗,𝑖), 𝑡)) = 3.  Game chromatics number of shackle graph 

𝜒𝑔 (𝑠ℎ𝑎𝑐𝑘 (𝐾(𝑛,𝑛), 𝑣(𝑟𝑗,1), 𝑡)) = 3.  The strategy that determines the chromatics number of game 

changes from the constructing graph  𝐾𝑛, 𝑆𝑛, and 𝐾𝑛,𝑛.  The graph character is almost the same. 

Therefore, the strategy is generally the same. That is ensuring the point with the highest degree 

is colored. Suggestions for researchers, who are interested in studying game chromatic 

numbers, to generalize game chromatic numbers from shackle graphs. 
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