
Journal of Educational Technology Development and Exchange Journal of Educational Technology Development and Exchange

(JETDE) (JETDE)

Volume 14 Issue 1

2021

Examining Trajectories of Elementary Students’ Computational Examining Trajectories of Elementary Students’ Computational

Thinking Development Through Collaborative Problem-Solving Thinking Development Through Collaborative Problem-Solving

Process in a STEM-Integrated Robotics Program Process in a STEM-Integrated Robotics Program

Yi-Chun Hong
Arizona State University, yhong22@asu.edu

Yingxiao Qian
Arizona State University, yqian36@asu.edu

Yu-Fen Yang
National Yunlin University of Science and Technology, yangy@yuntech.edu.tw

Follow this and additional works at: https://aquila.usm.edu/jetde

 Part of the Educational Technology Commons, and the Elementary Education Commons

Recommended Citation Recommended Citation
Hong, Yi-Chun; Qian, Yingxiao; and Yang, Yu-Fen (2021) "Examining Trajectories of Elementary Students’
Computational Thinking Development Through Collaborative Problem-Solving Process in a STEM-
Integrated Robotics Program," Journal of Educational Technology Development and Exchange (JETDE):
Vol. 14 : Iss. 1 , Article 2.
Available at: https://aquila.usm.edu/jetde/vol14/iss1/2

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for
inclusion in Journal of Educational Technology Development and Exchange (JETDE) by an authorized editor of The
Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/jetde
https://aquila.usm.edu/jetde
https://aquila.usm.edu/jetde/vol14
https://aquila.usm.edu/jetde/vol14/iss1
https://aquila.usm.edu/jetde?utm_source=aquila.usm.edu%2Fjetde%2Fvol14%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=aquila.usm.edu%2Fjetde%2Fvol14%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1378?utm_source=aquila.usm.edu%2Fjetde%2Fvol14%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/jetde/vol14/iss1/2?utm_source=aquila.usm.edu%2Fjetde%2Fvol14%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

Examining Trajectories of Elementary Students’ Computational Thinking Examining Trajectories of Elementary Students’ Computational Thinking
Development Through Collaborative Problem-Solving Process in a STEM-Development Through Collaborative Problem-Solving Process in a STEM-
Integrated Robotics Program Integrated Robotics Program

Cover Page Footnote Cover Page Footnote
Authors declare that they have no conflicts of interest. This study has been approved by the IRB of the
University of Georgia (IRB Approval #: 000001432) and informed consent was obtained from all
participants in the study. The datasets used in this study are unavailable due to privacy and data
protection concerns.

This article is available in Journal of Educational Technology Development and Exchange (JETDE):
https://aquila.usm.edu/jetde/vol14/iss1/2

https://aquila.usm.edu/jetde/vol14/iss1/2

27Volume 14, No. 1, October, 2021

Yi-Chun Hong
Arizona State University

Yingxiao Qian
Arizona State University

Yu-Fen Yang
National Yunlin University of Science and Technology

Abstract: Developing K-12 students’ computational thinking (CT) skills is essential. Building on
the existing literature that has emphasized programming skill development, this study expands the
focus to examine students’ use of underlying CT cognitive skills during collaborative problem-
solving processes. A case study approach was employed to examine video data of 5th graders
engaging in an integrated-STEM robotics curriculum. The findings reveal that students applied
algorithmic thinking most frequently and prediction the least. They recorded most debugging
behaviors initially in the problem-solving process, but after accumulating more experiences
their uses of other CT skills, including algorithmic thinking, pattern recognition, and prediction,
increased. Implications for developing young learners’ CT skills to solve real-world problems are
discussed..

Keywords: computational thinking, STEM education, robotics, collaborative problem solving,
cognitive skills

Hong,Y.C., Qian, Y. & Yang,Y.F. (2021).Examining Trajectories of Elementary Students’ Computational Thinking
Development Through Collaborative Problem-Solving Process in a STEM-Integrated Robotics Program

Journal of Educational Technology Development and Exchange, 14(1), 27-42

Examining Trajectories of Elementary Students’
Computational Thinking Development Through

Collaborative Problem-Solving Process in a STEM-
Integrated Robotics Program

28

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

Introduction

The STEM (sc i ence , t e chno logy,
engineering, and mathematics) workforce
is central to a country’s national economy
and global competitiveness. Students with
computational thinking (CT) ability are more
likely to become STEM literate, prepared
for a future career in STEM fields (Weintrop
et al., 2016). The need to train students with
computational thinking (CT) is on the rise.
CT is a thinking process that enables an
individual to identify and solve a real-world
problem by leveraging the synergy between
humans and machines in order to automate the
process to achieve an efficient and effective
solution (Wing, 2011). Many educators
interpret CT as simply programming skills and
several CT studies have aimed at improving
learners’ programming skills using different
instructional interventions (e.g., Dohn, 2020).
However, CT includes a broad range of
cognitive skills beyond programming (Shute
et al., 2017; Wing, 2011). For example, Shute
and colleagues (2017) reviewed and identified
the components of CT that were shared across
different models: “decomposition, abstraction,
algor i thms, and debugging” (p . 145) .
Nonetheless, current understanding of how
individuals employ these cognitive skills when
applying CT to solve problems remains mostly
conceptual or stays within the context of
programming education. Empirical evidence
on whether and how these CT cognitive
skills are exercised during the problem-
solving process will allow us to better support
students’ CT development.

Collaboration and communication are
essential skills for applying CT to solve
a problem (ISTE & CSTA, 2011). CT
often involves individuals collaborating in
team problem-solving processes as they

solve problems, build algorithms or rules,
troubleshoot, and create models (Berland &
Lee, 2011; NRC, 2010). To teach CT, many
teachers implement teamwork as a common
instructional activity designed to support
students’ development of CT skills (Bower
et al., 2017). However, the existing literature
mostly reveals its frequent adoption but has
not yet provided an in-depth and qualitative
understanding of how students exercises CT
sub-skills over the course of collaborative
learning processes. Therefore, this study
was conducted to uncover different CT sub-
skills present in student dialogues when they
engaged in collaborative problem-solving
processes in a STEM-integrated robotics
program.

Literature Review

Computational Thinking Sub-Skills

The burgeoning wave of computing in
modern society has manifested the need to
prepare individuals with CT skills, which is
comparable to the other essential literacy skills
of reading, writing, and arithmetic. Moving
beyond the interpretation of CT as simply
programming skills, Wing (2011) first defined
CT as a generic problem-solving process and
later further clarified that “computational
thinking is the thought processes involved
in formulating problems and their solutions
so that the solutions are represented in a
form that can be effectively carried out by an
information-processing agent” (p.1). Echoing
this conception, Tinker construed that CT
allows a problem solver to decompose a
problem and to identify solutions that can
function automatically and efficiently to the
subsets of the problem (NRC, 2010). CT is
perceived as a collection of cognitive skills
that enables individuals to solve problems

29Volume 14, No. 1, October, 2021

effectively. Sengupta and colleagues (2013)
have described CT practice as including
“problem representa t ion, abst ract ion,
decomposition, simulation, verification,
and prediction” (p. 351). Grover and Pea
(2013) also identified several elements of
CT: “abstraction and pattern generalizations;
systematic processing of information; symbol
systems and representations; algorithmic
notions of flow of control, structured problem
decomposition; iterative, recursive, and
parallel thinking; conditional logic; efficiency
and performance constraints; debugging
and error systematic detection” (pp.39-
40). In a literature review of CT, Shute and
colleagues (2017) summarized the following
as commonly described CT components:
“decomposition, abstraction, algorithms, and
debugging” (p. 145). These various conceptual
discussions from the existing literature,
despite differences in their identifications of
CT elements, illustrate the need for multiple
cognitive skills to operate together in order
to enact CT for solving problems. Even with
distinct identifications of CT elements by
different scholars, we observe the following
overlapping cognitive skills and use them to
examine students’ CT development in our
investigation: (1) debugging, (2) algorithmic
thinking, (3) decomposition, (4) abstract
thinking, (5) pattern recognition, and (6)
prediction (Grover & Pea, 2013; NRC, 2010;
Sengupta et al., 2013; Shute et al., 2017;
Wing, 2011).

Several cognitive capacities are crucial
for applying CT in a problem-solving process.
However, the current understanding of relevant
CT sub-skills comes mostly from the study of
improvement in programming skills (Dohn,
2020). A review of programming education
by Lye and Koh (2014) revealed that most
studies investigated student acquisition of

programming concepts and only a few looked
into programming practices, with most of
those focusing on debugging behaviors, which
is the first CT sub-skill investigated in this
study.

The second critical CT cognitive element,
algorithmic thinking, has also been studied
mainly in the context of programming
education (Grover et al., 2015). Algorithmic
thinking allows problem solvers to plan and
identify a series of steps to arrive at a solution.
It is challenging for students to acquire
algorithmic thinking skills, so research has
focused on implementing learning activities
that support the development of such skills
(e.g., Grover et al., 2015).

The third cognitive capacity needed for
processing CT is decomposition. There are
numerous studies examining students’ ability
to decompose programming tasks (e.g., Chao,
2016; Kwon & Cheon, 2019). Kwon and
Cheon (2019) revealed that most students
experienced difficulty decomposing more
complex and larger problems. Additionally,
Chao (2016) found that students adopting the
selective approach (i.e., using if-then functions
for a programming task) decomposed the
problem into coarse-grained subparts, and
then generated a more efficient solution.
Conversely, students tackling the programming
task in a linear manner, decomposed problems
into a fine-grained sub-parts, and then
produced relatively inefficient solutions.

The fourth element, abstraction, is a
cognitive skill that allows one to remove
irrelevant information and variables, and
concentrate only on the essence of the problem
(Grover & Pea, 2013). Zhao and Shute (2019)
studied eighth-grade students’ abstractive
thinking in a block-based programming game,

30

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

Penguin Go. During the game, students were
expected to disregard extraneous disparities
to grasp the essential commonalities shared
among various objects and/or procedures.
Nevertheless, they demonstrated limited
abstractive thinking because most of them
applied a trial-and-error approach rather than
identified the essence of the problem.

Another cognitive skill essential to
effective CT is pattern recognition, which
enables problem solvers to retrieve and reuse
a solution (i.e., patterns) from an analogous
problem (Grover & Pea, 2013). Similar to
the other cognitive skills, a few studies have
been conducted in the programming context
to examine how students repeatedly use
generalizable code blocks in an algorithmic
solution. Kwon and Cheon (2019) investigated
middle school students’ capacities of pattern
recognition by evaluating whether they
could identify generalizing solutions by
“parameterizing the variables” (e.g., using
a repeated block in Scratch programming
projects). The results showed that among
seven students only one exerted pattern
recognition and demonstrated more advanced
CT, especially in using logic and loops to
solve multiple analogous problems. However,
there was no explicit explanation as to how
students’ pattern recognition was used in
programming or other computing tasks.

The last CT element, prediction, is a
crucial skill for professionals in computer
science and STEM domains (Bers, 2017).
In computer science, programmers need to
be able to predict an outcome from several
lines of code. In STEM fields, the ability to
predict enables individuals to draw inferences
and anticipate what will happen based on
the collected data. For example, scientists
can predict when storms will hit a city based

on weather data. Existing literature has also
considered prediction as a major component
of CT. However, there is a lack of empirical
study with a focus on investigating K-12
students’ prediction in CT contexts (Sengupta
et al., 2013).

According to our review of the existing
literature, the research on prediction remains
at the conceptual level, while research
on the other skills is in connection with
computer programming education. As many
scholars have argued, CT education should
be broadened to develop students’ ability
to apply CT for solving problems in other
contexts, such as STEM fields, rather than
being limited to training programmers (Caeli
& Bundsgaard, 2020; Roman-Gonzalez et
al., 2017). Furthermore, the majority of the
existing empirical studies inspected only
one CT sub-skill (e.g., Chao, 2016; Zhao &
Shute, 2019). Despite those results providing
an understanding on how students exercised
a specific cognitive skill, further studies are
called for to explore the interactions among
CT skills. CT entails the interaction of
multiple elements (e.g., Grover & Pea, 2013;
Shute et al., 2017) and the effects of individual
skills may interact with each other and affects
overall CT ability. Thus, our study aims to
explore CT sub-skills are present in students’
problem-solving process and the possible
interactions among the different CT sub-skills.

Collaboration of Computational Thinking

Social interactions are central to the
development of CT ability (NRC, 2010).
Collaboration allows students to engage
in active and constructive learning while
problem-solving. Working in a team allows
individuals to “develop representations,
debug processes, and so on, resulting in a

31Volume 14, No. 1, October, 2021

collaborative process of discovery that is
richer than that of any single individual”
(NRC, 2010, p. 27). Group work is one of the
common instructional activities that teachers
use in CT education, particularly programming
education (Bower et al., 2017). Pairs are able
to detect any errors early, strengthen their
understanding of knowledge, and present
multiple perspectives to solve problems
(Iiskala et al., 2011; Manlove et al., 2006).
Recognizing the benefits of collaborative
problem-solving, numerous studies compared
programming done alone with programming
done with partners at both college and K-12
levels. They found that students learned better,
and with more enjoyment, when engaging
in pair programming (Zhong, et al., 2016).
One study on student discourse in a game-
based, CT-focused environment revealed that
conversations among team members occurred
frequently, as they figure out strategies to
advance their moves in the game (Berland &
Lee, 2011). Student collaborative problem-
solving was also effective for developing
graphics through coding (Doleck et al., 2017).
These studies show the effectiveness of
collaborative problem solving.

Building upon these promises, this study
seeks to further our knowledge about CT by
exploring how students exercise CT-related
cognitive skills during collaborative problem-
solving processes. To this end, two research
questions guide this investigation:

1. What is the pattern of students’ CT
sub-skills that are involved in the collaborative
problem-solving process?

2. What are the trajectories of CT skills

exercised over the course of collaborative
problem-solving process between pairs?

Methodology

Research Design & Participants

For this case study, we reached out to
the STEM Integration Coordinator at a local
school district in the southeastern United States
to recruit 5th grade teachers to implement a
STEM-integrated robotics curriculum, Danger
Zones, in the classroom setting. Students were
10-11 years old, on average. They were placed
into pairs to collaborate for problem-solving
tasks. With the nature of case study, three
pairs of volunteering students were selected
to be the focus of our investigation, with two
pairs consisting of a boy and a girl and a pair
of boys. Each pair’s collaborative problem-
solving behaviors were video recorded.

Curriculum Design

T h e S T E M - i n t e g r a t e d r o b o t i c s
cu r r i cu lum, Danger Zones , r equ i r ed
students to collaboratively solve two tasks
using knowledge from STEM domains,
programming skills, and different CT cognitive
skills. Students were introduced to a scenario
where they were charged to design a robot to
assist scientists in collecting three research
samples in an active volcanic area (See Figure
1). The curriculum lasted two weeks and
consisted of ten 50-minute sessions. A detailed
description of the curriculum is presented in
Figure 1.

32

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

Figure 1. Learning activities in a STEM-integrated robotics curriculum

33Volume 14, No. 1, October, 2021

Data Collection and Coding Scheme

The data were the audio files from the
four-hour long conversations recorded for
each of the three pairs during Lessons Three

to Five. Conversations were first transcribed
verbatim before being coded according to the
six CT sub-skills that we found to be common
in the existing literature. These skills are
defined, with an example for each, in Table 1.

Table 1. Coding scheme of CT sub-skills

Code Definition Example Quotes

Abstraction Involves hiding unnecessary or
irrelevant details to focus only on
the most relevant information to
simplify complexity.

N/A

Algorithmic
thinking

Involves the construction of a set
of steps to solve a specific problem.
Algorithms are used to calculate
speed rate, to plan the route, or to
write a program that could tell the
robots to move exactly as we want
it to.

“[The robot] turned not enough. How about
we add something on [the delay chip].”

“We need to set up .25 because we’re going
to from here to be there.”

Debugging A process of figuring out
unexpected outcomes. In computer
science, debugging is viewed as a
specific process of detecting errors
while programming.

“Oh we forgot to put time there!”

“[The robot moved] a little too far.”

Pattern
recognition

A process of identifying the
common features of a problem, and
then retrieving and reusing prior
solutions to resolve analogous
problems.

“Put the same time [in programming]. Just
use the same time [setting].”

“You should know, we used 3.4 [to have
the robot move certain distance], this one is
still [3.4].”

Problem
decomposition

A process of breaking a
complicated problem into smaller
and more tractable pieces that
are easier to deal with (e.g.,
modularizing).

“Now we need to turn. Then go left. Then
we need to go forward.”

Prediction The ability of envisioning a
particular action of the robot
based on what students have
programmed.

“Then it [the robot] would just go forward,
go backwards, go forward again, turn right
and then go forward.”

“We stopped right. Then we stopped right
there, then we turned to the left, and now
we need to go forward for one second.”

34

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

Data Analysis

After examining the transcripts, the
data were analyzed using content analysis to
investigate the frequencies of the different
s ix ski l l s of CT occurr ing wi thin the
conversations. The coding process involved
two researchers. They first reviewed the
transcripts with the coding scheme in
mind. Prior to coding, they discussed and
reached consensus on the unit of analysis by
segmenting the conversations produced by
each pair of students to each testing event
(Chi, 1997). A testing event is defined as the
time when the students began to interpret the
problem, generated a solution, programmed
using the provided software, to the time when
they were ready for testing the programming
at the testing station. Using this approach, the
data could be coded, within the context, as
an event (Chi, 1997). Each event could entail
multiple codes that represent several sub-skills
of CT produced by each participant.

The cod ing inc luded two rounds ,
individual and then collective. During the
first round, each researcher individually read
through the transcripts to become familiar
with them. Then each researcher started
coding independently the transcripts from the
first pair of students’ conversations, event by
event, in reference to the six CT sub-skills (in
Table 1). The goal of this step was to assign
relevant codes in each event. Each researcher
reviewed the coded transcripts iteratively
until satisfied. The two coders then reviewed
both of their codes and discussed until they
reached 100% agreement. They then used
their emerging understanding to independently
code the conversations generated by the other
two pairs. The inter-rater reliability between
the two raters was 88%.

Findings

Overall Pattern of CT Sub-Skills Involved in
the Collaborative Problem-Solving Process

The most frequently observed skill was
algorithmic thinking (131), which occurred in
almost all events (Table 2). Abstraction was
the next most frequently (89) noted cognitive
skill. Given that participants were explicitly
told with all essential information of the tasks
they solved, their dialogues showed that
their focus on relevant information was on
target in each event. In contrast, prediction
was the least frequently (28) observed. We
examined the CT components evidenced in
respective lessons. In Lesson 3, there were
more conversations related to algorithmic
thinking (35) and debugging (29). This lesson
offered students their first opportunity to learn
to use the software and programming logic,
and thus they mainly adopted a trial-and-
error approach to perform Task 1. This led to
numerous debugging incidences after failing
their test of the robot. In Lesson 4, students
performed Task 2, a more complex task where
the robot were developed to traverse volcanic
areas to stop and collect three samples. Their
conversations showed increased algorithmic
thinking (51) and decreased debugging (23).
Their pattern recognition (17), decomposition
(1 4) , a n d p r e d i c t i o n (1 0) i n c r e a s e d
significantly from Lesson 3. In Lesson 5,
after reviewing an additional mathematical
concept (speed * time = distance), students
continued to exercise algorithmic thinking.
We anticipated that students would recognize
more patterns using their experiences from
Lessons 3 and 4. However, pattern recognition
(13) was evidenced only in Pair 1’s problem-
solving process. Another skill that was
exercised more was prediction, which was
evidenced in the conversations of the more
interactive pairs (1 and 2).

35Volume 14, No. 1, October, 2021

Trajectories of CT Skills Exercised Over the
Course of Collaborative Problem-Solving
Process Between Pairs

Pair 1

Ashley and Bobby were able to complete
Task 1 at the end of Lesson 3 and Task 2 at
the end of Lesson 5. Three themes emerged
from their collaborations that deserve a
closer examination. First, Pair 1 was the
most collaborative in that their conversations
contained more CT skills (190) than the other
two pairs, 75 and 35, respectively (see Table 2).

S e c o n d , w i t h t h e i r c o n t i n u e d
demonstration of collaborative problem-
solving, there were more pattern recognition
(from two in Lesson 3 to 13 in Lesson 5), and
prediction (from one in Lesson 3 to eleven
in Lesson 5), and fewer debugging exercises
(from thirteen in Lesson 3 to seven in Lesson

5) as the task became increasingly complex.
Their conversations showed that they helped
each other recognize the similarities between
Task 2 and Task 1, and then they utilized
the important principle (e.g., speed * time =
distance) to perform the ensuing task. They
also exercised more prediction by moving
their body to simulate the movement of the
robot as they read the codes on a computer
screen. This enabled them to program the
robot more truthfully to their expectations,
resulting in less debugging.

Third, their CT capacities progressively
reached an advanced level as they utilized
these capacities more efficiently in face
of the complex task. For example, their
decomposition ability was enhanced although
the frequency of decomposing practices
was about the same across three lessons. In
Lesson 3, Pair 1 decomposed a relatively

Table 2. The frequencies of CT sub-skills exercised during the collaborative problem-
solving process

CT Sub-Skills Pair 1 Pair 2 Pair 3 Across three pairs

Lesson 3 4 5 3 4 5 3 4 5 3 4 5 Total

of Events 16 10 8 12 14 10 9 6 11 37 30 29 96

of Interactions
within an Event 16 10 8 12 14 10 7 4 8 35 28 26 89

Abstraction 16 10 8 12 14 10 7 4 8 35 28 26 89

Debugging 13 9 7 10 11 12 6 3 6 29 23 25 77

Algorithmic
Thinking 18 26 24 12 15 17 6 10 3 36 51 44 131

Decomposition 5 6 8 1 3 2 2 5 4 8 14 14 36

Pattern Recognition 2 6 13 1 5 3 1 6 3 4 17 19 40

Prediction 1 7 11 1 2 4 0 1 0 2 10 15 27

Total 190 135 75 400

36

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

simple task into two steps, with the first step
being “moving forward for one square” and
second step being “making a 90 degree turn.”
However, when tasked to perform the more
complex task in Lessons 5, they were able
to decompose the task at a larger granularity
level. That is, they treated “moving forward
for two squares, turning left, and moving
forward for one square” as one step when the
robot had to repeat a similar series of moves
several times to accomplish the task.

Pair 2

Cameron and David actively collaborated
throughout the lessons. They successfully
completed Task 1. During Lesson 4, although
they were the only pair that could drive the
robot to pass three sample sites, they missed
making the robot stop at each site. Thus, in
Lesson 5, they designed the robot path and
programmed the robot all over again. They

were able to successfully stop and collect
three samples at the end of Lesson 5. When
solving Task 1, Pair 2, like the other two pairs,
engaged in numerous debugging activities
with a trial-and-error approach. In Lesson
4 and 5, they continued to demonstrate a
high frequency of debugging practices, 11
and 12. Most of their debugging behaviors
resulted from their attempts to move the robot
diagonally (see Figure 2) in order to save
travel time, rather than along the grid lines
with right angle turns. Such an approach took
algorithmic thinking (15 times in Lesson 4 and
17 in Lesson 5) to calculate the time needed
for making acute angle turns. Consequently,
they engaged in many rounds of debugging.
With their concentration mainly on figuring
out the time needed for the robot to turn at
the desired angles, they continued a trial-and-
error approach and did not decompose and
recognize the patterns as frequently as the
other two pairs.

Figure 2. Pair 2 Designed route

37Volume 14, No. 1, October, 2021

Their strategy for solving the problem was
focused on figuring out the solution for the
subsets of the problem at the micro level, such
as calculating the time needed for making
desired turns and finding ways to make the
robot stop when reaching the sample. Although
they were collaborative in completing the task
in Lesson 5, they rarely examined their earlier
problem-solving approach. They infrequently
used the previous task to help them identify
patterns (3), reflect on their knowledge in
order to decompose the task (2), and make
predictions based on the program they have
developed (4).

Pair 3

Eric and Fred demonstrated the lowest
frequency of CT cognitive skills (75) in their
collaboration, and they failed to complete
Tasks 1 and 2. Overall, Pair 3 was the least
collaborative, and talked with each other less
frequently, especially in Lesson 5. At the
beginning of Lesson 3, Pair 3 was relatively
collaborative by exercising debugging (6)
and algorithmic thinking (6). Like the others,
they adopted a trial-and-error approach to
move the robot to the designated location.
Unfortunately, their robot failed to read the
codes properly due to a technical issue. After
their teacher fixed the robot, Fred started to
disengage from the collaboration with Eric.

In Lesson 4, although Pair 3 encountered
a technical issue again, they were more
collaborative in solving the problem and were
able to collect two samples at the end of this
lesson. In particular, Fred applied CT sub-
skills, pattern recognition and algorithmic
thinking more often to help Eric solve the
problem. Their conversations demonstrated
more efforts to draw inferences from Task
1 to not only recognize the patterns (6) and
apply algorithmic thinking (10) to determine

the timing and speed setting for the robot to
reach the sample sites, but also to decompose
the task into smaller sets of problems (5). This
was the only time they showed prediction (1).
In Lesson 5, although Eric and Fred talked
with each other, most of their interactions
were not relevant to the problems, which
prevented them from making progress. In all,
their frequencies of undertaking CT practices
(24) in Lesson 5 were much lower than the
other two pairs (71 and 48, respectively).
Due to their fruitless collaboration, they did
not exercise any predictions and produced
fewer exercises in algorithmic thinking,
decompositions, and pattern recognitions in
the problem-solving process.

Discussion

Overall Pattern of CT Skills Involved in the
Collaborative Problem-Solving Process

CT-related literature unanimously discuses
that CT involves several cognitive skills at
the conceptual level (Grover & Pea, 2013;
NRC, 2010; Sengupta et al., 2013; Shute et al.,
2017; Wing, 2011). The empirical evidence
obtained from this study corroborates these
theoretical papers in that students exercised
multiple CT sub-skills as they worked out a
solution to the given problem. Additionally,
we found that some skills were applied more
than the other during students’ problem-
solving process. Among the six CT skills,
algorithmic thinking was exercised the most
frequently. The quick adoptions of algorithmic
thinking from our students is similar to that of
Grover and colleagues’ study (2015). When
students are provided with opportunities
and instructions for applying programming
rules and mathematical concepts, students
can develop algorithmic thinking and apply
it naturally to perform a task. Debugging is

38

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

another cognitive skill that is also frequently
seen in students’ problem-solving process.
Debugging dominated the problem-solving
process when students first tackled the
problem. Due to a lack of relevant experience,
students tended to rely on a trial-and-error
approach to solve the problem, which resulted
in many rounds of debugging. This result is
consistent with previous studies conducted in
a programming education context (Lye & Koh,
2014; Quaye & Dasuki, 2017). In contrast,
prediction and pattern recognition were CT
skills exercised relatively less frequently by
students in our study. This finding is in line
with the observation reported by Kwon and
Cheon (2019), that only one out of seven
participants in their study recognized patterns
during their coding process. The results
demonstrate that certain CT skills may take
more time for students to develop, such as
pattern recognition.

O u r s t u d y p r o v i d e s a n i n i t i a l
understanding of the interactions among
the identified CT skills, in contrast to the
current literature. Most existing empirical
studies examined only one CT skill, such as
algorithmic thinking in Grover and colleague’s
study (2015) and decomposition in Kwon and
Cheon (2019)’s study. We were able to notice
associations among these skills. For example,
when debugging behaviors decreased, we
observed an increase in decomposition, pattern
recognition, and prediction. This finding
sheds further light on how different CT skills
co-exist and/or interrelate with each other
in a problem-solving process. According to
Atmatzidou and Demetriadis (2016), with
more time and practices, students regardless
of gender and age will eventually develop CT
skills. The CT skills exercised by our young
participants suggest that some CT skills, such
as debugging and algorithmic thinking, are
relatively easier for students to grasp and

apply, whereas other skills, such as pattern
recognition, decomposition, and prediction,
r equ i re more p rac t i ces , accumula ted
experiences, and perhaps deliberate efforts
to develop and orchestrate in their problem-
solving process.

Trajectories of CT Skills Exercised During
the Collaborative Problem-Solving Process
Across Pairs

The results of our study showed that
students’ uses of CT sub-skills over the
course of collaborative problem-solving
process varied from pair to pair, even though
existing studies revealed that teamwork can
help students perform better and enjoy more
when solving problems (Atmatzidous &
Demetriadis, 2016; Shute, et al., 2017). With
teamwork, Pair 1 and Pair 2 successfully
completed both tasks, whereas Pair 3 did not
complete the tasks during the given time. Even
though Pair 3 failed to complete the tasks,
when the two students interacted to perform
the tasks in Lesson 4, they showed their use
of some advanced CT by moving away from
the trial-and-error approach. Overall, students
were more likely to arrive at a solution through
collaborative problem-solving. However, the
trajectories to reach the solution among group
differed. Regarding the interactions for the
two more collaborative pairs, interestingly
they produced different patterns in their use
of CT sub-skills. They both started with a
trial-and-error approach, resulting in many
debugging instances in Lesson 3. However,
their applications of debugging varied starting
in Lesson 4, with Pair 1 showing fewer while
Pair 2 exhibiting more debugging. In the
meantime, use of decomposition, pattern
recognition, and prediction started to rise in
both pairs. However, in Lesson 5, their pattern
of applying these three skills diverged, with
Pair 2 exercising more debugging behaviors

39Volume 14, No. 1, October, 2021

whereas Pair 1 utilizing significantly more
decompositions, pattern recognitions, and
predictions, which led to a more efficient and
automated problem-solving process.

Upon examining the trajectories across
pairs, we learned not only the importance of
providing students with collaborative learning
but also the need for guiding students to be
well-versed in different CT skills, particularly
those that take time to develop. As Shute and
colleagues (2017) have pointed out, many
teachers may not be trained sufficiently to
teach CT. Our study results suggest that
teachers should consider differentially
monitoring and guiding students in relation to
the development of particular CT skills.

Limitations

The first limitation of this study is limited
generalizability, as we examined the recorded
conversations from three pairs of students.
Second, qualitative analysis could not avoid
the subjective bias in the interpretation
of participants’ verbalization of thoughts,
although we put much effort in dealing with
the validity threat of observation bias while
guaranteeing the rigor and reliability of the
research. Last, our investigation was based on
the recorded conversations and participants’
think-aloud practices. There could be a chance
that their actual thought processes differed
from what they verbally expressed.

Implications for Future Research

First, we are aware of the need to further
validate the findings of this research with
a large-sample mixed method research. By
extending the sample size of our next inquiry,
we hope to increase the generalizability of
our findings and thereby extend to further
the ongoing effort to integrate CT in STEM

curriculum. In addition, future research might
consider providing intentional instruction
supporting students to develop advanced
CT skills, such as decomposition, pattern
recognition, and prediction, and conduct a
comparison study with no guidance to possibly
further younger students’ CT capacities.
Second, the task design for future research can
be improved by providing tasks simulating
real-life situations to enable the investigation
of abstractive thinking skills. When examining
our data, we found that our participants,
different from the participants in Zhao and
Shute’s study (2019), demonstrated abstractive
thinking throughout their collaborative
experience, part of the reason being that the
given tasks were specific and well-structured.
Thus, this made it easier for students to
identify the overarching goal of the tasks
and focus on the most relevant information.
For future research and practice, researchers
may want to offer real-world ill-defined
tasks coupled with additional contextual
information, such as temperatures and the
actual distance among each sample site, to
create the scenarios that require students to
apply abstraction in CT (Hong & Choi, 2019).

Conclusion

Our study aimed to uncover how students’
CT sub-skills were used when interacting
with peers to accomplish problem-solving
tasks that require the integration of STEM
knowledge. The results obtained from selected
pairs of students’ interactions showed that
pairs that are more collaborative demonstrated
more CT practices. Additionally, the different
aspects of CT practices changed as students
acquired experiences in solving the problems,
in collaborating with others, and in integrating
knowledge from different content areas. Our
findings from our in-depth examination of
different elements of CT students displayed

40

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

during collaborative problem-solving process
shed further light into our understanding of
how the different CT cognitive skills interact
to enable individuals to process their thinking
with automaticity to generate efficient
solutions.

References

Atmztzidou, S., & Demetriadis, S. (2016).
Advancing students’ computational
thinking skills through educational
robotics: A study on age and gender
relevant differences. Robotics and
Autonomous Systems, 75(B), 661-670.

B e r l a n d , M . , & L e e , V. R . (2 0 11) .
Collaborative strategic board games
as a site for distributed computational
thinking. International Journal of Game-
Based Learning, 1(2), 65-81.

Bers, M. U. (2017). Coding as a playground:
Programming and computational thinking
in the ear ly chi ldhood classroom.
Routledge.

Bower, M., Wood, L. N., Lai, J. W. M., Howe,
C., & Lister, R. (2017). Improving the
computational thinking pedagogical
capabilities of school teachers. Australian
Journal of Teacher Education, 42(3), 53-
72.

Caeli, E. N., & Bundsgaard, J. (2020).
Computational thinking in compulsory
education: A survey study on initiatives
and conceptions. Educational Technology
Research and Development, 68(1), 551-
573.

Chao, P. Y. (2016). Exploring students’
computational practice, design and
performance of problem-solving through
a visual programming environment.
Computers & Education, 95, 202-215.

Chi, M. T. H. (1997). Quantifying qualitative
analyses of verbal data: A practical guide.
Journal of the Learning Sciences, 6(3),
271-315.

Dohn, N. B. (2020). Students’ interest in
Scratch coding in lower secondary
m a t h e m a t i c s . B r i t i s h J o u r n a l o f
Educational Technology, 51(1), 71-83.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena,

41Volume 14, No. 1, October, 2021

A., & Basnet, R. B. (2017). Algorithmic
thinking, cooperativity, creativity, critical
thinking, and problem solving: Exploring
the relationship between computational
thinking skills and academic performance.
Journal of Computers in Education, 4(4),
355-369.

Grover, S., & Pea. R. (2013). Computational
thinking in K-12: A review of the state of
the field. Educational Researcher, 42(1),
38-43.

Grover, S., Pea, R., & Cooper, S. (2015).
Designing for deeper learning in a
blended computer science course for
middle school s tudents . Computer
Science Education, 25(2), 199-237.

Hong, Y.-C., & Choi, I. (2019). Relationship
between student designers’ reflective
thinking and their design performance
in bioengineering project: Exploring
reflection patterns between high and low
performers. Educational Technology
Research & Development, 67(2), 337-
360.

Iiskala, T., Vauras, M., Lehtinen, E., &
Salonen, P. (2011). Socially shared
metacognition of dyads of pupils in
collaborative mathematical problem-
s o l v i n g p r o c e s s e s . L e a r n i n g a n d
Instruction, 21(3), 379-393.

ISTE and CSTA (2011). Operational definition
of computational thinking for K-12
education [PDF document]. Retrieved
from https:/ /www.iste.org/explore/
articleDetail?articleid=152

Kwon, K., & Cheon, J. (2019). Exploring
problem decomposition and program
development through block-based
programs. International Journal of
Computer Science Education in Schools,
3(1), 3-16

Lye, S. Y., & Koh, J. H. L. (2014). Review on
teaching and learning of computational

thinking through programming: What
is next for K‐12? Computers in Human
Behavior, 41, 51–61.

Manlove, S., Lazonder, A. W., & de Jong,
T. (2006) . Regula t ive suppor t for
collaborative scientific inquiry learning.
Journal of Computer Assisted Learning,
22, 87–98.

National Research Council. (2010). Report
of a workshop on the scope and nature of
computational thinking. Washington, DC:
National Academies Press.

Quaye, A. M., & Dasuki, S. I. (2017). A
Computational approach to learning
programming using visual programming
in a developing country University. In P.
Rich, & C.B. Hodges (Eds.), Emerging
research , p rac t ice , and po l icy on
computational thinking (pp. 121-134).
Springer.

Román-González, M., Pérez-González, J. C.,
& Jiménez-Fernández, C. (2017). Which
cognitive abilities underlie computational
thinking? Criterion validity of the
computational thinking test. Computers in
Human Behavior, 72, 678-691.

Sengupta, P. , Kinnebrew, J . S. , Basu,
S., Biswas, G., & Clark, D. (2013).
Integrating computational thinking with
K-12 science education using agent-based
computation: A theoretical framework.
Education and Information Technologies,
18(2), 351-380.

Shute, V. J., Sun, C., & Asbell-Clarke, J.
(2017). Demystifying computational
thinking. Educational Research Review,
22, 142-158.

Weintrop, D., Behest, E., Horn, M., Horton,
K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking
for mathematics and science classrooms.
Journal of Science Educat ion and
Technology, 25(1), 127-147.

42

Journal of Educational Technology Development and Exchange

Volume 14, No. 1, October, 2021

Wing, J. M. (2011). Research notebook:
computational thinking-what and why?
Retrieved from https://www.cs.cmu.edu/
link/research-notebook-computational-
thinking-what-and-why

Zhao, W., & Shute, V. J. (2019). Can playing a
video game foster computational thinking
skills?. Computers & Education, 141,
103633.

Zhong, B., Wang, Q., & Chen, J. (2016).
The impact of social factors on pair
programming in a primary school.
Computers in Human Behavior, 64, 423-
431.

Declaration of Interest Statement

Authors declare that they have no conflicts
of interest. This study has been approved by
the IRB of the University of Georgia (IRB
Approval #: 000001432) and informed consent
was obtained from all participants in the study.
The datasets used in this study are unavailable
due to privacy and data protection concerns.

	Examining Trajectories of Elementary Students’ Computational Thinking Development Through Collaborative Problem-Solving Process in a STEM-Integrated Robotics Program
	Recommended Citation

	Examining Trajectories of Elementary Students’ Computational Thinking Development Through Collaborative Problem-Solving Process in a STEM-Integrated Robotics Program
	Cover Page Footnote

	Examining Trajectories of Elementary Studentsâ•Ž Computational Thinking Development Through Collaborative Problem-Solving Process in a STEM-Integrated Robotics Program

