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Abstract

The Oxford Nanopore Technologies MinION is a new device, based on nanopore sequencing that is able to generate reads of
tens of kilobases in length with faster sequencing time with respect to other platforms. To evaluate the capability of nanopore
data to be exploited for resequencing analyses we used the largest MinION data set to date and we compared with Illumina
and Pacific Biosciences technologies. By using five different mapping approaches we estimated that the global sequencing
error rate of MinION reads, mainly caused by inserted and deleted bases, is around 11%. The study of error distribution
showed that substituted, inserted and deleted bases are not randomly distributed along the reads, but mainly occur in specific
nucleotide patterns, generating a significant number of genomic loci that can be misclassified as false-positive variants. With
40x sequencing coverage, MinION data can produce at best around one false substitution and insertion every 10-50kb, and
one false deletion every 1000 bp, making use of this technology still challenging for small-sized variant discovery. We also
analyzed depth of coverage distribution and we demonstrated that nanopore sequencing is a uniform process that generates
sequences randomly and independently without classical sources of bias such as GC-content and mappability. Owing to
these properties, the MinION data can be readily used to detect genomic regions involved in copy number variants with high
accuracy, outperforming other state-of-the-art sequencing methods in terms of both sensitivity and specificity.
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Introduction

In the past decade, genomic science has been revolutionized by
the advent of second-generation sequencing (SGS) technologies
[1]. The first commercial SGS platforms emerged in 2005 to over-
come the low throughput and the high cost of first-generation
Sanger sequencing.

At present, the predominant SGS approach (Illumina) con-
sists of sequencing a huge amount of DNA molecules in parallel
by anchoring millions of small clusters of the same DNA frag-
ment in a solid surface and read them in a process that consists
of sequential washing and scanning operations. The wash-and-
scan cyclic process [2] consists in incorporating fluorescence-
labeled nucleotides in the DNA fragments, stopping the

incorporation reaction, washing the excess reagent and scan-
ning the solid surface to detect the incorporated bases by means
of fluorescence emission. Thanks to these technologies, today a
human genome can be sequenced quickly at affordable prices
[3]- The emergence of these platforms, together with the devel-
opment of powerful computational tools, have transformed bio-
logical and biomedical research over the past several years
allowing the achievement of large-scale population sequencing
projects, such as the 1000 Genomes Project [4] and The Cancer
Genome Atlas (www.cancergenome.nih.gov), and opened a new
era for personal genomics [5-7].

Although these platforms have totally changed our ability to
study the genome of any organism, they have technological
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limits. During the wash-and-scan process, the incorporation re-
action of each DNA strand population becomes more and more
asynchronous as each base is added. This phenomenon
(dephasing) generates noise and sequencing errors, limiting the
sequence size to 100-400bp. Moreover, these platforms are
based on polymerase chain reaction (PCR) to grow clusters of a
given DNA template and this process introduces errors in the
template sequence.

The past few years have seen the emergence of a third-gen-
eration of sequencing (TGS) technologies that include single-
molecule real-time (SMRT) [8] sequencing and nanopore
sequencing [9]. All these new sequencing approaches interro-
gate single molecule of DNA and do not need synchronization
and amplification, overcoming the classical sequencing biases
introduced by PCR and dephasing.

The SMRT sequencing method developed by Pacific
Biosciences is based on directly observing a single molecule of
DNA polymerase as it synthesizes a strand of DNA. It requires
minimal amounts of reagent and sample preparation and be-
cause there are no scanning and washing steps, the time to re-
sult is faster than SGS methods [3]. Moreover, exploiting the
processivity of the DNA polymerase, SMRT sequencing gener-
ates longer read lengths than any other first- and second-gener-
ation sequencing methods, producing average read lengths in
the order of 10kb.

The nanopore-sequencing approach consists in the transit
of a DNA molecule through a pore-forming protein embedded
in a membrane and measuring its effect on an electric current.
From the 1990s, several researchers suggested the use of nano-
pores as biosensors [10] and demonstrated that ionic current
passing through a nanopore depends on the identity of nucleic
acid bases interacting with and transiting the nanopore [11-13].

Oxford Nanopore Technologies (ONT, https://www.nanopore
tech.com) is a company founded in 2005 to develop a single
molecule sensing system based on this proof-of-concept study.
In 2012, it announced the smallest high-throughput sequencing
platform, the MinION, at the Advances in Genome Biology and
Technology meeting [14].

The MinION is a pocket-sized (90 g and 10cm in length) de-
vice that is able to sequence long single-stranded DNA mol-
ecule. The two strands of a DNA molecule are linked by a
hairpin and sequenced consecutively. When the two strands of
the molecule are read successfully, a consensus is built to ob-
tain a more accurate read (called the 2D read). Otherwise only
the forward-strand sequence is provided (called the 1D read).
When the DNA strand passes through the nanopore, a sensor
measures ionic current changes with a sampling frequency of
3000 Hz and the raw current data are then subjected to base
calling by means of a Hidden Markov Model (HMM): base-calling
is first performed for template and complement strands separ-
ately (1D) and then are used to constrain the 2D base-calls of
the DNA fragment.

In April 2014, ONT launched the MinION Access Programme
(MAP), an independent beta-testing program for a developers’
community made of more than 1000 laboratories (https:/www.
nanoporetech.com/community/the-minion-access-pro
gramme). Each participant received the MinION starter pack
that included the MinION device, a USB cable, a Configuration
Test Cell, two flow cells, a nanopore sequencing kit and a wash
kit.

Although the MAP allowed several research groups to test
the power of this novel TGS instrument, it became clear to all
participants that it was impossible to evaluate reproducibility
and quality of the MinION data from few sequencing runs. For

these reasons, a group of MAP participants decided to form the
MinION Analysis and Reference Consortium (MARC) with the
aim of ‘evaluating and providing standard protocols and refer-
ence data to the scientific community’ [15]. During MARC phase
1, five laboratories sequenced the same Escherichia coli strain
using the same protocol and generating a total of 20 data sets.
The results of these experiments were recently published in
F1000Research [15] reporting comprehensive analyses regarding
sequencing protocols, base throughput, read quality and the
performance of the MinION device itself.

In this article, we present the results of the first and most
comprehensive analysis for understanding the capability of
ONT data to be used in resequencing experiments. By using the
data generated during the MARC phase 1, we studied the main
characteristics of ONT reads and we evaluated the performance
of different alignment approaches to map ONT sequences
against a reference genome. Aligned data allowed us to quantify
sequencing error rate for substituted, inserted and deleted
bases and to study the stochastic properties of error distribu-
tion. Moreover, by using a complex strategy to simulate syn-
thetic reference genomes, we evaluated the sensitivity and
specificity of ONT data to detect substitutions, small insertions
and deletions (InDels) and genomic regions involved in copy
number variants (CNVs).

Results
ONT MARC data

The MARC phase 1 experiments were performed by five labora-
tories that sequenced the same E. coli strain, in duplicate, by
using the R7.3 flow cells with two different sequencing kits: the
SQKMAPOOS5 (Phase 1a) and the SQKMAP005.1 (Phase 2b). Each
sequence produced by the MinION was classified as pass and
fail on the base of base quality and converted to fastQ files by
using poreTools [16] (see Methods section).

Because the main goal of this article is to evaluate the cap-
ability of ONT data to be used in resequencing analyses, in this
section, we briefly report the principal characteristics of MARC
experiments in terms of sequencing throughput, read length
and quality distribution. A deep and comprehensive analysis of
the characteristics of data generated by the MARC can be found
in [15].

The total throughput of each experiment is variable between
and within different laboratories, ranging from a minimum of
28Mb to a maximum of 385Mb and with a total number of
sequenced reads that goes from around 6000 to 45 000 (Table 1).

The average sequence length ranges between 5 and 7 kb for
the great majority of the MARC experiments, and single reads
range from hundreds bp to tens kb (Table 1 and Figure 1) for all
the 20 experiments. On an average, pass sequences are longer
(4-8kb) than fail sequences (4-6kb) and the amount of pass
reads represent more the 60% of the total sequencing through-
putin almost all experiments.

The read GC content distribution is close to E. coli reference
genome for both pass and fail reads (Figure 1), and although the
average quality of pass reads is clearly larger than fail reads,
base quality does not depend on read position (except for
around the first 100 bases, Figure 1E), demonstrating that the
DNA strand translocation through the nanopore is not affected
by position biases. This result is of fundamental importance be-
cause it suggests that nanopore-sequencing approach can gen-
erate high-quality sequences with no theoretical limits on
length, except those introduced during sample preparation.
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Table 1. MARC experiments statistics
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Expname  Phase Passreads Failreads Passbase Failbase ARSpass ARSfail Baseprop pass:fail Read prop pass:fail
Labl_runl la 32548 14 806 228.3 86.8 6825.5 5626 0.72:0.28 0.69:0.31
Labl_run2 la 17 805 11303 120.9 65.7 6658 5729 0.65:0.35 0.61:0.39
Lab2_runil la 8289 4790 59.3 30.3 7060 6138 0.66:0.34 0.63:0.37
Lab2_run2 la 2901 1708 21.1 10.1 7200 5681.5 0.68:0.32 0.63:0.37
Lab3_runl la 18765 7951 1215 40.7 6367 4744 0.75:0.25 0.7:0.3
Lab3_run2 la 19 169 7538 156.8 48.4 8007 6152 0.76:0.24 0.72:0.28
Lab4_runil la 13 836 10 858 69.4 44.2 3931 3479 0.61:0.39 0.56:0.44
Lab4_run2 la 19 024 12 341 98.3 52.8 4352 3563 0.65:0.35 0.61:0.39
Lab5_runil la 23 566 6069 153.7 33.2 6242 4780 0.82:0.18 0.8:0.2
Lab5_run2 la 17 673 26 351 48.2 39.4 1528 439 0.55:0.45 0.4:0.6
Labl_runl 1b 12 258 17 511 69.4 78.1 5664 4464 0.47:0.53 0.41:0.59
Labl_run2 1b 14 235 10 162 72.4 24.7 4738 667 0.75:0.25 0.58:0.42
Lab2_runil 1b 5165 5960 28.9 28.6 5438 4517.5 0.5:0.5 0.46:0.54
Lab2_run2 1b 28 054 30 044 206.5 178.2 7261.5 5944 0.54:0.46 0.48:0.52
Lab3_runil 1b 30 364 11757 225.1 70.4 7235 5819 0.76:0.24 0.72:0.28
Lab3_run2 1b 14 800 6569 94.1 34.1 6285 5164 0.73:0.27 0.69:0.31
Lab4_runl 1b 1493 4673 8.4 20.0 5612 4042 0.3:0.7 0.24:0.76
Lab4_run2 1b 11484 5856 65.5 27.3 5381 4371 0.71:0.29 0.66:0.34
Lab5_runl 1b 12 844 7876 83.8 43.0 6454 5257.5 0.66:0.34 0.62:0.38
Lab5_run2 1b 11126 5894 72.8 31.7 6382.5 5113 0.7:0.3 0.65:0.35

Columns report the main characteristics of each experiment generated by the five laboratories of the MARC. For each experiment we reported the phase (Phase), the
number of reads (Pass reads and Fail reads), the throughput in Mb (Pass base and Fail base), the average read length (ARS Pass and ARS Fail) and the proportion of reads
and throughput between pass and fail reads (Base Prop and Read Prop). All the statistics were calculated from MARC fastQ files.
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Figure 1. Size and quality distribution of pass and fail ONT sequences. Panel (A) shows read length distribution for pass and fail sequences of the 20 experiments per-
formed by the MARC. Panel (B) reports the GC content percentage for pass and fail reads compared with randomly selected regions of the E. coli genome. Panels c, d and
e show average read quality (C, the first 20 barplots are related to pass reads while the second 20 to fail reads), base quality distribution (D) and base quality as a func-
tion of sequence position (E) for pass and fail reads, respectively.
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The results summarized in Table 1 and Figure 1 show that
there are no significant differences between the experiments
generated in Phases la and 1b in terms of sequencing through-
put and median read lengths, in accordance with the data re-
ported in [15].

Aligners and error rate estimation

The alignment of TGS sequences can be particularly challenging
for the large number of long reads that they generate (from kb
to tens of kb) and for the high error rates that are primarily
InDels rather than substitutions [17]. The principal computa-
tional problem is how to align long (many kilobase) reads with
moderate divergence from the genome (up to 20% divergence,
concentrated in InDels) with the same speed and sensitivity of
SGS alignment methods.

At present, few methods have been tested or developed to
properly map long reads generated by TGS platforms. Chaisson
et al. [18] proposed a novel method (Basic Local Alignment with
Successive Refinement, BLASR) that combines the data struc-
tures used in short read mapping with alignment methods used
in whole genome alignment (see Methods section for more de-
tails). Heng Li extended the BWA-MEM algorithm [19] by com-
bining relaxed scoring of Smith-Waterman with heuristics
filtering to support PacBio and ONT reads. Several papers pro-
posed to map nanopore and PacBio data by using the approach
adopted by LAST [20]. LAST follows a three steps approach in
which first finds initial matches between reads and genome,
then extend them with a gapless X-drop algorithm and finally
extend them using a gapped X-drop algorithm [21]. Recently,
Jain et al. [17] proposed a novel approach, marginAlign [17],
properly devised for ONT data that realigns reads against a ref-
erence genome by combining a HMM with the alignments gen-
erated by LAST and BWA (burrows wheeler aligner). Henceforth,
we will refer to marginAlign with LAST as HMML and to
marginAlign with BWA as HMMB.

To understand the capability of different alignment
approaches to properly map ONT sequences against a reference
genome, we applied the five aforementioned long reads align-
ment methods (BWA, BLASR, LAST, HMML and HMMB, see
Methods section for more details) to the pass and fail sequences
of the 20 MARC experiments.

BWA, HMML and HMMB produced soft-clip alignments that
represent 1.5-5% of mapped pass reads (1.5% for BWA and
HMMB and 5% for HMML) and 10% of mapped fail reads (see
Supplementary Table S1 for more details). Moreover, BWA was
the only aligner to produce split mapping: 1% of pass reads and
8% of fail reads were splitted (Supplementary Table S1). Around
99% of pass reads and 80% of fail reads (Figure 2A) were aligned
against the E. coli reference genome and mapping performance
strongly depends on sequence size (Figure 2B and C and
Supplementary Figure S1) as the longer the reads and the higher
the fraction of sequences mapped by each method. At present,
the best way to evaluate the likelihood that an alignment is cor-
rect is mapping quality (MQ). This score is generally estimated
by considering various factors, such as the number of base mis-
matches and the sizes of inserted or deleted regions in the
alignment [22]. We analyzed the MQ values generated by BLASR
and BWA (mappers being evaluated that generate MQ) and we
found that around 99% of mapped pass reads and 90-95% of
mapped fail reads (see Supplementary Table S1) have MQ > 20.
For this reason, all the subsequent analyses for BWA and BLASR
will be performed using reads with MQ > 20. Although all the
five alignment strategies gave similar results, the LAST

algorithm obtained the worst global performance and resulted
as the most influenced by sequence length for both pass and
fail reads. All the mapping strategies tested in this work were
not able to align 10% of pass reads shorter than 1kb and 40% of
fail reads shorter than 3kb, suggesting that short reads with
lower base qualities contain more sequencing errors than short
reads with higher base qualities.

As a further step, aligned data were used to obtain a raw es-
timation of ONT error rate for the three main sources of local
errors: mismatch, deletions and insertions. To this end, for each
mapping algorithm, we calculated the number of bases that are
substituted, inserted and deleted with respect to the reference
genome as a function of sequence position and read quality.

Although the results of these analyses give a combination of
sequencing and alignment errors, the use of five different map-
ping strategies allowed us to mitigate the alignment effect ob-
taining a good estimation of sequencing errors. To better
evaluate the error rates estimated for ONT data, we compared
these results with those obtained by the Illumina MiSeq and
Pacific Bioscience platforms (see Methods).

Taken as a whole, panels d-o of Figure 2 show that the
sequencing error rate slightly depends on read position, while it
is highly influenced by read quality. The fraction of substituted,
inserted and deleted bases (Figure 2D-I) increases with se-
quence position until reaching a constant value at around 50—
100bp for all the five aligners, with the exception of LAST on
single-base substitutions. On the contrary, the error rate for the
three variant categories decreases as the average read base
quality increase (Figure 2J-O), suggesting that read quality and
read errors are highly correlated.

To evaluate this correlation, we used the alignments data
generated by BLASR, BWA and LAST to estimate the Phred-
scaled mismatch rate as Q = —10log,,P (where P is the fraction
of mismatches for each aligned read) and we compared it with
the predicted quality scores. The results of these analyses are
reported in Supplementary Figure S2 and show that predicted
quality score accurately reflects measured mismatch rate for
both pass and fail reads (although for fail reads, the predicted
higher quality scores are underestimated).

All these analyses also demonstrate that the five mapping
methods returned different results for the three error catego-
ries. The two marginAlign methods obtained the smallest error
rate for single base substitutions, while LAST and BWA showed
the best performance for small InDels (see Table 2 for more
details).

The total error rates (sum of the three error rates) for BWA
and the two marginAlign approaches (the three best methods in
terms of performance) is around 11% (see Table 2) and in accord-
ance with the total percent error estimated in the first paper
released by the MARC [15]. As expected, the average error rate for
pass reads (11%) is much smaller than that obtained for fail se-
quences (around 21%, see Table 2). Interestingly, although PacBio
sequences present low error rate for substitutions (around 1%)
they generate a total error rate comparable with ONT data as a
consequence of the high insertions errors, and this is in accord-
ance with previously published paper [23, 24]. As expected, the
total error rate estimated for the SGS MiSeq reads is almost two
order of magnitude (0.24%, Table 2) smaller than the other TGS
technologies (around 11% for both PacBio and ONT, Table 2).

Error rate distribution

In resequencing studies, once the reads have been properly
mapped, genomic variants are discovered by searching for
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Figure 2. Mapping algorithms comparison and sequencing error rate estimation. Panels (A) show the proportion on mapped and unmapped reads for all the five align-
ers (colors represent average read qualities). Panels (B) and (C) report aligners performance as a function of read length for pass (B) and fail (C) sequences. Sequencing
error rate was estimated as a function of sequence position (D-I) and base quality (J-O). Error rate was estimated for substituted (D, G, J, M), inserted (E, H, K, N) and
deleted bases (F, I, L, O) for pass (D-F, J-L) and fail (G-I, M-O) sequences. To simplify subplots grouping, panels (D-O) contain additional labels that describe variants
and read type: Sub- (substitutions), Ins- (insertions), Del- (deletions), -Pass (pass reads) and -Fail (fail reads).

Table 2. Error rate statistics

Aligner Subpass Inspass Delpass Totalpass Proportionpass Subfail Insfail Delfail Totalfail Proportion fail

BWA 5.87 2.37 3.66 11.9 49:20:31 13.82 3.6 6.16 23.58 59:15:26
BLASR 3.64 3.65 5.14 12.43 29:29:42 7.44 6.12 9.25 22.81 33:27:40
LAST 8.01 243 3.71 14.15 57:17:26 39.11 5.19 5.11 49.41 79:11:10
HMMB 297 3.32 4.71 11 27:30:43 6.35 6.23 8.96 21.54 29:29:42
HMML 2.46 3.37 4.77 10.6 23:32:45 6.06 6.15 8.83 21.04 29:29:42
MiSeq 0.24 0 0 0.24 100:0:0 0.24 0 0 0.24 100:0:0
PacBio 1.15 6.73 3.29 11.17 10:60:30 1.15 6.73 3.29 11.17 10:60:30

Columns report the most relevant information about error rate for substitutions (Sub), insertions (Ins) and deletions (Del) for pass and fail reads. ‘Total’ columns report
the sum of substitution, insertion and deletion error rates. ‘Proportion’ columns report the relative percentage of each error class (Sub:Ins:Del).

differences between the reference genome and the aligned when the number of reads containing the same alternative al-
reads. For each genomic position, substitutions and small lele is significantly large with respect to the total number of
InDels (hereafter ‘events’) are inferred by comparing the num- reads (for haploid genomes, a variant can be roughly called
ber of reads that do not contain the reference allele and the total when half reads contain the same alternative allele). In this

number of reads aligned with that position: a variant is called framework, although the error rate estimated in the previous
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section is a good approximation of sequencing accuracy (the
capability of a sequencing technology to correctly sequence a
DNA fragment), it is not able to predict the number of false-posi-
tive events generated by a resequencing analysis because it de-
pends on recurrent errors aligned at the same genomic position.

For this reason, for each position of the reference genome,
we counted the number of reads that contain the same substi-
tuted, inserted or deleted bases. In this way, for each alignment,
we estimated the ‘recurrent’ error distribution that gives the
probability to find N reads containing the same error aligned at
the same position of the reference genome. The study of these
distributions allowed us to estimate the probability of detecting
false-positive events and to understand the randomness of re-
current errors (the probability to find N errors in the same pos-
ition by chance).

To study the stochastic nature of recurrent errors, by using
the sequencing error rates estimated in previous section, we
simulated synthetic reads with randomly distributed substi-
tuted, inserted or deleted bases and we calculated their recur-
rent error distribution. By using this recipe, we obtained the
probability distribution of finding N recurrent errors by chance
and we compared with that generated by each alignment by
means of the Kolmogorov-Smirnov statistics.

On one hand, the Kolmogorov-Smirnov statistics D quanti-
fies the distance between two empirical distribution function
and the smaller is D the closer are the two distributions. In our
analyses, a small D value indicates that the recurrent error dis-
tribution of real and randomly generated reads are close and
consequently real errors are randomly distributed along each
read independently by the genomic position in which have
been mapped. On the other hands, large D values indicate that
errors in real reads are not randomly distributed but fall in re-
current positions of the genome.

On one hand, all the D statistics estimated for MiSeq and
PacBio alignments (Figure 3) are close to zero, indicating that
substitution, insertion and deletion errors are randomly gener-
ated during the sequencing process of these technologies. On
the other hands, the D statistics obtained from ONT alignments
suggest that the error distribution along the reads generated by
nanopore sequencing process is not completely random (Figure
3 and Supplementary Figures S3-S8). LAST-based alignments
(LAST and HMML) obtained D statistics close to one for all the
three error classes, while BWA, BLASR and HMMB gave D values
larger than those obtained by MiSeq and PacBio, in particular
for deleted bases.

To evaluate the effect of recurrent errors on producing false-
positive events, we counted the total number of genomic pos-
itions in which more than half of mapped reads contain the
same substituted, deleted or inserted bases. As expected, the
frequency of false-positive events depends on sequencing
coverage and read base quality. Figure 3 shows that increasing
the coverage mitigates the effect of recurrent error biases and
reduces the total number of false-positive events. In the same
way, the removal of reads with low base quality increases false-
positive frequency by reducing sequencing coverage
(Supplementary Figures S9 and S10). Surprisingly, although
PacBio data show high sequencing error rate (on the same order
of magnitude of ONT reads), they obtained the lowest false-
positive rate for all the three variant classes, detecting less than
one false substitution every 100kb and around one InDel every
1Mb. The reason of these results can be mainly ascribed to the
nearly random nature of errors distribution along PacBio se-
quences (small D values). The performance of MiSeq sequencer
are similar to those of PacBio and this is a direct consequence of

the low sequencing error rate of SGS reads reported in previous
section.

Concerning ONT data, although BLASR resulted the best
aligner (in terms of false-positive frequency) for substitutions
and insertions and LAST for deletions, the global performance
obtained by this sequencing approach is poor for all the three
variant classes. In the best experimental/computational setting
(best aligner and coverages larger than 30x) ONT experiments
produce around one false substitution and insertion every 10-50
kb and one false deletion every 1 kb, making a hard challenge
the use of this data for small variants discovery. Moreover, the
combination of pass and fail reads has little effect on reducing
false-positive frequency (Figure 3).

As a further step, to understand the experimental and com-
putational nature of recurrent errors, we studied the nucleo-
tides content and the size distribution (for inserted and deleted
bases) of all the false-positive events generated by each align-
ment. Although the five aligners produced slightly different re-
sults, the bar plots of Figure 3 and Supplementary Figure S11
show that recurrent errors follow specific nucleotide patterns
that can be ascribed to intrinsic biases of the nanopore sequenc-
ing process. On one hand, recurrent substitution errors mainly
affect C and G and, independently of the nucleotide they affect,
substituted bases are enriched of C and G. On the other hand,
recurrent-deleted bases principally involve A and T and mainly
occur after A and T nucleotides of the genome. Supplementary
Figure S11 also show that realignment strategy of marginAlign,
irrespective of the mapper chosen for the primary alignment,
introduces a bias which results in the missing of one or more
nucleotides in poly-X homopolymers. Remarkably, inserted
bases do not suffer of any apparent bias being equally distrib-
uted among the four nucleotides.

Moreover, we found that although the great majority of
InDel calls are 1-base events for all the alignments, the two TGS
data contain a significant fraction of inserted (PacBio) and
deleted (PacBio and ONT) bases larger than 1bp (Supplementary
Figure S12).

Taken as a whole, these results suggest that the transloca-
tion of C (G) through the nanopore is preferentially miscalled
with G (C), while the translocation A and T may result in the
loss of one (or more) subsequent nucleotides by the sequencing/
base-calling process.

Although it is difficult to completely explain the reasons of
these errors, we speculate that both deletions and C-G miscall-
ing can be mainly ascribed to algorithmic limits of the HMM at
the base of the Metrichor base caller. Taken as a whole, the re-
sults reported in this section can be of fundamental importance
for improving the performance of base-calling methods and for
the development of novel algorithms for the identification of
small variants by using ONT data.

Depth of coverage

At present, the most powerful method for the identification of
CNVs in resequencing analyses is the depth of coverage (DOC)
approach [25, 26].

The DOC approach is based on the simple idea that during
the sequencing process, the reads are randomly and independ-
ently sequenced from any location of the genome. Under this
assumption, the number of reads mapping into a window of the
reference genome should be proportional to the number of
times the region appears in the DNA sample and follow a
Poisson distribution. Following this assumption, the copy num-
ber of any genomic region can be estimated by calculating the
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Figure 3. Recurrent errors distribution analysis. Summary of the recurrent error distribution analyses for substituted (A-F), inserted (G-L) and deleted (M-R) bases.
Panels (A, C, G, I, M and O) report the Kolmogorov-Smirnov statistic as a function of read quality, while panels (B, D, H, ], N and P) show the false-positive frequency as
a function of average sequencing coverage. False-positive frequency is defined as the ratio between the total number of false positive events and the size of E. coli gen-
ome in bp. False-positive events are defined as genomic loci in which more than half of the aligned reads contain the same error. The barplots of panels (E, F, K, L, Q
and R) report the base content of false positive events for substituted (E, F), inserted (K, L) and deleted (Q, R) bases. Each bar with suffix -R reports the distribution of nu-
cleotides in which the false event occurs (for InDels the nucleotide before the event). Each bar with suffix -E contains the base content of the substituted/deleted/in-
serted bases. Panels (A, B, E, G, H, K, M, N and Q) report results for pass reads, while panels (C, D, F, 1, ], L, O, P and R) for pass+fail reads. To simplify subplots grouping,
all panels have title labels that describe variants and read type: Sub- (substitutions), Ins- (insertions), Del- (deletions), -Pass (pass reads) and -All (pass+fail reads).
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DOC of reads aligned to consecutive and non-overlapping win-
dows of the genome. To understand the capability of ONT data
to identify genomic regions involved in CNVs, we studied the
statistical properties and biases of DOC distribution and we
compared it with the other two sequencing technologies.

As a first step, we studied the relationship between DOC and
classical genomic biases: local GC content and mappability
(defined as the inverse of the number of times that a sequence
originating from any position in the reference genome maps to
the genome itself) calculated as in [27].

On one hand, the correlation between DOC and GC content
has been previously reported in several papers for SGS data and
is mainly owing to the amplification step of the sequencing pro-
cess. On the other hand, mappability bias is owing to the fact
that the genome contains many repetitive elements and align-
ing reads to these positions leads to ambiguous mapping. In
Magi et al. [25], by analyzing Illumina, 454 and SoLID reads, we
observed that DOC is maximum for values of GC content be-
tween 35% and 60%, while it decreases at both extremes. In the
same paper, we also found that DOC distribution for highly
mappable regions is closer to Poissonian than genomic regions
with low mappability.

On one hand, the results summarized in Figure 4 clearly
show that ONT reads are slightly affected by the two classical
sequencing biases with the exception of LAST alignment that is
highly influenced by mappability. On the other hand, PacBio
and MiSeq coverages strongly depend on local GC content and
this can be mainly ascribed to the PCR chemistry at the base of
these two sequencing approaches.

As a further step, to understand the stochastic properties of
coverage distributions, we calculated the index of dispersion
(ID) for different window sizes (10 bp, 20 bp, 50bp, 100 bp, 200 bp,
500bp, 1 kb, 2kb, 5kb, 10kb and 20kb). The ID, defined as the
ratio between variance and mean, is used to quantify whether a
set of observations are clustered or dispersed. In particular, ID
larger than one indicate overdispersed data that follow a nega-
tive binomial distribution, ID smaller than one refer to under-
dispersed data that follow a binomial distribution, while ID=1
indicates data with Poisson distribution. In [25], we demon-
strated that DOC distribution from SGS sequences exhibit an ID
largely greater than one and that this over dispersion can be ac-
counted to local GC content and mappability.

All the ONT DOC distributions, with the exception of LAST
alignments, have an ID close to one (Figure 4) that demonstrate
the Poissonian nature of the nanopore-sequencing process as a
direct consequence of the low influence of GC content and
mappability on these data. The large ID obtained by LAST can
be mainly ascribed to the mappability bias of this alignment
method, while the overdispersion of PacBio distributions is
principally owing to the GC content bias described above.
Although MiSeq data are strongly affected by GC content, they
show small ID values that are the consequence of the small
variance of these data.

As a final step, to evaluate the false-positive rate of CNV
events, we calculated the fraction of genomic windows in which
the 1-copy normalized DOC is larger than 1.5 (for duplication)
and smaller than 0.5 (for deletions). ONT data obtained the best
results for both duplicated and deleted regions, while PacBio
reads gave the highest error rate demonstrating a poor suitabil-
ity for CNVs analysis. Concerning ONT alignments, the BWA
mapping data obtains the smallest error rate outperforming the
other four methods. Moreover, the results reported in panels
v1-w3 of Figure 4 show that ID and error rate decrease at the
increasing of the window size and this trend is highly correlated

with the read size: MiSeq data start to decrease from window
size larger than 100 bp, while TGS data from window sizes larger
than 2 kb.

Taken as a whole, these analyses demonstrate that the
nanopore-sequencing process is a uniform process in which
reads are randomly and independently sequenced. Notably, the
error rate produced by ‘all’ reads (combining pass and fail) is
much smaller than the error rate obtained with pass reads: al-
though fail reads contain a large fraction of substituted, inserted
and deleted bases they produce an increase in coverage that de-
crease the variance of DOC distribution and consequently the
number of false-positive windows.

Variants detection accuracy

To evaluate the detection rate of ONT data for substitutions,
small InDels and CNVs, we aligned the MARC data (pass and
combined pass and fail) and the other sequencing experiments
against synthetic E. coli reference genomes.

Synthetic reference genomes were generated by substitut-
ing, inserting and removing bases from the E. coli reference gen-
ome (see Methods section for more details). By using this
approach, we were able to simulate substitutions, small InDels
from 1 to 50bp and deletions from 200bp to 5000kb in size.
Moreover, by using a sophisticated strategy based on removing
segmental duplicated regions from the E. coli reference genome,
we were able to simulate multiple copy duplications (see
Methods). After read mapping against the synthetic reference
genomes, the detection rate for substitutions and small InDels
was roughly estimated by calculating the proportion of modi-
fied loci in which more than half of the aligned reads contain
the original reference allele. Detection rate was studied as a
function of the local DOC of modified loci and as a function of
variant size for small InDels.

The results of these analyses are summarized in Figure 5
and show that, as expected, MiSeq outperforms TGS methods
for both substitutions and small InDels detection accuracy.
PacBio obtained good results for substitutions discovery but
completely failed the detection of small Indels. ONT data
reached a detection rate of 0.9 for the discovery of substitutions
with the two marginAligner mappers, and although the accur-
acy for small insertions was poor (<0.1), for small deletions
BWA and marginAlign obtained detection rates in the order of
~0.3, much larger than that obtained by PacBio. As expected,
the larger the InDel size, the smaller the capability of all the
alignment data to detect them. Remarkably (with the exception
of MiSeq data), local DOC has little effect on detection rate,
while the use of combined pass and fail reads reduces the sensi-
tivity for both substitutions and small InDels identification with
respect to using only pass sequences.

At present, few methods have been developed for calling
variants with ONT data and these methods, that include
Nanopolish [28] and marginCaller [17], are capable to search for
substitutions only. The Nanopolish variant caller first selects
candidate variants on the base of mismatches between aligned
reads and the reference genome and then groups them into sets
of close variants. Each cluster of variants is used to generate a
set of candidate haplotypes from the possible combinations of
SNVs and the haplotype that maximizes the probability of the
event-level data is called as the sequence for the region. The
marginCaller (marginAlign tool) computes posterior alignment
match probabilities between the bases in the reads and the ref-
erence by using a realignment strategy based on HMM.
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Unfortunately, nanopolish performance could not be tested
owing to the lack of raw Fast5 files, but the analyses performed
with marginCaller on synthetic variants data set
(Supplementary Figure S13) demonstrate that this tool is cap-
able to reach a detection rate around 0.99. However, these ana-
lyses also show that the high-detection rate of marginCaller is
obtained at the expenses of a significant number of false-posi-
tive substitutions in C and G demonstrating that the HMM algo-
rithm at the base of this tool is not capable to mitigate the effect
of recurrent error bias of ONT reads.

To evaluate the accuracy of different sequencing technolo-
gies to identify genomic regions involved in CNVs, we calcu-
lated the 1-copy normalized DOC for different window sizes.
The absolute number of DNA copies of each simulated variant
was estimated by calculating the median DOC of the windows
within the region and a deletion is called if this value is smaller
than 0.5, while a duplication is called if it is larger than 1.5. The
results reported in Figure 6 and Supplementary Figure S16
clearly show that although all the sequencing technologies are
capable to correctly identify deleted regions (0-copies), only
MiSeq and ONT reads aligned with BWA are able to identify

duplications with high accuracy and to estimate the exact num-
ber of their DNA copies even for highly duplicated regions.
Moreover, ONT-BWA data obtained the best correlation be-
tween simulated and predicted copy number, outperforming
the MiSeq data. Notably, Supplementary Figure S14 demon-
strates that sequencing coverage has little effect on CNV detec-
tion rate.

These results, combined with those reported in previous sec-
tion, demonstrate that ONT data can be readily used to identify
CNVs with high accuracy.

Discussion and conclusion

The advent of nanopore-sequencing technology is going to
revolutionize our capability to study and understand the gen-
ome complexity of any organism. The advantages over current
SGS and TGS technologies are the faster sequencing time and
the longer read lengths that will improve de novo assembly and
enable haplotype reconstruction and even whole chromosome
phasing. At present, there is limited number of papers pub-
lished in scientific journals that make use of nanopore data,
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Figure 6. Detection rate for CNVs and absolute number of DNA copies prediction. Panels (A-D) show the detection rate of simulated deletions (A, B) and duplications (C,
D) as a function of window size. Panels (E and F) report the correlation between the simulated and predicted absolute number of DNA copies for all the aligners/plat-
forms. Panels (A, C and D) show the results for pass reads, while panels (B, D and F) for combined pass and fail reads.
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and the great majority of these works are focused on bacterial
genome assembly and bioinformatic tools for data handling and
primary analysis.

Quick et al. [29] were the first to sequence an entire bacterial
genome with a single run of the MinION. Loman et al. [28] demon-
strated that it is possible to assemble a complete bacterial genome
by using only nanopore sequencing data, while Ashton et al. [30]
used the MinION to resolve the structure and chromosomal inser-
tion site of an antibiotic resistance island in Salmonella typhi.
Goodwin et al. [31] were the first to sequence a Eukaryotic Genome
with MinION and demonstrated that nanopore data achieve im-
proved assembly compared with Illumina sequencing alone.

Regarding computational approaches, the first generation of
tools developed by the MAP community were mainly focused on
the methods for evaluating and correcting raw MinION data.
Poretools [16] and poRe [32] allow to convert raw data and gener-
ate quality control charts, NanoOK [33] exploits different aligners
to estimate data quality and accuracy, while marginAlign [17],
NanoCorr [31], Nanopolish [28], PoreSeq [34] and GraphMap [35]
are properly devised to use MinION reads for genome assembly,
alignment, realignment and error-correction.

Although the potential power of this sequencing approach is
enormous, much work still remains to be done for improving
read accuracy and developing novel computational methods tail-
ored for this kind of data. In this scenario, the results reported in
this article can be useful for guiding the development of the next
generation of tools for nanopore data analyses. In this work, we
evaluated the quality and accuracy of nanopore data and their
capability to be exploited for resequencing analyses. To this end,
we used the largest nanopore-sequencing data set to date, gener-
ated by the MARC using the first commercial nanopore-sequenc-
ing device, the MinION. The large number of experiments
comprised in this data set allowed us to estimate with high confi-
dence the main characteristics of nanopore sequences and com-
pare them with other sequencing technologies.

The average read length produced by the MinION is around
6-8kb, much larger than the 100-400bp of SGS platforms and
comparable with the size of the latest chemistry of PacBio reads.
The global sequencing error rate is around 11%, it is mainly
caused by inserted and deleted bases, it is comparable with the
other TGS platform and nearly two orders of magnitude greater
than Illumina sequences. The analyses performed in this work
also show that nanopore-sequencing errors are not randomly
distributed along the reads but mainly occur on specific nucleo-
tides (C and G for substitutions and A and T for deletions) pro-
ducing an unexpected number of genomic loci with recurrent
substituted, inserted and deleted bases.

This biased error distribution generates a significant number
of loci in which more than half of the aligned reads contain the
same error and that can consequently be identified as false-
positive variants. We estimated that in the best experimental/
computational settings, ONT resequencing data can produce
around one false substitution and insertion every 10-50kb and
one false deletion every 1000 bp.

For small bacterial genomes, these errors can generate ‘only’
hundreds/thousands of false-positive events, but when pro-
jected to higher order genomes (such as the Human genome)
can lead to the identification of millions of false variants that
will make difficult the interpretation of the results.

The analyses we performed on synthetic genomes showed
that substitutions and deletions can be detected with accuracy
comparable with SGS data, while this does not hold for inser-
tions making still challenging the use of this technology for
small-size variant discovery.

At present, publicly available tools for ONT data allow for
the detection of substitutions only and, although the computa-
tional recipes implemented in these methods obtain good re-
sults in terms of sensitivity, they cannot remove the systematic
biases of ONT data reported in this article. The high substitution
rate mainly occurring on C and G and the high deletion rate
involving A and T suggest a reassessment of ONT chemistry
and/or base-calling algorithms and the development of novel
variant-calling methods that include this nucleotide informa-
tion a priori.

Coverage analysis demonstrated that, contrary to other PCR-
based sequencing technologies, the nanopore sequencing is a
uniform process that generates sequences randomly and inde-
pendently without classical sources of bias such as GC-content
and mappability. Thanks to these properties, the ONT data can
be readily used to detect genomic regions involved in CNVs
with high accuracy, outperforming PacBio and even SGS data in
terms of both sensitivity and specificity. In this framework, the
tuning of smoothing and segmentation models previously de-
veloped for the analysis of CGH-array and DOC signals from SGS
data could be a promising starting point.

The results reported in this work are based on data gener-
ated with R7.3 flow cells and SQK-MAPOO5 kits and base-calling
performed with the HMM algorithm implemented in Metrichor
1.12. At present, ONT is planning novel advances that include a
new chemistry, termed R9, and a new base-calling algorithm
based on Recurrent Neural Networks.

Methods

Experimental data

The MARC phase 1 experiments were designed to evaluate ac-
curacy and reproducibility of the MinION data and for providing
standard protocols and reference data to the scientific commu-
nity. A laboratory E. coli strain (NCBI RefSeq NC_000913) was
chosen as it has a single circular chromosome of 4.6Mb that
could be sequenced to sufficient depth in a single MinION run.
A total of 20 experiments were performed by five laboratories
that sequenced the same E. coli strain, in duplicate, by using the
R7.3 flow cells with the same protocol for culture and DNA ex-
traction and two different protocols for library preparation and
sequencing: the SQKMAPO005 kit was used for the Phase 1a ex-
periments, while the SQKMAPO005.1 kit for the Phase 2b. The de-
tailed protocol for sequencing double-stranded total genomic
DNA was based on the standard protocol from ONT at the time
the experiment was conceived and is described in [15]. Each se-
quence produced by the MinlON was base-called using the
Metrichor 1.12 protocol and classified as pass and fail. Pass se-
quences are all those reads for which 2D base-calling was suc-
cessful and the mean base quality is larger than 9, while fail
reads include 2D reads with mean quality smaller than 9, 1D
base-calling and failed base-calling. Pass and fail reads were ex-
tracted from the base-called FASTS files and converted to
FASTAQ files by using poreTools version 0.5.1 [16] https://github.
com/arq5x/poretools as described in [15]. The raw reads in
FASTQ format for each of the 20 experiments are available from
the European Nucleotide Archive project PRJEB11008 (http://
www.ebi.ac.uk/ena/data/view/PRJEB11008).

Other sequencing data

To better evaluate the main characteristics of nanopore se-
quences, we compared with publicly available data produced by
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two other sequencing platforms, including the Pacific
Biosciences and the Illumina MiSeq platforms. PacBio data were
downloaded from the DevNet project on github (https:/github.
com/PacificBiosciences/DevNet). The DevNet project contains
data sets of many organisms generated by the PacBio RS II plat-
form with different sequencing chemistry. For our analyses, we
used the sequencing data gathered with a PacBio RS II System
and the latest P6-C4 chemistry on a size selected 20 kb library of
E. coli K12 strain. PacBio data were downloaded in h5 format and
converted to FASTQ by using the DESTRACTOR tool (https://
github.com/thegenemyers/DEXTRACTOR) filtering out reads
with quality smaller than 0.80 (—s800). The PacBio data set con-
tain around 76 000 sequences with length ranging between
500bp and 42kb and with a median size of 8kb. PacBio se-
quences were aligned against the E. coli reference genome by
using the BLASR aligner with ‘-bestn 1 -m 0’ options, according
to SMRT PacBio resequencing pipeline (https://github.com/
PacificBiosciences/Bioinformatics-Training/wiki/Evaluating-
Assemblies). MiSeq data were downloaded from the European
Nucleotide Archive project PRINA196622 (http://www.ebi.ac.uk/
ena/data/view/SRR826444). MiSeq paired end reads were aligned
against the E. coli reference genome with the BWA-MEM method
by using default settings. Both PacBio and MiSeq aligned data
were downsampled to simulate coverage from 10x to 40x.

Aligners

All the ONT data used in this article were aligned against refer-
ence genomes by using four different mapping tools: BWA,
BLASR, LAST and marginAlign. For each tool, parameters were
chosen on the base of the recommendations and tweakings
made by other MAP and MARC participants and reported in [17].
BWA version 0.7.12 was used with the ‘-x ont2d’ that was prop-
erly devised for the alignment of ONT 2D-reads. BLASR (http://
bix.ucsd.edu/projects/blasr/) was applied to ONT reads with the
parameters -sdpTupleSize 8 -bestn 1 -m 0 as reported in [17].
For LAST mapper (http://last.cbrc.jp/), we used the parameters
tuned by another MAP participant (-s2-T0-Q1-al-b1-q1-r
1) and that are published in [29]. marginAlign uses an HMM to
realign reads previously mapped against a reference genome
with BWA or LAST. The HMM is first trained on a test data set
and the trained model is then used for realigning reads.
MarginAlign was applied for all the ONT experiments with both
BWA (HMMB) and LAST (HMML) mapping algorithms. For all the
five mapping methods, pass and fail reads were aligned separ-
ately, and when necessary (for combined pass and fail reads
analyses), BAM files were merged using Samtools merge [19]. All
the results reported in this article were obtained by parsing
BAM files with Samtools and in house bash and R scripts.

Synthetic reference genomes

To evaluate the capability of mapping methods to identify dif-
ferent classes of genomic variants, we generated synthetic al-
terations by manipulating the E. coli reference genome (NCBI
RefSeq NC_000913). To simulate substitutions, we randomly
substituted single bases of the reference genome, while to simu-
late small and large deletions (insertions), we inserted
(removed) sequences in random positions of the reference gen-
ome. Small InDels were simulated from 1 to 50bp in size while
large events were simulated with 100, 200, 500, 1000, 2000, 5000,
10 000, 20 000 and 50 000bp. For small variants (substitutions
and InDels), we simulated 100 events for each synthetic gen-
ome, while for larger variants, we simulated 10 events for each
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synthetic genome. To simulate genomic regions with multiple
copy duplications, we first analyzed the E. coli reference genome
by using MUMmer [36] (http://mummer.sourceforge.net/) to
search for segmental duplications. Segmental duplication is
defined as genomic regions larger than 50bp and with sequence
identity larger than 90%. In E. coli reference genome, we found
eight segmental duplications with a size from 300 to 5000bp
and with a number of copies ranging between 2 and 13. For each
region, the removal of all the duplicated segments, except one,
allowed us to simulate duplications with different numbers of
copies. By using this recipe, we were able to simulate genomic
regions with an absolute number of DNA copies ranging from 0
to 12. All the sequencing data (ONT, Illumina and PacBio) were
aligned against the synthetic reference genomes by using the
parameter settings reported in ‘Aligners’ section and BAM files
were parsed with in house scripts. ONT reads aligned against
the synthetic reference genomes with marginAlign (HMML and
HMMB) were used to test the performance of marginCaller tool
by using default settings and following the instruction found at
https://github.com/benedictpaten/marginAlign.

Key Points

¢ The Oxford Nanopore Technologies MinION is a new
device, based on nanopore sequencing that is able to
generate reads of tens of kilobases in length with
lower cost and faster sequencing time with respect to
other platforms.

The global sequencing error rate is around 11%, it is
mainly caused by inserted and deleted bases, it is compar-
able with the Pacific Biosciences platform and nearly two
orders of magnitude greater than Illumina sequences.
Nanopore-sequencing errors are not randomly distrib-
uted along the reads but mainly occur on specific nu-
cleotides (C and G for substitutions and A and T for
deletions) producing an unexpected number of gen-
omic loci with recurrent substituted, inserted and
deleted bases that can consequently be identified as
false-positive variants: MinION resequencing data can
produce around one false substitution and insertion
every 10-50kb and one false deletion every 1000 bp.
MinION data can be readily used to detect genomic re-
gions involved in copy number variants with high ac-
curacy, outperforming PacBio and even Illumina data
in terms of both sensitivity and specificity.

Supplementary data

Supplementary data are available online at
http://bib.oxfordjournals.org/.
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