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Abstract 

Background 

Low Molecular Weight Phosphotyrosine Protein Phosphatase (LMW-PTP) is an enzyme involved 

not only in tumor onset and progression but also in type 2 diabetes. A recent review shows that 

LMW-PTP acts on several RTK (receptor tyrosine kinase) such as PDGFR, EGFR, EphA2, Insulin 

receptor. It is well described also its interaction with cSrc.  It is noteworthy that most of these 

conclusions are based on the use of cell lines expressing low levels of LMW-PTP. The aim of the 

present study was to discover new LMW-PTP substrates in aggressive human tumors where the 

over-expression of this phosphatase is a common feature. 

Methods 

We investigated, by proteomic analysis, the protein phosphorylation pattern of A375 human 

melanoma cells silenced for LMW-PTP. Two-dimensional electrophoresis (2-DE) analysis, 

followed by western blot was performed using anti-phosphotyrosine antibodies, in order to identify 

differentially phosphorylated proteins. 

Results 

Proteomic analysis pointed out that most of the identified proteins belong to the glycolytic 

metabolism, such as α-enolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase 

and triosephosphate isomerase, suggesting an involvement of LMW-PTP in glucose metabolism. 

Assessment of lactate production and oxygen consumption demonstrated that LMW-PTP silencing 

enhances glycolytic flux and slow down the oxidative metabolism. In particular, LMW-PTP 

expression affects PKM2 tyrosine-phosphorylation and nuclear localization, modulating its activity.  

Conclusion 

All these findings propose that tumor cells are subjected to metabolic reprogramming after LMW-

PTP silencing, enhancing glycolytic flux, probably to compensate the inhibition of mitochondrial 

metabolism. 

General significance 

Our results highlight the involvement of LMW-PTP in regulating glucose metabolism in A375 

melanoma cells.  

 

Keywords 

 

LMW-PTP; Glucose metabolism; PKM2; metabolic reprogramming of cancer cells.   
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1. Introduction      

Low Molecular Weight Phosphotyrosine Protein Phosphatase (LMW-PTP) is an enzyme that has 

been recognized to play a dual role in the cell, being involved not only in tumor onset and 

progression but also in type 2 diabetes. As far as tumor is concerned, it has been reported that 

ectopic over-expression of LMW-PTP in NIH3T3 fibroblasts engrafted in nude mice leads to the 

formation of larger sarcomas [1]. Malentacchi et al., [2] demonstrated that LMW-PTP is over-

expressed in different human cancers, such as colon cancer and neuroblastoma and, also in pre-

neoplastic lesions of colon from rats treated with tumor inducing agents [3]. These data were 

recently further confirmed by a study on a wide collection of specimens from prostate cancer [4]. 

Interestingly, its over-expression, in many cases, correlates with a worse prognosis and a reduced 

survival.  Moreover, it has been recently assessed that LMW-PTP is involved in the modulation of 

apoptosis and acquisition of drug resistance: over-expression of LMW-PTP confers resistance to 

vincristine in leukemic cells [5] and mediates malignant potential in colorectal cancer, inducing 

drug resistance and enhancing cell mobility [6].  

Very recently Lori et al., [7], further confirmed the oncogenic role of LMW-PTP, suggesting the 

possibility of tumor treatment through LMW-PTP targeting: they demonstrated that using an 

inhibitor of LMW-PTP it is possible, in A375 and PC3 cancer cells (both over-expressing LMW-

PTP) to enhance susceptibility to apoptosis induced by chemo-and radio-therapy. Together, these 

evidences sustain a clear oncogenic role of LMW-PTP. 

As far as type 2 diabetes is concerned, it is known that Insulin Receptor (IR) is a substrate of LMW-

PTP [8]. Being the IR negatively regulated by de-phosphorylation, it has been hypothesized that 

LMW-PTP may be involved in this disease. In a very recent paper it has been assessed that negative 

modulation of LMW-PTP in mice protect from fat-induced diabetes [9]. Another very recent paper 

[10] shows the ability of LMW-PTP to control the glycolytic phenotype in a specific leukemia cell 

line, suggesting that LMW-PTP may be involved also in the metabolic control of cancer cells. 

Nowadays, many different substrates have been proposed for LMW-PTP, most of them collocated 

in a logical panorama of the different LMW-PTP functions. A recent review [11], shows the 

complexity of the LMW-PTP interactions in the cell, underlining particularly its action on several 

RTK (receptor tyrosine kinase), such as PDGFR, EGFR, EphA2, Insulin receptor and others. In 

addition, it is well described also its interaction with cSrc.  

It should be noticed that most of the results were obtained using cell lines not expressing high levels 

of LMW-PTP. Our idea was to use the A375 cell line, derived from a very aggressive human 

melanoma, and expressing very high level of LMW-PTP. In this way, we aimed to select new 

LMW-PTP substrates, particularly important in tumors over-expressing this tyrosine phosphatase. 
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To this purpose, we performed comparative phospho-proteomic analysis between A375 control 

cells and cells silenced for LMW-PTP, to detect hyper-phosphorylated proteins, as putative targets 

of LMW-PTP enzymatic activity. Our results pointed out an interesting aspect of LMW-PTP 

functions, underling that this enzyme may have an important role in regulating oxidative 

metabolism in cancer cells.  

2. Materials and Methods 

2.1. Cell lines and transfection. 

A375, PC3, HT29, DU145 and MEC1 cells were purchased from ATCC (Manassas, USA). 

Leukemia cells were cultured in Roswell Park Memorial Institute (RPMI 1640, Sigma-Aldrich, St. 

Louis, USA). A375, PC3, HT29 and DU145 were cultured in Dulbecco’s Modified Eagles Medium 

(Euroclone). All media were supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 

mg/ml streptomycin (Sigma-Aldrich, St. Louis, USA). Cell lines were routinely tested for 

Mycoplasm infection using Mycoalert, Mycoplasma Detenction Kit (Lonza). 1x105 cells/mL were 

grown for 24h and then transiently transfected with LMW-PTP siRNA (Target sequence 

CCCATAGTGCACACTTGTATA, final concentration 20 nm), using Hiperfect Trafection Reagent 

(Qiagen) according to the manufacturer’s instructions. To test the specificity of LMW-PTP 

transfection, control cells were transfected with a Scramble Sequence (AllStars Negative Control 

siRNA, final concentration 20nM, Qiagen). DU145 cells were transiently transfected with 

pRcCMV-C12S-LMW-PTP expressing the dominant-negative (Dn) Cys-12 to Ser mutant of LMW-

PTP (Chiarugi et al., 1995). Briefly, 10 μg of plasmidic DNA was transfected using Lipofectamine 

2000 (Invitrogen) according to the manufacturer’s instructions.  

 

2.2. Western blotting 

Cells were lysed on iced in 1X Laemmli buffer (0.5 M TrisHCl pH 6.8, 10% SDS, 20% glycerol, β-

mercaptoethanol, 0.1% bromophenol blue) and samples were boiled for 10 minutes. Cell extracts 

were resolved by SDS-PAGE and transferred to PVDF membranes (BioRad). Membranes were 

incubated overnight at 4°C with the appropriate primary antibody: rabbit polyclonal anti-LMW-PTP 

were produced in our laboratory [7]. Annexin A1, PKM2, TIPS, GAPDH, α-Enolase, GLUT-1, 

Hexokinase II, Lamin A/C and Actin were obtained from Santa Cruz Biotechnology. Anti-

phosphotyrosine, clone 4G10 were from Merck-Millipore. After washing in TPBS-Tween 20 

(0.1%) membranes were incubated with the appropriate horseradish peroxidase-conjugated 

secondary antibodies (Santa Cruz Biotechnology) for 1h. Proteins were detected using Clarity 

Western ECL (Biorad) by UVP ChemiDoc-it 500 Imaging System (DBA Analytik Jena US). 
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2.3. Immuno and co-immunoprecipitation 

Cells (3x10
5
) were seeded in 60 mm plates and transfected with LMW-PTP siRNA or Dn mutant. 

After 28 h, cells were lysed for 20 min on ice in 300 µL of RIPA buffer (50mM TrisHCl pH 7.5, 

150 mM NaCl, 100 mM NaF, 2 mM EGTA, 1% triton X-100, 10µL/ml protease and phosphatase 

inhibitor, Sigma). Lysates were centrifugated at 4°C, 14000 rpm for 15 min: supernatants were 

collected. After protein quantification with Bradford Assay, 400 μg of proteins were 

immunoprecipitated overnight, at 4°C with the specific primary antibodies (1:100). Then Protein 

A/G PLUS-Agarose (Santa Cruz) was added and incubated at 4°C for 1h. Immunocomplexes were 

collected and analyzed by western blotting. 

 

2.4. Extracellular Flux (XF) analysis (Seahorse technology) 

The Oxygen Consumption Rate (OCR, pmolesO2 consumed/min) and the ExtraCellular 

Acidification Rate (ECAR, mpH/min) were determined by using the XF96 Extracellular Flux 

Analyzer (Seahorse Bioscience) according to manufacturer’s instructions. Cells were plated 1.5 × 

10
4
 cells/well on XF96-well microplates in standard medium. After one-day incubation, were 

washed three times with an unbuffered assay medium (pH 7.4) and conditioned for 1 h at 37°C 

without CO2.  After incubation, XF measurements was performed. A Seahorse XF Cell Mito Stress 

Test was used to evaluate the mitochondrial function in different experimental conditions. Using 

this kit, parameters of mitochondrial function were determined by directly measuring the OCR of 

cells after the injection of specific drugs that target components of the ETC in the mitochondria. 

The compounds (oligomycin, FCCP, and a mix of rotenone and antimycin A) were injected in 

sequence to measure basal respiration, ATP–linked respiration, maximal respiration, and non-

mitochondrial respiration, respectively. Maximal respiratory capacity was then calculated by 

subtracting the basal respiration values from maximal respiration values. 

 

2.5. Lactate assay 

Measurement of lactate production was determined using L-Lactic Acid (L-Lactate) colorimetric 

assay from Megazyme, according to manufacturer’s instruction. Briefly, medium culture was 

collected and incubated in a buffer containing NAD+, D-GTP, and L-LDH. Measurements were 

done at 340 nm by using a spectrophotometer. 

 

2.6. Glucose uptake 

Cells (1.8 X 10
6
) were seeded in 35 mm dishes and transfected with siRNA. After 28 h, 1 µL /ml 

μCi/mL (U-14C) deoxy-D-Glucose (PerkinElmer) was added and dishes were incubated for 30 min 
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at 37°C. Then cells were washed twice with cold PBS and lysed with 0,1M NaOH. The amount of 

(U-14C) deoxy-D-Glucose incorporated was evaluated by a scintillator analyzer (Tri-Carb 2800TR, 

PerkinElmer). 

 

2.7. Gelatin zymography 

Conditioned media were collected and subjected to electrophoresis on 7.5% PAGE gels containing 

0.1% gelatin. After electrophoresis the gel was washed twice with 2.5% triton X-100 and once with 

Reaction Buffer (50mM Tris HCl, pH 7.5, 200 mM NaCl, 5mM CaCl2). The gel was incubated 

overnight at 37°C with fresh Reaction Buffer. Then gel was stained with 0.25 Coomassie Brilliant 

Blue and destained (30% methanol and 10% acetic acid).  

 

2.8. Boyden Chamber assay 

Cell invasion was performed with 5 x 10
4 

cells on 8-μm-pore Transwells (Corning) coated with 50 

μg/cm2 of reconstituted Matrigel. Cells were harvest, resuspended in serum-free medium and 

placed in the upper compartment.  In the lower chamber, 600 μL of medium supplemented with 

FBS was added as a chemoattractant. After the cells were incubated for 12 h at 37 ℃ in a 5% CO2 

atmosphere. Cells adhering to the lower surface were stained with Diff Quick staining kit. The 

numbers of cells in 6 randomly selected fields in each well were counted. 

 

2.9. Two-dimensional electrophoresis (2-DE) 

A375 cells (3x10
5
) were seeded in 100 mm plates and transfected with LMW-PTP siRNA or a 

scramble sequence (control cells) as described above. After 28 h, cells were lysed for 20 min on ice 

in 1 mL of RIPA buffer (50mM TrisHCl pH 7.5, 150 mM NaCl, 100 mM NaF, 2 mM EGTA, 1% 

triton X-100, 10µL/ml protease and phosphatase inhibitor, Sigma). Lysates were centrifuged at 4°C, 

8000g for 15 min and then supernatants were collected. The cells were sonicated (15 s) and protein 

extracts were clarified by centrifugation at 8000g, 4°C for 15 min. For the first-dimension 

electrophoresis, protein samples (80 μg for Phospho-blots and 180 μg for Coomassie-stained gels) 

were applied to 110-mm pH 3–10 IPG® ReadyStrip (Bio-Rad, Hercules CA). The strips were then 

actively rehydrated in the protein isoelectric focusing (IEF) cell (Bio-Rad) at 50 V for 18 h. The 

isoelectric focusing was performed in increasing voltages as follows; 300 V for 1 h, then linear 

gradient to 8000 V for 5 h and finally 20 000 V/h. For the second dimension, the IPG® Strips, were 

equilibrated for 10 min in 50 mM Tris–HCl (pH 6.8) containing 6 M urea, 1% (w/v) sodium 

dodecyl sulfate (SDS), 30% (v/v) glycerol, and 0.5% dithiothreitol, and then re-equilibrated for 15 

min in the same buffer containing 4.5% iodoacetamide instead of dithiothreitol. Linear gradient 
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precast criterion Tris–HCl gels (8–16%) (Bio-Rad) were used to perform second dimension 

electrophoresis. Precision Protein™ Standards (Bio-Rad, CA) were run along with the samples at 

200 V for 65 min. For each sample (A375 cells transfected with LMW-PTP siRNA or the scramble 

sequence) two 2-DE gels were performed. Gels with 180 μg of protein samples were stained by 

colloidal Coomassie [12] to visualize protein spots; gels with 80 μg of protein samples was used to 

phosphoprotein detection by western blot analysis. 

 

2.10. Immunodetection of tyrosine-phosphorylated proteins (2-D Phospho-blot) 

After running, 2-DE gels, with 80 ug of protein sample, were blotted on polyvinylidene fluoride 

(PVDF) membrane. The PVDF membranes were incubated for 3 h at 4°C with the primary anti-

phosphotyrosine 4G10 IgG antibody (1:1,000 dilution). An enhanced chemiluminescence kit (GE 

Healthcare) was used for detection by UVP ChemiDoc-it 500 Imaging System (DBA Analytik Jena 

US).  

For each cell specimen (A375 cells transfected with LMW-PTP siRNA or the scramble sequence) 

three independent 2-DE experiments (both 2-DE colloidal Coomassie-stained gels and 2-D 

phospho-blots) were performed (biological replicates). To minimize the variability between the 

samples, from each 2-DE experiment, we carried out two technical replicates (two 2-DE colloidal 

Coomassie- stained gels and two 2-D phospho-blots). Then, for each cell specimen a total of six 

colloidal Coomassie-stained gels and six 2-D phospho-blots were analyzed. 2-DE gel and phospho-

blots images were digitized using the Epson expression 1680 PRO scanner and saved with a 

resolution of 300 dpi and as 16-bit TIFF format. Computer-aided 2D image analysis was carried out 

using ImageMaster 2D Platinum software v7.0 (GE Healthcare) on both 2-D colloidal Coomassie 

gels (for differential expression analysis) and on 2-D phospho-blots (for differential 

phosphorylation analysis). After automatic protein detection and matching, the gels were manually 

corrected to remove wrongly assigned or duplicated spots and image artifacts. Relative spot volume 

(%V =V single spot/V total spots, where V is the integration of the optical density over the spot 

area) was used during analysis to reduce experimental error. Spots detected in the 2-D phospho-

blots and 2D-colloidal Coomassie-stained gels were matched by computer-assisted image analysis 

using ImageMaster 2D Platinum v7.0 software. Phosphorylation index was then calculated as the 

ratio between the %V of phosphorylated spots on phospho-blots divided by the %V of their 

respective spots visualized on colloidal Coomassie-stained gels.  

All statistical analysis was performed using a two-tailed Student's t-test. P < 0.05 was considered 

statistically significantly different. Protein spots with statistically altered immunoreactivity were 
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subjected to mass spectrometry (MS) analysis after excision of the matching spot on the gel stained 

with colloidal Coomassie [12]. 

 

2. 11. In gel digestion and peptide mass fingerprinting 

For peptide mass fingerprinting (PMF) electrophoretic spots were manually excised and subjected 

to in gel digestion by addiction of trypsin using an in-gel digestion protocol previously described 

[13]. Protein identification was carried out by peptide mass fingerprinting (PMF) on an Ultraflex III 

MALDITOF/TOF mass spectrometer (Bruker Daltonics) equipped with a 200 Hz smartbeamt I 

laser. MS analysis was performed in the positive reflector mode according to defined parameters, as 

follows: 80 ns of delay; ion source 1: 25 kV; ion source 2: 21.75 kV; lens voltage: 9.50 kV; 

reflector voltage: 26.30 kV; and reflector 2 voltage: 14.00 kV. The applied laser wavelength and 

frequency were 353 nm and 100 Hz, respectively, and the percentage was set to 46%. Final mass 

spectra were produced by averaging 1500 laser shots targeting five different positions within the 

spot. Spectra were acquired automatically and the Flex Analysis software v3.0 (Bruker) was used 

for their analysis and for the assignment of the peaks. The applied software generated a list of peaks 

up to 200, using a signal-to-noise ratio of 3 as the threshold for peak acceptance. Recorded spectra 

were calibrated using, as the internal standard, peptides arising from trypsin auto-proteolysis. The 

mass lists were filtered for contaminant removal: mass matrix-related ions, trypsin auto-lysis and 

keratin peaks. Protein identification by Peptide Mass Fingerprint search was established using 

MASCOT search engine version 2.1 (Matrix Science, London, UK, http://www.matrixscience.com) 

through the UniProtKB database (http://www.uniprot.org/). Taxonomy was limited to Homo 

sapiens, a mass tolerance of 100 ppm was allowed, and the number of accepted missed cleavage 

sites was set to one. Alkylation of cysteine by carbamidomethylation was considered a fixed 

modification, while oxidation of methionine was considered as a possible modification. The criteria 

used to accept identifications included the extent of sequence coverage, the number of matched 

peptides, and a probabilistic score of p< 0.05. The PMF was performed for three LMW-PTP siRNA 

2-DE gels, obtaining the same results. 

 

2. 12. RNA Preparation and Quantitative Real Time PCR  

Total RNA was extracted with RNeasy mini kit (Qiagen). Reverse transcription polymerase first-

strand cDNA synthesis was performed by using the iScript cDNA synthesis Kit (Bio-Rad). RT-PCR 

was performed by using the SsoAdvanced Universal SYBR Green Supermix (BioRad) and specific 

primers for genes of interest. Primer sequences used for RT-PCR analysis are shown in Table 1. 

Analyses were performed with Rotor Gene-Q (Qiagen). PCR cycling conditions were: 95 °C for 30 
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sec, 96 °C for 15 sec, 40 cycles at 60°C. Data were expressed as Ct values and used for the relative 

quantification of targets with the ΔΔCt calculation. 

3. Results 

3.1. Tyrosine phosphorylation pattern and LMW-PTP 

In order to discover new possible cellular substrates of LMW-PTP in aggressive human tumors, we 

investigated, by proteomic analysis, the protein phosphorylation pattern of A375 human melanoma 

cells silenced for LMW-PTP. As a preliminary experiment, we carried out a time course analysis of 

LMW-PTP protein level, 18, 28 and 36 hours after siRNA administration. With a western blot 

analysis, we determined that minimal LMW-PTP level was reached 28 h after siRNA transfection 

(Fig.1). All further experiments were carried out using this timing when the level of LMW-PTP is 

reduced to 20% with respect to control. 

Proteomic analysis was performed comparing the protein tyrosine phosphorylation level of LMW-

PTP silenced A375 cells with respect to scrambled siRNAs-treated control cells. 2-DE analysis, 

followed by western blot (Phospho-blot), was performed using anti-phosphotyrosine antibodies. 

Fig.2 shows representative images of the 2-D phospho-blots obtained from scramble (panel A) and 

silenced cells (panel B) including the corresponding colloidal Coomassie-stained gels (panel C, 

scramble, and panel D, silenced). Phospho-blot images were analyzed using ImageMaster 2D 

Platinum v7.0 software (GE-Healthcare). The normalization of immune-reactive spots was 

performed against their respective on the colloidal Coomassie-stained 2-DE gel images. We 

compared normalized-volume percentage values (%V) of spots on phospho-blots of silenced cells 

with those phospho-blots obtained from scramble cells. Statistical analysis, performed by two-tailed 

non-paired Student’s t-test using Graphpad Prism 6 software, revealed 8 statistically differentially 

phosphorylated protein spots. These protein spots are circled in Fig.2. 

 

3.2. Mass spectrometry identification of tyrosine-phosphorylated proteins 

To identify significant phosphorylated protein spots, we performed preparative 2-DE gels, which 

were then colloidal Coomassie-stained. The phospho-blot images were matched to the 

corresponding colloidal Coomassie stained 2-DE gels and the spots corresponding to 

phosphorylated proteins were cut and subjected to MALDI-TOF mass spectrometry analysis. We 

successfully identified the eight protein spots whose tyrosine-phosphorylation level was increased 

in silenced LMW-PTP cells. The results of mass spectrometry identification are reported in Table 1, 

together with the corresponding spot numbers, score and coverage values of MALDI-TOF analysis, 

fold change in phosphorylation level and Student t-test p-value. Most of the identified proteins 
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belong to carbohydrate metabolism such as α-enolase (ENO1), pyruvate kinase (PKM2), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Triosephosphate isomerase (TPIS). We 

also found an increase in the tyrosine-phosphorylation level of Annexin A1 (ANXA1) and 

Prelamin-A/C (LMNA). Concerning LMNA, it was identified in three different protein spots (spot 

1, 2, 3). These spots display the same molecular weight but differ for the isoelectric point (pI). The 

observed pI (calculated using Progenesis SameSpots 4.0 software) of spot 2 corresponds to the 

theoretical pI of LMNA (6.57 by www.uniprot.org). The spot 1 shows an observed pI of 6.38 and 

the spot 3 of 6.85 thus suggesting the presence of different post-translationally modified forms of 

LMNA. 

 

3.3. Validation of the proteomic analysis results 

To confirm that the selected proteins are actually phosphorylated in tyrosine in an LMW-PTP-

dependent manner, we performed an immunoprecipitation assay. A375 control cells (transfected 

with scrambled siRNA) and cells silenced for 28 h with LMW-PTP-specific siRNA, were lysed. 

Samples were separately immunoprecipitated with antibodies specific for the selected proteins, 

namely PKM2, ENO1, GAPDH, TPIS, Annexin 1 and Prelamin-A/C. Immunoprecipitated samples 

were subjected to western blot analysis using anti-phosphotyrosine antibodies, to evaluate the level 

tyrosine-phosphorylation of the selected proteins. Western blot images were analyzed with Kodak 

MI software. The results shown in Fig.3 (panels A to F) point out that all the selected proteins are 

over-phosphorylated when LMW-PTP is silenced, in line with the data obtained by the proteomic 

analysis.  

 

3.4. LMW-PTP directly interacts with the selected proteins 

To assess whether the six selected proteins may be substrates of LMW-PTP, we performed a co-

immunoprecipitation assays, to evaluate a direct association between LMW-PTP and the putative 

substrates. To maximize the results, in this experiment we used a different human cell line, the 

prostate carcinoma DU145. These cells, expressing limited amount of LMW-PTP, were transfected 

with a vector expressing a dominant-negative form of LMW-PTP(Dn) [14] which is a mutant 

carrying a modification in a critical cysteine residue, present in the active site. This mutant is able to 

interact with substrates, but it cannot catalyze any tyrosine de-phosphorylation. Lysates of mock-

transfected cells and of cells transfected with the Dn form of LMW-PTP were subjected to 

immunoprecipitation with antibodies against the six selected proteins. The immuno-precipitates 

were analyzed by western blot, using anti-LMW-PTP antibodies. Results are shown in Fig.3, panel 

G. In the cells overexpressing the dominant negative form of LMW-PTP the interactions are very 
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strong for all the six selected proteins. The interactions however, are evident, although at a lower 

extent, also in the mock transfected cells where LMW-PTP level is lower.  This fact may indicate 

that the interaction is quite strong. Based on these evidences we can conclude that the six proteins 

are bona fide substrates of LMW-PTP. To demonstrate the specificity of these results, a co-

immunoprecipitation control with an irrelevant antibody (GM130, Santa Cruz Biotechnology SC-

16268) was performed. As expected a negative result was achieved (data not shown). 

 

3.5. LMW-PTP modulates oxidative metabolism in different tumor cell lines. 

For further analyses we decided to concentrate our attention on four of the six proteins selected by 

proteomic analysis involved in glucose metabolism. PKM2, GAPDH, ENO1 and TPIS are in fact 

all part of the glycolytic pathway, suggesting that LMW-PTP may be involved in the regulation of 

energetic metabolism in cancer cells. To go deeper in the possible role of LMW-PTP in the 

oxidative metabolism, we performed several different experiments. First, we evaluated the short-

term effects of LMW-PTP downregulation on energetic metabolism of A375 cells. For this purpose, 

A375 cells were treated with Morin, a LMW-PTP inhibitor that triggers rapid and specific LMW-

PTP degradation [7]. After 4 hours of incubation, the A375 cells were analyzed using Seahorse 

technology. We observed that Morin treatment causes a relevant decrease of glycolytic flux and of 

oxygen consumption (Fig.4). Based on the above results, we speculate that this effect is in large part 

due to PKM2 inhibition. Indeed, it is evident that LMW-PTP, hydrolyzing phosphotyrosine 

residues, contributes to maintain PKM2 in its active form. Conversely, LMW-PTP inhibition or 

down-regulation favors PKM2 phosphorylation/inhibition, slowing down glycolytic pathway, Krebs 

cycle, and reducing oxygen consumption rate. Phosphorylated form of PKM2 moves in the nucleus 

where it stimulates activity of transcription factor HIF-1. This promotes transcription of glycolytic 

genes, contributing to the shift away from oxidative towards glycolytic metabolism. To strengthen 

the claim that PKM2 phosphorylation pattern is responsible for the observed effects on energy 

metabolism, we evaluated PKM2 phosphorylation levels after treatment with Morin by 

immunoprecipitation analysis. The results are reported in the Figure 4 (panel E, F). We found that 

treatment with Morin increased PKM2 phosphorylation levels, thereby confirming that 4 hours 

treatment are enough to enhance the phosphorylation status of PKM2. 

In agreement with this result, we observed a partially different long-term effect due to LMW-PTP 

silencing: in these conditions cells show an enhanced glycolytic flux, and a high lactate production 

rate, but they consume lower oxygen and produce lower ROS levels with respect to control cells 

(Fig. 5). Together, these short and long-term effects support the hypothesis that tumor cells are 
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subjected to metabolic reprogramming after LMW-PTP silencing, enhancing glycolytic flux, 

probably to compensate for the loss of ATP caused by the OXPHOS inhibition. 

In order to assess that LMW-PTP effects on energy metabolism are not restricted to the A375 cell 

line, we repeated the same experiments (as described in Fig. 5, panels A to C) on three different 

human tumor cell lines. We used PC3 (prostate cancer), HT29 (colon cancer) and MEC-1 (B-cell 

leukemia) cell lines. In Fig. S1, S2 and S3 we present the results for each cell line. In each panel A 

we show the effect of LMW-PTP silencing, 28 hours after siRNA administration, demonstrating a 

comparable efficiency with respect to the A375 cells (see Fig.1). In panels B, C and D respectively 

we present the evaluation of glucose uptake, lactate production and the rate of oxygen consumption 

in controls and LMW-PTP silenced cells, demonstrating that the effects are in any case qualitatively 

identical to those obtained using A375 cells. As far as glucose uptake and lactate production is 

concerned, a more pronounced effect can be observed for the PC3 cell line with respect to the other 

cell lines.   

 

3.6. Action of LMW-PTP on PKM2, GLUT1 and Hexokinase II 

It is known that PKM2 may be regulated also in its expression levels [15]. In order to assess how 

LMW-PTP level may influence glucose utilization, we investigated whether the increase of glucose 

uptake may be due to enhanced level of the key glycolytic enzyme PKM2. For this purpose, we 

analyzed the expression level of PKM2 either in A375 cells, silenced or not for the LMW-PTP. The 

results show that, when LMW-PTP is downregulated with siRNA, the level of PKM2 is higher with 

respect to control cells (Fig.6, panel A and B). In the same experimental conditions, we also 

measured the expression level of the GLUT1 glucose transporter. As reported in Fig. 6, a clear 

increase of GLUT1 level was detected in LMW-PTP silenced A375 cells (Fig.6 panel A and C). 

Moreover, we investigated variations of the expression level of Hexokinase II, the first rate-limiting 

enzyme of glycolysis, upon LMW-PTP silencing. The result pointed out a clear increase in 

Hexokinase II level (Fig.6, panel A and D).  

Pyruvate kinase controls the final and rate-limiting reaction of glycolysis and is present in the cell in 

different isoforms. In contrast to PKM1, which is present in a constitutively tetrameric active form, 

PKM2 undergoes conformational conversion between a tetrameric/full active and a dimeric/less 

active state [16, 17], able to translocate into the nucleus [18, 19].  We have determined whether 

LMW-PTP silencing may influence also the rate of PKM2 nuclear localization. In cells silenced for 

LMW-PTP, we can observe that the nuclear amount of PKM2 markedly increases with respect to 

the cytoplasmic one (Fig.6 panel E).  

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 
 

3.7. Action of LMW-PTP on cell motility 

The increase of M2 isoform of pyruvate kinase versus M1 isoform have been correlated with higher 

cellular proliferation. In fact, PKM2 expression in tumor proliferating cells sustains Warburg 

metabolism [20, 21], leading to an increase of the glycolytic pathway. For this reason, we evaluated 

the proliferating rate of A375 cell s, transfected either with scramble or LMW-PTP specific siRNA.   

Fig.7 (panel A) shows that LMW-PTP silencing causes an increase of cell proliferation rate, 

followed up for 72h after transfection. Since high proliferative and glycolytic cancer cells show a 

lower EMT phenotype, we decided to analyzed the invasiveness of A375 melanoma cells upon 

LMW-PTP modulation.  The results confirmed that, after LMW-PTP silencing, A375 cells are less 

able to invade through a Matrigel support (panel B), due to a decrease of MMP secretion (panel C), 

These conditions, as already shown, lead to an increase of glycolytic rate (see results of Fig. 5). To 

evaluate whether, in A375 cells, LMW-PTP silencing could affected transcription of EMT markers 

we analysed by using RT-PCR the mRNA expression levels of SNAIL, SLUG. As expected, we 

found that mRNA level of LMW-PTP strongly decreases 28 hours after transfection (Fig.7 panel 

D). At the same moment, we found that also mRNA expression levels of SNAIL (panel E), SLUG 

(panel F) decreased, while expression of E-cadherin mRNA levels increased (panel G). Conversely, 

no effects were observed after transfection of scrambles siRNA. Together, these results 

demonstrated that LMW-PTP silencing inhibits transcription of key factors involved in EMT, and 

stimulates expression of E-cadherin, reinforcing data previously reported in this paper.  

 

4. Discussion  

In this study, we performed a differential phospho-proteomic analysis of A375 cells, in order to 

identify possible new LMW-PTP substrates. Although several different substrates have been 

already defined for this phosphatase, a global analysis was not yet carried out. Moreover, since it is 

now clear that LMW-PTP over-expression in tumor cells correlates with higher aggressiveness, this 

analysis was carried out on the A375 human melanoma cell line, derived from a very aggressive 

tumor, expressing very high level of LMW-PTP. We found that six different proteins result to be 

over-phosphorylated on tyrosine residues upon LMW-PTP silencing, namely PKM2, GAPDH, α-

enolase, TPIS, Lamin, and Annexin A1. For all the six selected proteins, it was possible to assess 

that it exists a direct molecular contact with the phosphatase, strongly suggesting that they are bona 

fide LMW-PTP substrates. Interestingly, our data show that four out of six of the new putative 

LMW-PTP substrates are glycolytic enzymes. These evidences suggest that LMW-PTP could have 

a key role in regulating the glycolytic pathway, probably by modulating the phosphorylation status 

of these enzymes.  
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As far as PKM2 is concerned, it is already known that the activity of this enzyme is modulated by 

tyrosine phosphorylation. The tyrosine-phosphatase PTP1B, in fact, is capable to de-phosphorylate 

PKM2 on Tyr-105 and Tyr-148 [22]. In the present work, to our knowledge for the first time, we 

suggest that also LMW-PTP acts on PKM2, de-phosphorylating this enzyme on tyrosine. The 

identity of the tyrosine/s involved in the mechanism remains to be elucidated.  

GAPDH is tyrosine phosphorylated by Src [23] but, to our knowledge, nothing is known about the 

mechanism of its de-phosphorylation. On the other hand, phosphorylation of α-enolase has been 

associated with pancreatic cancer and leads to the production of specific auto-antibodies in 

pancreatic ductal adenocarcinoma patients, with diagnostic value [24]. In the case of α-enolase both 

kinase and phosphatase activity involved in this mechanism are not known. Finally, several 

evidences have demonstrated that TPIS is phosphorylated on Serine residue by Cdk2 [25], but, to 

our knowledge, no regulation via tyrosine phosphorylation has been yet identified.  For all these 

three proteins, namely GAPDH, α-enolase and TPIS, our results suggest that they may be tyrosine-

phosphorylated and that LMW-PTP may catalyze their tyrosine de-phosphorylation. 

In addition, two other proteins, Annexin A1 and Lamin, not involved in glycolysis, has been 

identified by our proteomic analysis. Annexin A1 have been implicated in many cellular processes 

such as inflammation [26, 27, 28], glucorticoid action [29], secretion and exocytosis [30, 31, 32], 

cell growth and differentiation [33, 34, 35] and phosphorylated by several protein tyrosine kinase 

(PTKs) [36, 37]. As far as Lamin is concerned, its phosphorylation is mainly dependent on the cell 

cycle [38, 39, 40].  Our results indicate that both Annexin A1 and Lamin may be subjected to 

LMW-PTP-dependent tyrosine de-phosphorylation. 

The fact that, among the six proteins selected with proteomic analysis, four of them are enzymes 

essential for glycolytic pathway suggests that LMW-PTP could be involved in the regulation of 

energetic metabolism of cancer cell. It is important to remember that, in many tumor cells and 

tissues, LMW-PTP is generally over-expressed with respect to normal cells [2, 4, 6, 7]. For these 

reasons, we decided to concentrate our attention on the LMW-PTP-dependent modulation of 

glucose catabolism. To evaluate short- and long-term effects of LMW-PTP inhibition, we studied 

metabolic profile of A375 cells treated with Morin or silenced for LMW-PTP. We previously 

demonstrated that the treatment with Morin causes the fast downregulation of LMW-PTP 

expression levels [7], while silencing deprives A375 cells of LMW-PTP for longer time. Thus, cells 

treated with Morin represent a model for study the acute effects of LMW-PTP inhibition, whereas 

silenced cells were studied to evaluate the long-term effects of LMW-PTP deprivation on energetic 

metabolism of cells. We found that after treatment with Morin, both glycolysis and oxygen 

consumption of A375 cells decrease. We speculate that this effect is in large part due to LMW-PTP 
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inhibition, which leads a fast PKM2 phosphorylation/inactivation. This hypothesis was confirmed 

by PKM2 immunoprecipitation analysis. Due to decrease of PKM2 activity, the glycolytic flow 

slows down, and pyruvate production falls, thereby impairing Krebs cycle, electron chain transport, 

oxygen consumption, and ATP production. If maintained for relatively long time, a similar 

metabolic asset could impair cell survival, or induce cell death. However, we clearly demonstrated 

that silenced cells undergo metabolic rewiring, enhancing glucose uptake and lactate production, 

but maintain a low oxygen consumption and producing low ROS levels respect to unsilenced cells. 

Moreover, we observed that silenced cells express high levels of the glucose transporter GLUT1, 

and hexokinase II, the first rate-limiting enzyme of glycolysis. Taken together, these results 

demonstrate that silenced cells acquire an evident Warburg metabolism. From a mechanistic point 

of view, PKM2 strongly contributes to conversion of A375 cells from a respiratory toward a 

glycolytic phenotype. Indeed, we found that PKM2 expression levels increased in A375 silenced 

cells respect to parental cells, and that silenced cells contain higher amounts of phosphorylates 

PKM2. Finally, we observed that LMW-PTP silencing favors migration of PKM2 dimeric form into 

the nucleus (see Fig.6, panel E). These evidences are in line with previous findings showing that the 

phosphorylated/dimeric form of PKM2 is able to migrate into the nucleus, were it acts as a 

transcriptional co-activator of β-catenin and hypoxia-inducible factor 1α (HIF-1α), one the master 

regulator of Warburg metabolism [18, 19, 41]. In synthesis, we demonstrate that in melanoma cells 

the overexpression of LMW-PTP is functional to maintain PKM2 in its dephosphorylate status – the 

tetrameric, “full active” form - which is retained in the cytoplasm, where it converts PEP in 

pyruvate, thereby fueling Krebs cycle and OXPHOS.  

Similar effects were observed also in other cancer cells such as prostate cancer PC3, colon cancer 

HT29 and MEC-1 from B-cell leukemia, thereby confirming that this behavior is not a specific 

characteristic of the A375 melanoma cell line but, rather, represent a general feature of cancer cells 

expressing high LMW-PTP levels. 

Considering that high LMW-PTP expression levels were found in most of aggressive cancer cells, 

we argue that its presence offers some advantage to cancer cells.  

Based on data reported in this paper, we can exclude that high level of expression of LMW-PTP 

confers some vantages in term of growth rate. Rather, we observe that high level of expression of 

LMW-PTP enhance cell motility and invasiveness. A375, together with the other cell lines used in 

this work, show an aggressive phenotype, and a relative strong resistance to traditional anticancer 

drugs. We have already demonstrated that pharmacological inhibition of LMW-PTP increases 

sensitivity of melanoma, and PC3 to dacarbazine, 5-FU and radiotherapy [7]. Similar results were 

reported by others, in a study conducted on colon cancer cells [6].  Together, these evidences 
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suggest that LMW-PTP could be involved in the acquisition of an aggressive phenotype, rather than 

stimulate growth rate of cancer cells. The exact mechanism that link LMW-PTP expression, PKM2 

activation and resistance to apoptosis remains to be clarified.   

4.1. Conclusions 

In this work we can clearly assess that high LMW-PTP expression, which is common in tumor 

cells, negatively influences the rate of glycolysis. This regulation is very probably due to the fact 

that LMW-PTP modulate the tyrosine phosphorylation level of at least four different enzymes 

involved in glycolysis.  Moreover, we show that changes in expression levels of LMW-PTP leads to 

the control of invasiveness and cell proliferation rate. 

Much more work is needed to precisely understand the consequences of tyrosine phosphorylation 

control at the level of the proteins that we have identified as new LMW-PTP substrates.  
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Figure captions 

 

Fig.1 A375 human melanoma cells silenced for LMW-PTP. Transfection time course: A375 

cells were silenced with siRNA or scramble (20nM). Western blots were conducted at 18 h, 28 h 

and 36 h after transfection. In panel A, a representative experiment is shown. In panel B, a 

densitometric analysis is presented as result of three independent experiments. 

 

Fig.2 Representative 2-D phospho-blots and Colloidal Coomassie stained gels of cells silenced 

for LMW-PTP cells and of control cells. Sample proteins from control (A) and LMW-PTP-

silenced cells (B) were separated by IEF (11 cm, 3–10 NL). Second dimension was performed in 9–

16% polyacrylamide linear gradient and phosphorylated proteins were detected by western blot. In 

panel, (C) and (D) the corresponding colloidal Coomassie stained gels are shown. For each cell 

specimen (LMW-PTP-silenced cells and control cells), six colloidal Coomassie-stained gels and six 

2-D phospho-blots were performed. Statistical analysis was carried out by ImageMaster 2D 

Platinum software v7.0 (GE Healthcare) using a two-tailed Student's t-test. Circles and numbers 

indicate the statistical differentially phosphorylated spots (p<0.05) identified by MS. 

 

Fig.3 Validation of novel substrates of LMW-PTP using immuno and co-immunoprecipitation. 

(A-F) Immunoprecipitation analysis of α-Enolase, PKM2, GAPDH, TPIS, Annexin A1 and Lamin 

A/C using appropriate antibodies. Samples were subjected to SDS-PAGE and analyzed by Western 

Blotting using 4G10 anti-pTyr antibodies. For each co-immunoprecipitation, western blot with the 

antibodies for PKMM1, ENO1, GAPDH, TPIS, Annexin 1 and prelamin-A/C was performed. In the 

histograms the quantification is shown, as phosphorylated form of the protein/ total protein. (G) Co-

immunoprecipitation analysis of PKM2, αEnolase, GAPDH, TPIS, Annexin A1 and Lamin A/C 

using anti-LMW-PTP antibody. DU145 cells mock-transfected or transfected with the Dn form of 

LMW-PTP were used. Co-immunoprecipitation control with an irrelevant antibody (GM130, Santa 

Cruz Biotechnology SC-16268) gave negative results (data not shown). 

 

Fig.4 Energetic profile of A375 cells treated with Morin. Cells were starved for 16 hours and 

then incubated for further 4 hours at 37°C in the presence of starvation medium containing (open 

circles), or not (black circles), 50 µM Morin. After, cells were washed with PBS and then analysed 

by using Seahorse technology (Agilent Technologies Inc., US). (A), oxygen consumption rate; (B), 

extracellular acidification rate; (C), OCR/ECAR ratio in basal condition; (D), maximal respiration 

determined after treatment of A375 cells with FCCP. Data reported in the figure represent the mean 
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values ± S.D. (n = 8) ** p < 0.05; *** p < 0.001; (E-F) Immunoprecipitation analysis of PKM2 

phosphorylation levels after treatment with Morin. PKM2 was immunoprecipitated and analysed by 

SDS-PAGE separation and western blot. Equivalent amount of total protein was leaded on gels. 

Phosphorylation status on tyrosine residue of PKM2 was detected by using monoclonal 4G10 anti-

phosphotyrosine antibodies (Millipore). The experiment was carried out in duplicate. (E) 

representative western blot analysis; (F) Images were acquired by using Amersham Imager 600 

luminometer (Amersham). Quantification of bands was carried out by using the Amersham 

quantification software. Data reported in the figure represent the mean value ± S.E.M. (n = 2). 

 

Fig.5 LMW-PTP silencing induces metabolic switch in A375 human melanoma cells. All the 

experiments were performed on A375 cells, 28 h after transfection. (A) Glucose uptake. Cells were 

incubated with (U-
14

C) deoxy-D-Glucose and then lysed with 0.1M NaOH. The amount of up-taken 

glucose was measured using a scintillator analyzer. (B) Lactate production. The medium of silenced 

and control cells was collected, and lactate amount was measured using a commercial kit. (C) 

Oxygen consumption. The rate of O2 consumption was evaluated using a Clark-type O2 electrode 

from Hansatech. Values obtained for three independent experiments were normalized on cells 

number. (D) ROS level. Intracellular ROS level were measured using ROS detection assay 

(DCFDA). 

 

Fig.6 LMW-PTP is involved in the regulation of key-glycolytic enzymes: A375 cells were 

transfected with siRNA or scramble. (A) After 24h cells were lysed and analyzed by western blot 

with specific primary antibody against PKM2, GLUT1 and HKII. (B, C, D) Densitometric analysis 

were obtained using actin as internal control. (E) Melanoma transfected cells were subjected to 

nuclear extraction, as described in Methods, to measure the amount of cytosolic and nuclear form of 

PKM2. To assess the grade of this purification, actin content, in both compartment, was evaluated. 

 

Fig.7 LMW-PTP affects cell growth and invasiveness of A375 melanoma cells. (A) A375 cells 

were transfected with siRNA or scramble. After 24, 48 and 72h cells were detached and counted 

with a Burker chamber, using contrast phase microscope. The invasive ability of Melanoma 

silenced cells was determined using Boyden chamber assay (B) and measuring MMP2 activity in a 

gel zimography (C). After 28h of scramble or siRNA transfection, total RNA was extracted, and 

mRNA levels of LMW-PTP, SLUG, SNAIL and E-cadherin were determined with RT-PCR (D-G). 
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Fig.S1 LMW-PTP regulates metabolism of PC3 prostate cancer cells. (A) PC3 cells, 28h after 

siRNA or scramble transfection, were lysed and analysed by western blotting to validate LMW-PTP 

silencing. Actin was used as internal control for densitometric analysis. (B) Glucose uptake. PC3 

cells were incubated with (U-14C) deoxy-D-Glucose for 30 minutes, then washed twice with cold 

PBS and lysed with 0.1M NaOH. The amount of radioactive up-taken glucose from the cells was 

measured using a scintillator analyzer. All values were normalized to protein content. (C) Lactate 

production. The medium of silenced and control cells was collected, and lactate amount was 

measured using a commercial kit. L-Lactate content was normalized to protein content. (D) Oxygen 

consumption, 28h after silencing, were carried using a Clark-type O2 electrode from Hansatech. 

 

Fig.S2 LMW-PTP regulates metabolism of HT29 colon cancer cells: The experiments were 

performed on the HT29 colon cancer cell line, as described in Fig. S1. (A) validation of LMW-PTP 

silencing by western blot. (B) Glucose uptake. (C) Lactate production. (D) Oxygen consumption, 

28h after silencing, were carried using a Clark-type O2 electrode from Hansatech. 

 

Fig.S3 LMW-PTP regulates metabolism of MEC-1 chronic B leukemia cells. The experiments 

were performed on the MEC-1 colon cancer cell line, as described in Fig. S1. (A) validation of 

LMW-PTP silencing by western blot. (B) Glucose uptake. (C) Lactate production. (D) Oxygen 

consumption, 28h after silencing, were carried using a Clark-type O2 electrode from Hansatech. 
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Table 1: Differentially tyrosine-phosphorylated proteins identified by MALDI-TOF mass spectrometry. 

 

Spot 

n.
a 

 

Protein 

 

AC
b 

Gene 

GO  

Biological 

Process
c
 

Mascot search results 

p-value
g 

Fold 

change 

siRNA 

vs  

control
h
 

 

Score
d 

Matched 

Pept.
e 

Seq. 

coverage 

(%)
f 

1 Prelamin-A/C P02545 LMNA 

Establishment or 

maintenance of 

microtubule 

cytoskeleton 

polarity 

GO:003095 

96 14/50 22 0.0066 1.5 

2 Prelamin-A/C P02545 LMNA 

Establishment or 

maintenance of 

microtubule 

cytoskeleton 

polarity 

GO:003095 

130 18/34 27 0.005 1.5 

3 Prelamin-A/C P02545 LMNA 

Establishment or 

maintenance of 

microtubule 

cytoskeleton 

polarity 

GO:003095 

155 22/47 31 0.001 3.2 

4 Alpha-enolase P06733 ENO1 

Canonical 

glycolysis 

GO:0061621 

158 18/43 24 0.0009 2.2 

5 Pyruvate kinase P14618 PKM 

Canonical 

glycolysis 

GO:0061621 

204 30/83 61 <0.0001 2.8 

6 Annexin A1 P04083 ANXA1 

Cell-cell adhesion 

GO:0098609 

Negative 

137 13/38 42 0.0009 2.9 
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a
 Spot numbers match those reported in the representative 2-DE images shown in Fig.2. 

b
 Accession number in Swiss-Prot/UniprotKB (www.uniprot.org/). 

c
 Functional categories based on the Gene Ontology (GO) terms related to their major biological process using Nextprot database 

(https://www.nextprot.org/), data release 2017-08-01 Application release v2.10.0. 
d
 MASCOT MS score (Matrix Science, London, UK; http://www.matrixscience.com). MS matching score greater than 56 was required for a 

significant MS hit (p-value<0.05). 
e 
Number of matched peptides corresponds to peptide masses matching the top hit from Ms-Fit PMF, searched peptide are also reported. 

f 
Sequence coverage = (number of the identified residues/total number of amino acid residues in the protein sequence) x100%. 

g 
The p-value listed is the significance of altered phosphorylation levels relative to control samples with p < 0.05. 

h
 Fold change (siRNA PTP vs control) was calculated dividing the phosphorylation index (see methods for details) of siRNA PTP cells with that of 

control cells. 

 

regulation of 

apoptotic process 

GO:0043066 

7 
Glyceraldehyde-3-phosphate 

dehydrogenase 
P04406 GAPDH 

Canonical 

glycolysis 

GO:0061621 

178 16/45 29 0.0003 1.8 

8 Triosephosphate isomerase P60174 TPIS 

Canonical 

glycolysis 

GO:0061621 

110 14/40 38 <0.0001 2 

http://www.uniprot.org/
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Table 2: Primer sequence utilized for RT-PCR. 

GENE FORWARD (5’ to 3’) REVERSE (3’ to 5’) 

LMW-PTP GGAAACTTGTAACCGATCAAAACA  

 

CCCACGTTCCAGTCAGAAACA  

 

SNAIL GCTGCAGGACTCTAATCCAGAGTT 
 

GACAGAGTCCCAGATGAGCATTG 
 

SLUG AGATGCATATTCGGACCCAC 
 

CCTCATGTTTGTGCAGGAGA 
 

E-Cadherin CAGCCCAAAGTGTGTGAGAA 
 

TGTGATGTTGGCCGTGTTAT 
 

GAPDH GGACCTGACCTGCCGTCTAGAA 
 

GGTGTCGCTGTTGAAGTCAGAG 
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Response to reviewer 2. 

 

Query 6: Figure 3G: it would be nice to show that precipitation with an irrelevant antibody does 

not precipitate LMWPTP. 

Response 6: As suggested by reviewer, we have performed an experiment, using antibodies against 

GM-130 (P-20) (Santa Cruz Biotechnology SC-16268). GM 130 is a cis-Golgi matrix protein 

involved in vesicle tethering to Golgi membrane. Until now, no data about the interaction between 

GM130 and LMW-PTP was reported or published before. As showed in Figure 1 (Supplemental 

material for reviewers), any signal was visible after probing membrane with LMW-PTP antibodies, 

confirming that the interaction between PKM2 and LMW-PTP is specific. Finally, to highlight this 

result, we have added a sentence in Figure 3 caption. 

 

Figure Query 6 

 

Figure Query 6: Co-immunoprecipitation analysis. A375 cells, expressing or not the dominant negative of 

LMW-PTP, were lysed and incubated with PKM2 or GM130 antibodies overnight. The protein A was used 

to precipitate antibodies and the precipitates were collected and analyzed by western blot. Membranes were 

probed with antibodies anti-LMW-PTP in order to verify the specificity of interaction.   

 

Query 7: The authors use Morin to inhibit LMWPTP, but they have themselves shown that this 

compound also inhibits PTP1B and TC-PTP with a lower IC50. (Cancer Med. 2018 May; 7(5): 

1933-1943). Thus, PTP1B may also be involved in the results in Figure 4 and the differences 

between Figure 4 and Figure 5. Furthermore, cells were starved in Figure 4, and not in Figure 5, 

which hampers comparison. Is it not possible to treat cells longer with Morin, for a better 

comparison?  

Response 7: As suggested by reviewer, we performed a test with Seahorse XF analyzer incubating 

A375 cells with Morin for 24 hours before the analysis. The standard protocol used for Seahorse 

analysis forecasts seeding and treatment of cells in the same moment. Unfortunately, we observed 

that, after 24 hours incubation, most of cells were suffering or undergoing death. As consequence, 

data obtained resulted not to be comparable with the ones obtained incubating Morin for 4 hours. 

Based on this evidence, we decided to change protocol, using compound 23 a novel LMW-PTP 

specific inhibitor (see ref. 9 of this paper, Stanford et al., 2017) to carried out a further test. In our 

opinion, this compound enables us to address both requests of reviewer. First, this compound is a 

specific inhibitor of LMW-PTP. Moreover, this compound can be used in standard growth 

PKM2-LMW-PTP 

PKM2- 
 

GM130-

GM130-LMW-PTP 

Ctr DN 
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conditions (complete medium with FBS instead of starvation medium), enabling us to obtain data 

comparable with that reported in the Figure 5. Results of new experiments were reported in the 

Figure 2. The results of experiment carried out after 4 hours incubation, show that the treatment 

with compound 23 decreases basal OCR, without affecting basal ECAR. These results are in total 

agreement with data obtained using Morin and, suggest that data reported in the Figure 4 are really 

due to LMW-PTP inhibition and not to inhibition of PTP1B. A similar test was carried out 

incubating A375 cells in the presence of compound 23 for 24 hours. Likewise, the test carried out 

with Morin, we observed that most of cells are suffering or death. This evidence suggests that a 

technical problem prevents obtaining reproducible and analyzable results after 24-hours incubation 

both with Morin or compound 23.  Actually, we would like not to show these results in the present 

paper, since a new manuscript is in preparation, concerning compound 23, in the frame of a 

collaboration with Dr. Bottini’s group.  

 

Figure Query 7. 
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Figure Query7: Seahorse analysis of A375 cells treated with compound 23 for 4 hours. (A), oxygen 

consumption rate (OCR); (B) extracellular acidification rate (ECAR); (C), OCR/ECAR ratio in basal 

condition 

 

 

0

1

2

3

4

5

O C R /E C A R

O
C

R
/E

C
A

R * *

c o m p .2 3- +



  

*Conflict of Interest form
Click here to download Conflict of Interest form: coi_disclosure.pdf

http://ees.elsevier.com/bbagen/download.aspx?id=417812&guid=fcaae88f-a9f2-4d56-9751-bf1650186692&scheme=1

