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Spin crossover (SCO) active metal complexes are highly versatile materials 

thanks to their sensitivity to tiny physical or chemical environmental 

changes. This property makes them very useful for a wide range of 

applications: employable for experimental studies as molecular switches or 

for theoretical studies investigating the M-L bonds. In both cases, these 

studies aim to develop strategies of predictably tuning them.  

 

Chapter One. An introduction to the SCO phenomenon: from gradual to 

cooperative SCO; various methods of monitoring the SCO transition. A 

summary of some literature examples of SCO-active systems is given. An 

overview of the published achievements in predicting the SCO 

phenomenon, including an introduction to the computational models 

deployed across the years. The EDA-NOCV model, employed in this field 

for the first time in this PhD thesis, is introduced. Finally, the aims of this 

study are presented. 

 

Chapter Two. The synthesis and characterisation of four new non-

symmetrical ligands, 3-(2-(5-Z-pyridyl))-4-tolyl-5-phenyl-1,2,4-triazole 

(LpytZ, Z = CF3, Br, F, Me), and the corresponding [FeII(LpytZ)2(NCBH3)2] 

complexes are presented. All four of these new complexes are SCO-active 

in the solid state and in CDCl3 solution, but T1/2 tuning by the meta-Z 

substituents was very modest. Three literature families were also tested, 

successfully extending the generality of using the 15N NMR chemical shift 

δNA of the coordinated nitrogen atom of the free ligand as measure of the 

T1/2 in the resulting Fe(II) complex. 
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Chapter Three. Theoretical study of a family of five iron(II) SCO-active 

[Fe(Lazine)2(NCBH3)2] (Lazine = 3-(2-azinyl)-4-tolyl-5-phenyl-1,2,4-triazole) 

and of the related five LS [Fe(Lazine)3(BF4)2]. The EDA-NOCV model was 

applied to molecular fragments to provide quantitative assessment of the σ- 

and π-bonding. A new corrected [Mn+ + L6] fragmentation was 

implemented which promises to enable a general approach suitable for any 

ML6 system. Finally, the σ- and π-bonding character is strongly correlated 

with the experimental T1/2 of the SCO-active [Fe(Lazine)2(NCBH3)2] 

complexes. 

 

Chapter Four. Theoretical study of the M-L bond in a family of sixteen SCO-

active differently para-X substituted [Fe(bppX)2]2+ complexes (bppX is 2,6-

di(pyrazol-1-yl)-4-X-pyridine). Results of the EDA-NOCV revealed the σ-

strength of the bppX ligand is correlated with σp+(X), δNA(bppX), 

experimental T1/2([Fe(bppX)2]2+) and calculated AILFT ΔO([Fe(bppX)2]2+). 

Results are explained at the molecular level by investigating the orbital 

population of the valence orbitals of the coordinating nitrogen involved in 

the aromatic π-system (pπ) and in the Fe-N bond (sp2(Fe)). From the 

observed correlations, the unknown σp+ parameter for two substituents (X 

= SOMe, SO2Me) is predicted. 

 

Chapter Five. First theoretical study on [CoII(dpzca)2] SCO in the solid state, 

aiming to establish a computational protocol able to predict experimental 

T1/2 in pressure-activated SCO. The first part of the study validated a DFT 

protocol at p = 1 bar. The protocol was then extended and trialled up to 

4300 bar. Results revealed good reproduction of the experimental results 

up to 2100 bar; but beyond this pressure, the theoretical and experimental 

findings diverge. Theoretical data suggest a possible phase change for the 

crystalline structure of HS [CoII(dpzca)2] at higher pressures than 2100 bar; 

this would explain why the implemented computational protocol lost 

validity. 
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1.1. Abstract 

The aim of this thesis is the development of a general method to predict 

key properties in a family of iron(II) complexes in a pre-synthesis step.  

In the first part of this chapter the key concepts underpinning Spin 

Crossover (SCO) are presented, with particular attention given to 

describing at the molecular level the SCO transition in the solid state and 

in the solution phase. Selected experimental techniques used to monitor 

and describe this phenomenon are discussed in detail. An overview is 

provided of the state of the art of the most relevant studies reported in the 

literature that have led to some success in predicting the SCO phenomenon 

in various Fe(II) families. Published data are reported for the [Co(dpzca)2] 

complex and summarised; particular interest in this candidate is the SCO 

activity in the solid state, triggered by temperature and/or pressure. 

The second part of this first chapter starts by describing various levels 

of theory that have been previously deployed in the literature for 

modelling and understanding key parameters in the SCO transition. Then, 

a very detailed description of the EDA-NOCV model is presented, as in this 

PhD thesis this method is employed for the first time to look at some SCO 

systems. 

In the third and final part the goals of this PhD thesis are presented. 
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1.2. Introduction to Spin 
Crossover (SCO) 

1.2.1. General Overview 

The SCO phenomenon is mostly observed in d4-d7 octahedral metal 

complexes.1-5 However, less common symmetries and d-electrons 

configurations are also more rarely observed. The first report of SCO, was 

in 1931, in octahedral FeIII complexes, by Cambi et al.2, 4, 6-7 Even though it 

was first discovered in FeIII,ref8-9 SCO can also be observed in FeII,ref10-13 MnIII, 

ref14-15 CrII, ref16 and CoII.ref17-19 

The most common symmetry reported for SCO complexes is the 

octahedral coordination geometry (Oh) whereby the d-orbitals are split into 

a threefold set (t2g) composed of dxy, dxz, dyz and a twofold set (eg) composed 

by dx2-y2 and dz2 (Figure 1.1). The t2g-eg gap in octahedral complexes is defined 

as ligand field splitting (Δo): the stronger the ligand field, the bigger the Δo; 

the weaker the ligand field the smaller the Δo.20-21 This ideal geometry is 

never achieved in reality: usually distorted octahedral geometries are 

observed, with consequent lowering of the symmetry (i.e. D2d symmetry22-

23 or lower24) and changes in arrangement of the d-orbitals. 

The spin state of the octahedral complex is closely related to the 

relative size of Δo and the Pairing Energy (Π). The Pairing Energy Π is the 

gain in stabilisation energy associated with arranging the electrons in spin 

states at higher multiplicity, which favour the HS over the LS state. 

Comparison between Δo and Π determines whether the LS or the HS 

state is the most stable. If Π > Δo the HS state is more stable, so it is 

preferred; if Π < Δo the LS state is more stable, so preferred (Figure 1.1). The 

SCO phenomenon occurs when Π ≈ Δo, allowing external stimuli to trigger 

the spin state switch.1-5 The relative rarity of the SCO-active class of metal 
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complexes is due to the need for a not-too-strong (always LS) and not-too-

weak (always HS) ligand field strength of the coordinating ligands.3, 7, 25-26 

 

 

Figure 1.1. Qualitative representation of the SCO for octahedral Fe(II) complexes. Spin state 

switching between LS and HS happens on application of an external stimulus. 

Most commonly, SCO is studied in FeII complexes as in this case the 

spin state switch has a maximal change in the magnetic response: from a 

diamagnetic LS state (S = 0) to a paramagnetic HS state (S = 2).10-13 The 

reversible conversion between HS and LS states produces profound changes 

in all of the properties that derive from the different distribution of the 3dn 

valence electrons. In the case of FeII SCO – the main subject of this thesis 

research – the spin state switch affects change in the colour, molecular 

vibrations, metal-ligand bond lengths (av. ΔFe-NHS-LS ≈ 0.2 Å, ~10%) and 

magnetic response (HS (S = 2) vs. LS state (S = 0)).3, 7, 25-27  

Due to being very highly sensitive to any change in environment, 

SCO complexes are extremely interesting both for technological and 

theoretical studies. Indeed, the main interest in this class of compounds is 

in the ability to switch spin state with various external stimuli such as 

temperature,3, 7, 25-26, 28-30 applied magnetic field,31 light irradiation,32-38 

pressure19, 39-44 or guest molecule presence/absence.45 This unique capability 

makes them fantastic candidates for memory storage and sensing 
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applications. Indeed, many applications of SCO have been evaluated, 

including molecular actuation,46-47 molecular electronics,48-50 emissive 

devices,51-53 thermochromic materials,54 data storage,55-58 and chemical 

sensing.45, 59-65 For thermal SCO, the spin state transition needs to occur at 

room temperature for most real-world applications.66-68 The vast majority 

of the hundreds of examples of SCO complexes reported in literature were 

studied and characterised in the solid state.2, 10, 69-70 For solid state SCO the 

magnetic transition profile of these compounds is very sensitive to the 

sample preparation (powder/crystalline sample), lattice solvents, counter 

ions and packing effects.71-76  

SCO samples are increasingly being studied in solution too, often as 

sensors, broadening the already large range of applications SCO can be 

used for. To date, SCO in solution has been monitored as a function of: 

concentration of a guest molecule,77 the effect of counterion,78-80 alkyl chain 

length,29, 77, 81-82 ligand substitutent,22, 24, 83-85 solution pH86 or polarity of the 

solvent employed.84, 87-88 In solution state studies, where packing effects or 

cooperativity among molecules are not usually observed, variation in the 

thermal SCO phenomenon can be directly related to small alterations of the 

ligand field strength. A change in the T1/2 reflects the changes in Δo; so, SCO 

compounds are of great interest as candidates for theoretical studies that 

aim to understand in more depth the parameters which play a key role 

determining ligand field strength.22-23, 89-91 

1.2.2. Thermodynamics of SCO 

Thermal SCO can also be discussed as a reversible second order phase 

transition between LS and HS as reported in Equation 1.1:  

 

Δ𝐺 = Δ𝐻 + 𝑇Δ𝑆 (1.1) 
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where ΔG is free Gibbs Energy in SCO transition (ΔG = GHS - GLS), ΔH is 

Enthalpy (ΔH = HHS - HLS) and ΔS is Entropy variation (ΔS = SHS - SLS), for a 

LS → HS transition. 

In order to trigger a possible spin state switch, the ΔH ~ TΔS 

condition must be experienced. As the spin state switch is thermally 

triggered, the LS state is the most enthalpically stable species at the lower 

temperatures (ΔH > 0, as HHS > HLS), meanwhile the increase in HS species 

at higher temperatures is entropically driven (ΔS > 0, as SHS > SLS).23, 92-93 In 

thermal SCO, the most important parameter is the experimental T1/2, the 

point in the spin transition when equilibrium is reached (ΔH = T1/2ΔS) and, 

for the cases of one-step complete SCO, event sample composition is 50:50 

HS:LS.  

One of the most common approaches to model the SCO transition is 

through the reaction coordinate called the breathing mode that for the total 

symmetric vibration of the coordination sphere (Figure 1.2a). In SCO 

studies, whereas theoretical approaches are used for modelling this spin 

state switching, a large focus is pointed at the tuning of the LS-HS gap 

(ΔEHL, Figure 1.2a), which approximates the real HS-LS barrier (ΔEB, Figure 

1.2a). In fact, ΔEB energy is very hard to calculate because it is the molecular 

energy at the saddle point between the Potential Energy Surface (PES) of 

the two spin states. Molecular structure at PES saddle points is 

characterised by all real normal modes except one; this imaginary normal 

mode reflects the coordination of reaction; i.e., the breathing mode from LS 

to HS state (and vice versa). This points on the PES are much harder to be 

accurately found if compared with energy minima, as ELS or EHS.94 

When ΔEHL increases (or decreases), the crossing point between the 

two breathing modes rises (or drops), changing the height of the energy 

barrier ΔEB. In thermal SCO systems, ΔEHL gap should be of the same order 

of magnitude of the kbT thermal quantum (e.g., at 298 K is ~2000 cm-1 Figure 

1.2b).94 
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Figure 1.2. (a) Qualitative potential energy surfaces (PES) for the LS and HS state of a SCO-active 

octahedral FeII complex along the breathing mode reaction coordinate. (b) Regions of stability of 

either one or the other spin state as a function of the ligand field strength. The region of spin 

crossover compounds is indicated by the shaded area. Figure reproduced with modifications from 

ref94. 

1.2.3. From Solid to Solution SCO 

Five different kinds of SCO transition are commonly seen (Figure 1.3): 

 

(a) Gradual transition: the simplest of the possible SCO transitions as it 

is observed for non-interacting systems; i.e., without any active 

cooperativity effects. In solution, whereby SCO molecules are 

isolated, this is the usual kind of transition seen.  

(b) Abrupt transition: whereby the first molecules that switch spin state 

catalyse the transition for the surrounding neighbours, producing a 

much steeper transition than observed for (a).  

(c) Hysteresis loop: can be seen if the molecules are strongly interacting, 

so it is rare in solution.81-82 It is observed as a lag of the response of 

the SCO material to changes in temperature.7, 95-96 
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(d) Multi-step SCO: can be observed when the metal ions are (i) 

equivalent but affect each other, so they undergo SCO at different 

temperatures or (ii) inherently inequivalent in the crystalline lattice, 

due to occupation of different sites. 

(e) Incomplete SCO: describes the absence of a full conversion into either 

the HS or the LS state of the sample, or both, even at temperatures 

much higher or lower than T1/2. 

 

Figure 1.3. The most common types of spin transition represented as HS molar fraction (γHS) versus 

temperature (T) are: (a) gradual, (b) abrupt, (c) abrupt with thermal hysteresis, (d) multi-step, (e) 

incomplete. Figure reproduced with modifications from ref97. 

The extremely high sensitivity of the SCO to changes in the external 

environment is the reason for the great interest over the last fifty years. 

However, this is also the main source of issues for commercialisation of 

SCO materials as it is hard to preserve the SCO activity of the complex.  

In this regard, a key achievement for most of practical applications is the 

immobilisation of a layer of SCO-active complex on a solid support. There 
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is no certainty that the SCO activity in solution can be preserved in the solid 

state,97 or on a surface98-101 (e.g. Figure 1.4). 

In order to produce commercially viable materials, a profound 

knowledge of the parameters that affect the SCO activity must be achieved. 

For SCO in the crystalline solid state, molecules are well packed all together 

in a crystalline unit cell; they are not isolated anymore and a wide range of 

intermolecular interactions can occur (e.g., H-bonds79, 102-103 or π-π 

stacking104); this can activate or deactivate the SCO transition. 

 

 

Figure 1.4. (a) Chemical structure of [FeII(Lpyridine)2(NCE)2] complex employed in these studies of 

solid state and solution phase SCO. (b) χMT vs T plot for powder [FeII(Lpyridine)2(NCS)2]·H2O 

(1·H2O, green stars), crystalline [FeII(Lpyridine)2(NCSe)2]·1.5H2O (2· 1.5H2O, orange circles), and 

crystalline [FeII(Lpyridine)2(NCBH3)2]· H2O (3·H2O; (blue ▼) cooling mode, (red △) heating mode). 

(c) Solution-phase magnetic data represented as χMT vs T for complexes [FeII(Lpyridine)2(NCS)2] (1, 

2.21 × 10−3 M, green ■), [FeII(Lpyridine)2(NCSe)2] (2, 3.95 × 10−3 M, orange ●), and 

[FeII(Lpyridine)2(NCBH3)2] (3, 5.10 × 10−3 M, black ▲) in CDCl3 solution from 313 to 243 K. Note 

that each complex solution was prepared using a Lpyridine-to-iron(II) ratio of 6:1 to ensure it is 

present as [FeII(Lpyridine)2(NCE)2]. Figure reproduced with modifications from ref105. 

The SCO phenomenon is not only affected by chemical 

(intermolecular interaction) or quantum-physical effects (electronic coupling) 

but also by the amount of free space. Indeed, by moving from LS to HS an 

expansion of the Fe(II) coordination sphere is observed; due to Fe-N bond 

lengths increasing by ~0.2 Å (+ 5-10%), with a consequent increase in the 

molecular volume (typically by less 5-10%). This volume expansion – 
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which does not suffer any constraint in the solution phase – may be 

restricted in the solid state. The longer Fe-N bonds in the HS state are 

consistent with a weaker and more labile bonding, that generally leads to 

more highly distorted complex,106 which the crystalline lattice needs to be 

able to host.107-108  

This geometrical rearrangement, and hence the SCO transition, can 

be easily prevented due to excessively large structural differences between 

the LS and HS states caused by, for example, the presence of satellite 

aromatic rings109 on the ligand backbone, solvent of crystallisation or large 

counter ions.79, 110 A complete survey of this issue was written by Halcrow 

in 2011.111  

Solution SCO usually shows a much less complicated picture, so the 

prospect of producing successful predictive tools is considerably more 

realistic. Indeed, the solvent molecules usually ensure that the SCO 

molecules are isolated from one another, avoiding any cooperative 

behaviour. 

 

 

Figure 1.5. Plot showing the linear fit of T1/2 for complexes [FeII(L2pyrimidine)2(NCBH3)2] (stars and 

dotted lines, R2 = 0.96, slope = 42.45) and [FeII(L4pyrimidine)2(NCBH3)2] (circles and solid lines, R2 = 

0.96, slope = 44.41) vs polarity index (P′) of each of the solvent used in this study: CD2Cl2 (pink), 

CDCl3 (blue), (CD3)2CO (orange), CD3CN (green), CD3NO2 (red). Figure reproduced with 

modifications from ref88. 
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This results in the simplest of the SCO transition profiles, with a gradual 

transition between the two spin states (Figure 1.3a). More complicated 

transitions, which require some level of cooperativity, such as transition 

(b), (c) or (d), are not usually reported in solution, unless agglomerated 

clusters of molecules form (e.g., micelles).77, 81 Hence, in solution SCO, it is 

easier to focus the impact on electronic fine-tuning of the ligand structure, 

as packing effects deriving from the crystal packing in solid state are 

absent.  

Interestingly, several studies have reported an important role of the 

solvent chosen for this study in tuning the observed T1/2 for an SCO active 

complex.84, 88, 105, 112-113 On one hand, solvent polarity itself can be used to 

finely tune the T1/2 of a specific system; in some cases a shift of up to 150 K 

can be observed by tuning the solvent polarity (Figure 1.5 (top)).88 

But on the other hand, solvent polarity may have a very little impact 

on the solution SCO.84As a consequence, different systems can be compared 

only if measurements are performed in the same solvent, because different 

SCO equilibria may be affected by the choice of the solvent to different 

extents.84, 105, 112 
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1.3. Methods to Monitor SCO 

1.3.1. General Overview 

Many techniques are available for monitoring the SCO phenomenon; 

however, some of them do not supply quantitative information on the HS 

fraction (γHS). The SCO phenomenon is generally easier to monitor in the 

solid state than in the solution phase: indeed, direct detection and 

quantification of the magnetic response vs. temperature can be easily 

obtained by using a magnetometer (see Subsection 1.3.2). As well, variable 

temperature (VT) single crystal X-ray diffraction, Mössbauer (FeII/III only) 

and IR/Raman spectroscopy can be used to get information on an SCO 

transition.7, 19, 29 In the case of IR/Raman spectroscopy, quantitative detection 

is possible if highly characteristic bands are present such as the strong N≡C 

stretch of Fe-NCE (E = Se, S), which occurs in an otherwise uncluttered part 

of the spectrum (for LS Fe-NCE at ~2100–2140 cm-1 vs HS Fe-NCE at ~2060–

2090 cm-1) and the complex undergoes complete SCO in the studied 

temperature or pressure range.29, 104 

For solution SCO the transition can be monitored by VT UV-visible 

and 1H-NMR spectroscopy. The key limitation of these studies is the 

temperature range between the freezing and the boiling point of the solvent 

employed, within which a significant amount of SCO transition must occur. 

The SCO transition can be monitored qualitatively using the loss in intensity 

of the LS d-d transition on heating. This can be quantitative, if complete SCO 

is observed in the studied temperature range. Sometimes the d-d band is 

obscured so, the MLCT band is monitored instead.24, 84, 114 

Two techniques based on VT 1H-NMR spectroscopy are very widely 

used for quantitative investigation of the SCO phenomenon in solution: (i) 

monitoring the isotropic shifts of specific protons in the complexes to 
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evaluate the HS fraction of the SCO species;115 (ii) monitoring the effect that 

unpaired electrons of the complex has on the solvent peak, using the Evan’s 

method (Subsection 1.3.3).116 Since the paramagnetism of the metal species 

makes the spectrum considerably broader and harder to assign compared 

with diamagnetic spectra, the Evan’s method is generally preferred; 

however, both techniques give the same findings, as demonstrated by 

Walker et al. in 2007.115 

1.3.2. Solid State Magnetic Measurements 

SCO magnetic behaviour can be described either from the macro- or 

microscopic perspective. Macroscopically, the volumetric susceptibility 

(χv) can be defined as the proportionality constant which relates sample 

magnetisation (M) to the external field H applied (Equation 1.2) 

 

𝑀 = 𝜒𝑣𝐻  (1.2) 

  

𝜒𝑔(raw) =  𝜒𝑣/𝑚𝑎𝑠𝑠  (1.3) 

  

χg(sample) =  χg(raw) − χg(holder) (1.4) 

  

𝜒𝑀(sample) = 𝑀 · χg(sample)  (1.5) 

 

The raw mass susceptibility (χg(raw)) so measured, in cm3·g-1, is calculated 

by dividing χv by the mass of the sample in grams (Equation 1.3). This 

χg(raw) accounts for the total gram susceptibility of the sample and sample 

holder; therefore, it is firstly corrected for the diamagnetism of the sample 

holder (Equation 1.4), to give χg(sample). 

The χg(sample) is then multiplied by the molecular weight (M) of the 

complex to obtain the molar susceptibility χM(sample) (emu·mol-1 or 
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cm3·mol-1 as electromagnetic units = emu = cm3; Equation 1.5).117 In this 

χM(sample) molar susceptibility, a diamagnetic contribution that originates 

from the all-paired electrons in the sample (χM(diamagnetic)) is included and 

must be corrected for (Equation 1.6).20 This final correction leads to the real 

paramagnetic susceptibility χM(paramagnetic) (simply called χM – only 

accounting for the number of unpaired electron in the sample): 

 

χM =  χM(sample) − χM(diamagnetic) (1.6) 

 

This χM(diamagnetic) term is estimated either using Pascal’s constants118 or, 

as is done in this thesis, using Equation 1.7119 as it is dependent on the 

molecular mass of the studied molecule: 

 

χM(diamagnetic) = −0.5 × 𝑀 × 10−6 𝑐𝑚3𝑚𝑜𝑙−1 (1.7) 

 

From a bottom-up perspective, in 3dn metal complexes – where the 

spin-orbit coupling can be neglected20 – the observed magnetic moment μeff 

can be estimated from first principles calculation of the spin-only magnetic 

moment μSO which is easily done from the number of unpaired electrons 

(Equation 1.8); assuming g, a dimensionless number, is equal to −2.0023 for 

a free electron and S is the total spin (½ · number of unpaired electrons). 

 

µso = 𝑔[S(S + 1)]1/2 (1.8) 

  

Finally, Equation 1.9 well explains how the magnetic susceptibility 

χM is linked to the observed magnetic moment μeff for 3dn complexes. 

 

χ𝑀 =
𝑁𝐴 µ0 µeff

2

3𝑘T
 (1.9) 
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Where 𝑁𝐴 is the Avogadro number, µ0 is the permeability of vacuum, k is 

the Boltzmann constant and T is the temperature.20 Equation 1.9 can 

therefore be rearranged to give Equation 1.10 and Equation 1.11. 

 

χ𝑀𝑇 =  0.124 µeff
2 (1.10) 

  

µeff = 2.84 ∙ √χ𝑀𝑇 (1.11) 

 

1.3.3. 1H-NMR Evan’s Method 

In Evan’s NMR method measurements, two NMR tubes are encapsulated 

one inside the other: in the internal tube pure solvent is placed (in the 

example shown in Figure 1.6 it is pure CDCl3); in the external tube an 

accurately known mass of the SCO candidate is dissolved in an accurate 

known volume of the same solvent (in the example in Figure 1.6 it is pure 

CDCl3). When a LS → HS spin state transition is experienced, the amount 

of HS species increases, so the number of unpaired electrons per mole 

increases and the solvent peak in the external tube shifts further downfield, 

leading to an increase in Δf. From this data, the gram susceptibility χg is 

calculated using Equation 1.12: 

 

𝜒𝑔(𝑠𝑎𝑚𝑝𝑙𝑒) =
3∆𝑓

4𝜋𝑑𝑓
 (1.12) 

  

Where χg(sample) is the gram susceptibility per mass unit; ∆𝑓 is the gap 

between the frequency of the solvent peak into the inner tube and that in 

the outer one (Hz); 𝑓 is the frequency of the instrument (Hz) and 𝑑 is the 

solvent density in g/cm3 (corrected at different temperatures).120-121 

The measured χg(sample) value is then treated as above (Subsection 

1.3.2, Equations 1.5-1.7) to obtain the corrected χM. This method enables 
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direct and quantitative monitoring of the spin state transition; however, the 

temperature range employed is limited to the liquid temperature range of 

the solvent. 

The Evan’s NMR method has an intrinsic error of 5-10%.122 The 

fitting of the data to the regular SCO model (Equation 1.13) also has an 

associated error, which is usually negligible if the SCO transition occurs in 

the monitored temperature range (more information about the error 

treatment for SCO model fitting is given in Chapter Two, Subsection A2.12.2). 

 

𝜒𝑀(𝑇) =
𝜒𝑀(𝑀𝐴𝑋)

1 + 𝑒(−∆𝐻
𝑅𝑇⁄ +∆𝑆

𝑅⁄ )
 (1.13) 

 

 

 

Figure 1.6. Example of the key region of the Evans’ method 1H NMR spectrum in CDCl3 solvent, 

along with the type of NMR tube used to collect signals from the solvent that feels the paramagnetic 

sample (left peak) and that which does not (right peak). A qualitative broadening of the peak shape 

due to the paramagnetism is also illustrated. Figure reproduced with modifications from ref123. 
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Where χM(T) is the susceptibility at different temperatures; χM(MAX) is set 

to the highest theoretical value expected for the metal ion (for FeII, χM(MAX) 

= 4 emu∙K∙mol-1); R is the gas constant 8.314 J∙mol-1∙K-1. ΔH is the change in 

enthalpy for the spin transition and ΔS is the change in entropy for the spin 

transition. Examples of this model fitting for solution SCO are reported in 

Figure 1.7. 

 

Figure 1.7. (a) Chemical structure of [FeII(Lpyridine)2(NCE)2] complex employed in these studies of 

solid state and solution phase SCO. (b) Solution-phase magnetic data represented as χMT vs T for 

complexes [FeII(Lpyridine)2(NCS)2] (1, 2.21 × 10−3 M, green ■), [FeII(Lpyridine)2(NCSe)2] (2, 3.95 × 10−3 

M, orange ●), and [FeII(Lpyridine)2(NCBH3)2] (3, 5.10 × 10−3 M, black ▲) in CDCl3 solution from 

313 to 243 K. Note that each complex solution was prepared using a Lpyridine-to-iron(II) ratio of 6:1 

to ensure it is present as [FeII(Lpyridine)2(NCE)2]. Figure reproduced with modifications from ref105. 
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1.4. Reported Trends in SCO Families 

1.4.1. Introduction to Hammett Parameter 

Electronic tuning by Electron Donating Group (EDG) and Electron 

Withdrawing Group (EWG), present as a para X (or meta Y) substituent on 

aromatic ring is historically evaluated by using the Hammett parameter124 

which was defined from equilibrium constants of benzoic substrates for 

acid/base reactions (σ) or nucleophilic substitution reactions at the attached 

carbonyl carbon (σ+, Figure 1.8a). Ranges of tunability are far lower in the 

case of the meta substituents (-0.07 < σm+ < +0.52)124-125 than in the case of the 

para substituents (-1.70 < σp+ < +0.79)124-125 (Figure 1.8b); due to absence of 

resonance effects in the former case, which are present in the latter case.  

  

Figure 1.8. (a) Example of the nucleophilic substitution reaction at the carbonyl carbon in benzoic 

derivatives used to establish the Hammett parameters (σ+) for the para-X and meta-Y substituents 

on the benzoic ring. (b) Range of electronic tunability for meta-Y substituents (σm+, magenta) and 

para-X substituents (σp+, blue). 
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1.4.2. Solid State SCO Family Trends 

Over the last twenty years, electronic tuning of SCO by a para-X (or meta-Y) 

substituent on a pyridyl ring has revealed some excellent and generalisable 

results in several families, both for solid state126-132 and solution phase22-24, 83 

SCO. The first example of a correlation between the Hammett parameter 

(σ/σ+) of a substituent and T1/2 of the solid state of the corresponding 

complex SCO was obtained by Kaizaki et al. in 2005, for a family of 

binuclear Fe(II) SCO complexes (Figure 1.9, X/Y substituent reported on the 

left).133 As σ+ increased (increasing EWG properties), so too did the T1/2, 

implying that the ligand field strength also increased with increasing EWG 

effects. 

This achievement was further confirmed and extended thanks to 

interesting results reported by Harris et al.130 in 2015 and by Murray et al.131 

in 2017, for two different solid state SCO-active families of iron(II) 

complexes featuring ligands in which the pyridyl rings were para 

substituted with a range of halogens (X = F, Cl, Br, I). 

 

 

 

Figure 1.9. (left) Schematic of [(FeII(l-bpypz)2(NCE)(X/Y-py))2-] (E =S or BH3); (right) Plots of Tc 

(i.e., T1/2) vs. Hammett constants: (a) the NCS complexes, (b) the NCBH3 complexes. Figure 

reproduced with modifications from ref133. 
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1.4.3. Solution Phase SCO Family Trends 

For solution SCO,22-24, 81, 83-84, 105 a range of correlations with T1/2 have been 

found, using the Hammett parameter (σ/σ+) and the chemical shift of the 

coordinating nitrogen NA, among others. An introduction to these studies, 

in order of publication, follows. 

In 2013, Costas et al. prepared a family of seven SCO 

[FeII(pytacnX)2(NCCH3)2](OTf)2 complexes that were tuned by the choice of 

para-X substituent on the pyridyl ring in pytacnX (1-(2-X-pyridylmethyl)-

4,7-dimethyl-1,4,7-triazacyclononane, Figure 1.10). The influence of the 

pyridine X substituents on the electronic properties of the coordinated iron 

centre were probed by a combination of structural and spectroscopic 

characterisation using X-ray diffraction, 1H NMR and UV−Vis 

spectroscopies, and magnetic susceptibility measurements in MeCN 

solution at room temperature (unfortunately, no VT studies are reported).24  

 

 

Figure 1.10. Structure of ligand (left) and FeII complex (right) for the family of seven literature24 

[FeII(pytacnX)(NCCH3)2]2+ complexes, varying in para-X substituent and hence μeff at room 

temperature.24 

A range of μeff (298 K) values was observed (0.0 – 3.0 BM, Figure 1.11) as X 

varied. Indeed, this enabled the concept of the observed correlations 

between T1/2 and σp+ observed in the solid state (Subsection 1.4.2) to be 

extended to the solution phase: here, as σp+ increased, the EWG properties of 
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the para substituent increases, the μeff (298 K) dropped (Figure 1.11), due to 

higher fraction of the Fe(II) complex being in the LS state (diamagnetic, S = 

0) rather than the HS state (paramagnetic, S = 2); and consistent with 

increased ligand field strength. Hence, if a VT study was undertaken, then 

the T1/2 would be expected to increase with increasing σp+ (Figure 1.11). 

 

Figure 1.11. The effective magnetic moment (BM) at 298 K of the seven [Fe(pytacnX)2(NCCH3)2]2+ 

complexes in CD3CN versus the Hammett constant of the para-X substituent on the pyridyl ring 

of the pytacnX ligand used. Figure reproduced with modifications from ref24. 

In 2016 twenty-nine [FeII(bppX,Y)2]2+ complexes, varying in para-X pyridine 

or meta-Y pyrazole substituent (where bppH,H is 2,6-di(pyrazol -1-yl)-3-

pyridine),107, 132, 134-137 were studied in depth by Deeth, Halcrow et al. (Figure 

1.12).23  

 

Figure 1.12. (a) Structure of the bppX,Y ligands; (b) The family of twenty-nine [FeII(bppX,Y)2]2+ 

complexes (right).23, 107, 132, 134-137 



1 | Introduction 

 

22 

 

This study set a milestone in terms of predictable tuning of the T1/2 of the 

solution SCO phenomenon by modifying either a para X-substituent on the 

pyridyl ring or a meta Y-substituent on the pyrazolyl rings of the bppX,Y 

ligand. Firstly, they found a strong σp+(X) vs. T1/2 correlation (R2 = 0.92, 

Figure 1.13a) and a weaker σm(Y) vs. T1/2 correlation (R2 = 0.61, Figure 1.13b), 

extending the para substituent tuning of solution phase μeff (298 K) result 

previously observed by Costa et al. in 2013. 24 

 

Figure 1.13. (a) Plot of T1/2 for [FeII(bppX)2]2+ versus the X substituent Hammett parameters σp+. 

The line shows the best fit correlation (R2 = 0.92), omitting the X = NH2 and NMe2 datapoints as 

they are HS (b) Plot of T1/2 for [FeII(bppY)2]2+ versus the Y substituent Hammett parameters σm. The 

line shows the best fit correlation (R2 = 0.61); (c) Plot of the relevant substituent Hammett 

parameter versus the computed d-orbital energies for LS [Fe(bppX)2]2+ (E(t2g), R2 = 0.94 and E(eg), 

R2 = 0.93); (d) Plot of the relevant substituent Hammett parameter versus the computed d-orbital 

energies for LS [Fe(bppY)2]2+ (E(t2g), R2 = 0.99 and E(eg), R2 = 0.98). Figure reproduced with 

modifications from ref23. 
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Further, they found that the Hammett parameter σp+/σm correlated with the 

E(t2g) and E(eg) energy levels calculated with DFT for the LS of 

[FeII(bppX,Y)2]2+ (σp+(X): E(t2g), R2 = 0.94 and E(eg), R2 = 0.93; σm(Y): E(t2g), R2 = 

0.99 and E(eg), R2 = 0.98; Figure 1.13(c-d)). They concluded, through close 

examination of the effects of X/Y on E(t2g) and E(eg), that Fe → N π-back 

bonding effects dominate for X (para) substituents which, on EDG → EWG 

strengthen the ligand field increasing T1/2; whereas Fe ← N σ-bonding 

effects dominate for Y (meta) substituents; with EDG → EWG decreasing 

the ligand field and the T1/2 (Figure 1.13(c-d)).23, 138 Also important to 

mention here (discussed in more detail in Subsection 1.6.3), is the extremely 

good correlation of ΔEHL (Figure 1.2) with σp+(X) (R2 = 0.89, Figure 1.22) and 

a less strong correlation with σm(Y) (R2 = 0.67, Figure 1.22).23 

Another widely reported class of SCO Fe(II) complexes in the 

literature is based on triazole ligands, that possess the ‘right’ ligand field 

strength to activate the SCO transition.4, 54, 67, 139 Moreover, due to the 

synthetic routes employed for the closure of the 1,2,4-triazole ring, a large 

variety of substituents can be located in the 3-, 4- and 5- positions of the 

triazole ring, granting design flexibility, and enabling either mono- or 

polytopic ligands to be constructed (Figure 1.14).4, 58, 123, 139-140 

In 2017 Brooker et al. published a study on a new family of SCO-

active iron(II) complexes of 3-(2-azinyl)-4-tolyl-5-phenyl-1,2,4-triazole 

(Lazine) ligands (Figure 1.14).83 

 
Figure 1.14. Example of some 1,2,4-triazole base ligands (left). Family of five SCO-active 

[FeII(Lazine)2(NCBH3)2] complexes (right).83 
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They reported an innovative correlation between the 15N-NMR chemical 

shift of the coordinating nitrogen (NA) of the free Lazine ligand (δNA) with 

the experimental SCO T1/2 of the [Fe(Lazine)2(NCBH3)2] complex in CDCl3 

solution (R2 = 0.99, Figure 1.15).83 

 

Figure 1.15. Plot of the observed T1/2 versus our calculated ligand 15NA NMR peaks for the five 

[FeII(Lazine)2(NCBH3)2] complexes (Figure 1.13; red, R2 = 0.99), and the twenty-nine SCO-active 

[FeII(bppX,Y)2](Z)2 complexes (Figure 1.12; Z = BF4, PF6, black, R2 = 0.89). Figure reproduced with 

modifications from ref83. 

The δNA value was shown to be easily and quickly calculated by DFT, and 

to match closely with that determined experimentally. As a first test of how 

general the δNA vs T1/2 correlation might prove to be, twenty-nine of the 

literature Fe(bppX,Y)22+ family (Figure 1.12) were also tested, with the δNA 

values calculated by DFT; a strong correlation δNA vs T1/2 was observed (R2 

= 0.89, Figure 1.16).83 Employing δNA instead of σ+ has two key advantages: 

(a) the effects of any substituent can be evaluated even for those which σ is 
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not available in literature and (b) the effect of other changes in the ligand 

backbone (e.g., N/CH, Figure 1.13 or N/O replacements, Figure 1.16) can 

also be explored. In both cases no Hammett parameter is available; so, 

alternative approaches, such as δNA, must be employed. 

In 2018, twelve [FeII(pyboxX)2]2+ complexes, varying in para-X 

pyridine (where pyboxH is 2,6-bis(oxazolin-2-yl)pyridine),141-142 were 

studied in depth by Kimura and Ishida (Figure 1.16).22 

 

 

Figure 1.16. Structure of pyboxX ligand and the family of twelve literature [FeII(pyboxX)2]2+ 

complexes.22, 141 

Kimura and Ishida found that both σp(X) (R2 = 0.78) and σp+(X) (R2 = 0.77) 

correlated with T1/2 for the family of twelve [FeII(pyboxX)2]2+ complexes 

(Figure 1.17).22  

 

Figure 1.17. Correlation of T1/2 with σp(X) (R2 = 0.78) and σp+(X) (R2 = 0.77) for the family of twelve 

literature [FeII(pyboxX)2]2+ complexes.22, 141 
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Similar to Brooker et al.,83 Kimura and Ishida ran some DFT calculations to 

assess the atomic charge on coordinating nitrogen of the pyridyl ring, but 

in this case not in the form of δN (easily confirmed experimentally) but, 

instead, directly as atomic charge (ρ(N)) of the free ligand for three solution 

phase SCO families: (i) [FeII(pyboxX)2]2+, (ii) [FeII(bppX,Y)2]2+, (iii) 

[FeII(Lazine)2(NCBH3)2]. Both these two parameters (δN and ρ(N)) are 

calculated from the electron density sitting on the coordinating nitrogen: 

(i) δN chemical shift accounts for the de-shielding effects of the electron 

density on the nuclei resonance and (ii) ρ(N) accounts for the difference in 

electron charge between the examined nitrogen vs. native nitrogen 

(number of electrons equal to 7). This variation (negative, electron excess) is 

a mirror of the capability of the nitrogen to pull electrons from the 

surrounding carbon atoms. Among these two parameters (δN and ρ(N)), 

the valuable advantage of the δN is that it can be experimentally validated 

by simple 15N NMR measurements. Not surprisingly – as the atomic charge 

ρ(N) and the chemical shift δN account for the same molecular properties 

– good to excellent correlations were also found between ρ(N) and T1/2 

(Figure 1.18; R2(pyboxX) = 0.73, R2(bppX,Y) = 0.98, R2(Lazine) = 0.96).22 

 

Figure 1.18. Plot of T1/2 vs ρ(Npy) from the DFT for three different families of SCO: [Fe(pyboxX)2]2+ 

(left), [Fe(bppX)2]2+ (centre), [Fe(Lazine)2(NCBH3)2] (right). A dashed line represents the best linear 

fit. Figure reproduced with modifications from ref22. 
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The use of the atomic charge ρ(N) instead of the Hammett parameter σp, 

provided Kimura and Ishida the chance to investigate the intimate 

difference between the electronic structure of [Fe(bppX)2]2+ and 

[Fe(pyboxX)2]2+. The two ligands (bppX vs. pyboxX) differ in the ligand 

backbone, by an N/O replacement which happens in both of the flanking 

five-membered rings,22 for which no σ values are available or indeed 

possible. This engineered modification, from N to O, increases the ligand 

field strength of the ligand; as at same value of X, [Fe(bppX)2]2+ shows a 

lower T1/2 than [Fe(pyboxX)2]2+. 

More interestingly, the X substituent affects the two ligands to the 

same extent, as the T1/2 vs. ρ(N) correlations have the same slope; thanks to 

this discovery, Kimura and Ishida were able to establish an empirical 

relationship between the two systems (Equation 1.14).22 

 

𝛥𝑇1/2(𝑝𝑦𝑏𝑜𝑥) = 1.20 ∙ 𝛥𝑇1/2(𝑏𝑝𝑝) + 17 (1.14) 
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1.5. Temperature and Pressure 
induced CoII SCO  

In 2012, Brooker et al. reported the synthesis and characterisation of the 

robust, solvent-free crystals of [CoII(dpzca)2] (Figure 1.19).19  

 

 

Figure 1.19. Structure of the Hdpzca ligand (left) and the [CoII(dpzca)2] (right).19, 104 

 

Particularly interesting for this CoII complex is the SCO which is triggered 

by three different stimuli: temperature, pressure and redox. This triply 

switchable SCO CoII complex showed (i) a thermal SCO transition ambient 

pressure (p = 105 Pa or 1 bar): that was abrupt, reversible, and hysteretic (T1/2↑ 

= 168 K, T1/2↓ = 179 K, ΔT1/2 = 11 K) (Figure 1.20a); (ii) a pressure-activated 

SCO transition at room temperature (T = 298 K); which was monitored 

using Raman spectroscopy from 105 Pa to p = 0.57 GPa (Figure 1.20b) and 

(iii) reversible switching between HS CoII (V < 0.25 V) and LS CoIII (V > 0.25 

V) by reversible redox (Figure 1.20c).104 Crystalline [Co(dpzca)2] is a neutral 

complex, coordinated by two anionic ligands without solvent inclusion in 

the crystalline lattice. For HS [Co(dpzca)2] at 298 K and 1 bar, the unit cell 

includes four equivalent molecules of [Co(dpzca)2] in I41/a space group (¼ 

of complex in asymmetric unit for general Z = 16 gives four complexes in 

unit cell, Table 1.1).19 
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The two tridentate dpzca ligand strands are each coordinated to the 

cobalt(II) centre meridionally, through one imide (Co–N3 = 2.049(3) Å) and 

two pyrazine (Co–N1 = 2.145(3) Å) nitrogen donors, at a bite angle of 

77.51(7)° (Figure 1.21, Table 1.2). For LS [Co(dpzca)2] at 90 K and 1 bar, the 

unit cell includes four equivalent molecules of [Co(dpzca)2] P21/c space 

group (entire complex in asymmetric unit for general Z = 4 gives four 

complexes in unit cell). 

 

 

 

Figure 1.20. (a) Temperature dependence (at a sweep rate of 5 K min-1) of the magnetic moment of 

a powder sample of [Co(dpzca)2] over three consecutive cycles reveal the reversibility of the 

hysteresis loop. Note that the solid lines simply join the data points. (b) Effect of pressure on Raman 

spectra of [Co(dpzca)2] at 298 K. Bottom to top: pressure loading spectra, from ambient (red line 

=HS state) to 0.28, 0.32 (black line = mixture of HS and LS states), 0.49, and 0.57 GPa (blue line 

= LS state), then pressure unloaded spectrum at ambient pressure. (c) CV study of an acetonitrile 

solution of [CoII(dpzca)2]/[CoIII(dpzca)2]+ vs 0.01 mol L-1 Ag/AgNO3. Figure reproduced with 

modifications from ref.104 
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Figure 1.21. (a) [CoII(dpzca)2] at ambient pressure. Left: Structure at 298 K. (b) Perspective view 

of [CoII(dpzca)2]at 100 K and atmospheric pressure (left) and at 293 K and 1.78(9) GPa (right) 

highlighting the twisting of the N11/N12 pyrazine ring. This also distorts the octahedron 

significantly, which is best identified by looking at the Σ4, rather than the Σ12 where the effect is 

diluted by the other (relatively unchanged) cis angles, showing maximum Jahn Teller distortion. 

Figure reproduced with modifications from ref.19 

Table 1.1. Crystal system, space group, and cell constants for [Co(dpzca)2] at ambient pressure 

(298 and 90 K; 105 Pa ≡ 0.1 MPa ≡ 1x10-4 GPa ~ 1 bar) and at ambient temperature (293 K, 0.42(2) 

GPa and 1.78(9) GPa). [a] Note that the b and c axes in the tetragonal HS (298 K and 105 Pa) 

structure have been swapped to facilitate comparison with the monoclinic structures.319 

Pressure 
105 Pa 

1 bar 

105 Pa 

1 bar 

0.42 GPa 

4200 bar 

1.78 GPa 

178000 bar 

Temperature 298 K 90 K 293 K 293 K 

Spin State HS LS LS LS 

Crystal 

system 
Tetragonal Monoclinic Monoclinic Monoclinic 

Space group I 41/aa P21/c P21/c P21/c 

a axis (Å) 8.795(2) 8.668(5) 8.610(5) 8.556(5) 

b axis (Å)a 27.918(9) 27.656(14) 27.630(14) 26.630(14) 

c axis (Å)a 8.795(2) 8.514(5) 8.444(5) 8.130(5) 

β angle (°) 90 91.52(3) 91.66(3) 90.80(3) 

Volume (Å3) 2160(1) 2040(2) 2008(2) 1852(2) 
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As expected for a cobalt(II) centre in the LS state, it is Jahn-Teller distorted: 

the four equatorial bonds are considerably shorter (Co-NImide: N3 = 1.91(1), 

N13 = 1.94(1) Å; Co-NPz: N1 = 1.99(1), N5 = 1.97(1) Å) than the apical 

positions (Co-NPz: N11 = 2.19(1), N15 = 2.20(1) Å), and the average bite 

angles for the N1 and N11 ligands, 82.6° and 79.7° respectively, are closer 

to 90° (Figure 1.21b and Table 1.2). 

In 2015 Brooker et al. further studied the pressure-activated SCO 

behaviour of [Co(dpzca)2] using a combination of Variable Pressure (VP) 

room temperature single crystal X-ray measurements (Table 1.2-1.3 and 

Figure 1.21) as well as VP and VT magnetic measurements (Figure 1.21 and 

Table 1.3).19 Additional X-ray structure determinations where carried out 

at room temperature using a diamond anvil cell, at 0.42 GPa (4200 bar) and 

1.78 GPa (17800 bar).104 

Table 1.2. Crystal system, space group, unit cell volume (Å3), selected Co–N bond lengths (Å), N–

Co–N angles (°), and octahedral distortion parameters (°) at ambient pressure for HS and LS) 

[CoII(dpzca)2] (1 × 10−4 GPa; 298 and 90 K),18 and at 0.42(2) GPa and 1.78(9) GPa (293 K). [a]Σ4 

Sum of the deviation of the four cis pyrazine-Co-pyrazine angles from 90°. 

 

Pressure 
105 Pa 

1 bar 

105 Pa 

1 bar 

0.42 GPa 

4200 bar  

Temperature 298 K 90 K 293 K 

Spin State HS LS LS 

Co-NImide 
2.05(4) 

2.05(4) 

1.94(1) 

1.99(1) 

1.96(1) 

1.97(1) 

Co-NPz 1st L 

strand 

2.15(2) 

2.15(2) 

1.97(1) 

1.99(1) 

2.00(1) 

2.03(1) 

Co-NPz 2nd L 

strand 

2.15(2) 

2.15(2) 

2.19(2) 

2.20(2) 

2.17(2) 

2.18(2) 

Av. Co-N 2.11 2.05 2.05 

Σ12b 110.8° 76.1° 89.9° 

Σ4|(cis-Pz)-90|a 10.8° 5.3° 7.3° 
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At these pressures [0.42, 1.78 GPa], LS [Co(dpzca)2] crystalline cell shows 

an intense shortening of the c axis that led to reduction of the whole cell 

volume (-7.5%, Table 1.1). The SCO transition was also investigated by VT 

magnetic measurements at seven different pressures (p = 1, 1800, 2139, 

2496, 2904, 3871, 4296 bar; Table 1.3 and Figure 1.22).104 

 

 

Figure 1.22. (left) The T1/2 for the abrupt component of the SCO in [Co(dpzca)2] versus applied 

hydrostatic pressure, obtained from the magnetic data. The four lowest pressure data points (T1/2 ∼ 

constant) are consistent with a threshold pressure being reached before the expected approximately 

linear change of T1/2 with P is observed. Fraction HS (γHS) versus temperature for [Co(dpzca)2], 

obtained from VT magnetic data collected at seven different pressures from ambient to 4296 bars 

(0.43 GPa). Figure reproduced with modifications from ref.19 

Table 1.3. Reported values of T1/2 (γHS = 0.50) for the [Co(dpzca)2] overall SCO process at different 

pressures (1 bar < p < 4300 bar, i.e. 10-4 GPa < p < 0.43 GPa).19 

 

p / bar 

p / GPa 

1 

10-4 

1800 

0.18 

2139 

0.21 

2496 

0.25 

2904 

0.29 

3871 

0.39 

4296 

0.43 

T1/2↓/ K 173 173 189 202 214 227 235 

T1/2↑/ K 169 168 188 202 214 227 235 
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As the pressure increases, the T1/2 shifted to higher temperatures (Figure 

1.22(left), rising from 173 K at pressure of 1 bar up to 235 K at 4300 bar 

(Table 1.3, Figure 1.22). 

Across this range of pressures, [Co(dpzca)2] also shows a change in 

the nature of the SCO transition: (i) at p ≤ 2100 bar, a highly cooperative 

SCO transition (abrupt, reversible, and hysteretic) is observed; (ii) at p ≥ 2500 

bar, a progressively higher portion of gradual spin transition replaces the 

first stages of the abrupt SCO (low HS fraction). 

This latter condition leads to a progressively higher percentage of 

SCO gradual transition at the pressure increase (gradual at p < 2100 bar (20%, 

up to γHS < 0.20, mostly abrupt and hysteretic SCO transition); gradual at p = 

2500 bar (60%, up to γHS < 0.6); gradual at p = 4300 bar (80%, up to γHS < 0.8)) 

(Figure 1.22(right)).  
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1.6. Theoretical Approaches to SCO 

1.6.1. General Overview 

The SCO phenomenon is a very complicated phenomena to theoretically 

reproduce with high accuracy. As mentioned in Subsection 1.2.2, the HS-LS 

gap for the SCO transition is extremely small (ΔEHL, about 0-2000 cm-1; 

Figure 1.2). For this reason, the employment of high levels of theory is 

desirable, as it can provide very accurate results. Indeed, calculation 

involving transition metal ions, where d-electrons occupy degenerate and 

quasi-degenerate orbitals, usually require a multi-configurational treatment 

in order for them to be properly described. 

Not surprisingly, more rigorous descriptions of the system 

wavefunction comes with heavy computational cost and also often 

problems with convergence. A brief overview of selected theoretical 

methods employed on SCO systems is provided next, followed by a 

detailed introduction to EDA-NOCV as it is employed on SCO systems for 

the first time in this thesis. 

1.6.2. Ab Initio Ligand Field Theory on 
SCO Systems 

A realistic reproduction of the HS-LS gap (Figure 1.2, ΔEHL) for the SCO 

transition is only possible by using high levels of theory such as Coupled 

Cluster (CC)143 or Complete Active Space Self Consistent Field (CASSCF).144 

The accuracy of a CC calculation is so often high that the results obtained 

can be used as a reference for evaluating the results obtained from ‘lower’ 

levels of theory (such as DFT) in which approximations are made in order 

to reduce computational costs.143  
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On the other hand, Ab-Initio Ligand Field Theory (AILFT)145 is a post 

Hartree Fock model, that enables calculation of the ligand field splitting 

energy (ΔO) by employing the CASSCF methodology (See Section A1.2 for 

general overview on Hartree Fock Theory).144 The CASSCF approach is 

applied to a fixed geometry structure (previously optimised with 

appropriately accurate computational protocols) and it proceeds through 

the screening of various electron rearrangements (various spin 

multiplicities) in a defined set of molecular orbitals (MOs).146-148 In addition 

to CASSCF routine, the second order N-Electron Valence State Perturbation 

Theory (NEVPT2) procedure can be added to reduce the computational 

costs.149-152 Some examples in literature can be easily found whereas the 

employment of AILFT calculation were run to provide a theoretical support 

to studies on Fe(II) SCO complex.153-156 

 

Figure 1.23. (left) Representation of the ΔO splitting for TM complexes; besides, the level of 

approximation obtained in reproducing the experimental ΔO splitting using the literature NEVPT2 

level of theory and the new implemented HQD-NEVPT2. (right) Correlation between experimental 

excitation energies and energies of the AILFT models derived from different ab initio methods. The 

grey dashed line denotes an almost perfect agreement. Figure reproduced with modifications from 

ref.157 

Neese et al. published in 2020 a very interesting study where they clarify the 

extremely high level of accuracy in calculating ΔO terms calculated using 

AILFT-NEVPT2 (Figure 1.23(right)).157 The authors implemented a new 

NEVPT2 procedure called Hermitian quasi-degenerate NEVPT2 (HQD-

NEVPT2), which was found to be even more accurate than the NEVPT2 
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procedure (Figure 1.23(right)).157 They tested this new HQD-NEVPT2 

implementation on twenty-four metal complexes (various metal 

complexes, first and second row transition metals), revealing an almost 

biunivocal matching between the calculated vs. the experimental excitation 

energies (Figure 1.23(left)); obtained results consolidate the role of AILFT 

as an irreplaceable tool in the study of Transition Metal (TM) complexes.157 

1.6.3. Density Functional Theory on 
SCO Systems 

One of the first paper to employs DFT to study a SCO system was in 1998 

by Toftlund et al.158 DFT does not provide results at the level of theories 

such as CASSCF or CC; however, it is so widely used because it has much 

lower computational costs (Section A1.2 for more details). This also opens 

up possibilities of studying much larger systems, such as surfaces or 

crystals. As results from DFT are highly dependent on the choice of the 

employed functional, a key step toward more common employment of 

DFT for SCO studies focussed on finding the ‘best’ functional for 

reproducing the HS-LS energy gap (ΔEHL).159-163  

In 2010, Neese et al. employed six DFT functionals to try to correctly 

reproduce ΔEHL for eleven different iron(II) complexes (from the simplest 

Generalized Gradient Approximation (GGA) to the newest double-hybrid 

(B2PLYP, Figure 1.24).159 The best candidate was found to be the double-

hybrid density functional B2PLYP, in conjunction with large and flexible 

basis sets (def2-QZVPP). 

This was observed to be able to provide qualitatively correct results 

of spin-state energetics for the investigated non-SCO complexes. However, 

in the case of the SCO complex, B2PLYP appeared to be slightly biased in 

favour of the HS state as some of the ΔEHL values are negative, which cannot 

be correct (Figure 1.24).159 
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Figure 1.24. The ΔEHL energies of a range of LS, SCO and HS iron(II) complexes are computed 

using modern density functional theory (DFT) methods with six different functionals (reported in 

the right side of the figure). Only the double-hybrid density functional B2PLYP, in conjunction 

with large and flexible basis sets (def2-QZVPP), can provide qualitatively correct results of spin-

state energetics for the investigated non-spin-crossover complexes. An energy difference ΔEHL of 0 

to 6 kcal/mol (0 to 2100 cm-1) is proposed to be indicative of SCO behaviour. Figure reproduced 

with modifications from ref159. 

As mentioned earlier (Figure 1.12, Subsection 1.4.3) in 2016, twenty-nine 

[FeII(bppX,Y)2]A2 (where A = BF4, PF6) complexes, varying in para-X pyridine 

or meta-Y pyrazole substituent (Figure 1.25, where bppH,H is 2,6-di(pyrazol 

-1-yl)-3-pyridine),107, 132, 134-137 were studied in depth by Deeth, Halcrow et 

al.23 using DFT with a GGA functional. Along with the correlations 

presented in Subsection 1.4.3, the energy gap between the high spin (HS) 

and low spin (LS) states, ΔEHL, correlated with Hammett parameter σ/σ+ of 

the X/Y substituent in the ligand. Specifically, ΔEHL correlated strongly with 

σp+(X) (R2 = 0.89) and a less strongly with σm(Y) (R2 = 0.67) (Figure 1.25).23  

However, such DFT results are consistently qualitative, and not 

quantitative. This is in part because such ab initio calculations are performed 

at T = 0 K where the LS state must be more stable than the HS state. 

Therefore, the ΔEHL term (ΔEHL = EHS – ELS) should always be positive (ΔEHL 

> 0) as the LS state is enthalpically more stable than the HS state. So, despite 
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the fact that the relative order of ΔEHL gap across the [FeII(bppX,Y)2] family 

is respected and the effect of the X substituent on ΔEHL gap can be 

explained; the absolute magnitude of ΔEHL reveals the weakness of DFT: it 

is unable to supply a quantitative evaluation of these energy gaps. 

 

Figure 1.25. (a) Plot of the computed energy difference between the high- and low-spin states 

relative vs. the relevant substituent Hammett parameter (σp+, σm+) (ΔEHL, R2 = 0.89) to 

[Fe(bppX)2]2+; (b) Plot of the relevant substituent Hammett parameter vs. the computed energy 

difference between the high- and low-spin states relative (ΔEHL, R2 = 0.67) to [Fe(bppY)2]2+. Figure 

reproduced with modifications from ref23. 

Another interesting approach to study the SCO phenomenon using DFT is 

from a thermodynamic angle, that is considering enthalpy and entropy, 

rather than focussing on the MO energies. This approach was preferred in 

several studies.164-166 In 2012, Paesani et al.164 attempted to reproduce the 

experimental trend of increasing T1/2 of the SCO transition for the three 

trans-[Fe(styrylpyridine)4(NCX)2] as X was varied from S to Se to BH3 

(Figure 1.26, styrylpyridine in trans configuration). They employed a four-

step procedure: (i) tuning the electronic enthalpy gap (ΔHel,HS-LS) employing 

different DFT functionals on isolated molecules of trans-
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[Fe(styrylpyridine)4(NCX)2]; (ii) calculating normal modes of the six 

molecules (three different species in two different spin states); (iii) using 

principles of statistical thermodynamics to calculate vibrational 

contributions (ΔHvib,HS-LS and ΔSvib,HS-LS) and electronic entropy (ΔSel,HS-LS); (iv) 

reproducing the gradual SCO transition. They succeeded in qualitatively 

reproducing the experimental data, but with a 50-100 K error in T1/2 (Figure 

1.26). This high error it is not a surprise as it comes from the strong 

limitation that DFT functionals cannot be tuned for an ad hoc situation. 
 

 

Figure 1.26. (a) Structure of trans-[Fe(styrylpyridine)4(NCX)2] (X = S, Se, NCBH3, styrylpyridine 

in trans configuration). (b) Comparison of the experimental (red) and calculated (black) spin-

crossover temperatures for the [Fe(stpy)4(NCX)2] complexes (X = S, Se, and BH3). (c) Calculated 

magnetic moments for the [Fe(stpy)4(NCX)2] complexes with X = S (circle), Se (square), and BH3 

(diamonds) as a function of the temperature. Figure reproduced with modifications from ref164. 

Finally, rationalising thermodynamic results is extremely complicated as 

those depend on the intrinsic properties of the system, such as the number 

of electrons, the charge of the systems, or the overall vibrational properties, 

and they can depend strongly on the number of atoms that compose the 

whole molecule, even if those atoms are not directly involved in any bond 

engagement but just belong to satellite branches of the ligand (e.g., tolyl, 

phenyl rings can influence the packing). 

These results of these various DFT approaches are promising, but 

they are still far from supplying a reliable support for scientists in pre-

synthesis phases of molecular design. 
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1.6.4. DFT+U on SCO Systems: The 
Hubbard U Term 

Several functionals in DFT (as Local Density Approximation, LDA or General 

Gradient Approximation, GGA) do not correctly described the strong on-site 

Coulomb interaction of localized electrons; in order to correct it, the 

strategy to add an additional Hubbard-like term to the Hamiltonian to 

specific atomic orbitals, giving birth to the DFT+U method. 

These on-site Coulomb interactions are particularly strong when atomic 

orbitals are localised: this always happens for d and f electrons, sometimes 

for p orbitals. The DFT+U correction is usually described through two 

different parameters accounting for the on-site Coulomb interaction (U) and 

on-site Exchange interaction (J). These two U and J parameters can be 

extracted from ab-initio calculations; but more often, they are obtained 

semi-empirically. Two main branches address different ways to introduce 

this DFT+U corrections in a DFT calculation: Liechtenstein et al.167 prefer to 

add U and J as independent corrections; Anasimov et al.,168 prefer to collect 

them is a single effective Ueff term (Ueff = U - J). In Chapter Five, the DFT+U 

approach (Anasimov version168) is employed to model the solid state SCO 

behaviour of CoII(dpzca)2 complex (Section 1.5).  

 

Figure 1.27. (right) Molecular structure of the solid state SCO Fe(phen)2(NCS)2; (right) Reported 

variation in the ΔEHL gap (DFT+U) at the increase of the U potential from 2.5 eV to 4.0 eV (J = 

0.95 eV, constant). Figure reproduced with modifications from ref169. 
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The application of the Hubbard-U term supplies the advantage to modify 

ΔEHL gap by unevenly affecting the absolute energy of the two different 

spin state; therefore, the tuning of the ΔEHL gap is not connected with the 

employed functional (Figure 1.26, ref164) but at finding the proper Ueff term 

for the right ΔEHL gap to reproduce the experimental SCO.169-170 

Ángyán et al. published in 2008 a study on solid state SCO 

Fe(phen)2(NCS)2 using periodic DFT. The DFT+U implementation 

(Liechtenstein version; Fe(d) orbitals: U = 2.5 eV, J = 0.95 eV) was used 

successfully tuned the ΔEHL gap of Fe(phen)2(NCS)2 (where phen = 

phenanthroline) to reproduce the experimental available data (Figure 

1.27).169 

1.6.5. Monte Carlo and Molecular 
Dynamics (MC/MD) on SCO Systems  

Several efforts toward parametrising an ad hoc computational protocol to 

reproduce SCO phenomenon can also be found in literature. In these cases, 

semi-classical calculations such as Monte Carlo/Molecular Dynamics 

(MC/MD) were employed to fit molecular properties.89, 171-173 Most of these 

studies gave only partially satisfying results, as MD or MC calculations are 

levels of theory that are usually employed to treat larger systems in a 

classical or quasi-classical approach, when ab initio calculations cannot be 

employed.89, 171-172 

An interesting example from 2014, Cirera et al. succeeded in 

implementing an ad hoc Ligand Field Force Field (LF-FF) able to reproduce 

the SCO transition for a Metal Organic Frameworks (MOF) of 

[Fe(pz)2Pt(CN)4] previously modelled using DFT calculations (Figure 

1.28).164, 173 The [Fe(pz)2Pt(CN)4] MOF was firstly characterised 

experimentally revealing a SCO behaviour at T1/2 = 300 K with abrupt and 

hysteretic SCO transition.173  
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Figure 1.28. (a) Three-dimensional representation of the [Fe(pz)2Pt(CN)4] MOF and secondary 

building units [Pt(CN)4]2− (upper) and [Fe(pz)2(CN)4]2− (lower) used as model systems in the 

TPSSh/triple-ζ calculations required for the parametrisation of the Fe(II) and Pt(II) Ligand Field 

Force Fields. All hydrogen atoms are omitted for clarity. (b) Magnetisation curves for the 

[Fe(pz)2(NC)4]2− experimental vs calculated (c) Comparison between theoretical models obtained 

with the harmonic approximation using DFT-TPSSh (solid black line) and MD-LFFF (solid red 

line). Figure reproduced with modifications from ref173. 

Subsequently, Cirera et al. proceeded in employing periodic DFT 

(TPSSh functional/triple-ζ basis set) to model the SCO switching as a gradual 

second order phase transition. The attempt led to reproduce the switching 

T1/2 at 400 K (ΔT1/2 = 100 K). 

However, Cirera et al. did not stop at reproducing the SCO 

transition, they aimed to define a hybrid MC/MD method based on results 

obtained in the first phase of their study using DFT. MC/MD methods are 

lower levels of theory than DFT (calculations not from first principles, more 

approximated, employed for large systems) but they have the important 

advantage to trigger a further scale-up in the size of the systems that can 
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be studied. They succeeded in implementing this MC/MD method, and 

were able to reproduce SCO transition for the MOF of [Fe(pz)2Pt(CN)4] as 

accurately as DFT did, but at a lower computational cost, with the potential 

to be scaled-up to larger systems as crystals or surfaces (Figure 1.28a). 

Despite the success to implement a Ligand Field Force Field (LF-FF) able to 

accurately reproduce the DFT results, the error from the experimental 

findings is still extremely high. 

1.6.6. Artificial Neural Networks (ANN) 
on SCO Systems 

In 2020, Kulik et al.174 showed that an Artificial Neural Network (ANN) was 

able to correctly predict the actual ground spin states in over 95% of a batch 

of 46 FeII SCO complexes. This was achieved after training the ANN on over 

2000 mononuclear FeII and FeIII complexes, optimised with DFT (B3LYP 

functional). Training was targeted on the Fe-X (X = C, N, O, S) bond lengths 

in order to learn the specific range of bond distances corresponding to the 

FeII different spin states (Figure 1.29). 

 
Figure 1.29. Normalised histograms of relative iron−ligand-atom bond lengths for 965 

mononuclear octahedral Fe(II) complexes in the training set, with the coordinating element 

indicated in the upper left corner of each panel. Vertical dotted lines indicate 0.95 and 1.05 relative 

bond length thresholds which nominally indicate LS or HS character, respectively. Figure 

reproduced with modifications from ref174. 
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1.6.7. Introduction to EDA-NOCV 

A key limit of the above theoretical approaches, even when successful, is 

the absence of any quantitative evaluation of the M-L bond energies and 

hence of the detailed electronic structure. Indeed, DFT can provide ΔHel,HS-

LS or ΔGHS-LS but to date has not enabled any generalisable outcome that 

could be extended and used in further studies on different systems. 

An introduction to the recently developed Energy Decomposition 

Analysis through Natural Orbitals for Chemical Valence (EDA-NOCV) 

method is now presented, as it is applied for the first time to the field of 

SCO later in this thesis. This model is promising as it can supply a 

quantitative assessment of the energies in bond engagement between 

different molecular fragments.  

An extensively employed model used in the past to investigate the 

chemical bond from an energetic perspective is the Extended Transition 

State (ETS) theory. ETS is able to provide a powerful insight of the energies 

taking part in bond formation between two fragments (e.g., ionic vs covalent 

bonding);175-180 however, it is not possible to extract any further information 

about the nature of the bonds engaged between fragments (σ-bond, π-bond 

or δ-bond), nonetheless the energetic breakdown.  

Alternatively, Natural Orbitals for Chemical Valence (NOCV) theory 

offers a perspective of the electron flowing between pieces of the overall 

molecule, to form a chemical bond. Specifically, new set of orbitals (NOCV) 

are obtained through a localisation scheme and used to diagonalise the 

deformation density matrix (ΔP) in order to find a set of eigenvalues (υi) 

for pairing each ‘donor orbital’ with each ‘acceptor orbital’ from the two 

different parts of the molecule whereby bond analysis is monitoring. 

Interestingly, ETS and NOCV theories show an interesting 

complementarity in the data they can uncover; eventually, the electron 

flowing analysis from NOCV can be used to breakdown the part of the ETS 

analysis accounting for covalent bonding and supply information about the 
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nature of such engaged bonds, as it will be discussed shortly. ETS theory 

was consequently renamed EDA, maintaining the same structure of the 

theoretical model; therefore, ETS, from now on, is recalled as EDA (Energy 

Decomposition Analysis). This new implemented theory was named 

Energy Decomposition Analysis using Natural Orbitals for Chemical 

Valence (EDA-NOCV).181-182 The EDA-NOCV183-184 method combines the 

classical EDA, developed by Ziegler and Rauk,175, 185 with the NOCV 

extension (Natural Orbitals for Chemical Valence), developed by Mitoraj 

and Michalak.186-187 

 

Figure 1.30. Fragmentation scheme for the EDA-NOCV analysis (B3LYP-D3/TZVP) for 

[AuCl(PMe2Ph)] into fragment 1: ClAu+ and fragment 2: PMe2Ph-. Figure reproduced with 

modifications from ref188. 

Table 1.4. EDA-NOCV results from exemplative case188 for [AuCl(PMe2Ph)] complex. The total 

change in energy ΔEint (left) is decomposed into several contributions, ΔEelstat, ΔEPauli, ΔEorb and 

ΔEdisp. The ΔEorb term is split into ΔEorb,σ, ΔEorb,π, ΔEorb,pol, ΔEorb,rest.188 All energies are reported in 

kcal/mol. 

 

ΔEint ΔEelstat ΔEPauli ΔEdisp ΔEorb ΔEorb,σ ΔEorb,π ΔEorb,pol ΔEorb,rest 

-67.7 -174.9 173.3 ‐5.4 ‐60.6 ‐37.0 ‐14.6 ‐6.7 ‐2.3 

 

In the most complete description of the molecular system the result of the 

EDA-NOCV approach supplies a quantitative assessment of the dissociation 

energy (ΔEint, Equation 1.14) between the considered molecular fragments 

(e.g. fragment 1: ClAu+ vs. fragment 2 PMe2Ph-, Figure 1.30).188  
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The total energy interaction ΔEint is defined as the difference between the 

energy of the final molecule (ΔE0) minus the energy of the two split 

molecular fragments extrapolated from the molecular structure of the 

studied molecule (ΔE1 and ΔE2) (Equation 1.15, exemplative results from 

ref188 are reported in Table 1.4): 

 

𝛥𝐸𝑖𝑛𝑡 =  𝐸0 − 𝐸1 − 𝐸2 (1.15) 

 

An alternative, and more useful description of ΔEint is given in Equation 

1.16; whereas each term will be shortly described through the various steps 

that characterise the EDA-NOCV method: 

 

𝛥𝐸𝑖𝑛𝑡 =  𝛥𝐸𝑒𝑙𝑠𝑡𝑎𝑡 + 𝛥𝐸𝑃𝑎𝑢𝑙𝑖 + 𝛥𝐸𝑜𝑟𝑏 (1.16) 

  

By adding the preparation energy term (ΔEprep) to ΔEint the experimentally 

measurable dissociation energy (DE) is obtained (Equation 1.17).183-184 ΔEprep 

term accounts for the loss in energy due to the system having to rearrange 

in order to be ready to interact to produce the final molecule. 

 

𝐷𝐸 =  𝛥𝐸𝑖𝑛𝑡 + 𝛥𝐸𝑝𝑟𝑒𝑝 (1.17) 

  

The EDA-NOCV calculation is performed through a series of single point 

calculations whereby the different ΔEi (i = elstat, Pauli, orb) terms are 

calculated stepwise. 

First, the bonds of interest are identified and the molecule is split 

according to these into two (or more) pieces, called fragments (e.g., Figure 

1.30). Then, in this preliminary step, the energies of the respective 

fragments are calculated individually with the same geometry they exhibit 

in the final molecule. At the end of this step the electron densities ρA and ρB 

are obtained. Once the electron densities of the fragments are calculated at 

infinite separation, they are replaced at the distance they hold in the 
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molecule and the components of the occurring interactions for each ΔEi 

term are calculated (Equation 1.16). The electrostatic term ΔEelstat is obtained 

in a quasi-classical way via interaction of Coulomb charges as reported in 

Equation 1.18 (exemplative results from ref188 are reported in Table 1.4). 

 

 𝛥𝐸𝑒𝑙𝑠𝑡𝑎𝑡 =  ∑
𝑍𝜐𝑍𝜇

𝑅𝜐𝜇𝜐∈𝐴
𝜇∈𝐵

+ ∑
𝜌𝐵(𝑟) 𝑍𝜇

|𝑅𝜇 − 𝑟|
𝜐∈𝐴
𝜇∈𝐵

+ ∑
𝑍𝜐 𝜌𝐴(𝑟)

|𝑅𝜐 − 𝑟|
𝜐∈𝐴
𝜇∈𝐵

+ ∫
 𝜌𝐴(𝑟) 𝜌𝐵(𝑟)

𝑟12

𝑑𝑟1𝑑𝑟2 +   𝛥𝐸𝑋𝐶 (1.18) 

 

The error in the approximation of this ΔEelstat term as being a quasi-classical 

interaction is partially corrected for the variation in the Exchange and 

Correlation term (ΔEXC) is calculated (more details in Subsection A1.2.2). The 

ΔEXC term is evaluated in this same step and included into the ΔEelstat term. 

In the next step of the EDA-NOCV routine the Pauli energy change ΔEPauli 

is calculated. This term arises when the two fragments are placed at the 

distance they hold in the final molecule. When the wavefunctions ψA and 

ψB of the two fragments are allowed to overlap, energy for 

antisymmetrisation needs to be paid to obtain the final wavefunction ψ0 

(Equation 1.19). Indeed, in order to respect principles of antisymmetry and 

normalisation of the final wavefunction ψ0 the system needs to step out 

from its ground state. ΔEPauli is always associated with an energy increase, 

resulting in destabilisation of the system (exemplative results from ref188 are 

reported in Table 1.4).  

 

ψ0 =  𝑁𝐴̂{ψ1ψ2} (1.19) 

  

Hence the final form of ψ0 is calculated as a Slater determinant of the matrix 

composed by a new basis [λi; i=1, n] (Equation 1.18 and 1.19) obtained 

applying a Löwdin transformation to the original set of [χi; i=1, n] as 

reported in Equation 1.20. Sij is the overlap matrix. 

 

ψ0 = |λ1λ2. λ𝑖λ𝑗 . λ𝑛| (1.20) 
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λ𝑗 =  ∑ 𝑆𝑖𝑗
1/2

χj

𝑗

 (1.21) 

  

The related density ρ0 is subsequently calculated as reported in Equation 

1.22, where ΔEijPauli is the deformation density matrix in the basis [χi; i=1, n] 

representing the deformation density ΔρPauli obtained by the difference 

between ρ0 and (ρ12 = ρ1 + ρ2). 

 

𝜌0 = ∑ χ𝑖
∗χi

𝑛

𝑖

= ∑ 𝑆𝑖𝑗χiχj

𝑛

𝑖,𝑗

= ∑ ∆𝑃𝑖𝑗
𝑃𝑎𝑢𝑙𝑖  χiχj + 𝜌1 + 𝜌2

𝑛

𝑖,𝑗

 (1.22) 

 

It follows from Equation 1.22 that [ΔPijPauli = (Sij - δij)]. In this final step, the 

ΔEorb term is calculated from the deformation density Δρorb (Equation 1.23) 

which is defined as the difference between the electron density of final 

system ρ0 and the value of ρ12 (Equation 1.23).  

 

∆𝜌𝑜𝑟𝑏 = 𝜌0 − 𝜌12 = ∑ ∆𝑃µ𝜈
𝑜𝑟𝑏 λµλν

𝑛

µ,𝜈

 (1.23) 

 

In this step the NOCV method is utilised; firstly, a new set of natural 

orbitals is obtained by diagonalisation of ΔPorb (Equation 1.24). 

 

∆𝑃𝑜𝑟𝑏𝐶𝑖 = 𝜈𝑖𝐶𝑖 (1.24) 

  

Specifically, when the following equation is solved, a new set of vectors Ci 

that expand the new function ψi in the basis of the orthogonalised fragment 

orbitals λj with the following relation (Equation 1.25). 

 

𝜓𝑖 = ∑ 𝐶𝑖𝑗𝜆𝑗

𝑛

𝑗

 (1.25) 
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Through definition of the new basis set, the deformation density Δρorb can 

be also defined as a sum of complementary orbitals (Ψ+k; Ψ-k) in the NOCV 

representation. This set of complementary orbitals has corresponding 

eigenvalues with equal absolute value but opposite sign (Δυ values in 

Figure 1.31, Equation 1.26). 

 

∆𝜌𝑜𝑟𝑏(𝑟) = ∑ ∆𝜌𝑘
𝑜𝑟𝑏(𝑟)

𝑁/2

𝑘

∑ 𝛥𝜈𝑘[−𝜓−𝑘
2 (𝑟) + 𝜓+𝑘

2 (𝑟)]

𝑁/2

𝑗

 (1.26) 

  

The value of ΔEorb is then described by the change in energy between the 

final and initial wavefunctions, Ψ and Ψ0, as follows (Equation 1.27, 

exemplative results from ref188 are reported in Table 1.4): 

 

∆𝐸𝑜𝑟𝑏 = 𝐸[𝜌0] − 𝐸[𝜌12] (1.27) 

  

The ΔEorb term can also be defined using the new NOCV description, as the 

sum of pairs of orbitals (Ψ+k; Ψ-k) which describe the electron flowing of each 

ΔEkorb contribution related to each k value (ΔE values in Figure 1.31, 

Equation 1.28). 

 

∆𝐸𝑜𝑟𝑏 = ∑ ∆𝐸𝑘
𝑜𝑟𝑏

𝑁/2

𝑘

 (1.28) 

 

Finally, as a result of this final step, obtained through the application of 

NOCV visual inspection, the ΔEorb can be further split into different, classic, 

types of bonding contributions (Equation 1.29), even in systems with C1 

symmetry (exemplative results from ref188 are reported in Table 1.4). 

 

∆𝐸𝑜𝑟𝑏 =  ∆𝐸𝑜𝑟𝑏,𝜎 + ∆𝐸𝑜𝑟𝑏,𝜋 + ∆𝐸𝑜𝑟𝑏,𝑝𝑜𝑙 + ∆𝐸𝑜𝑟𝑏,𝑟𝑒𝑠𝑡 (1.29) 
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The inclusion of the NOCV orbitals gives information on the number of 

electrons transferred from one fragment to another. The assignment is 

performed by visual inspection of the deformation density Δρorb: if the 

electron flow occurs between the two fragments along the internuclear axis 

of the nuclei involved in forming the bond between fragments, it can be 

defined as a sigma bond (σ), and the relative orbital energy variation is 

denoted as ΔEorb,σ. 

 
Figure 1.31. Natural orbitals for chemical valence (NOCV) contributions (B3LYP-D3/TZVP) 

to Eorb (σ-bond, left and π-bond, right) for [AuCl(PMe2Ph)] (see also Table 1.4). In deformation 

density plots depicted here the sense of electron “flow” is from red to blue regions. Colour code: Au 

(yellow), Cl (green), P (blue), C (black), H (white). Figure reproduced with modifications from 

ref188. 

If the charge flow between the two fragments shows a nodal plane which 

includes the nuclei, it can be classified as a pi bond (π) and the relative 

orbital energy variation is denoted as ΔEorb,π. If the electron flow is 

occurring between orbitals of the same fragment, then the contribution is 

called a ‘polarisation term’ (ΔEpol) and is far less relevant for describing the 

inter-fragment bonding interaction. 



1 | Introduction 

 

51 

 

Finally, any small energy contributions from NOCV flows that are below a 

chosen threshold are collected into the ΔErest term.181-182 They usually result 

from the fact that not all electron density relevant for the bonding 

interaction can be captured via the applied orbital localisation scheme. 

However, close attention must be paid if ΔErest term gets too large as this 

can indicate a problem in the fragmentation scheme. 
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1.7. Aims of this PhD 

This PhD is divided into contributions for two different research fields: 

 

1. Solution Phase SCO (Chapters Two, Three & Four): An in-depth 

analysis of the effects of ligand electronic structure on the resulting 

metal complex, by surgical alterations applied through variation of 

substituents (para/meta positions) or by atom replacements in the 

ligand backbone (CH/N or N/O). In order to properly study these 

effects – without possible side effects due to crystal packing – all of 

these studies were performed on solution-active SCO complexes 

(Chapters Two to Four).  

 

2. Solid state SCO (Chapters Five): An attempt is made to develop a 

computational protocol that can reproduce the solid state SCO 

transition observed for [CoII(dpzca)2] at a range of different pressure 

conditions.19, 104 

 

A total of six different SCO-active families were studied (Figure 1.32): one 

of them was synthesised during this PhD (LpyZ, Figure 1.32a); whilst the 

other five families examined in this thesis were available from literature 

(Figure 1.32(b-f)).19, 22-24, 83, 104 

 The first research field is articulated in two distinct projects: (a) 

Testing the generality of the δNA vs. T1/2 correlations for pre-synthesis 

prediction of effects of change to LpyZ or pyboxX or pytacnX ligand on T1/2 

(Chapter One); (b) assessment of the energetics in place in engaging M-L 

bond in two different SCO families (Lazine and bppX) through the application 

of EDA-NOCV to SCO systems for the first time (Chapters Two, Three & 

Four). 
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Figure 1.32. (a) Family of five [FeII(LpytZ)2(NCBH3)2], four of which are new, prepared and 

characterised in Chapter Two (box). (b-f) Literature families employed for theoretical studies: (b) 

five [FeII(Lazine)2(NCBH3)2],83 Chapters Two & Three; (c) fourteen [FeII(bppX,Y)2]2+ ref23, 134, 136, 189-190 

Chapters Two & Four; (d) twelve [FeII(pyboxX)2]2+,ref22, 141 Chapter Two (e) seven 

[FeII(pytacnX)(NCCH3)2]2+, ref24 Chapter Two; (f) [CoII(dpzca)2], Chapter Five.104n 
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In the first project (Chapter Two), a new family of four 3-(2-(5-Z-pyridyl))-4-

tolyl-5-phenyl-1,2,4-triazole (LpytZ) and four new solution SCO-active 

[FeII(LpytZ)2(NCBH3)2] were synthesised and characterised (LpyZ, Figure 

1.30a). The four [FeII(LpytZ)2(NCBH3)2] plus the literature 

[FeII(LpytH)2(NCBH3)2],105 as well as the [FeII(pyboxX)2]2+ and 

[FeII(pytacnX)(NCCH3)2]2+ families (both available from literature,22, 24, 141-142 

Figure 1.32d and 1.32e) were then used to further test the generality of 

using the 15N-NMR chemical shift (δNA) of the coordinating nitrogen in the 

metal-free ligand as probe of the electronic tuning by the ligand substituent 

on the T1/2 of the corresponding complex.22-24, 83 

In the second project, the literature families of solution SCO-active 

[FeII(Lazine)2(NCBH3)2]83 and [FeII(bppX)2]2+ ref23 (Figure 1.32b and 1.32c, 

Chapters Three & Four) were employed for the first ever application of the 

EDA-NOCV theoretical model to SCO system through a two-step study: (i) 

method development and validation and (ii) analysis of the M-L bonds in 

these two, very different, iron(II) SCO families.  

The ambitious aim of the second research field (third project) was to 

develop a computational protocol capable of predicting the observed solid 

state SCO of the Co(II) bis-imide complex [CoII(dpzca)2] at different 

pressures, after establishing a computational protocol at p = 1 bar (Figure 

1.32f, Chapter Five).104 Discussion of the steps taken to start to develop a 

suitable computational procedure to achieve this are reported and 

discussed in detail in Chapter Five. 

The thesis concludes with a summary of the key achievements in 

Chapter Six.
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2 | Testing the Generality of T½ 

of Spin Crossover Complex 

vs. Ligand 15N NMR Chemical 

Shift Correlations: Towards 

Predictable Tuning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter are at an advanced stage of preparation for 

submission to Inorganic Chemistry Frontiers as: ‘Testing the generality of T½ 

of Spin Crossover Complex vs. Ligand 15N NMR Chemical Shift 

Correlations: Towards Predictable Tuning’; All the data were produced by 

me: both the organic and inorganic synthesis, experimental 

characterisation and the theoretical 15N-NMR calculation. The manuscript 

and supporting information were entirely drafted by me. 
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2.1. Abstract 

Four new bidentate 3-(2-(5-Z-pyridyl)-4-tolyl-5-phenyl-1,2,4-triazole 

ligands LpytZ (Z = CF3, Br, F, Me) and the corresponding family of 

[FeII(LpytZ)2(NCBH3)2] complexes, in addition to the literature unsubstituted 

analogue [FeII(LpytH)2(NCBH3)2], are prepared and studied herein. Single 

crystal structure determinations on all four new complexes confirmed the 

expected octahedral coordination, with trans-NCBH3 co-ligands. Solid-

state variable temperature magnetic studies of air-dried crystals showed 

that [FeII(LpytCF3)2(NCBH3)2] is SCO active with a hysteresis loop at 208 K (T1/2↓ 

= 203 K, T1/2↑ = 213 K; ΔT1/2 = 10 K); [FeII(LpytBr)2(NCBH3)2] is not SCO active 

until heated above RT, while [FeII(LpytF)2(NCBH3)2] and 

[FeII(LpytMe)2(NCBH3)2] are SCO active close to RT (T1/2 = 290 and 300 K 

respectively). Solution phase variable temperature Evans NMR method 

studies showed that four of the complexes were SCO active close to RT (T1/2 

= 279-294 K) whilst [FeII(LpytCF3)2(NCBH3)2] was mostly LS at RT (T1/2 = 374 

K). These solution phase T1/2 values, and those for four literature families of 

bi- (five Lazine), tri- (fourteen bppX,Y, twelve pyboxX) or tetradentate (seven 

pytacnX) ligands, which feature para (X) pyridine or meta (Y) pyrazole ring 

substituents, are used, along with the calculated 15N NMR chemical shift of 

the coordinating azine nitrogen (NA) in the ligand (for all forty-two ligands; 

using a refined protocol), to test the generality of the previously reported 

correlation of δNA chemical shift in the free ligand with the solution T1/2 for 

the respective iron(II) complex. Moderately good to excellent correlations 

of δNA with T1/2 were observed for each of the ligand families with a para 

substituent (R2 = 0.69-0.96), whereas there is no correlation when meta 

substituents are modified (R2 = 0.15-0.37), probably because the electronic 

impact of this is too small. Finally, δNA also shows promise as an easily 

calculated measure of the electronic effect of any substituent or 

substitution, in contrast to the Hammett constant (σp+) which is not 

available for all possible substituents. 
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2.2. Introduction 

Fine tuning of ligand field strength is critical to many potential applications 

of coordination complexes,191-196 and would greatly benefit from the 

development of pre-synthesis tools that could screen the proposed ligand 

modifications and identify the one that would provide the required 

properties. One existing, albeit rather approximate, method of predicting 

the effect of a ligand substituent on the ligand field strength is to use the 

Hammett parameter (σ or σ+, see also Subsection 1.4.1),124, 197-198 which 

classifies substituents as Electron Donating Substituents (EDGs, σ/σ+ < 0) 

or Electron Withdrawing Substituent (EWGs, σ/σ+ > 0) relative to an H 

substituent (σ/σ+ = 0).198  

The position of the substituent relative to the donor atom affects the 

nature (inductive vs mesomeric/resonance) and hence the size of the 

substituent impact, with para (σp+) > meta (σm+), and ortho being problematic 

due to the likelihood of steric effects. But better would be the development 

of more general and widely applicable in silico methods: to do so, the 

considerable additional challenge that must often be met is that many such 

complexes are open shell (paramagnetic), something which is increasingly 

well handled.199-201  

A family of spin crossover (SCO) active complexes can be arranged 

in order of increasing switching temperature, T1/2 (corresponding to the 

midpoint of the SCO transition), which enables the associated ligand family 

to be ranked in order of increasing ligand field strength. SCO behaviour 

arises in octahedral d4 to d7 first row transition metal complexes where the 

electron pairing energy and the ligand field strength are comparable, so 

spin state switching can be triggered when an external stimulus is applied, 

most commonly temperature.3-4, 7, 26, 139, 202-203 The extremely high sensitivity 

of the T1/2 of the complex to any change in the ligand skeleton or 

substituents,23, 83, 126, 204-206 and/or the solvato-/poly-morph,207 makes SCO 

compounds extremely good probes of ligand field strength. This is 
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especially evident when the SCO is monitored in solution, as this removes 

the crystal packing interactions which can be confounding in solid state 

studies, enabling the effect of the ligand modifications to be readily 

observed.119  

In a few cases, the Hammett parameter (σ or σ+) has been shown to 

correlate with the experimental T1/2 in the solid state SCO (Subsection 

1.4.2),126-132 despite the potentially confounding issue of crystal packing. 

More recently it has been also employed in this way in solution SCO 

(Subsection 1.4.3): (i) in 2013 Company, Costas et al. found a qualitative 

correlation of σp(X) with μeff (298 K) for seven [FeII(pytacnX)(NCCH3)]2+ 

complexes varying in para-X pyridine substituents (Figure 2.1e, where 

pytacnH is 1-[(6-pyridyl)methyl]-4,7-dimethyl-1,4,7-triazacyclononane);24 

(ii) in 2016 twenty-nine [FeII(bppX,Y)2]2+ complexes, varying in para-X 

pyridine or meta-Y pyrazole substituent (Figure 2.1a, where bppH,H is 2,6-

di(pyrazol -1-yl)-3-pyridine),107, 132, 134-137 were studied in depth by Deeth, 

Halcrow et al.,23 and they found a σp+(X) vs. T1/2 correlation (R2 = 0.92) and a 

weaker σm(Y) vs. T1/2 correlation (R2 = 0.61);23 (iii) in 2018 Kimura and Ishida 

found that both σp(X) (R2 = 0.78) and σp+(X) (R2 = 0.77) correlated with T1/2 

for a family of twelve [FeII(pyboxX)2]2+ complexes varying in para-X pyridine 

substituent (Figure 2.1c, where pyboxH is 2,6-bis(oxazolin-2-yl)pyridine).22  

Deeth, Halcrow et al. went further, also showing that σp+/σm 

correlated with: (i) the energy gap between the high spin (HS) and low spin 

(LS) states, ΔEHL(σp+(X), R2 = 0.89; σm(Y) R2 = 0.67), and with (ii) the E(t2g) and 

E(eg) for LS [FeII(bppX,Y)2]2+ (σp+(X): E(t2g), R2 = 0.94 and E(eg), R2 = 0.93; σm(Y): 

E(t2g), R2 = 0.99 and E(eg), R2 = 0.98) (details in Subsection 1.4.3). 

They concluded, through close examination of the effects of 

EDG→EWG on E(t2g) and E(eg), that Fe→N π-back bonding effects 

dominate for X (para) substituents which strengthens the ligand field 

increasing T1/2, whereas Y (meta) substituents mostly affect the FeN σ-

bonding, causing the opposite, decreasing T1/2.23, 138  
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Figure 2.1. (a) Family of the fourteen23, 134, 136, 189-190 [FeII(bppX,Y)2]2+ studied in acetone and (b) family 

of five [FeII(Lazine)2(NCBH3)2],83 both previously shown to exhibit a linear correlation of ligand NA 

chemical shift with complex solution T1/2.83 (c) Family of twelve literature22, 141 [FeII(pyboxX)2]2+, (d) 

family of five [FeII(LpytZ)2(NCBH3)2] reported herein (the four with Z ≠ H are new) and (e) family 

of seven literature24 [FeII(pytacnX)(NCCH3)2]2+, used herein to further test the generality of the NA 

vs T1/2 correlation method. 
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In 2017, some of us identified a promising correlation between the 15N NMR 

chemical shift, δNA, of the coordinating nitrogen atom NA of the free 

ligand83, 208 and the T1/2 of the respective iron(II) complex: the higher δNA 

(higher de-shielding of NA nucleus209) the higher the T1/2 (stronger ligand 

field; more recently we have also shown this corresponds to a more 

negative ΔEorb,σ+π91).  

Using DFT, δNA can be easily and quickly calculated for any ligand 

– and subsequently verified, if desired, by carrying out direct or indirect 

15N NMR measurements. Hence δNA is also a convenient measure of the 

electronic effect of any substituent, in contrast to the Hammett constant (σ+) 

which is not available for all substituents. An observed δNA vs T1/2 

correlation is potentially powerful, as for a proposed new member of the 

family, calculation of the δNA (proposed new free ligand) would enable 

prediction of the T1/2 (related iron(II) complex) in advance of synthesis.83 

Herein the generality of this simplistic, but potentially powerful, approach 

is tested. Specifically, we report the synthesis of four new bidentate ligands, 

3-(2-(5-Z)pyridyl)-4-tolyl-5-phenyl-1,2,4-triazole (LpytZ) ligands (meta 

substituents Z = CF3, Br, F, Me), along with the solid state and solution SCO 

properties of the corresponding family of [Fe(LpytZ)2(NCBH3)2] complexes 

(Figure 2.1d) - which are analogues of the previously reported 

[Fe(Lazine)2(NCBH3)2] family (Figure 1b)83 of which the unsubstituted 

pyridine complex [Fe(LpytH)2(NCBH3)2] is common to both families. The 

resulting new family of five [Fe(LpytZ)2(NCBH3)2], as well as two literature 

families, twelve SCO-active [FeII(pyboxX)2]2+ (Figure 2.1c)22, 141and seven 

[FeII(pytacnX)(CH3CN)2]2+ (Figure 2.1e)24 are used to further test the 

generality of the δNA vs T1/2 correlation approach. Hence the NA chemical 

shifts for the ligands used in these three families are calculated for the first 

time, using a refined protocol. The ability of the easily calculated NA 

chemical shifts versus the Hammett parameters (not always available) to 

account for the observed trend in T1/2 values of the complexes is also 

evaluated. 
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2.3. Results and Discussion 

2.3.1. Synthesis of LpytZ
 Ligands 

The multi‐step synthetic procedure used to access all four of the new monotopic 

bidentate LpytZ ligands, varying in meta substituent Z on the pyridine ring (Figure 

2.2), is built on that reported in 2004 by Klingele and Brooker.210 Indeed, the key 

step of this route, cyclisation of a carbohydrazide and alkylated thioamide to form 

the 1,2,4‐triazole ring of the Rat (R‐substituted azine/azole‐triazole) ligand, is 

proving to be very general, and offers a convenient modular approach, enabling 

the construction of large families of such ligands.64, 84, 204, 211  

The synthesis of the required alkylated thioamide was carried out as 

reported earlier (Figure 2.2, blue component, steps III and IV).88 The synthesis of 

the required meta-substituted‐pyridine carbohydrazides (Figure 2.2, red 

component) started with conversion of the appropriate Z‐pyridine‐2‐carboxylic 

acid into the corresponding methyl ester (Figure 2.2, step I) by reaction with SOCl2 

in dry methanol.  

 

Figure 2.2. Multistep synthesis, based on the general literature method,210 of the family of four new 

pyridyl-ring substituted LpytZ ligands used herein; the unsubstituted ligand, LpytH, was reported 

previously (and called LpytH).83 
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The Z = CF3 ester had been previously reported, by a different method in a lower 

yield, by Warren et al. in 2019,212 whilst the Z = Br ester was made in the same way, 

and in a similar yield, as was previously reported by Krauss et al. in 2013.213 Next, 

the methyl esters were reacted with hydrazine hydrate to afford the desired Z‐

pyridine‐2‐carbohydrazides (Figure 2.2, step II).The Z = Br and Me 

carbohydrazides were previously reported by Noel et al. in 2015 in a similar 

procedure with similar yields.214 

Finally, step V, by refluxing the alkylated thioamide with the appropriate 

carbohydrazide for 3 to 5 days at 145 °C, to give the four new LpytZ ligands as 

analytically pure white powders in 11‐61 % yields after recrystallisation. Details 

of the experimental procedures employed for reaction step I‐V are reported in 

Subsection 2.5.1. 

2.3.2. Synthesis of [FeII(LpytZ)2(NCBH3)2] 
Complexes 

Solid [FeII(pyridine)4(NCBH3)2] was added to a colourless solution of two 

equivalents of the appropriate LpytZ in a halogenated solvent (CHCl3 for Z 

= CF3, Me; DCM for Z = Br, F) under a nitrogen atmosphere, causing an 

immediate colour change (Z = CF3 purple, Br dark red, F bright red, Me 

bright red). Subsequent vapour diffusion of diethyl ether into the reaction 

solution, in air, resulted in the formation of a polycrystalline precipitate in 

all cases (Z = CF3 purple, Br dark red, F bright red, Me bright red). 

The polycrystalline precipitate was filtered off, washed with diethyl 

ether, and air dried to give the hydrates, [FeII(LpytZ)2(NCBH3)2]·nH2O (where 

n = 0.5 or 1) in 45-59 % yield. The samples were shown to be analytically 

pure, with the water content confirmed by elemental analysis and 

thermogravimetric analysis. In all four cases, the expected major peak 

corresponding to [FeII(LpytZ)2(NCBH3)]+ was observed in the HR-ESI-MS 

(Sections A2.3-A2.5-A2.7-A2.9). 
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2.3.3. Crystal Structures of 
[FeII(LpytZ)2(NCBH3)2] 

Single crystals of [Fe(LpytCF3)2(NCBH3)2]·2CHCl3 (purple, Figures 2.1 and 

A2.58-A2.59), solvent-free [Fe(LpytBr)2(NCBH3)2] (dark red, Figures A2.60- 

A2.61), [Fe(LpytF)2(NCBH3)2]·2CH3NO2 (orange, Figures A.1 and A2.62- 

A2.63), and [Fe(LpytMe)2(NCBH3)2]·2CHCl3 (red, Figures A2.64-A2.65), 

suitable for SCXRD (Tables A2.1-A2.6), were obtained by diethyl vapor 

diffusion into a solution containing the re-dissolved polycrystalline 

material (CHCl3 for Z = CF3, Me; CH3CN for Z = Br; CH3NO2 for Z = F). 

All SCXRD data were collected at 100 K only, because loss of 

crystallinity was observed when data was collected at higher temperature. 

In all four of the isomorphous (all P-1) [Fe(LpytZ)2(NCBH3)2]·solvents 

structures, the iron(II) centre is on a centre of inversion, in an octahedral 

N6-donor environment composed of two equatorially coordinated 

bidentate LpytZ ligands (two triazole and two pyridine nitrogen donors), 

and completed by two trans-coordinated NCBH3 anions (Tables A.1 and 

A2.1, Subsection A2.1.10). In all four cases, the average Fe−N bond length at 

100 K is 1.96-1.98 Å (Table 2.1) as seen for related LS complexes of Rat/Rdpt 

ligands (1.93-2.02 Å).4, 139 The LS state is further confirmed for all four 

complexes by consideration of all of the other usual parameters (Table A.1, 

detailed description in Subsection A2.1.10),4, 139 albeit that for 

[Fe(LpytF)2(NCBH3)2]·2CH3NO2, not all of these parameters fall in the usual 

range for LS iron(II) Rat/Rdpt complexes (Table A.1, detailed description 

in Subsection A2.1.10). In this Z = F case, this is probably due to a particularly 

rich array of non-classical hydrogen bonds (Figure A.3 and Table A2.5, 

detailed description in Subsection A2.1.10) involving the meta-F-

substituents (C9-H9···F1R 3.42 Å, C12-H12···F1Q 3.31 Å, C17-H17···F1T 3.61 

Å) and ordered CH3NO2 solvent (C23-H23B···N2S 3.46 Å, C23-H23C···N5S 

3.60 Å, C4-H4···O1R 3.31 Å, Figure A.3, Figures A2.62- A2.63 and Table 

A2.5) which leads to closely packed lattice (smallest unit cell, by about 10%, 
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than those of the other two solvates) and higher than usual Σ and ring twist 

angles (Table A.1). 

 

Figure 2.3. Crystal structures of: (top) [Fe(LpytCF3)2(NCBH3)2]·2CHCl3, with H-bonds shown: (blue 

dotted lines) between the pair of coordinated LpytCF3 ligands (intramolecular H-bonds, C20Q-

H20Q···F1, C1-H1···N2Q and C20S-H20S···F1) and (red dotted lines) between the LpytCF3 ligands 

and solvent CHCl3 (intermolecular H-bonds, C8-H8···Cl1), note both components of the CHCl3 

disorder are shown. (bottom) [Fe(LpytF)2(NCBH3)2]·2CH3NO2, with H-bonds shown: (blue dotted 

lines) between the pair of coordinated LpytF ligands (intramolecular H-bonds, C1-H1···N2S; 

intermolecular H-bonds via the F substituent C9-H9···F1R, C12-H12···F1Q, C17-H17···F1T) and 

(red dotted lines) between the LpytF ligands and solvent CH3NO2 (intermolecular H-bonds, C4-

H4···O1Q; C22-H22B···N2S and C22-H22C···N5S). Colour code: Fe orange, N blue, O red, C 

black, Cl green, F light blue, B pink, H white. In both cases the iron(II) ion lies on an inversion 

centre. Q = -x, -y, -z. R = 1-x, -y, -z. S = -x, 1-y, -z. T = -x, -y, 1-z. 
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In addition to the intramolecular H-bond (C1-H1···N2) observed for each 

[Fe(LpytZ)2(NCBH3)2]·solvent complex, [Fe(LpytCF3)2(NCBH3)2]·2CHCl3 shows 

an additional intramolecular H-bond occurring between the meta-CF3 

substituent and the facing ligand (C20Q-H20Q···F1 3.78 Å, Figures 2.3 and 

A2.59 and Table A2.3); interestingly this complex has by far the highest T1/2 

in solution (see below).  

[Fe(LpytBr)2(NCBH3)2] is the only member of the family that 

crystallises without solvent. This led to the smallest unit cell (Table 2.1, 

Subsection A2.1.10) of the four compounds; this may be important with 

regard to understanding the observed much higher T1/2 for this complex 

than the others, albeit all of them as hydrates, in the solid state (see below). 

Table 2.1. Summary of selected structural parameters for the four [Fe(LpytZ)2(NCBH3)2]·solvents 

complexes at 100 K. For full details see Tables A2.1 and A2.2. 

 

Z CF3 Br F Me LS FeII 

ref4, 139 Cryst. solvent 2CHCl3 - 2CH3NO2 2CHCl3 

av. Fe-N (Å) 1.96 Å 1.96 Å 1.98 Å 1.97 Å 1.93-2.02 Å 

distortion angle 

(Σ°) 
44.9° 44.9° 70.8° 43.0° 42.5°-65.7° 

Fe-N-C (°) 178.3° 174.7° 166.4° 178.6° 162°-178° 

pyridyl twist (°) 3.1° 0.2° 6.2° 0.9° ≃0° 

phenyl 

twist (°) 
24.2° 3.6° 41.5° 21.6° 0°-25° 

tolyl twist (°) 78.7° 76.0° 75.2° 73.0° 60°-90° 
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2.3.4. Solid State Spin Crossover of 
[FeII(LpytZ)2(NCBH3)2]·nH2O 

The temperature dependence of the magnetic susceptibility (χMT) of the air-

dried crystalline samples of the four [FeII(LpytZ)2(NCBH3)2]·nH2O 

complexes, all hydrates, was measured in settle mode from 50-400-50 K 

(Figure 2.4 and Figures A2.66− A2.74). Three successive cycles of 50−400−50 

K (Subsection A2.1.11), confirmed a reproducible response for all four 

complexes (Figures A2.66, A2.70, A2.71 and A2.73).  

All four complexes are SCO active in the solid state: Z = CF3 (T1/2↓ = 

203 K, T1/2↑ = 213 K; ΔT1/2 = 10 K) < F (T½ = 290 K) < Me (T½ = 300 K) while for 

Z = Br the beginning of a LS → HS transition is observed above RT, and 

remains far from complete at the upper limit of the instrument (400 K). For 

the three complexes with T1/2 values under 400 K, these values were 

determined by locating the temperature at which the maximum change 

occurs in the first derivative of the χMT versus T plot (Figures A2.67, A2.72, 

A2.74).119, 215 [FeII(LpytCF3)2(NCBH3)2]·0.5H2O (Figure 2.4, purple) undergoes a 

full and complete SCO, with χMT rising from 0.40 cm3·K·mol−1 at 50 K to 

3.99 at 400 K (HS fraction, γHS, rises from 0.10 to 0.99), in an abrupt transition 

with a small thermal hysteresis (T1/2↓ = 203 K, T1/2↑ = 213 K; ΔT1/2 = 10 K, 

Figure A2.68-A2.69). As thermal hysteresis is a kinetic effect, the width of 

the hysteresis loop was probed, as reported by some of us in 2014,95-96 by 

monitoring a 150-250-150 K cycle as a function of scan rate (20, 10, 5, 2, 0.2 

K/min; Figure A2.68). This reveals the expected decrease in thermal 

hysteresis loop width (ΔT1/2) with decreasing scan rate from 20 to 0.2 K min-

1, from 23 to 10 K. 
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Figure 2.4. Solid state measurements of magnetic susceptibility (χMT) versus temperature (T) for 

all four new [Fe(LpytZ)2(NCBH3)2]·nH2O complexes and the literature data for the 

[Fe(LpytH)2(NCBH3)2] complex,105 over one cycle, 50−400−50 (cooling, down triangles; heating, up 

triangles), in settle mode in 10 K steps (see experimental section for more details). Lines simply join 

the dots to aid the eye. 

Extrapolation of that trend to the imaginary case of 0 K min-1, results in a 

non-zero predicted ΔT1/2, of 10 K (T1/2↓ = 203 K, T1/2↑ = 213 K, Figure A2.69), 

consistent with a reasonably long-life metastable state; of course, if one 

truly could scan infinitely slowly, then the loop is expected to close. 

Both [FeII(LpytF)2(NCBH3)2]·1H2O (Figure 2.4, red) and 

[FeII(LpytMe)2(NCBH3)2]·0.5H2O (Figure 2.4, black) also undergo almost 

complete SCO. In the case of [FeII(LpytF)2(NCBH3)2]·H2O there is a gradual 

increase in χMT from 0.21 cm3·K·mol−1 at 50 K to 3.93 at 400 K (γHS 0.05 to 

0.98) with T1/2 = 290 K (Figure A2.71 - A2.72). 

For [FeII(LpytMe)2(NCBH3)2]·0.5H2O there is a gradual increase in χMT 

from 0.27 cm3·K·mol−1 at 50 K to 3.46 at 400 K (γHS 0.68 to 0.87), with T1/2 = 

300 K (Figure A2.73- A2.74).  

Finally, in the case of [FeII(LpytBr)2(NCBH3)2]·0.5H2O, even at 300 K 

χMT is only 0.14 cm3·K·mol−1 at 50 K, consistent with a fully LS state (γHS = 

0.04), but the start of an SCO transition occurs at higher temperatures, with 
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γHS rising to 0.35 at 400 K (the limit of our instrument) (Figure 2.4, blue). If 

we assume that the two solvatomorphs of [FeII(LpytBr)2(NCBH3)2] crystallise 

with similar packing, as despite coming from CHCl3 and CH3CN neither of 

these solvents is included, then the resulting closely packed structure (see 

structure descriptions above) may prevent the increase in volume required 

for LS → HS until high temperatures are applied.  

At room temperature (300 K) the χMT values (cm3·K·mol−1) for the 

four hydrates differ substantially (listed by ligand):  

 

LpytCF3 (3.75) > LpytF (2.70) > LpytMe (1.92) > LpytBr (0.65) 

 

These can be compared with the very different order of σm+: 

 

LpytCF3 (+0.52) > LpytBr (+0.41) > LpytF (+0.35) > LpytMe (-0.07) 

 

In summary, it is clear that packing effects are, as is often the case, 

confounding the electronic effects of the substituents on the SCO behaviour 

in the solid state. Hence the SCO behaviour of these complexes is also 

studied in solution, where packing effects are absent. 

2.3.5. Solution Spin Crossover of 
[FeII(LpytZ)2(NCBH3)2] 

Variable temperature solution magnetic susceptibility data were obtained 

by the Evans 1H NMR method on CDCl3 solutions prepared, following a 

previous report,83 by adding six equivalents of LpytZ to a precisely known 

mass of [FeII(pyridine)4(NCBH3)2]. 

All four complexes show evidence of being SCO active within the 

monitored temperature range, 243 to 313 K (Table A2.8, Figure 2.5 and 

Figures A2.79-A2.82). The studied temperature range was limited by the 

freezing and boiling points of chloroform. Each data set was modelled as a 
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gradual and complete SCO using the regular solution model, with the 

maximum χMT value, χMT(max), set to 4 cm3 K mol-1.119, 216-217 Confidence 

interval associated with employment of regular SCO fitting is reported in 

Subsubsection A2.1.12.2 (Figures A2.79-A2.82 and Table A2.10-A2.13). 

Intrinsic errors due to Evans method measurements (5-10%), and to model 

fitting, associated errors are reported in Table 2.2 (third column from left) 

and discussed in detail in Appendix (Subsubsection A2.1.12.2; Figures A2.79-

A2.82 and Table A2.10-A2.13). 

The values of enthalpy (ΔH = 10-30 kJ·mol−1, Table A2.8) and entropy 

(ΔS = 39-95 J mol−1K−1, Table A2.8) obtained from fitting the data for the four 

complexes fall within the literature ranges for solution-phase studies of 

SCO-active iron(II) complexes (ΔH = 4−41 kJ mol−1 and ΔS = 22−146 J mol−1 

K−1).23, 92-93 The iron(II) complexes in order of increasing T1/2 value in K (at 

which the HS molar fraction, γHS, is 0.5; Tables 2.2 and A2.8)93, 116, 218 are (by 

ligand): 

 

LpytCF3 (374) > LpytBr (294) ≈ LpytH (288)105 ≈ LpytF (281) ≈ LpytMe (279) 

 

Compared with the similar order of the Hammett parameter σm+: 

 

LpytCF3 (+0.52) > LpytBr (+0.41) > LpytF (+0.35) > LpytH (0) > LpytMe (-0.07) 

 

There is a modest correlation (Figure A2.87) between T1/2 and σm+ (R2 = 0.65) 

or σm (R2 = 0.56) for this new meta-Z substituted family, which is in 

agreement with results obtained by Deeth, Halcrow et al. for the meta-Y 

substituted bppY family (σm, R2 = 0.61).23 
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Figure 2.5. Solution phase measurements of magnetic susceptibility (χMT) versus temperature (T) 

for all four new [Fe(LpytZ)2(NCBH3)2] complexes, and the literature data for the 

[Fe(LpytH)2(NCBH3)2] complex,105 in CDCl3 solution, from 243 to 313 K, in intervals of 5 K, by the 

Evans NMR method. Data (points) are fitted (curves) to the regular solution model119, 216-217 (see 

text and Appendix for details).  

 

In detail: [Fe(LpytCF3)2(NCBH3)2] (Figure 2.5, purple) has by far the highest 

T1/2 value (374 K), as well as the highest meta-Z (CF3) Hammett parameter; 

however, the error on the calculated T1/2 using the regular SCO model 

fitting is particularly large (23.3 K, Figure A2.79 and Table A2.10) as it 

involves huge extrapolation because a very little of the SCO occurred 

within the measured T range.119, 217  

Next in order of decreasing T1/2 is, as expected given that it has the meta-

substituent with the next highest Hammett parameter, is the complex with 

Z = Br (Figure 2.5, blue), with T1/2 = 294 K (error in fitting ±0.2 K; as the 

midpoint of the SCO occurs in the T range studied). For these two cases, 

the biggest difference between solid state and solution phase SCO is 

observed: for Z = CF3, the T1/2 in the solid state is 208 K (with hysteresis, ΔT1/2 

= 10 K) vs. 374 K in solution; for Z = Br, in the solid state it remains LS up 
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to 400 K vs. T1/2 = 294 K in solution. For Z = Br, the size of the crystalline cell 

in solid state (assuming similar packing for the two solvatomorphs) is very 

likely responsible for inhibiting the SCO transition. Crystallographic data 

show evidences of a very small cell, with limited amount of free space; this 

condition would make the cell unable of hosting the largest size of the HS 

[Fe(LpytBr)2(NCBH3)2], prohibiting the SCO transition. This condition is not 

existing in solution phase; then, SCO transition can occur. 

Table 2.2. The T1/2 values observed for the family of five [Fe(LpytZ)2(NCBH3)2] complexes in the 

solid state and in CDCl3 solution (detail in Sections A2.11-A2.12), along with σm+ (Z), and the NA 

chemical shift values for the four new LpytZ ligands, plus the literature unsubstituted analogue 

LpytH,83 obtained by calculation using the improved protocol described herein and by experimental 

measurement (d = direct method, i = indirect method), along with the % error (calculated vs 

measured). 

 

T1/2 (K) 
solid 

T1/2 (K) 
CDCl3 

σm+ (Z) 

δ(NA) 
(ppm) 
Meas. 
(Calc.) 

δ(NA) 
Err. % 

LpytMe 300 279 -0.07 
312(d) 
(310) 

0.6% 

LpytH 309105 288105 0 
311(d/i)83 

(308) 
1.0% 

LpytF 290 281 +0.35 
320(i) 
(315) 

1.6% 

LpytBr LS 294 +0.41 
317(d/i) 

(312) 
1.8% 

LpytCF3 203↓ 
213↑ 

374 +0.52 
314(d) 
(307) 

2.1% 

 

 

The reference complex characterised earlier by some of us, with Z = H, is 

next, with T1/2 = 288 K,105 despite having a Hammett parameter that lies 

between those of Z = F and Me. The last two complexes, with Z = F (T1/2 = 

281, Figure 2.5, red) and Z = Me (T1/2 = 279 K, Figure 2.5, black) present 

indistinguishable solution SCO behaviour. They were also similar to one 

another in the solid state (T1/2 = 290 and 300 K); albeit interestingly the T1/2 

values are lower in the solution phase than in the solid state. 
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2.3.6. Experimental and Calculated 15NA 
Chemical Shift of Ligands 

In a previous 2017 study,77 there was a good match (average error 4.0%; 

max. error 6.6%, Table A2.10) between the theoretical (DFT) and 

experimental values (measured directly or indirectly) of the 15N NMR 

chemical shift, δNA, of the coordinating N of the ligand, NA.83 Nevertheless 

an improved DFT protocol, that maintains low computational costs, is 

described herein. It is built on benchmark studies reported by Neese et 

al.,219-220 so employs a meta-GGA functional (TPSS)221 and a special basis set 

for NMR chemical shifts optimised by Jensen (pcSseg-2).222  

Application of the new protocol to the five ligands in the Lazine family83 

confirmed the expected improvement, with the average error in δNA(obs. 

vs calc.) dropping from 4.0 to 1.4%, and the max. error from 6.6% to 3.9% 

(Table A2.14). Therefore it was used to update δNA for the fourteen of the 

over twenty-five previously studied83 bppX,Y ligands for which the 

[Fe(bppX,Y)2]2+ SCO transition was studied in acetone solvent (Table A2.18). 

The changes in δNA are minor, so unsurprisingly the reported 15NA vs T1/2 

correlations for these two families continue to hold (see below, Figures 2.6 

and 2.7, R2 = 0.98 and 0.79 respectively).83  

Next the new computational protocol was employed to calculate 

δNA for the free ligands in the three new families (Figure 2.1) used as 

further tests of the generality of the δNA vs T1/2 correlation approach: (a) our 

new meta-substituted LpytZ bidentate ligands (experimental 15N NMR data 

are also shown in Table 2.2), (b) the twelve literature pyboxX tridentate 

ligands varying in para-substituents (Table A2.16) and (c) the seven 

literature pytacnX tetradentate ligands varying in para-substituents (Table 

A2.17). 
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2.3.7. 15N NMR vs T½ Correlations in 
Five Different FeII SCO Families 

The δNA vs T1/2 plot for the five complexes with bidentate LpytZ ligands 

varying meta-substituted pyridine, [Fe(LpytZ)2(NCBH3)2] (Figure 2.1d), is 

shown Figure 2.6. There are two main observations. 

Firstly, the calculated δNA values span a very small range, 307-315 

ppm (Δδ = 8 ppm), due to the (expected) low impact of changes in a meta 

substituent. Meta substituents provide a much narrower range of electronic 

effects (Hammett125 σm+ -0.07 to +0.67) compared with para substituents 

(Hammett125 σp+ -1.70 to +0.79) (details in Subsection 1.4.1).  

Secondly, δNA is not correlated with T1/2 (green line, R2 = 0.37) for 

these meta-Z substituted complexes. Interestingly, the attempted 

correlation line has negative slope, similar to that seen by Halcrow in the 

T1/2 with σm+ correlation plot for the meta-Y substituted [FeII(bppY)2]2+ 

complexes,23 but opposite to both of the previously reported correlations,83 

despite the similar structures of the [Fe(L)2(NCBH3)2] complexes of LpytZ 

and Lazine. But it must be pointed out that the correlation is very poor, so 

almost any line could have been drawn through these data points. The 

shared member, LpytH, of these two families is not a diazine, which should 

make it more similar to the new LpytZ family than to the previously reported 

Lazine family, but it fits into both correlation lines reasonably well. 
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Figure 2.6. Correlations between the calculated 15N chemical shift δNA of the free ligand L 

and the switching temperature T1/2 of the respective [Fe(L)2(NCBH3)2] complex. Poor 

correlation for the five LpytZ (R2 = 0.37, green line, δNA = -7.56∙σ+ + 2649.28); extremely 

good correlations for the five Lazine (R2 = 0.98, black line, δNA = 1.84∙σ+ – 280.61); good 

correlations for the eight [Fe(L)2(NCBH3)2] complexes (L= Lazine and LpytZ, R2 = 0.77, red 

line, δNA = 1.86∙σ+ – 289.13); extremely good correlations for the seven [Fe(L)2(NCBH3)2] 

complexes (except LpytCF3) (R2 = 0.97, blue line, δNA = 1.77∙σ+ – 251.41).  

Indeed, combining the two subfamilies into one big family of nine 

compounds (L = Lazine + LpytZ) results are in a good correlation (red line, R2 = 

0.77), whereas if [Fe(LpytCF3)2(NCBH3)2] is excluded the remaining eight 

compounds give an excellent correlation (blue line, R2 = 0.97) – but this is 

in large part because the four remaining LpytZ systems are not 

discriminating as they are clustered around LpytH. It is not easy to identify a 

good reason to exclude the [Fe(LpytCF3)2(NCBH3)2] complex, but perhaps it 

fails to correlate with the rest of the family due to the presence of an 

additional intramolecular H-bond between the two opposing ligands, 

involving the CF3 substituent (Figure 2.3).  
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Figure 2.7. Correlations found between the calculated 15N chemical shift δNA of the twelve 

tridentate pyboxX ligands and the switching temperature T1/2 of the respective 

[Fe(pyboxX)2]2+ complexes (T1/2 = 5.23∙δNA – 1169.24) versus the fourteen bppX ligands (split 

into eleven X-substituted) and the switching temperature T1/2 of the respective [Fe(bppX)2]2+ 

(T1/2 = 5.23∙δNA – 1169.24) complexes. Finally, the four bppY ligands (split into four Y-

substituted) and the switching temperature T1/2 of the respective [Fe(bppY)2]2+ (T1/2 = -

0.96∙δNA – 478.37) complexes. 

Next the twelve members of the [FeII(pyboxX)2]2+ family, reported in 2017 

then studied in depth in 2018 by Kimura and Ishida,22, 141 which contain 

tridentate ligands with a range of pyridine para-substituents X, and T1/2 

values in acetone ranging from 170 K (X = OMe) to 310 K (X = 4-pyridine), 

have been examined. A modest δNA versus T1/2 correlation (R2 = 0.69) is 

observed (Figure 2.7, red line).  

This family of twelve [FeII(pyboxX)2]2+ (red line in Figure 2.7) is 

closely related to the family of eleven [FeII(bppX)2]2+ discussed above (blue 

line). Higher values of δNA are consistently observed for the pyboxX 

ligands (258-279 ppm, Δδ = 21 ppm) than for the bppX ligands (216-244 

ppm, Δδ = 28 ppm), due to pyboxX having oxazole rings flanking the 
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pyridine ring on both sides, rather than the flanking pyrazole rings found 

in bppX. The two δNA versus T1/2 correlation lines have similar slopes (5.08 

for bppX vs 5.23 for pyboxX), confirming the comment in 2018 by Kimura 

and Ishida that the magnitude of the influence of X on the electron density, 

ρ(NA) - which in our studies (herein and in 201783) is reflected in δNA - on 

the observed T1/2 is similar for both of these families.141  

 

Figure 2.8. Correlations found between the calculated 15N chemical shift δNA of the free 

ligand and the effective magnetic moment (μeff) measured at 298 K in acetonitrile of the 

respective Fe(II) complex for the pytacnX family (μeff = -0.04∙δNA – 11.74). 

Next the literature family of seven [Fe(pytacnX)(NCCH3)2]2+ 

complexes of the tetradentate pytacnX ligands, reported by Costas et 

al.24 is examined. The effective magnetic moment (μeff) at 298 K was 

determined for these complexes in acetonitrile, and ranged from 2.62 (BM) 

for X = NMe2 to 0.00 BM for X = NO2. These values of μeff (298 K) only 

provide a snapshot of the SCO behaviour but as this occurs around RT 

it is a valuable one, as μeff (298 K) is strongly correlated (R2 = 0.96) with 
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δNA (Figure 2.8). Note the negative slope in this case is simply due to 

increasing T1/2 corresponding to decreasing μeff (298 K). 

In summary, the same trend is observed for all of the para-X 

substituted families, [Fe(bppX)2]2+, [Fe(pyboxX)2]2+ and 

[Fe(pytacnX)(NCCH3)2]2+.22-23 

2.3.8. Hammett vs 15N NMR Correlations 
for the Five Families 

As introduced in Subsection 1.4.1 and discussed above, the Hammett 

parameter is the most common parameter used to describe the electronic 

effects that substituents have on the electron density of aromatic rings. 

Given that both σ+ and δNA have shown correlations with T1/2, it seemed 

reasonable to expect that σ+ and δNA would also be correlated. A δNA vs. 

σ+ plot for each of the five families of complexes with X, Y or Z-substituents 

(σp/m+ in Figures 2.9 and σp/m in Figure A2.86) is revealing.  

For the three families of complexes of para-X substituted ligands (σp+), 

all have positive and good-to-excellent correlations, with R2 values as 

follows: pyboxX = 0.76, bppX = 0.87, pytacnX = 0.94. In contrast, for the two 

families of complexes of meta-Y or Z substituted ligands (σm+), they both 

have negative and weak correlations, with R2 values as follows: LpytZ = 0.02 

and bppY = 0.25. These findings are consistent with conclusions of Deeth 

and Halcrow, as summarised in the introduction.23 
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Figure 2.9. Correlation between the calculated 15N chemical shift δNA of the free ligand for each of 

the families reported in this study against the relative value of the Hammett parameter σ+ of the 

substituent on the pyridine ring (note: a substituent with a positive Hammett parameter is EWG, 

whilst one with a negative value is EDG; H is by definition 0). Solid lines for ligands with para 

substituents (σp+ is used in this case); dashed lines for ligands with meta substituents (σm+ is used 

in this case). Good correlation found for a family of eleven bppX ligands (blue, up-faced triangles; 

δNA = 26.73∙σ+ – 226.18); seven pytacnX ligands (purple, diamonds; δNA = 27.16∙σ+ – 290.04) and 

twelve pyboxX (red, diamonds; δNA = 17.77∙σ+ – 274.20); poor correlation found for four bppY 

ligands (blue, down-faced triangles; δNA = 5.63∙σ+ – 237.24) and five LpytZ (green, diamonds; δNA 

= 18.17∙σ+ – 232.08). 
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2.4. Conclusions 

The synthesis of four new ligands and four [FeII(LpytZ)2(NCBH3)2] complexes 

is reported. Solid state and solution phase (in CDCl3) SCO activity is 

investigated under the perspective of employing meta substituents as 

electronic tuners of the ligand field strength. Unfortunately, no correlation 

was found between the Hammett parameter σm+ with the measured SCO 

T1/2 both in solid and solution phase. This lack of predictability, and the 

much narrower range of electronic effects for meta substituents (Hammett125 

σm+ -0.07 to +0.67) compared with para substituents (Hammett125 σp+ -1.70 to 

+0.79), make meta substituents far less valuable tools for T1/2 tuning. 

The approach previously developed by Brooker et al. in predicting the 

SCO T1/2 in iron(II) complex from the δNA chemical shift in the free ligand 

is: (a) applied to three new families, bringing the total to five; (b) revealed 

very promising results for para substituted ligands (bppX, R2 = 0.87; pyboxX, 

R2 = 0.69; pytacnX, R2 = 0.96) but not for meta substituted ligands (LpytZ, R2 = 

0.37; bppY, R2 = 0.15;); (c) proved to be just as effective as the Hammett 

constant σp+ in describing substituent effects, with the significant advantage 

that it is easily accessible when Hammett values are missing. It also enables 

studies of CH/N or N/O ligand substitutions and can be experimentally 

verified. 
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2.5. Experimental Section 

For general experimental and full instrument details please see Appendix 

A1. The MS and NMR (Section A2.2-A2.9), the structure determination 

(Section A2.10), magnetic measurements (Section A2.11-A2.12) and UV-vis 

spectra (Section A2.13) are provided in Appendix (Appendix A2). 

2.5.1. Organic Synthesis 

The four pyridine carboxylic acids (AK Scientific) and 80% aqueous 

hydrazine hydrate (Sigma Aldrich) were used as supplied. The required N-

(4-methylphenyl)benzenethioamide63 and ethyl N-(4-methylphenyl) 

benzenethiocarboximidothioate63 were synthesised as previously reported, 

as was [FeII(pyridine)4(NCBH3)2].88 Ethanol and 1-butanol were reagent 

grade. Dry methanol was prepared by distilling absolute methanol with 

Mg/I2. 

 

5-Trifluoromethane-pyridine-2-methylcarboxylate. To a green 

suspension of 5-trifluoromethane-picolinic acid (1.70 g, 8.94 mmol) in dry 

methanol (30 mL), SOCl2 (2.50 mL, 30.10 mmol) was added dropwise. The 

resulting green solution was stirred at RT for 24 h in air before being taken 

to dryness under reduced pressure. The green solid residue was taken up 

in, and neutralised with, sat. NaHCO3 aqueous solution (10 mL), then 

extracted with dichloromethane (3 x 25 mL). The DCM phase was taken to 

dryness under reduced pressure, giving the ester as green powder that was 

used without further purification. (1.78 g, 8.68 mmol, 97%). C8H6NOF3 

(M=205.05 g mol-1), calc. C 46.84% N 6.38% H 2.95%; found C 47.05% N 

6.60% H 2.86%. 1H NMR (400 MHz, CDCl3) δ(ppm) = 9.00 (t, 1H); 8.26 (m, 

1H); 8.10 (m, 1H); 4.00 (s, 3H). Synthesis of this compound was previously 

reported, by a different method in a lower yield, by Warren et al. in 2019.212 
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5-Bromo-pyridine-2-methylcarboxylate. To a colourless suspension of 5-

bromo-picolinic acid (0.50 g, 2.48 mmol) in dry methanol (10 mL), SOCl2 

(0.40 mL, 4.81 mmol) was added dropwise. The resulting colourless 

solution was stirred at RT for 24 h in air before being taken to dryness under 

reduced pressure. The white solid residue was taken up in, and neutralised 

with, sat. NaHCO3 aqueous solution (5 mL), then extracted with 

dichloromethane (3 x 10 mL). The combined DCM phase was taken to 

dryness under reduced pressure, giving the ester as a white powder that 

was used without further purification (0.46 g, 2.21 mmol, 89%). C7H6NOBr 

(M=215.94 g mol-1): calc. C 38.92% N 6.48% H 2.80%; found C 39.25% N 

6.26% H 2.65%. 1H NMR (400 MHz, CDCl3) δ(ppm) = 8.79 (m, 1H); 8.00 (m, 

1H); 7.99 (m, 1H); 4.00 (s, 3H). The same synthetic procedure was 

previously reported by Krauss et al. in 2013, with similar yield obtained.213 

 

5-Fluoro-pyridine-2-methylcarboxylate. To a pale green coloured 

suspension of 5-fluoro-picolinic acid (1.70 g, 12.11 mmol) in dry methanol 

(30 mL), SOCl2 (3.5 mL, 42.12 mmol) was added dropwise. The resulting 

pale green solution was stirred at RT for 24 h in air before being taken to 

dryness under reduced pressure. The pale green solid residue was taken 

up in, and neutralised with, sat. NaHCO3 aqueous solution (10 mL), then 

extracted with dichloromethane (3 x 25 mL). The combined DCM phase 

was taken to dryness under reduced pressure, giving the ester as a pale 

green powder that was used without further purification (1.82 g, 11.7 

mmol, 97%). C7H6NOF (M=155.03 g mol-1): calc. C 54.20% N 9.03% H 3.90%; 

found C 53.95% N 8.71% H 3.90%. 1H NMR (400 MHz, CDCl3) δ(ppm) = 

8.56 (t, 1H); 8.18 (m, 1H); 7.52 (m, 1H); 4.00 (s, 3H). 

 

5-Methyl-pyridine-2-methylcarboxylate. To a green coloured suspension 

of 5-methyl-picolinic acid (1.00 g, 7.41 mmol) in dry methanol (10 mL), 

SOCl2 (2.50 mL, 30.09 mmol) was added dropwise. The resulting pale green 
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solution was stirred at 100°C for 24 h in air before being taken to dryness 

under reduced pressure. The light green solid residue was taken up in, and 

neutralised, with sat. NaHCO3 aqueous solution (5 mL), then extracted 

with dichloromethane (3 x 20 mL). The combined DCM phase was taken to 

dryness under reduced pressure, giving the ester as a pale green product 

that was used without further purification (0.75 g, 4.97 mmol, 67%). 

C8H9NO2 (M=151.17 g mol-1): calc. C 63.56% N 9.27% H 6.00%; found C 

63.48% N 9.06% H 6.22%. 1H NMR (400 MHz, CDCl3) δ(ppm) = 8.56 (s, 1H); 

8.03 (d, 1H); 7.63 (d, 1H); 4.00 (s, 3H); 2.38 (s, 3H). 

 

5-Trifluoromethyl-pyridine-2-carbohydrazide. Caution! Hydrazine hydrate 

is potentially explosive. Perform the reaction behind a blast screen in a fume hood. 

Dispose of hydrazine hydrate residues appropriately. Behind a blast shield, to a 

green EtOH (10 mL) solution of 5-trifluoromethyl-pyridine-2-

methylcarboxylate (0.53 g, 2.6 mmol) at room temperature was added 

dropwise 80% aqueous N2H4·H2O (0.5 mL, 10 mmol). The resulting pale 

green mixture was refluxed in air for 30 min at 80°C, then allowed to cool 

down to RT, which caused a white precipitate to form. The precipitate was 

filtered off, washed with cold EtOH (5 mL), and air dried, giving the 

carbohydrazide as a white solid that was used without further purification 

(0.28 g, 1.37 mmol, 53%). C7H6N3OF3 (M=205.05 g mol-1), calc. C 40.99% N 

20.48% H 2.95%; found C 41.11% N 20.09% 3.03%. 1H NMR (400 MHz, 

CDCl3) δ(ppm) = 8.94 (m, 1H); 8.81 (m, 1H); 8.29 (m, 1H); 8.10 (m, 1H); 4.07 

(m, 2H). 

 

5-Bromo-pyridine-2-carbohydrazide. Caution! Hydrazine hydrate is 

potentially explosive. Perform the reaction behind a blast screen in a fume hood. 

Dispose of hydrazine hydrate residues appropriately. Behind a blast shield, to a 

colourless EtOH (10 mL) solution of 5-bromo-pyridine-2-

methylcarboxylate (0.46 g, 2.14 mmol) at room temperature was added 

dropwise 80% aqueous N2H4·H2O (0.2 mL, 4 mmol). The resulting 



2 | Testing the Generality of T½ of Spin Crossover Complex vs Ligand  
15N NMR Chemical Shift Correlations: Towards Predictable Tuning 

 

83 

 

colourless solution was stirred in air at RT until a white precipitate was 

formed (approx. 5 min), then kept stirring for 15 min longer. The white 

precipitate was filtered off, washed with cold EtOH (5 mL) and air dried, 

giving the carbohydrazide as a white solid that was used without further 

purification (0.41 g, 1.90 mmol, 89%). C6H6N3OBr (M=216.04 g mol-1), calc. 

C 33.33% N 19.44% H 2.78%; found C 33.08% N 19.21% 2.88%. 1H NMR (400 

MHz, CDCl3) δ(ppm) = 8.84 (s, 1H); 8.60 (m, 1H); 8.01 (m, 1H); 7.98 (m, 1H); 

3.96 (s, 2H). The same synthetic procedure was previously reported by 

Noel et al. in 2015 with a similar yield.214 

 

5-Fluoro-pyridine-2-carbohydrazide. Caution! Hydrazine hydrate is 

potentially explosive. Perform the reaction behind a blast screen in a fume hood. 

Dispose of hydrazine hydrate residues appropriately. Behind a blast shield, to a 

pale green EtOH (10 mL) solution of 5-fluoro-pyridine-2-

methylcarboxylate (0.96 g, 6.19 mmol) at room temperature was added 

dropwise 80% aqueous N2H4·H2O (1 mL, 20 mmol). The resulting 

colourless solution was stirred in air at RT until a white precipitate was 

formed (approx. 5 min), then kept stirring for 15 min longer. The precipitate 

was filtered off, washed with cold EtOH (5 mL), and air dried, giving the 

carbohydrazide as a white solid that was used without further purification 

(0.67g, 4.32 mmol,70%). C6H6N3OF (M=155.05 g mol-1), calc. C 46.45% N 

27.09% H 3.90%; found C 46.42% N 27.33% 3.82%. 1H NMR (400 MHz, 

CDCl3) δ(ppm) = 8.79 (s, 1H); 8.38 (m, 1H); 8.19 (m, 1H); 7.53 (m, 1H); 3.91 

(s, 2H). 

 

5-Methyl-pyridine-2-carbohydrazide. Caution! Hydrazine hydrate is 

potentially explosive. Perform the reaction behind a blast screen in a fume hood. 

Dispose of hydrazine hydrate residues appropriately. Behind a blast shield, to a 

pale green EtOH (2 mL) solution of 5-methyl-pyridine-2-

methylcarboxylate (0.50 g, 2.14 mmol) at room temperature was added 

dropwise 80% aqueous N2H4·H2O (4 mL, 80 mmol). The resulting green 
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mixture was refluxed for 30 min at 80°C, then the resulting solution was 

carefully taken to dryness using a gentle air flow, then dried under vacuum 

for 48 h. The resulting white solid was used without further purification 

(0.5g, 2.14 mmol, 99%). C7H9N3O (M=151.17g mol-1), calc. C 55.62% N 

27.80% H 6.00%; found C 55.40% N 27.55% H 5.82%. 1H NMR (400 MHz, 

CDCl3) δ(ppm) = 8.91 (s, 1H); 8.36 (s, 1H); 8.04 (d, 1H); 7.64 (d, 1H). The 

same synthetic procedure was previously reported by Noel et al. in 2015, 

with a similar yield.214 

 

3-(2-(5-Trifluoromethyl-pyridyl))-4-tolyl-5-phenyl-1,2,4-triazole (LpytCF3). 

Crude ethyl N-(4-methylphenyl)-benzenecarboximidothioate (1 g, 4.5 

mmol) and 5-trifluoromethyl-pyridine-2-carbohydrazide (0.61 g, 3.0 mmol) 

were dissolved in 1-butanol (15 mL) and refluxed for 3 d at 145 °C under 

argon. After cooling down to RT no precipitate was observed, so the 

reaction mixture was taken to dryness. The resulting white solid was 

suspended in water (20 mL) filtered off, and then washed with cold diethyl 

ether (3 x 5 mL) to remove unreacted reagents, (as LpytCF3 ligand shows low 

solubility in diethyl ether. The resulting white powder was air dried (0.47g, 

1.24 mmol, 42%). C21H15N4F3 (M=380.37 g mol-1), calc. C 66.31.% N 17.73% H 

3.98%; found C 66.35% N 17.50% 4.08%. 1H NMR (400 MHz, CDCl3) δ(ppm) 

= 8.58 (s, 1H, H1); 8.34 (d, 2H, H3); 7.99 (d, 1H, H2); 7.46 (m, 2H, H9); 7. 36 (m, 

1H, H7); 7.29 (m, 2H, H8); 7.19 (d, 2H, H4); 7.09 (d, 2H, H5); 2.41 (s, 3H, H6). 

13C NMR (400 MHz, CDCl3) δ(ppm) = 156.3 (C6); 152.6 (C12); 150.3 (C5); 145.7 

(C1); 139.4 (C16); 133.8 (q, C17); 133.0 (C10); 129.9 (C9); 129.8 (C7); 128.8 (C14); 

128.38 (C15); 127.6 (C8); 126.6 (C2); 124.6 (C3); 123.7 (C4); 121.9 (C13); 21.2(C11). 

15N NMR (500 MHz, CDCl3) δ(ppm) = 320.9 (N2); 313.8 (N1); 315.1 (N3); 177.2 

(N4). HR-ESI-MS (acetone) m/z: [H(C21H15N4F3)]+, calc. 381.13, exp. 381.13; 

[Na(C21H15N4F3)]+, calc. 403.11, exp. 403.11; [K(C21H15N4F3)]+, calc. 419.08, 

exp. 419.08; [Na(C21H15N4F3)2]+, calc. 783.23, exp. 783.23. 
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3-(2-(5-Bromo-pyridyl))-4-tolyl-5-phenyl-1,2,4-triazole (LpytBr). Crude 

ethyl N-(4-methylphenyl)-benzenecarboximidothioate (0.70 g, 3.3 mmol) 

and 5-bromo-pyridine-2-carbohydrazide (0.90 g, 4.0 mmol) were dissolved 

in 1-butanol (20 mL) and refluxed for 5 d at 145 °C under argon. After 

cooling down to RT no precipitate was observed, so the reaction mixture 

was taken to dryness. The resulting white solid was suspended in water 

(20 mL) filtered off, and then washed with cold diethyl ether (3 x 5 mL) to 

remove unreacted reagents, (like for the LpytCF3 ligand, LpytBr has low 

solubility in diethyl ether). The resulting white powder was recrystallised 

from EtOH and air dried, to give LpytBr as an analytically pure white powder 

(0.47g, 1.24 mmol, 42%). (0.13 g, 0.34 mmol 11%). C20H15N4Br (M=391.27 g 

mol-1), calc. C 61.39% N 14.32% H 3.86%; found C 60.91% N 14.28% 3.86%. 

1H NMR (400 MHz, CDCl3) δ(ppm) = 8.40 (s, 1H, H1); 8.07 (d, 2H, H3); 7.88 

(d, 1H, H2); 7.45 (m, 2H, H9); 7. 35 (m, 1H, H7);7.18 (d, 2H, H4); 7.18 (m, 2H, 

H8);7.07 (d, 2H, H5); 2.40 (s, 3H, H6). 13C NMR (400 MHz, CDCl3) δ(ppm) = 

155.85 (C12); 152.98 (C6); 150.0 (C1); 145.5 (C5); 139.3 (C7); 139.2 (C3); 133.0 

(C10); 129.8 (C16); 129.7 (C9); 128.8 (C14); 128.4 (C15); 127.6 (C8); 126.7 (C13); 

125.3 (C4); 121.4 (C2); 21.2(C11). 15N NMR (500 MHz, CDCl3) δ(ppm) = 318.1 

(N2); 317.8 (d), 317.0 (i) (N1); 313.8 (N3); 176.8 (d), 176.0 (i) (N4). HR-ESI-MS 

(acetone) m/z: [H(C20H15N4Br)]+, calc. 391.05, exp. 391.06; [Na(C20H15N4Br)]+, 

calc. 413.04, exp. 413.04; [K(C20H15N4Br)]+, calc. 431.00, exp. 431.00; 

[Na(C20H15N4Br)2]+, calc. 805.08, exp. 805.08.  

 

3-(2-(5-Fluoro-pyridyl))-4-tolyl-5-phenyl-1,2,4-triazole (LpytF). Crude ethyl 

N-(4-methylphenyl)-benzenecarboximidothioate (0.55 g, 2.2 mmol) and 4-

methoxyl-pyridazine-2-carbohydrazide (0.33 g, 1.96 mmol) were dissolved 

in 1-butanol (20 mL) and refluxed for 3 d at 145 °C under argon. After 

cooling down to RT the desired product only partially precipitated, so the 

reaction mixture was taken to dryness, the solid suspended in water (25 

mL), filtered off, and then washed with cold diethyl ether (3 x 5 mL) to 

remove unreacted reagents as the LpytF ligand shows low solubility in 



2 | Testing the Generality of T½ of Spin Crossover Complex vs Ligand  
15N NMR Chemical Shift Correlations: Towards Predictable Tuning 

 
 

86 

 

diethyl ether. The resulting white powder was recrystallised from MeOH, 

and air dried, to give LpytF as analytically pure white fluffy crystals (0.4 g, 

1.2 mmol, 61%). C20H15N4F (M=330.36 g mol-1), calc. C 72.71% N 16.96% H 

4.58%; found C 72.68% N 16.72% 4.69%. 1H NMR (400 MHz, CDCl3) δ(ppm) 

= 8.19 (m, 1H, H1); 8.11 (m, 2H, H3); 7.46 (m, 1H, H2); 7.44 (m, 2H, H9); 7. 32 

(m, 1H, H7); 7.27 (m, 2H, H8); 7.15 (d, 2H, H4); 7.06 (d, 2H, H5); 2.38 (s, 3H, 

H6). 13C NMR (400 MHz, CDCl3) δ(ppm) = 159.3 (d, C2); 155.7 (C12); 153.1 

(C6); 143.5 (d, C5); 139.2 (C7); 137.4 (d, C1); 133.0 (C10); 129.8 (C9); 129.7 (C16); 

128.8 (C14); 128.4 (C15); 127.7 (C8); 126.8 (d, C4); 125.7 (C13); 123.5 (d, C3); 21.3 

(C11). HR-15N NMR (500 MHz, CDCl3) δ(ppm) = 319.9 (N1); 176.0 (N4). ESI-

MS (acetone) m/z: [H(C20H15N4F)]+, calc. 331.13, exp. 331.13; 

[Na(C20H15N4F)]+, calc. 353.12, exp. 353.12; [K(C20H15N4F)]+, calc. 369.09, exp. 

369.09; [Na(C20H15N4F)2]+, calc. 683.24, exp. 683.24. 

 

3-(2-(5-Methyl-pyridyl))-4-tolyl-5-phenyl-1,2,4-triazole (LpytMe). Crude 

ethyl N-(4-methylphenyl)-benzenecarboximidothioate (0.58 g, 2.57 mmol) 

and 4-methyl-pyridine-2-carbohydrazide (0.5 g, 2.14 mmol) were dissolved 

in 1-butanol (10 mL) and refluxed for 4 d at 145 ˚C under argon. After 

cooling down to RT the resulting precipitate was filtered off and washed 

with a copious volume of water (approx. 100 mL), then with a copious 

volume of diethyl ether (approx. 100 mL) to remove the unreacted reagents 

as the LpytMe does not show any solubility in either solvent. The powder was 

then crystallised from MeOH, and air dried, to give LpytMe as an analytically 

pure white powder (0.62g, 1.9 mmol, 58%). C21H18N4 (M=326.4 g mol-1), calc. 

C 77.28% N 17.17% H 5.56%; found C 77.58% N 16.91% 5.49%. 1H NMR (400 

MHz, CDCl3) δ(ppm) = 8.20 (s, 1H, H1); 7.90 (d, 2H, H3); 7.52 (d, 1H, H2); 

7.44 (m, 2H, H9); 7.33 (m, 2H, H8); 7. 28 (m, 1H, H7); 7.12 (d, 2H, H4); 7.06 (d, 

2H, H5); 2.37 (s, 3H, H6); 2.29 (s, 3H, H10). 13C NMR (400 MHz, CDCl3) 

δ(ppm) = 155.4 (C12); 154.0 (C6); 149.5 (C1); 144.4 (C5); 139.0 (C7); 136.9 (C4); 

133.2 (C3); 130.5 (C10); 129.7 (C9); 129.5 (C16); 128.8 (C14); 128.3 (C15); 127.7 (C8); 

127.1 (C13); 123.9 (C2); 21.3 (C11); 18.4 (C17). 15N NMR (500 MHz, CDCl3) 
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δ(ppm) = 313.7 (N2); 312.2 (N1); 311.6 (N3); 175.8 (N4). HR-ESI-MS (acetone) 

m/z: [H(C21H18N4)]+, calc. 327.16, exp. 327.16; [Na(C21H18N4)]+, calc. 349.14, 

exp. 349.14; [K(C21H18N4)]+, calc. 365.11, exp. 365.12; [Na(C21H18N4)2]+, calc. 

675.30, exp. 675.29.  

2.5.2. Inorganic Synthesis 

[FeII(LpytCF3)2(NCBH3)2]∙0.5H2O. Nitrogen gas was bubbled into a clear 

solution of LpytCF3 (13 mg, 34.2 μmol) in CHCl3 (12.5 mL) for five minutes, 

then solid [FeII(pyridine)4(NCBH3)2] (7.6 mg, 16.2 μmol) was added causing 

immediately the solution to turn purple. Vapour diffusion of diethyl ether 

into the reaction solution, in air, resulted in the formation of a dark purple 

polycrystalline precipitate which was filtered off, washed with diethyl 

ether, and air dried to give [FeII(LpytCF3)2(NCBH3)2] (7.4 mg, 8.0 mmol, yield 

49.4%). C42H36N10B2F6Fe∙0.5H2O (M=914.3 g mol-1), calc. C 57.74% N 15.30% 

H 4.20%; found C 57.66% N 15.32% 4.06%. TGA (3.14 mg, 100°C for 240 

min) calculated weight loss for removal of H2O: 1.0%. Found weight loss 

on heating: 0.5%. HR-ESI-MS (acetone) m/z: [H(C21H15N4F3)]+, calc. 381.13, 

exp. 381.13; [Na(C21H15N4F3)]+, calc. 403.11, exp. 403.11; [Fe(C21H15N4F3)2]2+, 

calc. 408.09, exp. 408.09; [K(C21H15N4F3)]+, calc. 419.08, exp. 419.08; 

[Fe(C21H15N4F3)(CH3OH-H)]+, calc. 467.08, exp. 467.08; [Fe(C21H15N4F3)3]2+, 

calc. 598.15, exp. 598.15; [Na(C21H15N4F3)2]+, calc. 783.23, exp. 783.23; 

[Fe(C21H15N4F3)2(NCBH3)] +, calc. 856.22, exp. 856.22. Dark purple single 

crystals of [FeII(LpytCF3)2(NCBH3)2]∙2CHCl3, suitable for SCXRD, were 

obtained by recrystallisation from chloroform by diethyl ether diffusion. 

 

[FeII(LpytBr)2(NCBH3)2]∙0.5H2O. Nitrogen gas was bubbled into a clear 

solution of LpytBr (10.6 mg, 27.1 μmol) in DCM (5 mL) for five minutes, 

[FeII(pyridine)4(NCBH3)2] (6.5 mg, 13.8 μmol) was then added causing the 

solution to turn dark red. Vapor diffusion of diethyl ether into the reaction 

solution, in air, resulted in the formation of dark red polycrystalline 
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precipitate which was filtered off, washed with diethyl ether, and air dried 

to give with formula [FeII(LpytBr)2(NCBH3)2] (7.5 mg, 7.2 mmol, yield 52.2%). 

C42H36N10B2Br2Fe∙0.5H2O (M=1045.49 g mol-1), calc. C 54.41% N 15.11% H 

4.02%; found C 54.27% N 14.90% 3.79%. TGA (2.56 mg, 100°C for 240min) 

calculated weight loss for removal of H2O: 1.0%. Found weight loss on 

heating: 0.5%. HR-ESI-MS (acetone) m/z: [H(C20H15N4Br)]+, calc. 391.05, exp. 

391.06; [Na(C20H15N4Br)]+, calc. 413.04, exp. 413.04; [Fe(C20H15N4Br)2]2+, calc. 

419.01, exp. 419.01; [K(C20H15N4Br)]+, calc. 431.00, exp. 431.00; 

[Fe(C20H15N4Br)(CH3OH-H)]+, calc. 477.00, exp. 477.00; [Fe(C20H15N4Br)3]2+, 

calc. 615.04, exp. 615.04; [Na(C20H15N4Br)2]+, calc. 805.08, exp. 805.08; 

[Fe(C20H15N4Br)2(NCBH3)]+, calc. 878.06, exp. 878.06. Dark red single 

crystals of [FeII(LpytBr)2(NCBH3)2]∙2CHCl3, suitable for SCXRD, were 

obtained by recrystallisation from acetonitrile by diethyl ether diffusion. 

 

[FeII(LpytF)2(NCBH3)2]∙1H2O. Nitrogen gas was bubbled into a clear solution 

of LpytF (15.2 mg, 45.3 μmol) in DCM (25 mL) for five minutes, 

[FeII(pyridine)4(NCBH3)2] (10.1 mg, 21.3 μmol) was then added causing the 

solution to turn bright red. Vapor diffusion of diethyl ether into the reaction 

solution, in air, resulted in the formation of red polycrystalline precipitate 

which was filtered off, washed with diethyl ether, and air dried to give with 

formula [FeII(LpytF)2(NCBH3)2] (8 mg, 9.7 mmol, yield 45.6%). 

C42H36N10B2F2Fe1H2O2 (M=814.28 g mol-1), calc. C 62.32% N 17.22% H 4.51%; 

found C 62.24% N 16.96% 4.71%. TGA (3.84 mg, 100°C for 240min) 

calculated weight loss for removal of H2O: 2.2%. Found weight loss on 

heating: 1.5%. ESI-MS (acetone) m/z: [H(C20H15N4F)]+, calc. 331.13, exp. 

331.13; [Na(C20H15N4F)]+, calc. 353.12, exp. 353.12; [Fe(C20H15N4F)2]2+, calc. 

358.09, exp. 358.09; [K(C20H15N4F)]+, calc. 369.09, exp. 369.09; 

[Fe(C20H15N4F)(CH3OH-H)]+, calc. 417.08, exp. 417.08; [Fe(C20H15N4F)3]2+, 

calc. 523.16, exp. 523.16; [Na(C20H15N4F)2]+, calc. 683.24, exp. 683.24; 

[Fe(C20H15N4F)2(NCBH3)] +, calc. 756.23, exp. 756.23. Orange single crystals 
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of [FeII(LpytF)2(NCBH3)2]∙2CH3NO2, suitable for SCXRD, were obtained by 

recrystallisation from nitromethane by diethyl ether diffusion. 

 

[FeII(LpytMe)2(NCBH3)2]∙0.5H2O. Nitrogen gas was bubbled into a clear 

solution of LpytMe (20 mg, 61.3 μmol) in CHCl3 (5 mL) for five minutes, 

[FeII(pyridine)4(NCBH3)2] (14.9 mg, 31.7 μmol) was then added causing the 

solution to turn bright red. Vapor diffusion of diethyl ether into the reaction 

solution, in air, resulted in the formation of light red polycrystalline 

precipitate which was filtered off, washed with diethyl ether, and air dried 

to give with formula [FeII(LpytMe)2(NCBH3)2]∙0.5H2O (15 mg, 18.6 mmol, 

yield 58.7%). C44H42N10B2Fe∙H2O (M=797.35 g mol-1), calc. C 66.57% N 

17.36% H 5.21%; found C 66.00% N 16.88% 5.23%. TGA (3.07 mg, 100°C for 

240min) calculated weight loss for removal of H2O: 1.1%. Found weight 

loss on heating: 1.5%. HR- HR-ESI-MS (acetone) m/z: [H(C21H18N4)]+, calc. 

327.16, exp. 327.16; [Na(C21H18N4)]+, calc. 349.14, exp. 349.14; 

[Fe(C21H18N4)2]2+, calc. 354.11, exp. 354.11; [K(C21H18N4)]+, calc. 365.11, exp. 

365.12; [Fe(C21H18N4)(CH3OH-H)]+, calc. 413.10, exp. 413.10; 

[Fe(C21H18N4)3]2+, calc. 517.20, exp. 517.20; [Fe(C21H18N4)2(NCBH3)] +, calc. 

748.28, exp. 748.28. Red single crystals of [FeII(LpytMe)2(NCBH3)2]∙2CHCl3, 

suitable for SCXRD, were obtained by recrystallisation from chloroform by 

diethyl ether diffusion.
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The contents of this chapter have been published as: ‘Quantitative Evaluation 

of the Nature of M-L Bonds in Paramagnetic Compounds: Application of 

EDA-NOCV Theory to Spin Crossover Complexes’; Luca Bondì, Anna L. 

Garden, Paul Jerabek, Federico Totti and Sally Brooker, Chemistry A European 

Journal, 2020, 26, 13677 - 13685. All of the calculations were carried out by me 

and I wrote the initial draft of the publication.  
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3.1. Abstract 

With the aim of improving understanding of M-L bonds in 3d transition 

metal complexes, quantitative analysis by Energy Decomposition Analysis 

and Natural Orbital for Chemical Valence model (EDA-NOCV) is done on 

octahedral spin crossover (SCO) complexes, as the transition temperature 

(T1/2) is sensitive to subtle changes in M-L bonding. EDA-NOCV analysis of 

Fe-N bonds in 5 [FeII(Lazine)2(NCBH3)2], in both low spin (LS) and 

paramagnetic high spin (HS) states, led to (a) development of a general, 

widely applicable, corrected M+L6 fragmentation, tested against a family of 

5 LS [FeII(Lazine)3(BF4)2], confirming that 3 Lazine are stronger ligands (ΔEorb,σ+π 

≈ -370 kcal/mol) than 2 Lazine + 2 NCBH3 (≈ -335 kcal/mol), as observed; (b) 

analysis of Fe-L bonding on LS → HS, reveals more ionic (ΔEelstat) and less 

covalent (ΔEorb) character (ΔEelstat:ΔEorb 55:45 LS → 64:36 HS), mostly due to 

a big drop in σ- (ΔEorb,σ ↓50%; -310 → -145 kcal/mol), and a drop in π- 

contributions (ΔEorb,π ↓90%; -30 → -3 kcal/mol); (c) strong correlation of 

observed T1/2 and ΔEorb,σ+π, for both LS and HS families (R2 = 0.99 LS, R2 = 

0.95 HS), but no correlation of T1/2 and ΔΔEorb,σ+π(LS-HS) (R2 = 0.11). Overall, 

this study has established and validated a generally applicable 

fragmentation and computational protocol for EDA-NOCV M-L bonding 

analysis of any diamagnetic or paramagnetic, homoleptic or heteroleptic, 

octahedral transition metal complex. 
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3.2. Introduction 

3.2.1. General Overview 

The function of metalloenzymes,191-192 catalysts194, 223 and materials195-196 is 

often utterly dependent on the finely tuned properties of a first row 

transition metal ion(s), M, at the active site. Fine-tuning the M-L 

interactions175, 224-225 – and hence the size of Δo – in a predictable manner,22-23, 

83, 126, 133, 153, 159, 163, 226-228 is generally done by a series of small modifications to 

a particular ligand skeleton, such as varying a substituent or exchanging a 

CH for an N atom in a heterocycle, within a family of related complexes. 18, 

23-24, 83, 141 Herein we trial a new in silico approach to improving our detailed 

understanding of M-L interactions in any octahedral complex,20 in 

particular aiming to address this in paramagnetic 3d complexes.  

Specifically, Energy Decomposition Analysis (EDA) and the Natural 

Orbital for Chemical Valence theory (NOCV),186-187 are used in 

combination183-184 in order to provide a full, quantitative and chemically 

intuitive ab initio description of the M-L interactions during bond 

formation: the various contributions to the total interaction energy (ΔEint) 

are assessed by the use of EDA, and then a breakdown of the orbital 

contribution (ΔEorb) to quantitatively assess the M-L bond character is 

achieved by the use of the NOCV scheme (Subsection 1.6.6).  

Whilst EDA-NOCV methodology has been extensively used to study 

diamagnetic systems,229-232 it has rarely been applied to paramagnetic 

transition metal complexes,233-240 lanthanide/actinide complexes,241-243 or 

indeed to other open-shell radical systems;244-247 the somewhat related 

ALMO-EDA has been used to investigate pressure-induced SCO.248 

Nevertheless there were no systematic studies that could provide guidance 

with respect to a general fragmentation scheme (i.e. Mn+ + L6 vs ML5n+ + L 

for a general ML6 complex) suitable for EDA-based bonding analyses and 
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direct comparison of any metal complex - so we rigorously, and 

successfully, address this issue herein.  

Our first, and key, step was therefore to establish a suitable, 

generally applicable fragmentation and computational protocol for EDA-

NOCV analysis of any diamagnetic or paramagnetic, homoleptic or 

heteroleptic, octahedral transition metal complex. A detailed description of 

the EDA-NOCV model is provided in Subsection 1.6.6. 

3.2.2. Choice of Test System 

Spin crossover (SCO) active complexes30, 32, 249-253 provide a very 

sensitive experimental probe of subtle changes in M-L bonds as L is 

modified, as the transition temperature (T1/2) at which the complex switches 

between the low spin (LS) and high spin (HS) states in solution is sensitive 

to these changes.18, 22-23, 83 Hence a family of five [FeII(Lazine)2(NCBH3)2] 

complexes which vary in the choice of the azine ring (Figure 3.1), for which 

a linear correlation of the T1/2 with the 15N NMR chemical shift of the 

coordinating azine nitrogen atom in the respective ligand,83 was chosen as 

the test system to trial this new approach to improving our detailed 

understanding of M-L interactions in octahedral complexes.20  

Application of the resulting new protocol to this family of SCO-

active complexes then enabled us to evaluate the changes in the bonding 

properties across the family, obtained by EDA-NOCV calculations,[10] such 

as the σ-donor and π-acceptor character of the respective ligands, against 

the trend in the observed T1/2 values of the complexes. Doing this enabled 

us to determine whether or not the theoretical findings are consistent with 

experiment, and hence provide quantitative and chemically intuitive 

insights into the nature of the M-L bonds under consideration.  

Finally, the optimised EDA-NOCV protocol, developed for the SCO-

active [FeII(Lazine)2(NCBH3)2] complexes, was then used for the closely 

related [FeII(Lazine)3(BF4)2] family of LS complexes,[16] where our calculations 
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showed that 3 Lazine ligands produce a stronger octahedral ligand field than 

a combination of 2 Lazine + 2 NCBH3, which is in line with experimental 

findings. 

Overall, this study has established and validated a generally 

applicable fragmentation and computational protocol for EDA-NOCV M-L 

bonding analysis of any diamagnetic or paramagnetic, homoleptic or 

heteroleptic, octahedral transition metal complex.  

 

Figure 3.1. The two families of complexes studied herein: a) five SCO-active complexes, 

[FeII(Lazine)2(NCBH3)2], shown in order of increasing T½ in CDCl3 solution as a function of the azine 

i.e. position of non-coordinated N (red): absent (Lpyridine); or present in the 2-position (L2pyrimidine), 

3-position (Lpyrazine), 4-position (L4pyrimidine), or 5-position (Lpyridazine)83 and b) five LS 

[FeII(Lazine)2(BF4)2] complexes.254  
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3.3. Fragmentation Dilemma 

Interpretation of EDA-NOCV results is known to be highly dependent on 

the choice of fragmentation of the molecule.175-180 Moreover, complexes 

involving 3d metal ions pose a special challenge as it is desirable to reflect 

physically meaningful orbital occupations and energies in both possible 

situations: the bound complex and the isolated fragments. In the latter case, 

oftentimes the best representation would be achieved with fractionally 

occupying the energetically lower-lying 3d orbitals of the metal,255 while in 

the former the occupation of the appropriate antibonding molecular 

orbitals with d character at the metal centre is mandatory. To find a balance 

between meaningful reference states, chemically intuitive orbital 

occupations and computational feasibility, a series of systematic EDA-

NOCV calculations with various fragmentation schemes and additional 

computational protocols have been performed which are detailed in the 

following.  

The family of five SCO-active [FeII(Lazine)2(NCBH3)2] complexes 

comprise of one metal ion (Fe2+), two constant axial anionic co-ligands 

(NCBH3-) and two varying equatorial neutral bidentate Lazine ligands. In the 

first step, a full test of five possible fragmentations that the LS 

[FeII(Lazine)2(NCBH3)2] complexes could be broken into (1-5, Figure 3.2) was 

carried out, as these being diamagnetic led to easier wavefunction 

convergence and clearer visual analysis of the NOCV results than for the 

analogous paramagnetic high spin state complexes. To our knowledge, a 

systematic study of fragmentation schemes, at the level presented here, is 

a novelty in the EDA-NOCV-based bonding analysis of transition metal 

complexes with d orbital configurations other than d0 and d10.234-235  

Fragmentations 1 and 2 (Figure 3.2) represent the most commonly 

used fragmentation types in the EDA-NOCV literature when diamagnetic 

transition metal ions (LS d6 or d10) are present, removal of a single ligand.176, 

256 Here either L = [NCBH3]- (fragmentation 1) or [Lazine] (fragmentation 2) is 
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removed, so these provide detailed information on a single type of Fe-L 

interaction. However, the presence of another ligand of the same type in 

the other, iron-containing, fragment makes these two fragmentation 

choices less than ideal here. Hence fragmentations 3 and 4 (Figure 3.2), in 

which a pair of identical ligands are removed, either both [2xNCBH3-] 

(fragmentation 3) or both [2xLazine] (fragmentation 4) ligands, should 

provide a cleaner analysis of the details of the different types of Fe-L bonds. 

These fragmentation schemes are described in detail in the Supporting 

Information (Subsections A3.3.1-A3.3.4).  

 

 

Figure 3.2. The five fragmentations 1-5 (top to bottom) trialled for EDA-NOCV analysis of the five 

LS [Fe(Lazine)2(NCBH3)2] complexes (fragment 1 in black; fragment 2 in red). 
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However, all four of these fragmentations, 1-4, would only really be useful 

for examining trends within a family of very closely analogous complexes 

- confidently comparing very different coordination environments around 

M will be rather difficult, as the fragmentation is not general enough for 

that: The remaining metal-bound ligands will surely affect the electronic 

environment of the metal ion so will subsequently influence the M-L 

bonding character. In light of this, fragmentation 5 (Figure 3.2), in which all 

of the ligands are removed from the metal centre, is the most unbiased of 

all of these fragmentation options, and opens up the general application of 

the EDA-NOCV analysis to any monometallic complex of similar structure.  

Whilst the Fe d orbital energies in fragmentations 1-4 are comparable 

to the frontier orbital energies of the ligands, as expected within Hoffman’s 

MOs diagram (see Figure A3.1), this is not the case in fragmentation 5. Due 

to the absence of partial ligand fields, which are induced by lone-pair 

containing ligands surrounding the metal ion containing fragment in the 

other fragmentation schemes (1-4), the attractive potential of the Fe2+ centre 

is not “buffered” by electron density in the vicinity anymore and is 

therefore fully experienced by the d electrons. So, although using Fe2+ 

instead of Fe0 as a fragment appears intuitive and convenient at first, the 

resulting Fe2+ d atomic energies for fragmentation 5a (no corrections, 

Subsection A3.2.9 and Table A3.4), are very low in energy (approx. -26.0 eV, 

see Tables 3.1 and A3.4), compared to the energies of the frontier orbitals 

of the ligands (between -4.0 and +4.0 eV, see Table A3.5). This strongly 

challenges the physical justification for this description of M-L bonding 

interactions because of the poor match in energies between interacting 

frontier orbitals. To overcome this dilemma, the free ion Mn+ of 5a was 

surrounded by varying amounts of negative charges (described as 5b-5d in 

Appendix A3, Subsection A3.2.9) in order to emulate the electron density of 

the ligand lone-pairs. A slightly different approach was taken with scheme 

5e: Here the electron density of the isolated Fe2+ AOs was mapped onto the 
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neutral Fe0 AOs. All treatments effectively rescaled the Fe2+ d orbitals 

towards more positive energy levels. 

We found that through the computational protocols 5b and 5e the 

Fe2+ orbital energies were brought closest to the energy levels of Fe0 in 

spherical symmetry (Tables 3.1 and A3.4), and hence also to the ligand 

frontier orbital energies, which in turn yields a more chemically intuitive 

MO diagram for fragmentation into the isolated metal ion and the 

surrounding ligands with much better matching orbital energies. 

Fragmentations 5b and 5e were found to have different advantages 

and disadvantages (vide infra; and see Sections A3.9 and A3.5 for more 

details) so both were applied for in depth analysis of the complexes 

depending on the quantity in question. Specifically, 5b allowed for 

identification of chemically intuitive bonding interactions via NOCV 

analysis but underestimated the Pauli repulsion (ΔEPauli) in the EDA, 

whereas for 5e it is the other way around. 

Table 3.1. The calculated energy of the Fe(AOs) frontier orbitals (eV) was used to establish the 

most appropriate way to deal with the very low energy observed for Fe2+ (ca. -26 eV) relative to Fe0 

(ca. -8.0 eV) so that EDA-NOCV analyses could be carried out for fragmentation 5 (M+L6) for the 

LS [FeII(Lazine)2(NCBH3)2] complexes. Note: the energy levels of the ligand frontier orbitals range 

from -4.0 to +4.0 eV. 

LS Fe(AOs) T2g Eg 
ΔE 

(Eg-T2g) 

Energy 

(H) 
Frag. 

Fe0 

(Spherical 

Symmetry) 

-7.93 -7.93 0.0 -1263.66 - 

Fe2+ (no charges) -26.05 -25.61 0.56 -1262.74 5a 

Fe2+ (6x -0.425e) -8.00 -7.61 0.39 -1262.75 5b 

Fe2+ on Fe0(AOs) -7.96† -7.78† 0.18† -1263.66 5e 
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Subsequently, we have employed scheme 5e to obtain information about 

the contributions to the intrinsic bond energy (ΔEelstat, ΔEPauli, ΔEorb, ΔEdisp) 

and 5b – in separate calculations – to gain deeper insight into orbital 

interactions and the relative contributions within by decomposition via 

NOCV scheme, respectively. As the purpose of this work is to provide a 

robust computational protocol to enable the application of EDA-NOCV 

analysis to any monometallic complex, regardless of spin state or the exact 

nature of the coordination pocket provided by the coordinating ligands, a 

detailed description of the results of applying these two general 

fragmentations, 5b/5e (i.e., corrected Mn+ + L6), in the EDA-NOCV analysis 

of three families of complexes follows. 



3 | Quantitative Evaluation of the Nature of M-L Bonds in Paramagnetic Compounds: 

Application of EDA-NOCV Theory to Spin Crossover Complexes 

  

 

101 

 

3.4. Results and Discussion 

As noted above, ΔEelstat and ΔEorb (Equation 1.13) are the EDA quantities that 

give indications of the ionic and covalent character of the chemical bonds 

formed between the two fragments (5e; Mn+ + L6).  

The term (fragmentation 5b; Mn++L6) that is expected to be most 

sensitive to the differences in the M-Lazine bonds (due to the 5 different 

azines), and hence reflects the changes in the SCO properties, is ΔEorb 

(Equation 1.29), in particular the σ- and π-contributions that involve the 

metal ion (Equation 1.29; ΔEorb,σ and ΔEorb,π). Visual representations of all the 

σ- and π-contributions to the M-L bonding are provided by the NOCV 

deformation densities Δρ(i) for each of the fragmentations employed. It 

should be noted that the general appearance is the same for the other four 

complexes in the respective family (treated with the same fragmentation), 

regardless of the different Lazine ligands. 

These key parameters are presented for both the LS (Figure 3.3 and 

A3.27) and HS (Figure A3.28) state families of [Fe(Lpyridine)2(NCBH3)2] and 

for the LS family of [Fe(Lpyridine)3]2+ (see later, Figures 3.7 and A3.30).  

 

3.4.1. LS [FeII (Lazine)2(NCBH3)2] 

As expected, due to the charged nature of the NCBH3- co-ligand, EDA using 

fragmentation 5e reveals that the bonding interaction is mainly ionic 

(ΔEelstat:ΔEorb = 55:45; Figure 3.4).  

Furthermore, NOCV analysis using fragmentation 5b reveals the 

ratio of σ- and π-contributions to ΔEorb is about 90:10 (ΔEorb,σ:ΔEorb,π) (Figure 

3.5, Table A3.21). Focusing first on the M←L σ-interactions, those involving 

the Fe2+ p and s orbitals provide a constant stabilisation energy across the 

entire family (Table A3.21 and Figure A3.27). Hence, as expected, the 
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variation in ΔEorb,σ as the Lazine changes from L4pyrimidine to Lpyrazine is due to 

changes in the σ-interactions formed by the Fe2+ dz2 and dx2-y2 orbitals (Δρ1 

and Δρ2, Figures 3.3 and A3.27). Unsurprisingly, these ΔEorb,σ values do not 

fit the experimental observations (order of T1/2 values). The Lpyridazine 

complex shows significantly smaller dz2 (-102 kcal/mol) and dx2-y2 (-110 

kcal/mol) orbital interactions than are seen in the other complexes (-113 to 

-114, and -116 to -119 kcal/mol respectively; Figure A3.27, Table A3.21). 

Focusing next on the analysis of the three M→L π-back donation 

contributions, ΔEorb,π, reveals: Δρ3 is mainly associated with the interaction 

of M with the diazine ring in the yz-plane (ΔEorb,3 about -1 to -30 kcal/mol 

across the family); while Δρ4 is mainly associated with the interaction of M 

with the triazole ring in the xz-plane (ΔEorb,4 constant at -11 kcal/mol across 

the family). Δρ5 lies in the Lazine plane (xy) so both the diazine ring and the 

triazole ring of each Lazine ligand participates in this bond (ΔEorb,5 constant at 

-15 kcal/mol across the family) (Figure A3.27, Table A3.21).  

 

Figure 3.3. Plot of the deformation densities Δρ(i) (reported using cut-off on Δρ(i) of 0.003) obtained 

for fragmentation 5b EDA-NOCV analysis of LS Fe(Lpyridine)2(NCBH3)2. These correspond to: (top) 

Δρ2 , Fe(dx2-y2)←ligand σ-donation and (bottom) Δρ4, Fe(dzx)→ligand π-back donation. Direction 

of charge flow: yellow → turquoise.  
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As for the ΔEorb,σ values, the ΔEorb,π values do not parallel the order of T1/2 

values: again, the Lpyridazine complex is the outlier, with a significantly bigger 

ΔEorb,3 (-30 kcal/mol) than the rest (-1 to -4 kcal/mol). 

 

 

 

Figure 3.4. Results of EDA for LS (left) vs HS (right) [Fe(Lpyridine)2(NCBH3)2] using 

fragmentation 5e. For each spin state the pair of bar graphs shows the four components of ΔEint and 

the sum of them (ΔEint, yellow). Energies are in kcal/mol.  

3.4.2. HS [FeII (Lazine)2(NCBH3)2] 

Moving to the HS family of [Fe(Lazine)2(NCBH3)2] complexes (again using 

fragmentations 5b/5e Subsections A3.2.9 and A3.3.6), unsurprisingly, the 

change in FeII spin state dramatically affects the M-L interactions. The EDA 

(fragmentation 5e) shows that on going from LS to HS the ΔEint stabilisation 

for the [Fe(Lazine)2(NCBH3)2] family (Table A3.22) decreases by ca. 25%, from 

about -500 to -370 kcal/mol. The exact values depend on the Lazine present; 

those for Lpyridine are shown in Figure 3.4.  
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This is consistent with the HS state being less stable enthalpically than the 

LS state, as expected as the HS state only becomes more stable than the LS 

state at higher temperatures when the entropic contributions become large 

enough to outweigh the enthalpic term. The three main contributions to 

ΔEint (ΔEorb, ΔEPauli and ΔEelstat; Equation 1.16, Figure 3.4, Table A3.22) are 

also reduced in magnitude when changing from LS to HS. Of them, the 

largest reduction is observed for ΔEorb (from about -500 to about -330 

kcal/mol). 

 

Figure 3.5. Results of NOCV decomposition of ΔEorb for LS (left) vs HS (right) 

[Fe2(Lpyridine)2(NCBH3)] using fragmentation 5b. For each spin state the bar graph shows the four 

components of ΔEorb. Energies are in kcal/mol.  

In addition, the ΔEorb:ΔEelstat ratio goes from 44:55 for LS to 35:63 for HS, 

values consistent with the HS state being less covalent and more ionic than 

the LS state. This quantitative analysis confirms the significant change in 

the nature of the M-L interactions that is anticipated on change of spin 

state.  
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More details of the changes in M-L bonding on changing spin state are 

revealed by comparison of the results of the NOCV analysis (fragmentation 

5b) for both spin states (Figures 3.5, 3.6 and A3.28, Table A3.22). The 

ΔEorb,σ+π for LS [Fe(Lazine)2(NCBH3)2] lies between -330 and -350 kcal/mol and 

almost two-thirds of this orbital interaction is provided by ΔEorb,σ, in 

particular by the formation of M-L σ-bonds involving the M dz2 and dx2-y2 

(unoccupied) orbitals (ΔEorb,σ > 100 kcal/mol each).  

In contrast, in HS [Fe(Lazine)2(NCBH3)2] these two orbitals are now 

half-occupied so M-L anti-bonding interactions are also present, dropping 

the ΔEorb,σ stabilisation energy values to less than -35 kcal/mol each; 

consequently, the total ΔEorb,σ+π stabilisation energy drops to between -145 

and -160 kcal/mol in the HS state (Figure 3.6). As for the LS analogues, a 

constant contribution to ΔEorb,σ, almost unaffected by the spin state, is 

observed for the contributions where s and p of Fe2+ are involved, i.e., 

ΔEorb,σ(s, px, py, pz) (Figure A3.28, Table A3.22).  

Whilst the π-contributions (ΔEorb,π) to ΔEorb,σ+π are small in both spin 

states (Figure 3.5; LS -27 kcal/mol vs HS -3 kcal/mol), those involving the t2g 

orbitals donating electron density back to the ligands show a large 

reduction in magnitude of stabilisation on going from LS to HS (see Figure 

A3.28 |v24|α) due to the lower number of electrons present in them. In 

contrast, the fragment polarisation contributions (ΔEorb,pol) provide greater 

stabilisation in the HS state, by about -30 kcal/mol (Figure 3.5), regardless 

of Lazine. In a nutshell, as expected by the occupation of anti-bonding 

orbitals, spin state switching from LS to HS (Figures 3.4-3.6) greatly reduces 

the orbital contributions (ΔEorb) between M and L6, by ca 50%, while the 

electrostatic interactions (ΔEelstat) only drop by ≈10%, reflecting the 

reduction in the hardness of the metal ion as the radius increases (from 0.75 

Å LS to 0.95 Å HS).257 This is consistent with the classical view, that on 

switching from LS to HS the M-L bond becomes more ionic and less 

covalent, with longer and weaker bonds due to decreases in both the σ- and 

π-interactions.  
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3.4.3. Correlation of EDA-NOCV 
Parameters with T1/2 

Given the above, the ΔEorb,σ+π values obtained from the EDA-NOCV analysis 

were expected to correlate with the ligand field strength of the bonds 

formed between the fragments Mn+ and L6. This is a useful test of whether 

or not this approach can provide a useful, general, quantitative and 

predictive tool for predicting T½ for an SCO system. 

A very good correlation (R2 = 0.95) between the EDA-NOCV 

calculated ΔEorb,σ+π and the experimentally observed T1/2 is observed, 

regardless of whether the family of LS and HS state complexes is examined 

(Figure 3.6 and A3.29). This indicates that the new computational protocol 

is pleasingly sensitive, which is quite remarkable given that computed 

EDA-NOCV ΔEorb,σ+π values for L4pyrimidine, L2pyrimidine, Lpyridine in particular lie 

within fractions of kcal/mol of each other. No correlation between T1/2 and 

the small difference between the ΔEorb,σ+π values for the LS and HS states 

(ΔLS-HSΔEorb,σ+π) is observed (R2 = 0.12, Figure A3.29). Rather, the single spin 

state trend (LS is the easier of the two to calculate) should be used, as it 

appears to be a good predictive tool. 

In summary, it is evident from these results that the change of Lazine 

induces different alterations in the σ- and π- interactions, which only 

correlate (extremely well) with the T1/2 values when the synergy of the two 

contributions (ΔEorb,σ+π) is considered (Figure 3.6). The results also confirm 

the expected extreme difficulty in foreseeing the effect of a ligand on the 

T1/2 of a complex on the basis of simple consideration of σ- or π- 

contributions. 
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Figure 3.6. Strong correlations are seen between ΔEorb,σ+π (calculated using fragmentation 5b) and 

T1/2, for both the LS state complexes (R2 = 0.99) and the HS state complexes (R2 = 0.95), but there 

is no correlation between the difference, ΔLS-HSΔEorb,σ+π, and T1/2 (R2 = 0.12; see Figure A3.29).  

3.4.4. LS [FeII(Lazine)3]
2+ 

Application EDA-NOCV (Mn+ + L6; based on 5b/5e) to the closely related 

family of LS [Fe(Lazine)3]2+ complexes (Figure 3.7) provided a new set of 

charged candidates to start to test the generality of these protocols. For the 

LS [Fe(Lazine)3]2+ family the EDA revealed a ΔEelstat:ΔEorb ratio of about 45:55 
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(Figure A3.30, Table A3.23), revealing greater covalent than ionic bonding, 

in contrast to the LS [Fe(Lazine)2(NCBH3)2] complexes in which this ratio is 

reversed (ΔEelstat:ΔEorb = 55:45) (Table A3.23).  

This is not surprising as in the present case none of the ligands are 

charged, whereas in the [Fe(Lazine)2(NCBH3)2] complexes two anions are 

involved. This results, when going from [Fe(Lazine)2(NCBH3)2] to 

[Fe(Lazine)3]2+ (Table A3.23), in a large decrease in ΔEelstat stabilisation 

(approx. -620 to -400 kcal/mol) and a slight increase in ΔEorb stabilisation (≈ 

-15 to -20 kcal/mol). The same magnitude of increase in stability observed 

for the ΔEorb term is observed as an increase in ΔEPauli stabilisation (≈+15 to 

+20 kcal/mol). This is consistent with the general trend that these two terms, 

ΔEorb and ΔEPauli, are intimately connected in describing the covalent 

bonding between fragments (Table A3.23).  

The NOCV analysis reveals that on stepping across the five Lazine 

ligand from L4pyrimidine (weakest field strength, least negative ΔEorb,σ+π) to 

Lpyridazine (strongest field strength, most negative ΔEorb,σ+π) that: (a) the σ-

bonds (ΔEorb,σ) involving the dz2 and dx2-y2 orbitals strengthen by about -5 to 

-10 kcal/mol per bond per step and (b) the π-backbonds (ΔEorb,π) involving 

the dxy, dzx , dzy orbitals strengthen by about -5 to -15 kcal/mol per bond per 

step (Figures 3.7 and A3.30, Table A3.23). On the other hand, as before, the 

bonds involving s, px, py and pz orbitals show marginal differences (Figure 

A3.23, Table A3.30). Analysis of the σ- and π-contributions shows that the 

σ-interaction is almost eight times larger than the π-interaction regardless 

of Lazine. The σ-strength (ΔEorb,σ) of the Lazine ligands follows the order:  

 

Lpyridazine > L4pyrimidine > L2pyrimidine > Lpyrazine > Lpyridine 

 

Interestingly the order of the π-strength (ΔEorb,π) of the Lazine ligands differs 

(and the values are far from showing a monotonic trend): 

 

Lpyridine > Lpyrazine > Lpyridazine > L2pyrimidine > L4pyrimidine. 
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Adding those two contributions together gives ΔEorb,σ+π and this puts the 

complexes into the same order as was observed experimentally for the 

[Fe(NCBH3)2(Lazine)2] family, with an average magnitude decrease in ΔEorb,σ+π 

stability of about 30 kcal/mol between LS [Fe(Lazine)3]2+ and LS 

[Fe(Lazine)2(NCBH3)2] (Table A3.21 and Table A3.23): 

 

L4pyrimidine > L2pyrimidine > Lpyridine > Lpyrazine > Lpyridazine 

 

 

Figure 3.7. Plot of the deformation densities Δρ(i) in fragmentation 5b (M +L6) of the 

[Fe(dz2)]ligand σ-donation (left) and the [Fe(dxz)] → ligand π-donation in reference complex LS 

[Fe(Lpyridine)3]2+. The direction of the charge flow is yellow → turquoise. The eigenvalues |vi| 

indicate the relative size of the charge flow. Cut-off on Δρ(i) = 0.003. 
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3.4.5. Lazine vs 2NCBH3: Ligand Field 
Strength Comparison 

The above results enable another test of whether or not this EDA-NOCV 

protocol (M + L6) can provide a useful, general, quantitative and predictive 

tool – in this case to compare the field strength of a pair of ligands in 

different types of complexes (Figure 3.8). 

In contrast to the SCO-active [FeII(Lazine)2(NCBH3)2] family,83 the 

related family of [Fe(Lazine)3](BF4)4 complexes are all LS,254 which implies 

that the replacement of two NCBH3- anions by one bidentate Lazine ligand 

increases the ligand field experienced by the iron centre. The ΔEorb,σ+π values 

(Figure 3.8) for [Fe(Lazine)2(NCBH3)2] (-335 kcal/mol) and [Fe(Lazine)3]2+ (-368 

kcal/mol) show that replacement of 2xNCBH3- by one Lazine leads to an 

increase in the stabilisation (ΔΔEorb,σ+π) of -33 kcal/mol (Figure 3.8), which is 

consistent with the experimental observation that the [Fe(Lazine)2(NCBH3)2] 

family are SCO-active whereas the [Fe(Lazine)3]2+ family are solely LS. 

 

Figure 3.8. Comparison of ΔEorb,σ+π (and components), calculated for LS [Fe(Lpyridine)2(NCBH3)2] 

(left) and LS [Fe(Lpyridine)3]2+ (right) using corrected M + L6 (5b for NOCV), is consistent with the 

former being SCO active and the latter remaining LS.  
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3.5. Conclusions 

In this study we aimed to provide new insights into the details of the nature 

of M-L bonds. To do so, EDA-NOCV has been employed. First a range of 

fragmentations of the complexes was considered, starting from the usual 

literature fragmentation used (loss of one ligand). That, and the related 

fragmentations (loss of pairs of ligands) were found to be unsatisfactory, 

and also lacked generality, i.e., the potential to be used for any complex 

regardless of ligand type or charge. Hence a protocol that enables robust 

and general EDA-NOCV analysis of any coordination complex, by 

fragmentation into Mn+ + L6, has been developed.  

A family of SCO-active FeII complexes, [Fe(Lazine)2(NCBH3)2], was 

chosen as the test system for this study as the experimentally observed 

solution switching temperatures (T1/2) provided the order of Lazine ligand 

field strengths. Also, the chance to work on both spin states, diamagnetic 

LS and paramagnetic HS, enabled us to increase the number of reports of 

EDA-NOCV analysis of paramagnetic transition metal complexes from 

three233-235 to four and, above all, to critically tackle this class of systems in 

depth for the first time. Moreover, this work is also the first to focus on 

SCO-active complexes.  

Regardless of whether the LS or HS family of [Fe(Lazine)2(NCBH3)2] 

complexes were examined by EDA-NOCV, the analysis identified a good 

correlation (R2: LS 0.99; HS 0.95) between decreasing T1/2 and increasing 

ligand field strength as quantified by the ΔEorb,σ+π term. In addition, 

comparison of the results for [Fe(Lazine)2(NCBH3)2] with those subsequently 

obtained on the LS [Fe(Lazine)3(BF4)2] complexes revealed that only the 

corrected Mn+ + L6 fragmentation provides a general protocol suitable for 

comparing different types of complexes.  

In conclusion, the EDA-NOCV protocol developed herein employs a 

new and general fragmentation type (Mn+ + L6) which provides a clear and 

quantitative description of the M-L bonds in these paramagnetic and 
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diamagnetic transition metal complexes. This protocol should be widely 

applicable, a point we are currently testing further, in order to prove it is 

general and hence has great promise as predictive tool. It should be noted 

that the above analysis neglects any entropic contributions, which are 

known to be key in SCO, so the next big step in the development of this 

approach will be the understanding of how the inclusion of computed 

entropic contributions can be included so that the unbiased determination 

of the T1/2 values on the basis of the EDA values will be possible. 
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3.6. Computational Protocol 

As a first step, accurate structures for these five [FeII(Lazine)2(NCBH3)2] 

complexes in both the low-spin (LS) and high-spin (HS) states are required, 

so DFT structure optimisations of the complexes were performed with the 

ORCA 4.1 software package.258 After testing several computational features 

(details in Appendix A3: Subsection A3.1.1, Table A3.1-A3.3 and Figures 

A3.2-A3.9), the level of theory with the best overall performance was 

identified to be RI-BP86-D3(BJ)/def2-TZVPP+CPCM(CHCl3).259-267 i.e. usage 

of the BP86 functional263-264 together with the resolution of identity (RI) 

approximation,266-267 Grimme’s D3 dispersion correction (including BJ 

damping),259-260 a def2-TZVPP basis set261 and implicit CPCM-solvent 

model.265  

Using this protocol all of the calculated structures, for both the LS and 

HS complexes, are in good agreement with the available experimental X-

ray crystallographic data for the LS and HS states of the 

[FeII(Lpyridine)2(NCBH3)2] complex,105 (Table A3.3). The [FeII(Lazine)3(BF4)2] 

complexes had been previously optimised using the same protocol.254 

These sets of optimised structures were then used in single-point 

calculations for the subsequent EDA-NOCV analyses performed using the 

ADF program package (Version 2018.106) at the BP86-D3(BJ)/TZ2P level of 

theory.268-269 A detailed introduction to the EDA-NOCV model is presented 

in Subsection 1.6.6. 
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All of the calculations were performed by me, except for the AILFT 

calculations (Subsection 4.3.2).  
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4.1. Abstract 
 

The effect of the para-substituent X on the electronic structure of a literature 

family of sixteen tridentate bppX ligands (bppX = 4-X-2,6‐di(pyrazol‐1‐yl)-

pyridine)) and the corresponding solution spin crossover (SCO) active 

[Fe(bppX)2]2+ complexes is further investigated, with the aim of supplying 

further insights into the σ-donor and π-acceptor properties of the bppX 

ligand. Halcrow, Deeth et al. concluded their study on [Fe(bppX)2]2+ by 

proposing the extremely good correlation of T1/2 vs. σp+(X) (R2 = 0.92) was 

due to the EDG → EWG causing an increasing M→L π-backdonation, 

which causes an increasing ligand field strength and a T1/2 increase. 

Herein, AILFT is employed to calculate ΔO values for the sixteen LS 

[Fe(bppX)2]2+ complexes, resulting in good correlations with the 

experimental T1/2 (R2 = 0.78) and with σp+(X) (R2 = 0.93). 

EDA-NOCV analysis of the sixteen LS [Fe(bppX)2]2+ complexes revealed 

that neither ΔEorb,σ+π (R2 = 0.48) nor ΔEorb,π (R2 = 0.31) correlated with the 

experimental T1/2 values, but that ΔEorb,σ correlates well (R2 = 0.82). This 

implies that as EDG → EWG, somehow the ligand field is becoming a 

better σ-donor and that this is causing the increasing ligand field strength 

and T1/2. This is counter-intuitive and contrasts with the finding for Lazine 

(T1/2 vs. ΔEorb,π; R2 = 0.95), and with the hypothesis of Deeth, Halcrow’s et al. 

that M→L π-backbonding is what dominates in this family. 

But Mulliken charge analysis of the population of the (NA(sp2(Fe))) 

involved in the Fe-N σ-bond versus the perpendicular NA(p π) employed in 

the aromatic π-system of the ligand reveals that the electronic effects 

triggered by the X substituent as EDG → EWG are felt in opposite ways. 

Whilst the electron population on NA(pπ) decreases, the electron population 

in NA(sp2(Fe)) increasing, leading to a stronger σ-bond and increasing the 

T1/2 as observed. Finally, correlations identified in this study have been 

used to estimate the value of σp+ for two X substituents, SOMe (0.26) and 

SO2Me (0.60), not available in literature. 
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4.2. Introduction 

Predictable fine tuning of the electronic structure of metal complexes is 

highly desirable, not least in order to optimise them for use in practical 

applications, such as molecular electronics,48-50 emissive devices,51-53 

catalysis194 or photovoltaics.270 The choice of substituent (in this study, X for 

para and Y for meta substituents) present in a 5- or 6-membered aromatic 

ring is an important and frequently employed tool for fine-tuning the 

electronic structure of organic and inorganic metal compounds. 

Substituent effects are commonly parametrised using the Hammett 

constant, which encompasses two different electronic effects: (a) inductive 

effects (through σ-bonds) and (b) resonance effects (through π-bonds).124 

Hammett parameters for para-X substituents, σp+(X), range from those for 

very Electron Donating Groups (EDG, X = NMe2, σp+ = -1.70) to those for 

very Electron Withdrawing Groups (EWG, X = NO2, σp+ = 0.70); whereas for 

meta-Y substituents σm+(Y) a much narrower range is observed: EDG (X = 

Me, σp+ = -0.07) to EWG (X = NO2, σp+ = 0.52) (see also Subsection 1.4.1).125, 271 

Many studies have tried, with varying success, to rationalise how 

ligand substituent modifications affect the molecular orbital (MO) energies, 

redox potentials, spin crossover switching temperatures (T1/2, as the 

temperature whereas 50:50 ratio between HS:LS), etc.  

Herein the focus is on the use of X to modify the T1/2 of spin crossover 

active (SCO) metal complexes.22-23, 83, 89, 133, 159, 272-276 SCO occurs when the 

metal ion M (usually 3d4 to 3d7 electronic configuration in octahedral 

geometry) can be switched between the high spin (HS) and low spin (LS) 

states through a trigger stimulus as temperature, pressure, host-guest 

interaction, external magnetic field or light irradiation (Section 1.2).7, 30, 250-251, 

253, 277-279 Systems showing thermal SCO in the solution phase are 

particularly suitable candidates for monitoring the X (or Y) effects on the 

M-L bond, as they are not complicated by the effects of crystal packing or 

solvatomorphs,280 so variations in the ligand field strength, due to X (or Y) 

substituent, are more clearly observed22-24, 83 than in the solid state SCO.126-
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132 For thermal SCO, the switching temperature T1/2 is measured in order to 

monitor these variations.23, 83, 133 The most complete study on the effects of 

para-X (and meta-Y) on solution SCO reported to date was carried out by 

Deeth, Halcrow et al. in 201723 on the large family of [FeII(bppX,Y)2]2+ 

complexes (bppX,Y = 4-X-2,6-di(pyrazol-3-Y-1-yl)-pyridine, Figure 4.1), 

prepared by various authors across the years (See also Subsections 1.4.3 and 

1.6.3).107, 132, 134-137 Follow up studies were published by them in 201889 and 

2019,280 but with a smaller impact than the most relevant 2017 study.23 In 

2017,23 they set a milestone in explaining the effects of changing a para X 

substituent on the pyridyl ring or a meta Y-substituent on the pyrazolyl 

rings of the bppX,Y ligand on the T1/2 of the complex in solution (Figures 

1.12-1.22). Firstly, they found a strong σp+(X) vs. T1/2 correlation (R2 = 0.92) 

and a weaker σm(Y) vs. T1/2 correlation (R2 = 0.61). Secondly, they found that 

the ΔEHL gap correlated strongly with σp+(X) (R2 = 0.89) and less strongly 

with σm(Y) (R2 = 0.67) (Figure 1.25).23 Thirdly, they found that the Hammett 

parameter σp+/σm correlated the E(t2g) and E(eg) energy levels calculated 

with DFT for LS [FeII(bppX,Y)2]2+ (Figure 1.12) (σp+(X): E(t2g), R2 = 0.94 and 

E(eg), R2 = 0.93; σm(Y): E(t2g), R2 = 0.99 and E(eg), R2 = 0.98). They concluded, 

through close examination of the effects of EDG → EWG substituents on 

E(t2g) and E(eg), that Fe → N π-back bonding effects dominate for X (para) 

substituents as this strengthens the ligand field strength and increases T1/2, 

whereas the Fe ← N σ-bonding effects dominate for Y (meta) substituents, 

causing the opposite effect, decreasing the ligand field strength and the T1/2 

(more details in Subsections 1.4.3 and 1.6.3).23, 138 

The present study was motivated by the above findings and by the 

promise shown in our first use of EDA-NOCV theory – which is 

combination of EDA model (Energy Decomposition Analysis),175, 185 with 

NOCV model (Natural Orbitals for Chemical Valence)186-187 (introduced in 

Subsection 1.6.7) – on a solution SCO system, specifically on a family of five 

[FeII(Lazine)2(NCBH3)2] (Chapter Three).91 The latter study established (i) a 

computational protocol for evaluating M-L bond strength in any kind of 

metal complex (diamagnetic or paramagnetic) and (ii) a strong correlation 
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between the ΔEorb,σ+π term for the family of five [FeII(Lazine)2(NCBH3)2] 

complexes with the experimental T1/2 for SCO in solution (R2 = 0.99).91 

In this study, sixteen of the available para-X substituted [Fe(bppX)2]2+ 

complexes are studied using AILFT and EDA-NOCV in order to (a) 

determine ΔO, (b) determine the relative importance of the σ- and π-

contributions to the M-L bonds and (c) use the observed correlations to 

predict the Hammett parameter σp+ for the two substituents X for which it 

is not available in literature (X = SOMe or SO2Me). 

 

Figure 4.1. Representations of (a) the members of the Fe(bppX)22+ family studied herein; (b & c) 

electrostatic effects on the pyridine nitrogen donor atom, NA, by either (b) electron donating group 

(EDG) or (c) electron withdrawing group (EWG) substituent (σp+) in Fe(bppX)22+. Pink text for 

the two X for which σp+ is not known but is estimated from the correlations presented herein 

(Subsection 4.3.7, Table A4.14). 
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4.3. Results and Discussion 

4.3.1. DFT optimisation of [Fe(bppX)2]
2+ 

(LS and HS) 

The computational protocol employed for the sixteen LS and sixteen HS 

[FeII(bppX)2]2+ complexes was chosen based on the functional screen 

performed previously by Brooker et al. (as described in Chapter Three).91 The 

same computational protocol was applied to all of the candidates, in the 

same CPCM solvent, acetone, albeit the LS forms of the X = NMe2 or NH2 

complexes are not observed experimentally. Calculating Root-Mean-

Square-Deviation (RMSD) of each atomic position (Equation A4.1) 

confirmed that the variation of the para-substituent X in the bppX ligands 

causes no significant deviations of these structures from that of the 

respective LS or HS parent complex [Fe(bppH)2]2+ (RMSD < 0.01 Å in all 

cases, Table A4.1).  

The six out of the sixteen [Fe(bppX)2]2+ complexes where the 

experimental T1/2 values were measured in nitromethane solvent (Table 

A4.1) were subjected to a new geometry optimisation process, and then to 

an RMSD evaluation between the final geometries calculated in acetone vs 

nitromethane. Again, the RMSD for each atomic position confirmed that, 

as expected, changing the dielectric constant in the CPCM model,281 from 

acetone to nitromethane, has a negligible effect on the optimised structures 

obtained in these two different solvents (RMSD < 0.01 Å in all cases, Table 

A4.1). 
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4.3.2. AILFT Analysis Effect of X on Δo 
for LS [Fe(bppX)2]

2+ 

The octahedral ligand field splitting energy (Δo) was calculated using Ab-

Initio Ligand Field Theory (AILFT), as reported in Subsection 1.6.1 and 

Section 4.6, for the sixteen LS [Fe(bppX)2]2+ complexes, by our collaborator 

Paul Jerabek (Helmholz-Geesthacht, Germany), to observe the variation in 

Δo as X is varied. As expected, the calculated value of Δo increases as the 

experimental T1/2 of the [Fe(bppX)2]2+ complexes increases. Indeed, a good 

T1/2 vs. Δo correlation (R2 = 0.78) is observed (blue dotted line, Figure 4.2).  

 

Figure 4.2. Observed correlation of the experimental T1/2 vs. the calculated Δo (using AILFT) for 

the fourteen LS [Fe(bppX)2]2+ complexes (blue, R2 = 0.78; X = NH2, NMe2 are absent) and the five 

LS [FeII(Lazine)2(NCBH3)2] complexes (black, R2 = 0.95) and for all the nineteen complexes (green, 

R2 = 0.41; X = NH2, NMe2 are absent). 1 eV = 23 kcal/mol = 8100 cm-1. 

For comparison, AILFT was also used to calculate Δo for the family of five 

LS [FeII(Lazine)2(NCBH3)2] complexes,83, 91 and these also correlated strongly 

with T1/2 (R2 = 0.95, black dotted line, Figure 4.2). So, the calculated Δo values 

represent a solid and reliable assessment of the relative size of the 

experimental eg -t2g gap (Subsection 1.6.2) and hence expected solution T1/2 

order. This easy – albeit rather simplistic – interpretation of Δo as the only 

key parameter for solution SCO is expected to lead to a shared correlation 
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line for T1/2 vs. Δo, regardless the family. But this is not observed (Figure 4.2, 

green dotted line, R2 = 0.41); rather, the Fe(bppX)2]2+ family (R2 = 0.78) lies 

on a different correlation line to that of the [FeII(Lazine)2(NCBH3)2] family (R2 

= 0.95). Very likely, the different entropic effects associated with the 

different classes of ligands employed (coordination pocket, charge) are 

responsible for the different correlation lines (and so the different 

sensitivities of the iron(II) complex to the electronic effects of X). 

As well, an excellent correlation is observed between Δo and σp+(X) 

(R2 = 0.93, Figure 4.3): from EDG → EWG, the t2g-e.g., gap gets bigger and 

the Δo gets bigger – further confirming the above results.  

 

Figure 4.3. Extremely good correlation (R2 = 0.93) of the Hammett parameter σp+(X) with the Δo 

calculated for the sixteen LS [Fe(bppX)2]2+ complexes using AILFT,145 following procedure reported 

in Subsection 1.6.1 (X = SOMe, SO2Me are absent, Table A4.8). 1 eV = 23 kcal/mol = 8100 cm-1. 

4.3.3. EDA Analysis of Effects of X in 
[Fe(bppX)2]

2+ (LS and HS) 

EDA (Energy Decomposition Analysis)175, 185 – using fragmentation 5e 

(M+L6) in Figure 3.291 – was applied to the sixteen HS and sixteen LS 

[FeII(bppX)2]2+ complexes (Figure A4.1). This quantified the overall 

interaction energy, ΔEint, which accounts for the strength of the grip applied 

by the coordination sphere on the iron(II) centre. The ΔEint contribution for 

HS was half that for LS [FeII(bppX)2]2+ complexes (Table 4.1). This is 
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consistent with the HS state being less enthalpically stable than the LS state; 

note these results are obtained at absolute zero. Furthermore, as σp+ 

increases (EDG → EWG, NMe2 → NO2), the stabilising energy ΔEint drops 

by about 50 kcal/mol in all cases, from about -250 to -200 kcal/mol for the 

LS complexes (NMe2 → NO2) and from -120 to -70 kcal/mol (NMe2 → NO2) 

for the HS complexes (Figure 4.4 and Table 4.1 and A4.1; details in 

Subsection 1.6.7). 

 

Figure 4.4. Results of EDA analysis for LS (top) vs HS (bottom) [Fe(bppH)2]2+ using fragmentation 

5e. For each spin state the bar graphs show the four components of ΔEint (Subsection 1.6.6) and the 

sum of them (ΔEint, yellow). Energies are in kcal/mol. 1 eV = 23 kcal/mol = 8100 cm-1.  
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Table 4.1. EDA-NOCV results (using fragmentation 5e, Section 3.3) for the sixteen LS and HS 

[Fe(bppX)2]2+ complexes: all energies are reported in kcal/mol. Results are presented in order of 

increasing Hammett parameter (σp+). * values estimated in Subsection 4.3.7. 

X T1/2 σp+ State ΔEint ΔEelstat ΔEorb 

NMe2 HS -1.70 
LS -255.0 -413.8 -305.5 

HS -120.1 -330.6 -503.9 

NH2 HS -1.30 
LS -246.7 -409.4 -309.1 

HS -113.0 -338.2 -409.4 

OH 164 -0.92 
LS -232.0 -396.2 -307.7 

HS -98.1 -325.0 -499.5 

OMe 158 -0.78 
LS -238.9 -401.2 -310.6 

HS -104.0 -328.7 -501.6 

SMe 194 -0.60 
LS -239.6 -397.1 -310.6 

HS -104.4 -326.5 -507.0 

Me 216 -0.31 
LS -235.6 -397.9 -306.7 

HS -101.5 -314.3 -502.8 

F 215 -0.31 
LS -219.5 -385.0 -296.9 

HS -83.0 -302.9 -499.3 

SH 246 -0.03 
LS -231.6 -390.7 -314.0 

HS -98.5 -320.1 -505.6 

H 248 0.00 
LS -229.1 -393.7 -296.6 

HS -89.9 -310.7 -501.3 

Cl 226 +0.11 
LS -221.7 -383.1 -311.8 

HS -88.2 -312.4 -504.0 

I 236 +0.14 
LS -224.5 -382.5 -304.1 

HS -86.9 -300.5 -508.4 

Br 234 +0.15 
LS -222.9 -383.1 -301.8 

HS -85.5 -301.1 -505.6 

CO2H 281 +0.42 
LS -223.7 -383.4 -314.2 

HS -89.0 -313.2 -508.3 

NO2 309 +0.79 
LS -205.7 -365.4 -508.7 

HS -71.6 -296.6 -314.9 

SOMe* 284 +0.26* 
LS -224.4 -368.0 -515.0 

HS -81.0 -300.8 -305.5 

SO2Me* 294 +0.60* 
LS -215.4 -359.1 -515.8 

HS -90.1 -303.2 -314.8 
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In the detailed analysis of the various energetic contributions to the ΔEint 

term, the ΔEelstat term – which accounts for the ionic bonding between the 

fragments (details in Subsection 1.6.7) – is observed to correlate well with 

σp+(X) for LS [FeII(bppX)2]2+ (R2 = 0.89, Table A4.3, Figure A4.2) and 

moderately well for HS [FeII(bppX)2]2+ (R2 = 0.73, Table A4.4 and Figure 

A4.3). In both cases, this behaviour can be understood as follows: as X 

becomes more electron poor (σp+ increases) it drains more electron density 

away from the coordinating nitrogen (Figure 4.1), decreasing the 

favourable electrostatic interactions with the Fe2+ ion (Tables A4.3-A4.4). 

From X = NMe2 to X = NO2, ΔEelstat decreases by just -60 kcal/mol (+15%) in 

the LS [FeII(bppX)2]2+ and decreasing by just -35 kcal/mol (+12%) in the HS 

[FeII(bppX)2]2+ complexes. In contrast, the ΔEorb interaction – which accounts 

for the covalent bonding between the fragments (details in Subsection 1.6.6) 

– remains almost constant across the whole range of σp+ values: from X = 

NMe2 to X = NO2, ΔEorb increases by just +20 kcal/mol (+3.5%) in the LS 

[FeII(bppX)2]2+ and decreasing by just -5 kcal/mol (-1.5%) in the HS 

[FeII(bppX)2]2+ complexes.  

Comparing these EDA results with those for the 

[FeII(Lazine)2(NCBH3)2] family (Lazine = 3-(2-azinyl)-4-tolyl-5-phenyl-1,2,4-

triazole; (Chapter Three, Table 4.2),91 the ΔEint energies, that for the 

[FeII(Lazine)2(NCBH3)2] family are twice the size of those for the [FeII(bppX)2]2+ 

family,91 but yet, the ΔEorb values are almost the same (Table 4.2). The cause 

of the big difference in ΔEint values is the big drop in magnitude for the 

ΔEelstat term in the [FeII(bppX)2]2+ family vs the [FeII(Lazine)2(NCBH3)2] family. 

This is due to the fact that the two BF4- (or two PF6-) anions are not directly 

bonded at the iron(II) ion in [FeII(bppX)2]2+; whereas the two NCBH3- anions 

are directly bonded to the iron(II) ion in [FeII(Lazine)2(NCBH3)2] (Table 4.2).23  

Finally, it should be noted that the ratio between ionic and covalent 

contributions (ΔEelstat:ΔEorb ratio) is important in describing the bonding 

between fragments.276 For the [Fe(bppH)2]2+ complex the ionic:covalent ratio 

becomes more ionic on going from LS (44:55) to HS (50:47). This is very 



4 | Quantitative Assessment of the Energetic Contribution on the M-L Interaction in 

Fe(II) 2,6-Di(Pyrazol-1-yl)Pyridine Complexes 

 
 

126 

 

different from [Fe(Lpyridine)2(NCBH3)2] complex where the ionic bonding is 

already dominating in the LS state (ΔEelstat:ΔEorb, 55:45), and this further 

increases in the HS state (65:35) (Table 4.2). 

In conclusion, the EDA analysis showed to be already able to 

correctly catch in details the origin of the change in nature of the 

coordinative bond in the charged and neutral families.91 

 

Table 4.2. Range of ΔEint, ΔEelstat and ΔEorb values obtained from EDA analysis, in both HS and 

LS spin states (using fragmentation 5e), of the sixteen [Fe(bppX)2]2+ complexes, compared with 

those previously obtained for five [FeII(Lazine)2(NCBH3)2] complexes:91 all energies are reported in 

kcal/mol. 1 eV = 23 kcal/mol = 8100 cm-1. 

 

 State 
ΔEint 

(kcal/mol) 

ΔEelstat 

(kcal/mol) 

ΔEorb 

(kcal/mol) 

[FeII(bppX)2]2+ 

LS -250 / -200 
-415 / -365 

(~45%) 

-510 / -500 

(~55%) 

HS -120 / -70 
-330 / -290 

(~55%) 

-315 / -295 

(~45%) 

[FeII(Lazine)2(NCBH3)2]91 

LS -530 / -500 
-635 / -620 

(~55%) 

-520 / -500 

(~45%) 

HS -385 / -370 
-585 / -570 

(~65%) 

-330 / -325 

(~35%) 

bppH vs Lpyridine 
LS -53% / -60% -35% -0.5% 

HS -59% / -81% -40% -5% 
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4.3.4. NOCV Analysis of the effects of X 
vs σ- and π- Bonding Terms of 
[Fe(bppX)2]

2+ (LS and HS) 

The full EDA-NOCV results obtained using fragmentation 5b (Section 3.3)91 

are reported in Tables A4.5-A4.6, with selected results shown and 

discussed in the following sections. From the breakdown of the ΔEorb term, 

the nine M+L6 bonding interactions (described by Hoffman theory21) can be 

identified by visual inspection and quantitatively assessed (Figure A4.1): six 

σ- (ΔEorb,σ), and three π-contributions (ΔEorb,π) to the ML6 interactions are 

sought (Figure 4.5, Table 4.3 and A4.5; details in Subsection 1.6.6). For both 

spin states of the sixteen complexes the ΔEorb,σ(s,px,py,pz) contribution 

remains constant as X varies (Table 4.2-4.3, Figures A4.7-A4.9). 

For all sixteen LS [Fe(bppX)2]2+ complexes, the six σ-bonds (ΔEorb,σ) 

account for about 85% of the ΔEorb,σ+π contribution to M-L bonding, leaving 

only 15% of the stabilisation energy to come from the three π-bonds. The 

same is observed for all sixteen HS [Fe(bppX)2]2+ complexes (ΔEorb,σ:ΔEorb,π = 

85:15; Tables 4.3 and A4.6-A4.7).  

 
Figure 4.5. Plot of the deformation densities Δρ(i) (Subsections A4.1.2-A4.1.3) with corresponding 

energy contribution to the total orbital term ΔEi (given in kcal/mol) of the M(dz2)  L6 σ-donation 

(right), the M(dxy) → L6 π-backdonation (right) in the LS [Fe(bppH)2]2+ complexes. The direction 

of the charge flow is yellow → turquoise. The eigenvalues |vi| indicate the relative size of the charge 

flow (reported values for |vi| > 0.1; ρ < 0.003). 



4 | Quantitative Assessment of the Energetic Contribution on the M-L Interaction in 

Fe(II) 2,6-Di(Pyrazol-1-yl)Pyridine Complexes 

 
 

128 

 

In the LS state the overall σ-strength is mostly due to the two ML σ-bonds 

formed by the Fe2+ dz2 and dx2-y2 orbitals (ΔE(i) < -100 kcal/mol; vi > 0.90; Figure 

4.5(left) and Figures A4.4-A4.6). In MO picture, such interaction 

corresponds only to the σ bonding M-L interactions where L character is 

predominant, whereas the σ* anti-bonding interaction, where the Fe2+ dz2 

and dx2-y2 character is now dominant, are empty. In the sixteen HS 

[Fe(bppX)2]2+ complexes – where these two e.g., anti-bonding orbitals are 

half-occupied, not empty – the ΔEorb,σ stabilisation energy drops by 55% 

relative to the analogous LS state complex (Tables 4.3 and A4.6-A4.7).  

 

Figure 4.6. Results of NOCV decomposition of ΔEorb for LS (top) vs HS (bottom) [Fe(bppH)2]2+ 

using fragmentation 5b. For each spin state the bar graph shows the four components of ΔEorb 

(Subsection 1.6.6). Energies are in kcal/mol.  
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In comparison, in the LS [Fe(Lazine)2(NCBH3)2] complexes the six σ-bonds 

(ΔEorb,σ) account for even more, about 92%, of the ΔEorb,σ+π, the only exception 

for Lazine = Lpyrdt were the σ-contribution drops to 84%; this is very likely due 

to a mixing between the σ- and π- contribution, Table A3.21. As well, in HS 

[Fe(Lazine)2(NCBH3)2] complexes an even more inhomogeneity between 

ΔEorb,σ and ΔEorb,π is observed (ΔEorb,σ:ΔEorb,π = 98:2). The three π-acceptor 

M→L bonds are composed by two stronger degenerate π-bonds involving 

the iron(II) dxz/dyz orbitals (Figures A4.4-A4.6), and a weaker π-bond 

involving the iron(II) dxy orbital (Figures A4.4-A4.6). For LS [Fe(bppX)2]2+, 

these three π(M → L6) interactions (slightly bonding MOs) contribute -47 

kcal/mol. For HS [Fe(bppX)2]2+ these three π(M → L6) bonds contribute only 

-25 kcal/mol due to the SCO from LS → HS reducing the population of the 

t2g-like orbitals, which reduces the π-backdonation. Overall, on LS → HS, 

stabilisation by ΔEorb,π drops by about 40% and the overall ΔEorb,σ+π it drops 

by about 50%. In comparison, for the [Fe(Lazine)2(NCBH3)2] complexes the 

ΔEorb,σ term drops by about 50%, ΔEorb,π drops by about 90%, and the overall 

ΔEorb,σ+π drops by about 60%. 
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Table 4.3. EDA-NOCV results (using fragmentation 5b, Section 3.3) for the sixteen LS and HS 

[Fe(bppX)2]2+ complexes: all energies are reported in kcal/mol. Results are presented in order of 

increasing Hammett parameter (σp+). * values estimated in Subsection 4.3.7. 

 

X T1/2 σp+ State ΔEorb,σ+π ΔEorb,σ ΔEorb,π 

NMe2 HS -1.70 
LS -378.5 -323.2 -52.5 

HS -167.7 -142.1 -25.5 

NH2 HS -1.30 
LS -374.8 -324.6 -50.1 

HS -161.9 -135.8 -26.0 

OH 164 -0.92 
LS -374.6 -325.9 -48.4 

HS -168.9 -145.6 -23.3 

OMe 158 -0.78 
LS -376.1 -326.4 -49.6 

HS -156.3 -130.9 -25.3 

SMe 194 -0.60 
LS -378.5 -326.1 -52.4 

HS -165.9 -141.7 -24.1 

Me 216 -0.31 
LS -376.2 -327.7 -48.2 

HS -170.6 -147.4 -23.1 

F 215 -0.31 
LS -374.4 -326.7 -48.5 

HS -169.2 -142.4 -26.7 

SH 246 -0.03 
LS -378.6 -327.6 -51.0 

HS -170.2 -145.9 -24.3 

H 248 0.00 
LS -376.0 -328.7 -47.3 

HS -168.9 -142.3 -26.6 

Cl 226 +0.11 
LS -376.9 -327.9 -49.0 

HS -169.1 -145.7 -23.3 

I 236 +0.14 
LS 378.9 -328.5 -50.4 

HS -169.7 -142.8 -26.8 

Br 234 +0.15 
LS -377.6 -327.9 -49.6 

HS -169.7 -142.9 -26.8 

CO2H 281 +0.42 
LS -379.7 -331.1 -48.5 

HS -171.7 -148.3 -23.3 

NO2 309 +0.79 
LS -379.7 -331.8 -48.78 

HS -171.5 -147.7 -23.7 

SOMe* 284 +0.26* 
LS -375.8 -328.5 -49.7 

HS -165.2 -142.5 -22.6 

SO2Me* 294 +0.60* 
LS -378.2 -330.3 -47.8 

HS -170.1 -147.7 -22.9 
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4.3.5. Correlations of NOCV Results 
with T1/2, σp

+, δN and ΔO  

NOCV Results vs T1/2 

Deeth, Halcrow et al.23 reported that as the Hammett constant σp+(X) 

increases, so too does the experimental T1/2 for the solution SCO of 

[Fe(bppX)2]2+. Herein, EDA-NOCV analysis reveals that the increase of the 

switching temperature is in extremely good correlation with ΔEorb,σ for LS 

[Fe(bppX)2]2+ (Figure 4.7, red line, R2 = 0.82 and Figure A4.8). On the other 

hand, T1/2 does not correlate with ΔEorb,π (R2 = 0.09 Figure A4.9), and only 

very weakly correlates with ΔEorb,σ+π (R2 = 0.48 Figure A4.10). However, it 

should be recalled (see above) that ΔEorb,σ provides 85% of the overall 

bonding stabilisation (ΔEorb,σ+π). 

 
Figure 4.7. Three strong pairwise correlations (blue, red and green lines), and a cross-correlation 

(black dots; grey arrow is only a guide to the eye) between the ligand donation properties (ΔEorb,σ; 

calculated by EDA-NOCV for the LS complexes using fragmentation 5b), the Hammett constant 

σp+(X), and the switching temperature (T1/2) for the twelve SCO-active complexes for which σp+(X) 

is known in this family of [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me, NH2, NMe2 are absent, as 

σp+(X) is not known for the first two, and the last two remain HS).  
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In contrast, for the HS [Fe(bppX)2]2+ complexes none of the ΔEorb,i terms (i = 

σ, π, σ+π) shows promising correlations with the T1/2 values: ΔEorb,σ (R2 = 

0.36, Figure A4.17), ΔEorb,π (R2 = 0.07, Figure A4.18) and ΔEorb,σ+π (R2 = 0.31, 

Figure A4.19). 

This is consistent with the LS state being the key spin state where it 

is possible to observe the electronic effect of X on the bonding properties of 

the [Fe(bppX)2]2+ complex through the correlations of ΔEorb,σ versus T1/2 

(Figure 4.7, red line, R2 = 0.82) and ΔEorb,σ versus σp+ (Figure 4.7, blue line, R2 

= 0.88) and T1/2 versus σp+ (Figure 4.7, green line, R2 = 0.92).23 The cross-

correlations reported in Figure 4.7 explain from a molecular to macroscopic 

level the effect that the X substituent has on the [Fe(bppX)2]2+ complex. The 

finding that only ΔEorb,σ, not ΔEorb,π, correlates with T1/2 is not consistent with 

the hypothesis by Deeth, Halcrow et al.23 that M→L π-backbonding 

dominates the tuning by X. This key issue is discussed further in the 

following pages, and is resolved in Subsection 4.3.6. 

These results for the [Fe(bppX)2]2+ complexes did not lead to the same 

conclusions as those observed in Chapter Three for the [Fe(Lazine)2(NCBH3)2]2+ 

family where a strong correlation was observed for ΔEorb,σ+π vs. T1/2 (R2 = 0.99, 

Figure 3.7, Subsection 3.4.3) and weakly for ΔEorb,σ vs. T1/2 (R2 = 0.76), ΔEorb,π 

vs. T1/2 (R2 = 0.88). However, a comparison of the EDA-NOCV results 

between the [Fe(bppX)2]2+ and the [Fe(Lazine)2(NCBH3)2]2+ families might be 

too early, as they are the only two SCO families studied using the EDA-

NOCV model to date. Indeed, they are very different families (as also 

discussed in the previous analysis in Subsection 4.3.3) and the ‘tuning’ 

operating within each family (X substituent vs. CH/N replacement) is quite 

different. Such results also indicate that EDA-NOCV analysis works much 

better when the number of unpaired electrons is limited. 

In these regards, some general indications to EDA-NOCV analysis 

approach can be derived. Indeed, comparing the results obtained for the 

SCO families under study emerges that the LS [Fe(bppX)2]2+ spin states 

show a much better correlation vs T1/2. This can be related to smaller 
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variations of the electronic and entropic terms expected for LS [Fe(bppX)2]2+ 

state than for HS [Fe(bppX)2]2+ along the series. This explains the reason 

why EDA-NOCV analysis, not completely recovering such contributions if 

not indirectly, shows these limits more evidently for the HS state than for 

the LS [Fe(bppX)2]2+. 

NOCV Results vs σp
+(X) 

For the LS [Fe(bppX)2]2+ family, when the Hammett constant σp+(X) changes 

from EDG (X = NMe2) to EWG (X = NO2), a strong correlation is observed 

with ΔEorb,σ (R2 = 0.88, Figure 4.8a), a weak correlation is observed with 

ΔEorb,π (see Table A4.5 for detail; R2 = 0.31, Figure 4.8b), and a poor 

correlation is observed with the overall ΔEorb,σ+π (R2 = 0.43, Figure 4.8c). No 

correlations are observed for the HS [Fe(bppX)2]2+ complexes: σp+ vs ΔEorb,σ 

(R2 = 0.30, Figure A4.14); ΔEorb,π (R2 = 0.01, Figure A4.15); ΔEorb,σ+π (R2 = 0.34, 

Figure A4.16).  

Compared to the previous studies23 the effects of X on π-

backdonation (ΔEorb,π) in this LS [Fe(bppX)2]2+ family are less linear and 

predictable than for the σ-donation, ΔEorb,σ. ΔEorb,π shows a weak and 

opposite trend with the Hammett constant σp+(X). This result was 

unexpected, as Deeth, Halcrow et al. in 201723 had proposed an intuitively 

reasonable explanation of the effect of the X substituents, that effect of X 

primarily operates on the M→L π-backdonation. Hence a ΔEorb, π vs σp+ and 

T1/2 correlation had been expected, but not observed. It is important to note 

that this divergence is not linked with the employed level of theory, as both 

studies employed the same DFT theory. Their conclusions were obtained 

by the analysis of the MO energy levels of the [Fe(bppX)2]2+ complexes, the 

σp+ values and the observed T1/2. In this study, the conclusions are based on 

the variation in the M-L bonding quantified by the EDA-NOCV analysis 

(i.e., the σ- and π- stabilising energies that results from the M-L bond 

engagement). 
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Herein, as X varied EDG→EWG (-1.70 → +0.79) a quantitative ΔΔEorb,σ 

stabilisation of about 5 kcal/mol is observed, along with a qualitative ΔΔEorb,π 

destabilisation of about 1.5 kcal/mol (Tables 4.3, A4.6-A4.7). Not 

surprisingly, the σ-donor properties again dominate the π-acceptor 

properties, with the latter playing only a secondary role in the ligand field 

tuning operated by the X substituent. 

 

 
Figure 4.8. (a) Correlation of σp+ Hammett parameter with (a) ΔEorb,σ (R2 = 0.91); (b) ΔEorb, π (R2 = 

0.31) and (c) ΔEorb,σ+π (R2 = 0.43) for the family of fourteen bppX ligands (X = SOMe, SO2Me are 

absent as σp+ is not available from literature). 
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These different interpretations of the basis of the effect of X are obtained by 

theoretical analysis of two different molecular properties (MO energy vs 

bond strength), between which there is no established correlation, i.e., it is 

not known yet how increasing bond strength (ΔEorb,σ, ΔEorb,π or ΔEorb,σ+π) 

affects the energy of the [Fe(bppX)2]2+ MOs or vice versa. 

Therefore, even if the conclusions by Deeth, Halcrow et al. versus 

those reported herein appear divergent, the full picture is not yet fully 

understood and both perspectives should be kept open in order to further 

evaluate how the X substituent truly operates on the ligand and hence the 

complex electronic structure. In a further probe of the effect of X on the M-

L bonding in this [Fe(bppX)2]2+ family, a Mulliken charge analysis was 

performed, with illuminating results, which are described below 

(Subsection 4.3.6). 

NOCV Results vs δNA 

Finally, correlations of NOCV results with another parameter, the δNA 

chemical shift of the free bppX ligand (as reported by Brooker et al. in 201783) 

not yet explicitly discussed in this study, are discussed next. 

 

 

Figure 4.9. Strong correlation (R2 = 0.95) of ΔEorb,σ with δNA in the family of sixteen LS Fe(bppX)22+ 

complexes. 
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For LS [Fe(bppX)2]2+, δNA shows an extremely good correlation only against 

ΔEorb,σ (R2 = 0.95 Figures 4.9 and A4.11); and a weak correlation against 

ΔEorb,π (R2 = 0.39 Figure A4.12) or ΔEorb,σ+π (R2 = 0.23 Figure A4.13).83 This 

mirrors the findings that above, only ΔEorb,σ correlated strongly with the 

observed solution T1/2. 

For HS [Fe(bppX)2]2+, no correlations are observed for δNA vs. any 

ΔEorb,i (i=σ; π; σ+π) term: ΔEorb,σ (R2 = 0.35, Figures A4.20), ΔEorb,π (R2 = 0.04, 

Figures A4.21) and ΔEorb,σ+π (R2 = 0.30, Figures A4.22).  

In summary, the calculation of the nitrogen chemical shift δNA of the 

ligand is confirmed again to be an easy and quick way to estimate the 

strength of the ligand field applied when the ligand coordinates the metal 

ion.83 

4.3.6. EDA-NOCV results explained by 
Mulliken charges 

The EDA-NOCV results just reported (Subsections 4.3.3-4.3.4), project a 

different interpretation of the experimental results than that proposed by 

Deeth, Halcrow et al. in 2017.23 They concluded that X changing 

EDG→EWG caused increasing in M→L π-backdonation, and hence 

increasing the ligand field splitting (ΔO) and the observed solution T1/2 

values. In contrast, the above EDA-NOCV analysis indicates, rather 

counter-intuitively at first glance, that as EDG→EWG the main effect is an 

increase in the ML σ-donation and hence increasing the ligand field 

splitting and the observed solution T1/2 values (Figure 4.10). 

In order to try to understand how X changing EDG→EWG could 

increase the ability of the N-donor to act as a stronger σ-donor to Fe(II), 

here the changes in the population of the coordinating nitrogen (NA) 

valence orbitals when the X substituent changes from EDG (NMe2, σp+ = -

1.70) to EWG (NO2, σp+ = +0.79) are probed. This analysis is performed by 

looking at the Mulliken charges. 
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Figure 4.10. Simplified representation of the atomic orbitals of Fe(II) and the coordinating NA 

nitrogen in the Fe-N bonding for described Mulliken population analysis. 

This is one of the most common – even if not the most accurate – methods 

to evaluate the atomic charges in any DFT calculation. This investigation 

was performed on the geometry optimised free ligands, using the same 

basis set employed for the related iron(II) complexes. The population of the 

individual valence orbitals on NA can uncover information otherwise lost 

when attention is focussed on the overall electron density, as is case when 

looking at the overall atomic charge (ρ(NA))22 or at 15N-NMR chemical shift 

(δNA).83 Mulliken charges were calculated for each valence orbital on the 

NA-donor atom. The coordinating N atom is sp2 hybridised (Figure 4.10) 

and the spare p orbital (pπ), perpendicular to the sp2 orbitals, is involved in 

the pyridine aromatic π-system (and in the π-backdonation in 

[FeII(bppX)2]2+). Two out of the three hybrid sp2 orbitals (sp2(py)) are involved 

in C-N σ-bonds within the ligand backbone and the last sp2 orbital (sp2(Fe)) 

is responsible for the Fe-N σ-bond (Figures 4.10-4.11).  

Firstly – not surprisingly – σp+ vs. NA(sp2(py)) shows low correlation 

(R2 = 0.27, Figure 4.11a) and that X has an almost negligible substituent 

effect on the NA(sp2(py)) orbital (Δe- = -0.001, NMe2 → NO2). Secondly, as 

expected, the Hammett parameter σp+ correlates extremely well with NA(pπ) 

(R2 = 0.90, Figure 4.11b): from EDG to EWG substituents, the NA(pπ) 

population decreases, as expected due to the increasing electron 

withdrawing properties of para-substituted X (Δe- = +0.08, NMe2 → NO2). 

Thirdly, and most interestingly, the Hammett parameter σp+ vs. NA(sp2(Fe)) 

also correlated (R2 = 0.79, Figure 4.11c) but with the opposite trend to that 

seen for NA(pπ) (Δe- = -0.03, NMe2 → NO2). 
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Figure 4.11. Representation of the NA(AOs) of the pyridyl ring in the referenced [Fe(bppH)2]2+ 

complex (centre) and at the substituted ligands at the ending of the Hammett scale 

([Fe(bppNMe2)2]2+, σp+ = -1.70 (top); [Fe(bppNO2)2]2+, σp+ = +0.79 (bottom)). Arrows describe 

directionality of the resonance effects: toward the NA for [Fe(bppNMe2)2]2+ and away from the NA for 

[Fe(bppNO2)2]2+ and the complementary effects on the p⊥(NA): enriching for p⊥(N) in 

[Fe(bppNMe2)2]2+ and impoverishing for p⊥(N) in [Fe(bppNO2)2]2+. 

Therefore, whilst the NA(pπ) population is decreased as the X substituent 

becomes more EWG, the NA(sp2(Fe)) population is increased. The spatial 

orthogonality of the two orbitals. This charge enrichment in NA(sp2(Fe)) 

increases the ligand field strength of the Fe-N σ-bonding and hence T1/2 is 

also increased – in alignment with interpretation from crystal field theory 

first principles (Figure 4.12). In previous studies it was observed that δNA 

is intimately connected with T1/2 ref83 and σp+ (Chapter Two).  
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Figure 4.12. (a) Correlation of σp+ Hammett parameter with (a) NA(pπ) (R2 = 0.91); (b) 

NA(sp2(Fe))(R2 = 0.79) and (c) NA(sp2(py)) (R2 = 0.02) for the family of fourteen bppX 

ligands (X = SOMe, SO2Me are absent as σp+ is not available from literature). 

 

Hence herein, possible relationships of δNA(bppX) with the Mulliken 

population analysis results are probed. A strong increasing trend of δNA 

with decreasing NA(pπ) (R2 = 0.99) contrasts with a strong increasing trend 

of δNA with increasing NA(sp2(Fe)) (R2 = 0.93) are observed. No correlation 

(R2 = 0.01) is observed between δNA and NA(sp2(py)) (Figure 4.13). 
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Figure 4.13. (a) Correlation of the 15NA chemical shift with (a) NA(pπ) (R2 = 0. 99); (b) 

NA(sp2(Fe))(R2 = 0. 93) and (c) NA(sp2(y)) (R2 = 0. 0002) for the family of fourteen bppX ligands (X 

= SOMe, SO2Me are absent as σp+ is not available from literature). 
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4.3.7. Predicted σp
+ Parameter for X = 

SOMe, SO2Me 

The set of seven correlations identified in this study enabled prediction of 

the Hammett parameter σp+ for the two X substituents for which the values 

are not available in literature (X = SOMe and X = SO2Me).  

To do so, the seven observed correlations (Equations 4.1-4.7) are involved 

at micro- or macroscopic level with the effect of X on the properties of the 

sixteen [Fe(bppX)2]2+ complexes studies (Table 4.4) were used to calculate 

the missing values of σp+(X) (Table A4.9). This gives the calculated values 

for X = SOMe and X = SO2Me as, respectively, 0.26±0.16 and 0.60±0.08 

(Table 4.4). 

 

 

Table 4.4. Predicted values of σp+ for the two X substituents for which this value is not reported in 

literature, using the correlations identified in this study with the best correlation factor, followed 

by the weighted average value highlighted in yellow (average without the pink value is in brackets). 

vs. σp+ 

 X = SOMe X = SO2Me R2 

NA(pπ) 0.23 0.64 0.99 

Δo(AILFT) 0.29 0.67 0.93 

NA(sp2(Fe)) 0.23 0.48 0.93 

δ(15N-NMR) 0.27 0.58 0.92 

T1/2 0.58 0.70 0.92 

ΔEelstat 0.19 0.65 0.89 

ΔEorb,σ 0.01 0.50 0.88 

<σp+> 0.26 0.60 - 
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Δo = 0.061·σp+ - 2.41 (4.1) 

NA(pπ) = -0.02·σp+ + 6.32 (4.2) 

δN = 16.56·σp+ + 215.06 (4.3) 

T1/2 = 0.011·σp+ - 2.57 (4.4) 

ΔEelstat = 17.12·σp+ - 386.60 (4.5) 

ΔEorb,σ = -3.10·σp+ - 328.39 (4.6) 

NA(p⊥) = 0.009·σp+ + 1.44 (4.7) 
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4.4. Conclusion 

Inspired by the 2017 study of Deeth, Halcrow et al.,23 the effect of the para-

substituent X on the electronic structure of sixteen solution SCO active 

[Fe(bppX)2]2+ complexes was investigated in more depth, employing 

different levels of theory (including AILFT, EDA-NOCV and Mulliken 

charges). The ΔO(AILFT) analysis shows extremely good correlation of ΔO 

with the σp+(X) (R2 = 0.93) and the experimental T1/2 (R2 = 0.78). But 

analogous of the Lazine family reveals that AILFT cannot uniquely connect 

the T1/2 with the actual ligand field strength imposed on a metal ion by any 

ligand family. 

The EDA-NOCV results revealed a strong correlation between the σ-

donor strength (ΔEorb,σ) of the bppX ligand with σp+(X) (R2 = 0.88), the 

measured T1/2([Fe(bppX)2]2+) (R2 = 0.82), the 15N NMR chemical shift 

(δNA(bppX), R2 = 0.95). Results obtained by correlating the EDA-NOCV 

analysis, the LS [Fe(bppX)2]2+ showed that an incredibly better agreement 

with experimental observable than the HS [Fe(bppX)2]2+. This result can be 

explained with the smaller entropic contributions (electronic and 

geometrical) present in LS [Fe(bppX)2]2+ that the EDA-NOCV can include 

only indirectly. A more in-depth investigation of this link between the 

computed σ-donor strength (ΔEorb,σ) of the bppX ligand with all the 

mentioned experimental evidences was performed through the analysis of 

the Mulliken charges for the NA valence orbitals. From EDG to EWG 

substituents, the analysis of the Mulliken charges showed that at the 

portion of pπ-electron in the NA(pπ) orbital decreases (as delocalised in the 

ligand π-system towards the X substituent), whilst the electron occupation 

in the Nitrogen lone pair, NA(p(Fe)) and orthogonal to the NA(pπ), increases. 

This effect enhances the reach out of the NA when the bppX ligand 

coordinates the iron(II) ion in the relative [Fe(bppX)2]2+ complex. 

Finally, this study led to the estimation of the value of σp+ for two X 

substituents: SOMe (0.26) and SO2Me (0.60), not available in literature.  
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4.5. Computational Protocol 

Calculations were performed using ORCA 4.1258 and ADF (version 

2018.106) code.269 The ORCA code was used to optimise the structure of 

sixteen of the [Fe(bppX)2]2+ complexes (in both HS and LS states); the 

absence of negative eigenvalues for the Hessian matrix confirmed the all 

computed geometries are in real minima. 

Firstly, using the atomic coordinates of the sixteen LS and sixteen HS 

[FeII(bppX)2]2+ complexes available from the DFT study at RI-BP86-

D3(BJ)/def2-SVP/J+COSMO(acetone) level of theory in the paper by Deeth, 

Halcrow et al.,23 a geometry re-optimisation was performed using different 

RI-BP86-D3(BJ)/def2-TZVPP+CPCM(acetone) level of theory:259-267 i.e. RI = 

resolution of identity266-267 with a BP86 functional,263-264 with D3 dispersion 

correction (including BJ damping),259-260 def2-TZVPP basis set,261 and the 

solvent modelled by CPCM.265 The same was done for the sixteen free bppX 

ligands. The optimised geometries were then used for two different kinds 

of studies. 

Secondly, the optimised structures were used for Ab-initio Ligand 

Field Theory (AILFT) analysis (details in Subsection 1.6.1),145 as 

implemented in ORCA 4.1, computed at the NEVPT2 level of theory with 

def2-SV(P)/BP86/def2-TZVPP, and utilising auxiliary basis sets for the RI 

approximation. The active space for the underlying State-Averaged 

Complete Active Space Self-consistent Field (SA-CASSCF).144 The 

methodology employed in this study proceed with displacing the six d-

electrons over the five MOs with pronounced d-shape. All the possible 

rearrangements, until maximum spin multiplicity of quintet (singlet, triplet 

and quintet), were screened; through this procedure, various ΔO 

(ΔO(singlet), ΔO(triplet), ΔO(quintet)) are so calculated and, therefore, they are 

weight-averaged to give the overall ΔO; this weight-averaging is calculated 

from the relative stability of each wavefunction (obtained for each spin 

state), vs. the ground state. To reduce the computational costs in the N-
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Electron Valence State Perturbation Theory (NEVPT) procedure, 149-152 the 

Domain-based Local Pair Natural Orbital (DLPNO)282 treatment was 

employed. AILFT analysis in employed on the sixteen final structures of LS 

[Fe(bppX)2]2+ complexes and on the five optimised structures of the five LS 

[FeII(Lazine)2(NCBH3)2] complexes (from studies in Chapter Three).  

Thirdly, the optimised structures were used for the EDA-NOCV183-184 

method combines classical EDA,175, 185 with NOCV,186-187 which were 

performed using the ADF program package at the BP86-D3(BJ)/TZ2P level 

of theory. 268-269 It should be noted that neither the AILFT nor the EDA-

NOCV models are implemented including any solvation modelling 

included (i.e., CPCM). Detailed description of the EDA-NOCV model is 

reported in Subsection 1.6.6. 
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The contents of this chapter are at an advanced stage of preparation for 

submission to Journal of the American Chemical Society as: ‘Accurate 

Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin 

Crossover by Ab Initio Methods: The [CoII(dpzca)2] Case’. All of the 

calculations were performed by me. The manuscript and supporting 

information were entirely drafted by me.  
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5.1. Abstract 

The spin crossover (SCO) phenomenon is among the most complicated 

second-order transitions to be modelled from first principles. Some ad hoc 

strategies have been successful for modelling solution SCO, but this is rare for 

solid state SCO because of the added complexity coming from (a) interacting 

molecules and (b) packing effects. In this study, the solid state SCO transition 

of solvent-free crystalline [CoII(dpzca)2] is modelled through the calculation of 

the transition temperature (T1/2) under a range of different physical conditions. 

This candidate complex undergoes both thermal and pressure-activated SCO 

(quoted T1/2 values obtained at γHS = 0.5): from pressures of 1 to 2100 bar, the 

SCO is mostly abrupt (gradual:abrupt = 20:80; 173 K < T1/2 < 189 K); from 2500 

bar a progressively increasing fraction of gradual-SCO replaces the last part of 

the abrupt transition (gradual:abrupt = 60:40; T1/2 = 202 K); at 4300 bar, the 

conversion to gradual SCO is almost complete (gradual:abrupt = 80:20; T1/2 = 235 

K). In the first part of this study, a computational protocol was established that 

reproduces the experimental properties of crystalline high spin (HS) and low 

spin (LS) [CoII(dpzca)2] at the pressure of 1 bar. Then, this protocol was trailed 

at six different pressures, up to 4300 bar, and it accurately reproduced the 

available crystallographic data (HS [1 bar]; LS [1 bar and 4300 bar]) and the 

electronic structure (density of states; DOS). Extremely good predictions of T1/2 

were obtained, with deviations from the observed values of less than 10 K, up 

to a pressure of 2100 bar, i.e. whilst crystalline [CoII(dpzca)2] undergoes mostly 

an abrupt SCO transition. Above 2500 bar, when the abrupt part of the SCO 

transition becomes increasingly gradual, the divergence between the 

experimental data and theoretical predictions increases. Considering the 

numerous degrees of freedom involved in ab initio SCO modelling, the results 

obtained for [CoII(dpzca)2] at pressures up to 2500 bar are very encouraging. 

The observed divergence for p > 2500 bar is likely due to a crystal transition or 

phase change of the HS [CoII(dpzca)2] unit cell, as the only available 

crystallographic data in this pressure range (LS [CoII(dpzca)2] at 4300 bar) are 

in excellent agreement with the computed ones 
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5.2. Introduction 

When transition metal ions with d4 to d7 electronic configurations are 

coordinated in (pseudo-) octahedral environments they can adopt either 

the High Spin (HS) or Low Spin (LS) state, based on the strength of the 

coordinating ligands. When these two spin states are both 

thermodynamically accessible (Chapter One), these metal complexes can 

undergo a Spin Crossover (SCO) transition. Such complexes are of 

particular interest, as sensors for monitoring physical/chemical 

environmental changes (i.e., temperature or pressure),10, 53, 69-70 as active 

components for spintronics and molecule-based data storage devices,283-286 

and in innovative devices profiting from additional features obtained by 

combining SCO with other functionalities.203, 287 The SCO transition can be 

described from this thermodynamic perspective, by looking at the enthalpy 

(ΔH) and entropy (ΔS) terms which are involved in the spin state switch. 

The enthalpic gap between the HS and the LS states favours the LS state 

(ΔHHS-LS > 0), but as the temperature increases, this is progressively 

overcome by the entropy difference (ΔSHS-LS > 0) which drives the spin-state 

switching and gradually populates the entropically favoured HS state. For 

a complete one step LS → HS thermal SCO, the transition temperature (T1/2) 

is defined as the temperature where the condition ΔHHS-LS = T1/2ΔSHS-LS is 

respected, and corresponds to a fraction HS, γHS, of 0.5 (Subsection 1.2.2). 

In solution, the modelling of the spin switching, where molecules 

are surrounded by solvent molecules and cooperative effects between the 

metal ions are inhibited, has been already attempted. Despite the more 

limited number of degrees of freedom, with respect to the solid state, 

successful examples of predictivity are still limited.164, 170, 173 In solid state 

SCO, packing effects are crucial for modelling a spin state transition. 

Within the term ‘packing effects’ are many factors, the unit cell symmetry, 

the number of molecules, the presence of counterions or solvent molecules 

and, hence, all of the intermolecular interactions between the SCO centre and 
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its surroundings, mediated by H-bonds,79, 102-103 π-π stacking109 and 

dipolar/VdW dispersion forces.79, 110 Therefore, in order to reproduce the 

T1/2 within an error of few Kelvins, it is mandatory to have a protocol that 

is able to accurately reproduce (i) the electronic structure of the SCO 

complex itself; (ii) the intra- and intermolecular interactions (iii) in the case 

of pressure-induced SCO, the variation of the unit cell parameters for both 

the LS and HS states. 

A computational protocol able to satisfy these demands and, hence, 

reliably predict the thermal and pressure-activated SCO behaviour across 

a range of temperatures, would represent a step change in the field, as it 

would provide a useful pre-synthetic screening step. Literature studies 

report the use of a range of theoretical models in attempts to rationalise 

various aspects of the SCO phenomenon.288-294 A key focus of those studies 

was on screening functionals to identify the one best candidate able to 

accurately reproduce the ΔHel,HS-LS gap (previously also called ΔEHL in 

Chapter One, the electronic enthalpy change between the two spin states, 

Figure 1.2).143, 159, 295 

In just a few cases, first principles calculations were employed to 

calculate the thermodynamic contributions ΔHvib,HS-LS, ΔSvib,HS-LS, ΔHel,HS-LS 

and ΔSel,HS-LS which are associated with the SCO phenomenon for isolated 

molecules (Section 1.6).164, 170 A remarkable study was published in 2012 

when Cirera and Paesani164 modelled the SCO transition using a 

Boltzmann-like transition after screening several DFT functionals 

(Subsection 1.6.3). The employed approach enabled qualitative reproduction 

of the experimental data, but with a considerable error for the best fit vs 

experimental T1/2 values (ΔT1/2 ≅ 50-100 K).  
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Figure 5.1. Unit cells of 1cryst,LS,1bar,90K (90 K, top, P21/c) and 1cryst,HS (298 K, bottom, I41/a) 

[CoII(dpzca)2] obtained from single X-ray structure determination at ambient pressure by some of 

us in 2012;104 we subsequently reported single X-ray structure determinations under a range of 

pressures at 293 K in 2015, including 1cryst,LS,4300bar,293K.19 

In the solid state, to our knowledge, the accurate estimation of T1/2 via 

periodic ab initio methods, for any class of compounds, or for a single 

system at different pressures, has never been achieved. It is worth noting 

that in performing fully periodic calculations, cooperative effects are 

intrinsically added to a certain extent by allowing other than gradual 

(following simple Boltzmann distribution law) transitions, i.e. abrupt ones, 

too. Transitions with hysteresis can, at the moment, only be added in a 

further step with ad hoc parameterization as reported by Slichter (1972)216 

and Sorai (1974).296 These are explicitly not considered in the present study, 

as neither method can supply general results that can be extended to other 

systems. 
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With the aim of tackling this challenge, as a first step to a more general 

picture, the thermal and pressure-activated SCO complex, [CoII(dpzca)2], 

1cryst (LS, S = 1/2 to HS, S = 3/2 per molecule; LS, S = 2 to HS, S = 6 per unit 

cell), is used as a test system for developing this computational protocol 

(Figure 5.1, Section 1.5).19, 104  

 

 

Figure 5.2. (left) Two different representations of the 3D temperature and pressure dependence of 

the HS fraction (γHS) during the SCO in 1cryst, as monitored by magnetic measurements. Note that 

the colours on the cut-through (left wall) are only guides for the eyes. (right) Projection of the 

surface shown in the left panel. The tight bunching of contour lines denoting γHS (colour scale 

similar to that used for the left image) corresponds to the abrupt structural phase transition from 

P21/c to I41/a due to phase-change at low pressures (p < 0.20 GPa).19, 104 1 bar = 10-4 Pa. Figure 

reproduced with modifications from ref.19 

Solvent-free 1cryst is a neutral Co(II) complex, coordinated by two tridentate 

anionic imide ligands, with no counter ion or solvent inclusion in the 

crystalline lattice. Variable temperature (VT) and variable pressure (VP) 

magnetic measurements of 1cryst are shown in Figure 5.2. All of the 

experimental and theoretical T1/2 values in this paper correspond to the 

temperature where γHS, the fraction of 1cryst in the high spin state, is 0.5 

(Figure 5.2).19 

At ambient pressure (p = 1 bar), 1cryst,1bar shows mostly abrupt SCO 

with T1/2 = 173 K and a small thermal hysteresis (Figure 1.31).104 When the 
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pressure is increased up to 4300 bar, the T1/2 increases to 235 K and the 

composition of the transition curve changes: the mostly abrupt shape gets 

replaced by a progressively more gradual transition. The gradual:abrupt SCO 

ratio increases from 20:80 at 1 bar to 60:40 at 2500 bar then to 80:20 at 4300 

bar (Section 1.6, Figure 5.2, Figure 1.31). The SCO transition was also 

monitored through Raman spectroscopy at room temperature, at the range 

of pressures from 1 to 5700 bar (Figure 1.31).104 

For 1cryst,LS, crystallographic data are available at both T = 90 K, p = 1 

bar (1cryst,LS,1bar,90K),19 and T = 293 K, p = 4300 bar (1cryst,LS,4300bar,293K).104 At both 

pressures (1 bar, 4300 bar), the unit cell includes four molecules of 1cryst,LS 

(one complex per asymmetric unit, Z = 4, P21/c; Figure 5.1, Table 1.1). These 

crystallographic results are of great importance since it is experimental 

confirmation that the space group for the 1cryst,LS species does not undergo 

any further change as the pressure changes from 1 to 4300 bar. This is not 

true for 1cryst,HS. Indeed, crystallographic data were collected uniquely at the 

pressure of 1 bar and 298 K (1cryst,HS,1bar,298K). 19 As for 1cryst,LS, four molecules 

are included in the unit cell of 1cryst,HS (¼ of the complex per asymmetric 

unit, Z = 16, I41/a; Figure 5.1, Table 1.1).19 For the pressure of 4300 bar, the 

full population of 1cryst,HS (γHS = 1.0) is only expected to be reached above 320 

K (Figure 5.2).104 

Collecting crystallographic data under such conditions is extremely 

challenging: (a) the quality of crystallographic data decreases at high 

temperatures due to increase in the molecular vibrations and (b) the use of 

anvil cells (required for XRD at high pressures) dramatically reduces the 

number of collectable reflections and makes temperature control 

challenging (hence  pressure XRD is usually performed at ambient 

temperature, as in the present case).19, 104 Hence, no structural experimental 

evidence is available to show whether or not 1cryst,HS preserves the same I41/a 

crystalline phase across all of the studied pressure range. The possible 

occurrence of a phase change as the pressure is increased would be far from 

being uncommon, since there are several cases in literature of solid state 
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SCO where one of the two spin states go through a crystallographic phase 

change a higher pressures or temperatures.297-304 The Raman spectra, 

performed on 1cryst along all the pressure series (see later),104 also fail to 

provide clarity on this issue. So we are left blind with respect to reliable 

monitoring of the structural evolution, and any possible phase transition, 

of 1cryst,HS as a function of the applied pressure.  

The aim of the present study is to establish a computational protocol 

grounded in, and tuned by, the structural and magnetic experimental data 

available for 1cryst,1bar, which can accurately predict T1/2 values up to the 

pressure of 4300 bar. To do so, the fully periodic DFT+U305 approach 

(Subsection 1.6.4) was employed for the determination of all of the structural 

and energetic degrees of freedom of the 1cryst systems, leading to a clean and 

homogeneous computational protocol that can largely recover the 

molecule-molecule and molecule-lattice interactions needed for an 

accurate description of the SCO transition (Section 5.6). 
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5.3. Methodology: Modelling a 
SCO Transition 

Each unit cell of 1cryst includes four molecules: therefore, for 1cryst,LS,  a spin 

S = 2 (S = 1/2 · 4 [Co(dpzca)2] molecules)  was set while S = 6 for 1cryst,HS (S = 

3/2 · 4 [Co(dpzca)2] molecules); i.e., all of the results below are presented 

per unit cell. Intermediate spins deriving from the flip of a single for 

molecule were not considered since it would have increased considerably 

the number of calculations and, above all, because we are focused on the 

straight value of T1/2 for which only S = 2 and S = 6 states are sufficient. A 

thermally-driven spin transition can be rationalised as the overcoming of 

the enthalpy of the LS state (ΔHHS-LS > 0) by the entropy contribution of the 

HS state as the temperature increases (ΔSHS-LS > 0). When the SCO reaches 

T1/2, γLS = γHS = 0.5 and the ΔGHS-LS (ΔGHS-LS = GHS - GLS = ΔHHS-LS - TΔSHS-LS) 

becomes equal to zero; therefore, T1/2 can be obtained as: 

𝑇1/2 =  
ΔH𝐻𝑆−𝐿𝑆 (𝑇1/2)

ΔS𝐻𝑆−𝐿𝑆 (𝑇1/2)
        (5.1) 

Δ𝐻𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(𝑇) =  Δ𝐻𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(𝑇) +  Δ𝐻𝑒𝑙,𝐻𝑆−𝐿𝑆 (5.2) 

Δ𝑆𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(𝑇) =  Δ𝑆𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(𝑇) +  Δ𝑆𝑒𝑙,𝐻𝑆−𝐿𝑆 (5.3) 

Where Hvib,HS-LS(T) and Svib,HS-LS(T) terms can be evaluated, for both spin 

states, from first principles if the vibrational normal modes of the system 

are available. In the approach herein proposed, vibrations were calculated 

at the Γ (gamma) point of the first Brillouin zone; therefore, only 3N-3 

values are obtained, with no phonon dispersions. In this regard, the 

frequencies of the acoustic modes were approximated as the lowest optical 

ones.306 In such a framework, it is possible to express the Hvib,HS-LS(T) and 
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Svib,HS-LS(T) as derivation from the partition function for a crystalline solid:307 

in detail, the calculated integral in the partition function is substituted by 

the sum over the vibrational degrees of freedom (Equations 5.4-5.5).166 

H𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(T) =  ∑ (
1

2
ℎ𝜈𝑖 +

ℎ𝜈𝑖 𝑒
−ℎ𝜈𝑖/𝑘𝑏𝑇

1 − 𝑒−ℎ𝜈𝑖/𝑘𝑏𝑇
)

𝑁𝑣𝑖𝑏

𝑖=1

 (5.4) 

S𝑣𝑖𝑏,𝐻𝑆−𝐿𝑆(T) =  ∑ (
ℎ𝜈𝑖

𝑇

1

𝑒−ℎ𝜈𝑖/𝑘𝑏𝑇 − 1
− 𝑘𝑏𝑇 𝑙𝑛(1 − 𝑒−ℎ𝜈𝑖/𝑘𝑏𝑇))

𝑁𝑣𝑖𝑏

𝑖=1

 (5.5) 

In Equation 5.6 is reported how the electronic entropy (Sel) was calculated. 

The Sel,HS-LS term depends by the number of allowed microstates whereby 

the unpaired electron can get access to. It is uniquely related to the spin 

multiplicity of the investigated system. 

S𝑒𝑙,𝐻𝑆−𝐿𝑆 =  𝑅 𝑙𝑛(2𝑆 + 1) (5.6) 

Finally, the electronic enthalpy term, ΔHel,HS-LS, accounts for the absolute 

energy difference between 1cryst,LS and 1cryst,HS. This term collects energetic 

contributions coming from the molecular structure, dispersion forces and 

periodic interactions between the [Co(dpzca)2] molecules in the 1cryst 

crystalline lattice. Such a term is highly dependent on the choice of the 

functional and it is accurately tuned by the employment of the Hubbard U 

term (Ueff). This strategy led to a preliminary step in which the Hubbard U 

term was finely tuned. Following the approach reported in ref308, the Ueff 

values have been tuned using experimental data of 1cryst,HS at the pressure 

of 1 bar. The tuned protocol was then applied at the other pressures (p = 

1800 bar, 2100 bar, 2500 bar, 2900 bar, 3900 bar, 4300 bar) where a procedure 

of cell optimisation was performed, in the hypothesis that both spin states 

do not go through crystallographic phase change.  
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5.4. Results and Discussion 

5.4.1. Fine Tuning of the Ueff term 

The prediction of the pressure-temperature induced SCO activity of 1cryst 

represents a real computational challenge since several different 

observables need to be reproduced within the same computational 

framework (structural and electronic properties, dispersion forces, periodic 

interactions). This means that the computational protocol must account for 

electronic correlation contributions, such as periodic packing effects, at the 

same time as a function of the applied pressure. Therefore, the only 

accessible strategy is the employment of a DFT+U theory, parameterized 

from the largest available experimental dataset rather than extracting the 

values from higher level post-HF calculations (Section 1.6). In such a 

framework, the calculation of T1/2 values at certain pressures requires the 

unit cell to be fully optimised along with the molecules within it. 

Such a step is far from trivial and it could be even more challenging 

in the absence of experimental structural data. It is worth noting that the 

robustness of this proposed computational protocol depends on the 

maintenance of the space group of the unit cell (a condition not proven for 

1cryst,HS), as a phase change is still an unresolved issue at the computational 

level, above all when molecular crystals are considered. The procedure to 

tune the Ueff term(s) consisted of several steps of trial and error in order to 

get the needed accuracy in reproducing observables such as molecular 

structure parameters, cell parameters and ΔHel,HS-LS of 1cryst,1bar. In this 

regard, a first guess was obtained by starting on a procedure of geometry 

optimisation, without tweaking the cell parameters. At the end of this 

procedure, when a Ueff = 2.35 eV was applied on the Co(d) orbitals, good 

agreement was reached between the molecular structures (RMSD, 

Equation A5.1; HS: 0.13 Å; LS: 0.10 Å) and the SCO T1/2 (th. 175 K vs exp. 171 
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K, Table A5.1, Figure A5.2). In a second step, the procedure of cell 

optimisation was undertaken, starting from the results obtained in the first 

step. Taking advantage of the previous Ueff tuning for Co(d), this procedure 

was able to be sped up. Unfortunately, extending the optimisation 

procedure not only to molecular structures but also to cell parameters, 

forced the application of different Ueff or the various atomic species (N, C, 

O, H) in both 1cryst,LS and 1cryst,HS (p = 1 bar) (Tables A5.2-A5.3). This showed 

that the N(p) had to be corrected to accurately reproduce the atomic 

positions and the unit cell parameters (a-b-c and α-β-γ) (Ueff(N(p)) = 3.00 

eV). Consequently, to this perturbation, the Ueff for Co(d) was reoptimized 

(Ueff(Co(d)) = 1.15 eV, Figure A5.3, Tables A5.4-A5.5) in order to produce a 

new and accurate representation of the T1/2 value.  

With the new set of Ueff values, the computed T1/2 is, therefore, 

strikingly reproduced with 171 K (T1/2(exp) = 171 K), and the following are 

also fulfilled: (i) the errors between calculated and measured cell 

parameters for 1cryst,1bar all fell below 4%: max error equals to 3.5% in 

1cryst,LS,1bar,90K and 2.7% in 1cryst,HS,1bar,293K; average error equals to 1.1% in 

1cryst,LS,1bar,90K (Table A5.5) and 1.3% in 1cryst,HS,1bar,293K (Table A5.5); (ii) the 

RMSD for the atomic coordinates (Equation A5.1) a very good agreement 

with the experimental crystallographic data (1cryst,HS: 0.23 Å; 1cryst,LS: 0.24 Å). 

It is worth mentioning that for this full range of Ueff(Co(d), ΔHel,HS-LS varies 

by about 2.20 eV. This small variation is more than enough to change the 

magnetic response of 1cryst,1bar: at Ueff(Co(d) > 1.75 eV 1cryst,1bar is HS at all 

temperatures and at Ueff(Co(d) < 0.50 eV 1cryst,1bar is LS at all temperatures 

(Figure A5.3). In between 0.50 eV and 1.75 eV 1cryst,1bar is SCO, with the T1/2 

tuned to higher temperatures as Ueff(Co(d)) drops. Ueff(Co(d)) = 1.15 eV gives 

T1/2 (calc.) = T1/2 (exp.) = 171 K (Figure A5.3, Table A5.4).  

The most striking result obtained in this “tuning” part of the 

computational setup, is the observation that the introduction of the 

functional corrections only on the cobalt ion (Ueff(Co(d)) is not sufficient to 

accurately reproduce the packing interactions. But, just by adding 
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functional corrections to the nitrogen atoms (Ueff(N(p)), a good agreement 

between all of the computed and experimental sets of data is achieved. 

Such a result also suggests that when post-HF calculations are used to 

calculate the ΔHel,HS-LS splitting, the inclusion of only the d metal orbitals for 

the Complete Active Space Self Consistent Field (CASSCF) calculation may 

result in oversimplification. 

 

Table 5.1. Unit cell parameters (a, b, c, α, β, γ, V) for 1cryst,LS (top section) and 1cryst,HS (bottom 

section) obtained experimentally at ambient pressure (exp data entries, in bold italics; LS at 90 K, 

1 bar and at 293 K, 4300 bar; HS at 298 K, 1 bar) or calculated after unit cell optimisation at a 

range of different pressures, p (bar), and the temperature of 0 K.  

LS Cell Parameters 

pressure a / Å b / Å c / Å α / ° β / ° γ / ° V / Å3 

LS 

exp 8.668 27.656 8.514 90.00 91.52 90.00 2040.277 

1 8.366 27.536 8.357 89.971 90.925 89.901 1925.081 

1800 8.328 27.473 8.334 90.156 90.945 89.727 1906.641 

2100 8.323 27.464 8.330 90.145 90.923 89.670 1903.710 

2500 8.322 27.442 8.321 90.153 90.852 89.579 1899.975 

2900 8.311 27.421 8.312 90.233 90.972 89.687 1893.814 

3900 8.329 27.137 8.309 88.025 89.908 82.939 1883.451 

4300 8.300 27.355 8.282 89.868 90.849 89.729 1879.991 

HS 

exp 8.795 8.795 27.918 90.00 90.00 90.00 2159.514 

1 8.556 8.555 27.342 89.979 90.065 89.969 2001.271 

1800 8.512 8.525 27.276 89.442 90.398 89.73 1978.911 

2100 8.509 8.525 27.224 89.404 90.526 89.778 1974.626 

2500 8.501 8.519 27.213 89.42 90.548 89.739 1970.445 

2900 8.605 8.355 27.253 88.731 91.379 91.076 1958.018 

3900 8.415 8.454 27.259 85.676 91.996 87.125 1956.776 

4300 8.294 8.389 27.489 85.868 94.868 87.671 1906.644 



5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods: 

The [CoII(dpzca)2] Case 

 

160 

 

Therefore, the inclusion of the contributions of MOs localised on the donor 

atoms of the coordinating ligands must be pursued to calculate the 

dynamic correlation through perturbative approaches (CASPT2, 

NEVPT2).144, 150-152 Indeed, SCO systems are characterised by a coordinative 

bond which is in large part covalent. This explains why the orbitals 

accounting for the first coordination sphere are so important to properly 

describe the electronic structure of the SCO complex 

5.4.2. Structural Distortions in 
[Co(dpzca)2] Unit Cell 

1cryst,LS is packed in the P21/c space group at conditions of p = 1 bar and T = 

90 K, as well as at p = 4300 bar at T = 293 K; whereas crystalline 1cryst,HS is 

packed in the I41/a space group at conditions of p = 1 bar and T = 298 K. On 

the basis of these data, it is reasonable to assume that the space group of 

the unit cell of the LS species does not undergo any change as the pressure 

changes. However, this cannot be said for 1cryst,HS, as the only experimental 

data available is at p = 1 bar. Hence, whilst conscious of the intrinsic limits, 

the geometries of crystalline 1cryst,LS and 1cryst,HS were calculated at the other 

six experimental pressures (from 1800 to 4300 bar, Table 5.1). 

 For 1cryst,LS, from p = 1 bar to p = 4300 bar no significant distortions in 

the unit cell are observed, but rather a gradual reduction of the cell volume 

of 45 Å3 (-2.3%, Table 5.1, Table A5.6) due to the shortening of the cell axes 

(about -4.6%, Table 5.1, Table A5.6). The crystallographic data collected at 

the pressure of 4300 bar are in very good agreement with the calculated 

ones, confirming the robustness of the protocol employed from p = 1 bar to 

p = 4300 bar (Table 5.1). The only exception is that, at the pressure of 3900 

bar, an out of trend distortion was obtained. This will be discussed shortly 

(Figure 5.3). For 1cryst,HS, the structural overview was more complicated: as 

the pressure increases (from 1 bar to 4300 bar), an overall shrinking of the 

calculated HS unit cell volume is observed, mostly due to cell angles tilting 
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(-2.1%; Table 5.1, Table A5.5). From the pressure of 2900 bar and above, a 

strong distortion involving the cell angles (α, β and γ) ultimately changes 

the tetragonal cell into a monoclinic one. This distortion of α, β, γ increases 

progressively: from [-1.2°, +1.4°, +1.1°] (2900 bar) to [-3.4°, +4.0°, -2.7°] (3900 

bar) until [-4.2°, +4.8°, -2.3°] (4300 bar) (Table 5.1). Such distortions lead to 

a much more intense shrinking of the cell HS unit volume, by 95 Å3 (-4.7%, 

from p = 1 bar to p = 4300 bar, Table 5.1, Table A5.6). An out of trend 

distortion is observed both for 1cryst,HS and 1cryst,LS at the pressure of 3900 bar 

(Figure 5.3).  All the computed unit cell parameters were correlated with 

the pressure and the experimental T1/2 values (Table A5.7, Figures A5.4-

A5.27). Only one parameter, c, significantly correlates with them (R2(p) = 

0.93, R2(T1/2(exp)) = 0.86, Table A5.7 and Figures A5.20-A5.21), while all the 

others present poor or very poor R2 values. For this reason, structural data 

cannot be used as an easy-to-hand tool to rationalise or predict the pressure 

induced SCO behaviour. 

 
Figure 5.3. Superimposed calculated unit cells at the seven different pressures for 1cryst,LS (top) and 

1cryst,HS (bottom), along with three of the sets of positions for the four CoII ions. For p = 3900 bar 

(0.39 GPa; 1 bar = 10-4 Pa) of external pressure an exceptional distortion is observed at the end of 

the cell optimization routine (this is also the only unit cell that does not closely overlay the other 

six unit cells); the stars highlight the positions of the four CoII ions in this case. 
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5.4.1. Pressure Effects on Molecular 
Structure of [Co(dpzca)2] 
Complexes 

The effects of the unit cell shrinking as the pressure increases were 

monitored by looking at the variation of several structural parameters. 

Firstly, the intermolecular distances of three Co(II)-Co(II) distances (Co1-

Co2, Co2-Co3, Co3-Co4) among the four [Co(dpzca)2] molecules included 

in the crystalline cell (Figure 5.4, Table A5.8-S9). A clear trend is evident for 

both spin states only for the d(Co2-Co3). In this case, a monotonic decrease 

of both the LS and HS distances is observed and, interestingly, a difference 

of ≃2.5 Å is consistently conserved on passing between 1cryst,LS and 1cryst,HS 

(Figure 5.4, middle) regardless of the pressure value. A shorter d(Co2-Co3) 

value for the 1cryst,HS can be explained by the larger volume of the 

[Co(dpzca)2] molecules in 1cryst,HS, which is not compensated by the 

increased volume of the cell (1cryst,HS, 2001 Å3 vs 1cryst,LS, 1953 Å3 at 1 bar, 

Table 5.1). For all distances, the four Co(II) ions in 1cryst,LS get steadily closer, 

Δd(Co-Co) ≃ -0.6-0.09%, from 1 to 4300 bar (Figure 5.4, blue). 

However, the d(Co1-Co2) and d(Co3-Co4) in 1cryst,HS show no clear 

trend as the pressure increases from 1 to 4300 bar. The maximal variations 

are 0.07 Å and 0.2 Å for the former and the latter distances, respectively. In 

particular, an abrupt and substantial elongation of d(Co3-Co4) is observed 

for 1cryst,HS between 2500 bar and 2900 bar. This elongated value remains 

steady up to the final pressure of 4300 bar. The effects of the unit cell 

shrinking were also monitored by looking at the angular distortions within 

the complex, using a variety of parameters (Equations A5.1-A5.6 and Table 

A5.10). From 1cryst,LS to 1cryst,HS, each distortion parameter (Σ, Θ, Ω) increased, 

in agreement with the marked deviation from a perfect octahedron as a 

consequence of the spin switch from LS to HS (Table A5.10; details in 

Section 5.6). 
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Figure 5.4. Calculated variations of the Co-Co intermolecular distances in 1cryst (Å) from the 

pressure of 1 bar to 4300 bar. Three Co-Co distances (Co1-Co2; Co2-Co3; Co3-Co4) between 

neighbour molecules within the same crystalline cell are reported (solid lines are a guide to the eye 

and simply join the datapoints). Dotted trend lines report the correlation factor for 1cryst,HS (red; 

(top) R2(Co1-Co2) = 0.05; (middle) R2(Co2-Co3) = 0.67; (bottom) R2(Co3-Co4) = 0.58) and 1cryst,LS 

(blue; (top) R2(Co1-Co2) = 0.80; (middle) R2(Co2-Co3) = 0.90; (bottom) R2(Co3-Co4) = 0.92). 1 bar 

= 10-4 Pa. 
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The difference, ∆Θ, between the HS and LS states, of the trigonal distortion 

(Θ, defined as the degree of twist away from a perfect octahedron towards 

a trigonal prism, Equation A5.5), has been claimed to be a key parameter 

for the spin transition in ML6n+ complexes, with an inverse dependence 

with the T1/2 observed.309 But this is not the case here.  

The RMSD relates to how smoothly the 1cryst,HS and 1cryst,LS structures 

deviate with the increase of pressure with respect to the structure at 1 bar. 

RMSD is the only parameter that shows a monotonic variation with 

pressure increase, for both spin states. A particularly smooth growth of 

RMSD is observed for 1cryst,LS (R2 = 0.92, Figure 5.5(left)). This is very likely 

due to the smaller volume of the 1cryst,LS, which suffers less from progressive 

cell shrinking due to the pressure increase. For 1cryst,HS, the behaviour is 

different: an RMSD trend similar to 1cryst,LS is observed up to 2500 bar, 

whereas a much steeper increase is observed at higher pressures (R2 = 0.95, 

Figure 5.5(right)). 

 

Figure 5.5. (left) For 1cryst,LS, reported effects on the RMSD parameter (solid lines are a guide to the 

eyes and simply join the datapoints) of the pressure increase (black diamonds, R2 = 0.92) and of the 

experimental T1/2 values (orange circles, R2 = 0.98). (right) For 1cryst,HS, reported effects on the 

RMSD parameter (solid lines are a guide to the eyes and simply join the datapoints) of the pressure 

increase (black diamonds, R2 = 0.95) and of the experimental T1/2 values (orange circles, R2 = 0.78). 
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Such different behaviour could be due to limits related to the employed 

computational protocol or, more intriguingly, to a possible significant 

change in the experimental crystallographic cell and/or space group for 

1cryst,HS.  

Unfortunately, none of the above computed parameters showed any 

clear indication that could be useful to rationalise the deformations of the 

octahedron associated with the pressure-induced spin transition (Table 

A5.10, Figures A5.28-A5.46). On the basis of these results, the 

rationalisation of the evolution of the SCO transition produced by the 

change of the pressure by simple geometrical criteria appears elusive, at 

least if considering the whole pressure range. Once again, this is a 

demonstration of how complicated it is to reduce the rationalization of the 

SCO phenomenon to simple structural considerations. 
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5.4.2. Pressure Effects on [Co(dpzca)2] 
Density of States 

With the aim of finding easy-to-read observables suited to the 

rationalisation of the pressure induced SCO effects, the electronic structure 

was analysed through the computed Total Density of States (TDOS) for 

1cryst,LS and 1cryst,HS. TDOS curves report the orbital contribution of each 

atomic species to the electronic structure of 1cryst,LS and 1cryst,HS at various 

pressures (Figure 5.6). The overall electronic structures of 1cryst,LS and 1cryst,HS 

does not show very significant changes in any of the main features as the 

pressure is increased from 1 to 4300 bar (Figure 5.6). More interestingly, to 

disclose a specific contribution to band changes in 1cryst,LS and 1cryst,HS as the 

pressure increases, the projected components (PDOS) of the Co(II) d-

orbitals were also computed (Figures A5.72-A5.78), as well as the N and C 

s- and p-orbitals (Figures A5.83-A5.86). This important step is compulsory 

in order to verify energy shifts in Co(II) d-orbitals, as the overall 

contributions of the Co(II) d-orbitals to the TDOS are marginal (as Co(II) 

ions are numerically lower than other atomic species). Small but 

distinguishable intensity variations can be seen for a few main peaks 

present in TDOS at -1.9 eV, -2.6 eV and -3.2 eV for 1cryst,LS; and at energies of 

-0.5 eV, -0.7 eV, and -1.9 eV for 1cryst,HS (Table A5.11). It is worth noting that 

the band variation at -1.9 eV is common to both spin states.  

Interestingly, but not unexpectedly, these variations are strongly (to 

moderately) correlating both with the applied pressures (min. 1 bar; max. 

4300 bar) and the experimental T1/2 values (min. 173 K; max. 235 K) (Table 

A5.11, Figure A5.60-A5.71), respectively.  Very high correlation R2 values 

for the three bands energy variation vs pressure are observed for 1cryst,LS (R2(-

1.9 eV) = 0.84, R2(-2.6 eV) = 0.97, and R2(-3.2 eV) = 0.97, Table A5.11) while 

for 1cryst,HS a slightly lower correlations are observed (R2(-0.5 eV) = 0.84, R2(-

0.7 eV) = 0.97, and R2(-1.9 eV) = 0.77, Table A5.11). 
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An overall lower correlation for the three bands energy variation vs T1/2 was 

also obtained (Table A5.11). Indeed, very good correlation are found for 

1cryst,LS (R2(-1.9 eV) = 0.92, R2(-2.6 eV) = 0.74, and R2(-3.2 eV) = 0.74, Table 

A5.11) and for 1cryst,HS (R2(-0.5 eV) = 0.52, R2(-0.7 eV) = 0.73, and R2(-1.9 eV) = 

0.87, Table A5.11). The obtained results indicate that the employed 

computational protocol can be confidently used to monitor and predict the 

pressure effect on the overall electronic spectra. The most striking result is 

the very high correlation values are found for the -1.9eV peak variation vs 

T1/2, which shows variations both for 1cryst,LS (R2 = 0.92, Figure A5.60) and 

1cryst,LS (R2 = 0.87, Figure A5.69).   

 

Figure 5.6. Reported TDOS for 1cry,LS (top) and to 1cry,HS (bottom) across the whole pressure range 

(1 bar < p < 4300 bar) in the energy range between -4 eV and +4 eV. Colour code: 1 bar (black), 

1800 bar (red), 2100 bar (blue), 2500 bar (magenta), 2900 bar (purple), 3900 bar (olive), 4300 bar 

(orange). 
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In practice, this means that once the TDOS are calculated the values of T1/2 

vs pressure can be reliably predicted. It is important to mention that, at the 

experimental level, computed tiny variations in the electronic structure are 

only interpreted with difficulty.  

The TDOS profile in the -3.0eV to -0.5eV range deserves a deeper 

discussion. For 1cryst,LS, the inter-band minimum (bottom at -2.1eV) between 

the two peaks at -2.6eV and -1.9eV suffers the most from the effect of the 

pressure increase. Conversely, in 1cryst,HS a decrease of the maximum of the 

peak at -1.9eV is observed. For both cases, a large part of the computed 

TDOS profile variation (25-35%) can be ascribed to a blue-shift of MOs 

bands with d-bonding/non-bonding metal character (Table A5.12, Figure 

5.7, Figures A5.87-A5.88). Indeed, eg-bonding like orbitals were observed 

for 1cryst,LS; eg bonding and non-bonding t2g-like MOs for 1cryst,HS. When the 

MO energies were trialled against the experimental pressure values, good 

to excellent correlations were found (Figures A5.89-A5.109). The 

correlation factor improves further if the only out-of-trend results for 

1cryst,LS,3900bar and 1cryst,HS,3900bar are excluded (Figure 5.3). As well, a very good 

correlation was also found between the MO energies at different pressures 

and the measured T1/2 in the same conditions (Figures A5.107-A5.124). 

 

Figure 5.7. Plot showing the eg bonding MOs 277β (eg shaped; E = -2.10eV at p = 1 bar, E = -1.73eV 

at p = 4300bar) for the 4 molecules of 1cry,HS in the unit cell, calculated at the pressure of 1 bar (ρ 

cutoff = 0.04). 
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Such results can be rationalized as follows: the increasing pressure reduces 

the volume of the crystalline cell with consequent shrinking of the volume 

of [Co(dpzca)2] molecules and shortening of the Co-N bonds (Table A5.10). 

A net increase in interelectronic repulsion is therefore expected with σ-

bonding MOs being less stabilized and an increase of the overall 

[Co(dpzca)2] MOs energy ladder is observed. However, the pressure 

induced changes on the overall electronic structure are far from being 

massive (Table A5.11), but with respect to the geometrical observables 

(Table A5.10), they are more evident and readable. This is because the 

electronic structure can act as a collective magnifier of the sum of all the 

tiny geometrical changes. 

Finally, as it is often reported in literature,159, 164 the energy gap at the 

Fermi level (ΔEHOMO,LUMO) for both 1cryst,HS and 1cryst,LS (Table A5.13) was also 

considered. Unfortunately, poor correlations were observed between the 

ΔEHOMO,LUMO with the pressure or the experimental T1/2 values (Table A5.13, 

Figures A5.127-S130). Such results indicate that the HOMO-LUMO gap 

cannot be considered as a reliable parameter for predicting the SCO 

behaviour, since it represents just one of the ingredients of the whole SCO 

process. 

5.4.3. Pressure effects on IR and Raman 
spectra of [Co(dpzca)2] 

Given the robust results obtained in reproducing both the geometry and 

the electronic structure, the vibrational structure of the [Co(dpzca)2] 

molecule was then calculated in isolated conditions (named 1iso,LS and 1iso,HS; 

see Section 5.6) and in a 3x3x1 supercell charge field (named 1cf,LS and 1cf,HS; 

see Section 5.6) for all of the experimentally applied pressures (p = 1, 1800, 

2100, 2500, 2900, 3900 bar). Raman and IR spectra were calculated for 1cf,LS 

and 1cf,HS at the different pressure values and are compared with the results 

obtained experimentally by some of us (Figure 5.8).104 Simulated IR/Raman 
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spectra were computed both for the whole unit cell in the presence of 

periodic conditions and on an isolated molecule in a Madelung field with 

the charges computed at the periodic level (Figure A5.133; see Section 5.6). 

The agreement between the IR spectra simulated with the two approaches 

is extremely good for 1cf,LS and good for 1cf,HS (Figures A5.133-A5.134). In 

Figure 5.8a, the experimental Raman spectra104 are reported for 1cryst at three 

different pressures: 1 bar (10-4 GPa, mostly 1cryst,HS), 3200 bar (0.32 GPa, 

mixed 1cryst,HS:LS) and 5700 bar (0.57 GPa, fully 1cryst,LS). Before getting into the 

analysis of the main features of the simulated 1cf systems (Figure 5.8b-5.8d), 

it is worth mentioning that the Raman spectra simulated for optimised 

isolated molecules of [Co(dpzca)2] (Figures 5.8c-5.8d, light grey plot) reveal 

only very small differences between the simulated spectra in the two 

different scenarios (isolated vs. crystalline). From Figure 5.8b, the main 

features of the calculated Raman spectra of purely 1cf,HS (red) and 1cf,LS (blue) 

at p = 1 bar can be compared. Particularly interesting is the observed 

blueshift of the most intense peak at 1250 cm-1 passing from 1cf,HS to 1cf,LS. 

Such a result suggests that the experimental spectrum obtained at ambient 

pressure (Figure 5.8a, red plot) may not be 100% 1cf,HS, as a small but 

significant percentage (about 10%) of 1cf,LS appears to still be present. This 

percentage value was derived by testing different ratios of 1cf,HS to 1cf,LS to 

reproduce the spectrum (Figure A5.134). The transition in the Raman 

spectrum from 1cf,LS to 1cf,HS can also be monitored by looking at the peaks 

at 1700 cm-1 and 1000 cm-1 where an overall change in the peak shape is 

observed and confirmed experimentally. Simulated spectra at higher 

pressures maintain the characteristic peaks reported for 1cf,LS (Figure 5.8c) 

and 1cf,HS (Figure 5.8d). This important result confirms that Raman 

spectroscopy can only be used to qualitatively monitor the spin state 

switching between the two spin states. 
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Figure 5.8. (a) Experimental Raman spectra measured at 298 K at three different pressures: p = 10-

4 GPa, 1cryst,LS (blue); p = 0.32 GPa, mixed 1cryst,LS/HS (magenta); p = 0.57 GPa, 1cryst,HS (red).31 (b) 

Calculated Raman spectra for 1cf,LS and 1cf,HS at p = 1 bar (w = 5). (c) Calculated Raman spectra for 

1cf,LS at seven different pressures (1, 1800, 2100, 2500, 2900, 3900, 4300 bar; w = 10). (d) Calculated 

Raman spectra for 1cf,HS at seven different pressures (1, 1800, 2100, 2500, 2900, 3900, 4300 bar, w 

= 10). Figure reproduced with modifications from ref.31 1 bar = 10-4 Pa. 
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Indeed, a quantitative description of the ratio of 1cf,HS to 1cf,LS is difficult in 

absence of a spectrum of the pure HS species (experimental or computed), 

as the observed changes cannot be easily ascribed to one of the spin species 

(Figure 5.8b and Figure A5.134). Whilst the good agreement between 

experimental and computed spectra indicates that Raman spectroscopy can 

be used as a probe of the local molecular geometries, it cannot be used for 

monitoring the evolution of the unit cell. 

5.4.4. Calculation of T1/2 for SCO 
transition for [Co(dpzca)2] 

Strong With strong agreement between the computed geometrical, 

vibrational, and electronic data with the corresponding experimental data 

in hand, the final step is to calculate the temperature induced SCO 

transition at different pressures. Using Equations 1-5, the spin switching 

curves were computed (Figure 5.9). The calculated SCO T1/2 values (at  γHS 

= 0.5) are compared with the measured values from reported earlier by 

some of us (Table 5.2).19 The T1/2 SCO values are accurately reproduced 

(ΔT1/2 < 10 K) for pressures of 1 bar to 2100 bar. This is a remarkable result 

considering that these values are obtained ab initio from scratch (i.e. relying 

only on the computational set up developed for 1cryst at 1 bar) with no 

experimental geometrical data supporting the high-pressure modelling. 

Unfortunately, the experimental order is not fully reproduced, but it is 

worth stressing that the calculated T1/2 value is only 7 K lower than the 

average experimental T1/2 at 1800 bar. The computed T1/2 = 190 K at 2100 bar 

is, instead, in strikingly good agreement with the average experimental T1/2 

= 189 K. These results are very promising, especially if compared with 

previous studies reported in literature,164, 173 where an error larger than 50 

K was reported at best; moreover, no claims of being predictive were 

proposed, in contrast to the method developed herein. At the pressure of 

2500 bar, the error in the computed SCO transition, even if still lower than 
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the ones reported in other literature studies,164, 173 increases significantly 

(ΔT1/2 = 30 K). At yet higher pressures, the computational protocol fails. 

Indeed, for pressures of 2900 and 3900 bar, the LS state is predicted to be 

the ground state up to 400 K (Figure 5.9). For p = 4300 bar, the calculated 

vibrational frequencies are not available, as it was not possible to reach 

sufficiently tight levels of convergence that are required for the calculation 

of T1/2. As the pressure increases, the largest variation is observed for ΔHel,HS-

LS: 0.32 eV (1 bar) to 1.64 eV (4300 bar) (see also Table A5.12). The ΔHel,HS-LS 

term is ≃0.32 eV up to 2500 bar while at higher pressures, a widening of the 

ΔHel,HS-LS gap is observed. On the basis of the considerations that neither the 

electronic nor the vibrational spectra show an abrupt change in their 

features, the computed discrepancies between experimental and computed 

T1/2 likely reside in the reproduction of the 1cryst,HS unit cell. 

 

Table 5.2. Values of T1/2 (K) for the 1cryst SCO transition calculated in this study (at γHS = 0.5), 

along with the experimental values for the SCO obtained by some of us (at γHS = 0.5),30 and the 

difference between the experimental and the calculated results. 

 
Calc. T1/2 

(γHS = 0.5) 
Exp. T1/2 (γHS = 0.5) Calc. vs Exp. 

p / bar 
T1/2 

(Gradual SCO) 

T1/2 

(av.) 

T1/2 

(up) 

T1/2 

(down) 
ΔT1/2 / <ΔT1/2> 

1 171 171 173 169 2-2 / 2 

1800 164 171 173 168 9-4 / 6 

2100 190 189 189 188 1-2 / 1 

2500 173 202 202 202 30-30 / 30 

2900 LS 214 214 214 - 

3900 LS 218 218 218 - 

4300 - 235 235 235 - 
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However, considering the agreement with the experimental findings 

obtained for the 1800 and 2100 bar, it is also likely that 1cryst,HS might go 

through a crystallographic phase change, as already observed for other 

systems.297-304 This eventuality cannot be excluded due to the absence of 

experimental structural data and the limited information provided by the 

Raman spectra. Another possible explanation is reaching the 

computational and protocol limits to reproducing the eventual change of 

the crystallographic symmetry or of the space group for 1cryst,HS. The 

prediction of the latter is a general challenge that remains open in the 

literature, and is outside the scope of this work. Above 2500 bar, the ΔHel,HS-

LS gap gets wider: 2900 bar (ΔHel,HS-LS = 1.08 eV); 3900 bar (ΔHel,HS-LS = 1.08 eV) 

and 4300 bar (ΔHel,HS-LS = 1.64 eV) (Table A5.14). This wider gap is driven by 

a steeper increase in the ΔHel,HS-LS energy of the 1cryst,HS (destabilising effects 

of pressure, Table A5.14); for 1cryst,LS a linear increase of ΔHel,HS-LS is observed 

from pressure 1 bar to pressure 4300 bar (Table A5.14). 

 

Figure 5.9. Calculated results of the Boltzmann transition (regular SCO) of 1cryst at external 

pressures from 1 to 3900 bar. The thermal SCO transition curve was obtained by using the model 

published by Ribas-Arino et al. in 2014.43  
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This energy increase (destabilisation) is expected when the crystalline cell 

experiences strong external pressures that are able to reduce the crystal cell 

volume and force the molecules into more distorted geometries.19 

As the pressure increases, the variation in ΔHvib,HS-LS term reveals tiny 

changes in the order of magnitude of meV (Table A5.16-S17). Similar trends 

are observed for the ΔSvib,HS-LS and ΔSel,HS-LS terms, but the changes are even 

more negligible (or even absent) (Tables A5.18-A5.19). Therefore, as 

expected, the crucial parameters for the derivation of T1/2 are ΔHel,HS-LS, while 

all the others contribute only marginally. However, it is worth noticing that 

ΔHel,HS-LS does not follow a linear trend with the increase of the pressure.  
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5.5. Conclusions 

The computational protocol developed herein to model thermal and pressure-

active SCO 1cryst in the solid state proved to be able to reach an extremely good 

agreement with the experimental data, accurately reproducing the SCO 

behaviour up to a pressure of 2100 bar with an error on ΔT1/2(exp. vs. th.) < 10 

K. From the pressure of 2500 bar, the agreement between experimental and 

theoretical results drops to ΔT1/2(exp. vs. th.) < 30 K, while for even higher 

pressures, 1cryst,LS is expected to be the ground state at least up to 400 K. In the 

absence of structural experimental findings of 1cryst,HS at these high pressures, 

it is possible that this deviation between the computed and the experimental 

T1/2 at higher pressures is due to a crystallographic phase change right for 

1cryst,HS.297-304  Such an eventuality is supported by the accuracy reached by our 

computational protocol in the reproduction of the structural, vibrational, and 

electronical experimental findings for 1cryst. Since the X-ray determination of 

1cryst,HS at high temperatures and pressures presents several significant 

challenges, the presented computational protocol can be used to propose that 

there may be an intrinsic change of the unit cell symmetry. In summary, the 

obtained results are very promising, providing far more accurate T1/2 values 

than ever before reported in the literature,164, 173 and showing an 

unprecedented predictive power. The ΔHel,HS-LS gap is proven to be the crucial 

parameter in the SCO transition, but also that entropic and packing effects, 

and accurate calculations of them, must be taken into account to reach the fine 

tuning of the T1/2. Of particular interest going forwards from here is the very 

good correlation between experimental T1/2 at a range of pressure values with 

specific features observed in the calculated TDOS plots (i.e. with Co-L eg-

bonding and t2g-non-bonding interactions). Inter alia, the variation of DOS 

profiles at -1.9eV, present in both species, showed a high correlation value with 

the T1/2 values. This result paves the way toward the possible use of TDOS for 

predicting the change in the T1/2 of the SCO transition as a function of the 

applied pressure, but only if an accurate computational protocol like this one 

is available. Overall, these results represent a very promising step forward in 

predicting the SCO phenomenon in the solid state 
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5.6. Computational Protocol 

All periodic calculations were performed with the CP2K 6.1 quantum 

chemistry software,311 which employs the Gaussian-plane waves formalism 

(GPW). Norm-conserving Goedecker-Tetter Hutter (GTH) 

pseudopotentials312-314 along with double zeta basis set with polarisation 

functions (DZVP-MOLOPT-SR) were employed for C, N, O, H atoms and 

DZVP-MOLOPT-SR-GTH basis set was applied to Co atoms. A cut-off of 450 

Ry was applied for the plane wave expansion.315 

The Anasimov simplified version168 of the DFT+U approach305 was used 

(Ueff). The Ueff parameters were chosen to match the experimental X-ray data 

observables (cell parameters and atomic positions) of both 1cryst,LS and 1cryst,HS 

at 1 bar of pressure along with the corresponding T1/2 value (abrupt T1/2↑ from 

ref19). Tests on Ueff values for Co, N, C, O, and H atoms were performed with 

revPBE functional316 with rVV10317-318 as non-local VdW correlation functional. 

The exact reproduction of the average T1/2 value (171 K) for the abrupt 

component of the SCO at 1 bar proved be very sensitive to the Ueff values 

chosen for the d orbitals of the cobalt ion (Co(d)) whilst the reproduction of the 

crystallographic parameters was needed to tune the Ueff on the p-orbitals on 

the nitrogen atoms (N(p); Tables A5.2-A5.3). In such a framework, the best 

computational set up was achieved with Ueff(Co(d)) = 1.15 eV and Ueff(N(p)) = 

3.0 eV. Cell optimisations were performed to very tight levels of convergence 

for the wavefunction (1.0x10-9 Hartree) and for the atomic forces (1.0x10-8 

Hartree bohr-1). 

Hessian matrices were calculated and checked to ensure that no 

imaginary eigenvalues values were present. Being performed at the Γ point, 

3N-3 frequencies (optical modes) were computed and used to calculate the 

thermodynamic quantities (see below, Tables A5.14-A5.19). 

This procedure was repeated for six out the seven pressures (1800, 2100, 

2500, 2900, 3900 bar) reported in ref19 at which the experimental SCO activity 

of 1cryst was measured. For p = 4300 bar, 1cryst,HS did not reach satisfying 

convergence criteria. Finally, IR/Raman spectra were calculated for 1cryst,LS and 
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1cryst,HS in vacuum and in the charge field built over the optimised structures 

obtained at the end of the calculations performed with CP2K6.1 package and 

re-run with ORCA4.1 code,258 using PBE functional319 and def2-TZVPP basis 

sets.261-262, 320 Two different kind of calculations were performed: (i) re-

optimising the isolated [CoII(dpzca)2] (1iso,LS and 1iso,HS) molecules in vacuum 

and (ii) re-optimising the structures of one [Co(dpzca)2] molecule in a charge 

field (1cf,LS and 1cf,HS) produced by the 3x3x1 supercell obtained at the end of 

the cell optimisation with CP2K6.1 code for each pressure. The charge field 

was set by replacing each atom kind with the respective Mulliken charge at 

the Potential Energy (PES) minima; the 3x3x1 supercell was obtained by 

replicating the original crystalline unit cells nine times. For both 1cf,LS and 1cf,HS: 

three times along the shorter a- and c-axes and once along the longer b-axes. 

The effects of the cell shrinking were monitored by looking at the 

angular distortions within the complex, using a variety of parameters 

(Equations S1-S6 and Table A5.10); RMSD measures the average divergence 

between atomic position when the studied system is compared to a reference 

(in this study, the molecules in 1cryst,LS and 1cryst,HS at p = 1 bar) (Equation A5.1); 

<D> describes the average Co-N bond distance). ζ is the sum of the differences 

between individual Co-N bond distance vs. the mean Co-N bond (Equation 

A5.2);321 Δ is the average of the differences between individual Co-N bond 

distance vs. the mean Co-N bond (Equation A5.3);322  Σ describes the local 

angular deviation from the cis octahedral angles of 90° (Equation A5.4);323 Θ 

measures the trigonal torsion, which is defined as the degree of twist from a 

perfect octahedron towards trigonal prismatic: it is obtained by the sum of the 

differences of the absolute value of all 24 unique angles (Equation A5.5).324 

Finally, Ω measures the three angles, ω, of each of the eight triangles (24 angles 

in total) found in a perfect octahedron (Equation A5.6).309 For a perfect 

octahedral geometry, all the distortion parameters (Σ, Θ, Ω) are equal to zero. 

<D>, ζ, Δ, Σ, Θ, were calculated using OctaDist 2.6.1 software;325 RMSD was 

calculated using VMD software.326 
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This PhD project aimed to investigate a range of methods potentially 

capable of predicting molecular properties of new SCO complexes in the 

early stages of the synthetic design. Achieving this would make synthetic 

strategies more efficient, reducing unsuccessful attempts and enabling 

targeting of a complex with the expected properties. 

This goal was pursued by operating through three main strategies: 

(i) the employment of the δNA chemical shift to predict the experimental 

T1/2 for iron(II) solution SCO complexes (discussed in Chapter Two), (ii) the 

quantitative assessment of the M-L bond energy in iron(II) solution SCO 

complexes by using the EDA-NOCV model (discussed in Chapter Three and 

Chapter Four) and (iii) the development of an approach based on periodic 

DFT to predict the solid state SCO behaviour in [CoII(dpzca)2] at different 

pressures (discussed in Chapter Five).  

In Chapter Two, the δNA vs. T1/2 correlations previously established 

in 2017 by Brooker et al.83 for two families of iron(II) solution SCO 

complexes, of Lazine and bppX,Y ligands, are successfully extended to two 

further literature families, of pyboxX and pytacnX ligands, and to a new 

family of LpytZ ligands synthesised in this thesis for the first time (a total of 

forty-two iron(II) complexes and five families). The new LpytZ ligand family, 

composed of four new members Z = CF3, Br, F, Me (in additional to LpytH 

which was already reported in literature105), was synthesised and 

characterised for the first time in this thesis (Figure 6.1a). As well, the 

corresponding four new [Fe(LpytZ)2(NCBH3)2] complexes were synthesised 

and characterised, including single crystal X-ray structure determination 

on all four complexes (Figure 6.1b). All four of the [FeII(LpytZ)2(NCBH3)2] 

complexes showed SCO behaviour around room temperature in both solid 

and solution, revealing potential applications at room temperature for most 

of the candidates (Figure 6.2).  
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Figure 6.1. (a) Multistep synthesis of the four new Z-pyridyl-ring substituted LpytZ ligands; the 

LpytH ligand was reported previously.83 (b) Solved crystallographic structures of the four newly 

synthesised [Fe(LpytZ)2(NCBH3)2]·solvents (Z = CF3, Br, F, Me) .  
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Figure 6.2. Solid state measurements (right) and solution phase measurements in CDCl3 solution 

(left) of χMT vs temperature (T) for all four new [Fe(LpytZ)2(NCBH3)2]·nH2O complexes and the 

literature data for the [Fe(LpytH)2(NCBH3)2] complex.105 

This study also proved that the δNA chemical shift can be more 

generally used as a predictive tool for fine tuning solution T1/2 values by 

choice of para-X substituent: good to extremely δNA vs. T1/2 (Figure 6.3a-c) 

are observed for both new cases, the literature families of pyboxX (R2 = 0.69) 

and pytacnX (R2 = 0.96), similar to that reported for bppX (R2 = 0.87) 

previously.83 But in the case of meta substituents (Y, Z), only weak 

correlations are observed between the δNA chemical shift of the free ligand 

and the experimental T1/2 of the related iron(II) complex: LpytZ (R2 = 0.37), 

literature bppY (R2 = 0.15) (Figure 6.3a-c). 

Next, consideration was given to the use of the easily calculated, 

experimentally verifiable, δNA as an alternative to the Hammett constant 

σp+ as a measure of the EDG/EWG effect of a change in substituent. Good 

to extremely good δNA vs. σp+ correlations were found for the para-X 

substituted families: (bppX (R2 = 0.89), pyboxX (R2 = 0.76), pytacnX (R2 = 0.94), 

Figure 6.3d). So δNA can be used in place of σp+ for para-X substituents. This 

means that any substituent, including those for which σp+ is not available, 

can be used. The use of δNA also enables comparison of other types of 

ligand modification, such as N/O/S/CH substitutions.  
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Figure 6.3. (a) Correlation between δNA(L) vs. solution T1/2([Fe(L)2(NCBH3)2]). Poor correlation 

for the five LpytZ (R2 = 0.37, green line); extremely good correlations for the five Lazine (R2 = 0.98, 

black line); good correlations for the eight [Fe(L)2(NCBH3)2] complexes (L= Lazine and LpytZ, R2 = 

0.77, red line); extremely good correlations for the seven [Fe(L)2(NCBH3)2] complexes (except 

LpytCF3) (R2 = 0.97, blue line). (b) Good correlation between δNA(pyboxX) vs. T1/2([Fe(pyboxX)2]2+) 

(R2 = 0.69, red line); extremely good correlation between δNA(bppX) vs. T1/2([Fe(bppX)2]2+)(R2 = 

0.87, blue line); poor good correlation between δNA(bppY) vs. T1/2([Fe(bppY)2]2+)(R2 = 0.15, magenta 

line). (c) Extremely good correlation between δNA(pytacnX) vs. T1/2([Fe(pytacnX)(NCCH3)2]2+) 

(R2 = 0.96, purple line) (d) Correlation between δNA(ligands) vs. the Hammett parameter σ+ (note: 

EWG: σ+ > 0, EDG: σ+ < 0). X (para) substituents are reported with solid lines, Y (meta) 

substituents are reported with dashed lines. All the reported δNA values are calculated. 

Not surprisingly, the meta substituents did not give good 

correlations of δNA vs. σm+: (bppY (R2 = 0.25), LpytZ (R2 = 0.02) (Figure 6.3d), 

so δNA cannot be used in place of σm+ for meta substituents. 
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This comparison between the use of the Hammett parameter (σ/σ+) and the 

δNA chemical shift is another key take-home message of this study: δNA 

can be easily calculated for any ligand or any substituent, and it can be 

experimentally validated – whereas the Hammett parameters are not 

always available, or indeed appropriate (e.g., CH/N/O/S substitutions). 

In Chapters Three and Four, EDA-NOCV theory was applied to SCO 

compounds for the first time. Implementation of this model enables the 

details of the energetic profile of the M-L bonds to be quantified (Figure 

6.4(left)). The focus was on developing and validating a protocol that 

would enable a quantitative study of the variation in σ-donor and π-

acceptor properties of families in any kind of metal complex. 

In order to develop a solid and generalisable protocol, five different 

fragmentation schemes for [Fe(Lazine)2(NCBH3)2] were examined in Chapter 

Two (Figure 6.4(left)). A corrected description of fragmentation 5 was 

selected as (i) it establishes a constant reference level able to maximise 

differences occurring from different ligands and (ii) it generalises the 

approach so that it is applicable to any ML6 complex, independent of the 

choice of the metal ion, spin state or oxidation state. Using this 

fragmentation protocol, the EDA-NOCV analysis of the five 

[FeII(Lazine)2(NCBH3)2] complexes (Figure 6.4(right)) revealed a very strong 

correlation between the σ and π M-L bond strength (ΔEorb,σ+π) and the 

experimental solution T1/2 of the complexes (R2 = 0.99; Figure 6.4(right)). This 

is consistent with the impact of varying the coordinated azine being felt 

synergistically, through both the σ and π components of the Fe-N bonds. 

In Chapter Four, EDA-NOCV analysis of sixteen of the members of 

the literature solution SCO [Fe(bppX)]2+ family was used to quantify the σ- 

and π-bonding strength of the Fe-N bonds as para-X varied. This enabled 

an in-depth analysis of how the para substituent X affects the σ- and π-

bonding strength in Fe-N bonding as X changed from electron donating 

(EDG, e.g., X = NMe2) to electron withdrawing (EWG, e.g., X = NO2). 
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Figure 6.4. (left) The five fragmentations 1-5 (top to bottom) trialled for EDA-NOCV analysis of 

the five LS [Fe(Lazine)2(NCBH3)2] complexes (fragment A in black; fragment B in red). (right) 

Strong correlations are seen between ΔEorb,σ+π (calculated using fragmentation 5, details in Section 

3.3) and solution T1/2, for both the LS state complexes (R2 = 0.99) and the HS state complexes (R2 = 

0.95). 

Surprising results were obtained: it was observed that as X changes from 

EDG → EWG properties (σp+ increases), the σ-donor capability of the bppX 

ligand in coordinating to the iron(II) ion increases, as reflected in ΔEorb,σ 

becoming more negative (stable). Furthermore, ΔEorb,σ correlated well with 

the Hammett parameter σp+ (R2 = 0.88, Figure 6.5(left)) and with the 

experimental T1/2 solution (R2 = 0.82, Figure 6.5(left)) of the [Fe(bppX)2]2+ 

complex. The surprising result, that EDG → EWG on the bppX ligand 

actually increases the Fe  NA σ-bond strength, was explained through 

Mulliken analysis of the population of the valence orbitals of the 

coordinating nitrogen atom NA in the bppX ligand (Figure 6.5(right)). 

Indeed, it is observed that – as the nitrogen lone pair involved in the Fe  

NA σ-bond and the nitrogen π-electrons involved in the aromatic ring and 

the Fe → NA π-backdonation are mutually orthogonal (Figure 6.5(right)) – 

an opposite polarisation links the increase in electron withdrawal over the 

π-system with an increase in electron charge on the nitrogen lone pair 
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involved in the Fe  NA σ-bond (Figure 6.5(right)). The EDA-NOCV 

results, in combination with the Mulliken charge analysis, explain at a deep 

molecular level the effect that the substituent X has on the ligand electronic 

structure. Finally, the correlations found in this study were used to predict 

the Hammett parameter (σp+) for two substituents (σp+(SOMe) = 0.26, 

σp+(SO2Me) = 0.60) for which it is not yet available in the literature. 

 

 

Figure 6.5. (a) Three strong pairwise correlations (blue, red and green lines), and a cross-

correlation (black dots; grey arrow is only a guide to the eye) between the ligand donation properties 

(ΔEorb,σ; calculated by EDA-NOCV for the LS complexes using fragmentation 5b), the Hammett 

constant of X (σp+), and the solution switching temperature (T1/2) for the twelve SCO-active 

complexes for which σp+(X) is known in this family of [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me, 

NH2, NMe2 are absent, as σp+(X) is not known for the first two, and the last two remain HS). (b) 

Representation of the NA(AOs) of the pyridyl ring in the referenced [Fe(bppH)2]2+ complex (centre) 

and at the substituted ligands at the ending of the Hammett scale ([Fe(bppNMe2)2]2+, σp+ = -1.70 

(top); [Fe(bppNO2)2]2+, σp+ = +0.79(bottom)). Arrows describe directionality of the resonance effects 

on NA(pπ) and NA(sp2(Fe)), determined by Mulliken charge analysis. 

Finally, in Chapter Five (the last project in this PhD thesis), a robust 

computational protocol was established and applied on the 

temperature/pressure induced SCO complex 1cry at the solid state for which 

experimental data were collected by Brooker et al. in 2012104 and 201519 

(Figure 6.6(right). The protocol was tuned for the atmospheric pressure, 1 
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bar (Figure 6.6(right), blue curve) to be applied, afterward, to other six 

pressures. This protocol was able to predict the SCO behaviour of 1cry as the 

pressure was increased up to 2100 bar with very high accuracy (ΔT1/2 < 10 

K), far above the one previously reported in the few works present in 

literature.164, 173 However, for higher values of pressure, the accuracy drops. 

On the bases of the computed trends for structural, electronic, and 

vibrational observables, a possible explanation of this divergence from 

experimental results at higher pressures may be ascribed to 

crystallographic changes for 1cry,HS unit cell.  

 

 

Figure 6.6. (left) Calculated curves for gradual transition of 1cry from external pressure of bar to 1 bar 

to 3900 bar (10-4 to 0.39 GPa). SCO transition curves were obtained by using the model published by 

Ribas-Arino et al. in 2014.166 (right) Fraction HS (γHS) versus temperature for 1cry, obtained from VT 

magnetic data collected in the solid state as a function of increasing pressure for selected isobars from 

ambient to 4300 bar (0.43 GPa). Figure reproduced with modifications from ref19. 

In support to this, experimental data (Figure 6.6(right)) show a change in 

the SCO behaviour for 1cry above 2500 bar from abrupt to gradual (SCO 

gradual:abrupt 20:80 at p = 1 bar; SCO gradual:abrupt 80:20 at p = 4300 bar). 

This is consistent with the possibility that the 1cry,HS undergoes to some 

crystallographic change at higher pressures (Figure 6.6).This hypothesis 

cannot be tested against experiment, as to obtain the 1cry,HS at 4300 bar 
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would require temperatures about 350 K and only room temperatures (T = 

293 K) data was collected in the diamond cell.19 

In conclusion, the overall results presented in Chapter Five, prove 

that our robust computational protocol is able to account structural, 

electronic, and packing effects paving the way for a reliable prediction the 

SCO effect at the solid state.  
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A1 | Additional Details 

A1.1. Experimental Section: General 
Procedures 

Elemental analyses (C, H, N, S) were measured at the Campbell 

Microanalytical Laboratory, University of Otago.  

Evans method NMR measurements were carried out on a Varian 

500MHz NMR spectrometer, using a OneProbe with a variable temperature 

controller, between 243 to 313 K in intervals of 5 K, with expected error in T of 

± 1 K. A diamagnetic correction for the sample (−M × 0.5 ×10−6 cm3mol−1),119 and 

a correction for the variation of the viscosity of the solvent with temperature,120 

were applied to each dataset (Table A2.2). The least squares fittings were 

obtained by modelling each dataset as a gradual and complete SCO using the 

regular solution model (equation A2.1),216-217, 327 with good fits obtained, 

providing the derived parameters ΔH and ΔS, and hence access to T½ (ΔH/ΔS) 

(Table A2.1). This was carried out using OriginPro version 9.1.0 from 

OriginLab Corporation. For all fits, the maximum χMT value (χMT(max)) was 

set to 3.5 cm3·K·mol-1 in Equation A2.1,216-217, 327 the expected value for a HS 

iron(II) centre.23, 92  

Single-crystal X-ray diffraction data were collected on an Oxford 

Diffraction SuperNova diffractometer with Atlas CCD, equipped with a 

Cryostream N2 open-flow cooling device,328 using mirror monochromated 

micro-focus Cu-Kα radiation at 100 K. The series of scans was performed in 

such a way as to collect a complete set of unique reflections to a maximum 

resolution of 0.80 Å. Raw frame data (including data reduction, inter-frame 

scaling, unit cell refinement and absorption corrections)329 for all structures 

were processed using CrysAlis Pro.330  

Structures were solved using SUPERFLIP331 and refined using full-

matrix least-squares on F2 and refined against F2 using all data by full-matrix 
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least-squares techniques with SHELXS-2014332 and refined using full-matrix 

least-squares on F2 within the X-Seed graphical user interface Olex2-1.2. All 

hydrogen atoms were inserted at calculated positions with U(H) = 1.2 U 

(attached atom), and rode on the atoms to which they were attached. Further 

details of the refinements, including modelling disordered solvent of 

crystallisation, and additional tables are provided in the ESI (Tables A2.1-

A2.6). 

All solid state magnetic susceptibilities were measured under a 

magnetic field of 0.1 T on a Quantum Design Physical Property Measurement 

System (PPMS) equipped with a vibrating sample mount (VersaLab). Four 

50−400−50 K cycles were obtained for each [FeII(LpytZ)2(NCBH3)2]·xH2O, to 

check for reproducibility. In the first three cycles data were obtained in 10 K 

steps, then in the fourth and final cycle in 2.5 K steps either side (±20 K) of the 

observed T1/2 for two of the complexes, [Fe(LpytZ)2(NCBH3)2]·xH2O where Z = F 

or Me), in all cases ramping between steps at 2 K min−1.  

These measurements are obtained in settle mode (the instrument 

considers the temperature “settled” after 1 min of the temperature being 

within the smaller value of ±0.5 K or ±0.5% of the target value). Due to the 

observation of thermal hysteresis, a scan rate (at 20, 10, 5, 2 and 0.2 K min-1) 

study of χMT vs T was carried out for [Fe(LpytCF3)2(NCBH3)2]·0.5H2O, from 150 

to 250 K, in sweep mode (data collected continuously as T swept at specified 

rate). All of the data were corrected for the diamagnetism of the capsule and 

of the sample (−M × 0.5 ×10−6 cm3mol−1).119 

Solution UV-Vis spectra of a 1:6 ratio of Fe(pyridine)4(NCBH3)2 : LpytZ 

(Subsection A2.1.14), in HPLC grade CHCl3 that was first neutralised by 

filtering it through a pad of Al2O3, and were 0.5 mM in Fe(II), were recorded 

at room temperature on a PerkinElmer Lambda 950 UV-Vis/NIR.  
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A1.2. Theoretical Background 

A1.2.1. Schrödinger Equation 

The history of the modern quantum chemistry had birth in 1927 when Erwin 

Schrödinger published for the first time his time-independent equation 

(Equation A1.1) for describing the properties of any quantum mechanical 

system. 333 

 

𝐻̂𝑇𝑂𝑇𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) = 𝐸𝑇𝑂𝑇𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) (A1.1) 

  

Where the 𝐻̂𝑇𝑂𝑇 operator includes the all set of operators which describe the 

energy of the system (kinetic, potential energy); 𝜓𝑇𝑂𝑇 is the total wavefunction 

of the system, determined by each electronic position (𝑟𝑖) and each nuclear 

position (𝑅𝛼).  

Considering those two terms (𝑟𝑖; 𝑅𝛼) almost independent each other, 

the total wavefunction 𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) can be written as a product of two semi-

independent wavefunctions which describe the nuclei 𝜓𝑛𝑢𝑐𝑙(𝑅𝛼) and the 

electrons 𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖). Consequently, to this wavefunction splitting, the full 

Hamiltonian 𝐻̂𝑇𝑂𝑇 can be also split into its two fundamental terms - the nuclear 

contribution 𝐻̂𝑛𝑢𝑐𝑙 and the electronic contribution 𝐻̂𝑒𝑙 

 

𝐻̂𝑇𝑂𝑇 = 𝐻̂𝑛𝑢𝑐𝑙+𝐻̂𝑒𝑙 (A1.2) 

  

𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) = 𝜓𝑛𝑢𝑐𝑙(𝑅𝛼)𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖) 
(A1.3) 

 

  

Solving equation A1.3 as follow: 

 

𝐻̂𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖)𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) = [𝐻̂𝑛𝑢𝑐𝑙(𝑅𝛼)+𝐻̂𝑒𝑙(𝑅𝛼, 𝑟𝑖)]𝜓𝑛𝑢𝑐𝑙(𝑅𝛼)𝜓𝑒𝑙( 𝑅𝛼, 𝑟𝑖)  (A1.4) 
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= (𝐻̂𝑛𝑢𝑐𝑙(𝑅𝛼) + 𝐻̂𝑒𝑙(𝑅𝛼, 𝑟𝑖))𝜓𝑛𝑢𝑐𝑙(𝑅𝛼) + 𝐻̂𝑒𝑙(𝑅𝛼, 𝑟𝑖)𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖)

+ 𝐻̂𝑛𝑢𝑐𝑙(𝑅𝛼)𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖) 
(A1.5) 

 

Reported Equation A1.4 shows a dependency of 𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖) by the nuclear 

Hamiltonian 𝐻̂𝑛𝑢𝑐𝑙(𝑅𝛼) which does not allow to treat the electronic structure 

as completely independent by the nuclear wavefunction. In other words, the 

𝐻̂𝑛𝑢𝑐𝑙(𝑅𝛼)𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖) term is the mathematical description of the physical 

phenomenon of coupling between electronic and vibrational wavefunctions. 

In 1927, Born and Oppenheimer demonstrated that, in most of the cases,334 this 

contaminated term can be neglected and the two wavefunctions can be treated 

as independent; this is due to the huge speed difference between electrons 

motion and nuclei motion (about 106 ms-1) which make any electronic 

rearrangement almost instantaneous in the nuclei reference system. 

The last term of Equation A1.5 can be so neglected and the two 

wavefunction considered completely independent for fixed values of 𝑅𝛼 

(nuclei position).334 

 

𝐻̂𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖)𝜓𝑇𝑂𝑇(𝑅𝛼, 𝑟𝑖) = 𝐻̂𝑇𝑂𝑇𝜓𝑛𝑢𝑐𝑙(𝑅𝛼)

+ 𝐻̂𝑒𝑙𝜓𝑒𝑙(𝑅𝛼, 𝑟𝑖) 
(A1.6) 

 

The Electronic Hamiltonian 𝐻̂𝑒𝑙 so defined can be further decomposed in the 

each of his components as reported in Equation A1.7. 

 

𝐻̂𝑒𝑙 =  𝑇̂(𝑟𝑖) + 𝑉̂(𝑅𝛼, 𝑟𝑖) + 𝑊̂(𝑟𝑖, 𝑟𝑗) (A1.7) 

  

Where 𝑇̂(𝑟𝑖) is the kinetic energy operator, 𝑉̂(𝑅𝛼, 𝑟𝑖) includes the nuclei-

electron repulsion and the nuclei-electron attraction; 𝑊̂(𝑟𝑖, 𝑟𝑗) is the term 

accounting for electron-electron repulsion; nuclei-nuclei repulsion is added to 

𝑊̂(𝑟𝑖, 𝑟𝑗) term as a constant (for fixed positions). The most problematic term in 

Equation A1.7 is the inter-electronic term 𝑊̂(𝑟𝑖, 𝑟𝑗) which makes the 

Schrödinger equation impossible to be exactly solved for system which more 

than one electron. Therefore, two main theory were developed across the years 
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to try to get a good approximation of the Schrödinger equation: Hartree-Fock 

Theory (HF) and Density Functional Theory (DFT). These theories are very 

different in the way they treat electrons; consequently, both have advantages 

and disadvantages. The inter-electronic term 𝑊̂(𝑟𝑖, 𝑟𝑗) includes some 

important energetic terms, treated differently in HF and DFT, defined as 

correlation energies which describe the magnitude of the ‘awareness’ a single 

electron has of all the other ones. There are two different kind of correlations: 

 

1. STATIC CORRELATION. This term comes out when a system has a 

ground state which can be described by more than one wavefunction, 

i.e., more than one electronic rearrangement in degenerate or quasi-

degenerate structures (as the resonance forms in aromatic systems or 

the allocation of d-electrons in quasi-degenerate t2g orbitals in metal 

ions). This error arises when the applied theory does not consider both 

the equivalent electronic structure but just one of them, with a 

consequent increase of the energy of the final system. This correlation 

is missing both in HF theory and DFT theory whereby both the 

wavefunctions are single determinantal (one single wavefunction).335 

 

2. DYNAMIC CORRELATION. This term describes the spatial and spin 

restrictions when the interaction between two electrons is considered. 

This term is completely neglected in HF theory where the two body 

interaction is replaced by the interaction with an average potential.336 

Instead, it is empirically threated in DFT, as discussed in the next 

section. 

A1.2.2. Density Functional Theory 

In order to understand why DFT is so widely used to compared with HF it is 

necessary to recall principal issues related with this previous approach. In 

Hatree-Fock theory each electron is treated singularly in an average potential 
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field produced by all the other electrons. In this approach each electron is thus 

described using a single-electron wavefunction. Moreover, each single-

electron wavefunction is then mathematically combined together to respect 

properties of anti-symmetry and normalisation of the system, to give the 

overall molecular wavefunction. 

The final mathematical description of this molecular wavefunction is 

called a Slater determinant. The size of the Slater determinant increases 

exponentially with the increase of the number of electrons, providing some 

expectable major limits about the system size. The HF wavefunction depends 

on 3N variable (with N number of electrons and xi,yi,zi cartesian coordinates 

for each electron) plus the spin state (σi). It can be easily understood how 

quickly any kind of HF calculation become demanding. 

In 1965 Hohenberg and Sham set the basis of DFT proving two 

important theorems: the first one establishes the connection between the 

system electronic properties and it electronic density; with this theorem the 

wavefunction it is not necessary anymore and the electronic structure can be 

studied without the tedious problem of the demanding costs imposed by the 

Slater determinant,337 instead using an electron density of only three variable. 

The second theorems states that the theory respects the variational 

theorem, i. e. any approximation of the electron density, which leads to a less 

accurate solution of the Schrödinger describes a system higher in energy than 

the real one.337 This new approach which works with a system dependent by 

only three variables (x,y,z coordinates of the electron density), instead of 3N 

variables, assures the chance to move beyond the size limits imposed by HF 

theory. 

In Equation A1.8 is reported the total energy of the system 𝐸[𝜌] as a 

functional of the density 𝜌; in the right side of the equation the same energetic 

terms described previously in the chapter are reported as well in terms of 

functionals of the density 𝜌. Functional is a mathematical transformation 

which produces a number from a function. 
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 𝐸[𝜌] = 𝑇[𝜌] + 𝑊[𝜌] + 𝑉[𝜌] (A1.8) 

 

If we look more in depth to each of these terms, DFT limits will easily emerge. 

In a system composed by interacting particles (as any real one) the kinetic term 

𝑇[𝜌] is impossible to be calculated exactly. This issue addressed many years 

later and its solution, a reasonably strong approximation in the new-born 

method, is still in place today. In 1965 – after the Hohenberg and Sham 

theorems were published – a new method developed by Kohn and Sham gave 

to this theory a chance to get real applications. This new method arises from 

two statements: 

1. Definition of the density through the use of orbitals. 

2. Treating of the system as non-interacting. 

Those two strong approximations were able to give a first very approximated 

solution to the DFT applicability problem. The use of a non-interacting system 

leads to easily calculate the kinetic term 𝑇𝑁𝐼[𝜌]. If a set of orbitals is introduced 

in a non-interacting system the solution can be calculated exactly (as in the HF 

theory).  

 

 𝑇𝑁𝐼[𝜌] =  ∑ ⟨𝜑𝑖|−
1
2 ∇2|𝜑𝑖⟩

𝑁

𝑖=1

 (A1.9) 

 

Where 𝜑𝑖 are the all orbitals which describe our system. Therefore, as 

calculated for non-interacting system, the resulting functional just approximate 

the real 𝑇𝐼[𝜌]. 𝑇𝑁𝐼[𝜌] captures the majority of 𝑇𝐼[𝜌] except for a small term. 

The second term in Equation A1.8 (𝑊[𝜌]) carries with it another 

unsolved problem. This term depends on the interaction of two electrons, 

consequently the term is a functional of 𝜌(𝑟1, 𝑟2) where 𝑟1 and 𝑟2 are the spatial 

position of two electrons. We can approximate this functional to the 

electrostatic repulsion between two densities 𝜌(𝑟1) and 𝜌(𝑟2) which interact 

classically as follows. 
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𝐽[𝜌] =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝜕𝑟1𝜕𝑟2 (A1.10) 

 

Unfortunately, also with this trick we are just introducing another 

approximation by neglecting two important terms: 

1. The exchange term of the interaction energy. The simple shift of the 

electronic density as a diffuse charge does not account for the different 

description between fermions and bosons. 

2. The self-interaction term which comes from the approximation that 𝜌 is 

not calculated as a sum of particles but a spread charge. This 

approximation includes the interaction of a particle with itself and it 

must be corrected. 

The classical approximation for this second term is corrected by changing the 

definition of the total density 𝜌(𝑟1, 𝑟2). 

 

𝜌(𝑟1, 𝑟2) = 𝜌(𝑟1)𝜌(𝑟2)(1 + ℎ𝑥𝑐(𝑟1, 𝑟2)) (A1.11) 

 

Where inside the new term ℎ𝑥𝑐(𝑟1, 𝑟2) all of the errors introduced by a classical 

electron treatment (points 1 and 2 above) are collected. Therefore, the new 

expression of 𝑊[𝜌] would be: 

 

𝑊[𝜌] = 𝐽[𝜌] +
1

2
∫ 𝜌(𝑟1)𝑣𝑥𝑐(𝑟1)𝜕𝑟1 (A1.12) 

 

 Where the function 𝑣𝑥𝑐(𝑟1) is defined as follow. 

 

𝑣𝑥𝑐(𝑟1) =
1

2
∫

𝜌(𝑟2)ℎ𝑥𝑐(𝑟1, 𝑟2)

𝑟12
𝜕𝑟2 (A1.13) 
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The 𝑣𝑥𝑐(𝑟1) term becomes the bridge from the classical to the quantum 

treatment of the problem with the inclusion of the exchange and correlation 

effects.  

Finally, the last functional in Equation A1.8 (𝑉[𝜌]) does not need other 

approximations and it can be calculated exactly. If we re-write Equation A1.8 

using the approximations presented so far, the new description is: 

 

 𝐸[𝜌] = 𝑇𝑁𝐼[𝜌] + 𝑇𝐼[𝜌] − 𝑇𝑁𝐼[𝜌] + 𝐽[𝜌] + 𝑊[𝜌] − 𝐽[𝜌]

+ 𝑉[𝜌] 
(A1.14) 

 

Which can be summarised in Equation A1.15: 

 

 𝐸[𝜌] = 𝑇𝑁𝐼[𝜌] + 𝐽[𝜌] + 𝑉[𝜌] + 𝐸𝑋𝐶[𝜌] (A1.15) 

 

Where 𝐸𝑋𝐶[𝜌] includes all of the approximations. 

 

 𝐸𝑋𝐶[𝜌] = 𝑇𝐼[𝜌] − 𝑇𝑁𝐼[𝜌] + 𝑊[𝜌] − 𝐽[𝜌] (A1.16) 

 

Gathering all the approximations into a single functional makes this approach 

‘theoretically’ exact. In fact, by discovering the exact function 𝑣𝑥𝑐(𝑟1), the 

equation leads to exact answer. Unfortunately, the exact description of 𝑣𝑥𝑐(𝑟1) 

is unknown. On the years many approaches have tried to approximate, as 

close as possible, the real potential 𝑣𝑋𝐶 , required to obtain the exact functional 

𝐸𝑋𝐶[𝜌].  

The first class of functionals are called Local Density Functionals (LDA) 

because they do not depend from the gradient ∇𝜌, by just the density 𝜌. The 

first historical attempt to define a functional of this type is the Thomas-Fermi 

(TF) functional (1926)338 which describes exactly the XC functional of a uniform 

gas of non-interacting particles. This first example is further improvement by 

Dirac (1930) with the inclusion of the exchange term which was not considered 

in the TF description. 
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In 1935, an important step forward was made by Von Weizsacker 339 

when he tried for the first time to introduce the density gradient ∇𝜌 into 𝑣𝑋𝐶 . 

This first example did not yield particularly good results but it formed the 

basis for the new generation of functional. 

During the 1980 and 1990 years, a huge effort was made in order to find 

a good expression for the 𝑣𝑋𝐶  term to turn DFT in better theory than HF.  

A new family of functional was called Generalised Gradient Functional 

(GGA); functionals such as BP86, 263-264, 339 PBE 340 or PW91 341 belong to this 

family. Despite the fact that they just belong to just second generation of DFT 

functionals, and recently more sophisticated functionals have been 

discovered, some of the early GGA functionals are still widely used. Some of 

them, such as PBE, have been subject of re-parameterisation across the years 

to better face more specific problems (revPBE, RPBE).342 

In order to conclude this overview, the following step in the functional 

evolution is shortly mentioned. The new functional generation is called Hybrid 

because they came out from a mixing between DFT theory and HF theory. In 

HF theory the exchange-correlation term (𝐸𝑋𝐶) is more accurately calculated 

than in DFT, based on theory hypothesis. Then, the new generation of 

functionals included different percentages of the HF exchange term. 

Unfortunately, this approach did not lead to any definitive improvement but 

to a new series of functional which show just a different set of pros and cons 

as the GGA ones. It is important to mention B3LYP 343-344 as one of the most 

famous and the newer version of PBE with the inclusion of 25% of the exact 

HF exchange called PBE0. 342
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A2.1. Computational Details 

Calculations were performed using ORCA4.1.258 The computational protocol 

used to optimise the structures of the ligands was RIJCOSX-TPSS-

D3(BJ)/pcSseg-2+CPCM. 221-222, 259-260, 266-267 i.e. use of the TPSS functional49 

together with the resolution of identity (RIJCOSX) approximation,266-267 

Grimme’s D3 dispersion correction (including BJ damping),259-260 a pcSseg-2 

basis set50 and implicit CPCM-solvent model. Finally, 15N NMR calculations 

were performed on the DFT optimised structures through a single point 

calculation. Different CPCM models were applied, based on the solvent used 

experimentally to measure the SCO phenomenon: CDCl3 for Lazine and LpytZ; 

acetone for pyboxX and bppX,Y, acetonitrile for pytacnX.
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A2.2. NMR and MS Figures for 
LpytCF3 Ligand 

1H-NMR Spectrum 

 

 

Figure A2.1. The full range 1H NMR spectrum of ligand LpytCF3 in CDCl3 at 298 K. 
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13C-NMR Spectrum 

 

Figure A2.2. The full range 13C NMR spectrum of ligand LpytCF3 in CDCl3 at 298 K.  
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HSQCAD Spectrum 

 

Figure A2.1. Heteronuclear 1H-13C NMR spectrum of ligand LpytCF3 in CDCl3 at 298 K.  
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15N-NMR Spectrum 

 

 

Figure A2.4. The full range 15N NMR spectrum (direct measurement) of ligand LpytCF3 in CDCl3 at 298 

K.  
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Mass Spectrum  

 

 

Figure A2.5. Complete mass spectrum of LpytCF3. Reported circles refer to zoomed regions reported 

below. 
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Figure A2.6. Fit of a peak in the mass spectrum of [LpytCF3+H]+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.7. Fit of a peak in the mass spectrum of [LpytCF3+Na]+ experimental (blue) and simulated 

pattern (red). 
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Figure A2.8. Fit of a peak in the mass spectrum of [LpytCF3+K]+ experimental (blue) and simulated 

pattern (red). 

 

Figure A2.9. Fit of a peak in the mass spectrum of [2LpytCF3+Na]+ experimental (blue) and simulated 

pattern (red). 
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A2.3. MS Figures for 
[Fe(LpytCF3)2(NCBH3)2] Complex  

 

 

Figure A2.10. Complete mass spectrum of [Fe(LpytCF3)2(NCBH3)2]. Reported circles refer to zoomed 

regions reported below. 
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Figure A2.11. Fit of a peak in the mass spectrum of [Fe(LpytCF3)2]2+ experimental (blue) and simulated 

pattern (red). 

 

Figure A2.12. Fit of a peak in the mass spectrum of [Fe(LpytCF3)(MeOH)-H]+ experimental (blue) and 

simulated pattern (red). 
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Figure A2.13. Fit of a peak in the mass spectrum of [Fe(LpytCF3)3]2+ experimental (blue) and simulated 

pattern (red). 

 

Figure A2.14. Fit of a peak in the mass spectrum of [Fe(LpytCF3)2(NCBH3)]+ experimental (blue) and 

simulated pattern (red). 
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A2.4. NMR and MS Figures for LpytBr 
Ligand 

1H-NMR Spectrum 

 

Figure A2.15. The full range 1H NMR spectrum of ligand LpytBr in CDCl3 at 298 K. 
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13C-NMR Spectrum 

 

Figure A2.16. The full range 13C NMR spectrum of ligand LpytBr in CDCl3 at 298 K.  



A2 | Testing the Generality of T½ of Spin Crossover Complex vs Ligand 
15N NMR Chemical Shift Correlations: Towards Predictable Tuning 

 

A24 

 

HSQCAD Spectrum  

 

Figure A2.17. Heteronuclear 1H-13C NMR spectrum of ligand LpytBr in CDCl3 at 298 K.  
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15N-NMR Spectrum  

 

Figure A2.18. The full range CIGARD 1H-15N NMR spectrum (indirect measurement) of ligand LpytBr 

in CDCl3 at 298 K.  

 

Figure A2.19. The full range 15N NMR spectrum (direct measurement) of ligand LpytBr in CDCl3 at 

298 K. 
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Mass Spectrum  
 

 

Figure A2.20. Complete mass spectrum of LpytBr. Reported circles refer to zoomed regions reported 

below. 
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Figure A2.21. Fit of a peak in the mass spectrum of [LpytBr+H]+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.22. Fit of a peak in the mass spectrum of [LpytBr+Na]+ experimental (blue) and simulated 

pattern (red). 
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Figure A2.23. Fit of a peak in the mass spectrum of [LpytBr+K]+ experimental (blue) and simulated 

pattern (red). 

 

Figure A2.24 Fit of a peak in the mass spectrum of [(LpytMe)2+Na]+ experimental (blue) and simulated 

pattern (red).  
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A2.5. MS Figures for 
[Fe(LpytBr)2(NCBH3)2] Complex  

 

 

 

Figure A2.25. Complete mass spectrum of [Fe(LpytBr)2(NCBH3)2]. Reported circles refer to zoomed 

regions reported below. 
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Figure A2.26. Fit of a peak in the mass spectrum of [Fe(LpytBr)2]2+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.27. Fit of a peak in the mass spectrum of [Fe(LpytBr)(MeOH)-H]+ experimental (blue) and 

simulated pattern (red).  
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Figure A2.28. Fit of a peak in the mass spectrum of [Fe(LpytBr)3]2+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.29. Fit of a peak in the mass spectrum of [Fe(LpytBr)2(NCBH3)]+ experimental (blue) and 

simulated pattern (red).  
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A2.6. NMR and MS Figures for LpytF 
Ligand  

1H-NMR Spectrum  

 

Figure A2.30. The full range 1H NMR spectrum of ligand LpytF in CDCl3 at 298 K. 
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13C-NMR Spectrum  
 

 

Figure A2.31. The full range 13C NMR spectrum of ligand LpytF in CDCl3 at 298 K. 
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HSQCAD Spectrum  

 

Figure A2.32. Heteronuclear 1H-13C NMR spectrum of ligand LpytF in CDCl3 at 298 K.  
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15N-NMR Spectrum  

 

Figure A2.33. The full range CIGARD 1H-15N NMR spectrum (indirect measurement) of ligand LpytF 

in CDCl3 at 298 K. 
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Mass Spectrum 

 

Figure A2.34. Complete mass spectrum of LpytF. Reported circles refer to zoomed regions reported below. 
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Figure A2.35. Fit of a peak in the mass spectrum of [LpytF+H]+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.36. Fit of a peak in the mass spectrum of [LpytF+Na]+ experimental (blue) and simulated 

pattern (red).  
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Figure A2.37. Fit of a peak in the mass spectrum of [LpytF+K]+ experimental (blue) and simulated pattern 

(red). 

 

Figure A2.38. Fit of a peak in the mass spectrum of [(LpytF)2+Na]+ experimental (blue) and simulated 

pattern (red).  
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A2.7. MS Figures for 
[Fe(LpytF)2(NCBH3)2] Complex  

 

 

Figure A2.39. Complete mass spectrum of [Fe(LpytF)2(NCBH3)2]. Reported circles refer to zoomed 

regions reported below. 
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Figure A2.40. Fit of a peak in the mass spectrum of [Fe(LpytF)2]2+ experimental (blue) and simulated 

pattern (red). 

  

 

Figure A2.41. Fit of a peak in the mass spectrum of [Fe(LpytF)(MeOH)-H]+ experimental (blue) and 

simulated pattern (red).  
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Figure A2.42. Fit of a peak in the mass spectrum of [Fe(LpytF)3]2+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.43. Fit of a peak in the mass spectrum of [Fe(LpytF)2(NCBH3)]+ experimental (blue) and 

simulated pattern (red).  



A2 | Testing the Generality of T½ of Spin Crossover Complex vs Ligand 
15N NMR Chemical Shift Correlations: Towards Predictable Tuning 

 

A42 

 

A2.8. NMR and MS Figures for LpytMe 
Ligand  

 

1H-NMR Spectrum  
 

 

Figure A2.44. The full range 1H NMR spectrum of ligand LpytMe in CDCl3 at 298 K. 
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13C-NMR Spectrum  

 

 

 

Figure A2.45. The full range 13C NMR spectrum of ligand LpytMe in CDCl3 at 298 K.  
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HSQCAD Spectrum  

 

 

Figure A2.46. Heteronuclear 1H-13C NMR spectrum of ligand LpytMe in CDCl3 at 298 K.  
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15N-NMR Spectrum 
 

 

 

Figure A2.47. The full range 15N NMR spectrum (direct measurement) of ligand LpytMe in CDCl3 at 

298 K.  



A2 | Testing the Generality of T½ of Spin Crossover Complex vs Ligand 
15N NMR Chemical Shift Correlations: Towards Predictable Tuning 

 

A46 

 

Mass Spectrum 

 

Figure A2.48. Complete mass spectrum of LpytMe. Circled peaks are those reported and fitted in the 

following figures.  
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Figure A2.49. Fit of a peak in the mass spectrum of [LpytMe+H]+ experimental (blue) and simulated 

pattern (red). 

 

 

Figure A2.50. Fit of a peak in the mass spectrum of [LpytMe+Na]+ experimental (blue) and simulated 

pattern (red). 
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Figure A2.51. Fit of a peak in the mass spectrum of [LpytMe+K]+ experimental (blue) and simulated 

pattern (red). 

 

Figure A2.52. Fit of a peak in the mass spectrum of [(LpytMe)2+Na]+ experimental (blue) and simulated 

pattern (red). 
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A2.9. MS Figures for 
[Fe(LpytMe)2(NCBH3)2] Complex 
Spectra 

 

 

Figure A2.53. Complete mass spectrum of [Fe(LpytMe)2(NCBH3)2]. Reported circles refer to zoomed 

regions reported below. 
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Figure A2.54. Fit of a peak in the mass spectrum of [Fe(LpytMe)2]2+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.55. Fit of a peak in the mass spectrum of [Fe(LpytMe)(MeOH)-H]+ experimental (blue) and 

simulated pattern (red).  
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Figure A2.56. Fit of a peak in the mass spectrum of [Fe(LpytMe)3]2+ experimental (blue) and simulated 

pattern (red).  

 

Figure A2.57. Fit of a peak in the mass spectrum of [Fe(LpytMe)2NCBH3]+ experimental (blue) and 

simulated pattern (red).  
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A2.10. Single Crystal X-Ray Data 

The four [FeII(LpytZ)2(NCBH3)2] complexes are isomorphous, all having 

crystallised in the triclinic space group P-1 (Table A2.1), with half of the 

complex in the asymmetric unit and the other half generated by an inversion 

centre located at the iron(II) centre. One solvent molecule of crystallisation was 

present in the asymmetric unit in three cases: in both 

[Fe(LpytCF3)2(NCBH3)2]·2CHCl3 and [Fe(LpytMe)2(NCBH3)2]·2CHCl3 the CHCl3 

molecule was disordered over two sites (Figures A2.59-A2.65); in 

[Fe(LpytF)2(NCBH3)2]·2CH3NO2 whereas the nitromethane molecule was 

ordered (Figures A2.62- A2.63). The average Fe−N length for the iron(II) 

centres at 100 K is 1.98 Å (Table 5.1) as expected for related LS complexes of 

Rat/Rdpt complexes (1.93-2.02 Å).  

For the three ([Fe(LpytZ)2(NCBH3)2]·solvents first (Z = CF3, Br, Me) and 

then ([Fe(LpytF)2(NCBH3)2]·2CH3NO2. These three iron(II) have a quite 

homogeneous structure: firstly, octahedral distortion parameter Σ (the sum of 

the deviations of the 12 cis N−Fe−N angles from 90°) for three of the complexes 

lies in the range 43-45°, which is at the bottom end of the range usually seen 

for related LS complexes of Rat/Rdpt complexes (42.5−65.7°);4, 139 then, the 

azine ring is expected to be close to being coplanar with the triazole ring due 

to the restrictions imposed by coordination of both of them to the iron(II) 

centre, as seen in related Rat/Rdpt -based complexes,4, 139 and this is also seen 

here (0.2-3.1°). Whilst the dihedral angle between the phenyl and triazole ring 

is not constrained in this way it too is usually not far from being co-planar (0°-

25°),4, 139 whereas the tolyl ring is usually closer to perpendicular to the triazole 

ring due to steric factors.  

Finally, the Fe-NC(BH3) bond is extremely close to being linear (174.7-

178.6°). [Fe(LpytF)2(NCBH3)2]·2CH3NO2 reveal a very intense distortion (Σ=70.8° 

vs 43.0-45.0° for the other three members of the family); this value is beyond 

reported range for LS complexes of Rdpt complexes (42.5−65.7°)4, 139 but not yet 

in the range seen for related complexes in the HS state (92.9°-112.2°).4, 84, 105, 139 
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Moreover, the azine-triazole dihedral angles shows an important deviation 

from plane (6.1°); along with phenyl-triazole dihedral angles (41.5°). Last but 

not least, [Fe(LpytF)2(NCBH3)2]·2CH3NO2 reports an Fe-NCBH3 angle which is 

very far from linearity (166.4°). 

All the four structures [Fe(LpytZ)2(NCBH3)2]·solvents (Z = CF3, Br, F, Me) 

show one crystallographically independent non-classical345-347 intramolecular 

N···HC H-bond occurring between the pair of equatorial LpytZ ligands, and 

involves the non-coordinated triazole nitrogen atom and the pyridine CH of 

the opposite LpytZ ligand (C1-H1···N2 3.07-3.12 Å; Figures A2.58, A2.60, A2.62, 

A2.64 and Table A2.3-A2.6). 

When solvent is present (Z = CF3 and Me), H-bonds between CH in the 

tolyl ring and the Cl of in the CHCl3 molecule are observed (for Z = CF3: C14-

H14···Cl1 3.57 Å, Figures A2.58-A2.59 and Table A2.3; for Z = Me: C8-H8···Cl1 

3.48 Å, Figures A2.64-A2.65 and Table A2.6). When Z = CF3 a long interaction 

occurs between the adjacent one of the F on the meta-CF3 substituent, and one 

of the of the phenyl ring of the opposite LpytCF3 ligand (C17-H17···F1 3.78 Å, 

Figures A2.58 and Table A2.3), of the opposite LpytCF3 ligand. When Z = Me a 

second, longer interaction occurs between the CH in the pyridyl ring with the 

same non-coordinated triazole nitrogen atom of the opposite LpytMe ligand 

(C20-H20···N2 3.61 Å, Figures A2.64 and Table A2.6). When Z = F, three H-

bonds are directly engaged by the fluorine substituents with three different 

CH (C9-H9···F1 3.42 Å, C12-H12···F1 3.31 Å, C17-H17···F1 3.61 Å, Figures A2.62 

and Table A2.5). Three more are engaged by the CH3NO2 solvent molecule: 

from CH3 ending in nitromethane is H-bonded by non-coordinating triazole 

nitrogen (C23-H23B···N2 3.46 Å) and NCBH3 nitrogen atom (C23-H23C···N5 

3.60 Å); also, a H-bond between is observed between the oxygen atom from 

the NO2 ending and the substituted pyridyl ring (C4-H4···O1 3.31 Å, Figures 

A2.62-A2.63 and Table A2.5). 
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Table A2.1. Crystal data and structure refinement details for the four [Fe(LpytZ)2(NCBH3)2]·2CHCl3. 

Empirical 

formula 

[Fe(LpytCF3)2 

(NCBH3)2] 

· 2CHCl3 

[Fe(LpytBr)2 

(NCBH3)2] 

[Fe(LpytF)2 

(NCBH3)2] 

·2CH3NO2 

[Fe(LpytMe)2 

(NCBH3)2] 

·2CHCl3 

Formula weight 1135.03 918.10 918.36 1027.08 

Temperature/K 100(2) 100(2) 100(2) 100(2) 

Crystal system triclinic triclinic triclinic triclinic 

Space group P-1 P-1 P-1 P-1 

a [Å] 9.5845(3) 8.9066(4) 8.3350(6) 9.3639(4) 

b [Å] 11.4336(8) 9.4038(3) 11.0887(8) 11.3127(4) 

c [Å] 11.7405(7) 13.0691(6) 12.5957(6) 11.9801(4) 

α [°] 91.135(5) 70.425(4) 90.610(5) 91.075(3) 

β [°] 94.601(4) 75.239(4) 92.312(5) 95.484(3) 

γ [°] 100.639(4) 82.491(3) 106.356(7) 102.546(3) 

Volume [Å3] 1259.61(12) 996.08(8) 1115.83(13) 1232.07(8) 

Z 1 1 1 1 

ρcalc [g/cm3] 1.496 1.531 1.367 1.384 

μ [mm-1] 5.907 5.744 3.258 5.797 

F(000) 576.0 464.0 476.0 528.0 

Crystal size 

[mm3] 

0.19 × 0.07 × 

0.07 

0.009 × 0.05 × 

0.08 

0.004 × 0.007 × 

0.012 

0.008 × 0.01 × 

0.013 

Radiation 
CuKα 

(λ = 1.54184) 

CuKα 

(λ = 1.54184) 

CuKα 

(λ = 1.54184) 

CuKα 

(λ = 1.54184) 

2Θ range [°] 7.558-145.322 10.210-152.546 8.312-154.182 10.608 -152.186 

Reflections 

collected 
8656 6308 7840 9638 

Independent 

reflections 
4834 4026 4482 4993 

Data/restraints 

/parameters 
4834/ 0/ 362 4026/ 0/ 272 4482/ 0/ 317 4993/ 0/ 340 

Goof [F2] 1.046 1.010 1.068 1.203 

R1 [I>=2σ (I)] 0.0547 0.0351 0.0886 0.0398 

wR2 [all data] 0.1479 0.1114 0.2610 0.1329 

Largest diff. peak 

/hole [eÅ-3] 
1.35 to -0.89 0.8 to -0.85 2.1 to -0.86 0.49 to -0.68 
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Table A2.2. Summary of key structural parameters for the four [Fe(LpytZ)2(NCBH3)2]·solvent complexes. 

 
[Fe(LpytCF3)2(NCBH3)2]

·2CHCl3 
[Fe(LpyBr)2(NCBH3)2] 

[Fe(LpyF)2(NCBH3)2]

·2CH3NO2 

[Fe(LpyMe)2(NCBH3)2]

·2CHCl3 

av. Fe-Ntriazole (Å) 1.957 Å 1.959 Å 1.982 Å 1.974 Å 

av. Fe-Npyridine(Å) 1.999 Å 1.987 Å 2.005 Å 2.010 Å 

av. Fe-NNCBH3(Å) 1.933 Å 1.945 Å 1.945 Å 1.938 Å 

av. Fe-N(Å) 1.963 Å 1.964 Å 1.977 Å 1.974 Å 

Distortion angle (Σ°) 44.9° 44.9° 70.8° 43.0° 

Temperature 100 K 100 K 100 K 100 K 

Spin State LS LS LS LS 

Ntriazole-Fe-Nazine angle (°) 80.2° 80.1° 79.9° 80.3° 

Ntriazole-Fe-Nazine dihedral angle 

(°) 
3.06° 0.24° 6.21° 0.91° 

Fe-NCBH3 angle (°) 178.3° 174.7° 166.37° 178.6° 

triazole-tolyl ring dihedral 

angle (°) 
78.7° 76.0° 75.2° 73.0° 

triazole-phenyl ring dihedral 

angle (°) 
24.2° 3.6° 41.5° 21.6° 
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Table A2.3. Non-classical H-bonds observed in [Fe(LpytCF3)2(NCBH3)2]·2CHCl3. Q = -x, -y, -z. R = 1-

x, -y, -z. S = -x, 1-y, -z. T = -x, -y, 1-z. 

D-H···A D-A (Å) H···A (Å) D-H···A (°) 

C20Q-H20Q···F1 3.775 2.980 144.3 

C1-H1···N2Q 3.070 2.266 144.4 

C8-H8···Cl1 3.569 2.825 137.8 

Table A2.4. Non-classical H-bonds observed in [Fe(LpytBr)2(NCBH3)2]. Q = -x, -y, -z. R = 1-x, -y, -z. S 

= -x, 1-y, -z. T = -x, -y, 1-z. 

D-H···A D-A (Å) H···A (Å) D-H···A (°) 

C1-H1··· N2S 3.070      2.266  144.4 

C20T-H20T··· Br1 4.690 3.864 149.7 

Table A2.5. Non-classical H-bonds observed in [Fe(LpytF)2(NCBH3)2]·2CH3NO2. Q = -x, -y, -z. R = 1-

x, -y, -z. S = -x, 1-y, -z. T = -x, -y, 1-z. 

D-H···A D-A (Å) H···A (Å) D-H···A (°) 

C17-H17···F1T 3.607 2.736 156.4 

C9-H9···F1R 3.423 2.812 124.3 

C12-H12···F1Q 3.314 2.592 134.8 

C1-H1···N2S 3.117 2.331 141.9 

C22-H22B···N2S 3.461 2.533 162.6 

C22-H22C···N5S 3.604 2.953 126.3 

C4-H4···O1Q 3.305 2.533 140.7 

C20S-H20S···F1 5.590 5.207 109.4 

Table A2.6. Non-classical H-bonds observed in [Fe(LpytMe)2(NCBH3)2]·2CHCl3. Q = -x, -y, -z. R = 1-x, 

-y, -z. S = -x, 1-y, -z. T = -x, -y, 1-z. 

D-H···A D-A (Å) H···A (Å) D-H···A (°) 

C1-H1···N2Q 3.107  2.276                 145.6  

C19T-H19T···N2 3.612  2.998  123.7  

C13-H13···Cl1 3.480  2.741             144.5  
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Figure A2.58. Crystal structure of [Fe(LpytCF3)2(NCBH3)2·2CHCl3]. Blue dotted lines report the non-

classical C-H···X H-bond interactions (intramolecular H-bonds: C1-H1···N2Q and C20Q-H20Q···F1); 

red dotted lines report complex-solvent H-bond interactions (intermolecular H-bonds: C8-H8···Cl1). 

See Table S3. Colour code: Fe orange, N blue, C black, Cl green, F light blue, B pink, H white.   

 

Figure 2.59. Unit cell crystal packing of [Fe(LpytCF3)2(NCBH3)2]·2CHCl3, one mononuclear complex per 

unit cell. Two disordered half molecules of CHCl3 are highlighted in green. Colour code: Fe orange, N 

blue, C black, Cl green, F light blue, B pink, H white.   
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Figure A2.60. Crystal structure of [Fe(LpytBr)2(NCBH3)2]. Blue dotted lines report the non-classical C-

H···X H-bond interactions (intramolecular H-bond: C1-H1···N2S). Details in Table S4. Note: C20T-

H20T···Br1 3.864 Å, C20T···Br1 4.690 Å, C20T-H20T···Br1 149.67°, so is at best a weak 

intramolecular interaction in this case (cf the Z = CF3 case, Figure S58). Colour code: Fe orange, N 

blue, C black, Br crimson, B pink, H white.   

 

Figure A2.61. Unit cell crystal packing of [Fe(LpytBr)2(NCBH3)2], one mononuclear complex per unit 

cell. Colour code: Fe orange, N blue, C black, Br crimson, B pink, H white. 
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Figure A.262. Crystal structure of [Fe(LpytF)2(NCBH3)2]·2CH3NO2. (a) Blue dotted lines report the 

non-classical C-H···X interactions (intramolecular H-bonds: C1-H1···N2S; intermolecular H-bonds: 

C9-H9···F1R, C12-H12···F1Q, C17-H17···F1T); red dotted lines report complex-solvent H-bond 

interactions (H-bonds: C22-H22B···N2S, C22-H22C···N5S, C4-H4···O1Q). See Table S5. (b) Blue 

dotted lines highlight the intermolecular non classical H-bonds made by the Z = F substituents (C20S-

H20S···F1 5.207 Å, C20S···F1 5.590 Å, , C20S···F1 109.4°), which contrast with the intramolecular 

non classical H-bonds made by the Z = CF3 substituents (Figure S58, Table S3) and Z = Br substituents 

(Figure S60, Table S4). Colour code: Fe orange, N blue, C black, F light blue, B pink, H white, O red.   
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Figure A2.63. Unit cell crystal packing of [Fe(LpytF)2(NCBH3)2], two mononuclear complex per unit 

cell. Two disordered half molecules of CH3NO2 are highlighted in red. Colour code: Fe orange, N blue, 

C black, F light blue, B pink, H white, O red. 
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Figure A2.64. Crystal structure of [Fe(LpytMe)2(NCBH3)2·2CHCl3. Blue dotted lines report the non-

classical C-H···X interactions (intramolecular H-bonds: C1-H1···N2Q; intermolecular H-bonds: C19T-

H19T··· N2); red dotted lines report complex-solvent H-bond interactions (H-bonds: C13-H13···Cl3). 

See Table S6. Colour code: Fe orange, N blue, C black, Cl green, B pink, H white.   

 

Figure A2.65. Unit cell crystal packing of [Fe(LpytMe)2(NCBH3)2]·2CHCl3, one mononuclear complex 

per unit cell. Two disordered molecules of CHCl3 are highlighted in green. Colour code: Fe orange, N 

blue, C black, Cl green, B pink, H white. 
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A2.11. Solid State Magnetic 
Measurements 

 

The solid state magnetic susceptibilities were measured from 50−400−50 

K for each [FeII(LpytZ)2(NCBH3)2]·nH2O (measuring in 10 K steps, ramping 

between steps at 2 K min−1). These measurements are obtained in settle 

mode (the instrument considers the temperature “settled” after 1 min of 

the temperature being within the smaller value of ±0.5 K or ±0.5% of the 

target value). Scan rate study of χMT vs T for 

[Fe(LpytCF3)2(NCBH3)2]·0.5H2O from 150 to 250 K was obtained in sweep 

mode. In this instrumental set up, χMT measurements are collected 

continuously as the temperature was swept at different rates (20, 10, 5, 2 

and 0.2 K min-1). Measurements were obtained by applying a magnetic 

field of 0.1 T with a Quantum Design Physical Property Measurement 

System equipped with a vibrating sample mount (VersaLab). The data 

were corrected for the diamagnetism of the capsule and of the sample 

((−M × 0.5) ×10−6 cm3mol−1).119 

 

 

 

Table A2.7. Reported obtained T1/2 from solid state measurements on [Fe(LpytZ)2(NCBH)3]·xH2O 

family.  

[Fe(LpytZ)2(NCBH3)2]·xH2O T1/2 (K) 

[Fe(LpytCF3)2(NCBH3)2]·0.5H2O T1/2↓ = 203 K, T1/2↑ = 213 K; ΔT1/2 = 10 K 

[Fe(LpytBr)2(NCBH3)2]·0.5H2O LS 

[Fe(LpytF)2(NCBH3)2]·1H2O 290 

[Fe(LpytMe)2(NCBH3)2]·0.5H2O 300 
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Figure A2.66. χMT versus T plot for a solid sample of [Fe(LpytCF3)2(NCBH3)2]·0.5H2O from 50 to 400 

K. Cycle was performed by cooling first (down triangles), then heating (up triangles) for three cycles, 

in 10 K steps, changing temperatures at 2 K min-1, in settle mode. 

 

Figure A2.67. First derivative of χMT versus T plot for a solid sample of [Fe(LpytCF3)2(NCBH3)2]·0.5H2O 

from 50 to 400 K. Cycle was performed by cooling first (down triangles), then heating (up triangles) in 

10 K steps, changing temperatures at 2 K min-1, in settle. 
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Figure A2.68. Scan rate study (20 to 0.2 K min-1) of χMT vs T for [Fe(LpytCF3)2(NCBH3)2]·0.5H2O from 

150 to 250 K in sweep mode. 

 
Figure A2.69. Plots of T½ values obtained from the cooling (blue, at 20 K·min-1 (T½(20)) and 

extrapolated at limit speed of 0 K·min-1 (T½(0)) and heating (red, at 20 K·min-1 (T½(20)) and 

extrapolated at limit speed of 0 K·min-1 (T½(0)) modes from magnetic experiments run at different 

scan rates (in sweep mode) for [Fe(LpytCF3)2(NCBH3)2]·0.5H2O. The lines shown were obtained by 

linear fitting of the magnetic data, as reported by Brooker et al.95-96 
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Figure A2.70. χMT versus T plot for a solid sample of [Fe(LpytBr)2(NCBH3)2]·0.5H2O from 50 to 400 K. 

Cycle was performed by cooling first (down triangles), then heating (up triangles) for three cycles, in 

10 K steps, changing temperatures at 2 K min-1, in settle. 
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Figure A2.71. χMT versus T plot for a solid sample of [Fe(LpytF)2(NCBH3)2]·1H2O from 50 to 400 K. 

Cycle was performed by cooling first (down triangles), then heating (up triangles) for three cycles, in 

10 K steps, changing temperatures at 2 K min-1, in settle mode. 

 

Figure A2.72. First derivative of χMT versus T plot for a solid sample of [Fe(LpytF)2(NCBH3)2]·1H2O 

from 50 to 400 K. Cycle was performed by cooling first (down triangles), then heating (up triangles) in 

10 K steps, changing temperatures at 2 K min-1 , in settle mode. 
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Figure A2.73. χMT versus T plot for a solid sample of [Fe(LpytMe)2(NCBH3)2]·0.5H2O from 50 to 400 K. 

Cycle was performed by cooling first (down triangles), then heating (up triangles) for three cycles, in 

10 K steps, changing temperatures at 2 K min-1, in settle mode. 

 

Figure A2.74. First derivative of χMT versus T plot for a solid sample of [Fe(LpytMe)2(NCBH3)2]·0.5H2O 

from 50 to 400 K. Cycle was performed by cooling first (down triangles), then heating (up triangles) in 

10 K steps, changing temperatures at 2 K min-1, in settle mode. 
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A2.12. Solution Phase Magnetic 
Measurements 

The complex solutions for this study were prepared by reacting a precisely 

known mass of [FeII(pyridine)4(NCBH3)2] in 0.500 mL of CDCl3 with the 

corresponding LpytZ ligand in a 6:1 LpytZ / iron(II) ratio.83 Solution magnetic 

susceptibility data were obtained from these CDCl3 solutions using the Evans 

1H-NMR method348 on a Varian500 AR with a 5 mm OneProbe with a variable 

temperature controller between 243 to 313 K in intervals of 5 K. 

A diamagnetic correction for the sample (-0.5 x 10-6),119 and a correction 

for the variation of the density of the solvent with temperature,120 were applied 

to each dataset (Table A2.9). The derived parameters, i.e., ΔH, ΔS, and the least 

squares fittings were obtained by modelling each dataset as a gradual and 

complete SCO using the regular solution model (Equation A2.1)119, 216-217 with 

good fits obtained. These were carried out using OriginPro version 9.1.0 from 

OriginLab Corporation. For all data, a maximum χMT value (χMT(MAX)) of 3.5 

cm3·K·mol-1 was used in Equation A2.1. 119, 216-217  

Note that the expected error in temperature in an VT-NMR instrument 

is ±1 K, and error associated with the Evan’s method determination of χMT(T) 

is 5%, so significant errors are expected in the derived parameters (Table 

A2.8).92 

Excel was also employed, to determine 95% confidence intervals and 

help assign appropriate errors to the parameters obtained from the fit (Figures 

A2.83-A2.87). This error analysis in the gradual SCO fitting was evaluated 

using the non-linear regression of the experimental data as reported by Brown 

and co-workers.349 
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𝜒𝑀𝑇(𝑇) =  
𝜒𝑀𝑇(𝑀𝐴𝑋)

1 + exp (
𝛥𝐻
𝑅𝑇

−
𝛥𝑆
𝑅 )

 (A2.1) 

𝑇1/2 =  
𝛥𝐻

𝛥𝑆
 (A2.2) 

A2.12.1. Evans Method VT 1H-NMR 
Spectra 

Table A2.8. Reported results obtained by fitting points obtained by Evan’s method measurement on 

regular solution SCO phenomenon. First line report values of change in enthalpy (ΔH); in the second 

line the change in entropy (ΔS) is reported. In the bottom line the correlation factor R2 for the fitting 

curves is reported. 

 [Fe(LpytCF3)2 

(NCBH3)2] 

[Fe(LpytBr)2 

(NCBH3)2] 

[Fe(LpytF)2 

(NCBH3)2] 

[Fe(LpytMe)2 

(NCBH3)2] 

ΔH / J mol-1 -35806.0±3353.7 -9645.8±292.4 -22095.1±201.6 -20526.4±807.1 

ΔS / J mol-1 -95.7±10.44 -32.8±1.1 -78.7±0.7 -73.7±2.9 

T1/2 374.1±23.3 293.9±0.2 280.6±3.5 278.5±1.0 

R2 0.96 0.99 0.99 0.99 
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Table A2.9. Molar magnetic susceptibility (χMT in cm3·K·mol-1) values calculated from 1H NMR data 

by Evans method at different temperatures in CDCl3 solution. Note that all concentrations are based 

on moles of [Fe(pyridine)4(NCBH3)2], and each solution has a LpytZ/iron(II) ratio of 6:1 equivalents (see 

Section A2.11). Evans method has a relative error of 5%,92 therefore significant errors associated with 

the data fitting discussed (Figures A2.83-A2.86). Second column from the left reports the viscosity of 

CDCl3 solvent at in the range of temperatures employed for the 1H NMR measurements. 

T η  χMT (cm3·K·mol-1) 

  CF3 Br F Me 

313 1451.73 0.41658  2.89185 2.82624 

308 1461.09 0.29182 2.34856 2.77622 2.75084 

303 1470.35 0.2342 2.29631 2.66389 2.66911 

298 1479.52 0.19241 2.24484 2.55476 2.59229 

293 1488.6 0.14416 2.23836 2.38442 2.46143 

288 1497.6 0.12363 2.14607 2.23578 2.36266 

283 1506.51 0.08985 2.0756 2.09228 2.20489 

278 1515.35 0.06519 1.99741 1.93878 1.99378 

273 1524.1 0.06402 1.90116 1.76164 1.85119 

268 1532.78 0.06285 1.8043 1.5628 1.65362 

263 1541.39 0.06167 1.70355 1.44317 1.4549 

258 1549.93 0.0605 1.59594 1.24642 1.25553 

253 1558.4  1.49046 1.08198  

248 1566.8  1.40171   

243 1575.14  1.34283   
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VT 1H-NMR of FeII(LpytCF3)2(NCBH3)2 

 

 

Figure A2.79. Stacked spectra, obtained by the Evans 1H NMR method, from 258 to 313 K for complex 

[FeII(LpytCF3)2(NCBH3)2]. Note that the solution was prepared using 6 equivalents of LpytCF3 ligand per 

equivalents of Fe(II). 
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VT 1H-NMR of FeII(LpytBr)2(NCBH3)2 

 

 

Figure A2.80. Stacked spectra, obtained by the Evans 1H NMR method, from 243 K to 308 K for 

complex [FeII(LpytBr)2(NCBH3)2]. Note that the solution was prepared using 6 equivalents of LpytBr ligand 

per equivalents of Fe(II). 
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VT 1H-NMR of FeII(LpytF)2(NCBH3)2 

 

 

Figure A2.81. Stacked spectra, obtained by the Evans 1H NMR method, from 253 K to 313 K for 

complex [FeII(LpytF)2(NCBH3)2]. Note that the solution was prepared using 6 equivalents of LpytF ligand 

per equivalents of Fe(II). 
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VT 1H-NMR of FeII(LpytMe)2(NCBH3)2 

 

Figure A2.82. Stacked spectra, obtained by the Evans 1H NMR method, from 258 K to 313 K for 

complex [FeII(LpytMe)2(NCBH3)2]. Note that the solution was prepared using 6 equivalents of LpytMe 

ligand per equivalents of Fe(II). 
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A2.12.2. Evans Method: Error Analysis 

 

Figure A2.83. ΧMT vs T for [FeII(LpytCF3)2(NCBH3)2] in CDCl3 solution from Evans NMR method 

studies (500 MHz); this graph displays the experimental data points (black squares), and the 95% 

confidence intervals (red and blue) around the fit. 

Table A2.10. Derived parameters obtained by fitting of regular SCO transition (Equation A2.1) in 

ΧMT vs T for [FeII(LpytCF3)2(NCBH3)2] in CDCl3 solution from Evans NMR method studies (500 MHz) 

reported in Figure A2.83. Energies are reported in J mol-1. 

 +’ve deviation experimental  -’ve deviation 

ΔH -26729.9±3019.4 -35806.0±3353.6 -50453.9±2938.4 

ΔS -67.3±9.6 -95.7±10.4 -142.0±8.8 

T 397.4 374.1 355.3 

R2 0.92 0.96 0.99 
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Figure A2.84. ΧMT vs T for [FeII(LpytBr)2(NCBH3)2] in CDCl3 solution from Evans NMR method 

studies (500 MHz); this graph displays the experimental data points (black squares), and the 95% 

confidence intervals (red and blue) around the fit. 

Table A2.11. Derived parameters obtained by fitting of regular SCO transition (Equation A2.1) in 

ΧMT vs T for [FeII(LpytBr)2(NCBH3)2] in CDCl3 solution from Evans NMR method studies (500 MHz) 

reported in Figure A2.84. Energies are reported in J mol-1. 

 +’ve deviation experimental  -’ve deviation 

ΔH -9641.2±291.7 -9645.8±292.4 -9650.4±293.1 

ΔS -32.8±1.1 -32.8±1.1 -32.8±1.1 

T 293.7 293.9 294.1 

R2 0.99 0.99 0.99 
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Figure A2.85. ΧMT vs T for [FeII(LpytF)2(NCBH3)2] in CDCl3 solution from Evans NMR method studies 

(500 MHz); this graph displays the experimental data points (black squares), and the 95% confidence 

intervals (red and blue) around the fit. 

Table A2.12. Derived parameters obtained by fitting of regular SCO transition (Equation A2.1) in 

ΧMT vs T for [FeII(LpytF)2(NCBH3)2] in CDCl3 solution from Evans NMR method studies (500 MHz) 

reported in Figure A2.85. Energies are reported in J mol-1. 

 +’ve deviation experimental  -’ve deviation 

ΔH -22221.9±671.8 -22095.1±705.9 -22089.0±764.8 

ΔS -80.2±2.4 -78.7±2.5 -77.7±2.7 

T 277.3 280.6 284.1 

R2 0.99 0.99 0.99 
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Figure A2.86. ΧMT vs T for [FeII(LpytMe)2(NCBH3)2] in CDCl3 solution from Evans NMR method 

studies (500 MHz); this graph displays the experimental data points (black squares), and the 95% 

confidence intervals (red and blue) around the fit. 

Table A2.13. Derived parameters obtained by fitting of regular SCO transition (Equation A2.1) in 

ΧMT vs T for [FeII(LpytMe)2(NCBH3)2] in CDCl3 solution from Evans NMR method studies (500 MHz) 

reported in Figure A2.86. Energies are reported in J mol-1. 

 +’ve deviation experimental  -’ve deviation 

ΔH -20571.0±789.4 -20526.4±807.2 -20488.6±825.2 

ΔS -74.1±2.9 -73.7±2.9 -73.4±2.9 

T 277.8 278.5 279.2 

R2 0.99 0.99 0.99 
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A2.13. UV-Vis Spectra of 
[Fe(LpytZ)2(NCBH3)2] 

 

UV-Vis studies for all the complexes were carried out in chloroform (Figure 

A2.87). The concentration of samples was 0.04 mM. [Fe(LpytF)2(NCBH3)2] shows 

λmax at 411 and 506 nm; [Fe(LpytCF3)2(NCBH3)2] shows λmax at 520 and 566 nm; 

[Fe(LpytBr)2(NCBH3)2] shows λmax at 495 and 531 nm; [Fe(LpytMe)2(NCBH3)2] 

shows λmax at 450 and 500 nm. The all four other [Fe(LpytZ)2(NCBH3)2] shows an 

extinction coefficient between 1500 and 2500 M-1cm-1 for the higher energy 

transition and between 2000 and 6000 M-1cm-1 for the lower energy transition. 

For all complexes, bands observed in the visible region, originate from charge 

transfer (CT), with large value of molar extinction coefficient. 

 
 

 

 

Figure A2.87. UV-visible spectra (700nm to 350 nm) collected using a 1:6 ratio of 

[Fe(pyridine)4(NCBH3)2] : LpytZ, with [Fe] = 0.5 mM. 
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A2.14. Computational Details 

A2.14.1. Ligand Structures 

 

 

 

Figure A2.88. Five families of ligands focussed on in this study. (a) five of Lazine; (b) five of LpytZ; (c) 

twelve of pyboxX; (d) seven of pytacnX; (e) eleven of bppX; (e) four of bppY. 
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A2.14.2. Calculated NA-NMR Chemical 
Shifts 

Table A2.14. Summary table reporting comparison between Brooker et al. previous study (central 

column) and the one applied in this study. Deviation to experimental 15N NMR chemical shift is also 

reported for both the computational protocols. 

 
Measured 

15N-NMR 

B3LYP/   6-

31G(d) 

CPCM(CHCl3) 

TPSS/pcSseg-2-aug-cc-pVTZ/ 

RIJCOSX/D3BJ/CPCM(CH3Cl) 
T1/2 (K) 

  15N NMR Err% 15N NMR Err%  

L4pyrimidine 288 269 6.6% 286 0.7% 23283 

L2pyrimidine 290 282 2.8% 291 0.3% 24283 

LpytH 311 300 3.9% 308 1.0% 28883 

Lpyrazine 334 315 5.7% 321 3.9% 31583 

Lpyridazine 398 402 1.0% 401 0.8% 45583 
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Table A2.15. Reported values of the NA chemical shift for the new four LpytZ ligands obtained by 

calculation using improved protocol (TPSS/pcSseg-2/aug-cc-pVTZ/ RIJCOSX/D3BJ/CPCM(CHCl3)) 

and by experimental measurement (d = direct method, i = indirect method), to the respective 

[Fe(LpytZ)(NCBH3)2] complex. 

 Solvent 

δNA 

(ppm) 

Measured 

δNA 

(ppm) 

Calculated 

Err% T1/2 

LpytMe CDCl3 312 (d) 310 0.6% 279 

LpytF CDCl3 319 (i) 315 1.3% 281 

LpytBr CDCl3 318 (d/i) 312 1.6% 294 

LpytCF3 CDCl3 314 (d) 307 2.2% 374 

 

Table A2.16. Results calculated δNA (ppm) for the twelve pyboxX family calculated using the 

TPSS/pcSseg-2/aug-cc-pVTZ/ RIJCOSX/D3BJ/CPCM(Acetone) computational protocol. 

 Solvent δNA (ppm) T1/2 

pybox-X-4Py CO(CD3)2 277 31022 

pybox-X-3Py CO(CD3)2 273 27022 

pybox-X-2Th CO(CD3)2 269 26022 

pybox-X-3Th CO(CD3)2 269 24022 

pybox-X-Cl CO(CD3)2 274 27022 

pybox-X-Br CO(CD3)2 272 28022 

pybox-X-H CO(CD3)2 279 26022 

pybox-X-OMe CO(CD3)2 258 17022 

pybox-X-Ph CO(CD3)2 272 24022 

pybox-X-SMe CO(CD3)2 261 21022 

pybox-X-N3 CO(CD3)2 268 21522 

pybox-X-Me CO(CD3)2 271 22022 
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Table A2.17. Results calculated δNA (ppm) for the seven pytacnX family calculated using the 

TPSS/pcSseg-2/aug-cc-pVTZ/ RIJCOSX/D3BJ/CPCM(Acetonitrile) computational protocol. 

Name Solvent δNA (ppm) μeff 

Pytacn-X-NO2 CD3CN 320 0.0024 

Pytacn-X-CO2Et CD3CN 303 0.7824 

Pytacn-X-Me CD3CN 281 1.2424 

Pytacn-X-H CD3CN 291 1.2624 

Pytacn-X-Cl CD3CN 284 1.7124 

Pytacn-X-OMe CD3CN 267 2.0924 

Pytacn-X-NMe2 CD3CN 249 2.6224 
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Table A2.18. Results calculated δNA (ppm) for the fourteen bppX,Y family calculated using the 

TPSS/pcSseg-2/aug-cc-pVTZ/ RIJCOSX/D3BJ/CPCM(CH3Cl) computational protocol. 

 Solvent δNA (ppm) T1/2 

bpp-X-H CO(CD3)2 235189 248 

bpp-X-Br CO(CD3)2 2323 234 

bpp-X-CCPh-CN CO(CD3)2 2323 259 

bpp-X-CCPh CO(CD3)2 23023 245 

bpp-X-CCPh-NO2 CO(CD3)2 23223 261 

bpp-X-Cl CO(CD3)2 23023 226 

bpp-X-CO2H CO(CD3)2 24423 281 

bpp-X-OH CO(CD3)2 21723 164 

bpp-X-OMe CO(CD3)2 21623 158 

bpp-X-SMe CO(CD3)2 222350 194 

bpp-X-SOMe CO(CD3)2 235350 284 

Bpp-Y-H CO(CD3)2 23523 248 

bpp-Y-CO2Et CO(CD3)2 24023 246 

bpp-Y-tBu CO(CD3)2 23923 251 

bpp-Y-CH2OH CO(CD3)2 23623 259 
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A2.15. Correlations 

 

Figure A2.89. Correlations between the T1/2 of the [FeII(bppX,Y)2]2+ complexes and the measured δNA 

chemical shift for the corresponding tridentate ligand bppX,Y. Correlation lines are shown for: (purple) 

for all fourteen compounds with no distinction made between X and Y substituents (R2 = 0.80; T1/2 = 

4.29∙δNA – 756.29); and then taking in account only the (blue; T1/2 = -0.96∙δNA – 478.37) four Y-

substituted (R2 = 0.15) and the (red; T1/2 = 5.23∙δNA – 1169.24) eleven X-substituted (R2 = 0.87) 

compounds. 
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Figure A2.90. Correlation between the calculated 15N chemical shift δNA of the free ligand for 

each of the families reported in this study against the relative value of the Hammett parameter 

σ+ of the substituent on the pyridine ring (note: a substituent with a positive Hammett 

parameter is EWG, whilst one with a negative value is EDG; H is by definition 0). Solid lines 

for ligands with para substituents (σp is used in this case); dashed lines for ligands with meta 

substituents (σm is used in this case). Good correlation found for a family of eleven bppX ligands 

(δNA = 26.73∙σ – 226.18) and seven pytacnX ligands (δNA = 44.13∙σ – 283.46); poor correlation 

found for four bppY ligands (δNA = 4.85∙σ – 236.91); twelve pyboxX (δNA = 19.13∙σ – 268.90) 

and five LpytZ (δNA = 3.28∙σ – 309.84). 
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Figure A2.91. Reported correlation between the measured T1/2 for the new family of LpytZ versus the 

relative value of Hammett parameter σm (blue dots, R2 = 0.22, σm = 0.003∙T1/2 -0.78) and the Hammett 

parameter σ+m (black dots, R2 = 0.32, σ+m = 0.004∙T1/2 -1.04).
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A3.1. Geometry Optimisation 
Protocol  

 

  

Figure A3.1. Classic qualitative representation of the ladder of σ- and π-MO energies (centre) for a 

perfect octahedral (Oh symmetry) ML6 complex which results from overlap of the valence AOs of M 

(left) with the L6 MOs of the same symmetry (right). For the sake of readability: on the left the M AO’s 

are shown as already split into Eg and T2g (but should be degenerate), and on the right the six L6 

symmetry adapted linear combinations (SALCs) forming the σ-bonds with M are not shown as 

energetically degenerate (but should be). 
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As a first step, accurate structures for these complexes in both the low-spin 

(LS) and high-spin (HS) states are required, so density functional theory ( DFT) 

calculations were performed, with the ORCA 4.1 software package,258 to 

determine the optimal computational setup required to obtain these (Table 

A3.1, Figure 3.2).105 Four different functionals (B3LYP, BP86, revPBE, RPBE)159 

were tested, as well as the possible inclusion of dispersion effects, via a D3 

dispersion correction including Becke-Johnson damping (BJ),315 and of solvent 

effects (CHCl3), by using the conductor-like polarizable continuum model 

(CPCM).265 To determine the best combination of these, the optimised 

structures obtained were compared to the single-crystal X-ray structure data 

available for [FeII(Lpyridine)2(NCBH3)2] in both the LS and HS states,105 with 

particular attention given to three key parameters: Fe-N distance, Fe-

N≡C(BH3) angle and the root-mean-square-deviation (RMSD) of all 

coordinates (Table A3.2). Deviations from the experimentally observed linear 

Fe-N≡C(BH3) were observed for most of the tested combinations, especially 

when the complex was in the paramagnetic HS state (see Table A3.2 and 

Figures A3.2-A3.9). The best combination was determined to be BP86-

D3(BJ)/def2-TZVPP+CPCM(CHCl3).263, 341 i.e. use of a BP86 functional, with D3 

dispersion correction (including BJ damping), def2-TZVPP basis set,261-262 and 

the solvent modelled by CPCM. This protocol was therefore the one used to 

provide all of the optimised structures used as the start point for the 

subsequent EDA-NOCV analyses performed using ADF package269 (Tables 

A3.1-A3.3). 
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Table A3.1. Summary of the combinations of computational features used to determine the best 

computational set up for the geometry optimisation using ORCA code, with the best combination 

highlighted. 

Name DFT Functional Basis Set 
Dispersion 

Model 

CPCM 

Solvent 

 B3LYP BP86 revPBE RPBE TZVPP D3BJ CHCl3 

T.B3 X    X   

T.B3.D X    X X  

T.B3.D.s X    X X X 

T.BP  X   X   

T.BP.D  X   X X  

T.BP.s  X   X  X 

T.BP.D.s  X   X X X 

T.RV   X  X   

T.RV.D   X  X X  

T.RV.s   X  X  X 

T.RV.D.s   X  X X X 

T.RP    X X   

T.RP.D    X X X  

T.RP.s    X X  X 

T.RP.D.s    X X X X 
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Table A3.2. RMSD values (Å) and Fe-NCBH3 Axial Angle – referred to crystal structure of both 

candidates – of the final optimised structures of [Fe(Lpyridine)2(NCBH3)2] in both the HS and LS states, 

with the method of choice highlighted in blue. 

Name HS LS 

 RMSD Fe-NC(BH3) Angle RMSD Fe-(NCBH3) Angle 

REF - 175.44 - 177.61 

T.B3 0.1867 156.6 0.2187 166.98 

T.B3.D 0.1876 156.8 0.2976 153.37 

T.B3.s 0.1807 155.6 0.2357 171.45 

T.B3.D.s 0.1827 155.7 0.2491 169.44 

T.BP 0.3970 156.72 0.2959 174.39 

T.BP.D 0.3218 149.39 0.4893 179.07 

T.BP.s 0.1978 177.50 0.2457 153.41 

T.BP.D.s 0.2142 178.97 0.2602 177.99 

T.RV 0.3977 158.54 0.3615 169.13 

T.RV.D 0.3254 141.00 0.4893 154.35 

T.RV.s 0.2019 177.71 0.2374 179.24 

T.RV.D.s 0.3371 152.84 0.2477 177.15 

T.RP 0.1815 158.16 0.2959 168.68 

T.RP.D 0.1787 148.79 0.4893 157.19 

T.RP.s 0.1027 177.70 0.2457 179.38 

T.RP.D.s 0.2602 153.20 0.1152 178.28 
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Table A3.3. Fe-N bond distances (Å) and Fe-N≡C(BH3) angles in the LS (HS) states of the experimentally determined structures of [Fe(Lpyridine)2(NCBH3)2] and 

in the calculated structures of all five [Fe(Lazine)2(NCBH3)2] complexes obtained by DFT at the BP86-D3(BJ)/def2-TZVPP (+CPCM) level of theory, along with 

the observed T1/2 and calculated δNA chemical shift.  

Lazine 
Spin 

State 
 

Fe-NA 

(Å) 
Fe-Ntr (Å) Fe-NCBH3 (Å) Fe-N≡CBH3 (˚) T1/2 (K) 

δNA 

(ppm) 

Lpyridine HS 
Exp. 

Calc. 

2.02 

(2.18) 

1.98 

(2.12) 

1.95 

(2.14) 

177.6 

(175.3) 
28883 300 

Lpyridine LS 
Exp. 

Calc. 

1.99 

(2.15) 

1.95 

(2.13) 

1.90 

(2.10) 

178.2 

(179.2) 

L4pyrimidine LS 
Exp. 

Calc. 

1.99 

(2.16) 

1.94 

(2.13) 

1.90 

(2.09) 

179.3 

(179.2) 
23283 269 

L2pyrimidine LS 
Exp. 

Calc. 

1.98 

(2.15) 

1.94 

(2.13) 

1.90 

(2.09) 

179.0 

(179.0) 
26283 282 

Lpyrazine LS 
Exp. 

Calc. 

1.97 

(2.15) 

1.95 

(2.13) 

1.90 

(2.09) 

178.3 

(179.3) 
32783 327 

Lpyridazine LS 
Exp. 

Calc. 

1.95 

(2.15) 

1.95 

(2.15) 

1.90 

(2.09) 

177.6 

(179.3) 
45583 402 
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Legend: 

RED – crystalline structure 

YELLOW – B3.D.s 

BLUE – B3 

CYANO – B3.D 

GREEN – B3.s 

Figure A3.2. Superimposed structures for HS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a B3LYP density functional alone (blue), or in combination with other 

terms: worst combination B3LYP+D3(BJ) (cyan); B3LYP +CPCM (yellow); optimal combination 

B3LYP + D3(BJ)+CPCM (green). 

 

 

 

 

 

 

Legend: 

RED – crystalline  

YELLOW – BP.D.s 

BLUE – BP 

CYANO – BP.D 

GREEN – BP.s 

Figure A3.3. Superimposed structures for HS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a BP86 density functional alone (blue), or in combination with other 

terms: worst combination BP86+D3(BJ) (cyan); BP86+CPCM (yellow); optimal combination 

BP86+ D3(BJ)+CPCM (green). 
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Legend: 

RED – crystalline structure 

YELLOW – RV.D.s 

BLUE – RV 

CYANO – RV.D 

GREEN – RV.s 

Figure A3.4. Superimposed structures for HS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a revPBE density functional alone (blue), or in combination with other 

terms: worst combination reVPBE+D3(BJ) (cyan); revPBE +CPCM (yellow); optimal combination 

BP86+ D3(BJ)+CPCM (green). 

 

 

 

 
 

Legend: 

RED – crystalline structure 

YELLOW – B3.D.s 

BLUE – B3 

CYANO – B3.D 

GREEN – B3.s 

Figure A3.5. Superimposed structures for HS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a RPBE density functional alone (blue), or in combination with other 

terms: worst combination RPBE+D3(BJ) (cyan); RPBE+CPCM (yellow); optimal combination 

RPBE + D3(BJ)+CPCM (green). 
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Legend: 

RED – crystalline structure 

YELLOW – B3.D.s 

BLUE – B3 

CYANO – B3.D 

GREEN – B3.s 

Figure A3.6. Superimposed structures for LS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a B3LYP density functional alone (blue), or in combination with other 

terms: worst combination B3LYP+D3(BJ) (cyan); B3LYP +CPCM (yellow); optimal combination 

B3LYP + D3(BJ)+CPCM (green). 

 

 

 

 
 

Legend: 

RED – crystalline structure 

YELLOW – BP.D.s 

BLUE – BP 

CYANO – BP.D 

GREEN – BP.s 

Figure A3.7 Superimposed structures for LS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a BP86 density functional alone (blue), or in combination with other 

terms: worst combination BP86+D3(BJ) (cyan); BP86+CPCM (yellow); optimal combination 

BP86+ D3(BJ)+CPCM (green). 
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Legend: 

RED – crystalline structure 

YELLOW – B3.D.s 

BLUE – B3 

CYANO – B3.D 

GREEN – B3.s 

Figure A3.8. Superimposed structures for LS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a revPBE density functional alone (blue), or in combination with other 

terms: worst combination reVPBE+D3(BJ) (cyan); revPBE +CPCM (yellow); optimal combination 

BP86+ D3(BJ)+CPCM (green). 

 

 

 

 
 

Legend: 

RED – crystalline structure 

YELLOW – B3.D.s 

BLUE – B3 

CYANO – B3.D 

GREEN – B3.s 

Figure A3.9. Superimposed structures for LS [Fe(Lpyridine)2(NCBH3)2]. The experimentally 

determined single crystal X-ray structure (red) is compared with those calculated by DFT using the 

def2-TZVPP basis set and a RPBE density functional alone (blue), or in combination with other 

terms: worst combination RPBE+D3(BJ) (cyan); RPBE+CPCM (yellow); optimal combination 

RPBE + D3(BJ)+CPCM (green). 
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A3.2. EDA-NOCV Optimisation 
Protocol Development 

A3.2.1. First Application of EDA-NOCV to 
Paramagnetic Complexes  

For the first time, EDA-NOCV analysis is applied here to an open shell 

(paramagnetic) metal system – specifically to the family of 

[FeII(Lazine)2(NCBH3)2] complexes in the high spin state. Here this is done in 

order to observe the changes which occur as a result of a spin state change; 

here from diamagnetic LS FeII (S=0) to paramagnetic HS FeII (S=4). But the 

general approach developed herein should be applicable to other 

paramagnetic complexes. In contrast to the LS FeII systems (above), the 

treatment of the open-shell HS FeII systems requires the use of separate alpha 

and beta electrons during all of the calculations. Hence, the NOCV deformation 

densities Δρi are also split into alpha- and beta- contributions (Figure A3.28); 

they are then merged to obtain the final values (as reported in Table A3.22).  

A3.2.2. Convergence Troubleshooting 

Convergence issues were met in attempts to prepare the [Fe(Lazine)2]2+ and 

[Fe(NCBH3)2] fragments (for fragmentations 3 and 4) with the correct 

occupancy of the d orbitals. To overcome this problem, fractional charges (0.2 

e-, distance from Fe 2.00 Å) were introduced and placed at the coordinates, 

relative to Fe(II), of the coordinating N of the NCBH3- and Lazine ligands.  
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A3.2.3. Symmetry Constraint in 
[FeII(Lazine)2(NCBH3)2] Family 

Starting from the ideal and correct description of the M-L bond in Hoffman’s 

theory21 where fragments are threated in their native electronic state and 

chargeless, EDA-NOCV imposes two method constrains which have forced the 

authors to introduce approximations in order to perform a bond analysis using 

this model. Firstly, according to the Hoffmann M-L bond description,21, 255 

metal fragment should be treated in its own native state (Fe0). This condition 

is impossible to be appliable in EDA-NOCV analysis as the model imposes 

agreement between the oxidation state between each fragment and the final 

system; consequently Fe2+ species must be used instead of Fe0. A possible ‘trick’ 

to overcome this constrain is reported below in fragmentation 5e. Secondly, 

according to the Hoffmann M-L bond description,21, 255 in the most faithful 

description of the M(AOs) prior to bonding the five metal d orbitals would be 

degenerate each other (spherical symmetry). Unfortunately, in order to 

provide the correct d-orbital occupancies, in EDA-NOCV analysis a symmetry 

reduction must be imposed. For all the LS species into this study where a (dxy2 

dxz2 dyz2 dx2-y20dz20) electronic structure is requested a symmetry fall from total 

spherical to Oh is enough (Table A3.4). This symmetry applied to the un-

coordinated metal ion introduces a small bias, due to introduction of a t2g-e.g., 

gap this earlier stage. Moreover, in the case of HS systems the use of Oh 

symmetry is not enough, as it does not grant a unique allocation of the only 

beta electron in the former t2g orbitals. Due to this necessity to allocate 

univocally electrons into fragments orbitals, the Fe2+ fragment was prepared 

by further reducing the symmetry to C2v and choosing to assign the double 

occupation to the dxy orbital (dxy2 dxz1 dyz1 dx2-y21 dz21) (Table A3.6). This choice is 

justified by the fact that the dxy orbital is found to be the lowest orbital in the d 

set in the final complex.  
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A3.2.4. Frag. 1 - LS [FeII (Lazine)2(NCBH3)2] 

This fragmentation (removal of one NCBH3-) enables the details of the bonding 

between the ML5 fragment and a single NCBH3- co-ligand to be probed. ΔEelstat 

and ΔEorb are quantities that give indications of the ionic and covalent character 

of the chemical bond(s) formed between the two fragments, respectively. As 

expected, due to the charged nature of the NCBH3- co-ligand, the interaction is 

mainly ionic (ΔEelstat:ΔEorb = ca. 70:30) (Figure A3.11 and Table A3.17). 

Furthermore, the σ- and π-contributions to ΔEorb are 75:25 ΔEorb,σ:ΔEorb,π. The 

EDA-NOCV analysis reveals three interactions (deformation densities Δρ(i)), 

forming one σ-type-bond and two π-type-bonds between the LS FeII and 

NCBH3- anion (Figure A3.10 and Figure A3.23, Table A3.17). The σ-interaction 

(Figure A3.10, left) occurs between the unoccupied ML5 (MOs) with high 

Fe(dz2) character and the occupied NCBH3 -(MOs) with high NNCBH3 lone pair 

character. The two π-acceptor interactions (Figure A3.10, right, 1 of these) 

occur between the occupied ML5(MOs) with high Fe(dxz and dyz) character and 

the unoccupied NCBH3- (MOs).  

  
Figure A3.10. Plot of the deformation densities Δρ(i) (reported using cut-off on Δρ(i) of 0.003) in 

fragmentation 1 of LS [Fe(Lpyridine)2(NCBH3)2] corresponding to the [TM]←ligand σ-donation (top), the 

[TM]→ligand π-backdonation (bottom). The direction of the charge flow is yellow → turquoise. 

The total of σ- and π-type orbital interactions ΔEorb,σ+π found for the NCBH3- 

co-ligand is practically constant at 50-51 kcal/mol across the entire family 

(independent of the choice of Lazine). Hence the role of the NCBH3- apical 

ligands in the modulation of the SCO process appears constant, as expected 

given that it is Lazine that is being varied (Figure A3.23, Table A3.17). 
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Figure A3.11. Results of EDA-NOCV for LS [Fe(Lpyridine)2(NCBH3)2] using fragmentation 1: (left) 

yellow column is total ΔEint and middle column is components of ΔEint; (right) expansion showing 

contributions to ΔEorb (Equation A3.2). Energies are in kcal/mol.  

A3.2.5. Frag. 2 - LS [FeII (Lazine)2(NCBH3)2] 

Fragmentation 2 considers the removal of a single neutral bidentate Lazine 

ligand (Figure A3.24, Table A3.18). Clearly, this fragmentation was expected 

to be the most valuable with regard to establishing the relative ligand field 

strength of each of these five Lazine ligands. Indeed, EDA-NOCV analysis 

appears to detect the differences in the electronic structure in the Lazine ligands 

(Figure A3.24, Table A3.18), but the differences in energy are very small (4 

kcal/mol), so should be taken with caution. The ΔEorb,σ+π values show a trend 

consistent with the expected ligand field increases across the series (Table 

A3.18), with the L4pyrimidinecomplex (lowest T1/2) experiencing the weakest (-85.2 

kcal/mol) and the Lpyridazine complex (highest T1/2) the strongest ligand field (-

89.0 kcal/mol) (Figure A3.24, Table A3.18), respectively. Both the σ- and π-

contributions, ΔEorb,σ and ΔEorb,π, also follow this trend (Figure A3.24, Table 

A3.18), with both steadily increasing on going from L4pyrimidineacross to Lpyridazine, 

again consistent with the experimentally observed steadily increasing T1/2 (and 
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hence ligand field). The Lpyridine ligand is out of line with this trend, by about 2 

kcal/mol, but this is not surprising, as it is not simply an isomer of the other 

azines: While four of the others are diazines, pyridine contains only one N atom 

in the six-membered ring. The ratio of ΔEorb,σ and ΔEorb,π is about 75:25, 

regardless of the Lazine involved in the M-Lazine bonds being formed (Figure 

A3.24, Table A3.18).  

A3.2.6. Frag. 3 - LS [FeII (Lazine)2(NCBH3)2] 

To avoid spurious contributions to the EDA coming from the presence of 

additional ligands of the same kind still being present in the MLx fragment, 

fragmentations 3 and 4 were trialled. In the case of fragmentation 3 (removal 

of both NCBH3-, Figure A3.25, Table A3.19), the energies of the Fe(d) orbitals 

only experience the different strength of the Lazine ligands within the ML2azine 

fragment, not between the two fragments. The minimal differences observed 

for fragmentation 1 are enhanced enough in fragmentation 3 to give a clearer 

trend of field strength for the family of Lazine complexes. Specifically, ΔEorb,σ+π is 

observed to steadily decrease from L4pyrimidine (-95.7 kcal/mol) through to 

Lpyridazine (-98.1 kcal/mol) as expected from the trend in T1/2 (Figure 3.1, Figure 

A3.25, Table A3.19), with just Lpyridine (-95.0 kcal/mol) representing a 

discontinuity in the trend, as it is not a diazine.  

A3.2.7. Frag. 4 - LS [FeII (Lazine)2(NCBH3)2] 

Moving forward to fragmentation 4 we expect better results, as it better reflects 

the chemical point of view105 - as experimentally Fe(NCBH3)2 reacts with two 

equivalents of Lazine - and it should enhance the differences between the 

members of the Lazine family, whilst maintaining a constant electronic structure 

for the other fragment, ML2 = Fe(NCBH3)2. Analysis of the σ- and π-

contributions (Figure A3.12, Figure A3.26, Table A3.20) shows that the σ-
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interaction is almost three times larger than the π-interaction regardless of 

Lazine. The σ-strength (ΔEorb,σ) of the Lazine ligands follows the order (Table 

A3.20):  

 

Lpyridazine > Lpyrazine > Lpyridine > L4pyrimidine > L2pyrimidine.  

 

 

Figure A3.12. Results of EDA-NOCV for LS [Fe(Lpyridine)2(NCBH3)2] using fragmentation 4: (left) 

yellow column is total ΔEint and middle column is components of ΔEint (Equation A3.1); (right) 

expansion showing contributions to ΔEorb (Equation A3.2). Energies are in kcal/mol.  

This matches the observed order of T1/2 until the pyrimidines are considered; 

they are in the reverse order (Figure 3.1).83 Interestingly the order of the π-

strength (ΔEorb,π) of the Lazine ligands differs (and the values are far from 

showing a monotonic trend):  

 

Lpyrazine > Lpyridazine > L4pyrimidine > L2pyrimidine > Lpyridine. 

 

This order bears no relationship to the observed order of T1/2 values (Figure 

3.1, Table A3.20). Crucial is the collective contribution of ΔEorb,σ and ΔEorb,π, 

ΔEorb,σ+π, as this describes the total effect of the pair of Lazine ligands on the metal 

ion in the final complex correctly (Figure A3.12, Figure A3.26, Table A3.20):  
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Lpyridazine > Lpyrazine > Lpyridine > L2pyrimidine > L4pyrimidine. 

 

Indeed, an extremely strong correlation between the ΔEorb,σ+π term and the 

experimental T1/2 values (R2 = 0.99) is observed (Figure A3.13 red).  

 

 

 

Figure A3.13. Linear correlation between the experimental T1/2 values of the LS [Fe(Lpyridine)2(NCBH3)2] 

complexes and the ΔEorb,σ+π values (sum of σ- and π- character orbital interactions between the 

fragments), using fragmentations 4 (red, R2 = 0.99) and 5b (blue, R2 = 0.99).  
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A3.2.8. Lazine vs 2NCBH3 in Frag. 1 - 4 

Regardless of Lazine, comparisons of ΔEorb,σ+π for fragmentations 1 (NCBH3-: -48 

to -49 kcal/mol) vs 2 (Lazine : -85 to -89 kcal/mol) vs 3 (2xNCBH3- -95 to -98 

kcal/mol) vs 4 (2xLazine -183 to -193 kcal/mol), consistently show that the ΔEorb,σ+π 

for two NCBH3- ligands (-95 to -98 kcal/mol) contributes a similar or slightly 

larger stabilisation energy than one bidentate Lazine (-85 to -97 kcal/mol) does 

(Figures A3.14). This is inconsistent with the above experimental observations, 

which clearly show that bidentate Lazine actually possesses a stronger ligand 

field ligand than 2xNCBH3- (monodentate). This disagreement between the 

theoretical results and experimental data highlights why fragmentations 1-4 

are not good choices for such a comparison. It occurs because of these 

fragmentation choices not sharing a constant reference fragment (and hence 

lacking generality). If the strength of a ligand is to be assessed then this can be 

done only if the rest of the coordination sphere is maintained unaltered. This 

is achieved by employing fragmentation 5, in the form of 5b, to obtain ΔEorb,σ+π. 

 

 

Figure A3.14. ΔEorb,σ+π results (kcal/mol) across fragmentation 1-4; scheme leads comparing theoretical 

results versus experimental evidences on the ligand strength of NCBH3- versus Lazine for LS [Fe 

(Lpyridine)2(NCBH3)2] complex. Results are consistent for all the other four LS [Fe(Lazine)2(NCBH3)2]. (a) 

ΔEorb,σ+π comparison between fragmentation 1 and 2. (b) ΔEorb,σ+π comparison between fragmentation 3 

and 4. (c) ΔEorb,σ+π comparison between fragmentation 2 and 3. Dotted boxes help to visualise twice the 

amount of ΔEorb,σ+π for specific fragmentation. 
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A3.2.9. Frag. 5a-5e: correct Fe2+ Energy 
Levels in LS [FeII(Lazine)2(NCBH3)2] 
Family  

Whilst the energies of the Fe d orbitals in fragmentations 1-4 have comparable 

energies to the valence orbitals of the ligands, as expected within Hoffman’s 

MO diagram (see Figure A3.1), thanks to the partial ligand fields induced by 

the ligands included in the fragments, this does not happen in fragmentation 

5. In this case, the Fe2+ d atomic energies, for fragmentation 5a (no 

modifications/corrections) are calculated to be unrealistically low in energy, 

approx. -26.0 eV (Table A3.4), with respect to the MO energies of the ligands, -

4.0 to +4.0 eV (Table A3.5). This huge difference in energy is unacceptable in 

Hoffman’s MO diagram, and may well present a bias in the EDA analysis. So, 

to overcome this problem the free ion Mn+ in 5a was instead treated by four 

different methods 5b to 5e in order to determine which generated the most 

appropriate Fe2+ d atomic energy levels:  

 

• Fragmentation 5a. Fe2+ (t2g : -26.0 eV; eg : -25.6 eV). 

• Fragmentation 5b. Fe2+ + 6x -0.425e (t2g : -8.0 eV; eg : -7.61 eV). 

• Fragmentation 5c. Fe2+ + 6x -1.0e (t2g : +16.4 eV; eg : +16.9 eV). 

• Fragmentation 5d. Fe2+ +6x -2.0e (t2g : +58.7 eV; eg : +59.6 eV). 

• Fragmentation 5e. Fe2+ density mapped onto Fe0(AOs) (t2g : -8.0 eV; eg : -

7.8 eV). 

 

In three of these fragmentations, 5b-5d, six negative charges are placed 

octahedrally around the Fe2+ ion at a distance of 2.00 Å. The magnitude of the 

charges was tuned (from -0.425e- to -1e- to -2e- each) in order to obtain Fe2+(AO) 

energies closer to the ligand MO energies (Table A3.5); the best fragmentation 

is 5b (approx. -8.0 eV). This occurs at the cost of introducing a small t2g-eg 

splitting but this has the advantage of ensuring the correct occupancy of the d-

orbitals in the final complex with marginal effects on the final absolute energy 
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of the Fe2+ fragment (Table A3.4). But, fragmentation of 5b suffers from 

underestimating the ΔEPauli (see later) so an additional fragmentation, 5e, was 

also developed. Here the wavefunction obtained by calculation of the Fe0 in an 

octahedral symmetry (Table A3.4) was manually manipulated to simply 

remove two electrons from 4s orbital, i.e., Fe0(3d64s2) to Fe2+(3d64s0), whilst 

retaining the calculated energy levels (which are appropriate in Hoffman’s 

MO diagram), in preparation for EDA-NOCV analysis.  

To our knowledge, such a fragmentation at the level we present it here 

represents a novelty in the EDA-NOCV analysis of transition metal complexes. 

Indeed, to apply this approach successfully, first the problem of accurate 

representation of the d orbitals energies had to be addressed and hence several 

computational setups were trialled for fragmentation 5 (see also above). In 

fragmentations 5a-5e comparison each term of the EDA-NOCV analysis was 

proved a full understanding of the relationship between Fe orbitals and EDA-

NOCV energy terms. Fragmentations 5a-5d (octahedral negative charges from 

0e to 2e) do not show substantial changes in any of the EDA-NOCV (Tables 

A3.7-A3.16 and Figures A3.15-A3.21) terms: ΔEint and ΔEPauli are shifted by 

charges inclusion in the Fe2+ fragment, but regardless of this the trend across 

the family is maintained (Tables A3.12-A3.16 and Figures A3.15-A3.16). 

In contrast, for ΔEorb and ΔEelstat a trend inversion is reported: increasing 

the charge intensity around the metal ion caused ΔEorb to decrease slightly, 

whilst ΔEelstat rose (Tables A3.12-A3.16 and Figures A3.17-A3.18). This trend 

inversion only introduces differences of around 1-2% so is not significant. 

Similarly, ΔEorb,σ decreased and ΔEorb,π increased as the octahedral charge 

intensity around the Fe2+(AOs) was increased by charge inclusion (Tables 

A3.12-A3.16 and Figures A3.19-A3.20). Once the Fe2+(AOs) energies were 

raised above reasonable levels (fragmentations 5c-5d) ΔEorb,π becomes 

extremely small (almost negligible) or even positive (Tables A3.12-A3.16 and 

Figures A3.20) consistent with a shift of the formally “t2g” d orbitals far above 

the diazine π* orbital energies, inhibiting π-back donation and leading to σ-

only interactions. Interestingly, the ΔEorb,σ+π term maintains a stable value 
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across fragmentations 5a-5d (Tables A3.12-A3.16 and Figure A3.21) despite the 

variations in single constitutive ΔEorb,π and ΔEorb,σ contributions which change 

due to the different setups (partial charges) used to handle the Fe2+ ion.  

Hence fragmentation 5e, in which the density of the Fe2+(AOs) was 

mapped onto the Fe0 (AOs), to emulate a molecular orbital interaction in 

Hoffmann’s framework,21 was also trialled. The EDA-NOCV analysis results 

from this fragmentation are very different from those observed for all of the 

previous fragmentations 5a-5d. A remarkable difference was observed in the 

ΔEPauli contribution, which rises from about 250 kcal/mol (fragmentations 5a-

5d) to more than 600 kcal/mol (Tables A3.16 and Figure A3.15). 

Consequently, ΔEint decreases considerably, indicating the quality of 

the new densities (Tables A3.16 and Figure A3.15), since smaller ΔEint indicates 

smaller dissociation energies for the involved fragments, and, therefore, 

fragment densities that are closer to the final one. The same range of ΔEint 

values as found in 5a-5e have been reported in a previous study in literature 

when M0 or M2+ are used. Furthermore, in the same study the authors point 

out that the use of a M2+ fragment in EDA can introduce a bias into the results. 

The choice of the correct representation of ΔEPauli energy should be the one 

where the calculated amount is comparable (often higher) than ΔEelstat. 

ΔEelstat + ΔEPauli can be considered as the lost energy (consequently with positive 

(+) contribution) to be overtaken by ΔEorb to engage a new bond. From this 

angle, fragmentation 5e gives the most correct representation in the EDA 

analysis as it avoids to underestimate ΔEPauli as for fragmentation 5b.  

On other hand, when results obtained from NOCV are analysed 

considerable error is observed. Deformation density Δρ3 (identified as a dxz π-

backdonation) unphysically positive and considerably stronger than the two 

other π-interactions (occurring through dyz and dxy) (Table A3.11, Table A3.16). 

This result would drop to zero the entire π-strength of the coordination sphere 

with unique contribution of the metal ion through σ-bonds (except for 

[Fe(Lpyridazine)2(NCBH3)2]). A similar error in this π-interaction (as that specific 

interaction would be de-stabilising term) was observed, indeed, in 
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fragmentation 5d when Fe2+ are risen to +50 eV (Table A3.15). However, 

ΔEorb,σ+π values are in line with the ones computed in any 5 fragmentation 

(Figure A3.21). The correlation established earlier in fragmentation 4 between 

ΔEorb,σ+π and the experimental T1/2 is reported also for fragmentations 5 where, 

despite the fluctuations observed into σ- and π-interactions when Fe2+ is 

treated differently, the correlation shows R2 > 0.95 for all the 5 fragmentations 

(Figure A3.21).  

In summary, considering all of the data reported above, fragmentations 

5b and 5e appear to be the most accurate for two different types of analysis: 

fragmentation 5b shows the best results for the NOCV analysis – but the error 

in the underestimation of the ΔEPauli has to be reported. On the other hand, 

fragmentation 5e corrects this error and it provides the best EDA analysis in 

order to get information on the energies of bond(s) formed between the 

fragments. They should both be employed, as together this provides the best 

description of EDA 5e and NOCV 5b analysis. 

Table A3.4. Results reported for the analysis of the LS Fe(AOs) energies (eV) frontier orbitals used for 

establish the most correct EDA-NOCV analysis in the M+L6 fragmentation. The best are 

fragmentations are 5b and 5e as the Fe2+ orbital energies are close to those of the L (-4.0 to 4.0 eV; Table 

A3.5). †Energy levels for 5e come directly from those calculated for Fe0 (OH); the only difference is that 

the 2 s electrons have been manually removed in preparation for EDA-NOCV analysis. 

LS Fe (OH) T2g Eg 
ΔE 

(Eg-T2g) 

Energy 

(H) 
Fragmentation 

Fe0 

(Spherical Sym.) 
-7.93 -7.93 0.0 -1263.66 - 

Fe0 (OH) -7.96† -7.78† 0.18† -1263.66 - 

Fe2+ (no charges) -26.05 -25.61 0.56 -1262.74 5a 

Fe2+ (6x -0.425e) -8.00 -7.61 0.39 -1262.75 5b 

Fe2+ (6x -1.0e) +16.37 +16.94 0.57 -1262.75 5c 

Fe2+ (6x -2.0e) +58.68 +59.55 0.87 -1262.74 5d 

Fe2+ on Fe0(AOs) -7.96† -7.78† 0.18† -1263.66 5e 
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Table A3.5. Reported energies (eV) of the MO of the L6 coordination sphere who interact with Fe(AOs). 

Each MO(L6) is paired with the relative Fe(AOs) in bracket. MOs pairing was obtained by analysis of 

the contributing SFOs from density flowing (Δρ(i)) in EDA-NOCV analysis. 

 
MO 

(dx2-y2) 

MO 

(dz2) 

MO 

(dxz) 

MO 

(dzy) 

MO 

(dxy) 

MO 

(px) 

MO 

(py) 

MO 

(pz) 

MO 

(s) 

L4pyrimidine 0.20 0.53 2.62 3.26 - -0.73 -0.37 -0.35 -2.98 

L2pyrimidine 0.27 0.54 2.78 2.93 - -0.66 -0.35 -0.35 -1.55 

Lpyridine 0.41 0.74 3.47 3.10 - -0.56 -0.23 -0.23 -1.71 

Lpyrazine 0.19 0.48 2.58 3.07 - -0.75 -0.43 -0.42 -3.19 

Lpyridazine 0.99 0.53 2.94 2.91 - -0.39 0.14 -0.23 -1.13 

Table A3.6. Results reported for the analysis of the HS Fe(AOs) energies (eV) frontier orbitals used for 

establish the most correct EDA-NOCV analysis in the M+L6 fragmentation. 

HS Fe (C2v) dxy dxz dzy dx2-y2 dz2 Fragmentation 

Fe0 

(Spherical 

Symmetry) 

-7.93 -7.93 -7.93 -7.93 -7.93 - 

Fe2+ (no charges) 
-

26.05 
-26.31 -26.31 -25.46 -26.58 5a 

Fe2+ (6x -0.425e) -7.28 -8.13 -8.13 -7.13 -8.25 5b 

Fe2+ on Fe0(AOs) -7.42 -8.23 -8.23 -7.44 -8.47 5e 

Table A3.7. EDA -NOCV results (kcal/mol) across the five fragmentations 5a-5e for the treatment of 

the isolated metal ion M. Results for LS [Fe(L4pyrimidine)2(NCBH3)2] are reported. Decomposition in 

specific contribution of ΔEint (top), and ΔEorb (bottom) are reported. 

 5a 5b 5c 5d 5e 

ΔEint  -865.6 -865.8 -866.7 -870.3 -505.1 

ΔEPauli 264.4 263.9 263.1 261.4 631.0 

ΔEelstat -609.1 -610.6 -612.8 -617.1 -622.4 

ΔEorb -511.3 -509.6 -507.4 -505.0 -504.1 

ΔEorb,σ -301.9 -304.4 -308.0 -314.9 -321.3 

ΔEorb,π -33.1 -28.7 -22.8 -12.9 -0.2 

ΔEorb,σ+π -334.9 -333.0 -330.8 -327.7 -321.5 

 



A3 | Quantitative Evaluation of the Nature of M-L Bonds in Paramagnetic Compounds: 

Application of EDA-NOCV Theory to Spin Crossover Complexes 

 

A112 

 

Table A3.8. EDA -NOCV results (kcal/mol) across the five fragmentations 5a-5e for the treatment of 

the isolated metal ion M. Results for LS [Fe(L2pyrimidine)2(NCBH3)2] are reported. Decomposition in 

specific contribution of ΔEint (top), and ΔEorb (bottom) are reported. 

 5a 5b 5c 5d 5e 

ΔEint  -865.9 -866.1 -867.0 -870.3 -505.5 

ΔEPauli 265.9 265.5 264.6 -262.9 632.3 

ΔEelstat -611.4 -612.9 -615.1 -619.4 -624.7 

ΔEorb -510.9 -509.1 -507.0 -504.6 -503.6 

ΔEorb,σ -303.5 -305.9 -312.1 -315.7 -322.1 

ΔEorb,π -31.7 -27.4 -21.4 -15.3 0.6 

ΔEorb,σ+π -335.2 -333.3 -333.5 -331.0 -321.4 

Table A3.9. EDA -NOCV results (kcal/mol) across the five fragmentations 5a-5e for the treatment of 

the isolated metal ion M. Results for LS [Fe(Lpyridine)2(NCBH3)2] are reported. Decomposition in specific 

contribution of ΔEint (top), and ΔEorb (bottom) are reported. 

 5a 5b 5c 5d 5e 

ΔEint  -876.7 -876.9 -877.8 -881.4 -516.0 

ΔEPauli 262.7 262.9 262.1 -260.3 630.0 

ΔEelstat -618.7 -619.5 -621.7 -625.9 -631.1 

ΔEorb -511.2 -510.6 -508.5 -506.2 -505.2 

ΔEorb,σ -302.2 -308.1 -311.6 -318.2 -325.0 

ΔEorb,π -33.8 -27.3 -21.6 -12.2 0.1 

ΔEorb,σ+π -335.9 -335.4 -333.2 -330.4 -324.9 
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Table A3.10. EDA -NOCV results (kcal/mol) across the five fragmentations 5a-5e for the treatment of 

the isolated metal ion M. Results for LS [Fe(Lpyrazine)2(NCBH3)2] are reported. Decomposition in specific 

contribution of ΔEint (top), and ΔEorb (bottom) are reported. 

 5a 5b 5c 5d 5e 

ΔEint  -864.3 -864.5 -865.4 -869.0 -503.9 

ΔEPauli 268.0 267.6 266.8 -265.0 634.5 

ΔEelstat -607.5 -609.1 -611.3 -615.6 -620.9 

ΔEorb -515.2 -513.4 -511.2 -508.8 -507.8 

ΔEorb,σ -304.6 -307.3 -311.1 -317.9 -324.2 

ΔEorb,π -33.7 -29.2 -23.0 -13.0 -0.7 

ΔEorb,σ+π -338.3 -336.5 -341.3 -330.9 -324.9 

 

Table A3.11. EDA -NOCV results (kcal/mol) across the five fragmentations 5a-5e for the treatment of 

the isolated metal ion M. Results for LS [Fe(Lpyridazine)2(NCBH3)2] are reported. Decomposition in 

specific contribution of ΔEint (top), and ΔEorb (bottom) are reported. 

 5a 5b 5c 5d 5e 

ΔEint  -885.4 -883.0 -883.9 -887.5 -522.4 

ΔEPauli 268.4 -271.11 -270.3 -268.6 -638.0 

ΔEelstat -607.7 -623.0 -625.3 -629.6 -634.9 

ΔEorb -515.4 -521.6 -519.5 -517.1 -516.1 

ΔEorb,σ -290.9 -289.1 -292.8 -301.4 -308.5 

ΔEorb,π -55.4 -55.4 -48.5 -37.1 -23.4 

ΔEorb,σ+π -346.2 -344.5 -341.3 -338.4 -331.9 
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Table A3.12. EDA -NOCV results (kcal/mol) reported for fragmentation 5a for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. First section (top) reports ΔEint energy splitting; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M + 

L6 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -865.6 -865.9 -876.7 -864.3 -885.4 

ΔEPauli 265.9 265.9 262.7 268.0 268.4 

ΔEelstat 
-609.1 

(53.9%) 

-611.4 

(54.0%) 

-618.7 

(54.3%) 

-607.5 

(53.6%) 

-607.7 

(53.7%) 

ΔEorb 
-511.3 

(45.2%) 

-510.9 

(45.1%) 

-511.2 

(44.8%) 

-515.2 

(45.5%) 

-515.4 

(45.5%) 

ΔEdisp 
-9.6 

 (0.9%) 

-9.5 

 (0.9%) 

-9.7 

 (0.9%) 

-9.6 

 (0.9%) 

-9.4 

 (0.8%) 

ΔEorb,σ 
-301.9 

(59.1%) 

-303.5 

(59.3%) 

-302.2 

(59.1%) 

-304.6 

(59.2%) 

-290.9 

(56.5%) 

ΔEorb,π 
-33.1 

(6.5%) 

-31.7 

(6.3%) 

-33.8 

(6.7%) 

-33.7 

(6.6%) 

-55.4 

(10.8%) 

ΔEorb,σ+π 
-334.9 

(65.6%) 

-335.2 

(65.6%) 

-335.9 

(65.8%) 

-338.3 

(65.8%) 

-346.2 

(67.3%) 

ΔEorb,pol 
-146.6 

(28.8%) 

-148.9 

(29.2%) 

-145.9 

(28.6%) 

-147.2 

(28.5%) 

-158.7 

(30.9%) 

ΔEorb,rest 
-29.8 

(5.6%) 

-29.8 

(5.2%) 

-29.4 

(5.8%) 

-29.4 

(5.7%) 

-31.2 

(5.8%) 

ΔEorb,dz2 -112.7 -112.3 -113.0 -111.3 -111.5 

ΔEorb,dx2-y2 -115.2 -116.6 -114.6 -118.1 -103.0 

ΔEorb,dzx -5.3 -4.5 -6.0 -5.2 -26.9 

ΔEorb,dzy -12.1 -11.4 -12.4 -12.8 -12.0 

ΔEorb,dxy -15.7 -15.8 -15.4 -15.7 -16.4 

ΔEorb,s -23.3 -23.1 -23.6 -23.6 -23.2 

ΔEorb,pz -18.8 -19.3 -19.3 -19.7 -21.2 

ΔEorb,px -18.5 -19.0 -18.2 -19.1 -18.9 

ΔEorb,py -13.3 -13.2 -13.4 -12.8 -13.1 
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Table A3.13. EDA -NOCV results (kcal/mol) reported for fragmentation 5b for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. First section (top) reports ΔEint energy splitting; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M + 

L6 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -866.1 -876.9 -864.5 -883.0 -866.1 

ΔEPauli 265.5 262.9 267.6 271.11 265.5 

ΔEelstat 
-610.6 

(54.0%) 

-612.8 

(54.1%) 

-619.5 

(54.4%) 

-609.1 

(53.7%) 

-623.0 

(53.8%) 

ΔEorb 
-509.6 

(45.1%) 

-509.1 

(45.0%) 

-510.6 

(44.7%) 

-513.4 

(45.4%) 

-521.6 

(45.4%) 

ΔEdisp 
-9.6 

 (0.9%) 

-9.5 

 (0.9%) 

-9.7 

 (0.9%) 

-9.6  

(0.9%) 

-9.4 

(0.8%) 

ΔEorb,σ 
-304.3 

(59.6%) 

-305.9 

(60.1%) 

-308.1 

(60.3%) 

-307.3 

(60.4%) 

-289.1 

(56.4%) 

ΔEorb,π 
-28.7 

(5.7%) 

-27.4 

(5.3%) 

-27.3 

(5.3%) 

-29.2 

(4.7%) 

-55.4 

(8.8%) 

ΔEorb,σ+π 
-333.0 

(65.3%) 

-333.3 

(65.4%) 

-335.4 

(65.6%) 

-336.5 

(65.1%) 

-344.5 

(65.2%) 

ΔEorb,pol 
-146.5 

(28.6%) 

-145.8 

(28.7%) 

-145.2 

(28.4%) 

-146.9 

(24.1%) 

-146.6 

(23.6%) 

ΔEorb,rest 
-30.6 

(5.9%) 

-33.5 

(5.9%) 

-31.6 

(6.0%) 

-30.5 

(5.8%) 

-31.3 

(4.9%) 

ΔEorb,dz2 -113.8 -113.4 -112.8 -112.5 -102.2 

ΔEorb,dx2-y2 -116.3 -117.7 -120.4 -119.3 -110.3 

ΔEorb,dzx -3.4 -2.6 -1.3 -3.2 -29.2 

ΔEorb,dzy -10.8 -10.1 -11.2 -11.5 -10.9 

ΔEorb,dxy -14.6 -14.7 -14.9 -14.6 -15.3 

ΔEorb,s -23.4 -23.2 -23.8 -23.6 -23.3 

ΔEorb,pz -18.8 -19.4 -19.3 -19.8 -21.3 

ΔEorb,px -18.6 -19.0 -19.3 -19.1 -19.0 

ΔEorb,py -13.4 -13.3 -13.5 -12.9 -13.1 
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Table A3.14. EDA-NOCV results (kcal/mol) reported for fragmentation 5c for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. First section (top) reports ΔEint energy splitting; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M + 

L6 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -867.0 -877.8 -865.4 -883.9 -867.0 

ΔEPauli 263.1 264.6 262.0 266.7 270.3 

ΔEelstat 
-612.8 

(54.2%) 

-615.1 

(54.3%) 

-621.6 

(54.6%) 

-611.3 

(53.9%) 

-625.3 

(54.0%) 

ΔEorb 
-507.4 

(44.9%) 

-507.0 

(44.8%) 

-508.5 

(44.5%) 

-511.2 

(45.2%) 

-519.5 

(45.2%) 

ΔEdisp 
-9.6 

 (0.9%) 

-9.5 

 (0.9%) 

-9.7 

 (0.9%) 

-9.6 

 (0.9%) 

-9.4 

 (0.8%) 

ΔEorb,σ 
-308.0 

(60.7%) 

-312.1 

(61.5%) 

-311.6 

(61.4%) 

-311.1 

(60.9%) 

-292.8 

(56.3%) 

ΔEorb,π 
-22.7 

(3.8%) 

-21.5 

(3.4%) 

-21.6 

(4.3%) 

-23.0 

(4.5%) 

-48.5 

(9.3%) 

ΔEorb,σ+π 
-330.8 

(64.5%) 

-333.5 

(64.9%) 

-333.2 

(65.7%) 

-334.2 

(65.4%) 

-341.3 

(65.6%) 

ΔEorb,pol 
-146.6 

(29.0%) 

-143.4 

(28.2%) 

-145.4 

(28.5%) 

-147.1 

(28.8%) 

-148.2 

(28.5%) 

ΔEorb,rest 
-31.4 

(6.5%) 

-33.6 

(6.9%) 

-29.3 

(6.8%) 

-30.9 

(6.8%) 

-31.3 

(6.9%) 

ΔEorb,dz2 -115.6 -115.0 -114.3 -114.3 -105.1 

ΔEorb,dx2-y2 -117.9 -119.3 -122.0 -121.1 -111.6 

ΔEorb,dzx -0.7 -0.1 +1.2 -0.3 -25.6 

ΔEorb,dzy -9.0 -8.2 -9.4 -9.7 -9.1 

ΔEorb,dxy -13.1 -13.2 -13.4 -13.1 -13.7 

ΔEorb,s -23.4 -23.2 -23.9 -23.7 -23.3 

ΔEorb,pz -18.9 -19.5 -19.4 -19.9 -20.4 

ΔEorb,px -18.7 -19.2 -18.4 -19.2 -19.1 

ΔEorb,py -13.5 -16.0 -13.6 -13.0 -13.2 
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Table A3.15. EDA-NOCV results (kcal/mol) reported for fragmentation 5d for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. First section (top) reports ΔEint energy splitting; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M + 

L6 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -870.6 -881.4 -869.0 -887.5 -870.6 

ΔEPauli 261.4 262.9 260.3 265.0 268.6 

ΔEelstat 
-617.1 

(54.5%) 

-619.4 

(54.6%) 

-625.9 

(54.9%) 

-615.6 

(54.2%) 

-629.6 

(54.3%) 

ΔEorb 
-505.0 

(44.6%) 

-504.6 

(44.5%) 

-506.2 

(44.2%) 

-508.8 

(44.9%) 

-517.1 

(45.5%) 

ΔEdisp 
-9.6 

 (0.9%) 

-9.5 

 (0.9%) 

-9.7 

 (0.9%) 

-9.6 

 (0.9%) 

-9.4 

 (0.8%) 

ΔEorb,σ 
-314.9 

(62.4%) 

-315.7 

(62.6%) 

-318.2 

(62.8%) 

-317.9 

(62.5%) 

-301.4 

(58.2%) 

ΔEorb,π 
-12.9 

(2.6%) 

-15.3 

(3.0%) 

-12.2 

(2.4%) 

-13.0 

(2.6%) 

-37.1 

(7.1%) 

ΔEorb,σ+π 
-327.7 

(65.0%) 

-331.0 

(65.6%) 

-330.4 

(65.2%) 

-330.9 

(65.1%) 

-338.4 

(65.3%) 

ΔEorb,pol 
-147.3 

(29.1%) 

-143.6 

(28.5%) 

-145.8 

(28.9%) 

-147.9 

(29.1%) 

-148.6 

(28.8%) 

ΔEorb,rest 
-31.0 

(5.9%) 

-33.8 

(5.9%) 

-30.8 

(5.9%) 

-30.9 

(5.8%) 

-31.6 

(5.9%) 

ΔEorb,dz2 -118.9 -118.0 -117.1 -117.6 -110.4 

ΔEorb,dx2-y2 -121.0 -122.5 -125.1 -124.4 -114.3 

ΔEorb,dzx +3.9 +4.3 +5.5 +4.5 -19.4 

ΔEorb,dzy -6.1 -5.3 -6.5 -6.8 -6.2 

ΔEorb,dxy -10.6 -14.3 -11.2 -10.7 -11.4 

ΔEorb,s -23.4 -23.1 -24.0 -23.7 -23.3 

ΔEorb,pz -19.0 -19.1 -19.6 -19.6 -20.5 

ΔEorb,px -18.9 -19.4 -18.6 -19.5 -19.4 

ΔEorb,py -13.7 -13.6 -13.8 -13.2 -13.4 
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Table A3.16. EDA-NOCV results (kcal/mol) reported for fragmentation 5e for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. First section (top) reports ΔEint energy splitting; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M + 

L6 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -505.1 -505.5 -516.0 -503.9 -522.4 

ΔEPauli 631.0 632.3 630.0 634.5 638.0 

ΔEelstat 
-622.4 

(54.9%) 

-624.7 

(55.0%) 

-631.1 

(55.3%) 

-620.9 

(54.6%) 

-634.9 

(54.7%) 

ΔEorb 
-504.1 

(44.5%) 

-503.6 

(44.4%) 

-505.2 

(44.1%) 

-507.8 

(44.8%) 

-516.1 

(44.4%) 

ΔEdisp 
-9.6 

 (0.9%) 

-9.5 

 (0.9%) 

-9.7 

 (0.9%) 

-9.6 

 (0.9%) 

-9.4 

 (0.8%) 

ΔEorb,σ 
-321.3 

(63.7%) 

-322.1 

(63.8%) 

-325.0 

(64.4%) 

-324.2 

(63.8%) 

-308.5 

(59.7%) 

ΔEorb,π -0.2 (0.0%) 
+0.6 (-

0.1%) 
+0.1 (0.0%) 

-0.7 (-

0.1%) 

-23.4 

(4.5%) 

ΔEorb,σ+π 
-321.5 

(63.7%) 

-321.4 

(63.7%) 

-324.9 

(64.4%) 

-324.9 

(63.7%) 

-331.9 

(64.1%) 

ΔEorb,pol 
-152.5 

(30.4%) 

-152.2 

(30.2%) 

-150.3 

(29.7%) 

-156.3 

(30.7%) 

-164.6 

(32.0%) 

ΔEorb,rest 
-31.4 

(5.9%) 

-35.5 

(5.9%) 

-31.1 

(5.9%) 

-31.2 

(5.6%) 

-32.0 

(5.9%) 

ΔEorb,dz2 -124.2 -123.2 -122.1 -122.9 -117.1 

ΔEorb,dx2-y2 -126.3 -128.0 -130.5 -130.0 -119.2 

ΔEorb,dzx +10.2 +10.5 +11.7 +11.1 -12.2 

ΔEorb,dzy -2.3 -1.3 -2.7 -3.0 -2.4 

ΔEorb,dxy -8.1 -8.5 -8.9 -8.9 -8.7 

ΔEorb,s -23.0 -22.7 -24.1 -23.5 -23.3 

ΔEorb,pz -19.2 -19.8 -19.7 -19.6 -19.6 

ΔEorb,px -14.8 -14.7 -14.6 -14.9 -16.0 

ΔEorb,py -13.8 -13.7 -13.9 -13.3 -13.4 
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Figure A3.15. Trend of ΔEint energy contribution (kcal/mol) for each of the five LS 

[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 

 

Figure A3.16. Trend of ΔEPauli energy contribution (kcal/mol) for each of the five LS 

[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 
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Figure A3.17. Trend of ΔEelstat energy contribution (kcal/mol) for each of the five LS 

[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 

 

Figure A3.18. Trend of ΔEorb energy contribution (kcal/mol) for each of the five LS 

[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 
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Figure A3.19. Trend of ΔEorb,σ energy contribution (kcal/mol) for each of the five LS 
[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 

 
Figure A3.20. Trend of ΔEorb,π energy contribution (kcal/mol) for each of the five LS 
[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 
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Figure A3.21. Trend of ΔEorb,σ+π energy contribution (kcal/mol) for each of the five LS 
[Fe(Lazine)2(NCBH3)2] systems across the five sub fragmentations 5a-5e. 

 

Figure A3.22. Correlation lines observed for ΔEorb,σ+π energy contribution (kcal/mol) across the LS 

[Fe(Lazine)2(NCBH3)2] family in the five sub fragmentations 5a-5e.  
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A3.3. EDA-NOCV Results 

A3.3.1. Frag. 1 - LS FeII(Lazine)2(NCBH3)2  

Table A3.17. Summary EDA-NOCV results (kcal/mol) for fragmentation 1 for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. Fragmentation 1 describes interaction between one of the axial coligands 

NCBH3 with the remaining ML5 system. First section (top) reports ΔEint energy splitting; second 

section (middle) reports ΔEorb energy splitting; third section (bottom) reports all the orbital interaction 

due to ML5 + L interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -108.1 -108.3 -103.4 -110.0 -105.0 

ΔEPauli 106.9 106.9 107.2 107.0 106.5 

ΔEelstat 
-147.2 

(68.4%) 

-147.5 

(68.4%) 

-143.6 

(68.1%) 

-148.8 

(68.8%) 

-143.7 

(67.7%) 

ΔEorb 
-63.5 

(29.5%) 

-63.5 

(29.5%) 

-62.7 

(30.0%) 

-64.0 

(29.5%) 

-63.4 

(29.9%) 

ΔEdisp -4.2 (2.1%) -4.2 (2.1%) -4.3 (2.9%) -4.3 (1.8%) -4.4 (2.4%) 

ΔEorb,σ 
-36.0 

(56.3%) 

-36.0 

(56.3%) 

-35.6 

(57.1%) 

-36.4 

(56.3%) 

-36.3 

(57.1%) 

ΔEorb,π 
-12.3 

(19.4%) 

-12.3 

(19.4%) 

-12.3 

(19.6%) 

-12.2 

(19.4%) 

-11.9 

(19.4%) 

ΔEorb,σ+π 
-48.3 

(75.7%) 

-48.3 

(75.7%) 

-47.9 

(76.7%) 

-48.6 

(75.7%) 

-48.2 

(76.5%) 

ΔEorb,pol 
-7.9 

(13.2%) 

-8.4 

(13.4%) 

-9.7 

(13.3%) 

-8.5 

(13.2%) 

-7.8 

(12.4%) 

ΔEorb,rest 
-7.3 

(11.1%) 

-6.8 

(10.9%) 

-5.1 

(10.0%) 

-6.9 

(11.1%) 

-7.4 

(11.1%) 

ΔEorb,dz2 -36.0 -36.0 -35.6 -36.4 -36.3 

ΔEorb,dzx -6.3 -6.3 -6.3 -6.3 -6.1 

ΔEorb,dzy -6.0 -6.0 -6.0 -6.0 -5.8 
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Figure A3.23. Plot of the deformation densities Δρ(i) in fragmentation 1 with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation in reference complex LS [Fe(Lpyridine)2(NCBH3)2]. The direction of the 

charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the charge flow. 

Deformation densities describing bond interaction are reported using cut-off on Δρ(i)=0.003. The choice 

of cut-off on deformation densities used to produce these images does not affect the results; as EDA-

NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and 

individual SFO contribution (0.001). 

  

Δρ(1) ΔE1 = –35.6, |v1| = 0.57 (d[TM]←ligand σ) Δρ(2) ΔE2 = –6.3, |v2| = 0.25 (d[TM]→ligand π) 

 

 

Δρ(3) ΔE3 = –6.0, |v3| = 0.24 (d[TM]→ligand π) 
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A1.2.3. Frag. 2 - LS FeII(Lazine)2(NCBH3)2  

Table A3.18. Summary EDA-NOCV results (kcal/mol) for fragmentation 2 for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. Fragmentation (2) describes interaction between one of the equatorial 

ligands Lazine with the remaining ML5 system. First section (top) reports ΔEint energy splitting; second 

section (middle) reports ΔEorb energy splitting; third section (bottom) reports all the orbital interaction 

due to ML4 + L2 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint -89.4 -91.0 -90.3 -91.2 -83.4 

ΔEPauli 174.2 175.6 174.1 178.4 168.7 

ΔEelstat 
-148.2 

(56.3%) 

-150.2 

(56.4%) 

-148.7 

(56.4%) 

-151.3 

(55.9%) 

-138.3 

(55.0%) 

ΔEorb 
-101.3 

(38.4%) 

-102.4 

(38.3%) 

-101.5 

(38.3%) 

-104.2 

(38.5%) 

-100.8 

(39.8%) 

ΔEdisp 
-14.0 

(5.3%) 

-14.0 

(5.3%) 

-14.3 

(5.3%) 

-14.2 

(5.6%) 

-12.9 

(5.2%) 

ΔEorb,σ 
-62.6 

(62.4%) 

-62.9 

(61.8%) 

-62.2 

(60.8%) 

-63.7 

(61.3%) 

-64.3 

(63.6%) 

ΔEorb,π 
-22.6 

(22.3%) 

-22.9 

(22.5%) 

-22.4 

(21.6%) 

-23.5 

(22.1%) 

-24.7 

(24.7%) 

ΔEorb,σ+π 
-85.2 

(84.7%) 

-85.7 

(84.3%) 

-84.6 

(82.4%) 

-87.2 

(83.4%) 

-89.0 

(88.3%) 

ΔEorb,pol 
11.1 

(10.3%) 

12.0 

(11.1%) 

12.1 

(12.9%) 
15.3 (7.8%) 7.1 (7.0%) 

ΔEorb,rest -5.0 (5.0%) -4.7 (4.6%) -4.8 (4.7%) -4.7 (4.8%) -4.7 (4.7%) 

ΔEorb,dz2 -22.8 -22.8 -22.7 -23.0 -22.8 

ΔEorb,dx2-y2 -39.9 -40.1 -39.5 -40.7 -41.5 

ΔEorb,dzx -11.0 -10.8 -10.9 -11.4 -12.4 

ΔEorb,dzy -6.1 -6.5 -6.1 -6.5 -6.6 

ΔEorb,dxy -5.6 -5.5 -5.4 -5.5 -5.7 
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Figure A3.24. Plot of the deformation densities Δρ(i) in fragmentation 2 with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation in reference complex LS [Fe(Lpyridine)2(NCBH3)2]. The direction of the 

charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the charge flow. 

Deformation densities describing bond interaction are reported using cut-off on Δρ(i)=0.003. The choice 

of cut-off on deformation densities used to produce these images does not affect the results; as EDA-

NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and 

individual SFO contribution (0.001). 

 

 

Δρ(1) ΔE1 = -39.5, |v1| = 0.69  

(d[TM]←ligand σ) 

Δρ(2) ΔE2 = –10.9, |v2| = 0.51 

 (d[TM]→ligand π) 

  

Δρ(3) ΔE3 = –22.7, |v3| = 0.45 

 (d[TM]←ligand σ) 

Δρ(4) ΔE4 = –6.1, |v4| = 0.30 

 (d[TM]→ligand π) 

 

 

Δρ(5) ΔE3 = –5.4, |v3| = 0.19 

 (d[TM]→ligand π) 
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A3.3.2. Frag. 3 - LS FeII(Lazine)2(NCBH3)2  

Table A3.19. Summary EDA-NOCV results (kcal/mol) for fragmentation 3 for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. Fragmentation (3) describes interaction between one of both axial 

coligands 2xNCBH3 with the remaining ML4 system. First section (top) reports ΔEint energy splitting; 

second section (middle) reports ΔEorb energy splitting; third section (bottom) reports all the orbital 

interaction due to ML4 + L2 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint -345.9 -346.1 -335.9 -349.7 -337.7 

ΔEPauli 176.1 176.4 170.6 177.6 179.4 

ΔEelstat 
-377.4 

(72.2%) 

-378.0 

(72.3%) 

-370.3 

(72.1%) 

-380.7 

(72.1%) 

-370.8 

(71.8%) 

ΔEorb 
-132.3 

(25.3%) 

-132.4 

(25.2%) 

-129.9 

(25.3%) 

-134.4 

(25.7%) 

-134.2 

(25.9%) 

ΔEdisp 
-12.2 

(2.5%) 

-12.2 

(2.5%) 
-12.3 (2.6%) -12.3 (2.2%) 

-12.1 

(2.3%) 

ΔEorb,σ 
-72.4 

(54.8%) 

-72.3 

(54.6%) 

-71.3 

(54.6%) 

-74.2 

(55.2%) 

-75.0 

(55.9%) 

ΔEorb,π 
-23.3 

(17.4%) 

-23.6 

(17.8%) 

-23.8 

(18.3%) 

-23.5 

(17.5%) 

-23.1 

(17.2%) 

ΔEorb,σ+π 
-95.7 

(72.2%) 

-95.9 

(72.4%) 

-95.0 

(72.9%) 

-97.7 

(72.7%) 

-98.1 

(72.1%) 

ΔEorb,pol 
28.3 0 

(21.6%) 

28.3 

(21.6%) 

27.4 

(21.1%) 

27.6 

(20.8%) 

27.1 

(21.2%) 

ΔEorb,rest 8.2 (6.2%) 8.2 (6.2%) -7.6 (5.8%) -8.7 (6.5%) -9.0 (6.7%) 

ΔEorb,dz2 -58.4 -58.4 -57.6 -60.0 -61.1 

ΔEorb,dzx -11.3 -11.8 -11.8 -11.6 -11.5 

ΔEorb,dzy -12.0 -11.8 -12.0 -11.9 -11.5 

ΔEorb,pz -14.0 -13.9 -13.7 -14.2 -14.0 
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Figure A3.25. Plot of the deformation densities Δρ(i) in fragmentation 4 with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation in reference complex LS [Fe(Lpyridine)2(NCBH3)2]. The direction of the 

charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the charge flow. 

Deformation densities describing bond interaction are reported using cut-off on Δρ(i)=0.003. The choice 

of cut-off on deformation densities used to produce these images does not affect the results; as EDA-

NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and 

individual SFO contribution (0.001). 

  

Δρ(1) ΔE1 = –57.6, |v1| = 0.72 

 (d[TM]←ligand σ) 

Δρ(3) ΔE3 = –11.8, |v3| = 0.37 

(d[TM]→ligand π) 

  

Δρ(2) ΔE2 = –12.0, |v2| = 0.35  

(d[TM]→ligand π) 

Δρ(4) ΔE4 = –13.7, |v4| = 0.36 

 (d[TM]←ligand σ) 
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A3.3.3. Frag. 4 - LS FeII(Lazine)2(NCBH3)2  

Table A3.20. Summary EDA-NOCV results (kcal/mol) for fragmentation 4 for all the five LS 

[Fe(Lazine)2(NCBH3)2] systems. Fragmentation 4 describes interaction between one of both equatorial 

ligands 2xLazine with the remaining ML4 system. First section (top) reports ΔEint energy splitting; 

second section (middle) reports ΔEorb energy splitting; third section (bottom) reports all the orbital 

interaction due to ML2 + L4 interaction. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -228.1 -228.3 -233.0 -229.7 -238.8 

ΔEPauli 260.7 262.6 257.5 265.3 270.7 

ΔEelstat 
-250.9 

(51.4%) 

-252.3 

(51.3%) 

-252.3 

(51.3%) 

-253.1 

(51.1%) 

-259.3 

(40.1%) 

ΔEorb 
-218.4 

(44.7%) 

-219.1 

(44.6%) 

-218.3 

(44.4%) 

-222.2 

(44.8%) 

-231.0 

(45.4%) 

ΔEdisp 
-19.4 

(3.9%) 

-19.5 

(4.1%) 

-19.7 

(4.3%) 

-19.7 

(4.1%) 

-19.2 

(4.6%) 

ΔEorb,σ 
-134.9 

(61.8%) 

-134.6 

(61.5%) 

-136.0 

(62.4%) 

-139.4 

(62.7%) 

-141.9 

(61.4%) 

ΔEorb,π 
-48.8 

(22.3%) 

-49.6 

(22.6%) 

-49.2 

(22.6%) 

-46.6 

(21.0%) 

-51.6 

(22.3%) 

ΔEorb,σ+π 
-183.6 

(84.1%) 

-184.2 

(84.1%) 

-185.2 

(85.0%) 

-186.0 

(83.7%) 

-193.5 

(83.7%) 

ΔEorb,pol 
-19.6 

(9.0%) 

-19.8 

(9.0%) 

-18.1 

(8.3%) 

-20.7 

(9.3%) 

-21.4 

(9.3%) 

ΔEorb,rest 
-15.2 

(6.9%) 

-15.1 

(6.9%) 

-15.0 

(6.9%) 

-15.5 

(7.0%) 

-16.1 

(7.0%) 

ΔEorb,dz2 -30.1 -29.2 -29.0 -33.4 -33.0 

ΔEorb,dx2-y2 -82.8 -83.6 -84.2 -84.6 -87.2 

ΔEorb,dzx -24.5 -24.0 -25.5 -21.5 -26.8 

ΔEorb,dzy -12.2 -11.9 -11.6 -12.1 -11.3 

ΔEorb,dxy -12.1 -11.9 -11.6 -12.1 -11.3 

ΔEorb,px -12.0 -11.9 -11.9 -11.5 -11.2 

ΔEorb,py -10.1 -9.9 -10.9 -9.9 -10.5 
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Figure A3.26. Plot of the deformation densities Δρ(i) in fragmentation (4) with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation in reference complex LS [Fe(Lpyridine)2(NCBH3)2]. The direction of the 

charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the charge flow. 

Deformation densities describing bond interaction are reported using cut-off on Δρ(i)=0.003. The choice 

of cut-off on deformation densities used to produce these images does not affect the results; as EDA-

NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and 

individual SFO contribution (0.001). 

 

 

Δρ(1) ΔE1 = –84.2, |v1| = 1.1 

9 (d[TM]←ligand σ) 

Δρ(2) ΔE2 = –25.5, |v2| = 0.7 

0 (d[TM]→ligand π) 

 

 

Δρ(3) ΔE3 = –29.0, |v3| = 0.54 

 (d[TM]←ligand σ) 

Δρ(4) ΔE4 = –11.6, |v4| = 0.36  

(d[TM]→ligand π) 

 

 

Δρ(5) ΔE3 = –11.6, |v3| = 0.27 

 (d[TM]→ligand π) 

Δρ(6) ΔE2 = –11.9, |v2| = 0.2 

2 (d[TM]←ligand σ) 

 

 

Δρ(7) ΔE3 = –10.9, |v3| = 0.21 

 (d[TM]←ligand σ) 
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A3.3.4. Frag. 5b/5e - LS FeII(Lazine)2(NCBH3)2  
 

Table A3.21. EDA-NOCV results (kcal/mol) reported for fragmentation 5b-5e for all the five LS 

FeII(Lazine)2(NCBH3)2 systems. First section (top) reports ΔEint energy splitting 5e; second section 

(middle) reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction 

due to M - L6 interaction 5b. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint -505.1 -505.5 -516.0 -503.9 -522.4 

ΔEPauli 631.0 632.3 630.0 634.5 638.0 

ΔEelstat 
-622.4 

(54.9%) 

-624.7 

(55.0%) 

-631.1 

(55.3%) 

-620.9 

(54.6%) 

-634.9 

(54.7%) 

ΔEorb 
-504.1 

(44.5%) 

-503.6 

(44.4%) 

-505.2 

(44.1%) 

-507.8 

(44.8%) 

-516.1 

(44.4%) 

ΔEdisp -9.6 (0.6%) -9.5 (0.6%) -9.7 (0.6%) -9.6 (0.6%) -9.4 (0.9%) 

ΔEorb,σ 
-304.3 

(59.6%) 

-305.9 

(60.1%) 

-308.1 

(60.3%) 

-307.3 

(60.4%) 

-289.1 

(56.4%) 

ΔEorb,π 
-28.7 

(5.7%) 

-27.4 

(5.3%) 

-27.3 

(5.3%) 

-29.2 

(4.7%) 

-55.4 

(8.8%) 

ΔEorb,σ+π 
-333.0 

(65.3%) 

-333.3 

(65.4%) 

-335.4 

(65.6%) 

-336.5 

(65.1%) 

-344.5 

(65.2%) 

ΔEorb,pol 
-146.5 

(28.6%) 

-145.8 

(28.7%) 

-145.2 

(28.4%) 

-146.9 

(24.1%) 

-146.6 

(23.6%) 

ΔEorb,rest 
-30.6 

(5.9%) 

-33.5 

(5.9%) 

-31.6 

(6.0%) 

-30.5 

(5.8%) 

-31.3 

(4.9%) 

ΔEorb,dz2 -113.8 -113.4 -112.8 -112.5 -102.2 

ΔEorb,dx2-y2 -116.3 -117.7 -120.4 -119.3 -110.3 

ΔEorb,dzx -3.4 -2.6 -1.3 -3.2 -29.2 

ΔEorb,dzy -10.8 -10.1 -11.2 -11.5 -10.9 

ΔEorb,dxy -14.6 -14.7 -14.9 -14.6 -15.3 

ΔEorb,s -23.4 -23.2 -23.8 -23.6 -23.3 

ΔEorb,pz -18.8 -19.4 -19.3 -19.8 -21.3 

ΔEorb,px -18.6 -19.0 -19.3 -19.1 -19.0 

ΔEorb,py -13.4 -13.3 -13.5 -12.9 -13.1 
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Figure A3.27. Plot of the deformation densities Δρ(i) in fragmentation 5b with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation and polarisation in reference complex LS [Fe(Lpyridine)2(NCBH3)2]. The 

direction of the charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the 

charge flow. Figures are reported using until |vi| = 0.1 with cut-off on Δρ(i)=0.003. The choice of cut-

off on deformation densities used to produce these images does not affect the results; as EDA-NOCV 

analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and individual 

SFO contribution (0.001). 

  

Δρ(1) ΔE1 = –112.8, |v1| = 0.98 

 (d[TM]←ligand σ) 
Δρ(2) ΔE2 = –120.4, |v2| = 0.93 (d[TM]←ligand σ) 

 

 

Δρ(3) ΔE3 = –1.3, |v3| = 0.82 

 (d[TM]→ligand π) 
Δρ(4) ΔE4 = –11.2, |v4| = 0.56 (d[TM]→ligand π) 

  

Δρ(5) ΔE5 = –14.9, |v4| = 0.33  

(d[TM]→ligand π) 
Δρ(6) ΔE6 = –24.1, |v6| = 0.32 (pol) 
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Δρ(7) ΔE7 = –20.2, |v7| = 0.30 (pol) Δρ(8) ΔE8 = –16.1, |v8| = 0.27 (pol) 

  

Δρ(9) ΔE9 = –19.3, |v9| = 0.26  

(p[TM]←ligand σ) 

Δρ(10) ΔE10 = –23.8, |v10| = 0.24 (s[TM]←ligand 

σ) 

  

Δρ(11) ΔE11 = –15.5, |v11| = 0.23 (pol) Δρ(12) ΔE12 = –17.0, |v12| = 0.22 (pol) 

  

Δρ(13) ΔE13 = –16.0, |v13| = 0.22 (pol) 
Δρ(14) ΔE14 = –17.0, |v14| = 0.21  

(p[TM]←ligand σ) 

  

Δρ(15) ΔE15 = –13.5, |v15| = 0.17 

 (p[TM]←ligand σ) 
Δρ(16) ΔE16 = –6.3, |v16| = 0.15 (pol) 
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A3.3.5. Frag. 5b/5e - HS FeII(Lazine)2(NCBH3)2 

 

Table A3.22. EDA-NOCV results (kcal/mol) reported for fragmentation 5b-5e for all the five HS 

Fe(Lazine)2(NCBH3)2. First section (top) reports ΔEint energy splitting 5e; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M - 

L6 interaction 5b. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -370.29 -369.34 -380.45 -367.96 -385.49 

ΔEPauli 544.31 544.33 543.52 547.15 539.3 

ΔEelstat 
-573.4 

(62.7%) 

-574.3 

(62.9%) 

-582.4 

(63.0%) 

-571.8 

(62.5%) 

-583.5 

(63.10%) 

ΔEorb 
-327.9 

(35.9%) 

-326.2 

(35.7%) 

-328.1 

(35.5%) 

-329.9 

(36.1%) 

-328.4 

(35.5%) 

ΔEdisp 
-13.3 

(1.48%) 

-13.2 

(1.48%) 

-13.4 

(1.48%) 

-13.4 

(1.49%) 

-12.9 

(1.42%) 

ΔEorb,σ [α+β] 
-145.5 

(44.61%) 

-145.4 

(44.80%) 

-145.6 

(44.60%) 

-149.4 

(45.49%) 

-155.6 

(47.68%) 

ΔEorb,π [α+β] 
-3.4 

(1.04%) 

-3.4 

(1.06%) 

-3.5 

(1.06%) 

-3.34 

(1.02%) 

-3.2 

(0.98%) 

ΔEorb,σ+π [α+β] 
-148.9 

(45.65%) 

-148.8 

(45.86%) 

-149.1 

(45.66%) 

-152.7 

(46.51%) 

-158.8 

(48.66%) 

ΔEorb,pol 
-178.3 

(54.66%) 

-176.7 

(54.45%) 

-178.4 

(54.64%) 

-176.6 

(53.79%) 

-168.6 

(51.66%) 

ΔEorb,rest 
-42.8 

(13.12%) 

-46.7 

(14.39%) 

-43.3 

(13.27%) 

-43.5 

(13.26%) 

-42.8 

(13.11%) 

ΔEorb,dz2 [α+β] -34.1 -33.8 -33.4 -34.8 -34.6 

ΔEorb,dx2-y2 [α+β] -30.7 -30.5 -31.0 -31.4 -31.7 

ΔEorb,dzx [α+β] - - - - - 

ΔEorb,dzy [α+β] - - - - - 

ΔEorb,dxy [α+β] -3.4 -3.4 -3.5 -3.3 -3.2 

ΔEorb,s [α+β] -27.1 -27.1 -25.9 -27.0 -29.6 

ΔEorb,pz [α+β] -21.2 -20.1 -21.4 -21.7 -23.1 

ΔEorb,px [α+β] -18.2 -17.6 -18.1 -18.9 -19.5 

ΔEorb,py [α+β] -15.8 -15.8 -15.8 -15.8 -15.8 
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ΔEorb,dz2 [α] - - - - - 

ΔEorb,dx2-y2 [α] - - - - - 

ΔEorb,dzx [α] - - - - - 

ΔEorb,dzy [α] - - - - - 

ΔEorb,dxy [α] -3.4 -3.4 -3.5 -3.3 -3.2 

ΔEorb,s [α] -13.5 -13.5 -12.4 -13.2 -15.4 

ΔEorb,pz [α] -11.3 -11 -11.5 -11.7 -12.0 

ΔEorb,px [α] -9.9 -9.2 -9.0 -9.8 -9.4 

ΔEorb,py [α] -6.8 -8.9 -8.3 -8.5 -9.3 

ΔEorb,pol [α] -93.1 -91.4 -93.3 -93.2 -90.8 

ΔEorb,rest [α] -21.5 -23.5 -21.8 -22 -21.8 

ΔEorb,dz2 [β] -34.1 -33.8 -33.4 -34.8 -34.6 

ΔEorb,dx2-y2 [β] -30.7 -30.5 -31.0 -31.4 -31.7 

ΔEorb,dzx [β] - - - - - 

ΔEorb,dzy [β] - - - - - 

ΔEorb,dxy [β] - - - - - 

ΔEorb,s [β] -13.6 -13.6 -13.5 -13.8 -14.2 

ΔEorb,pz [β] -9.8 -9.1 -9.9 -10.0 -11.2 

ΔEorb,px [β] -8.3 -8.4 -9.1 -9.1 -10.1 

ΔEorb,py [β] -7.6 -7.4 -7.6 -7.0 -7.7 

ΔEorb,pol [β] -85.2 -85.3 -85.1 -83.4 -77.8 

ΔEorb,rest [β] -21.3 -23.2 -21.5 -21.5 -21.0 
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Figure A3.28. Plot of the deformation densities Δρ(i) in fragmentation 5b with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation and polarisation in reference complex HS [Fe(Lpyridine)2(NCBH3)2]. The 

direction of the charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the 

charge flow. On the left column are reported Δρ(i) for alpha electrons; on the right are reported Δρ(i) for 

beta electrons. Figures are reported using until |vi| = 0.05 with cut-off on Δρ(i)=0.0003. The choice of 

cut-off on deformation densities used to produce these images does not affect the results; as EDA-NOCV 

analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and individual 

SFO contribution (0.001). 

ALPHA BETA 

  

Δρ(5) ΔE5 = –12.4, |v5| = 0.19 

 (s[TM]←ligand σ) 
Δρ(1) ΔE1 = –5.0, |v1| = 0.89 (pol) 

 

 

 

 

  

Δρ(6) ΔE6 = –10.5, |v6| = 0.17 (pol) 
Δρ(2) ΔE2 = –33.4, |v2| = 0.36 

 (d[TM]←ligand σ) 
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Δρ(8) ΔE8 = –11.5, |v8| = 0.15 

 (p[TM]←ligand σ) 

Δρ(3) ΔE3 = –31.0, |v3| = 0.3 

6 (d[TM]←ligand σ) 

  

Δρ(10) ΔE10 = –6.7, |v10| = 0.13 (pol) Δρ(4) ΔE4 = –11.9, |v4| = 0.22 (pol) 

  

Δρ(11) ΔE11 = –8.7, |v11| = 0.13 (pol) 
Δρ(7) ΔE7 = –13.5, |v7| = 0.15 

 (s[TM]←ligand σ) 

  

Δρ(12) ΔE12 = –9.0, |v12| = 0.13 

 (p[TM]←ligand σ) 

Δρ(9) ΔE9 = –9.9, |v9| = 0.14 

 (s[TM]←ligand σ) 
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Δρ(15) ΔE15 = –8.3, |v15| = 0.12 

 (p[TM]←ligand σ) 
Δρ(13) ΔE13 = –7.0, |v13| = 0.13 (pol) 

  

Δρ(19) ΔE19 = –5.8, |v19| = 0.11 (pol) Δρ(14) ΔE14 = –6.2, |v14| = 0.12 (pol) 

  

Δρ(20) ΔE20 = –5.4, |v20| = 0.10 (pol) 
Δρ(16) ΔE16 = –9.1, |v16| = 0.12  

(p[TM]←ligand σ) 

  

   

Δρ(21) ΔE21 = –6.8, |v21| = 0.10 (pol) Δρ(17) ΔE17 = –7.6, |v17| = 0.11 (p[TM]←ligand σ) 
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Δρ(22) ΔE22 = –5.4, |v22| = 0.09 (pol) Δρ(18) ΔE18 = –6.1, |v18| = 0.11 (pol) 

  

Δρ(24) ΔE24 = –3.5, |v24| = 0.09 

 (d[TM]→ligand π) 
Δρ(23) ΔE23 = –5.9, |v23| = 0.09 (pol) 

  

Δρ(25) ΔE25 = –5.2, |v25| = 0.09 (pol) Δρ(26) ΔE26 = –5.5, |v26| = 0.09 (pol) 

  

  

Δρ(27) ΔE27 = –5.4, |v27| = 0.09 (pol) Δρ(28) ΔE28 = –5.2, |v28| = 0.09 (pol) 
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Δρ(30) ΔE30 = –4.8, |v30| = 0.08 (pol) Δρ(29) ΔE29 = –4.1, |v29| = 0.08 (pol) 

  

Δρ(31) ΔE31 = –2.4, |v31| = 0.6 (pol) Δρ(32) ΔE32 = –2.4, |v32| = 0.06 (pol) 

  

Δρ(35) ΔE35 = –2.4, |v35| = 0.06 (pol) Δρ(33) ΔE33 = –2.3, |v33| = 0.06 (pol) 

  

Δρ(37) ΔE37 = –2.1, |v37| = 0.05 (pol) Δρ(34) ΔE34 = –1.6, |v34| = 0.05 (pol) 

  

Δρ(38) ΔE38 = –1.5, |v38| = 0.05 (pol) Δρ(36) ΔE36 = –2.0, |v36| = 0.05 (pol) 
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Figure A3.29. Comparison between correlation between ΔEorb,σ+π terms and T1/2 for the five 

[FeII(Lazine)2(NCBH3)2] complexes using fragmentation 5b. LS state is reported in red (R2=0.99), HS 

state is reported in black (R2=0.95) and ΔΔEorb,σ+π (HS-LS) term is reported in blue (R2=0.12). 
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A3.3.6. Frag. 5b/5e - LS [Fe(Lazine)3]
2+ 

Table A3.23. EDA-NOCV results (kcal/mol) reported for fragmentation 5b-5e for all the five LS 

[Fe(Lazine)3]2+ systems. First section (top) reports ΔEint energy splitting 5e; second section (middle) 

reports ΔEorb energy splitting; third section (bottom) reports all the nine orbital interaction due to M - 

L6 interaction 5b. 

 L4pyrimidine L2pyrimidine Lpyridine Lpyrazine Lpyridazine 

ΔEint  -279.67 -279.23 -296.52 -274.75 -306.31 

ΔEPauli 652.76 653.73 659.72 657.48 667.52 

ΔEelstat 
-402.13 

(-43.1%) 

-403.34 

(-43.2%) 

-421.13 

(-44.0%) 

-397.39 

(-42.6%) 

-425.32 

(-43.7%) 

ΔEorb 
-519.6 

(-55.7%) 

-518.99 

(-55.6%) 

-524.28 

(-54.8%) 

-524.06 

(-56.2%) 

-537.97 

(-55.2%) 

ΔEdisp 
-10.7 

(-1.2%) 

-10.63 

(-1.2%) 

-10.82 

(-1.2%) 

-10.78 

(-1.2%) 

-10.54 

(-1.1%) 

ΔEorb,σ -319.8 -317.5 -315.0 -316.9 -326.8 

ΔEorb,π -40.5 -43.5 -52.8 -51.6 -48.5 

ΔEorb,σ+π -360.3 -361.1 -367.8 -368.5 -375.4 

ΔEorb,pol -128.2 -128.4 -126.9 -125.9 -132.1 

ΔEorb,rest -37.0 -36.4 -36.6 -36.4 -37.7 

ΔEorb,dz2 -118.8 -115.6 -112.1 -112.1 -121.6 

ΔEorb,dx2-y2 -125.5 -124.9 -123.1 -124.0 -128.3 

ΔEorb,dzx -11.0 -14.9 -13.0 -19.1 -12.1 

ΔEorb,dzy -13.3 -12.1 -21.0 -15.3 -18.4 

ΔEorb,dxy -16.0 -16.5 -18.7 -17.1 -17.9 

ΔEorb,s -25.1 -24.1 -24.2 -24.7 -23.7 

ΔEorb,pz -14.7 -16.02 -18.1 -19.5 -18.0 

ΔEorb,px -18.9 -18.2 -19.3 -19.1 -18.6 

ΔEorb,py -16.6 -18.4 -17.9 -17.1 -16.4 
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Figure A3.30. Plot of the deformation densities Δρ(i) in fragmentation 5b with corresponding energy 

contribution to the total orbital term ΔE (given in kcal/mol) of the [TM]←ligand σ-donation, the 

[TM]→ligand π-backdonation and polarisation in reference complex LS [Fe(Lpyridine)3]2+. The direction 

of the charge flow is yellow → turquoise. The eigenvalues |v| indicate the relative size of the charge 

flow. Figures are reported using until |vi| = 0.1 with cut-off on Δρ(i)=0.003. The choice of cut-off on 

deformation densities used to produce these images does not affect the results; as EDA-NOCV analysis 

are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) and individual SFO 

contribution (0.001). 

 

 

Δρ(1) ΔE1 = –112.2, |v1| = 1.07 

 (d[TM]←ligand σ) 

Δρ(2) ΔE2 = –123.2, |v2| = 0.97  

(d[TM]←ligand σ) 

 

 

Δρ(3) ΔE3 = –13.0, |v3| = 0.70 

 (d[TM]→ligand π) 

Δρ(4) ΔE4 = –21.1, |v4| = 0.65 

 (d[TM]→ligand π) 
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Δρ(5) ΔE5 = –18.7, |v4| = 0.45  

(d[TM]→ligand π) 
Δρ(6) ΔE6 = –19.5, |v6| = 0.27 (pol) 

  

Δρ(7) ΔE7 = –17.5, |v7| = 0.27 (pol) Δρ(8) ΔE8 = –17.8, |v8| = 0.27 (pol) 

 

 

Δρ(9) ΔE9 = –24.3, |v9| = 0.25 

(s[TM]←ligand σ) 

Δρ(10) ΔE10 = –18.2, |v10| = 0.23 

 ([p[TM]←ligand σ) 
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Δρ(11) ΔE11 = –19.3, |v11| = 0.21 

 (p[TM]←ligand σ) 

Δρ(12) ΔE12 = –18.0, |v12| = 0.21 

 (p[TM]←ligand σ) 

 

 

Δρ(13) ΔE13 = –10.9, |v13| = 0.20 (pol) Δρ(14) ΔE14 = –6.85, |v14| = 0.15 (pol) 

 
 

Δρ(15) ΔE15 = –6.4, |v15| = 0.15 (pol) Δρ(16) ΔE16 = –6.3, |v16| = 0.13 (pol) 
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Δρ(17) ΔE17 = –6.3, |v17| = 0.12 (pol) Δρ(18) ΔE18= –6.0, |v18| = 0.12 (pol) 

 

 

Δρ(19) ΔE19 = –3.6, |v19| = 0.10 (pol)  
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A4 | Quantitative Assessment of 

the Energetic Contribution 

on the M-L Interaction in 

Fe(II) 2,6‐Di(Pyrazol‐1‐yl) 

Pyridine Complexes 

 

 

A4.1. Atomic Structure Results 

 

The root-mean-square deviation of atomic positions (or simply root-mean-square 

deviation, RMSD) is the measure of the average distance between the atoms (usually 

the backbone atoms) of superimposed molecules. RMSD values are calculated using 

Equation A4.1 below. 

 

 

 

 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑((𝑣𝑖𝑥 − 𝑤𝑖𝑥)2 + (𝑣𝑖𝑦 − 𝑤𝑖𝑦)

2
+ (𝑣𝑖𝑧 − 𝑤𝑖𝑧)2)

𝑛

𝑖=1

 (A4.1) 

 

 

 

 

  

https://en.wikipedia.org/wiki/Protein_structural_alignment
https://en.wikipedia.org/wiki/Proteins
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Table A4.1. Calculated values of root mean square deviation (RMSD) for all sixteen of the [Fe(bppX)2]2+ 

complexes (left column) relative to the unsubstituted complex, [Fe(bppX)2]2+, used as a reference, are 

low so confirm that varying X does not cause any structural changes, so has no steric influence. 

Calculated values of RMSD are also provided (middle column) for all six of the [Fe(bppX)2]2+ complexes 

for which the literature value of T1/2 was measured in CH3NO2, not in (CH3)2CO: for these the structure 

was optimised in both solvents, with the CPCM model, then the pair of structures compared to obtain 

the RMSDs shown in the middle column, which confirm that the structures are identical. Experimental 

T1/2 for each [Fe(bppX)2]2+ are reported in right column.  

[Fe(bppX)2]2+ 
RMSD (Å) 

vs [Fe(bppH)2] 2+ 
   T1/2(K) 

 HS LS  

X = NO2 0.052 0.0073 30923 

X = CO2H 0.052 0.0052 28123 

X = Br 0.003 0.0048 23423 

X = I 0.004 0.0050 23623 

X = Cl 0.051 0.0050 22623 

X = H - - 248189 

X = SH 0.057 0.0083 246134 

X = F 0.004 0.0051 21523 

X = Me 0.043 0.0065 21623 

X = SMe 0.032 0.0079 194350 

X = OMe 0.043 0.0083 15823 

X = OH 0.041 0.0081 16423 

X = NH2 0.039 0.0123 HS23 

X = NMe2 0.029 0.0132 HS23 

X = SOMe 0.035 0.0072 284350 

X = SO2Me 0.058 0.0082 294350 
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A1.1. AILFT Results 

Table A4.2. Calculated Δo calculated of the sixteen LS [Fe(bppX)2]2+ complex and the five LS 

[Fe(Lazine)2(NCBH3)2] using Ab-initio Ligand Field Theory (AILFT)145 as implemented in ORCA 4.1 

computed at the NEVPT2/def2-SV(P)//BP86/def2-TZVPP level of theory, utilising auxiliary basis sets 

for the RI approximation. The active space for the underlying SA-CASSCF144 calculation included all 

d orbitals and the six electrons of Fe(II) and considered all possible singlet, triplet and quintet 

configurations. * values estimated in Subsection 4.3.7. 

 

[Fe(bppX)2]2+ σp+ T1/2 / K Δo (NEVPT2) / eV 

X = NO2 0.79 30923 2.466 

X = CO2H 0.42 28123 2.446 

X = Br 0.15 23423 2.413 

X = I 0.14 23623 2.414 

X = Cl 0.11 22623 2.411 

X = H 0.00 248189 2.428 

X = SH -0.03 246134 2.381 

X = F -0.07 21523 2.412 

X = Me -0.31 21623 2.394 

X = SMe -0.60 194350 2.371 

X = OMe -0.78 15823 2.364 

X = OH -0.92 16423 2.371 

X = NH2 -1.30 HS23 2.324 

X = NMe2 -1.70 HS23 2.311 

X = SOMe 0.26* 284350 2.289 

X = SO2Me 0.60* 294350 2.311 

[Fe(L4pym)2(NCBH3)2] - 23283 2.138 

[Fe(L2pym)2(NCBH3)2] - 26283 2.342 

[Fe(Lpyt)2(NCBH3)2] - 28883 2.300 

[Fe(Lpyrazt)2(NCBH3)2] - 31583 2.362 

[Fe(Lpyrdt)2(NCBH3)2] - 45583 2.745 
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A1.2. EDA-NOCV Results 

 

Figure A4.1. Classic qualitative representation of the ladder of MO energies (centre) for a distorted 

octahedral (D2d symmetry) ML6 complex (σ bonding MOs in blue; π bonding MOs in orange) which 

result from overlap of the valence AOs of M (left) with L6 MOs of the same symmetry (right). 
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Table A4.3. Each column shows one of the Fe AOs (left column), the corresponding L6 MOs (right 

column); unoccupied orbitals are reported in orange/light blue colours; occupied orbitals are reported 

in blue/red. Electron flow in EDA-NOCV analysis (middle column) goes from yellow → turquoise 

(middle column).  

 

Irr.Repr. AOs (Fe) EDA-NOCV (ML6) MOs (L6) 

E 

px  
  

py  
 

 

B2 

pz  
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A1 

s  
 

 

A1 

dz2

 
 

 

A2 

dx2-y2
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E 

dxz 

 

 

 

 

dyz 

 
  

B2 

dxy 
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A4.1.1. EDA: Fragmentation 5e 

Table A4.4. EDA-NOCV results using fragmentation 5e for Mn+ for the LS [Fe(bppX)2]2+ complexes: 

all energies are reported in kcal/mol. The total change in energy ΔEint (left) is decomposed into several 

contributions, ΔEelstat, ΔEPauli, ΔEorb and ΔEdisp. Presented in order of decreasing Hammett parameter 

(value provided under the identify of X in the first column). * values estimated in Subsection 4.3.7. 

X σp+ ΔEint 
ΔEint splitting terms 

ΔEPauli ΔEelstat ΔEorb ΔEdisp 

NO2 +0.79 -205.65 679.18 -365.4 (41.30%) -508.67 (57.49%) -10.76 (1.22%) 

CO2H +0.42 -223.72 678.69 -383.36 (41.81%) -508.27 (56.98%) -10.77 (1.21%) 

Br +0.15 -222.91 676.61 -383.11 (42.48%) -505.64 (56.32%) -10.76 (1.19%) 

I +0.14 -224.49 677.14 -382.46 (42.20%) -508.4 (56.39%) -10.77 (1.20%) 

Cl +0.11 -221.66 676.17 -383.07 (42.59%) -504.01 (56.21%) -10.75 (1.20%) 

H 0.0 -229.07 676.79 -393.79 (42.42%) -501.31 (56.39%) -10.75 (1.19%) 

SH -0.03 -231.64 675.44 -390.73 (42.67%) -505.58 (56.14%) -10.77 (1.20%) 

F -0.07 -219.51 675.48 -385.00 (43.(47%) -499.26 (55.34%) -10.73 (1.19%) 

Me -0.31 -235.6 675.89 -397.93 (43.08%) -502.8 (55.74%) -10.76 (1.19%) 

SMe -0.60 -239.55 675.26 -397.06 (43.02%) -506.96 (55.78%) -10.79 (1.20%) 

OMe -0.78 -238.92 674.59 -401.17 (43.40%) -501.57 (55.42%) -10.76 (1.18%) 

OH -0.92 -232.02 674.4 -396.16 (43.66%) -499.51 (55.16%) -10.75 (1.18%) 

NH2 -1.30 -246.68 673.41 -409.42 (43.92%) -499.91 (54.91%) -10.76 (1.18%) 

NMe2 -1.70 -255.27 673.26 -413.87 (43.71%) -503.87 (55.11%) -10.79 (1.19%) 

SOMe +0.26* -224.39 676.78 -382.23 (44.50%) -508.13 (54.33%) -10.79 (1.17%) 

SO2Me +0.60* -215.35 677.74 -373.39 (44.57%) -508.9 (54.27%) -10.80 (1.16%) 
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Table A4.5. EDA-NOCV results using fragmentation 5e for Mn+ for the HS [Fe(bppX)2]2+ complexes: 

all energies are reported in kcal/mol. The total change in energy ΔEint (left) is decomposed into several 

contributions, ΔEelstat, ΔEPauli, ΔEorb and ΔEdisp. Presented in order of decreasing Hammett parameter 

(value provided under the identify of X in the first column). * values estimated in Subsection 4.3.7. 

X σp+ ΔEint 
ΔEint splitting terms 

ΔEPauli ΔEelstat ΔEorb ΔEdisp 

NO2 +0.79 -71.6 554.5 -296.6 (47.37%) -314.9 (50.29%) -14.6 (2.33%) 

CO2H +0.42 -89.0 553.0 -313.2 (48.78%) -314.2 (48.40%) -14.6 (2.28%) 

Br +0.15 -85.5 531.7 -301.1 (48.78%) -301.8 (48.89%) -14.4 (2.33%) 

I +0.14 -86.9 532.1 -300.5 (48.54%) -304.1 (49.13%) -14.4 (2.33%) 

Cl +0.11 -88.2 550.6 -312.4 (48.91%) -311.8 (48.81%) -14.6 (2.28%) 

H 0.0 -89.9 531.7 -310.7 (49.98%) -296.6 (47.72%) -14.4 (2.31%) 

SH -0.03 -98.5 550.2 -320.1 (49.35%) -314.0 (48.40%) -14.6 (2.25%) 

F -0.07 -83.0 530.8 -302.9 (49.35%) -296.5 (48.32%) -14.3 (2.34%) 

Me -0.31 -104.4 530.9 -314.3 (49.46%) -306.7 (48.27%) -14.4 (2.27%) 

SMe -0.60 -101.5 550.1 -326.5 (50.10%) -310.6 (47.66%) -14.6 (2.24%) 

OMe -0.78 -104.0 547.1 -328.7 (50.49%) -307.8 (47.28%) -14.6 (2.23%) 

OH -0.92 -98.1 549.2 -325.0 (50.21%) -307.7 (47.54%) -14.5 (2.25%) 

NH2 -1.30 -113.0 548.8 -338.2 (51.10%) -309.1 (46.70%) -14.5 (2.20%) 

NMe2 -1.70 -120.1 530.3 -330.6 (50.83%) -305.5 (46.96%) -14.4 (2.21%) 

SOMe +0.26* -90.1 530.6 -300.8 (48.46%) -305.5 (49.22%) -14.4 (2.32%) 

SO2Me +0.60* -81.0 551.7 -303.2 (47.93%) -314.8 (49.75%) -14.7 (2.32%) 
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A4.1.2. NOCV: Fragmentation 5b 

Table A4.6. Results of ΔEorb (kcal/mol) decomposition, calculated with BP86-D3BJ-TZ2P level of 

theory, focussing on two of the four components, ΔEorb,σ and ΔEorb,π (kcal/mol), which sum to ΔEorb σ+π. 

Each of the three columns is ordered from the most negative to the least negative. Values reported are 

obtained using fragmentation 5b for Mn+ for the LS [Fe(bppX)2]2+ complexes. 

ΔEorb,σ+π ΔEorb,σ ΔEorb,π 

X Kcal mol-1 X Kcal mol-1 X Kcal mol-1 

NO2 -379.76 NO2 -331.89 NMe2 -52.55 

CO2H -379.72 CO2H -331.13 SMe -52.41 

I -378.94 SO2Me -330.32 SH -51.04 

SH -378.65 H -328.73 I -50.41 

SMe -378.57 SOMe -328.58 NH2 -50.17 

SO2Me -378.56 I -328.54 SOMe -49.70 

SOMe -378.28 Br -327.98 OMe -49.69 

Br -377.61 Cl -327.91 Br -49.63 

Cl -376.99 Me -327.76 Cl -49.08 

Me -376.22 SH -327.61 OH -48.69 

OMe -376.16 F -326.75 CO2H -48.59 

H -376.06 SMe -326.16 F -48.46 

NMe2 -375.83 OH -325.94 Me -48.24 

NH2 -374.84 NH2 -324.67 SO2Me -47.87 

OH -374.62 OMe -326.47 NO2 -47.71 

F -374.46 NMe2 -323.28 H -47.33 
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Table A4.7. Results of ΔEorb (kcal/mol) decomposition, calculated with BP86-D3BJ-TZ2P level of 

theory, focussing on two of the four components, ΔEorb,σ and ΔEorb,π (kcal/mol), which sum to ΔEorb σ+π. 

Each of the three columns is ordered from the most negative to the least negative. Values reported are 

obtained using fragmentation 5b for Mn+ for the HS [Fe(bppX)2]2+ complexes. 

ΔEorb,σ+π ΔEorb,σ ΔEorb,π 

X Kcal mol-1 X Kcal mol-1 X Kcal mol-1 

I -214.25 NMe2 -175.12 NH2 -35.97 

Br -213.48 I -172.45 NMe2 -35.89 

F -211.62 CO2H -172.19 H -30.46 

NMe2 -211.01 SO2Me -172.13 OMe -30.36 

H -200.15 SH -172.01 I -21.07 

NH2 -199.40 Me -172.00 Br -20.98 

OMe -199.17 Br -171.83 F -20.80 

SH -189.69 NO2 -170.88 SMe -17.85 

CO2H -188.74 Cl -170.71 SH -17.68 

SMe -188.47 F -170.29 NO2 -16.87 

SO2Me -188.32 OH -170.00 Cl -16.71 

NO2 -187.75 H -169.69 OH -16.70 

Cl -187.42 SMe -166.75 CO2H -16.55 

OH -186.70 SOMe -166.00 Me -16.47 

Me -184.60 OMe -165.75 SOMe -16.30 

SOMe -182.30 NH2 -164.52 SO2Me -16.19 
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A4.1.3. NOCV Figures for LS [Fe(bppX)2]
2+ 

Figure A4.2. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation, the M → L6 π-backdonation and 

polarisation in complex LS [Fe(bppNMe2)2]2+ complexes. The direction of the charge flow is yellow → 

turquoise. The eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 

0.1; ρ < 0.003). The choice of cut-off on deformation densities used to produce these images does not 

affect the results; as EDA-NOCV analysis are performed by applying default cut-off on NOCVs 

energies (0.5 kcal/mol) and individual SFO contribution (0.001). 

 

  

Δρ(1) ΔE1 = -127.4, |v1| = 0.94 

(M(dz2) ← L6 σ-donation) 

Δρ(2) ΔE2 = -113.2, |v2| = 0.90 

(M(dx2-y2) ← L6 σ-donation) 

 
 

Δρ(3) ΔE3 = -9.4, |v3| = 0.63 

(M (dxy) → L6 π-backdonation) 

Δρ(4) ΔE4 = -21.6, |v4| = 0.60 

(M (dxz,yz) → L6 π-backdonation) 
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Δρ(5) ΔE5 = -21.6, |v5| = 0.60 

(M (dxz,yz) → L6 π-backdonation) 
Δρ(6) ΔE6 = -16.6, |v6| = 0.25 (pol) 

 
 

Δρ(7) ΔE7 = -16.2, |v7| = 0.24 (pol) Δρ(8) ΔE8 = -16.1, |v8| = 0.24 (pol) 

 

  

Δρ(9) ΔE9 = -24.2, |v9| = 0.23 

(M(s) ← L6 σ-donation) 

Δρ(10) ΔE10 = -21.3, |v10| = 0.21 

(M(pz) ← L6 σ-donation) 
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Δρ(11) ΔE11 = -18.5, |v11| = 0.20 

(M(px,y) ← L6 σ-donation) 

Δρ(12) ΔE12 = -18.6, |v12| = 0.20 

(M(px,y) ← L6 σ-donation) 

 

 

 

 

Δρ(13) ΔE13 = -10.5, |v13| = 0.18 (pol) Δρ(14) ΔE14 = -10.5, |v14| = 0.18 (pol) 

 
 

Δρ(15) ΔE15 = -4.8, |v15| = 0.13 (pol) Δρ(16) ΔE16 = -4.5, |v16| = 0.12 (pol) 
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Figure A4.3. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation , the M → L6 π-backdonation and 

polarisation in complex LS [Fe(bppH)2]2+. The direction of the charge flow is yellow → turquoise. The 

eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 0.1; ρ < 0.003). 

The choice of cut-off on deformation densities used to produce these images does not affect the results; 

as EDA-NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) 

and individual SFO contribution (0.001). 

 
 

Δρ(1) ΔE1 = -129.0, |v1| = 0.95 

(M(dz2) ← L6 σ-donation) 

Δρ(2) ΔE2 = -115.8, |v2| = 0.92 

(M(dx2-y2) ← L6 σ-donation) 

 
 

Δρ(3) ΔE3 = -17.9, |v3| = 0.63 

(M (dxz,yz) → L6 π-backdonation) 

Δρ(4) ΔE4 = -18.0, |v4| = 0.63 

(M (dxz,yz) → L6 π-backdonation) 
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Δρ(5) ΔE5 = -11.5, |v5| = 0.60 

(M (dxy) → L6 π-backdonation) 
Δρ(6) ΔE6 = -17.1, |v6| = 0.26 (pol) 

 
 

Δρ(7) ΔE7 = -16.8, |v7| = 0.24 (pol) Δρ(8) ΔE8 = -16.8, |v8| = 0.24 (pol) 

 

 
 

Δρ(9) ΔE9 = -24.4, |v9| = 0.24 

(M(s) ← L6 σ-donation) 

Δρ(10) ΔE10 = -21.3, |v10| = 0.21 

(M(pz) ← L6 σ-donation) 
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Δρ(11) ΔE11 = -19.2, |v11| = 0.20 

(M(px,y) ← L6 σ-donation) 

Δρ(12) ΔE12 = -19.2, |v12| = 0.20 

(M(px,y) ← L6 σ-donation) 

 

 

 

 

Δρ(13) ΔE13 = -8.7, |v13| = 0.16 (pol) Δρ(14) ΔE14 = -8.7, |v14| = 0.16 (pol) 

 

 

Δρ(15) ΔE15 = -5.0, |v15| = 0.13 (pol) Δρ(16) ΔE16 = -4.7, |v16| = 0.12 (pol) 
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Figure A4.4. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation , the M → L6 π-backdonation and 

polarisation in complex LS [Fe(bppNO2)2]2+. The direction of the charge flow is yellow → turquoise. The 

eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 0.1; ρ < 0.003). 

The choice of cut-off on deformation densities used to produce these images does not affect the results; 

as EDA-NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) 

and individual SFO contribution (0.001). 

 

 

 

Δρ(1) ΔE1 = -130.6, |v1| = 0.96 

(M(dz2) ← L6 σ-donation) 

Δρ(2) ΔE2 = -116.8, |v2| = 0.93 

(M(dx2-y2) ← L6 σ-donation) 

 

 

Δρ(3) ΔE3 = -17.7, |v3| = 0.67 

(M (dxz,yz) → L6 π-backdonation) 

Δρ(4) ΔE4 = -17.8, |v4| = 0.66 

(M (dxz,yz) → L6 π-backdonation) 
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Δρ(5) ΔE5 = -12.4, |v5| = 0.57 

(M (dxy) → L6 π-backdonation) 

Δρ(6) ΔE6 = -17.1, |v6| = 0.26 (pol) 

  

Δρ(7) ΔE7 = -17.5, |v7| = 0.26 (pol) Δρ(8) ΔE8 = -17.5, |v8| = 0.26 (pol) 

 

 

 

Δρ(9) ΔE9 = -24.4, |v9| = 0.24 

(M(s) ← L6 σ-donation) 

Δρ(10) ΔE10 = -21.2, |v10| = 0.21 

(M(pz) ← L6 σ-donation) 
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Δρ(11) ΔE11 = -19.5, |v11| = 0.20 

(M(px,y) ← L6 σ-donation) 

Δρ(12) ΔE12 = -19.5, |v12| = 0.20 

(M(px,y) ← L6 σ-donation) 

  

Δρ(13) ΔE13 = -8.8, |v13| = 0.15 (pol) Δρ(14) ΔE14 = -8.8, |v14| = 0.15 (pol) 

 
 

Δρ(15) ΔE15 = 5.2, |v15| = 0.14 (pol) Δρ(16) ΔE16 = 5.0, |v16| = 0.13 (pol) 
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A4.1.4. NOCV Figures for HS [Fe(bppX)2]
2+ 

Figure A4.5. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation , the M → L6 π-backdonation and 

polarisation in complex HS [Fe(bppNMe2)2]2+ complexes. The direction of the charge flow is yellow → 

turquoise. The eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 

0.05; ρ < 0.0003). The choice of cut-off on deformation densities used to produce these images does not 

affect the results; as EDA-NOCV analysis are performed by applying default cut-off on NOCVs 

energies (0.5 kcal/mol) and individual SFO contribution (0.001). 

ALPHA BETA 

 

 

Δρ(6) ΔE6 = -17.6, |v6| = 0.18 

(M(s)  L6 σ-donation) 

Δρ(1) ΔE1 = -32.3, |v1| = 0.37 

(M(dz2)  L6 σ-donation) 

 

 

Δρ(7) ΔE7 = -10.1, |v7| = 0.17 

(M (dxz,yz) → L6 π-backdonation) 

Δρ(2) ΔE2 = -13.4, |v2| = 0.31 

(M(dx2-y2)  L6 σ-donation) 
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Δρ(8) ΔE8 = -9.5, |v8| = 0.17 

(M (dxy) → L6 π-backdonation) 

Δρ(3) ΔE3 = -14.5, |v3| = 0.28 

(M(dx2-y2)  L6 σ-donation) 

 
 

Δρ(10) ΔE10 = -6.0, |v10| = 0.15 

(M (dxy) → L6 π-backdonation) 

Δρ(4) ΔE4 = -16.7, |v4| = 0.26 (pol) 

  

Δρ(11) ΔE11 = -11.1, |v11| = 0.13 

(M(pz)  L6 σ-donation) 

Δρ(5) ΔE5 = -16.3, |v5| = 0.26 (pol) 
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Δρ(15) ΔE15 = -8.3, |v15| = 0.11 

(M(px,y)  L6 σ-donation) 

Δρ(9) ΔE9 = -13.5, |v9| = 0.15 

(M(s)  L6 σ-donation) 

  

Δρ(16) ΔE16 = -7.8, |v16| = 0.11 

(M(px,y)  L6 σ-donation) 

Δρ(12) ΔE12 = -9.5, |v12| = 0.13 

(M(px,y)  L6 σ-donation) 

  

Δρ(17) ΔE17 = -5.4, |v17| = 0.10 (pol) Δρ(13) ΔE13 = -9.0, |v13| = 0.13 

(M(px,y)  L6 σ-donation) 
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Δρ(19) ΔE19 = -5.2, |v19| = 0.09 (pol) Δρ(14) ΔE14 = -9.5, |v14| = 0.11 (pol) 

(M(pz)  L6 σ-donation) 

 
 

Δρ(20) ΔE20 = -5.3, |v20| = 0.09 (pol) Δρ(18) ΔE18 = -5.0, |v18| = 0.09 (pol) 

 

 

Δρ(21) ΔE21 = -5.4, |v21| = 0.09 (pol) Δρ(21) ΔE21 = -4.8, |v21| = 0.09 (pol) 
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Δρ(24) ΔE24 = -4.7, |v24| = 0.07 (pol) Δρ(22) ΔE22 = -4.7, |v22| = 0.09 (pol) 

 

 

Δρ(25) ΔE25 = -2.4, |v25| = 0.07 (pol) Δρ(25) ΔE25 = -1.9, |v25| = 0.05 (pol) 

 

 

Δρ(26) ΔE26 = -2.4, |v26| = 0.067(pol) Δρ(28) ΔE27 = -1.8, |v27| = 0.05 (pol) 
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Δρ(27) ΔE27 = -1.8, |v27| = 0.06 (pol)  

 

 

Δρ(29) ΔE29 = -1.8, |v29| = 0.05 (pol)  
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Figure A4.6. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation , the M → L6 π-backdonation and 

polarisation in complex HS [Fe(bppH)2]2+. The direction of the charge flow is yellow → turquoise. The 

eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 0.05; ρ < 0.0003). 

The choice of cut-off on deformation densities used to produce these images does not affect the results; 

as EDA-NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) 

and individual SFO contribution (0.001). 

ALPHA BETA 

 

 

Δρ(6) ΔE6 = -18.1, |v6| = 0.18 

(M(s) ← L6 σ-donation) 

Δρ(1) ΔE1 = -33.2, |v1| = 0.37 

(M(dz2) ← L6 σ-donation) 

 

 

 

 

Δρ(7) ΔE7 = -8.6, |v7| = 0.16 

(M (dxz) → L6 π-backdonation) 

Δρ(2) ΔE2 = -24.0, |v2| = 0.30 

(M (dx2-y2) → L6 σ-donation) 
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Δρ(8) ΔE8 = -8.5, |v8| = 0.16 

(M (dzy) → L6 π-backdonation) 

Δρ(3) ΔE3 = -3.5, |v3| = 0.29 

(M (dxy) → L6 π-backdonation) 

  

Δρ(10) ΔE10 = -5.9, |v10| = 0.15 

(M (dxy) → L6 π-backdonation) 

Δρ(4) ΔE4 = -14.0, |v4| = 0.22 

(M (dzy)  L6 σ-donation) 

 
 

Δρ(11) ΔE11 = -11.0, |v11| = 0.13 

(M(pz)  L6 σ-donation) 

Δρ(5) ΔE5 = -13.3, |v5| = 0.21 

(M(dzx)  L6 σ-donation) 
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Δρ(15) ΔE15 = -7.9, |v15| = 0.11 

(M(px)  L6 σ-donation) 

Δρ(9) ΔE9 = -13.8, |v9| = 0.15 

(M(s)  L6 σ-donation) 

 

 

Δρ(16) ΔE16 = -7.9, |v16| = 0.10 

(M(py)  L6 σ-donation) 

Δρ(12) ΔE12 = -8.6, |v12| = 0.12 

(M(py)  L6 σ-donation) 

  

Δρ(17) ΔE17 = -5.6, |v17| = 0.10 (pol) Δρ(13) ΔE13 = -8.7, |v13| = 0.12 (pol) 

(M(px)  L6 σ-donation) 



A4 | Quantitative Evaluation of the Nature of M-L Bonds in Paramagnetic Compounds: 

Application of EDA-NOCV Theory to Spin Crossover Complexes 

 

A176 

 

 

 

Δρ(19) ΔE19 = -5.0, |v19| = 0.09 (pol) Δρ(14) ΔE14 = -9.4, |v14| = 0.11 

(M(pz)  L6 σ-donation) 

 
 

Δρ(20) ΔE20 = -5.0, |v20| = 0.09 (pol) Δρ(18) ΔE18 = -5.3, |v18| = 0.09 (pol) 

  

Δρ(21) ΔE21 = -5.4, |v21| = 0.08 (pol) Δρ(22) ΔE22 = -4.7, |v22| = 0.09 (pol) 
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Δρ(24) ΔE24 = -4.8, |v24| = 0.08 (pol) Δρ(23) ΔE23 = -4.7, |v23| = 0.08 (pol) 

 
 

Δρ(25) ΔE25 = -2.5, |v25| = 0.06 (pol) Δρ(26) ΔE26 = -2.0, |v25| = 0.06 (pol) 

  

Δρ(27) ΔE27 = -2.5, |v27| = 0.06 (pol) Δρ(30) ΔE30 = -1.9, |v30| = 0.06 (pol) 
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Δρ(28) ΔE28 = -2.0, |v28| = 0.06 (pol)  

 

 

Δρ(29) ΔE29 = -2.0, |v29| = 0.06 (pol)  

 

 

Δρ(31) ΔE31 = -1.9 |v31| = 0.05 (pol)  
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Figure A4.7. Plot of the deformation densities Δρ(i) with corresponding energy contribution to the 

total orbital term ΔEi (given in kcal/mol) of the M  L6 σ-donation , the M → L6 π-backdonation and 

polarisation in complex HS [Fe(bppNO2)2]2+. The direction of the charge flow is yellow → turquoise. The 

eigenvalues |vi| indicate the relative size of the charge flow (reported values for |vi| > 0.05; ρ < 0.0003). 

The choice of cut-off on deformation densities used to produce these images does not affect the results; 

as EDA-NOCV analysis are performed by applying default cut-off on NOCVs energies (0.5 kcal/mol) 

and individual SFO contribution (0.001). 

ALPHA BETA 

 

 

Δρ(6) ΔE6 = -7.5, |v6| = 0.18 

(M (dxz,yz) → L6 π-backdonation) 

Δρ(1) ΔE1 = -8.3, |v1| = 1.00 (pol) 

 

 

 

 

 

Δρ(7) ΔE7 = -17.6, |v7| = 0.16 

(M(s)  L6 σ-donation) 

Δρ(2) ΔE2 = -29.6, |v2| = 0.36 

(M(dx2-y2)  L6 σ-donation) 
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Δρ(8) ΔE8 = -9.0, |v8| = 0.13 

(M (dxz,yz) → L6 π-backdonation) 

Δρ(3) ΔE3 = -33.3, |v3| = 0.36 

(M(dz2)  L6 σ-donation) 

 

 

Δρ(10) ΔE10 = -6.9, |v10| = 0.15 

(M (dxy) → L6 π-backdonation) 

Δρ(4) ΔE4 = -14.8, |v4| = 0.23 (pol) 

  

Δρ(11) ΔE11 = -10.5, |v11| = 0.12 

(M(pz)  L6 σ-donation) 

Δρ(5) ΔE5 = -13.6, |v5| = 0.15 

(M(s)  L6 σ-donation) 
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Δρ(15) ΔE15 = -8.8, |v15| = 0.12 

(M(px,y)  L6 σ-donation) 

 

Δρ(9) ΔE9 = -8.3, |v9| = 0.13 (pol) 

  

Δρ(16) ΔE16 = -7.5, |v16| = 0.11 

(M(px,y)  L6 σ-donation) 

Δρ(12) ΔE12 = -9.1, |v12| = 0.13 

(M(px,y)  L6 σ-donation) 

 

 

Δρ(17) ΔE17 = -6.2 |v17| = 0.11 (pol) Δρ(13) ΔE13 = -9.3, |v13| = 0.12 

(M(px,y)  L6 σ-donation) 
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Δρ(19) ΔE19 = -6.5, |v19| = 0.11(pol) Δρ(14) ΔE14 = -9.3, |v14| = 0.11 

(M(pz)  L6 σ-donation) 

 

 

Δρ(20) ΔE20 = -6.8, |v20| = 0.09 (pol) Δρ(18) ΔE18 = -5.7, |v18| = 0.11 (pol) 

 

 

Δρ(21) ΔE21 = -5.4, |v21| = 0.08 (pol) Δρ(22) ΔE22 = -5.8, |v22| = 0.10 (pol) 
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Δρ(24) ΔE24 = -5.2, |v24| = 0.07 (pol) Δρ(23) ΔE23 = -5.5, |v23| = 0.10 (pol) 

  

Δρ(25) ΔE25 = -2.7, |v25| = 0.07 (pol) Δρ(28) ΔE28 = -2.2, |v28| = 0.07 (pol) 

 

 

Δρ(26) ΔE26 = -2.6, |v26| = 0.07 (pol) Δρ(30) ΔE30 = -3.5, |v30| = 0.06 (pol) 
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Δρ(27) ΔE27 = -2.1, |v27| = 0.06 (pol) Δρ(31) ΔE31 = -2.1, |v31| = 0.06 (pol) 

 

 

Δρ(29) ΔE29 = -2.0, |v29| = 0.06 (pol)  
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A4.2. Correlations of ΔEi in LS 
[Fe(bppX)2]2+ 

A4.2.1. Transition Temperature T1/2 

 

Figure A4.8. Strong correlation (R2 = 0.82) of ΔEorb,σ+π with T1/2 in the family of fourteen LS 

[Fe(bppX)2]2+ complexes (X = NH2, NMe2 are absent).  

 

Figure A4.9. Absence of correlation (R2 = 0.09) of ΔEorb,π with T1/2 in the family of fourteen LS 

[Fe(bppX)2]2+ complexes (X = NH2, NMe2 are absent). 

 
Figure A4.10. Weak correlation (R2 = 0.48) of ΔEorb,σ with T1/2 in the family of fourteen LS [Fe(bppX)2]2+ 

complexes (X = NH2, NMe2 are absent). 
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A4.2.2. 15NA NMR Chemical Shift (δNA) 

 

Figure A4.11. Strong correlation (R2 = 0.95) of ΔEorb,σ with δNA in the family of sixteen LS 

[Fe(bppX)2]2+ complexes. 

 

Figure A4.12. Weak correlation (R2 = 0.39) of ΔEorb,π with δNA in the family of sixteen LS [Fe(bppX)2]2+ 

complexes. 

 

Figure A4.13. Weak correlation (R2 = 0.23) of ΔEorb,σ+π with δNA in the family of sixteen LS 

[Fe(bppX)2]2+ complexes.  
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A4.3. Correlations of ΔEi in HS 
[Fe(bppX)2]2+ 

A4.3.1. Hammett Parameter σp
+(X) 

 
Figure A4.14. Absence of correlation (R2 = 0.30) of ΔEorb,σ with the σp+ Hammett parameter in the family 

of fourteen HS [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me are absent).  

 
Figure A4.15. Absence of correlation (R2 = 0.01) of ΔEorb,π with the σp+ Hammett parameter in the 

family of fourteen [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me are absent). 

 

Figure A4.16. Weak correlation (R2 = 0.34) of ΔEorb,σ+π with σp+ Hammett parameter in the family of 

fourteen HS [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me are absent). 
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A4.3.2. Transition Temperature T1/2 

 
Figure A4.17. Absence of correlation (R2 = 0.36) of ΔEorb,σ with T1/2 in the family of fourteen HS 

[Fe(bppX)2]2+ complexes (X = NH2, NMe2 are absent). 

 
Figure A4.18. Weak correlation (R2 = 0.07) of ΔEorb,π with T1/2 in the family of fourteen [Fe(bppX)2]2+ 

complexes (X = NH2, NMe2 are absent). 

 

Figure A4.19. Weak correlation (R2 = 0.31) of ΔEorb,σ+π with T1/2 in the family of fourteen HS 

[Fe(bppX)2]2+ complexes (X = NH2, NMe2 are absent).  
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A4.3.3. 15NA NMR Chemical Shift (δNA) 

 

Figure A4.20. Absence of correlation (R2 = 0.35) of ΔEorb,σ with δNA in the family of sixteen HS 

[Fe(bppX)2]2+ complexes. 

 

Figure A4.21. Weak correlation (R2 = 0.04) of ΔEorb,π with δNA in the family of sixteen HS [Fe(bppX)2]2+ 

complexes. 

 

Figure A4.22. Weak correlation (R2 = 0.30) of ΔEorb,σ+π with δNA in the family of sixteen HS 

[Fe(bppX)2]2+ complexes. 
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A4.4. Mulliken Population in the 
bppx Ligand  

Table A4.8. Reported Mulliken analysis calculated with RI-BP86-D3(BJ)/def2-

TZVPP+CPCM(acetone) level of theory259-267 for the coordinating nitrogen N of the sixteen bppX 

ligands. Firstly, the whole N population is reported; it follows the local population for each specific N(i) 

orbital (i = s, p⟂, pπ, pσ). The Mulliken populations are reported in number of electrons (e-).* values 

estimated in Subsection 4.3.7. 

X σp+ δN / ppm T1/2 / K Ntot / e- N(s) / e- N(p⟂) / e- N(pπ) / e- N(pσ) / e- 

NO2 +0.79 234 309 6.295 3.650 1.443 0.967 1.170 

CO2H +0.42 230 281 6.303 3.650 1.444 0.969 1.175 

Br +0.15 215 234 6.311 3.648 1.438 0.967 1.193 

I +0.14 216 236 6.312 3.649 1.438 0.966 1.194 

Cl +0.11 215 226 6.314 3.649 1.437 0.966 1.196 

H 0.0 220 248 6.316 3.646 1.445 0.968 1.191 

SH -0.03 208 246 6.326 3.650 1.433 0.967 1.210 

F -0.07 212 215 6.321 3.651 1.436 0.965 1.204 

Me -0.31 213 216 6.323 3.648 1.438 0.969 1.201 

SMe -0.60 206 194 6.329 3.650 1.432 0.968 1.214 

OMe -0.78 201 158 6.334 3.651 1.429 0.966 1.222 

OH -0.92 202 164 6.334 3.651 1.430 0.966 1.222 

NH2 -1.30 193 HS 6.350 3.651 1.424 0.967 1.243 

NMe2 -1.70 186 HS 6.352 3.651 1.421 0.968 1.246 

SOMe +0.26* 222 284 6.310 3.648 1.441 0.967 1.188 

SO2Me +0.60* 228 294 6.300 3.648 1.444 0.967 1.175 
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A4.5. Published Correlations 

 
Figure A4.23. Correlation of T1/2 with the σp+ Hammett parameter (R2 = 0.92) in the family of twelve 

[Fe(bppX)2]2+ complexes (X = SOMe, SO2Me, NH2, NMe2 are absent), previously reported by Deeth, 

Halcrow et al.23  

 

Figure A4.24. Correlation of T1/2 with δ(NA) (R2 = 0.89) in the family of fourteen [Fe(bppX)2]2+ 

complexes (X = NH2, NMe2 are absent), previously reported by Brooker and et al.83 

 

Figure A4.25. Correlation of δ(NA) (the 15N-NMR chemical shift) with the σp+ Hammett parameter (R2 

= 0.92) in the family of fourteen [Fe(bppX)2]2+ complexes (X = SOMe, SO2Me are absent), previously 

reported in Chapter Two.  
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A5 | Accurate Prediction of 

Pressure and Temperature 

T1/2 Variation in Solid State 

Spin Crossover by Ab Initio 

Methods: The [CoII(dpzca)2] 

Case 

A5.1. Computational Protocol 
Validation 

A5.1.1. Ueff Tuning in Geometry 
Optimisation Procedure 

Calculated curves for geometry optimisation performed on crystalline 

[Co(dpzca)2] at different values of Ueff(Co(d)) are reported in Figure A5.2. 

Ueff(Co(d)) range spreads from 3.0 eV (not reported in Figure A5.2 as ΔHel,HS-LS < 0 

eV; detail in Table A5.1) to 1.5 eV. For ΔUeff(Co(d) = 1.5 eV, ΔHel,HS-LS change is about 

3.0 eV; this is more than enough to change the magnetic response of [Co(dpzca)2] 

from physically wrong (from Ueff = 3.0 eV, ΔHel,HS-LS < 0 eV), fully HS (Ueff = 2.5 eV), 

SCO-active (Ueff = 2.375 eV to Ueff = 2.25 eV), almost fully LS before 400K (Ueff = 2.0 

eV) and, finally, fully LS (Ueff = 1.5 eV). Specifically, by decreasing Ueff magnitude 

of 0.125 eV (from Ueff = 2.375 eV to Ueff = 2.25 eV), the calculated T1/2 rises of 200K 

(Table A5.1). The fragility of the SCO phenomenon should be extremely clear: 

even if the Ueff term can be used to fine-tune the ΔHel,HS-LS gap, it is extremely 

complicated to get the exact value of experimental T1/2; indeed, for small variation 

in Ueff magnitude, the SCO phenomenon shifts largely. Finally, the best value of 

Ueff to reproduce the experimental SCO transition of [Co(dpzca)2] was set at 2.35 

eV (T1/2 = 175 K, Table A5.1). 
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Figure A5.1. Correlation line established between the applied localising potential Hubbard U (Ueff) to 

the Co(II) d-orbitals. Reported line describes an extremely good correlation between the magnitude of 

the ΔHel,HS-LS gap (eV) vs. the applied Ueff (eV). 

 

Figure A5.2. Reported results of the regular SCO transition of 1cry for different values of Ueff (from 2.5 

eV to 1.5 eV). Normal modes were calculated from a first calculation on for 1cry,LS and 1cry,HS without 

applying any Ueff. Next, ΔHel,HS-LS gap (eV) was obtained by proceed with a further step of cell 

optimisation by applying various Ueff terms at Co(d) orbitals. Colour code: Ueff = 2.5 eV (black), Ueff = 

2.375 eV (red), Ueff = 2.37 eV (blue), Ueff = 2.35 eV (purple), Ueff = 2.275 eV (olive), Ueff = 2.25 eV 

(magenta), Ueff = 2.0 eV (light green), Ueff = 1.5 eV (light blue). 
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Table A5.1. Results of calculated electronic Enthalpy (H) for 1cry,LS and 1cry,HS at different values of Ueff 

obtained in the protocol of geometry optimisation to the ΔHel,HS-LS gap at the experimental T1/2. In the 

last column on the right are reported theoretical values of T1/2 at the different applied Hubbard 

potentials. 

 

 

Ueff / eV HHS / H HLS / H HHS-LS / H ΔHHS-LS / eV T1/2 (K) 

3.0 -1718.070 -1718.010 -0.059 -1.625 HS 

2.5 -1716.936 -1716.940 0.003 0.105 HS 

2.375 -1716.938 -1716.949 0.011 0.302 50 < T1/2 < 75 

2.37 -1716.938 -1716.949 0.011 0.308 165 

2.35 -1716.938 -1716.950 0.012 0.324 175 

2.275 -1716.939 -1716.955 0.015 0.430 225 < T1/2 < 250 

2.25 -1716.939 -1716.957 0.017 0.465 250 < T1/2 < 275 

2 -1716.944 -1716.974 0.030 0.823 T1/2 > 400 

1.5 -1716.957 -1717.013 0.056 1.517 LS 
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A5.1.2. Ueff Tuning for Cell Parameters in Cell Optimisation Procedure 

Table A5.2. Final cell parameters obtained in the protocol validation step of applying further Ueff for improving the emulation of 1cry,HS,1bar. 

 

LS Cell Parameters Ueff / eV 

 a / Å b / Å c / Å α / ° β / ° γ / ° Co(d) N(p) O(p) C(p) H(s) 

EXP 8.668 27.656 8.514 90.00 91.52 90.00 - - - - - 

 8.578 27.275 8.167 90.03 91.33 90.12 1.6 0 0 0 0 

 8.577 27.276 8.168 90.03 91.38 90.10 1.75 0 0 0 0 

 8.576 27.279 8.168 90.03 91.39 90.10 1.8 0 0 0 0 

 8.575 27.286 8.169 90.05 91.42 90.12 1.875 0 0 0 0 

 8.566 27.289 8.175 90.09 91.47 90.07 1.9 0 0 0 0 

 8.575 27.237 8.186 90.00 91.48 90.23 1.65 1 0 0 0 

 8.573 27.25 8.186 89.95 91.27 90.22 1.65 1.5 0 0 0 

 8.569 27.238 8.197 89.96 91.19 90.23 1.65 2 0 0 0 

 8.375 27.532 8.367 89.93 90.78 90.04 1.65 3 0 0 0 

 8.566 27.243 8.200 89.97 91.15 90.25 1.65 2 0 0 0 

 8.556 8.555 27.342 89.98 90.07 89.97 1.15 3 0 0 0 

 8.375 27.532 8.367 89.94 90.77 90.04 1.65 3 0 0 0 

 8.574 27.155 8.184 90.02 91.60 90.19 1.65 2 0 2 0 

 8.38 27.561 8.386 89.96 90.76 89.92 2 3 0 2 0 

 8.382 27.581 8.393 89.99 90.77 89.89 2 3 0 3 0 
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Table A5.3. Final cell parameters obtained in the protocol validation step of applying further Ueff for improving the emulation of 1cry,LS,1bar.  

 

HS Cell Parameters Ueff / eV 

 a / Å b / Å c / Å α / ° β / ° γ / ° Co(d) N(p) O(p) C(p) H(s) 

EXP 8.795 8.795 27.918 90.00 90.00 90.00 - - - - - 

 8.590 8.556 26.982 90.20 90.08 90.16 1.6 0 0 0 0 

 8.586 8.553 29.963 90.19 90.07 90.15 1.75 0 0 0 0 

 8.618 8.629 27.406 90.04 90.00 89.95 1.8 0 0 0 0 

 8.656 8.665 27.536 90.03 90.00 89.97 1.875 0 0 0 0 

 8.665 8.676 27.566 90.03 90.00 89.97 1.9 0 0 0 0 

 8.590 8.569 26.991 90.24 90.19 90.10 1.65 1 0 0 0 

 8.589 8.563 27.001 90.23 90.19 90.13 1.65 1.5 0 0 0 

 8.567 8.567 27.046 90.18 90.38 89.99 1.65 2 0 0 0 

 8.572 8.571 27.399 89.96 90.10 90.01 1.65 3 0 0 0 

 8.584 8.561 26.967 90.24 90.19 90.11 1.65 2 0 2 0 

 8.300 27.355 8.282 89.86 90.84 89.73 1.15 3 0 0 0 

 8.586 8.585 27.369 89.98 90.05 90.01 2 3 0 2 0 

 8.592 8.591 27.382 89.98 90.05 90.01 2 3 0 3 0 

 8.615 8.610 27.086 89.99 90.01 90.02 2 3 3 3 1 

 8.607 8.613 27.191 89.91 90.18 89.92 2 3 0 3 1 
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A5.1.3. Ueff(Co(d)) Tuning in Cell 
Optimisation Procedure 

 

Figure A5.3. Calculated SCO transitions of 1cryst for different values of Ueff(Co(d)) (from 2.35 eV to 

0.00 eV). Normal modes were calculated from a first calculation on 1cryst,LS and 1cryst,HS without applying 

any Ueff(Co(d)) or Ueff(N(p)). Next, ΔHel,HS-LS gap (eV) was obtained by proceeding with a further step 

of cell optimisation by applying various Ueff terms at Co(d) orbitals. Colour code: Ueff(Co(d)) = 2.35 eV 

(black), Ueff(Co(d)) = 1.75 eV (red), Ueff(Co(d)) = 1.25 eV (blue), Ueff(Co(d)) = 1.15 eV (purple), 

Ueff(Co(d)) = 1.00 eV (olive), Ueff(Co(d)) = 0.75 eV (magenta), Ueff(Co(d)) = 0.50 eV (light green), 

Ueff(Co(d)) = 0.25 eV (light blue) and Ueff(Co(d)) = 0.0 eV (green). The two highest values of Ueff(Co(d)) 

(2.35 and 1.75 eV) overlap as the complex is fully HS state; the three lowest values of Ueff(Co(d)) (0.50, 

0.25, 0.00 eV) overlap as the complex is fully LS state. 
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Table A5.4. Results of calculated electronic Enthalpy (H) for 1cry,LS and 1cry,HS at different values of Ueff 

obtained in the protocol of cell optimisation to the ΔHel,HS-LS gap at the experimental T1/2. In the last 

column on the right are reported theoretical values of T1/2 at the different applied Hubbard potentials. 

 

Table A5.5. Error analysis of divergence between the calculated and the experimental unit cell 

parameters at the available pressures of 1 bar (1cry,HS,1bar and 1cry,LS,1bar) and 4300 bar (1cry,LS,4300bar). 

Note that each calculation is performed at the absolute temperature of 0 K. 1 bar = 10-4 Pa. 

Cell 
Param. 

1cry,HS 1cry,LS 

1 bar 1 bar 4300 bar 

Exp. Calc. % Exp. Calc. % 

a /Å 8.795 8.556 -2.7% 8.668 8.366 -3.5% 

b /Å 8.795 8.555 -2.7% 27.656 27.536 -0.4% 

c /Å 27.918 27.342 -2.1% 8.514 8.357 -1.8% 

α /° 90.00 89.979 -0.1% 90.00 89.971 -0.1% 

β /° 90.00 90.065 +0.1% 91.52 90.925 -0.7% 

γ /° 90.00 89.969 -0.1% 90.00 89.901 -0.1% 

Av. Error - - 1.3%   1.1% 

Ueff / eV HHS / H HLS / H HHS-LS / H ΔHHS-LS / eV T1/2 (K) 

2.35 -1716.96 -1716.95 -0.013 -0.361 HS 

1.75 -1713.68 -1713.66 -0.013 -0.348 HS 

1.25 -1713.70 -1713.71 0.014 +0.373 75 < T1/2 < 100 

1.15 -1713.70 -1713.71 0.012 +0.322 175 

1.00 -1713.71 -1713.72 0.019 +0.526 275 < T1/2 < 300 

0.75 -1713.72 -1713.75 0.030 +0.813 T1/2 > 400 

0.50 -1713.72 -1713.77 0.044 +1.199 LS 

0.25 -1713.73 -1713.79 0.058 +1.571 LS 

0.00 -1713.75 -1713.81 0.069 +1.881 LS 
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A5.2. Additional Structural Data 

A5.2.1. Cell Parameters of 1cry vs. 
Pressure and Measured T1/2 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑((𝑣𝑖𝑥 − 𝑤𝑖𝑥)2 + (𝑣𝑖𝑦 − 𝑤𝑖𝑦)

2
+ (𝑣𝑖𝑧 − 𝑤𝑖𝑧)2)

𝑛

𝑖=1

 (A5.1) 

𝜁 =  ∑ |𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛|

6

𝑖=1

 (A5.2) 

𝛥 =  
1

6
 ∑ (

|𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛|

𝑑𝑚𝑒𝑎𝑛

)
26

𝑖=1

 (A5.3) 

𝛴 =  ∑ |90 − 𝜙𝑖|

12

𝑖=1

 (A5.4) 

𝛩 =  ∑ |90 − 𝜃𝑖|

24

𝑖=1

 (A5.5) 

𝛺 =  ∑ |60 − 𝜔𝑖|

24

𝑖=1

 (A5.6) 
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Table A5.6. Reported variation in the cell volume for on 1cry,LS and 1cry,HS at different pressures. 

Reference system is considered at the external pressure of 1 bar. Results are reported in Å3. 

p / bar HS / Å3 LS / Å3 % HS % LS 

1 2001.27 1952.80 - - 

1800 1978.99 1906.64 -22.28 (-1.11%) -46.16 (-2.36%) 

2100 1974.65 1903.71 -26.62 (-1.33%) -49.09 (-2.51%) 

2500 1970.41 1899.97 -30.86 (-1.54%) -52.83 (-1.54%) 

2900 1960.62 1893.81 -40.65 (-2.03%) -58.99 (-3.02%) 

3900 1970.20 1862.75 -31.07 (-1.55%) -90.05 (-4.61%) 

4300 1965.55 1897.99 -35.72 (-1.78%) -54.81 (-2.81%) 

 

Table A5.7. Reported correlation factor in the analysis of the variation of the structural parameters of 

the unit cell for on 1cry,LS and 1cry,HS versus the seven different pressures (and related experimental T1/2). 

  R2 (pressure) R2 (T1/2(exp.)) 

1cry,LS 

a / Å 0.47 (Fig. A5.3) 0.41 (Fig. A5.15) 

b / Å 0.54 (Fig. A5.4) 0.64 (Fig. A5.16) 

c / Å 0.63 (Fig. A5.5) 0.13 (Fig. A5.17) 

α / ° 0.74 (Fig. A5.6) 0.77 (Fig. A5.18) 

β / ° 0.64 (Fig. A5.7) 0.70 (Fig. A5.19) 

γ / ° 0.39 (Fig. A5.8) 0.36 (Fig. A5.20) 

1cry,HS 

a / Å 0.71 (Fig. A5.9) 0.49 (Fig. A5.21) 

b / Å 0.59 (Fig. A5.10) 0.58 (Fig. A5.22) 

c / Å 0.93 (Fig. A5.11) 0.86 (Fig. A5.23) 

α / ° 0.20 (Fig. A5.12) 0.23 (Fig. A5.24) 

β / ° 0.23 (Fig. A5.13) 0.25 (Fig. A5.25) 

γ / ° 0.20 (Fig. A5.14) 0.21 (Fig. A5.26) 
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Figure A5.4. Reported correlation factor R2 for the variation of the length of the a-axis of 1cry,LS at the 

pressure increase (R2 = 0.47). 

 

Figure A5.5. Reported correlation factor R2 for the variation of the length of the b-axis of 1cry,LS at the 

pressure increase (R2 = 0.54). 
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Figure A5.6. Reported correlation factor R2 for the variation of the length of the c-axis of 1cry,LS at the 

pressure increase (R2 = 0.63). 

 

Figure A5.7. Reported correlation factor R2 for the variation of the magnitude of the α angle of 1cry,LS at 

the pressure increase (R2 = 0.74). 
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Figure A5.8. Reported correlation factor R2 for the variation of the magnitude of the β angle of 1cry,LS at 

the pressure increase (R2 = 0.64). 

 

 

Figure A5.9. Reported correlation factor R2 for of the variation of the magnitude of the γ angle of 1cry,LS 

at the pressure increase (R2 = 0.39). 
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Figure A5.10. Reported correlation factor R2 for the variation of the length of the a-axis of 1cry,HS at the 

pressure increase (R2 = 0.71). 

 

Figure A5.11. Reported correlation factor R2 for the variation of the length of the b-axis of 1cry,HS at the 

pressure increase (R2 = 0.59). 
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Figure A5.12. Reported correlation factor R2 for of the variation of the length of the c-axis of 1cry,HS at 

the pressure increase (R2 = 0.93). 

 

Figure A5.13. Reported correlation factor R2 for the variation of the magnitude of the α angle of 1cry,HS 

at the pressure increase (R2 = 0.20). 
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Figure A5.14. Reported correlation factor R2 for the variation of the magnitude of the β angle of 1cry,HS 

at the pressure increase (R2 = 0.23). 

 

Figure A5.15. Reported correlation factor R2 for the variation of the magnitude of the γ angle of 1cry,HS 

at the pressure increase (R2 = 0.20). 
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Figure A5.16. Reported correlation factor R2 for the variation of the length of the a-axis of 1cry,LS at the 

increase of the measured T1/2 (R2 = 0.41). 

 

 

Figure A5.17. Reported correlation factor R2 for the variation of the length of the b-axis of 1cry,LS at the 

increase of the measured T1/2 (R2 = 0.64). 
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Figure A5.18. Reported correlation factor R2 for the variation of the length of the c-axis of 1cry,LS at the 

increase of the measured T1/2 (R2 = 0.13). 

 

Figure A5.19. Reported correlation factor R2 for the variation of the magnitude of the α angle of 1cry,LS 

at the increase of the measured T1/2 (R2 = 0.70). 
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Figure A5.20. Reported correlation factor R2 for the variation of the magnitude of the β angle of 1cry,LS 

at the increase of the measured T1/2 (R2 = 0.70). 

 

Figure A5.21. Reported correlation factor R2 for the variation of the magnitude of the γ angle of 1cry,LS 

at the increase of the measured T1/2 (R2 = 0.36). 
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Figure A5.22. Reported correlation factor R2 for the variation of the length of the a-axis of 1cry,HS at the 

increase of the measured T1/2 (R2 = 0.49). 

 

Figure A5.23. Reported correlation factor R2 for the variation of the length of the b-axis of 1cry,HS at the 

increase of the measured T1/2 (R2 = 0.58). 
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Figure A5.24. Reported correlation factor R2 for the variation of the length of the c-axis of 1cry,HS at the 

increase of the measured T1/2 (R2 = 0.86). 

 

Figure A5.25. Reported correlation factor R2 for the variation of the magnitude of the α angle of 1cry,HS 

at the increase of the measured T1/2 (R2 = 0.23). 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 
 

A213 

 

 

Figure A5.26. Reported correlation factor R2 for the variation of the magnitude of the β angle of 1cry,HS 

at the increase of the measured T1/2 (R2 = 0.25). 

 

Figure A5.27. Reported correlation factor R2 for the variation of the magnitude of the γ angle of 1cry,HS 

at the increase of the measured T1/2 (R2 = 0.21). 
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A5.2.1. Structural Distortion of 1cry vs. 
Pressure 

Table A5.8. Reported variation of structural parameters (internal to [Co(dpzca)2]: Co-N bond length 

and Σ octahedral distortion and external: Co-Co intermolecular distance) obtained after procedure of 

cell optimisation for 1cry,LS at different pressures. 

 

Table A5.9. Reported variation of structural parameters (internal to [Co(dpzca)2]: Co-N bond length 

and Σ octahedral distortion and external: Co-Co intermolecular distance) obtained after procedure of 

cell optimisation for 1cry,HS at different pressures. 

LS  Cell Parameters  

pressure Co1-Co2 / Å Co2-Co3 / Å Co3-Co4 / Å 

1 8.177 10.540 8.176 

1800 8.171 10.500 8.161 

2100 8.167 10.499 8.157 

2500 8.161 10.498 8.152 

2900 8.127 10.464 8.154 

3900 8.123 10.455 8.133 

4300 8.114 10.464 8.122 

HS Cell Parameters 

pressure Co1-Co2 / Å Co2-Co3 / Å Co3-Co4 / Å 

1 8.057 8.064 8.070 

1800 8.013 8.072 8.062 

2100 7.987 8.059 8.056 

2500 7.991 8.061 8.066 

2900 8.029 8.018 8.200 

3900 8.028 8.007 8.199 

4300 8.028 8.007 8.199 
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Table A5.10. Calculated structural distortion parameters for crystallographic and calculated structures (DFT) for 1cryst at different pressures (1, 1800, 2100, 

2500, 2900, 3900, 4300 bar), along with the experimental T1/2 from ref19 and the calculated T1/2). 1 bar = 10-4 Pa. 

 

Pressure / bar 1 4300 1 1800 2100 2500 2900 3900 4300 
R2 

[pressure] 

R2 

[T1/2(exp)] 
T1/2 (exp) / K Exp. 

x-ray 

173 173 189 202 214 218 235 

T1/2 (calc) / K 171 164 190 173 LS LS - 

1cryst,LS 

RMSD / Å - - - 0.03221 0.04415 0.05004 0.06016 0.06482 0.07082 0.92 (Fig. 5) 0.98 (Fig. 5) 

<D> / Å 2.03444 2.0505 1.98033 1.97843 1.98299 1.97794 1.97733 1.97365 1.97700 0.43 (Fig. S28) 0.38 (Fig. S34) 

ζ / Å 0.63404 0.4964 0.26140 0.25693 0.26407 0.25610 0.25331 0.23631 0.25671 0.34 (Fig. S29) 0.24 (Fig. S35) 

Δ (geom.) 0.00318 0.0020 0.00057 0.00054 0.00066 0.00054 0.00053 0.00049 0.00057 0.07 (Fig. S30) 0.09 (Fig. S36) 

Σ / ° 76.0830 89.8708 69.3796 69.3845 70.5836 69.4735 69.5518 68.0682 69.199 0.17 (Fig. S31) 0.15 (Fig. S37) 

Θ / ° 271.161 306.325 230.475 230.731 235.439 231.269 231.510 221.259 231.135 0.13 (Fig. S32) 0.09 (Fig. S38) 

Ω / ° 127.36 143.16 126.84 119.64 130.00 126.68 126.80 117.28 127.00 0.06 (Fig. S33) 1.3E-8 (Fig. S39) 

1cryst,HS 

RMSD / Å - - - 0.04131 0.05112 0.05195 0.13196 0.25527 0.33967 0.95 (Fig. 5) 0.78 (Fig. 5) 

<D> / Å 2.11373 - 2.08150 2.07902 2.07916 2.07866 2.07788 2.07954 2.07784 0.58 (Fig. S28) 0.45 (Fig. S34) 

ζ / Å 0.25709 - 0.13399 0.13028 0.13310 0.13233 0.12746 0.13108 0.13081 0.26 (Fig. S29) 0.21 (Fig. S35) 

Δ (geom.) 0.00046 - 0.00021 0.00020 0.00021 0.00021 0.00021 0.00021 0.00020 0.01 (Fig. S30) 0.01 (Fig. S36) 

Σ / ° 110.620 - 104.228 103.785 104.296 104.171 103.966 104.442 104.045 0.01 (Fig. S31) 0.03 (Fig. S37) 

Θ / ° 344.334 - 335.121 334.596 336.809 336.455 338.072 336.264 336.287 0.22 (Fig. S32) 0.36 (Fig. S38) 

Ω / ° 164.74 - 169.49 169.64 171.44 171.12 173.96 167.16 171.92 0.01 (Fig. S33) 0.07 (Fig. S39) 

1cryst,LS-HS 
ΔRMSD/Å - - 9.60 9.61 9.63 9.59 9.58 9.56 9.63 0.02 (Fig. 43) 0.02 (Fig. 44) 

ΔΘ / ° - - 104.6461 103.8654 101.3695 105.1858 106.5625 115.0052 105.1516 0.60 (Fig. 45) 0.22 (Fig. 46) 
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Figure A5.28. Reported effects of the pressure increase vs the average <DCo-N> distance. Trend line 

reports the correlation factor for 1cry,HS (red, R2 = 0.58) and LS [Co(dpzca)2] (blue, R2 = 0.43). 

 

Figure A5.29. Reported effects of the pressure increase vs the sum of the Co-N bond differences from 

<DCo-N>, ζ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.26) and 1cry,LS (blue, R2 = 0.34). 
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Figure A5.30. Reported effects of the pressure increase vs the averaged Co-N bond deviation from <DCo-

N>, Δ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.07) and 1cry,LS (blue, R2 = 0.01). 

 

Figure A5.31. Reported effects of the pressure increase vs the octahedral distortion parameter Σ. Trend 

line reports the correlation factor for 1cry,HS (red, R2 = 0.01) and 1cry,LS (blue, R2 = 0.17). 
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Figure A5.32. Reported effects of the pressure increase vs the trigonal torsion parameter Θ. Trend line 

reports the correlation factor for 1cry,HS (red, R2 = 0.22) and 1cry,LS (blue, R2 = 0.13). 

 

Figure A5.33. Reported effects of the pressure increase vs the distortion parameter Ω. Trend line reports 

the correlation factor for 1cry,HS (red, R2 = 0.01) and 1cry,LS (blue, R2 = 0.06).  
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A5.2.1. Structural Distortion of 1cry vs. 
Measured T1/2 

 

Figure A5.34. Reported effects of the measured T1/2 values at pressure increase vs the vs the average 

<DCo-N> distance. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.45) and 1cry,LS (blue, R2 

= 0.38). 

 

Figure A5.35. Reported effects of the measured T1/2 values at pressure increase vs the sum of the Co-N 

bond differences from <DCo-N>, ζ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.21) and 

1cry,LS (blue, R2 = 0.24). 
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Figure A5.36. Reported effects of the measured T1/2 values at pressure increase vs the averaged Co-N 

bond deviation from <DCo-N>, Δ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.01) and 

1cry,LS (blue, R2 = 0.09). 

 

Figure A5.37. Reported effects of the measured T1/2 values at pressure increase vs the octahedral 

distortion parameter Σ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.03) and 1cry,LS 

(blue, R2 = 0.15). 
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Figure A5.38. Reported effects of the measured T1/2 values at pressure increase vs the trigonal torsion 

parameter Θ. Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.95) and 1cry,LS (blue, R2 = 

0.92). 

 

Figure A5.39. Reported effects of the T1/2 values at pressure increase vs the distortion parameter Ω. 

Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.07) and 1cry,LS (blue, R2 = 1.13E-8). 
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Figure A5.40. Reported effects of the measured T1/2 values at pressure increase vs the intermolecular 

Co-Co ions distance (d(Co1-Co2)). Trend line reports the correlation factor for 1cry,HS (red, R2 = 2.0E-4) 

and 1cry,LS (blue, R2 = 0.90). 

 

Figure A5.41. Reported effects of the measured T1/2 values at pressure increase vs the intermolecular 

Co-Co ions distance (d(Co2-Co3)). Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.83) 

and 1cry,LS (blue, R2 = 0.73). 
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Figure A5.42. Reported effects of the measured T1/2 values at pressure increase vs the intermolecular 

Co-Co ions distance (d(Co3-Co4)). Trend line reports the correlation factor for 1cry,HS (red, R2 = 0.74) 

and 1cry,LS (blue, R2 = 0.83). 
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A5.2.1. Structural Distortions associated 
with Spin State Transition 

 

Figure A5.43. Reported effects of the pressure increase vs the ΔRMSD variation from 1cry,LS to 1cry,HS. 

Trend line reports the [p vs ΔRMSD] correlation factor (purple, R2 = 0.02). 

 

Figure A5.44. Reported effects of the pressure increase vs the variation of the trigonal torsion parameter 

ΔΘ from 1cry,LS to 1cry,HS. Trend line reports the [p vs. ΔΘ] correlation factor (purple, R2 = 0.24). 
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Figure A5.45. Reported effects of the measured T1/2 at the pressure increase vs the ΔRMSD variation 

from 1cry,LS to 1cry,HS. Trend line reports the [T1/2 vs ΔRMSD] correlation factor (purple, R2 = 0.02). 

 

Figure A5.46. Reported effects of the measured T1/2 at the pressure increase vs the variation of the 

trigonal torsion parameter ΔΘ from 1cry,LS to 1cry,HS. Trend line reports the [T1/2 vs. ΔΘ] correlation 

factor (purple, R2 = 0.22). 
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A5.3. Additional Electronic Data 

 

Figure A5.47. Calculated PDOS for 1cryst,LS (top) and  1cryst,HS (bottom) across the whole pressure range 

(1 bar < p < 4300 bar) in the energy range between -8 eV and +2 eV. For each spin state are reported α- 

(+y axis) and β-orbitals (-y axis). Colour code: 1 bar (black), 1800 bar (red), 2100 bar (blue), 2500 bar 

(magenta), 2900 bar (purple), 3900 bar (olive), 4300 bar (orange). 1 bar = 10-4 Pa.  
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Table A5.11. Reported correlation factor in the analysis of the variation of twelve characteristic peaks for TDOS and LDOS of 1cry,LS and to 1cry,HS versus the 

seven different pressures (and related experimental T1/2). 

p / bar 1 1800 2100 2500 2900 3900 4300 

R2(p) 
R2 

(T1/2(exp)) 
T1/2(exp.) / K 173 173 189 202 214 227 235 

DOS Figure Energy / eV Intensities 

1.LS_ TDOS 7 -1.9 25.34 25.23 24.96 24.67 24.62 24.57 24.04 0.84 (Fig. S48) 0.92 (Fig. S60) 

2.LS_ TDOS 7 -2.6 42.13 41.54 41.45 41.38 41.34 41.12 40.92 0.97 (Fig. S49) 0.74 (Fig. S61) 

3.LS_ TDOS 7 -3.1 42.44 41.91 41.81 41.74 41.76 41.51 41.46 0.97 (Fig. S50) 0.74 (Fig. S62) 

4.LS_ PDOS(α) S47 -2.1 13.89 14.21 14.31 14.32 14.53 14.55 14.65 0.97 (Fig. S51) 0.84 (Fig. S63) 

5.LS_ PDOS(α) S47 -2.6 20.73 20.53 20.42 20.42 20.38 20.35 20.24 0.97 (Fig. S52) 0.81 (Fig. S64) 

6.LS_ PDOS(α) S47 -3.2 20.93 20.67 20.67 20.61 20.63 20.46 20.41 0.97 (Fig. S53) 0.76 (Fig. S65) 

7.LS_ PDOS(β) S47 -2.1 21.76 21.57 21.48 21.42 21.41 21.19 21.19 0.98 (Fig. S54) 0.89 (Fig. S66) 

8.HS_TDOS 7 -0.5 11.27 10.73 10.52 10.44 10.63 10.65 10.15 0.75 (Fig. S55) 0.52 (Fig. S67) 

9.HS_ TDOS 7 -0.7 14.89 14.14 13.91 13.85 13.82 13.68 13.18 0.93 (Fig. S56) 0.73 (Fig. S68) 

10.HS_ TDOS 7 -1.9 54.78 54.66 54.63 54.58 54.45 54.45 54.21 0.86 (Fig. S57) 0.87 (Fig. S69) 

11.HS_ PDOS(α) S47 -0.7 8.05 7.67 7.49 7.431 7.26 7.26 6.94 0.94 (Fig. S58) 0.84 (Fig. S70) 

12.HS_ PDOS(α) S47 -2.0 29.17 29.10 29.07 29.04 28.97 28.97 28.56 0.64 (Fig. S59) 0.68 (Fig. S71) 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 

A228 

 

 

Figure A5.48. Reported Intensity of the band of 1cry,LS at -1.9 eV (1.LS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.84). 

 

Figure A5.49. Reported Intensity of the band of 1cry,LS at -2.6 eV (2.LS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.97). 

 

Figure A5.50. Reported Intensity of the band of 1cry,LS at -3.1 eV (3.LS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.97). 
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Figure A5.51. Reported Intensity of the band of 1cry,LS at -2.1 eV (4.LS_PDOS(α), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.97). 

 

Figure A5.52. Reported Intensity of the band of 1cry,LS at -2.6 eV (5.LS_PDOS(α), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.97). 

 

Figure A5.53. Reported Intensity of the band of 1cry,LS at -3.2 eV (6.LS_PDOS(α), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.97). 
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Figure A5.54. Reported Intensity of the band of 1cry,LS at -2.1 eV (7.LS_PDOS(β), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.98). 

 

Figure A5.55. Reported Intensity of the band of 1cry,HS at -0.5 eV (8.HS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.75). 

 

Figure A5.56. Reported Intensity of the band of 1cry,HS at -0.7 eV (9.HS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.93). 
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Figure A5.57. Reported Intensity of the band of 1cry,HS at -1.9 eV (10.HS_TDOS, Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.86). 

 

Figure A5.58. Reported Intensity of the band of 1cry,HS at -0.7 eV (11.HS_PDOS(α), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.94). 

 

Figure A5.59. Reported Intensity of the band of 1cry,HS at -2.0 eV (12.HS_PDOS(α), Table A5.11) vs the pressure increase. 

Trend line reports the [I vs. p] correlation factor (R2 = 0.64). 
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Figure A5.60. Reported Intensity of the band of 1cry,LS at -1.9 eV (1.LS_TDOS, Table A5.11) vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.92). 

 

Figure A5.61. Reported Intensity of the band of 1cry,LS at -2.6 eV (2.LS_TDOS, Table A5.11) vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.74). 

 

Figure A5.62. Reported Intensity of the band of 1cry,LS at -3.1 eV (3.LS_TDOS, Table A5.11) vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.74). 
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Figure A5.63. Reported Intensity of the band of 1cry,LS at -2.1 eV (4.LS_PDOS(α), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.84) 

 

Figure A5.64. Reported Intensity of the band of 1cry,LS at -2.6 eV (5.LS_PDOS(α), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.81). 

 

Figure A5.65. Reported Intensity of the band of 1cry,LS at -3.2 eV (6.LS_PDOS(α), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.76). 
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Figure A5.66. Reported Intensity of the band of 1cry,LS at -2.1 eV (7.LS_PDOS(β), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.89). 

 

Figure A5.67. Reported Intensity of the band of 1cry,HS at -0.5 eV (8.HS_TDOS, Table A5.11) vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.52). 

 

Figure A5.68. Reported Intensity of the band of 1cry,HS at -0.7 eV (9.HS_TDOS, Table A5.11) vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.73).  
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Figure A5.69. Reported Intensity of the band of 1cry,HS at -1.9 eV (10.HS_TDOS, Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.87). 

 

Figure A5.70. Reported Intensity of the band of 1cry,HS at -0.7 eV (11.HS_PDOS(α), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.84). 

 

Figure A5.71. Reported Intensity of the band of 1cry,HS at -2.0 eV (12.HS_PDOS(α), Table A5.11) vs the measured T1/2. 

Trend line reports the [I vs. T1/2] correlation factor (R2 = 0.68). 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 

A236 

 

A5.3.1. LDOS: Cobalt Atoms  

 

Figure A5.72. Reported LDOS of the four Co(II) ions for 1cry,LS at the pressure of 1 bar in the energy range between -8 eV 

and +2 eV. For each spin state are reported α- (+y axis) and β-orbitals (-y axis). Colour code: first Co(II) (blue), second 

Co(II) ion (green), third Co(II) (red), fourth Co(II) (black). 
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Figure A5.73. Reported LDOS of the four Co(II) ions for 1cry,HS at the pressure of 1 bar in the energy range between -8 

eV and +2 eV. For each spin state are reported α- (+y axis) and β-orbitals (-y axis). Colour code: first Co(II) (blue), second 

Co(II) ion (green), third Co(II) (red), fourth Co(II) (black). 
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Figure A5.74. Calculated energy of the five d-orbitals represented by complex functions (ml = -2, -1, 0, +1, +2) for 1cry,LS 

(top) and to 1cry,HS (bottom) in the energy range between -4 eV and +4 eV. For each spin state the α- (+y axis) and β-

orbitals (-y axis) are reported. Colour code: d+2 (black), d+1 (red), d0 (blue), d-1 (magenta), d-2 (purple). 

 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 
 

A239 

 

 

Figure A5.75. Reported LDOS of the alfa d-orbitals of the Co(II) ions of 1cry,LS at the seven studied different pressures (p 

= 1, 1800, 2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.76. Reported LDOS of the beta d-orbitals of the Co(II) ions of 1cry,LS at the seven studied different pressures (p 

= 1, 1800, 2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.77. Reported LDOS of the alfa d-orbitals of the Co(II) ions of 1cry,HS at the seven studied different pressures (p 

= 1, 1800, 2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.78. Reported LDOS of the beta d-orbitals of the Co(II) ions of 1cry,HS at the seven studied different pressures (p 

= 1, 1800, 2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.79. Reported Intensity of the band of 1cry,LS at -1.85 eV of Co(d0) atomic orbitals vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.76). 

 

Figure A5.80. Reported Intensity of the band of 1cry,HS at -1.93 eV of Co(d0) atomic orbitals vs the measured T1/2. Trend 

line reports the [I vs. T1/2] correlation factor (R2 = 0.80). 

 

Figure A5.81. Reported Intensity of the band of 1cry,LS at -1.85 eV of Co(d0) atomic orbitals vs the experimental pressures 

where the SCO phenomenon was monitored. Trend line reports the [I vs. p] correlation factor (R2 = 0.84). 

 

Figure A5.82. Reported Intensity of the band of 1cry,HS at -1.93 eV of Co(d0) atomic orbitals vs the experimental pressures 

where the SCO phenomenon was monitored. Trend line reports the [I vs. p] correlation factor (R2 = 0.74). 
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A5.3.2. LDOS: Nitrogen Atoms  

 

Figure A5.83. Reported LDOS of the orbitals of the N atoms of 1cry,LS at the seven studied different pressures (p = 1, 1800, 

2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.84. Reported LDOS of the orbitals of the N atoms of 1cry,HS at the seven studied different pressures (p = 1, 1800, 

2100, 2500, 2900, 3900, 4300 bar). 
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A5.3.3. LDOS: Carbon Atoms  

 

Figure A5.85. Reported LDOS of the orbitals of the C atoms of 1cry,LS at the seven studied different pressures (p = 1, 1800, 

2100, 2500, 2900, 3900, 4300 bar). 
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Figure A5.86. Reported LDOS of the orbitals of the C atoms of 1cry,HS at the seven studied different pressures (p = 1, 1800, 

2100, 2500, 2900, 3900, 4300 bar). 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 

 

 

A5.4. Molecular Orbitals of [Co(dpzca)2] 
 

 

Table A5.12. Reported metal-centred MOs contributing to the main peak at 1.9eV in 1cry,LS and 1cry,HS TDOS (Figure 5.7). Last three columns on the right reports the correlation 

factor of the MOs energies against all seven employed different pressures; six different pressures (excluding results for p = 3900 bar); and the seven different measured T1/2. 

 

p / bar  1 1800 2100 2500 2900 3900 4300 
R2 (p) 

(all pressures) 

R2 (p) 

(p = 3900 bar 

excluded) 

 

T1/2(exp.) / K  173 173 189 202 214 227 235 
R2 (T1/2) 

 

1cry,LS 

277β -2.08711 -1.9946 -1.98643 -1.97011 -1.94562 -1.91296 -1.90208 0.99 (Fig. S89) 0.99 (Fig. S89) 0.79 (Fig. S107) 

278β -2.09528 -2.02181 -2.01364 -2.00004 -1.95378 -1.92929 -1.9184 0.98 (Fig. S90) 0.97 (Fig. S90) 0.85 (Fig. S108) 

279β -2.09528 -2.02997 -2.01909 -2.0082 -1.95922 -1.94017 -1.92929 0.97 (Fig. S91) 0.96 (Fig. S91) 0.86 (Fig. S109) 

280β -2.10072 -2.03813 -2.02725 -2.01909 -1.98915 -1.94017 -1.92929 0.98 (Fig. S92) 0.98 (Fig. S92) 0.85 (Fig. S110) 

1cry,HS 

270α -2.65311 -2.57964 -2.56604 -2.54971 -2.49801 -2.49529 -2.33746 0.82 (Fig. S93) 0.89 (Fig. S93) 0.84 (Fig. S111) 

271α -2.64767 -2.5742 -2.56059 -2.54699 -2.49256 -2.48984 -2.31569 0.79 (Fig. S94) 0.88 (Fig. S94) 0.83 (Fig. S112) 

272α -2.64495 -2.5742 -2.55787 -2.54154 -2.46807 -2.46535 -2.31569 0.84 (Fig. S95) 0.89 (Fig. S95) 0.88 (Fig. S113) 

273α -2.6259 -2.54699 -2.53066 -2.54154 -2.46807 -2.46535 -2.25038 0.73 (Fig. S96) 0.83 (Fig. S96) 0.77 (Fig. S114) 

274α -2.61502 -2.54154 -2.52522 -2.51161 -2.45991 -2.45719 -2.23678 0.74 (Fig. S97) 0.84 (Fig. S97) 0.79 (Fig. S115) 

275α -2.61502 -2.53882 -2.52522 -2.50889 -2.45447 -2.45175 -2.22861 0.74 (Fig. S98) 0.84 (Fig. S98) 0.79 (Fig. S116) 

276α -2.61229 -2.53882 -2.5225 -2.50889 -2.42726 -2.42454 -2.22861 0.79 (Fig. S99) 0.85 (Fig. S99) 0.85 (Fig. S117) 

273β -2.24222 -2.16603 -2.1497 -2.13337 -2.098 -2.09256 -1.89391 0.75 (Fig. S100) 0.86 (Fig. S100) 0.79 (Fig. S118) 

274β -2.2395 -2.16331 -2.14698 -2.13337 -2.08439 -2.07895 -1.88847 0.78 (Fig. S101) 0.87 (Fig. S101) 0.81 (Fig. S119) 

275β -2.23406 -2.16059 -2.14426 -2.12793 -2.08167 -2.07895 -1.86942 0.75 (Fig. S102) 0.85 (Fig. S102) 0.80 (Fig. S120) 

276β -2.21773 -2.14426 -2.12521 -2.1116 -2.08167 -2.07895 -1.8667 0.72 (Fig. S103) 0.85 (Fig. S103) 0.76 (Fig. S121) 

277β -2.098 -2.01636 -1.99732 -1.98643 -1.92385 -1.92112 -1.73337 0.80 (Fig. S104) 0.88 (Fig. S104) 0.83 (Fig. S122) 

279β -2.08167 -2.00004 -1.98371 -1.96738 -1.91296 -1.90752 -1.72248 0.80 (Fig. S105) 0.88 (Fig. S105) 0.83 (Fig. S123) 

280β -2.07895 -1.99732 -1.98099 -1.96738 -1.91024 -1.9048 -1.70615 0.78 (Fig. S106) 0.87 (Fig. S106) 0.82 (Fig. S124) 
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Figure A5.87. Plotted MOs 277α (t2g shaped) for 1cry,HS calculated at the pressure of 1bar (ρ cutoff = 0.04). 

 

 

Figure A5.88. Plotted MOs 277β (eg shaped) for 1cry,HS calculated at the pressure of 1bar (ρ cutoff = 0.04). 
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Figure A5.89. Reported trend for the variation of MO-277β in 1cry,LS at seven different pressures (R2 = 0.99) and six 

different pressures (except p = 3900 bar, R2 = 0.99). 

 

Figure A5.90. Reported trend for the variation of MO-278β in 1cry,LS at seven different pressures (R2 = 0.98) and six 

different pressures (except p = 3900 bar, R2 = 0.97). 
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Figure A5.91. Reported trend for the variation of MO-279β in 1cry,LS at seven different pressures (R2 = 0.97) and six 

different pressures (except p = 3900 bar, R2 = 0.96). 

 

Figure A5.92. Reported trend for the variation of MO-280β in 1cry,LS at seven different pressures (R2 = 0.98) and six 

different pressures (except p = 3900 bar, R2 = 0.98). 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 

A252 

 

 

Figure A5.93. Reported trend for the variation of MO-270α in 1cry,HS at seven different pressures (R2 = 0.82) and six 

different pressures (except p = 3900 bar, R2 = 0.89). 

 

Figure A5.94. Reported trend for the variation of MO-271α in 1cry,HS at seven different pressures (R2 = 0.79) and six 

different pressures (except p = 3900 bar, R2 = 0.88). 
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Figure A5.95. Reported trend for the variation of MO-272α in 1cry,HS at seven different pressures (R2 = 0.84) and six 

different pressures (except p = 3900 bar, R2 = 0.89). 

 

Figure A5.96. Reported trend for the variation of MO-273α in 1cry,HS at seven different pressures (R2 = 0.73) and six 

different pressures (except p = 3900 bar, R2 = 0.83). 



A5 | Accurate Prediction of Pressure and Temperature T1/2 Variation in Solid State Spin Crossover by Ab Initio Methods 

The [CoII(dpzca)2] Case 

 

A254 

 

 

Figure A5.97. Reported trend for the variation of MO-274α in 1cry,HS at seven different pressures (R2 = 0.74) and six 

different pressures (except p = 3900 bar, R2 = 0.84). 

 

Figure A5.98. Reported trend for the variation of MO-275α in 1cry,HS at seven different pressures (R2 = 0.74) and six 

different pressures (except p = 3900 bar, R2 = 0.84). 
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Figure A5.99. Reported trend for the variation of MO-276α in 1cry,HS at seven different pressures (R2 = 0.79) and six 

different pressures (except p = 3900 bar, R2 = 0.85). 

 

Figure A5.100. Reported trend for the variation of MO-273β in 1cry,HS at seven different pressures (R2 = 0.75) and six 

different pressures (except p = 3900 bar, R2 = 0.86). 
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Figure A5.101. Reported trend for the variation of MO-274β in 1cry,HS at seven different pressures (R2 = 0.78) and six 

different pressures (except p = 3900 bar, R2 = 0.87). 

 

Figure A5.102. Reported trend for the variation of MO-275β in 1cry,HS at seven different pressures (R2 = 0.75) and six 

different pressures (except p = 3900 bar, R2 = 0.85). 
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Figure A5.103. Reported trend for the variation of MO-276β in 1cry,HS at seven different pressures (R2 = 0.72) and six 

different pressures (except p = 3900 bar, R2 = 0.85). 

 

Figure A5.104. Reported trend for the variation of MO-277β in 1cry,HS at seven different pressures (R2 = 0.80) and six 

different pressures (except p = 3900 bar, R2 = 0.88). 
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Figure A5.105. Reported trend for the variation of MO-279β in 1cry,HS at seven different pressures (R2 = 0.80) and six 

different pressures (except p = 3900 bar, R2 = 0.88). 

 

Figure A5.106. Reported trend for the variation of MO-280β in 1cry,HS at seven different pressures (R2 = 0.78) and six 

different pressures (except p = 3900 bar, R2 = 0.87). 
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Figure A5.107. Reported trend for the variation of MO-277β in 1cry,LS versus the measured T1/2 at seven different pressures 

(R2 = 0.79). 

 

Figure A5.108. Reported trend for the variation of MO-278β in 1cry,LS versus the measured T1/2 at seven different pressures 

(R2 = 0.85). 
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Figure A5.109. Reported trend for the variation of MO-279β in 1cry,LS versus the measured T1/2 at seven different pressures 

(R2 = 0.86). 

 

Figure A5.110. Reported trend for the variation of MO-280β in 1cry,LS versus the measured T1/2 at seven different pressures 

(R2 = 0.85). 
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Figure A5.111. Reported trend for the variation of MO-270α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.84). 

 

Figure A5.112. Reported trend for the variation of MO-271α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.83). 
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Figure A5.113. Reported trend for the variation of MO-272α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.88). 

 

Figure A5.114. Reported trend for the variation of MO-273α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.77). 
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Figure A5.115. Reported trend for the variation of MO-274α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.79). 

 

Figure A5.116. Reported trend for the variation of MO-275α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.79). 
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Figure A5.117. Reported trend for the variation of MO-276α in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.85). 

 

Figure A5.118. Reported trend for the variation of MO-273β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.79). 
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Figure A5.119. Reported trend for the variation of MO-274β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.81). 

 

Figure A5.120. Reported trend for the variation of MO-275β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.80). 
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Figure A5.121. Reported trend for the variation of MO-276β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.76). 

 

Figure A5.122. Reported trend for the variation of MO-277β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.83). 
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Figure A5.123. Reported trend for the variation of MO-279β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.83). 

 

Figure A5.124. Reported trend for the variation of MO-280β in 1cry,HS versus the measured T1/2 at seven different 

pressures (R2 = 0.82).
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Table A5.13. Calculated values of the frontier MOs (HOMO/LUMO) and the HOMO-LUMO gap (Δ(MOs) for 1cry,LS and 1cry,HS. Last two columns on the right reports the 

correlation factor for each of the three studied terms (HOMO, LUMO, HOMO-LUMO gap) for 1cry,LS and 1cry,HS against the seven pressures employed for this study and the 

relative experimental T1/2 measured at that pressure conditions. 

p / bar  1 1800 2100 2500 2900 3900 4300 
R2 (p) 

R2 

(T1/2(exp)) T1/2(exp.) / K  173 173 189 202 214 227 235 

1cry,LS 

HOMO 2.884681 2.971757 2.985363 2.999241 3.009037 3.056112 3.073147 
0.99 

(Fig. S125) 

0.81 

(Fig. S128) 

LUMO 3.330947 3.39816 3.409044 3.419929 3.446868 3.483059 3.495332 
0.99 

(Fig. S126) 

0.87 

(Fig. S129) 

Δ(MOs) 0.446267 0.426403 0.423681 0.420688 0.437831 0.426947 0.422185 
0.40 

(Fig. S127) 

0.14 

(Fig. S130) 

1cry,HS 

HOMO 1.683025 1.768741 1.783435 1.800578 1.845477 1.850919 2.057617 
0.78 

(Fig. S125) 

0.74 

(Fig. S128) 

LUMO 2.861823 2.932028 2.94645 2.960872 3.028629 3.032438 3.210836 
0.80 

(Fig. S126) 

0.79 

(Fig. S129) 

Δ(MOs) 1.178798 1.163287 1.163015 1.160566 1.183152 1.181519 1.153219 
0.05 

(Fig. S127) 

0.01 

(Fig. S130) 
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Figure A5.125. Reported trend for the variation of the HOMO energy levels at the pressure increase 

for 1cry,HS (R2 = 0.78) and 1cry,LS (R2 = 0.99). 

 

Figure A5.126. Reported trend for the variation of the HOMO energy levels at the pressure increase 

for 1cry,HS (R2 = 0.80 and 1cry,LS (R2 = 0.99). 
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Figure A5.127. Reported trend for the variation of the HOMO-LUMO gap (ΔMOs) at the pressure 

increase for 1cry,HS (R2 = 0.40) and 1cry,LS (R2 = 0.05). 

 

Figure A5.128. Reported trend for the variation of the HOMO energy levels of 1cry,HS (R2 = 0.74) and 

1cry,LS (R2 = 0.81) at the measured T1/2 at the pressure increase. 
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Figure A5.129. Reported trend for the variation of the LUMO energy levels of 1cry,HS (R2 = 0.79) and 

1cry,LS (R2 = 0.87) at the measured T1/2 at the pressure increase. 

 

Figure A5.130. Reported trend for the variation of the HOMO-LUMO gap (ΔMOs) of 1cry,HS (R2 = 

0.14) and  1cry,LS (R2 = 0.01) at the measured T1/2 at the pressure increase. 
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A5.5. Additional Data for Gradual 
SCO Modelling 

A5.5.1. CP2K 6.1 Calculated IR Spectra 

 

Figure le A5.131. Reported IR spectra calculated with CP2K6.1 code for 1cry,LS at the four different 

pressures (p = 1, 1800, 2100, 2500 bar) where the SCO transition was modelled properly. 

  

Figure A5.132. Reported IR spectra calculated with CP2K6.1 code for 1cry,HS at three different pressures 

(p = 1, 1800, 2100, 2500 bar) where the SCO transition was modelled properly. 
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A5.5.1. IR/Raman Spectra ORCA4.1 Code 
 

 

Figure A5.133. Calculated IR and Raman spectra for 1cf,LS (left) and 1cf,HS (right) obtained by 

extrapolation from the crystalline cell and re-optimised using ORCA4.1 code using RI-PBE-def2-

TZVPP level of theory (w = 10).28,261-262 

 

Figure A5.134. Variation of the calculated Raman Spectrum of 1cf at p = 1 bar, from 1cf,LS and 1cf,HS. 

Spectra were obtained using ORCA4.1 code: RI-PBE-def2-TZVPP level of theory (w = 5).28,261-262 
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A5.5.2. Thermodynamic Terms 

Table A5.14. Summary table of the thermodynamic contribution (Hel) for 1cry,HS and 1cry,LS at different 

pressure (from 1 bar to 2900 bar). Results are reported in eV. 

 Hel (eV) 

p / bar HS LS Δ 

1 -46632.1965 -46632.5185 0.3220 

1800 -46632.1911 -46632.5068 0.3157 

2100 -46632.1854 -46632.5027 0.3173 

2500 -46632.1801 -46632.4962 0.3161 

2900 -46631.4015 -46632.4855 1.0840 

3900 -46631.3854 -46632.4632 1.0780 

4300 -46630.8149 -46632.4516 1.6363 

 

 

Table A5.15. Summary table of the thermodynamic contribution (Sel) for 1cry,HS and 1cry,LS at different 

pressure (from 1 bar to 2900 bar). Results are reported in eV. 

 Sel (eV) 

p / bar HS LS Δ 

1 0.000214 0.000134 0.00080 

1800 0.000214 0.000134 0.00080 

2100 0.000214 0.000134 0.00080 

2500 0.000214 0.000134 0.00080 

2900 0.000214 0.000134 0.00080 

3900 0.000214 0.000134 0.00080 
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Table A5.16. Summary table of the thermodynamic contribution (Hvib) for 1cry,LS at different pressure 

(from 1 bar to 2900 bar). Results are reported in eV. 

p / bar 1 1800 2100 2500 2900 3900 

T / K Hvib (LS) / eV 

25 34.205 34.213 34.213 34.220 34.224 33.951 

50 34.243 34.250 34.250 34.258 34.263 34.005 

75 34.337 34.344 34.344 34.351 34.357 34.117 

100 34.486 34.492 34.492 34.498 34.504 34.281 

125 34.683 34.688 34.689 34.695 34.701 34.492 

150 34.924 34.930 34.931 34.936 34.941 34.746 

155 34.977 34.983 34.984 34.989 34.995 34.801 

160 35.032 35.038 35.039 35.044 35.050 34.859 

165 35.089 35.095 35.096 35.100 35.106 34.917 

170 35.147 35.153 35.154 35.159 35.164 34.978 

175 35.207 35.213 35.214 35.219 35.224 35.040 

180 35.269 35.274 35.275 35.280 35.286 35.103 

185 35.332 35.338 35.339 35.343 35.349 35.168 

190 35.396 35.402 35.403 35.408 35.413 35.235 

195 35.463 35.469 35.470 35.474 35.479 35.303 

200 35.530 35.536 35.537 35.542 35.547 35.372 

225 35.893 35.899 35.900 35.904 35.909 35.744 

250 36.293 36.300 36.301 36.305 36.310 36.152 

275 36.732 36.739 36.740 36.744 36.748 36.598 

300 37.207 37.214 37.215 37.219 37.223 37.079 

325 37.717 37.725 37.726 37.729 37.734 37.596 

350 38.262 38.269 38.271 38.274 38.278 38.147 

375 38.840 38.847 38.848 38.852 38.856 38.729 

400 39.448 39.456 39.457 39.461 39.465 39.343 
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Table A5.17. Summary table of the thermodynamic contribution (Hvib) for 1cry,HS at different pressure 

(from 1 bar to 2900 bar). Results are reported in eV. 

p / bar 1 1800 2100 2500 2900 3900 

T / K Hvib (HS) / eV 

25 34.046 34.059 34.068 34.064 34.124 34.218 

50 34.098 34.112 34.119 34.116 34.174 34.258 

75 34.215 34.227 34.232 34.230 34.284 34.356 

100 34.385 34.397 34.401 34.399 34.448 34.510 

125 34.602 34.613 34.616 34.615 34.660 34.713 

150 34.861 34.871 34.874 34.873 34.915 34.960 

155 34.918 34.927 34.930 34.930 34.970 35.015 

160 34.976 34.985 34.988 34.988 35.028 35.071 

165 35.036 35.045 35.048 35.047 35.087 35.129 

170 35.097 35.106 35.109 35.108 35.147 35.188 

175 35.159 35.168 35.171 35.171 35.209 35.249 

180 35.223 35.232 35.235 35.235 35.272 35.311 

185 35.289 35.298 35.301 35.300 35.337 35.375 

190 35.356 35.365 35.368 35.367 35.404 35.441 

195 35.425 35.433 35.436 35.436 35.472 35.508 

200 35.495 35.503 35.506 35.506 35.542 35.576 

225 35.868 35.876 35.879 35.879 35.912 35.942 

250 36.277 36.285 36.288 36.288 36.319 36.346 

275 36.722 36.730 36.733 36.733 36.762 36.787 

300 37.203 37.211 37.214 37.214 37.241 37.264 

325 37.718 37.726 37.729 37.730 37.755 37.775 

350 38.267 38.275 38.278 38.278 38.303 38.321 

375 38.848 38.856 38.858 38.859 38.882 38.899 

400 39.459 39.467 39.470 39.470 39.493 39.508 
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Table A5.18. Summary table of the thermodynamic contribution (Svib) for 1cry,LS at different pressure 

(from 1 bar to 2900 bar). Results are reported in eV. 

p / bar 1 1800 2100 2500 2900 3900 

T / K Svib (LS) / eV 

25 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.001 0.001 0.001 0.001 0.001 0.002 

75 0.003 0.003 0.003 0.003 0.003 0.004 

100 0.004 0.004 0.004 0.004 0.004 0.005 

125 0.006 0.006 0.006 0.006 0.006 0.007 

150 0.008 0.008 0.008 0.008 0.008 0.009 

155 0.008 0.008 0.008 0.008 0.008 0.010 

160 0.009 0.008 0.008 0.009 0.009 0.010 

165 0.009 0.009 0.009 0.009 0.009 0.010 

170 0.009 0.009 0.009 0.009 0.009 0.011 

175 0.010 0.010 0.010 0.010 0.010 0.011 

180 0.010 0.010 0.010 0.010 0.010 0.011 

185 0.010 0.010 0.010 0.010 0.010 0.012 

190 0.011 0.011 0.011 0.011 0.011 0.012 

195 0.011 0.011 0.011 0.011 0.011 0.012 

200 0.011 0.011 0.011 0.011 0.011 0.013 

225 0.013 0.013 0.013 0.013 0.013 0.014 

250 0.015 0.015 0.015 0.015 0.015 0.016 

275 0.016 0.016 0.016 0.016 0.016 0.018 

300 0.018 0.018 0.018 0.018 0.018 0.020 

325 0.020 0.020 0.020 0.020 0.020 0.021 

350 0.021 0.021 0.021 0.021 0.021 0.023 

375 0.023 0.023 0.023 0.023 0.023 0.024 

400 0.024 0.024 0.024 0.024 0.024 0.026 
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Table A5.19. Summary table of the thermodynamic contribution (Svib) for 1cry,HS at different pressure 

(from 1 bar to 2900 bar). Results are reported in eV. 

p / bar 1 1800 2100 2500 2900 3900 

T / K Svib (HS) / eV 

25 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.002 0.002 0.002 0.002 0.002 0.001 

75 0.003 0.004 0.003 0.003 0.003 0.003 

100 0.005 0.005 0.005 0.005 0.005 0.005 

125 0.007 0.007 0.007 0.007 0.007 0.006 

150 0.009 0.009 0.009 0.009 0.009 0.008 

155 0.010 0.010 0.009 0.010 0.009 0.008 

160 0.010 0.010 0.010 0.010 0.010 0.009 

165 0.010 0.010 0.010 0.010 0.010 0.009 

170 0.011 0.011 0.011 0.011 0.010 0.010 

175 0.011 0.011 0.011 0.011 0.011 0.010 

180 0.011 0.011 0.011 0.011 0.011 0.010 

185 0.012 0.012 0.012 0.012 0.011 0.011 

190 0.012 0.012 0.012 0.012 0.012 0.011 

195 0.013 0.013 0.012 0.012 0.012 0.011 

200 0.013 0.013 0.013 0.013 0.013 0.012 

225 0.015 0.015 0.014 0.015 0.014 0.013 

250 0.016 0.016 0.016 0.016 0.016 0.015 

275 0.018 0.018 0.018 0.018 0.018 0.017 

300 0.020 0.020 0.020 0.020 0.019 0.018 

325 0.021 0.021 0.021 0.021 0.021 0.020 

350 0.023 0.023 0.023 0.023 0.023 0.022 

375 0.025 0.025 0.024 0.025 0.024 0.023 

400 0.026 0.026 0.026 0.026 0.026 0.025 
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