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ABSTRACT

Shocks are physical phenomenon that occur quite often around us. In this thesis we

examine the occurrence of shocks in finite amplitude acoustic waves from a numerical

perspective. These waves, or jump discontinuities, yield ill-behaved solutions when

solved numerically. This study takes on the challenge of finding both single- and

multi-valued solutions.

The previously unsolved problem in this study is the representation of the Equation

of Motion (EoM) in the form of the Darcy-Jordan model (DJM) and expressed as a

dimensionless IVP Cauchy problem. Prior attempts to solve have resulted only in

implicit solutions or explicit solutions with certain initial conditions.

The approach taken in this study is the development of a hybrid algorithm

combining the reliability of the Bisection Method and the efficiency of the Secant

method. The developed algorithm is coded in Matlab.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation chosen in this thesis represents fairly standard mathematical and com-
putational usage. In many cases these fields tend to use different preferred notation
to indicate the same concept, and these have been reconciled to the extent possible,
given the interdisciplinary nature of the material. Many specific variables have been
chosen to match their usage in the primary source used for this text. This source is
listed [1] in the bibliography. The blackboard fonts are used to denote standard sets
of numbers: R for the field of real numbers, C for the complex field, Z for the integers,
and Q for the rationals.
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Chapter 1

INTRODUCTION

1.1 Introduction

Mathematics is the foundation of human understanding of the physical world. This
claim is clear once one observes some physical cause-and-effect relationship. A physical
phenomenon occurs, and theoretical physics attempts to describe it analytically. It
is not until the numerical mathematician formalizes an algorithm to produce a full
solution that we can totally understand this phenomenon. That is exactly what this
thesis does.

By analyzing physically applicable solutions to the one-dimensional equation of
motion deemed the “damped Riemann equation”, we produce the first ever numerical
solution to a problem with gradient catastrophe. Prior to this thesis, solutions were
limited in that they were either implicit or explicit only with strict initial conditions.
Therefore, a need exists for a new algorithm to solve the observation of wave overturning,
or shocks. This thesis will make use of one of these explicit solutions, with Lorentzian
initial conditions, to test the created algorithm. The challenge presented is due to
instances of multi-valued solutions. The developed algorithm will successfully find
explicit solutions for both multi- and single-valued positions.

In chapter one and chapter two, this thesis will give proper background knowledge
to understand the relevant results of the primary source, allowing the reader to
understand the importance of this work. That includes discussing the equation of
motion, its representation as a Cauchy problem, and information from the analytical
solutions. Then, in chapter three, we will discuss the formation of a new algorithm,
which is capable of finding an accurate solution. In the final two chapters, we will
look at results of the initial-value problem in question using the new algorithm and
discuss future implications.

1.2 The Equation of Motion

Equations of motion (EoMs) are equations that express physical behaviors in terms of
motion as a function of time. Consider tossing a ball and watching it fall back down.
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This can be studied as one function of motion or two separate functions, where one
describes the upward motion and the other describes the downward motion. Equations
of motion are applied in instances with uniform acceleration or uniform retardation
(decreasing) to estimate the velocity at some point in time other than zero. This
makes it possible to find the velocity, acceleration, displacement, and more.

In this study we examine the EoM in one direction for finite-amplitude acoustic
waves in relaxing and dual-phased materials. This is represented by the partial
differential equation

ut + (v0 + σu)ux + λu = 0, (1.1)

where v0, σ, and λ are constants such that v0 6= 0, σ > 0, and λ > 0. Appearing as
early as 1962, this equation has been seen in several models for wave propagation. For
example, it is used in modeling waves in fluids with a single internal degree of freedom
as well as propagation in a gas that admits a single relaxation time, and wherein the
internal energy is characterized by two temperatures [?, 2]. Finally, and most relevant
to this thesis, it appears in the simulations for acoustic wave propagation in dusty
gases where the thermal and momentum relaxation times are equivalent [1].

1.3 Darcy-Jordan Model

For the sake of this analysis, our interest in this equation is its application to shocks
in solitary waves. Before that connection can be made, we must consider (1.1) in
terms of the “damped Riemann equation”, denoted this since the special case, λ = 0,
has long been known as the Riemann equation. The Darcy-Jordan Model (DJM) with
finite amplitude is given by the weakly linear PDE with dimensionless variables,

∆2φ− φtt − δφt = εδt
[
|∇φ|2 + (β − 1)(φt)

2
]
. (1.2)

Here, φ = φ(x, y, z, t) is scalar velocity potential. The multiplier for nonlinearity is

β =

{
(γ + 1)/2 gases
1 +B/(2 + A) liquids

,

where γ ∈
(
1, 5

3

]
is the ratio of specific heats presumed to conduct as a perfect gas, B

A

is the parameter of nonlinearity, ε ∝ 1
C0

is the mach number, C0 > 0 is the speed of
sound in this undisturbed fluid, and δ ∝ Xv/K is the dimensionless Darcy coefficient,
where t X ∈ (0, 1) and K > 0 represent, respectively, the porosity and permeability
of the solid, and v > 0 is the kinematic viscosity of the fluid. This is derived from
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the assumptions ε � 1 and δ ∼ O(ε), neglecting the nonlinear terms of O(ε2) [1].
Considering only the particular one-dimensional expression of (1.2) , we have the form

φxx − φtt − δφt = ε∂t
[
(φx)

2 + (β − 1)(φt)
2
]
, (1.3)

or in other terms,

(∂x − ∂t)(∂x + ∂t)φ− δφt = ε∂t
[
(φx)

2 + (β − 1)(φt)
2
]
. (1.4)

Paying attention only to right-running waves and one-dimensional propagation, we
have the damped-Riemann equation with Darcy coefficients,

ut + (1 + εβu)ux +
1

2
δu = 0. (1.5)

Now that we have iterated the origin of this equation, the next chapter will dive
deeper into different forms of this equation.
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Chapter 2

BACKGROUND

2.1 Cauchy Problem Representation

We must examine the Cauchy problem for (1.5) for different initial conditions. Formu-
lated by Jordan, the dimensionless initial-value problem (IVP), known as the Cauchy
problem, is

ut + (1 + εβu)ux +
1

2
δu = 0, x ∈ R, t > 0 (2.1)

u(x, 0) = u0(x), x ∈ R. (2.2)

We impose u0(x) as a bounded pulse, continuous and positive on the entire real
number line. We require that A0 =

∫∞
−∞ u0(x)dx. Here, u0(x) → 0, as x → ±∞ is

appropriately rapid so that A0 > 0, meaning that the area beneath is finite.
Taking the obvious approach for this kind of Cauchy problem and applying the

method of characteristics to (2.1), (2.2), the exact result is given as the equation of
focus for the remainder of this analysis,

u(x, t) = u0(ξ)exp(−δt/2) (2.3)

x− t− ξ = (α∗)−1u0(ξ)g(t) (2.4)

Note that ξ = ξ(x, t) is the wave variable,

g(t) = 1− exp(−δt/2),

and α∗ = δ
2∈β . The critical amplitude for acceleration waves under DJM is denoted by

α∗ ∈ (0, 1).

2.2 Gradient Catastrophe

The hyperbolic and nonlinear nature of (2.1), ( 2.2) produce an initial-value problem
with complicated solutions. That is, nevermind that our u0(x) is of class C0(R), or
smoother, the solution to (2.1), (2.2) “blows up” at time t∗. The function used to
describe shock is denoted

ux(x, t) =
u′0(ξ)exp(−δt/2)

1 + u′0(ξ)g(t)/α∗
. (2.5)
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[1] This is the key complexity to this study, known as “gradient catastrophe” or
finite-time wave overturning at time t = t∗. If t∗ is positive and real, we can physically
interpret this catastrophe as a shock wave with formation beginning at time t∗. This
is believed, and we will show, to be a multi-valued solution. Given the root equation,
refer to (2.4), it appears that catastrophe is a bifurcation such that a single root
becomes multiple roots.

Finally, before our numerical analysis begins, let us consider some physically
relevant examples of shock waves. These propagating waves often occur, based on the
notion that matter is compressible, as significant disruptions in some compressible
channel. Examples of such a common occasion often go unnoticed in a human’s daily
surroundings. For a natural example, they stem from such phenomena as volcanic
eruptions, earthquakes, or lightning. Synthetically, they derive from sonic booms or
chemical explosions. One very common example of propagating shock waves occurs in
traffic when cars together known as “ghost jams” and “traffic shocks” [5].

2.3 Analyzing Initial and Boundary Conditions in Prior Attempts

Attempts have been made to find the multi-valued solution of equations (2.1), (2.2),
but prior to the work of Jordan there existed only one physically relevant solution.
This solution was only represented in implicit form.

2.3.1 Sinusoidal IC

Prior attempts to solve this problem include the insertion of sinusoidal (having the
form of a sine curve) initial conditions. That is,

u0(ξ) = sin (kξ), (2.6)

where k > 0 is a dimensionless wavenumber (the spatial frequency of a wave). Clearly,
in this case, |ux| =∞ when k| cos (kξ)|g(t∗) = α∗. Since the maximum of | cos (kξ)| is
equal to one, then here

t∗ =

{
−2δ−1 ln (1− α∗/k), α∗ < k,

∞, α∗ = k

Note that t∗ ∈ C for α∗ > k therefore time gradient catastrophe exists only for a∗ < k,
leaving out much of the physical complexity surrounding this problem. This initial
condition resulted in only one physically applicable solution of implicit form.
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2.3.2 Lorentzian IC

Jordan produced the first explicit solution to equation (2.1), (2.2) using initial con-
ditions, an algebraic function, called Lorentzian conditions. This initial condition is
particularly important as, later in this thesis, it will be used to test the result of the
developed algorithm.

First, by recasting the damped Riemann equations as a kinematic system, the
resulting constant integral, with respect to time, is equivalent to the classic Riemann
equation: ∫ ∞

−∞
u0(ξ(x, t)) dx = A0, t > 0

where A0 is equal to the constant of integration and ξ = ξ(x, t) is the wave variable,
as mentioned previously.

The Lorentzian condition begins with letting

u0(ξ) =
κ2

κ2 + ξ2
, (2.7)

where A0 = κπ. Substituting this into the system (2.1), (2.2), gives

u(x, t) = κ2exp(−δt/2)(κ2 + ξ2) (2.8)

ξ3 − ηξ2 + κ2ξ + κ2
[
(α∗)−1g(t)− η

]
= 0, (2.9)

with η = x− t. Relevant near the end of this chapter,

∆(η, t) = Q3(η) +R2(η, t),

with
Q(η) =

3κ2 − η2

9
,

and
R(η, t) =

2η3 − 9κ2η − 27κ2 [(α∗)−1− g(t)− η]

54
,

and finally letting

κ∗ =
3
√

3

8α∗
.

Using the same logic explained for the sinusoidal condition,

t∗ =

{
−2δ−1 ln (1− κ/κ∗), κ < κ∗,
∞, κ = κ∗,

with t∗ ∈ C for κ > κ∗, where κ∗ is a critical value.
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This results in a u versus x profile with a slope bounded for every t > 0 (0 < t < t∗)
if κ ≥ κ∗ (κ < κ∗) showing that the solution profile contains exactly one stationary
point, a maximum, with a critical point of ξ = ξ̄ where ξ̄ = 0. The statement that
κ ≥ κ∗ shows that finite-time gradient catastrophe is avoided for the Lorentzian
initial condition and that

ξ!(x, t) = S+(x− t, t) + S−(x− t, t) +
1

3
(x− t),

where
S±(η, t) =

3

√
R(η, t)±

√
∆(η, t).

Using similar logic, with t ∈ (0, t∗), avoidance applies to the case κ < κ∗.
The interesting analysis occurs for t = t∗, which as stated is the instant of gradient

catastrophe where

η = ηgc,

ηgc = xgc − t∗ = (9/8)(κ/κ∗)/α∗ = κ
√

3

is the η-coordinate of the point associated with t = t∗, when gradient catastrophe
occurs. It is shown that

ξ!(xgc, t
∗) =

1

3
ηgc =

3

8
(κ/κ∗)/α∗ = κ/

√
3

is a bifurcation where a single root becomes a root of multiplicity three. Further, it is
shown that when t > t∗ the quartic equation ∆(η, t) = 0 admits exactly two real roots
denoted r1,2 = r1,2(t). We can conclude that there exist three real roots, with only
two of them being equal, to the equation with Lorentzian conditions. Futhermore, the
theory of cubic equations suggests that this equation has three unequal roots, which
we will denote ξ1,2,3(x, t) when r1 < η < r2. Finally, when ∆(η, t) > 0 when t > t∗,
this equation produces only one real root (η!(x, t)). This shows that a shock forms
after time t = t∗.

While Jordan did find an exact solution for (2.1), (2.2), the analytics to explain
this solution are quite complex and not relevant to the remainder of this study. With
some mathematical finesse and interpolation, Jordan was able to create a Matlab

graph with (2.8) showcasing multiple solutions.

2.3.3 Symmetric-Exponential Initial Condition

One other explicit solution exists using the function

u0(ξ) = exp(−κ|ξ|), (2.10)

7



Figure 2.1 : Graph for Lorentzian conditions with t = 2t∗, β = 1.2, and ε = δ = 0.1
showing multi-valuedness approximately 9.6 < x < 9.8 with shock around 9.7.

sometimes known as Green’s function of a Hookean oscillator or as an "even decaying
pulse" (Strang). Here, it was found to admit an acceleration wave. The exact
multi-valued solution with this initial condition was found to be:

u(x, t) = exp(−δt/2)exp [κξM(x, t)] , t > 0 (2.11)

where ξM represents explicit expressions for ξ determined using the "Lambert W-
function".

8



Chapter 3

METHODS

3.1 Intervals of Interest

We were able to determine our interval of interest, or interval [a, b] that we need to use
to solve (2.4) using information provided through analytics. The interval of interest
occurs along with a discontinuity in the graphing of ξ and x. This gives an idea
of which intervals to examine. The case below shows when the solution is actually
multi-valued, which can be seen from the fact that the function, F , in the top plot has
three roots. On the left is the graph of al roots, ξ on F where F is equation (2.4) with
Lorentzian conditions as seen in equation (2.8). On the right is the graph ξ versus x.

Figure 3.1 : These images were created via MATLAB and depend on (2.8).

In the above images we can see that multi-valuedness appears, in the left image,
around −0.25 < ξ < 0.75. Similarly, in the right of 3.1 there is a discontinuity
roughly when −0.25 < ξ < 0.5. This suggests that one method to determine an
interesting interval would be to use a MATLAB function which detects discontinuities.
Additionally, in the plot of ξ and x, the roots appear to "spread out" when the solution
is single-valued. This appears to be equivalent to the discontinuity observation, and it
is the method used in this computation to determine our interval.

9



3.2 Algorithm

3.2.1 Algorithm Concept

To find a general solution for (2.1), (2.2), we developed an algorithm combining the
efficiency of the Secant method and the accuracy and reliability of bisection. Our goal
was to find all possible solutions for f(x) = 0 on some interval [a, b] for (2.8), (2.9).
Before getting into MATLAB, we should consider the theory behind this algorithm.
For the sake of understanding this algorithm, one must understand our subintervals.
That is, how they are determined and how they change throughout iterations.

Taking the assumption that there exists reasonable spacing between each of the
roots, we divide [a, b] into n equal subintervals. x-values are determined from a, b, n

serving as points on the initial interval with a goal to cover all space between a and b.
We then examine each x for a root, ξ for a fixed time, t. That is, we solve F (ξ) = 0

for a fixed x and t. Clearly, a change in sign from one xi to the next would indicate a
root, but we do not have the luxury of assuming sign changes from the very beginning.
We ensure that each x−value in the grid is examined to find all ξ-values that satisfy
equation (2.4). This allows a numerical solution for multi-valued roots. Once a sign
change from ξi to ξi+1 has been spotted we can proceed. In this case i indicates the
index variable, i = 1, 2, 3, . . . .

For each x-value, consider some subinterval with a left endpoint ξL and a right
endpoint ξR. We begin by using the secant method with our endpoints as initial
guesses. An iteration of bisection is performed if the secant method fails or the result
is outside of our interval. That is, we find the midpoint, ξM = (ξR + ξL)/2. We
know that f(ξL)f(ξR) < 0; therefore, either f(ξL)f(ξM) < 0 or f(ξM)f(ξR) < 0. If
f(ξL)f(ξM ) < 0, we move on to the interval (ξL, ξR). Otherwise, f(ξM )f(ξR) < 0 and
we use (ξM , ξR). Once this is complete we use the secant method again. The secant
method, which uses a finite difference to approximate the derivative of a function by
a secant line through two points, was chosen as the efficient counterpart to bisection’s
reliability. We use the current endpoints as the initial guesses for this iteration. The
iterations of secant method continue, as long as each iterate is in our current interval,
until a root is detected. Again, if the secant method fails or produces a result outside of
our interval, bisection is used as before to narrow down the location further. Iterations
occur between the secant method and bisection until a root is located.

3.2.2 Algorithm Development

Matlab algorithm development consists of the following parts: define grid points as

10



a vector of x-values, create of loops to define the end points of each subinterval of
x and delegate to the root-finding function, find the root(s) using bisection and the
secant method, and finally store them to vector given as the final output. To do this,
four functions were created. They will be discussed in chronological order of creation,
not to be confused with order of implementation.

First was a more basic function to perform the secant method. This is the last
function to be called, so at this point the subinterval of interest is already determined.
This function intakes values for r, q, f where r = ξi and q = ξi+1 for the most recent
ξ-values. If the result of the secant method is successful, the discovered root (ξ) is
stored and sent to rootfinder. However, if the secant method fails to converge
within the interval, a flag is sent to the function rootfinder. This separates this
function from a typical secant implementation.

The written code rootfinder takes care of dictating when to perform bisection
and when to perform secant method. As stated this performs the secant method for
the correct conditions as stated above. This takes each ξ value found in secant and
stores it into an array of ξ-values that is given in the final output. An index i is use
to keep up with which x-value we are dealing with.

The solvepde function carries perhaps the most difficult portion of the algorithm,
keeping up with the changes in intervals. It holds an array of all x-values and an
array of all ξ-values, and it ensures that each interval is examined. Solvepde calls
rootfinder once the intervals have been updated.

Finally, the values was created to hold the parameters of the PDE we wish to
solve. This includes initial values, the initial interval, the number of subintervals, and
the number of iterations in the final plot.

11



Chapter 4

Results

4.1 Testing

As stated, this algorithm was tested using Lorentzian conditions. That is, taking

u0(ξ) =
κ2

κ2 + ξ2
(4.1)

with the following parameters:

• The interval [a = 8.5, b = 10.5]

• δ = ε = 0.1

• β = 1.2

• α∗ = δ
2εβ

• κ∗ = 3
√
3

8α∗

• κ = 0.2κ∗.

Adjusting the number and size of subintervals so that they incorporate all space in
the interval of interest, the following input variables produced the best results:

• N = 100

• dt = 0.01

• T = 10

• n = 200.

Our results were successful in that multi-valuedness was shown true and roots were
detected where expected.

4.2 Solutions

The images below exemplify the behavior of the discovered solution for single and
multi-valuedness.

12



Figure 4.1 : At time t = 1.4, the code successfully find single-valued roots for each
point prior to shock

Figure 4.2 : We begin to notice the spread in single-valued roots near t = 5.4

13



Figure 4.3 : The spread space between roots keeps increasing, here we see we are
approaching multi-valuedness at time t = 7.4

Figure 4.4 : At the time t = 7.84, multi-valuedness is apparent

14



Chapter 5

Conclusion

This problem is one step closer to a general solution. We created a new algorithm
combining the accuracy of the Bisection method with the efficiency of the Secant
method. We chose careful coded instructions to ensure no gaps existed between
subintervals. Our results, after a couple of easy parameter adjustments, were as
expected and found all physically relevant roots. As mentioned, problems surrounding
shocks have many physical applications. More specifically, shock analysis in acoustic
traveling waves in fluids in porous materials, has applications in the fields of applied
mathematics, fluid dynamics, mechanics, and acoustics.

While multi-valuedness was successfully found for this problem with Lorentzian
conditions, the next step is to test the algorithm with other initial conditions, beginning
with the aforementioned Symmetric-Exponential conditions. This step is in progress
now. Logical steps from here include testing a variety of parameters in order to
optimize efficiency, and time was the primary limitation in this study. We worked
under the assumption that each interval has at most one root, and it would be
particularly interesting to explore that idea further.

15



Appendix A

MATLAB FUNCTIONS

A.1 MATLAB Functions

Code for Secant function:

function[x0,flag] = secant(r,q,f)

r1=r;

q1=q;

flag=0;

while abs(f(q)) > 0.000005

x0=(r*f(q)-q*f(r))/(f(q)-f(r));

if (x0 < r1) || (x0 > q1)

flag=1;

return

end

r=q;

q=x0;

end

x0=q;
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Code for rootfinder function:

function [xis] = rootfinder(a,b,f,n)

x=linspace(a,b,n+1);

y= 0*x;

xis=[];

for i=1:n

y(i)=f(x(i));

end

for i=1:n

if y(i)*y(i+1)<0

r=x(i);

q=x(i+1);

[xi,flag] = secant(r,q,f);

while flag

m=(r+q)/2;

if f(m)*f(r)<0

q=m;

else

r=m;

end

[xi,flag] = secant(r,q,f);

end

xis=[xis,xi];

end

end
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Code for solvepde:

function solvepde(a,b,u0,N,dt,T)

delta=0.1;

epsilon=0.1;

g=@(t)(1-exp(-delta*t/2));

beta=1.2;

alphas=delta/(2*epsilon*beta);

dx=(b-a)/N;

x=a:dx:b;

El=zeros(size(x));

Er=zeros(size(x));

for j=1:length(x)

if j==1

El(j)=x(1)-dx;

else

El(j)=x(j)-dx;

end

if j==length(x)

Er(j)=x(end)+dx;

else

Er(j)=x(j)+dx;

end

end

for n=1:ceil(T/dt)

t=n*dt;

for j=1:length(x)

F=@(xi)(x(j)-t-xi-((alphas)^(-1)*u0(xi)*g(t)));

ni=(Er(j)-El(j))/dx*100;

Es = rootfinder(El(j),Er(j),F,ni);

while isempty(Es)

m=(El(j)+Er(j))/2;

r=(Er(j)-El(j))/2;
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El(j)=m-2*r;

Er(j)=m+2*r;

ni=2*ni;

Es = rootfinder(El(j),Er(j),F,ni);

end

if length(Es)>1

disp(’multi-valued!’)

end

for k=1:length(Es)

u=u0(Es(k))*exp(-delta*t/2);

plot(x(j),u,’o’)

hold on

end

El(j)=min(Es)-dx;

Er(j)=max(Es)+dx;

end

title([’t=’ num2str(t)])

pause(0.01)

hold off

for j=1:length(x)

Elnew(j)=min(El(max(1,j-10):min(length(x),j+10)));

Ernew(j)=max(Er(max(1,j-10):min(length(x),j+10)));

end

El=Elnew;

Er=Ernew;

end
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Values:

a=8.5;

b=10.5;

delta=0.1;

epsilon=0.1;

beta=1.2;

alphas=delta/(2*epsilon*beta);

kappas=(3*sqrt(3))/(8*alphas);

k=0.2*kappas;

u0=@(Es)(k^2./(k^2+Es.^2));

N=100;

dt=0.01;

T=7.84;

n=200;

x=linspace(a,b,n+1);

plot(x,u0(x),’o’)

pause

solvepde(a,b,u0,N,dt,T)
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