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Abstract: Developing K-12 students’ computational thinking (CT) skills is essential. Building on 
the existing literature that has emphasized programming skill development, this study expands the 
focus to examine students’ use of underlying CT cognitive skills during collaborative problem-
solving processes. A case study approach was employed to examine video data of 5th graders 
engaging in an integrated-STEM robotics curriculum. The findings reveal that students applied 
algorithmic thinking most frequently and prediction the least. They recorded most debugging 
behaviors initially in the problem-solving process, but after accumulating more experiences 
their uses of other CT skills, including algorithmic thinking, pattern recognition, and prediction, 
increased. Implications for developing young learners’ CT skills to solve real-world problems are 
discussed..
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Introduction

The  STEM ( sc i ence ,  t e chno logy, 
engineering, and mathematics) workforce 
is central to a country’s national economy 
and global competitiveness. Students with 
computational thinking (CT) ability are more 
likely to become STEM literate, prepared 
for a future career in STEM fields (Weintrop 
et al., 2016). The need to train students with 
computational thinking (CT) is on the rise. 
CT is a thinking process that enables an 
individual to identify and solve a real-world 
problem by leveraging the synergy between 
humans and machines in order to automate the 
process to achieve an efficient and effective 
solution (Wing, 2011). Many educators 
interpret CT as simply programming skills and 
several CT studies have aimed at improving 
learners’ programming skills using different 
instructional interventions (e.g., Dohn, 2020). 
However, CT includes a broad range of 
cognitive skills beyond programming (Shute 
et al., 2017; Wing, 2011). For example, Shute 
and colleagues (2017) reviewed and identified 
the components of CT that were shared across 
different models: “decomposition, abstraction, 
algor i thms,  and debugging” (p .  145) . 
Nonetheless, current understanding of how 
individuals employ these cognitive skills when 
applying CT to solve problems remains mostly 
conceptual or stays within the context of 
programming education. Empirical evidence 
on whether and how these CT cognitive 
skills are exercised during the problem-
solving process will allow us to better support 
students’ CT development.

Collaboration and communication are 
essential skills for applying CT to solve 
a  problem (ISTE & CSTA, 2011).  CT 
often involves individuals collaborating in 
team problem-solving processes as they 

solve problems, build algorithms or rules, 
troubleshoot, and create models (Berland & 
Lee, 2011; NRC, 2010). To teach CT, many 
teachers implement teamwork as a common 
instructional activity designed to support 
students’ development of CT skills (Bower 
et al., 2017). However, the existing literature 
mostly reveals its frequent adoption but has 
not yet provided an in-depth and qualitative 
understanding of how students exercises CT 
sub-skills over the course of collaborative 
learning processes. Therefore, this study 
was conducted to uncover different CT sub-
skills present in student dialogues when they 
engaged in collaborative problem-solving 
processes in a STEM-integrated robotics 
program. 

Literature Review

Computational Thinking Sub-Skills

The burgeoning wave of computing in 
modern society has manifested the need to 
prepare individuals with CT skills, which is 
comparable to the other essential literacy skills 
of reading, writing, and arithmetic. Moving 
beyond the interpretation of CT as simply 
programming skills, Wing (2011) first defined 
CT as a generic problem-solving process and 
later further clarified that “computational 
thinking is the thought processes involved 
in formulating problems and their solutions 
so that the solutions are represented in a 
form that can be effectively carried out by an 
information-processing agent” (p.1). Echoing 
this conception, Tinker construed that CT 
allows a problem solver to decompose a 
problem and to identify solutions that can 
function automatically and efficiently to the 
subsets of the problem (NRC, 2010). CT is 
perceived as a collection of cognitive skills 
that enables individuals to solve problems 
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effectively. Sengupta and colleagues (2013) 
have described CT practice as including 
“problem representa t ion,  abst ract ion, 
decomposition, simulation, verification, 
and prediction” (p. 351). Grover and Pea 
(2013) also identified several elements of 
CT: “abstraction and pattern generalizations; 
systematic processing of information; symbol 
systems and representations; algorithmic 
notions of flow of control, structured problem 
decomposition; iterative, recursive, and 
parallel thinking; conditional logic; efficiency 
and performance constraints; debugging 
and error systematic detection” (pp.39-
40). In a literature review of CT, Shute and 
colleagues (2017) summarized the following 
as commonly described CT components: 
“decomposition, abstraction, algorithms, and 
debugging” (p. 145). These various conceptual 
discussions from the existing literature, 
despite differences in their identifications of 
CT elements, illustrate the need for multiple 
cognitive skills to operate together in order 
to enact CT for solving problems. Even with 
distinct identifications of CT elements by 
different scholars, we observe the following 
overlapping cognitive skills and use them to 
examine students’ CT development in our 
investigation: (1) debugging, (2) algorithmic 
thinking, (3) decomposition, (4) abstract 
thinking, (5) pattern recognition, and (6) 
prediction (Grover & Pea, 2013; NRC, 2010; 
Sengupta et al., 2013; Shute et al., 2017; 
Wing, 2011). 

Several cognitive capacities are crucial 
for applying CT in a problem-solving process. 
However, the current understanding of relevant 
CT sub-skills comes mostly from the study of 
improvement in programming skills (Dohn, 
2020). A review of programming education 
by Lye and Koh (2014) revealed that most 
studies investigated student acquisition of 

programming concepts and only a few looked 
into programming practices, with most of 
those focusing on debugging behaviors, which 
is the first CT sub-skill investigated in this 
study. 

The second critical CT cognitive element, 
algorithmic thinking, has also been studied 
mainly in the context of programming 
education (Grover et al., 2015). Algorithmic 
thinking allows problem solvers to plan and 
identify a series of steps to arrive at a solution. 
It is challenging for students to acquire 
algorithmic thinking skills, so research has 
focused on implementing learning activities 
that support the development of such skills 
(e.g., Grover et al., 2015). 

The third cognitive capacity needed for 
processing CT is decomposition. There are 
numerous studies examining students’ ability 
to decompose programming tasks (e.g., Chao, 
2016; Kwon & Cheon, 2019). Kwon and 
Cheon (2019) revealed that most students 
experienced difficulty decomposing more 
complex and larger problems. Additionally, 
Chao (2016) found that students adopting the 
selective approach (i.e., using if-then functions 
for a programming task) decomposed the 
problem into coarse-grained subparts, and 
then generated a more efficient solution. 
Conversely, students tackling the programming 
task in a linear manner, decomposed problems 
into a fine-grained sub-parts, and then 
produced relatively inefficient solutions. 

The fourth element, abstraction, is a 
cognitive skill that allows one to remove 
irrelevant information and variables, and 
concentrate only on the essence of the problem 
(Grover & Pea, 2013). Zhao and Shute (2019) 
studied eighth-grade students’ abstractive 
thinking in a block-based programming game, 
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Penguin Go. During the game, students were 
expected to disregard extraneous disparities 
to grasp the essential commonalities shared 
among various objects and/or procedures. 
Nevertheless, they demonstrated limited 
abstractive thinking because most of them 
applied a trial-and-error approach rather than 
identified the essence of the problem. 

Another cognitive skill essential to 
effective CT is pattern recognition, which 
enables problem solvers to retrieve and reuse 
a solution (i.e., patterns) from an analogous 
problem (Grover & Pea, 2013). Similar to 
the other cognitive skills, a few studies have 
been conducted in the programming context 
to examine how students repeatedly use 
generalizable code blocks in an algorithmic 
solution. Kwon and Cheon (2019) investigated 
middle school students’ capacities of pattern 
recognition by evaluating whether they 
could identify generalizing solutions by 
“parameterizing the variables” (e.g., using 
a repeated block in Scratch programming 
projects). The results showed that among 
seven students only one exerted pattern 
recognition and demonstrated more advanced 
CT, especially in using logic and loops to 
solve multiple analogous problems. However, 
there was no explicit explanation as to how 
students’ pattern recognition was used in 
programming or other computing tasks. 

The last CT element, prediction, is a 
crucial skill for professionals in computer 
science and STEM domains (Bers, 2017). 
In computer science, programmers need to 
be able to predict an outcome from several 
lines of code. In STEM fields, the ability to 
predict enables individuals to draw inferences 
and anticipate what will happen based on 
the collected data. For example, scientists 
can predict when storms will hit a city based 

on weather data. Existing literature has also 
considered prediction as a major component 
of CT. However, there is a lack of empirical 
study with a focus on investigating K-12 
students’ prediction in CT contexts (Sengupta 
et al., 2013). 

According to our review of the existing 
literature, the research on prediction remains 
at the conceptual level, while research 
on the other skills is in connection with 
computer programming education. As many 
scholars have argued, CT education should 
be broadened to develop students’ ability 
to apply CT for solving problems in other 
contexts, such as STEM fields, rather than 
being limited to training programmers (Caeli 
& Bundsgaard, 2020; Roman-Gonzalez et 
al., 2017). Furthermore, the majority of the 
existing empirical studies inspected only 
one CT sub-skill (e.g., Chao, 2016; Zhao & 
Shute, 2019). Despite those results providing 
an understanding on how students exercised 
a specific cognitive skill, further studies are 
called for to explore the interactions among 
CT skills. CT entails the interaction of 
multiple elements (e.g., Grover & Pea, 2013; 
Shute et al., 2017) and the effects of individual 
skills may interact with each other and affects 
overall CT ability. Thus, our study aims to 
explore CT sub-skills are present in students’ 
problem-solving process and the possible 
interactions among the different CT sub-skills.

Collaboration of Computational Thinking 

Social interactions are central to the 
development of CT ability (NRC, 2010). 
Collaboration allows students to engage 
in active and constructive learning while 
problem-solving. Working in a team allows 
individuals to “develop representations, 
debug processes, and so on, resulting in a 



31Volume 14, No. 1,   October, 2021

collaborative process of discovery that is 
richer than that of any single individual” 
(NRC, 2010, p. 27). Group work is one of the 
common instructional activities that teachers 
use in CT education, particularly programming 
education (Bower et al., 2017). Pairs are able 
to detect any errors early, strengthen their 
understanding of knowledge, and present 
multiple perspectives to solve problems 
(Iiskala et al., 2011; Manlove et al., 2006). 
Recognizing the benefits of collaborative 
problem-solving, numerous studies compared 
programming done alone with programming 
done with partners at both college and K-12 
levels. They found that students learned better, 
and with more enjoyment, when engaging 
in pair programming (Zhong, et al., 2016). 
One study on student discourse in a game-
based, CT-focused environment revealed that 
conversations among team members occurred 
frequently, as they figure out strategies to 
advance their moves in the game (Berland & 
Lee, 2011). Student collaborative problem-
solving was also effective for developing 
graphics through coding (Doleck et al., 2017). 
These studies show the effectiveness of 
collaborative problem solving. 

Building upon these promises, this study 
seeks to further our knowledge about CT by 
exploring how students exercise CT-related 
cognitive skills during collaborative problem-
solving processes. To this end, two research 
questions guide this investigation:

1. What is the pattern of students’ CT 
sub-skills that are involved in the collaborative 
problem-solving process?

2. What are the trajectories of CT skills 

exercised over the course of collaborative 
problem-solving process between pairs?

Methodology

Research Design & Participants

For this case study, we reached out to 
the STEM Integration Coordinator at a local 
school district in the southeastern United States 
to recruit 5th grade teachers to implement a 
STEM-integrated robotics curriculum, Danger 
Zones, in the classroom setting. Students were 
10-11 years old, on average. They were placed 
into pairs to collaborate for problem-solving 
tasks. With the nature of case study, three 
pairs of volunteering students were selected 
to be the focus of our investigation, with two 
pairs consisting of a boy and a girl and a pair 
of boys. Each pair’s collaborative problem-
solving behaviors were video recorded. 

Curriculum Design

T h e  S T E M - i n t e g r a t e d  r o b o t i c s 
cu r r i cu lum,  Danger  Zones ,  r equ i r ed 
students to collaboratively solve two tasks 
using knowledge from STEM domains, 
programming skills, and different CT cognitive 
skills. Students were introduced to a scenario 
where they were charged to design a robot to 
assist scientists in collecting three research 
samples in an active volcanic area (See Figure 
1). The curriculum lasted two weeks and 
consisted of ten 50-minute sessions. A detailed 
description of the curriculum is presented in 
Figure 1.
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Figure 1. Learning activities in a STEM-integrated robotics curriculum
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Data Collection and Coding Scheme 

The data were the audio files from the 
four-hour long conversations recorded for 
each of the three pairs during Lessons Three 

to Five. Conversations were first transcribed 
verbatim before being coded according to the 
six CT sub-skills that we found to be common 
in the existing literature. These skills are 
defined, with an example for each, in Table 1.

Table 1. Coding scheme of CT sub-skills

Code Definition Example Quotes

Abstraction Involves hiding unnecessary or 
irrelevant details to focus only on 
the most relevant information to 
simplify complexity.

N/A

Algorithmic 
thinking

Involves the construction of a set 
of steps to solve a specific problem. 
Algorithms are used to calculate 
speed rate, to plan the route, or to 
write a program that could tell the 
robots to move exactly as we want 
it to.

“[The robot] turned not enough. How about 
we add something on [the delay chip].”

“We need to set up .25 because we’re going 
to from here to be there.”

Debugging A process of figuring out 
unexpected outcomes. In computer 
science, debugging is viewed as a 
specific process of detecting errors 
while programming.

“Oh we forgot to put time there!”

“[The robot moved] a little too far.”

Pattern 
recognition

A process of identifying the 
common features of a problem, and 
then retrieving and reusing prior 
solutions to resolve analogous 
problems.

“Put the same time [in programming]. Just 
use the same time [setting].”

“You should know, we used 3.4 [to have 
the robot move certain distance], this one is 
still [3.4].”

Problem 
decomposition

A process of breaking a 
complicated problem into smaller 
and more tractable pieces that 
are easier to deal with (e.g., 
modularizing).

“Now we need to turn. Then go left. Then 
we need to go forward.”

Prediction The ability of envisioning a 
particular action of the robot 
based on what students have 
programmed.

“Then it [the robot] would just go forward, 
go backwards, go forward again, turn right 
and then go forward.”

“We stopped right. Then we stopped right 
there, then we turned to the left, and now 
we need to go forward for one second.” 
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Data Analysis

After examining the transcripts, the 
data were analyzed using content analysis to 
investigate the frequencies of the different 
s ix  ski l l s  of  CT occurr ing wi thin  the 
conversations. The coding process involved 
two researchers. They first reviewed the 
transcripts  with the coding scheme in 
mind. Prior to coding, they discussed and 
reached consensus on the unit of analysis by 
segmenting the conversations produced by 
each pair of students to each testing event 
(Chi, 1997). A testing event is defined as the 
time when the students began to interpret the 
problem, generated a solution, programmed 
using the provided software, to the time when 
they were ready for testing the programming 
at the testing station. Using this approach, the 
data could be coded, within the context, as 
an event (Chi, 1997). Each event could entail 
multiple codes that represent several sub-skills 
of CT produced by each participant.

The  cod ing  inc luded  two  rounds , 
individual and then collective. During the 
first round, each researcher individually read 
through the transcripts to become familiar 
with them. Then each researcher started 
coding independently the transcripts from the 
first pair of students’ conversations, event by 
event, in reference to the six CT sub-skills (in 
Table 1). The goal of this step was to assign 
relevant codes in each event. Each researcher 
reviewed the coded transcripts iteratively 
until satisfied. The two coders then reviewed 
both of their codes and discussed until they 
reached 100% agreement. They then used 
their emerging understanding to independently 
code the conversations generated by the other 
two pairs. The inter-rater reliability between 
the two raters was 88%.

Findings

Overall Pattern of CT Sub-Skills Involved in 
the Collaborative Problem-Solving Process

The most frequently observed skill was 
algorithmic thinking (131), which occurred in 
almost all events (Table 2). Abstraction was 
the next most frequently (89) noted cognitive 
skill. Given that participants were explicitly 
told with all essential information of the tasks 
they solved, their dialogues showed that 
their focus on relevant information was on 
target in each event. In contrast, prediction 
was the least frequently (28) observed. We 
examined the CT components evidenced in 
respective lessons. In Lesson 3, there were 
more conversations related to algorithmic 
thinking (35) and debugging (29). This lesson 
offered students their first opportunity to learn 
to use the software and programming logic, 
and thus they mainly adopted a trial-and-
error approach to perform Task 1. This led to 
numerous debugging incidences after failing 
their test of the robot. In Lesson 4, students 
performed Task 2, a more complex task where 
the robot were developed to traverse volcanic 
areas to stop and collect three samples. Their 
conversations showed increased algorithmic 
thinking (51) and decreased debugging (23). 
Their pattern recognition (17), decomposition 
( 1 4 ) ,  a n d  p r e d i c t i o n  ( 1 0 )  i n c r e a s e d 
significantly from Lesson 3. In Lesson 5, 
after reviewing an additional mathematical 
concept (speed * time = distance), students 
continued to exercise algorithmic thinking. 
We anticipated that students would recognize 
more patterns using their experiences from 
Lessons 3 and 4. However, pattern recognition 
(13) was evidenced only in Pair 1’s problem-
solving process. Another skill that was 
exercised more was prediction, which was 
evidenced in the conversations of the more 
interactive pairs (1 and 2). 
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Trajectories of CT Skills Exercised Over the 
Course of Collaborative Problem-Solving 
Process Between Pairs

Pair 1

Ashley and Bobby were able to complete 
Task 1 at the end of Lesson 3 and Task 2 at 
the end of Lesson 5. Three themes emerged 
from their collaborations that deserve a 
closer examination. First, Pair 1 was the 
most collaborative in that their conversations 
contained more CT skills (190) than the other 
two pairs, 75 and 35, respectively (see Table 2). 

S e c o n d ,  w i t h  t h e i r  c o n t i n u e d 
demonstration of collaborative problem-
solving, there were more pattern recognition 
(from two in Lesson 3 to 13 in Lesson 5), and 
prediction (from one in Lesson 3 to eleven 
in Lesson 5), and fewer debugging exercises 
(from thirteen in Lesson 3 to seven in Lesson 

5) as the task became increasingly complex. 
Their conversations showed that they helped 
each other recognize the similarities between 
Task 2 and Task 1, and then they utilized 
the important principle (e.g., speed * time = 
distance) to perform the ensuing task. They 
also exercised more prediction by moving 
their body to simulate the movement of the 
robot as they read the codes on a computer 
screen. This enabled them to program the 
robot more truthfully to their expectations, 
resulting in less debugging. 

Third, their CT capacities progressively 
reached an advanced level as they utilized 
these capacities more efficiently in face 
of the complex task. For example, their 
decomposition ability was enhanced although 
the frequency of decomposing practices 
was about the same across three lessons. In 
Lesson 3, Pair 1 decomposed a relatively 

Table 2. The frequencies of CT sub-skills exercised during the collaborative problem-
solving process

CT Sub-Skills Pair 1 Pair 2 Pair 3 Across three pairs

Lesson 3 4 5 3 4 5 3 4 5 3 4 5 Total

# of Events 16 10 8 12 14 10 9 6 11 37 30 29 96

# of Interactions 
within an Event 16 10 8 12 14 10 7 4 8 35 28 26 89

Abstraction 16 10 8 12 14 10 7 4 8 35 28 26 89

Debugging 13 9 7 10 11 12 6 3 6 29 23 25 77

Algorithmic 
Thinking 18 26 24 12 15 17 6 10 3 36 51 44 131

Decomposition 5 6 8 1 3 2 2 5 4 8 14 14 36

Pattern Recognition 2 6 13 1 5 3 1 6 3 4 17 19 40

Prediction 1 7 11 1 2 4 0 1 0 2 10 15 27

Total 190 135 75 400
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simple task into two steps, with the first step 
being “moving forward for one square” and 
second step being “making a 90 degree turn.” 
However, when tasked to perform the more 
complex task in Lessons 5, they were able 
to decompose the task at a larger granularity 
level. That is, they treated “moving forward 
for two squares, turning left, and moving 
forward for one square” as one step when the 
robot had to repeat a similar series of moves 
several times to accomplish the task.

Pair 2

Cameron and David actively collaborated 
throughout the lessons. They successfully 
completed Task 1. During Lesson 4, although 
they were the only pair that could drive the 
robot to pass three sample sites, they missed 
making the robot stop at each site. Thus, in 
Lesson 5, they designed the robot path and 
programmed the robot all over again. They 

were able to successfully stop and collect 
three samples at the end of Lesson 5. When 
solving Task 1, Pair 2, like the other two pairs, 
engaged in numerous debugging activities 
with a trial-and-error approach. In Lesson 
4 and 5, they continued to demonstrate a 
high frequency of debugging practices, 11 
and 12. Most of their debugging behaviors 
resulted from their attempts to move the robot 
diagonally (see Figure 2) in order to save 
travel time, rather than along the grid lines 
with right angle turns. Such an approach took 
algorithmic thinking (15 times in Lesson 4 and 
17 in Lesson 5) to calculate the time needed 
for making acute angle turns. Consequently, 
they engaged in many rounds of debugging. 
With their concentration mainly on figuring 
out the time needed for the robot to turn at 
the desired angles, they continued a trial-and-
error approach and did not decompose and 
recognize the patterns as frequently as the 
other two pairs. 

Figure 2.  Pair 2 Designed route
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Their strategy for solving the problem was 
focused on figuring out the solution for the 
subsets of the problem at the micro level, such 
as calculating the time needed for making 
desired turns and finding ways to make the 
robot stop when reaching the sample. Although 
they were collaborative in completing the task 
in Lesson 5, they rarely examined their earlier 
problem-solving approach. They infrequently 
used the previous task to help them identify 
patterns (3), reflect on their knowledge in 
order to decompose the task (2), and make 
predictions based on the program they have 
developed (4).

Pair 3

Eric and Fred demonstrated the lowest 
frequency of CT cognitive skills (75) in their 
collaboration, and they failed to complete 
Tasks 1 and 2. Overall, Pair 3 was the least 
collaborative, and talked with each other less 
frequently, especially in Lesson 5. At the 
beginning of Lesson 3, Pair 3 was relatively 
collaborative by exercising debugging (6) 
and algorithmic thinking (6). Like the others, 
they adopted a trial-and-error approach to 
move the robot to the designated location. 
Unfortunately, their robot failed to read the 
codes properly due to a technical issue. After 
their teacher fixed the robot, Fred started to 
disengage from the collaboration with Eric. 

In Lesson 4, although Pair 3 encountered 
a technical issue again, they were more 
collaborative in solving the problem and were 
able to collect two samples at the end of this 
lesson. In particular, Fred applied CT sub-
skills, pattern recognition and algorithmic 
thinking more often to help Eric solve the 
problem. Their conversations demonstrated 
more efforts to draw inferences from Task 
1 to not only recognize the patterns (6) and 
apply algorithmic thinking (10) to determine 

the timing and speed setting for the robot to 
reach the sample sites, but also to decompose 
the task into smaller sets of problems (5). This 
was the only time they showed prediction (1). 
In Lesson 5, although Eric and Fred talked 
with each other, most of their interactions 
were not relevant to the problems, which 
prevented them from making progress. In all, 
their frequencies of undertaking CT practices 
(24) in Lesson 5 were much lower than the 
other two pairs (71 and 48, respectively). 
Due to their fruitless collaboration, they did 
not exercise any predictions and produced 
fewer exercises in algorithmic thinking, 
decompositions, and pattern recognitions in 
the problem-solving process. 

Discussion

Overall Pattern of CT Skills Involved in the 
Collaborative Problem-Solving Process

CT-related literature unanimously discuses 
that CT involves several cognitive skills at 
the conceptual level (Grover & Pea, 2013; 
NRC, 2010; Sengupta et al., 2013; Shute et al., 
2017; Wing, 2011). The empirical evidence 
obtained from this study corroborates these 
theoretical papers in that students exercised 
multiple CT sub-skills as they worked out a 
solution to the given problem. Additionally, 
we found that some skills were applied more 
than the other during students’ problem-
solving process. Among the six CT skills, 
algorithmic thinking was exercised the most 
frequently. The quick adoptions of algorithmic 
thinking from our students is similar to that of 
Grover and colleagues’ study (2015). When 
students are provided with opportunities 
and instructions for applying programming 
rules and mathematical concepts, students 
can develop algorithmic thinking and apply 
it naturally to perform a task. Debugging is 
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another cognitive skill that is also frequently 
seen in students’ problem-solving process. 
Debugging dominated the problem-solving 
process when students first tackled the 
problem. Due to a lack of relevant experience, 
students tended to rely on a trial-and-error 
approach to solve the problem, which resulted 
in many rounds of debugging. This result is 
consistent with previous studies conducted in 
a programming education context (Lye & Koh, 
2014; Quaye & Dasuki, 2017). In contrast, 
prediction and pattern recognition were CT 
skills exercised relatively less frequently by 
students in our study. This finding is in line 
with the observation reported by Kwon and 
Cheon (2019), that only one out of seven 
participants in their study recognized patterns 
during their coding process. The results 
demonstrate that certain CT skills may take 
more time for students to develop, such as 
pattern recognition. 

O u r  s t u d y  p r o v i d e s  a n  i n i t i a l 
understanding of the interactions among 
the identified CT skills, in contrast to the 
current literature. Most existing empirical 
studies examined only one CT skill, such as 
algorithmic thinking in Grover and colleague’s 
study (2015) and decomposition in Kwon and 
Cheon (2019)’s study.  We were able to notice 
associations among these skills. For example, 
when debugging behaviors decreased, we 
observed an increase in decomposition, pattern 
recognition, and prediction. This finding 
sheds further light on how different CT skills 
co-exist and/or interrelate with each other 
in a problem-solving process. According to 
Atmatzidou and Demetriadis (2016), with 
more time and practices, students regardless 
of gender and age will eventually develop CT 
skills. The CT skills exercised by our young 
participants suggest that some CT skills, such 
as debugging and algorithmic thinking, are 
relatively easier for students to grasp and 

apply, whereas other skills, such as pattern 
recognition, decomposition, and prediction, 
r equ i re  more  p rac t i ces ,  accumula ted 
experiences, and perhaps deliberate efforts 
to develop and orchestrate in their problem-
solving process. 

Trajectories of CT Skills Exercised During 
the Collaborative Problem-Solving Process 
Across Pairs

The results of our study showed that 
students’ uses of CT sub-skills over the 
course of collaborative problem-solving 
process varied from pair to pair, even though 
existing studies revealed that teamwork can 
help students perform better and enjoy more 
when solving problems (Atmatzidous & 
Demetriadis, 2016; Shute, et al., 2017). With 
teamwork, Pair 1 and Pair 2 successfully 
completed both tasks, whereas Pair 3 did not 
complete the tasks during the given time. Even 
though Pair 3 failed to complete the tasks, 
when the two students interacted to perform 
the tasks in Lesson 4, they showed their use 
of some advanced CT by moving away from 
the trial-and-error approach. Overall, students 
were more likely to arrive at a solution through 
collaborative problem-solving. However, the 
trajectories to reach the solution among group 
differed. Regarding the interactions for the 
two more collaborative pairs, interestingly 
they produced different patterns in their use 
of CT sub-skills. They both started with a 
trial-and-error approach, resulting in many 
debugging instances in Lesson 3. However, 
their applications of debugging varied starting 
in Lesson 4, with Pair 1 showing fewer while 
Pair 2 exhibiting more debugging. In the 
meantime, use of decomposition, pattern 
recognition, and prediction started to rise in 
both pairs. However, in Lesson 5, their pattern 
of applying these three skills diverged, with 
Pair 2 exercising more debugging behaviors 
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whereas Pair 1 utilizing significantly more 
decompositions, pattern recognitions, and 
predictions, which led to a more efficient and 
automated problem-solving process. 

Upon examining the trajectories across 
pairs, we learned not only the importance of 
providing students with collaborative learning 
but also the need for guiding students to be 
well-versed in different CT skills, particularly 
those that take time to develop. As Shute and 
colleagues (2017) have pointed out, many 
teachers may not be trained sufficiently to 
teach CT. Our study results suggest that 
teachers should consider differentially 
monitoring and guiding students in relation to 
the development of particular CT skills.

Limitations

The first limitation of this study is limited 
generalizability, as we examined the recorded 
conversations from three pairs of students. 
Second, qualitative analysis could not avoid 
the subjective bias in the interpretation 
of participants’ verbalization of thoughts, 
although we put much effort in dealing with 
the validity threat of observation bias while 
guaranteeing the rigor and reliability of the 
research. Last, our investigation was based on 
the recorded conversations and participants’ 
think-aloud practices. There could be a chance 
that their actual thought processes differed 
from what they verbally expressed. 

Implications for Future Research 

First, we are aware of the need to further 
validate the findings of this research with 
a large-sample mixed method research. By 
extending the sample size of our next inquiry, 
we hope to increase the generalizability of 
our findings and thereby extend to further 
the ongoing effort to integrate CT in STEM 

curriculum. In addition, future research might 
consider providing intentional instruction 
supporting students to develop advanced 
CT skills, such as decomposition, pattern 
recognition, and prediction, and conduct a 
comparison study with no guidance to possibly 
further younger students’ CT capacities. 
Second, the task design for future research can 
be improved by providing tasks simulating 
real-life situations to enable the investigation 
of abstractive thinking skills. When examining 
our data, we found that our participants, 
different from the participants in Zhao and 
Shute’s study (2019), demonstrated abstractive 
thinking throughout their collaborative 
experience, part of the reason being that the 
given tasks were specific and well-structured. 
Thus, this made it easier for students to 
identify the overarching goal of the tasks 
and focus on the most relevant information. 
For future research and practice, researchers 
may want to offer real-world ill-defined 
tasks coupled with additional contextual 
information, such as temperatures and the 
actual distance among each sample site, to 
create the scenarios that require students to 
apply abstraction in CT (Hong & Choi, 2019).

Conclusion

Our study aimed to uncover how students’ 
CT sub-skills were used when interacting 
with peers to accomplish problem-solving 
tasks that require the integration of STEM 
knowledge. The results obtained from selected 
pairs of students’ interactions showed that 
pairs that are more collaborative demonstrated 
more CT practices. Additionally, the different 
aspects of CT practices changed as students 
acquired experiences in solving the problems, 
in collaborating with others, and in integrating 
knowledge from different content areas. Our 
findings from our in-depth examination of 
different elements of CT students displayed 
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during collaborative problem-solving process 
shed further light into our understanding of 
how the different CT cognitive skills interact 
to enable individuals to process their thinking 
with automaticity to generate efficient 
solutions.
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