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ABSTRACT

The paper presents an algorithm for the computation of Cournot-Nash

economic equilibria. The method is based on formulating the equilibrium

problem as that of finding a solution to a nonlinear complementarity

problem, solved by sequential linearization and Lemke ' s algorithm.

Conditions for local and global convergence are developed and the

technique is applied to homogeneous, segmented and differentiated product

markets

.





I. INTRODUCTION

The computation of partial and general competitive equilibria has

been a field of enormous empirical importance as well as a source of

diverse and fundamental theoretical research questions. However,

aside from the case of a pure monopolist, the question of the computa-

tion of equilibria under conditions of imperfect competition has been

largely neglected.

The purpose of this paper is to present an algorithm for the com-

putation of Cournot-Nash (or, more simply, Cournot) equilibria. The

method is based on formulating the equilibrium problem as that of

finding a solution to a nonlinear complementarity problem (CP). We

solve this CP by Newton's method whereby the CP is sequentially

linearized and the resulting linear complementarity problems (LCP)

solved using Lerake's algorithm.

This sequential LCP-algorithm (SLCP) has been used before in con-

texts other than the computation of imperfectly competitive equilibria.

Specifically, Josephy (1979) and Friesz e_t^ al_ (1983) have solved com-

petitive partial equilibrium models and Mathiesen (1985) has solved

general equilibrium models using this method.

We shall demonstrate global convergence to a unique equilibrium.

Assumptions on first, second and third derivatives of the profit func-

tions are required. Roughly speaking, the condition that profits peak,

yields existence; strict concavity of profits provides uniqueness as

well as local convergence; and finally, concavity of marginal profits

guarantees global convergence.
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In the next section of the paper we review conditions for the

existence of a unique equilibrium to the Cournot model. Then we

proceed to prove convergence of the SLCP algorithm. In the subsequent

sections we apply SLCP to a numerical example and then extend the

method to other markets with Cournot-type producer behavior.

II. AN ALGORITHM FOR COMPUTING COURNOT EQUILIBRIA

A. Cournot Equili brium : Existence and Uniqueness

Let there be N firms, each providing the same good. Denote the

output of the ith firm by q ,
produced at cost C (q ). The firms face

1 i i

a market inverse demand function P(Q). Profits for the ith firm are

then given by

ir.(q.) = P(Q)q. - C.(q.) (1)11 i 11
N

where Q = S q . •

1=1
i

The Cournot equilibrium is defined in the conventional manner:

Def

n

: A Cournot equilibrium is a vector of outputs q*, such that

vAq*) = max tt. (q*,. .. ,q*_
L

, q., q*
+1

, . .
. ,q* ) , i = l,...,n

q
i

In other words, holding output of other firms constant, each firm can

do no better.

We will assume inverse demand and costs are twice continuously

2
dif f erentiable and that profits are concave (pseudoconcavity would

suffice) with respect to own output. Thus, first-order stationarlty

conditions for a profit maximum are necessary and sufficient for a
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global (not necessarily unique) maximum of profit. Consequently, the

set of Cournot equilibria is the same as the set of solutions to the

following first order conditions for a profit maximum:

3tt. N N

f = - —-- = C '(q.) - P( Z q.) - q.P'( E q.) > 0, (2a)
H
i j-1 j=l

3tt

i q. =0, and (2b)
3q.

M
i

q > 0, for i = 1,... ,N. (2c)

Eqn (2) is a complementarity problem which can be more compactly

written as

CP(f): Find q e R such that

f(q) > 0, q > and q f(q) = 0, (3)

N N T
where f: R > R and denotes transpose. We can now formalize the

relationship between Cournot equilibria and solutions to complemen-

tarity problems:

Lemma 1: If profit functions are twice continuously dif f erent iable

(C ) and pseudoconcave with respect to own output, then q* is a Cournot

equilibrium if and only if q* is a solution of the complementarity

problem given by (3).

Proof: Straightforward application of necessary and sufficient condi-

tions for maximization of a pseudoconcave function.
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In the remainder of this paper we will take advantage of this cor-

respondence and focus on solutions to the complementarity problem (3).

The following two results regarding the existence and uniqueness of

solutions to CP are known:

N N
Lemma 2 : (Karamardian, 1972): Let f: R * R be continuous.

N
Assume there is a nonempty compact set K C R such that for any

>j

x e R \ K, there exists a y e K with (x-y)f(x) > 0. Then there

exists a solution to CP(f).

The assumption on f is that eventually f(x) > 0. Observe that f

may be positive for all x _> 0. If so, K. = [0| and x = is the solu-

tion.

Lemma 3: (More, 1974): If f is continuously diff erentiable and

_, . 3 N
Vf(x) is a P-matrix for all x e R , then there exists at most one

solution to CP(f).

In order to assure that a Cournot equilibrium exists, we introduce

the notion of a bound on industry output.

Def

n

: Industry output is said to be bounded by Q > if output La

excess of Q from any producer implies that the marginal profits of all

producers are negative.

The definition merely states that for some industry output level,

no firm Is at a profit maximum and that further expanding the industry

will not Improve profits. That is, marginal profits become negative

and the functions f(q) become positive.
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Based on Lemmas 1 - 3, we can state conditions under which a unique

Cournot equilibrium exists:

Theorem 1 : Assume that

2
i) inverse demand and costs are C

,

ii) industry output is bounded, and

iii) profits are strictly concave for all q > 0.

Then there exists a unique Cournot equilibrium.

Proof: Let f be the vector of negative marginal profits. Since prof-

its are strictly concave, the Jacobian of f is positive definite and

hence a P-matrix. Thus, by Lemma 3 there is at most one solution to

(3). Because industry output is bounded, Lemma 2 implies that a solu-

tion exists (with y in the Lemma being any point each of whose coordi-

nates exceeds the industry bound). Because profits are strictly

concave with respect to own output, the Cournot equilibrium is unique

by Lemma 1.

A special case is where the Jacobian matrix of f has a positive

dominant diagonal and thus is a P-matrix. In this case the interpreta-

tion is that if own-effects on marginal profits dominate cross-effects,

an equilibrium will be unique. It should be noted that theorem 1 is a

sufficient condition for uniqueness and can be considerably relaxed

(see Kolstad and Mathiesen, 1987). However, negative definiteness of

the Jacobian will be used to prove local convergence of the SLCP algo-

rithm applied to the Cournot model, so it is retained here.
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3. The Algori thm

The SLCP algorithm applied to the function f involves linearizing

f at some initial point x and solving the resulting linear complemen-

tarity problem. f is then re-linearized at this solution and the

process is continued until convergence is achieved. Eaves (1978) and

Josephy (1979) were the first to suggest this method, and prove local

4
convergence based on a norm-contraction approach.

We will also establish local convergence based on the norm-

contraction approach, and make some observations as to why this result

and the norm-contraction approach in general, do not seem to be helpful

in proving global convergence when applying SLCP to the Cournot model.

Then we will state our global convergence theorem based on the monotone

approach.

Let us define the linearization of f at y as the first order Taylor

expansion:

Lf(x|y) = f(y) + Vf(y)(x - y). (4)

The linear complementarity problem (LCP(f|y)) is

N
Find x e R such that

Lf(x|y) = q + Mx _> 0, x ^ 0, (5a)

T
x (q + Mx) = 0. (5b)

where q = [f(y) - Vf(y)y] and M = Vf(y). A vector x is said to be

feasible to LCP (f|y) when it satisfies (5a).
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The SLCP algorithm

N
Step 0. Stipulate x e R .

k k -

1

Step k (k=l,2,...) Compute x , the solution to LCP(f|x )

Thus the solution to the linear complementarity problem for £ at y

is the solution to CP(Lf (x |y ) ) . It should be pointed out that even if

there is a unique solution to CP(f), there may be some y for which

there is no solution or multiple solutions to CP(Lf (x |y ) ) . If the

Jacobian matrix of f is everywhere a P-matrix however, then the

Jacobian of each linearization of f is also a P-matrix. Thus, by

Lemma 3 there will never be more than one solution to CP(Lf (x |y ) )

.

Furthermore, since in our case the Jacobian matrix of f is positive

definite, Dorn's theorem (Karamardian, 1969) implies existence (as

well as uniqueness) of solutions to CP(Lf (x |y ) ) ) . It is also known

that Lemke's algorithm computes the solution to the LCP in this case;

see Lerake (1965) or Cottle and Dantzig (1968).

Lemma 4: (Pang and Chan, 1982): Let K be a nonempty closed and

N N N
convex subset of R . Let f: R •> R be continuously dif f erent iable.

Suppose that sc* solves (3) and that Vf(x*) is positive definite. Then

a) there exists a neighborhood of x* such that if the initial iterate

. , , r k, „ _,, _, i
k-1,

x is chosen there, the sequence {x } of solutions to CP(Lf(x|x ))

is well defined and converges to x*. Moreover, b) if Vf is Lipschitz

6 k
continuous at x* then {x } converges quadrat ically to x*.

Based on Lemma 4 we can state our local convergence result for

SLCP applied to the Cournot model.



Theorem 2: Let q* solve (2). Assume that each firm's profit,

2
TT.(q) is C and locally concave at q*. Then there exists a neighbor-

hood of q* such that when the initial iterate q is chosen there, SLCP

computes a sequence {q } converging to q* (quadrat ically if V u is

Lipschits continuous).

2
Proof. Concavity of it in a neighborhood of q* implies V ir(q*) is

2
negative definite. Vf(q*) = - V ir(q*) is positive definite; thus

Lemma 4 applies.

Pang and Chan also provide a global convergence result for the

SLCP process based on norm-contraction, their corollary 2.10. For

convergence over a set K, this requires

1) that 7f(x) be positive definite for all x e K,

2) the existence of a positive definite matrix G, such that

Vf(x) - G is positive semi-definite for all x e K, and

3) for all x, y e K

HVf(x) - Vf(y)ll < II G II (6)

The problem in applying their result to the Cournot model is that

these conditions are overly strong. A few examples will illustrate

our point. Let

f(x) = x
2

- 1, < x < 2, (7)

whose solution is x* = 1. SLCP converges to this solution for any

x e (0,2). There is, however, no G for which both conditions 2 and 3

are simultaneously fulfilled.
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lonsider aow the modified problem

e,(x) = x - i, o < x < i,

f(x) =
{

l
(8)

f
2
(x) » (x-l)(3-x), 1 <_ x < 2.

The solution to this is also x* = 1. We note that f.(D = f-d) =

and f '(1) = f '(1) = 2; hence f is continuously dif f erentiable. It

is easily verified that SLCP converges for x e (1/3, 5/3), cycles

between the solutions 1/3 and 5/3 when x is at either end point, and

diverges for x t [1/3, 5/3]. Certainly, requirements 2 and 3 are not

both met for, say, K = [0.3, 1.7] and y = 0. 3 and x = 1. Note that

over K, f takes all values in [0.6,2]. Thus any G that satisfies

condition 2 must be in [0,0.6]. But (6) requires

112(1) - 2(0.3)11 = 111.411 _< 161

which cannot hold for G e [0,0.6].

Essentially, the requirements of 1) - 3) do not address all criti-

cal features of the function f. Both (7) and (8) have f' > for

x e K; however, what seems to be the issue is the behavior of f".

This is exactly what is considered by the monotone approach which

2
requires that f be convex and hence that V f be positive definite.

This condition rules out (8) where f is non-convex and predicts global

convergence for (7) where f is convex.

Observe that the convexity of f is also too strong a requirement.

To see this consider a third example

f (x) = (x-l)(3-x), < x <^ 1

f(x) =
{

l
(9)

f
2
(x) =x-l, l^x<2.
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The solution is x* = 1. f is continuously dif f erentiable and again it

is easily verified that SLCP converges for any x e (0,2) (or in (0,*)),

The graphs of functions (7) - (9) are shown in Figure la - lc respec-

tively.

Our global convergence result is based on Pang and Chan (1982,

theorem 4.2). To state their result we recall some matrix definitions.

Let M be a square real matrix. Then M is said to be a Z-matrix if its

off-diagonal elements are nonpositive, and, as defined earlier, a P-

matrix if its principal minors are all positive definite. If M is both

Z and P it is said to be a K-matrix. M is said to have a positive

dominant diagonal if q.. > for all i and
ii

a. . > E la.. for all i. (10)

If M has a positive dominant diagonal then it is positive definite. M

has a negative dominant diagonal if -M has a positive dominant diagonal

N N
Lemma 5: (Pang and Chan, 1982): Let f: R -* R' be convex and

dif f erentiable. If there exists a K-matrix X such 7f(x) X is Z for all

x feasible to (3), then there exists a well defined sequence (x } where

k k — 1 k
each x solves CP(Lf(x|x )), such that {x } converges to some solu-

tion of CP(f) for any feasible x .

In order to apply this lemma to our Cournot model, we shall assume

that f, defined in (2), is a convex function; and that there exists a

K-matrix X such that Vf(q)X is Z for all feasible q.

Our assumption that f nC'-P-P'q is convex obviously holds
i i i

if both C ' and -(P + P'q.) are convex. But our assumption also allows



-11-

either marginal cost or marginal revenue to be non-convex as long as

the other is sufficiently more convex.

Note that A = Vf(q) has diagonal elements a = C " - 2P ' - P"q
il i i

and off-diagonal elements a.. = -P '
- P"q . for all j * i. Construct X

to have diagonal elements x. .
= N - 1 + e and off-diagonal elements° ii

x = -1 for all j * i. X is obviously Z, and for e > we have

x..=N-l+e> Z Ix. I
= N - 1, which implies that X is diagonally

j*i
dominant. X is then positive definite; hence it is a P-matrix. Thus

X is a K-matrix.

Now consider the matrix B = Vf(q)X and its off-diagonal elements

by. j * i=

b.. ~(C "-2P'-P"q ) + (N-2)(P'+P"q ) - (N-l+e) (P '+?"q )
ij i i i l

= -C." + P' - e(P'+P"q.). (11)
l l

We can reasonably assume demand is downward sloping: ?' < 0. Over a

compact set for quantities, one can choose a positive e small enough

that the third terra becomes unimportant; thus b. . « -C .

" + P' which is
i.j i

negative if C." < P'. That is, marginal costs may be downward-sloping,

but not too much. Certainly, with C " > and P 1

< 0, the typical
i

case , then b. . < 0.

Theorem 3. Assume that

2
i ) profits (tt . ) are C

,

ii) industry output is bounded,

iii) marginal profits (defined in eqn 2) are concave, and

iv) the Jacobian of marginal profits has a negative dominant diagonal
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k k
Then there exists a well defined sequence {q } where each q solves

k-1 k
CP(Lf(q|q )), such that {q } converges to the unique solution of CP

for any q feasible (at least one of which exists).

Proof: As shown above, construct the matrix X with diagonal elements

x.. N — 1 + e , and off-diagonal elements x. .
= -1. Then the matrix

X is K. To apply the Lemma, we must show that off -diagonal elements

N
of Vf(x)X are nonpositive for all q e R , not just over a compact set

i.e., that eqn (11) is nonpositive for all q. From positive diagonal

dominance of A = Vf(q), we have for all i, q, and N _> 2:

C " - 2P' - P"q > (N-l) |P'+P"q I > -(1-e) (P '+P"q ) (12a)
i li i

for < e < 1. Rearranging terras yields

C " - P' - e(P'+P"q ) > 0. (12b)
i i

Thus frora convexity of f, lemma 5 tells us that the process converges

to a solution; frora positive diagonal dominance of the Jacobian we

know that profits are strictly concave and thus that this solution is

the unique equilibrium of the Cournot raodel (frora Theorem 1 and Lemma

1).

This theorem gives a restricted form of global convergence: start-

ing at any feasible point, global convergence is assured. The assump-

tion that industry output is bounded gives a natural feasible starting

point: a vector of outputs for which all marginal profits are non-

positive. Two other significant restrictions of the theorem are that

marginal profits be concave and the Jacobian of marginal profits has a
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negatLve dominant diagonal. Diagonal dominance implies that own-

effects on marginal profits dominate cross-effects. So if everyone

raises output equally, the change in marginal profits from increasing

own-output dominates the change in marginal profits from the actions

of other producers.

The concavity of marginal profits is probably the most severe

restriction. Recall that marginal profits are the sum of marginal

revenue and negative marginal costs. Negative marginal costs will

typically be concave, even with increasing returns. Marginal revenue

may or may not be concave. Concave demand yields concave marginal

revenue. A. constant elasticity of demand yields convex marginal reve-

nue and thus possibly non-concave marginal profits.

111. NUMERICAL EXAMPLE AND ECONOMIC INTERPRETATION

Consider an oligopoly with five firms, each with marginal cost

f unct ions

a.

C. ' = c. + (q./L.) , i - 1,... ,5.
l l 11

Table 1 lists the parameters of these functions. The inverse demand

curve is given by

P(Q) = (5000/Q)
6

where 8 1/1.1.

Murphy et_ al (1982) presented this example and Harker (1984) also used

it to illustrate his algorithm. We observe that for i = 1, 2, 3, f.

are concave. Hence theorem 3 does not apply so we are not assured of
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convergence. For the sake of comparison, however, the SLCP-algor Lthrn

was initiated at q (10, 10, 10, 10, 10), as reported by Murphy et al

00

and 'darker. As seen from the last column of Table 2 (L norm), good

convergence was achieved in five iterations. Observe that because of

the concavity of functions f., SLCP computed a raonotonically increasing

sequence {q }

.

Obviously a full comparison of the computational effort of each of

these algorithms involves more than an iteration count and one example.

It is interesting to observe the well known fact that SLCP converges

dramatically better than Harker's diagonalization (relaxation) algo-

rithm near the equilibrium, but not necessarily so far away from the

equilibrium. A combination of these two iterative schemes would prob-

ably outperform either.

IV. APPLICATIONS

The homogeneous product Cournot model where quantities are deci-

sion variables is a standard textbook model that can be extended in

several directions. We will consider two such extensions: a spatial

or segmented homogeneous product market and a differentiated product

market. These models can be solved by the algorithm of the previous

section under essentially similar conditions. In this section we

describe these models and develop an economic interpretation of their

assumpt ions

.

A. The Homogeneous Product Segmented Marke t Cournot Mode

1

In this application the N firms sell their product in M different

segments of the market. The segmentation may be on the basis of a
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nuraber of criteria, such as geographic location or consumer group. It

is assumed that these segments are completely separated from each other

and that there are no possibilities of arbitrage among segments. Hence

the Cournot equilibrium will typically imply discriminatory pricing.

Major features of this model date back to Enke (1951) and Samuelson

(1952) and are perhaps best known through Takayama and Judge (1971),

and a Long series of applications to a wide range of industries. All

these models of competitive equilibrium are cast as optimization models

where generally supply and demand are either fixed or step (LP-models)

or described by linear functions (QP-models). MacKinnon (1976) allows

for nonlinear supply and demand functions and uses a fixed point algo-

rithm to compute the equilibrium.

Recently the behavioral assumption has been modified to that of a

Cournot-Nash strategy. In these applications (Harker, 1984; Kolstad

and Abbey, 1984; Xolstad and Burris, 1986; Lont and Mathiesen, 1984;

and Okuguchi, 1983), the complementarity approach is generally followed,

but using different iterative processes. Salant (1982) and Murphy

et_ al_ (1982) find an equilibrium through a sequence of optimization

problems

.

Assume there are N firms and M segments. For firm i and segment j

let

q., denote the quantity sold,
J-j

M

denote the cost function for firm i, andC,( E q. .)
1

J-l
1J
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P.(Q.) denote the inverse demand function for segment j, where
J J

N

Q, - S q..

Finally, let q denote the vector of all quantities; i.e., q =

. . . ,q ,q 9
, . . . ,q ). Profits for the ith firm are then

M M

TT.(q) = Z P.(Q.)q. .
" C.( Z q. .),

1
! J J L J I . , ij

J=l J=l

Cqu .q21 .

(13)

and the first-order conditions for a profit raaximun are

3tt. M N N
-~- =C.'(Eq..)-P.(lq..)-q..P.'( Jq,.))0,
9q

ij
L

j-1
IJ J 1-1 1J 1J J 1-1

IJ
" (14a)

3tt.

t— • q, .
= 0.

9q. .

M ij
(Hb)

q. > 0. (14c)

We make several assumptions about the market

Assumption SI. Inverse demand functions P.( # ), j=l,...,M and cost
r_

j

2
functions C.(»), i=l,...,N are C .

Assumption S2. Industry output is bounded,

Assumpti on S3 . Marginal profits are concave,

Finally, consider the Jacobian of the negative marginal profit

f unct ions

:
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J - Vf - - 2
V -n

=

A'

i

D

A 2
AD ]

LM
/

(15)

where Che matrix A has diagonal elements C." - 2P .

'
- q..P." and off-

J i J ij J

diagonal elements -(P.' + q..P.") and where6
J ij J

D =

C
2

*

\

Observe that each A , ignoring the index j, is equivalent to the
J

Jacobian of the negative marginal profit functions of the nonsegraented

market model.

Assumption S4. The (NxM) x (NxM) matrix J given by (15) has a positive

dominant diagonal:

C " - 2P ' - q P " > (N-l)l(P '+q P ")] + (M-1)|C " I for all i.
i j lj J j ij j i

Compared to the nonsegraented market model, the last element

(M-1)|C."| is added. This is a stricter, though natural extension of

positive-def initeness. The feedback effects on a firm's marginal

profits from selling in segment j are now both from its (N-l) competi-

tors in segment j and from its own selling in the (M-l) other segments.

Theorem 4 . Under assumptions SI - S4, the sequence {q }
generated

by SLCP converges to a unique equilibrium q* for any feasible q .
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Proof: Parallels that of theorem 3.

B. The Differentiated Product Model

In this application, we consider N firms, each selling a similar,

though not Identical product; that is, each firm has Its own product

(or "brand" of a product). As the products are not perfect substitutes

for one another, it makes sense to talk about demand for a given firm's

product, and each firm may charge a different price. Let p = (?.,•••,

p ) be the vector of prices obtained by each firm and q = (q ,,..,q )
N IN

their quantities.

The demand function of the ith firm Is d.(p). It is assumed to be

2
C and satisfy gross subs

t

itutabllity ; i.e., its first derivatives

satisfy d < 0, d > 0, and Id > E Id I. The interpretation is
iL ij ii ... ij

that demand for product L decreases when its price is increased; it

increases when some other price is increased; and when all firms in-

crease their prices by an equal amount, demand decreases.

1 N
Lemma 6 . Let the demand function be d(p) = (d (p),...,d (p)) with

Jacobian D(p). Assume D(p) has a dominant negative diagonal and that

-D(p) is a K-matrix. Then the inverse demand function p = d (q) = P(q)

exists and its first derivatives are all non-positive.

Proof. Since D(p) has a negative dominant diagonal, it is negative

definite, and thus nonsingular so the inverse exists. The signs on

the derivatives follow from the fact that the inverse of a K-matrix is

nonnegative.
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As before, let C.(q.) denote the cost function of the ith firm.
1 1

The profit function of this firm is

tt. p .(q)q. - c.(q.),11 1 11 (16)

and the first-order conditions for a profit raaxiraun are:

9tt.

-T*" c -'^,) " (Pt(q)q. + p.) > o,
9q. l i l l l

_ (17a)

3tt.

--=-* q. - 0,
3q .

n i
(17b)

q. 2 0, (17c)

where superscripts on P. indicate differentiation.
l

The Jacobian of the negative marginal profit functions Vf(q) has

in this case diagonal elements C " — 2P - P q and off-diagonal (i,j)
i i i i

elements -P"? - P 1J q . .

l 11

Assumpt ion Dl » Inverse demand functions P.( # ), i=l,...,N and cost

2
functions C .(•), i-l,«..,N are C .

Assumption D2. Industry output is bounded.

Assumption D3 . Marginal profits are concave.

As sumption D4 . The (NxN) matrix Vf(q) of negative marginal profits

has a positive dominant diagonal. That is, for i=l,...,N

1. C " - 2P^ - P*q > 0, and

2. |C " - 2P
1

- P
U

q I > Z |P
j + P

ij
q

i i ii ... ' i ii
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Theorem 5 . Under assumptions Dl - DA, the SLCP algorithm con-

verges to a unique equilibrium q* for any sequence {q }
generated by

the feasible q .

Proof: Parallels that of Theorem 3.

V. CONCLUSIONS

The basic purpose of this paper has been to present an algorithm

for finding Cournot-Nash equilibria and demonstrate conditions for

global convergence of the algorithm. Within this context, we examined

three generic classes of markets: homogeneous products; homogeneous

product, segmented markets; and differentiated products. Clearly,

there are other types of markets to which the algorithm can be applied

but which are not considered here. Furthermore, it may be possible

to weaken the conditions of Theorems 3-5 so that stronger convergence

results may be obtained.
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FQOTNOTES

Recent exceptions include the work of Murphy e_t_ a_l (1982) and

Harker (1984) for computing Cournot equilibria, and Salant (1982) for

computing Cournot equilibria in the international oil market.

2
Recall that f is pseudoconcave on X C Rn if (x^~X2 ) Vf (X2) _>

implies f(x^) _< f(x2) for any x^ , X2 £ X.

3
A. is a P-matrix if all of the principal minors of A are positive

definite.

See also Pang and Chan (1982) who establish both local and global

results Eor this and other algorithms using norm-contraction as veil
as other approaches.

See Mathiesen (1987).

The function g is Lipschitz continuous if there is a 8 such that

for all x and y, llf(x) - f(y)ll < 3 it x - y II

.

Frequently the definition of diagonal dominance allows scaling of

the matrix before imposing (10).
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TABLE 1 PA.RAM:ETSRS OF MARCJINAL COS'r FUNCTIONS

Firm i c L
i

a
i

1

2

3

10

8

6

5

5

5

1/1.2
1/1.1
1

4

5

6

2

5

5

1/0.9

1/0.8

TABLE 2 ITERATES OF SLCP

Iteration q
l

q
2

q
3

q
4

q
5

A*

10 10 10 10 10 49.45
1 16.648 17.937 19.111 20.139 20.943 21.41
2 25.191 29.207 32.241 33.943 33.920 6.67

3 33.967 39.191 41.837 41.639 38.780 1.11
4 36.815 41.736 43.664 42.643 39.174 0.038

c

5 36.9324 41.8181 43.7065 42.6593 39.1790 3.8x10 :

6 36.9325 41.8182 43.7066 42.6593 39.1790 9.5x10
'

*A
K

= max {|f.(q
K
)]}



(a): Eqn (7)

(b): Eqn (8)

(c): Eqn (9)

3 -

-1

-2 -

-3

Fig. 1: Plots of Eqn. 7-9
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