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Abstract: Widely used for modeling biological fluids flows—in particular, blood vessel flows—
a Casson flow is studied in a symmetric channel for which the aspect ratio enables one to use
the lubrication approximation. Two flow driving conditions are prescribed: inlet–outlet pressure
difference and peristaltic oscillations of the vessel walls. In both cases, starting from mass and
momentum balance and using lubrication approximation, we investigate the conditions to be imposed
on the driving mechanisms so that the inner plug does not come in touch with the walls. The study
of the peristaltic flow is of great importance in view of its applications in physiology (including
microcirculation applications).

Keywords: lubrication; non-Newtonian fluid; free boundary problems

1. Introduction

During the past several decades, slurries, pastes, rude oil, drilling mud, mineral
slurries, suspensions, paint, and materials such as meat extract, frequently encountered
in industrial problems, have received increasing attention. The rheological behavior of
these materials is usually considered to be viscoplastic, i.e., showing a critical value of
stress below which the material does not flow. Such a critical value is usually referred to
as yield stress. Viscoplastic materials are also called Bingham plastics, after Bingham [1],
who was the first to describe several types of paint in this way in 1919. The models used
for these materials included also the Herschel–Bulkley model [2], the Casson model [3]
and the Heinz–Casson model [4]. A detailed review of viscoplastic fluids can be found in
articles by Bird, Dai and Yarusso [5], Mitsoulis [6], Huilgol [7], and Frigaard and Nouar [8].

All of these models have various practical applications. The Herschel–Bulkley models
are used for muds, foams, ceramics, and slurries. The Casson model is widely used to
model blood flow [9,10], as it describes blood flow in low shear regions quite well since
it captures the nonlinear dependence of viscosity on shear rate. Indeed, the Casson fluid
undergoes no deformation until the shear stress is below the critical threshold; above such
a threshold, it displays a shear thinning behavior. Merrill et al. [11] found that at shear
rates in the range 0.1–1.0 s−1, the Casson constitutive equation fitted the experimental data
well. However, we remark that the existence of a yield stress for blood and its use as a
material parameter is currently still a controversial issue due to the sensitivity of yield
stress measurements in connection to factors that are hardly controllable.

Most of the efforts in the theoretical analyses concern the extent and the shape of
yielded/unyielded regions, which are the main feature of viscoplastic materials. A possible
approach is the one introduced in [12,13], where the equation of motion of the unyielded
part is written in an integral form. According to this method, originally developed by
Safronchik [14], the unyielded region is treated as a rigid body of variable mass whose
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dynamics is governed by the cardinal equations. We remark that the yield surface can be
determined using other methods, such as the ones illustrated in [8,15–17].

In this paper, we focus on the Casson model and analyze the flow in a symmetric
channel with “small” aspect ratio so that the lubrication approximation can be safely used.
Lubrication approximation is widely used in a large variety of contexts (see e.g., [18–22]).
In particular, the geometrical setting of our study is similar to that studied in [21], where a
similar problem is treated for a Newtonian fluid. We analyze the dynamics considering
two conditions driving the flow: prescribed inlet–outlet pressure difference and peristalic
motion. The case of prescribed inlet discharge has already been analyzed in [23]. We also
investigate the conditions ensuring that the inner plug does not come in touch with the
walls. Peristaltic flow (for which walls are set in motion by a traveling velocity profile) is
studied because of their great importance in understating artery and vein physiology [9,10].
The peristaltic motion of Carreau and Casson nanofluid under the action of a magnetic field
and in nonisothermal conditions has been investigated in [24]. The magnetohydrodynamic
flow was analyzed in [25], and the dynamics in nanochannels were analyzed in [26,27].

The main aim of this paper is to formulate a sound mathematical model for the motion
of a Casson fluid in a vessel with small aspect ratio. As remarked, these flows characterize
several applications that span from physiology to geology. Actually, the novelty of this
paper is the rigorous application of the momentum equation to the unyielded phase.
In the viscoplastic theory, the inner core is in fact a rigid body whose stress cannot be
determined. Therefore, in order to get a reliable model, one has to correctly describe its
motion equation. This is the key point of our approach. Indeed, the mathematical problem
we have obtained is well posed, and this allows us to obtain useful information on the
flow. The manuscript is organized as follows. In Section 2, we introduce the mathematical
model. The dimensionless form is obtained in Section 3. The asymptotic expansions and
the corresponding numerical results are given in Section 5. Finally, the peristaltic flow is
investigated in Section 6. Finally, we underline that the study on the peristaltic motion of a
Casson fluid can have repercussions in the medical field—in particular, in hemorheology.

2. Mathematical Model

We write the Cauchy stress tensor as T = −pI + τ, where τ is its deviatoric traceless
part. The constitutive equation for a Casson fluid is given by

τ =

(
√

µ +

√
τo√
|γ̇|

)2

γ̇, if |τ| > τo,

γ̇ = 0, if |τ| 6 τo,

(1)

where
γ̇ = ∇v +∇vT ,

with v velocity field and where

|γ̇| =
√

1
2

γ̇ · γ̇, |τ| =
√

1
2

τ · τ.

We investigate the 2D flow in a channel such as the one depicted in Figure 1. The x
axis coincides with the channel symmetry line and y = ±h(x) are the channel walls.
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𝑦 = 𝜎(𝑥, 𝑡)

𝑦 = ℎ(𝑥)

𝑦 = −ℎ(𝑥)

𝑦 = −𝜎(𝑥, 𝑡)

𝑥

𝑦

0 𝐿

Figure 1. Flow in a symmetric channel with curved walls. The yielded region |τ| ≥ τo and the
unyielded one |τ| < τo are separated by a sharp interface y = ±σ(x, t). In this schematic drawing,
the channel width is exaggerated for visualization purposes. We are indeed within the framework
of lubrication theory such that the channel aspect ratio ε, defined by (10), i.e., the ratio between the
typical channel width H and the channel length L, is small. Then, following the standard asymptotic
analysis techniques, we look for a solution in which the main problem variables are expressed as
power series of ε. By equating the terms with the same power of ε, we obtain a sequence of problems
to the various approximation orders. In this study, we limit our analysis to the leading order, namely
to the ε0 terms.

The velocity field is given by

v(x, y, t) = u(x, y, t)e1 + v(x, y, t)e2,

and that the fluid is incompressible, i.e., tr γ̇ = 0 (isochoric or volume preserving flow).
We assume that the yielded part of the flow |τ| > τo and the unyielded part |τ| 6 τo are
separated by the sharp interfaces y = ±σ(x, t), which actually are two free boundaries
since their evolution is unknown. Because of symmetry, we may confine our analysis only
to the upper part of the channel.

The motion of the unyielded region (schematically depicted in Figure 2)

Ωt = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ σ(x, t)},

obeys to the momentum equation that we write in an integral form (see [28])∫
Ωt

∂

∂t
(ρv)dV +

∫
∂Ωt

ρv(v · n)dS =
∫

∂Ωt

τndS, (2)

where n is the normal to Ωt pointing outward. In the yielded region σ 6 y 6 h, the
governing equations of the system

∂u
∂x

+
∂v
∂y

= 0,

ρ

(
∂u
∂t

+
∂u
∂x

u +
∂u
∂y

v
)
= −∂p

∂x
+

∂τ11

∂x
+

∂τ12

∂y
,

ρ

(
∂v
∂t

+
∂v
∂x

u +
∂v
∂y

v
)
= −∂p

∂y
+

∂τ12

∂x
+

∂τ22

∂y
,

(3)

where body forces have been neglected.
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We remark that Equation (2) is nothing but the first cordinal equation for the rigid
core. Because of symmetry, no rotations occur and so (2) is sufficient to determine the
translation of the unyielded region.

In the unyielded part, because of symmetry, the motion is a pure translation and the
velocity is given by

v = uc(t)e1,

𝑦 = 𝜎(𝑥, 𝑡)

𝑦 = −𝜎(𝑥, 𝑡)

𝑦

Ω+

n2=
(,-.,/)

-.
01/

n4=
(,-.,,/)

-.
01/

n3= (1,0)n1= (−1,0)

ℱ/ ℱ5

ℱ6

ℱ7

Figure 2. The unyielded domain Ωt. Note that Ωt may vary on time.

To write (2) componentwise, we look at Figure 2 where the boundary ∂Ωt has been
divided into four components

∂Ωt = F1 ∪ F2 ∪ F3 ∪ F4 .

The first component of Equation (2) is given by

∂

∂t
(ρuc)

∫
Ωt

dV + ρu2
c

∫
∂Ωt

(e1 · n)dS =
∫

∂Ωt

(τn · e1)dS, (4)

while the second is given by

0 =
∫

∂Ωt

(τn · e2)dS. (5)

The stress tensor is given by

τ =

 −p + τ11 τ12

τ12 −p + τ22

,

on the surfaces F1 and F3, the only nonzero components of the applied stress are the
normal ones, namely

τ
∣∣∣
x=0

=

 −pin 0

0 −pin

, τ
∣∣∣
x=L

=

 −pout 0

0 −pout

,

which implies that no torque is applied to the rigid core. Under these hypotheses, setting
σin = σ(0, t), σout = σ(L, t) and recalling

dS =
√

σ2
x + 1dx,
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we find that (5) is automatically fulfilled, while (4) becomes

2
∂

∂t
(ρuc)

L∫
0

σdx = 2(pinσin − poutσout) +

+2
L∫

0

(
σx p− σxτ11 + τ12

)∣∣∣
σ

dx.

Since uc depends only on the t variable, integrating by parts, we find

ρ
duc

dt

L∫
0

σ(x, t)dx =

L∫
0

[
−∂p

∂x
σ− ∂σ

∂x
τ11 + τ12

]∣∣∣∣
σ

dx, (6)

which is the motion equation of the unyielded phase.
To conclude the formulation of the model, we specify the boundary conditions,

which are
u(x, H, t)=v(x, H, t) = 0, (No-slip and impermeability), (7)

u(x, σ+, t)=uc(t), v(x, σ+, t) = 0, (continuity of the velocity). (8)

The problem given by (3), (6)–(8) is very complex, even in a simple 2D setting. An-
alytical solutions can be found when the aspect ratio of the channel is sufficiently small.
Indeed, in that case, we can make use of the lubrication approximation to determine a
semianalytical solution.

Actually, the main difficulty in solving system (3), (6)–(8) lies in tracking the evolu-
tion of σ, where the constitutive equation exhibits a “singularity”. Indeed, from (1), we
extrapolate the following relation between the norms |τ| and |γ̇|, namely

|τ| =
(√

µ|γ̇|+√τo

)2
|γ̇| > 0,

|τ| ∈ [0, τo] |γ̇| = 0,

(9)

which is a graph exhibiting a singularity in |γ̇| = 0. A typical way to bypass this difficulty
is generally to smooth the constitutive relationship (see [6,29,30] for more details). The
positive point of the smoothing methods is their simple implementation in numerical
solvers. For example, many commercially CFD codes include inner regularization routines,
which smooth the viscosity. However, the issue of the convergence of the yield surface
determined using a smoothed constitutive model toward the one of the exact model is far
to be settled down. Indeed, to prove that the regularized yield surface converges to the one
obtained, solving the exact model requires a uniform convergence results which, at least in
the authors’ knowledge, has not yet been obtained.

3. Nondimensional Formulation

We rescale the system as

x = Lx̃, y = εLỹ, t =
(

L
U

)
t̃, u = Uũ, v = εUṽ, uc = Uũc,

h = Hh̃, σ = Hσ̃, τ =

(
µU
H

)
τ̃ , γ̇ =

(
U
H

)
˙̃γ, p =

(
µUL
H2

)
p̃,
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where L is the length of the channel, H = max[0,L] h(x), and

ε =
H
L
� 1, (10)

is the aspect ratio. We also introduce the dimensionless half-discharge as

Q =
1

UH

H∫
0

u dy =

1∫
0

ũ dỹ. (11)

With this scaling, we get

˙̃γ =


2ε

∂ũ
∂x̃

(
∂ũ
∂ỹ

+ ε2 ∂ṽ
∂x̃

)
(

∂ũ
∂ỹ

+ ε2 ∂ṽ
∂x̃

)
2ε

∂ṽ
∂ỹ

,

τ̃ =

[
1 +

√
B√
| ˙̃γ|

]2


2ε

∂ũ
∂x̃

(
∂ũ
∂ỹ

+ ε2 ∂ṽ
∂x̃

)
(

∂ũ
∂ỹ

+ ε2 ∂ṽ
∂x̃

)
2ε

∂ṽ
∂ỹ

,

where

B =

(
τo H
µU

)
,

is the Bingham number and where

| ˙̃γ| =

√√√√2ε2

[(
∂ũ
∂x̃

)2
+

(
∂ṽ
∂ỹ

)2
]
+

(
∂ũ
∂ỹ

+ ε2 ∂ṽ
∂x̃

)2
. (12)

Equation (3)1 becomes
∂ũ
∂x̃

+
∂ṽ
∂ỹ

= 0,

while Equations (3)2,3 become
εRe

(
∂ũ
∂t̃

+
∂ũ
∂x̃

ũ +
∂ũ
∂ỹ

ṽ
)
= −∂ p̃

∂x̃
+ ε

∂τ̃11

∂x̃
+

∂τ̃12

∂ỹ
,

ε3Re

(
∂ṽ
∂t̃

+
∂ṽ
∂x̃

ũ +
∂ṽ
∂ỹ

ṽ
)
= −∂ p̃

∂ỹ
+ ε2 ∂τ̃12

∂x̃
+ ε

∂τ̃22

∂ỹ
,

(13)

where
Re =

ρUH
µ

,

is the Reynolds number. Finally, Equation (6) becomes

εRe

 ˙̃vc

1∫
0

σ̃(x̃, t̃)dx̃

 =

1∫
0

[
−∂ p̃

∂x̃
σ̃− ε

∂σ̃

∂x̃
τ̃11 + τ̃12

]∣∣∣∣
σ̃

dx̃.

4. Leading Order Approximation

Let us now focus on the leading order approximation. In practice, we simplify the
model retaining only those terms that do not contain ε. This is the so-called lubrication
approximation. Dropping the tildes to keep the notation as light as possible, we have
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∂u
∂x

+
∂v
∂y

= 0,

∂τ12

∂y
=

∂p
∂x

,

∂p
∂y

= 0,

(Yielded phase) y ∈ [σ, h], (14)


1∫

0

[
−∂p

∂x
σ + τ12

]∣∣∣∣
σ

dx = 0,

u = uc v = 0,

(Unyielded phase) y ∈ [0, σ], (15)

where

τ12 =
∂u
∂y

1 +

√
B√∣∣∣∣∂u
∂y

∣∣∣∣


2

. (16)

The yield condition is given by∣∣∣γ̇∣∣∣
σ
=

∣∣∣∣∂u
∂y

∣∣∣∣
σ

= 0. (17)

Recalling that in the upper yielded part ∂u/∂y < 0, we find

∂u
∂y

= −
∣∣∣∣∂u

∂y

∣∣∣∣,
so that (16) rewrites as

τ12 = −
[√∣∣∣∣∂u

∂y

∣∣∣∣+√B

]2

, (18)

which, by virtue of (17), gives

τ12

∣∣∣
σ
= −B.

From (14)3, we see that p = p(x, t) so that, integrating (14)2 between σ and y, we find

τ12 = −B +
∂p
∂x

(y− σ). (19)

Inserting (18) into (19), we get[√∣∣∣∣∂u
∂y

∣∣∣∣+√B

]2

= B +
∂p
∂x

(σ− y),

and hence
∂u
∂y

= −
(√

B +
∂p
∂x

(σ− y)−
√

B

)2

. (20)
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Assuming that the pressure drop ∆p > 0, we expect px < 0 so that px(σ− y) > 0 in
the yielded phase. Integrating (20) between y and h and exploiting (7), we find

u =

h∫
y

(√
B +

∂p
∂x

(σ− ξ)−
√

B

)2

dξ.

Setting

P =
p
B

, (21)

we may rewrite u as

u
B
=

h∫
y

(√
1 + Px(σ− ξ)− 1

)2
dξ,

which, after some algebra, gives

u
B

=
Px

2

[
(σ− y)2 − (σ− h)2

]
+ 2(h− y) +

+
4

3Px

[
(Px(σ− h) + 1)3/2 − (Px(σ− y) + 1)3/2

]
. (22)

Evaluating (22) on y = σ, we find

− uc

B
=
Px

2
(σ− h)2 + 2(σ− h)− 4

3Px

[
(Px(σ− h) + 1)3/2 − 1

]
, (23)

where we recall that uc does not depend on x. Rearranging (22) and (23), we find

u
uc

=

1−
Px
2 (σ− y)2 + 2(σ− y)− 4

3Px

[
(Px(σ− y) + 1)3/2 − 1

]
Px
2 (σ− h)2 + 2(σ− h)− 4

3Px

[
(Px(σ− h) + 1)3/2 − 1

]
, (24)

so that we can easily check that u|h = 0 and u|σ = uc, i.e., (7) and (8) are fulfilled.
We now exploit the constraint of incompressibility ux + vy = 0. Recalling the condi-

tions v|h = v|σ = 0, we find

0 =

h∫
σ

∂v
∂y

dy = −
h∫

σ

∂u
∂x

dy.

As a consequence,

∂

∂x

 h∫
σ

udy

 = −uc
∂σ

∂x
+

 h∫
σ

∂u
∂x

dy


︸ ︷︷ ︸

=0

,

i.e.,

∂

∂x

 h∫
σ

u
uc

dy + σ

 = 0, (25)
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which we may write also as

∂

∂x



h∫
σ

u dy + σuc

uc

 = 0. (26)

Recalling the definition (11), we easily realize that

Q =

h∫
0

u dy =

h∫
σ

u dy + σuc, (27)

and since uc does not depend on x, (26) is equivalent to
∂Q
∂x

= 0, i.e., the nondimensional
discharge is the same at every cross-section x of the channel. Inserting (23) into (25), we find

∂

∂x

h−
h∫

σ

Px
2 (σ− y)2 + 2(σ− y)− 4

3Px

[
(Px(σ− y) + 1)3/2 − 1

]
Px
2 (σ− h)2 + 2(σ− h)− 4

3Px

[
(Px(σ− h) + 1)3/2 − 1

]dy

 = 0. (28)

Integrating the above in y, after some algebra, we find

h +

Px
6 (σ− h)3 + (σ− h)2 + 4

3Px
(σ− h)− 8

15P2
x

[
(Px(σ− h) + 1)5/2 − 1

]
Px
2 (σ− h)2 + 2(σ− h)− 4

3Px

[
(Px(σ− h) + 1)3/2 − 1

] =
Q
uc

, (29)

where uc is the core velocity given by (23) and where we assume that Q, given by (27), is
positive. Introducing the quantity

`(x) = h(x)− σ(x) > 0, (30)

we rewrite the (29) as

−Px
6 `3 + `2 − 4

3Px
`− 8

15P2
x

[
(1−Px`)5/2 − 1

]
Px
2 `2 − 2`− 4

3Px

[
(1−Px`)3/2 − 1

] =
Q
uc
− h. (31)

Next, the integral equation for the unyielded phase (15)1 that can be rewritten as

−
1∫

0

Px(h− `)dx = 1. (32)

Finally, from (23), we observe that

d
dx

(uc

B

)
=

d
dx

[
Px

2
`2 − `− 4

3Px

[
(1−Px`)

3/2 − 1
]]

= 0.

The above is due to the fact that uc cannot depend on x.
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In conclusion, the problem to be solved is the following

1
Px

− 1
6 (Px`)3 + (Px`)2 − 4

3 (Px`)− 8
15

[
(1−Px`)5/2 − 1

]
1
2 (Px`)2 − 2(Px`)− 4

3

[
(1−Px`)3/2 − 1

] =
Q
uc
− h,

−
1∫

0

Px(h− `)dx = 1,

d
dx

[
Px

2
`2 − `− 4

3Px

[
(1−Px`)3/2 − 1

]]
= 0,

(33)

to which we must add the boundary conditions P|x=0 and P|x=1 if the pressure difference
is prescribed, or, alternatively, Q and P|x=1 (actually, in place of P|x=1, we can prescribe
P|x=0). The unknowns are: (P , `, Q) in the first case and (P , `,P|x=1) in the second case.
The problem is thus formally closed. However, the solution technique varies according to
the mechanisms that drive the flow. The case in which the inlet discharge is prescribed has
been analyzed in [23]. Here, we focus on the case in which the boundary conditions are
P|x=0 and P|x=1, i.e., prescribed inlet–outlet pressure.

5. Solution to System (33) When the Pressure Difference is Prescribed

We assume that the pressure drop ∆p = p|x=0 − p|x=1, given, i.e., recalling (21)

−
∫ 1

0
Pxdx =

∆p
B

. (34)

In particular, we stipulate P(0) = ∆p
B

, and P(1) = 0, and introduce the new function

z(x) = −Px(x)`(x), (35)

with ` given by (30). We remark that z > 0.
System (33) can be rewritten as

1
Px

N(z)
D(z)

=
Q
uc
− h,

1∫
0

(−z−Pxh)dx = 1,

d
dx

[
D(z)
Px

]
= 0

(36)

where
N(z) = z3

6 + z2 + 4
3 z− 8

15

[
(1 + z)5/2 − 1

]
D(z) = z2

2 + 2z− 4
3

[
(1 + z)3/2 − 1

]
,

(37)

and, exploiting (23),
uc

B
= −D(z)

Px
. (38)
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From (36)1, we get

1
Px

=

(
Q
uc
− h
)

D(z)

N(z)
, (39)

which, plugged into (36)3, gives

d
dx


(

Q
uc
− h
)

D(z)2

N(z)

 = 0. (40)

Computing the derivative in (40), we find

dz
dx

=
hxD(z)N(z)(

Q
uc
− h
)
[2D′(z)N(z)− N′(z)D(z)]

, (41)

where Q and uc are unknown at this stage. So, setting K = Q/uc (unknown parameter),
and recalling (39), (41), we obtain the following Cauchy problem

Px =
N(z)

(K− h(x))D(z)
,

zx =
hxD(z)N(z)

(K− h)[2D′(z)N(z)− N′(z)D(z)]
,

P(0) = ∆p
B , z(0) = zo,

(42)

where z is given by (35) and zo is some initial guess (which, at this stage, plays the role of
an unknown parameter as K). Solving (42), we find P = P(x, K, zo), and z = z(x, K, zo). To
determine K and zo, we impose the second boundary P , i.e., P(1) = 0, and (36)2, namely

P(1, K, zo) = 0,

∫ 1

0

[
z(x) + h(x)

N(z)
(K− h(x))D(z)︸ ︷︷ ︸

Px

]
dx = −1. (43)

The yield surface follows from (35), i.e.

σ(x) = h(x) +
z(x)
Px

= h(x) + z(x)
N(z(x))

(K− h(x))D(z(x))
. (44)

When hx = 0, i.e., h ≡ 1, (42)2 entails z(x) = z̄o, while (42)1, (42)3 implies

Px =
N(z̄o)(

K− 1
)

D(z̄o)
, =⇒ P(x) =

N(z̄o)(
K− 1

)
D(z̄o)

x +
∆p
B

. (45)

Therefore, system (43) rewrites
N(z̄o)(

K− 1
)

D(z̄o)
+

∆p
B

= 0,

z̄o +
N(z̄o)(

K− 1
)

D(z̄o)
= −1,

(46)
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which in turn entails

N(z̄o)(
K− 1

)
D(z̄o)

= −∆p
B

, =⇒
(45)

P(x) =
∆p
B

(1− x),

and

z̄o =
∆p
B
− 1, K = 1− BN(z̄o)

∆pD(z̄o)
, (47)

with N and D given by (37). Next, exploiting (44), we obtain the classical relation

σo = 1− z̄o
∆p
B

=
B

∆p
.

We remark that our model converges to the classical results when the channel walls
are flat.

5.1. Simulations

To solve problem (43) coupled with (46) we start considering z̄o and K given by (47),
i.e., the parameters corresponding to the flat channel h(x) ≡ 1. We then consider a generic
wall profile h(x) 6= 1, and set up an iterative minimum-finding scheme. We proceed by
determining a grid around the values z̄o and K and, after having selected a pair (zo, K)
in the grid, we solve the Cauchy problem (42), obtaining the pair (P(x; zo, K), z(x; zo, K))
and compute

d1 = |P(1, K, zo)|,

d2 =

∣∣∣∣∫ 1

0

(
z(x) + h(x)

N(z)
(K− h(x))D(z)

+ 1
)

dx
∣∣∣∣.

We then repeat the procedure for all grid values and for each pair (zo, K) we compute
the norm

‖d‖ =
√

d2
1 + d2

2.

We stop the procedure when we reach a pair (z∗o , K∗), whose corresponding ‖d‖ is
smaller than a prescribed tolerance. Once (zo, K) have been determined, σ is given by (44).

Figure 3 displays the results of numerical simulations when h(x) = 1± 1
δ sin(πx),

δ = 20, and
∆p
B

= 1, 5, 2, 2.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x
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0.2

0.4

0.6

0.8

1

 p/B=1.5
 p/B=2
 p/B=2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.2

0.4

0.6

0.8

1

 p/B=1.5
 p/B=2
 p/B=2.5

Figure 3. Simulations for h(x) = 1± 1
δ sin(πx), with δ = 20, for various values of

∆p
B

. We note
the physical consistence of the results obtained, i.e., the width of the inner core increases as ∆p
decreases. Moreover, the simulation highlights a well-known phenomenon already highlighted [12]:
the monotony of σ(x) is opposite to the one of h(x).
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5.2. Approximate Solution

In this section, we illustrate a technique to find an approximate solution to (33) when
the pressure difference is prescribed and peculiar conditions on the data are fulfilled. We
recall the generalized form of the binomial Newton formula

∞

∑
k=0

(
α

k

)
xk = (1 + x)k, for |x| < 1, (48)

where, given α ∈ R and k ∈ N, (α
k) is the generalized binomial coefficient(

α

0

)
= 1,

(
α

k

)
=

α(α− 1) . . . (α− (k− 1))
k!

, for k ≥ 1.

So, assuming
|Px(σ− h)| < 1, (49)

we exploit (48) in (22),

u
B
= − 1

12
P2

x

[
(σ− h)3 − (σ− y)3

]
+O(|Px(σ− h)|3) (50)

where the third order terms have been neglected. Proceeding similarly in (23), we obtain

uc

B
=

1
12
P2

x (h− σ)3 +O(|Px(σ− h)|3). (51)

Then, neglecting the higher order terms, the velocity field u inside the channel can be
rewritten as

u = uc =
1
12

BP2
x (h− σ)3, 0 < y < σ, (52)

u = uc −
1
12

BP2
x (y− σ)3, σ < y < h, (53)

where we remind that px < 0. We remark that the approximate expression (53) fulfills the
no-slip condition.

Let us now rewrite Equation (25) as follows

∂

∂x

 h∫
σ

u
B

dy

 = −uc

B
∂σ

∂x
.

After some algebra and using (50) and (51), we obtain

σ(x) = −3h(x) + C, (54)

where C is an unknown at this stage. To determine C, we exploit Equations (54) and (32),
namely 

∫ 1

0
pxσ dx = −B,

σ = −3h + C.

Imposing the boundary conditions for the pressure, i.e., p(x = 0) = ∆p, and
p(x = 1) = 0, we get this explicit expression for C

C =

B− 3
1∫

0

pxh dx

∆p
,
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which, plugged in (54), gives

σ = −3h(x) +

B− 3
1∫

0

pxh dx

∆p
. (55)

At this point, we are in position to determine p(x). We take (51), which, recalling (30),
can be rewritten as

uc

B
=

1
12
P2

x `3 = 0,

and differentiate it with respect to x

pxx +
3
2

px

(
`x

`

)
= 0.

Now, exploiting the (54), we obtain the following boundary value problem based on
an integrodifferential equation

pxx +
6hx

4h(x) +

3
1∫

0

pxh dx− B

∆p

px = 0,

p|x=0 = ∆p,
p|x=1 = 0.

(56)

Remark 1. As already stated, the approximation is meaningful when (49) is fulfilled,
i.e., |px |

B |σ− h| < 1.
Considering, for simplicity, h ≡ 1, px = −∆p and, exploiting (55), we have σ = B

∆p . Hence,

|px|
B
|σ− 1| < 1 =⇒ σ >

1
2

.

At the same time, in order to prevent the flow come to a stop, σ < 1 i.e., B
∆p < 1. Hence, the

approximation above developed is expected to hold true when

1
2
<

B
∆p

< 1. (57)

To solve the problem (56), we set up an iterative procedure. As first guess, we consider
the linear function p(x) = ∆p(1− x), and use (55), to give the first guess of the yield
surface. The solution at the nth, n ≥ 1, step is obtained solving this boundary value
problem 

p(n)xx + 6hx

4h(x) +

3
1∫

0

p(n−1)
x h dx− B

∆p



−1

p(k)x = 0,

p(n)
∣∣∣
x=0

= ∆p,

p(n)
∣∣∣
x=1

= 0,
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and the corresponding yield surface σ(n) is obtained by (55). We stop the procedure when∥∥∥p(n) − p(n−1)
∥∥∥

L2([0,1])
becomes smaller than a prescribed tolerance.

Figure 4 displays the yield surface when the wall profile is h(x) = 1± 1
δ sin(πx), with

δ = 20, for various values of B/∆p.
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 p/B=3/2
 p/B=7/4
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1

p/B=5/4
p/B=3/2
p/B=7/4

Figure 4. Plots of the approximate yield surface σ(x) when h(x) = 1± 1
20 sin(πx), for three values

of ∆p
B , namely 5

4 , 3
2 , and 7

4 , fulfilling (57).

The approximation here developed holds true for |Px||σ − h| < 1. So, to validate
the procedure, we have to verify if |Px||σ− h| < 1 is fulfilled. Figure 5 shows the plot of
|Px||σ− h| for the three cases displayed in Figure 4.
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Figure 5. Plots of |Px||σ− h| for the cases in Figure 4.

In the right panel of Figure 5, we notice that the condition under which the approxi-
mation is valid is not satisfied at the inlet and outlet.

In Figure 6, we report the comparison between σ(x) given by (44) and σ(x) obtained
by the approximate model (55), (56). Figure 7 displays again the comparison between σ(x)

given by (44) and the approximated one, i.e., σ(x) given by (55), (56), but now
B

∆p
<

1
2

,

i.e., out of the range of validity of the approximate model. Figure 8 shows the comparison

between p(x) obtained solving (42), (43) and solving (56) when
B

∆p
= 0.75, and

B
∆p

= 0.91.

Looking at Figure 7, one realizes that the two interfaces are quite similar, as in Figure 6,
where 1

2 < B
∆p < 1. On the other hand, the pressure profiles, displayed in Figure 8, are

monotonously decreasing but show a different behavior, although we are in the range of
the approximate model.
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Figure 6. Comparisons between σ(x) given by (44), continuous curve, and σ(x) given by (56), (55),
dotted curve. In the upper panels, B

∆p = 10
13 . In the lower panels, B

∆p = 2
3 .
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Figure 7. Comparisons between σ(x) given by (44), continuous curve, and σ(x) given by (56), (55),
dotted curve, when B

∆p < 1
2 , i.e., out of the validity range for the approximation model. In the upper

panels, B
∆p = 1

5 . In the lower panels, B
∆p = 1

10 .
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Figure 8. Comparisons between p(x) given by (44), continuous curve, and p(x) given by the
approximate model (56), dotted curve, for B

∆p = 0.75, B
∆p = 0.91. On the left side, the wall profile is

h(x) = 1 + 1
δ sin(πx); on the right side, it is h(x) = 1− 1

δ sin(πx)—in both cases, with δ = 20. We
remark that the two profiles are different. However for the dynamics purpose, the important quantity
is the pressure gradient and not the pressure.

5.3. Comparison with the Pressure Driven Bingham Flow in a Channel

Problem (56) is similar to the one governing the Bingham flow in a channel, namely
(see [12], Equation (39))

pxx +


6hx∆p

3h∆p + 2
1∫

0

pxhdx− B

px = 0,

p|x=0 = ∆p, p|x=1 = 0,

(58)

with the yield surface given by (see again [12], equation (34))

σ(x) = −2h(x)) +
B

∆p
− 2

∆p

∫ 1

0
pxh dx. (59)

In Figure 9, we report the yield surface given by (59), i.e., the Bingham yield surface,
and σ(x) obtained solving (42) and (43), i.e., the Casson yield surface. We have considered
three cases, B

∆p = 0.1, 0.5 and 0.86.

The plots show that the two models give rise to similar curves when B
∆p = 0.1 and 0.5.

If B
∆p = 0.86, the difference between the two curves is much more evident. We remark that,

when h(x) = 1 + δ sin(πx), left panels, the largest difference occurs in the central region.
On the contrary, when h(x) = 1− δ sin(πx), right panels, the largest difference occurs in
the external regions.
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Figure 9. Comparisons between σ(x) given by (43) and (44), i.e., Casson model, continuous curve,
and σ(x) given by model (58) and (59), Bingham model, dotted curve. We observe that the Bingham
yield surface is close to the Casson yield surface when B

∆p is “small”. The two surfaces highlight
once more the fundamental feature of viscoplastic flow, i.e., the anti-monotony with respect to the
vessel wall.

6. Peristaltic Flow

We now consider the case where the duct walls move as traveling waves, i.e., the
peristaltic flow. We indeed assume that

h(x, t) = 1 +
1
δ

sin(2π(x− t)), (60)

that is a sinusoidal profile whose wave length and speed are equal to 1. Next, the boundary
conditions of adhesion on y = h, i.e., (7), change and become

u(x, h, t)=0, v(x, h, t) =
∂h
∂t

.
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Recalling (27) and following the same approach of Section 4, we have that

0 =
∂Q(x, t)

∂x
=

∂

∂x

∫ h(x,t)

0
udy =

(14)1

− ∂

∂x

∫ h(x,t)

0

∂v
∂y

dy,

which yields
∂Q
∂x

= −∂h
∂t

.

or, because of (60),
∂

∂x
(Q− h) = 0,

from which we conclude that Q(x, t)− h(x, t) does not depend on x. Now, assuming that
the inlet discharge Qin(t) = Q(0, t), we have

Q(x, t)− h(x, t) = Qin(t)− hin(t),

where hin(t) = h(0, t). Proceeding as in Section 5.2, we insert (53) in (27) and obtain

Qin + h− hin(t) = huc −
1

12
BP2

x
(h− σ)4

4
= huc − uc

(h− σ)

4
=

uc

4
(3h− σ). (61)

Now, setting

A(x, t) = Qin(t) + h(x, t)− hin(t)

= Qin(t) +
1
δ
[sin(2π(x− t)) + sin(2πt)],

rearranging (61) yields

σ(x, t) =
3h(x, t)uc(t)− 4A

uc(t)
, (62)

with uc(t) still unknown at this stage. To determine the unknowns (uc, σ), we exploit (32)2
and (61), obtaining this system 

∫ 1

0
Pxσ dx = −1,

σ =
3huc − 4A

uc
.

(63)

To solve this problem, we exploit (53)1 and (62) to determine Px as a function of uc.
We thus have

Px = −
√

12
B

u2
c

(4A− 2huc)
3
2

, (64)

where we choose the negative solution according to our assumption about px. Now, we
put (64) in (63)1, getting √

12
B

∫ 1

0
uc

3huc − 4A

(4A− 2huc)
3
2

dx = 1, (65)

with uc = uc(t).
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Simulations

To solve Equation (65), we have to impose some conditions on the integrand function.
We require

4A− 2huc > 0 =⇒ uc

A
<

2
h

,

3huc − 4A > 0 =⇒ uc

A
>

4
3h

,

which, setting ψ(x, t) =
uc(t)

A(x, t)
, we rewrite as

4
3h

< ψ <
2
h

.

So, rearranging (65), we get√
12
B

∫ 1

0

√
Aψ

3hψ− 4

(4− 2hψ)
3
2

dx = 1. (66)

So, dividing the time interval [0, 1] in n steps, we solve numerically (66) at any
time step. The results of simulations are displayed in Figures 10 and 11.
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Figure 10. Yield surface against the wall profile at five different times. δ = 20, B = 5 and Q(t) ≡ 1.
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Figure 11. Yield surface σ varying the parameters Q and B. On the left panel, Q(t) ≡ 1 while B
varies. On the right panel, B is kept constant while Q varies. In both cases, we set δ = 20.
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7. Conclusions

In this paper, we have presented a mathematical model for a Casson flow in a sym-
metrical channel of varying amplitude whose walls can move over time as a traveling
wave. The formulation of the fluid dynamics problem is obtained by imposing the mass
and momentum balance. The latter, written for the central rigid core, results in an integral
equation. We have thus determined an explicit expression for the velocity field and for the
yield surface (which, being unknown, is a free boundary). The problem has been solved
in two cases: (i) the driving force of the flow is the pressure difference applied between
inlet and outlet; (ii) the inlet flow rate is imposed and the walls of the channel are animated
by a traveling wave (peristaltic flow). Numerical simulations of the peristaltic flow have
shown that as the Bingham number increases, and as the flow rate decreases, the yield
surface tends to occupy the entire channel. Although an exhaustive parametric analysis
has not been performed, the simulations carried out seem to show how the yield surface
and channel walls oscillate in phase. This result (although not definitive) may have an
important practical repercussion. Indeed, since σ oscillates in phase with h, it is unlikely
that the two surfaces touch and the flow stops. This fact, absent in the Bingham flows, could
justify, if confirmed by further studies, the vasomotor action at the microcirculation level.

Regarding the analysis of the dynamics driven by the pressure gradient ∆p, a com-
parison was made between the Bingham and the Casson flow. The results obtained seem
to show a certain sensitivity to the B/∆p parameter. Specifically, the two yield surfaces
are similar when B/∆p ∼ 0.5. As soon as B/∆p tends to 0.9, the two surfaces detach
significantly. In any case, we have found a well-known characteristic of viscoplastic flows
in channels of variable amplitude: the yield surface and the channel wall have opposite
monotonicity, that is, the plug shrinks (or widens) as the width of the channel increases
(or decreases).
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