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INTRODUCTION 

In distribution theory the Paley-Wiener-Schwartz theorem is well known. 

It describes the Fourier transforms of distributions g with compact support 

as a certain class of entire functions f. Here, distributions with compact . 

support in JRn are continuous, linear functionals on the space E of C ~ test­

functions in JRn. Distributions with unbounded support can be defined if 

the testfunctions are submitted to growth conditions at infinity. For exam­

ple, tempered distributions areobtainedin this way as weak derivatives of 

continuous functions of polynomial growth. The Paley-Wiener-Schwartz theorem 

can easily be generalized for tempered distributions g with unbounded sup­

port. Then the function f is holomorphic only in a subdomain of ~n determined 

by the directions in which the support of g is unbounded. Similar to E• 

analytic functionals with compact carriers in ~n are defined as continuous, 

linear functionals on the space of entire functions in ~n- The Ehrenpreis­

Martineau theorem describes the Fourier transforms Fµ of analytic function­

alsµ with compact carriers as the class of entire functions of exponential 

type. Martineau has dealt with analytic functi~nals with bounded carriers 

in [48], but analytic functionals with unbounded carriers have never been 

studied extensively. It is our aim to fill up this gap in the theory and 

to extend the Ehrenprei s -Martineau theorem to analytic functionals with un­

bounded carriers. 

The extension of the Paley-Wiener-Schwartz theorem to distributions 

with unbounded support does not give rise to any new problems, cf. [68, 

§ 26.2, th. 2]. In the proof the possibility of having testfunctions with 

compact support is used. Since there are no such analytic testfunctions the 

proof of the Ehrenpreis-Martineau theorem cannot proceed along the same 

lines. For carriers which are polydiscs the proof is not very hard, cf. [65, 

th. 2.22 & 2.2 3] or [7 3 , §26], but it is the precise correspondence between 

an arbitrary, convex, compact carrier of an analytic functionalµ and the 

exponential type of Fµ which complicates the proof. Polya has shown the 

theorem for n = 1, cf. [ 3 , ch. 5] or [30, th. 4.5.3]; using quite different 

methods Ehrenpreis and Martineau proved it for the higher dimensional cases, 

cf. [15], [16, th. 5.21] and [48]. Later Hormander applied his existence 

theorems for the Cauchy-Riemann operator to give another proof, cf. [30, th. 

4.5.3]. 
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The generalization of the Ehrenpreis-Martineau theorem is not straight­

forward and causes new difficulties: the proof that different analytic func­

tionals with unbounded carriers yield different Fourier transforms is not 

trivial. One has to derive Ehrenpreis' fundamental principle for spaces of 

non-entire functions. This principle, first announced in [15], extends a 

given function f on a lower dimensional subset W of [n to an entire function 

F satisfying certain bounds at infinity and also it describes the entire 

functions vanishing on W. The principle is only valid if the bounds satisfy 

certain conditions. In order to derive it in [16] Ehrenpreis first extended 

f to a collection of holomorphic functions in neighborhoods of all the points 

of ~n and then he showed that these functions could be changed without chang­

ing the values on W so that they can be glued together to one global func­

tion F. 

For our purpose we will use Ehrenpreis' local theory, but for the 

piecing together process we will use another method based on the L
2
-estimates 

for the Cauchy-Riemann operator given by Hormander in [30]. Furthermore, we 

will extend f to a function F holomorphic only in a subdomain n of ~n and 

satisfying bounds also at the boundary of n. In our case the conditions on 

the bounds are rather weak, but this is paid -by the fact that a single f on 

W will be extended to different global functions each satisfying one bound, 

whereas in [16] f has been extended to one function F satisfying all the 

bounds simultaneously. In [56] Palamodov has derived a fundamental principle 

in the same weak form as our version. It is valid for functions holomorphic 

in convex tube domains n, but Palamodov's method does not yield estimates 

near the boundary of n. Therefore, although his work contains a generaliza-
0 tion of the Ehrenpreis-Martineau theorem [56, VI, §4.4, cor. 3], we cannot 

use it for our purposes. 

The Paley-Wiener-Schwartz theorem for distributions with unbounded 

support is very useful in quantum field theory, where physicists are con­

cerned with distributions gin p-space with support contained in a convex 

cone (the dual of the light cone). They search for properties of the Fourier 

transforms fin x-space. In particular they are interested in the holomor­

phic function f itself and not so much in its boundary value f* on m.n or 

* in the spaces of testfunctions on which f is a continuous, linear function-
* al. The distribution f is tempered if g is. However, in [33] Jaffe remarks 

that it would be desirable to have distributions g which are weak deriva­

tives of continuous functions G growing faster than polynomials. Then it 
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* turns out that f is a continuous, linear functional on a space of ultra-

* differentiable testfunctions; f is called an ultradistribution. Ultradiff-

erentiable functions form a transition between ordinary C~functions and 

analytic function~. If G grows too fast there are no longer testfunctions 

in x-space with a compact support. A field, defined on testfunctions in x­

space which may have a compact support, is called strictly localizable. 

This is a desirable property in quantum field theory that, however, restricts 

the growth at infinity of the functions Gin p-space. Similarly, a faster 

growth at infinity of the distributions in x-space would make the testfunc­

tions in p-space ultradifferentiable or even analytic. So one might need a 

Paley-Wiener theo~em for continuous, linear functionals with unbounded car­

riers defined on dnalytic testfunction spaces. 

For example, it looks reasonable to consider distributions defined on 

Gauss-functions. ,ince these distributions and their Fourier transforms 

are in fact functionals on a space of entire functions, their carriers can 

be any subset of ~n. But then another difficulty arises. Unlike supports of 

distributions analytic functionals do not have uniquely defined c arriers 

and, worse, the intersection of carriers need not be a carrier. Hence it 

seems hopeless to try to generalize the notion of strictly localizable field 

for this case. To overcome this difficulty the best one can do is to con­

tent oneself with distributions in x-space and p-space which are weak deri­

vatives of continuous functions growing slower than any exponential. For in 

that case their Fourier transforms have real, unbounded, carriers and a 

real-carried analytic functionalµ does have an uniquely defined, smallest 

carrier, which therefore is called the support ofµ. Fields of this type 

are called localizable, cf. [69]. 

Properties of real-carried analytic functionals have been studied by 

Martineau in [47 ] for bounded carriers and by Kawai in [38] for Fourier 

hyperfunctions. The s e are real-carried analytic functionals on the space 

of exponentially decreasing analytic testfunctions. We will derive the same 

properties for analytic functionals with unbounded, real carrier on spaces 

of slower decreasing analytic testfunctions. We will treat all cases between 

tempered distributions and Fourier hyperfunctions, i.e., all distributions 

and ultradistributions whose Fourier transforms are real-carried analytic 

functionals. 

In chapter I the Paley-Wiener theorem will be applied in quantum field 

theory. We shall not choose a particular testfunction space using only the 
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properties of boundary values of holomorphic functions. For these properties 

the Edge of the Wedge theorem is essential. We shall discuss problems aris­

ing from causality and localizability. It is known that particles cannot 

be localized in a bounded volume, cf. [28]; here it will be shown that they 

cannot even be absent in a bounded volume. Furthermore, we will prove that 

under a reasonable condition, the expectation value of any measurement is 

an anlytic function of space and time. So it certainly cannot be localized 

and if it is known in one space-time region it is known everywhere. Those 

interested in physics only may read merely this chapter and perhaps also 

section II.3.i, where a short proof of the Edge of the Wedge theorem for 

distributions is given. Others, not interested in physics, may skip this 

chapter. 

In chapter II properties of analytic functionalsµ with real, unbound­

ed carrier will be discussed. Furthermore, analytic representations, i.e., 

sums of boundary values of holomorphic functions, ofµ and of Fµ will be 

treated. In particular Paley-Wiener theorems for ultradistributions with 

unbounded, convex support are studied in many details. It is our opinion 

that ultradistributions cannot be seen isolated from distributions and 

hyperfunctions, as they form a natural transition between these two. Chap­

ter II concludes with an easy proof of the Edge of the Wedge theorem for 

distributions based on Fourier transformation which will be extended to the 

case of ultradistributions. 

Chapter III deals with Fourier transforms of analytic functionalsµ 

with complex, unbounded carriers as a generalization of the Ehrenpreis­

Martineau theorem. It treats the precise correspondence between the carrier 

ofµ and the exponential type of Fµ in the directions determined by those 

in which the carrier ofµ is unbounded. Particular cases yield Paley-Wiener 

type theorems that express a distribution or ultradistribution, which is 

the Fourier transform of an anlytic functional with a certain unbounded, 

convex carrier, as a boundary value of a holomorphic function. This chapter 

is more or less self-contained, except for the solutions of some problems 

which can be found in chapter VI. 

In chapter IV the fundamental principle of Ehrenpreis and Palamodov 

will be discussed and moreover, it will be generalized so that it holds in 

spaces of non-entire functions. For entire functions there are actually 

three fundamental principles, as the conditions on the bounds in [16], [56] 

and here are not comparable and they supplement each other. The fundamental 
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principle for non-entire functions is in fact a rewriting of the problems 

of chapter III in a more general frame. However, the contents of chapter III 

will not be needed for the understanding of chapter IV and those who are 

interested in the fundamental principle only may start reading at chapter 

IV. 

In chapter V we will use the fundamental principle of chapter IV in 

a Fourier representation of all weak solutions in a certain space W of a 

homogeneous system of partial differential equations with constant coeffi­

cients. The spaces Ware duals of spaces whose Fourier transforms consist 

of non-entire functions. Chapter III gives many examples of such spaces W. 

Also non-homogeneous systems are discussed. The Fredholm alternative, or 

if you like a generalized Poincare lemma, will be derived for solutions in 

our spaces W. For other spaces this has been shown by Ehrenpreis, Malgrange, 

Hormander and Komatsu, cf. [1]. Finally, we will indicate how the general­

ized Ehrenpreis-Martineau theorems of chapter III c an be used to derive the 

Newton interpolation series for non-entire functions of exponential type of 

several variables. For a long time this series has been known to hold for 

exponential type functions of one variable holomorphic in a half-plane, cf. 

[SS]. Recently, the series has been derived rigorously for entire functions 

of exponential type of several variables by Kioustelidis in [39]. 

Chapter VI will be devoted to the proofs left over from chapter IV. 

We will generalize the existence theorem [30, th. 4.4.2] for the Cauchy­

Riemann operator of Hormander slightly and derive cohomology with bounds 

in an arbitrary pseudoconvex domain . 

In chapter VII we will prove an assertion made in chapter II in order 

to show the support property of real-carried analytic functionals. By func­

tional analytic methods the existence theorem [30, th. 4.4.2] of Hormander 

will be further generalized, so that it holds for functions satisfying 

countably many bounds. However, no uniform bounds will be obtained. The 

generalized existence theorem enables us to derive a stronger form of the 

fundamental principle than in chapter IV for certain spaces of non-entire 

functions. 





CHAPTER I 

CONNECTIONS WITH THEORETICAL PHYSICS 

It is well known {cf. [37]) that the assumption of free particles be­

ing localized in a certain volume leads to inconsistencies in the mathema­

tical description of this phenomenon. For a bounded volume this is clearly 

and shortly illustrated in [28]. We will show that under the same general 

conditions as in [28] even the assumption that a particle is absent in a 

bounded volume yields difficulties. For that purpose it is useful to consi­

der functions or tempered distributions and their Fourier transforms as bou­

ndary values of analytic functions. This technique (see [49]} is essentially 

the basis for the more general theory of hyperfunctions {see [31] or [43]}. 

In recent years this theory has been used in theoretical physics at several 

places, cf. [31], [32] and [52]. 

For simplicity, we will first show that no positive energy solutions 

in the space S' of tempered distributions of the Klein-Gordon . and Dirac 

equations exist which vanish in a bounded space volume at some time t. Then 

the same technique reveals that any measurement of a positive observable 

cannot be zero in one space-time regior, while, if translated to another, it 

is positive. We will formulate this result in the theory of quantized fields 

{see [36] or [64]} and under a reasonable condition we will even obtain that 

the measurement of any observable yields a real analytic function of these 

translations. Finally, we will breifly discuss the localization problem of 

tachyons. 

Fields satisfying the G~rding-Wightman axioms [71] are defined on a 

certain space of testfunctions, which themselves have no physical meaning. 

Therefore, the choice of the testfunction space is not forced by nature . The 

simplest choice is the space S of rapidly decreasing C~functions, but smal­

ler spaces of testfunctions with a larger class of distributions are also 

possible. Then one may ask for which testfunction spaces our reasoning yield­

ing the above mentioned results remains valid. Very naturally, this leads 

to problems of purely mathematical nature concerning Fourier transforms of 
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distributions, ultradistributions and analytic functionals. The remaining of 

this thesis deals with these problems put in a more general form than the 

special cases to which a physical sense might be ascribed. On the other hand, 

recent developments show that the mathematical generalizations may be app­

lied to physics again; see [33] and [11] for ultradifferentiable testfunc­

tion spaces and [10], [63] and [52] for spaces of analytic testfunctions. 

Not only the above discussed impossibility of localization, but many 

more physical properties such as local commutativity of microscopic causal­

ity (see [68, 29.6]) and the analytic continuation of the Wightman-functions 

(see [36] or [64]) depend on the way the occurring distributions are written 

as hyperfunctions. In fact, it seems that all physically interesting cases 

may fit in the frame of Fourier hyperfunctions [38]. A survey of the various 

cases is given in [69] and although not mentioned Fourier hyperfunctions 

actually enter at several places. Later, this has been made explicite and a 

Fourier hyperfunction quantum field theory has been formulated in [52]. 

Maybe the results of this chapter are not new to all physicists. For, 

the technique we use are so closely related to those of quantum field theory, 

for example exposed in [72 ] and [4], that it is hard to beleive that the 

conclusions have not been drawn. However, as in [28] we apply these techni­

ques to relativistic quantum mechanics and we do not use the cyclic vacuum 

state which plays such a central role in quantum field theories. 

I.1. CAUSALITY 

The formulation and measurement of causality is closely related to the 

possibility of localization of a particle. Causality expresses the physical 

law of special relativity that no particle or signal can travel faster than 

light. 
3 

Let V be a space volume (an open set in lR ), then fort> 0 we denote 

by V + ct the larger volume 

def + J + + + 
V+ct ~ {y Dy-xn ~ ct for some X€V}. 

Causality implies that a particle being in Vat time O must be in V + ct at 

time t > 0 (cf. the definition of causality in [28]). For this characteriza­

tion of causality the possibility of localization is necessary. However, if 

the volume Vis bounded and if the above given formulation of causality is 

valid, a particle can never be localized, cf. [28]. Hence this formulation 
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of causality is senseless. 

The next step is to assume that it might be possible that a particle 

is absent in a bounded volume V. Fort> 0 we denote by V - ct the largest 

volume V• such that 

V• + ct c V 

Causality implies that a particle being absent in Vat time 0 must be absent 

in V-ct at time t > 0. However, we will show that, if this formulation of 

causality is valid, a particle can never be absent in any space volume. Hence, 

in order to give a meaningful formulation of causality, the above given 

characterizations need to be generalized. 

In fact, what is needed is a flow of an observable quantity Sand by 

causality this flow cannot go faster than light. To measure this it would 

be desirable if no part of Sis destroyed or created during the observation 

time. Therefore, we assume that the density jO of Sis the zero'th component 

of a Lorentz-four-vector jµ which satisfies the continuity equation 

( 1.1) 0 

where 

cao,a1,a2,a3> ~ 
a a a a 
at 

, 
ax

1 
I 

ax2 
I 

ax3 

ca
0

,a1,a
2

,a
3

> 
def a -a -a -a = , , , 

at ax
1 ax2 ax3 

and where• •µ means the summation overµ= 0,1,2,3. Formula (1.1) expresses 
µ 

the property that during any time interval the change of the density jO in 

a certain volume is due to what flows in and out of that volume. Furthermore, 

ifs, in principle, can attain every real value, it is impossible to say 

whether an increase of Sin a volume Vis due to a flow of a positive part 

of S into V or to a flow of a negative part of S out of V. Therefore, we 

assume that S attains only nonnegative values, i.e., for any space-time 
+ 

point x = (t,x) 

(1.2) 

We now define causality by the (equivalent) requirements (see [24]): 
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for any space volume V, any time t and any amount of time T 

(1. 3) 

I o + + I o + + j (t:T,x)dx s j (t,x)dx 

V-cT V 

I O + + 
j (t,x)dx S I 

V V+cT 

0 + + 
j (t:!:T,x)dx 

It is clear that (1.3) expresses causality only if jO is nonnegative, for 

the part of S that is in Vat time t has to be in V + CT at time t: T, but 

perhaps due to a flow into V + CT from the outside during the time between 

t and t + T there is more in V + CT at time t + T only if jO ~ 0, or if a 

surplus in V + cT flows to the outside during the time between t - T and t 

there was more in V + cT at time t - T only if the surplus was positive. 

Hence for a non-definite density causality cannot be defined in this way. 

Thus it is a meaningless to say that such a density (for example the charge 

density) propagates acausally and it is not true that causality implies the 

nonnegativity of the density as is pretended in [24]. 

In [24] it is shown that a density satisfying (1.1) and (1.2) necessarily 

satisfies (1.3). For example, any probability density which is the zero'th 

component of a current density satisfying (1.1) is causal. If it were possible 

to localize a particle in a bounded volume or the complement of a bounded 

volume, the earlier given characterizations of causality follow from (1.3) 

by taking for jO(x) the probability of finding the particle at x and by taking 

V bounded: 

and 

(1.4) I 
V-cT 

I O + + 
j (t,x)dx s I 0 + + 

j (t+-r,x)dx 

V V+cT 

o ++Io++ j (t+T,x)dx S j (t,x)dx 0, 

V 

respectively. It follows that the right hand side of the first formula equals 

1 and that the left hand side of (1.4) equals 0. 

We remark that the assumption of a probability density which satisfies 

(1.1) does not lead to acausal situations as in [28]. Another observable S 

suitable for describing causality is the energy because it is always non-
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negative. In general the energy does not satisfy (1.1), but in [25] and [26] 

this condition has been weakened so that also energy propagates causally. 

I.2. LOCALIZATION OF WAVE FUNCTIONS 

We will consider free particles whose properties are determined by 

solutions of the Klein-Gordon or the Dirac equation. We only consider the 

positive frequency parts of these solutions (i.e., the energy remains positive) 

and we first investigate the localization of such solutions. 

Let~ be a complex function (or more general a tempered distribution) 
➔ -rn4 . d. . of the real parameters x = (x

0
,x

1
,x

2
,x

3
) = (t,x) E = in icating the time 

and space variables and let~ be its complex conjugate. Furthermore, let~ 

be a solution of the Klein-Gordon equation 

(1.5) 0. 

For each t ~ is a tempered distribution in :rn.3 
and~ defines a continuous 

map from lR into S' (:rn.3) , (this can be seen by inspection of the Pauli­

Jordan propagator 6, see [34, formula (5.10)]). ~ determines uniquely two 

tempered distributions i/!
1 

and i/!
2 

in :m3 
such that symbolically 

➔ ➔ t<0,x) 
~ ➔ at (0,x) 

1/Jl (x) 

4 
and conversely, since 6 belongs to S' (lR) each i/!

1 
and i/!

2 
determines a solu-

tion which is a tempered distribution in :m4 
. 

From (1.5) a first order equation, the Dirac equation , can be derived: 

(1. 7) 0. 

Here the coefficients yµ and I are elements of a non-commutative group with 

unit I satisfying 

(1.8) 

where 

µ \) \) µ 
y y +y y 
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Now~ is no longer a single distribution, but it belongs to a certain linear 

space in which the y's act as linear transformations. For example, if the 

coefficients yµ are represented as certain k x k-matrices, ~ consits of k 

components~= (~
1

, ... ,~k), where each ~j is a tempered distribution satisfy­

ing the Klein-Gordon equation. For, in any representation of the y's we have 

and hence by (1.8) 

V µ 2 
(y y a a +m I)~ 

V µ 

We can write (1.7) as 

(1.9) 
3 
}: 

k=l 

0 k a~ 
y y -

a~ 

0. 

+ a~ + 
Hence if ~(O,x) is given, at (O,x) is uniquely determined and the solution 

of the Dirac equation equals the solution of the Klein-Gordon equation with 

these initial values. Therefore, we only have to consider the initial value 

problem (1.5) and (1.6) and in particular we will consider only those solu­

tions belonging to positive energy. 
+ 

The energy p
0 

and impulse pare real parameters arising as the varia-

bles in the dual JR
4 

of the (t,~)-space JR
4

. Hence Fourier transformation of 

a tempered distribution in x-space yields a tempered distribution in p-space. 

Thus the fact that we consider solutions~ in S' agrees with the fact that 

x and p must be real. 

The Fo1arier transform ,i, E S'(lR
4

) of a solution~ E S'(lR4J of (1.1) 

satisfies 

( 1. 10) 2 +2 2 
(po - p - m ) ,i, (p) o. 

The general solution in S' (JR
4

) of this equation determines two distributions 

$1 and $
2 

in S' (lR
3
), one corresponding to p

0 
> 0 and one to p

0 
< O, and 
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conversely, any two ¢
1 

and ¢
2 

in S' (lR
3

) determine a solution o/ of (1.5) in 

the following symbolical way 

( 1.11) 
-+ 

o/(t,x) l -1 
I (it) + F 

J 

where F-l denotes the inverse Fourier transformation. The initial functions 

(or distributions) satisfy symbolically 

and 

-+ 
o/(0,x) 

ao/ ..,. 
at (O,x) 

-+ 
(x) 

For a positive energy solution o/ of (1,5) we require that ¢
2 

stead of (1.6) the initial values now have to satisfy symbolically 

I I -+-+-+ lo2:7 1 -i< x- > 2 2 -+ -+-+ 
--

3
- e p, ~ (-i) p +m o/(0,~)d~dp, 

(21T) 

0. In-

where only o/(0,x) can be chosen arbitrarily in S' (lR
3
). Now o/ is the inverse 

Fourier transform of a distribution in S' (lR
4

) with support in the cone 

~ .... I 11 .... r = { (p
0

,p) p
0 

~ pll} c lR
4

• Then o/ can be written as a boundary value 

in S' (lR
4

) of a function f holomorphic iri JR
4 

+ i1, where r is the interior of 

the lightcone in lR
4

, i.e., for every ¢ E S (lR
4

) 

<o/,¢> lim Jf(x+iy)¢(x)dx. 
y-+O 

yEC'cc1 

4 
Here r * is the dual cone of the open cone r c lR : 

r* {pj <p,x> > O,x E r} C lR . 
4 
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Roughly, this can be seen as follows: let g be a distribution in S'(lRn) 

which can be written as a certain derivative of a measureµ with support in 

a closed cone C* c lRn satisfying 

I dlµ(E;) I 
(1+DE;U

2
/ 

< a, 

for some k > 0. Then for some multiindex a 

I (iz)aei<E;,x>-<E;,y>dµ(E;) 

c* 

exists if -<E;,y> s -6 RE;I for some 6 > 0 depending on y, thus for y EC if 
Y Yn 

c* is the dual of the open cone Cc lR . Then 

F[gJ (xi lim f(x+iy) f(x+i0) 
y+O 

yEC'ccc 

in S' (lRn), see [12] or [68]. 

Now let f+ be holomorphic in lRn + iC and f in lRn - iC for C an open 

cone in lRn, such that f+(x+iO) and f-(x-iO) exist in S'(lRn). Furthermore, 

let the distributions f+(x+iO) and f-(x-iO), considered as distributions in 

V• (U) for some open set Uc lRn, be equal. Then f+ is the analytic continua­

tion off-. This theorem is the celebrated "Edge of the Wedge" theorem, see 

[64], [68] or for a simple proof Ch.II§ 3.i of this thesis. In particular 

it follows by choosing f- = 0 that, if f+(x+iO) = 0 in U, then f+ = 0. 

Thus every positive energy solution~ of the Klein-Gordon equation can­

not vanish identically in any open space-time region without vanishing every­

where. In particular, the initial values ~land ~2 cannot vanish identically 

in the same open set in JR
3

. For, if they do it follows from the fact that 

~ satisfies the hyperbolic differential equation (1.5), that then~ would 

vanish identically in some open set in lR4 . Similarly, the initial values 

of the Dirac equation cannot vanish identically in an open set in JR
3 . For 

(1.9) implies that:: (0,x) would vanish together with ~(0,x) in the same 

open set in JR
3

. 

In the above we have shown some mathematical properties of solutions 

of certain differential equations. Only a few of the used mathematical 

concepts have also relation to physical phenomena. These phenomena cannot 
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be seen directly, but only by means of measurements of observable concepts 

which are supposed to be influenced by them. Therefore, it may be disputable 

to conclude that free particles cannot be absent in any space volume at any 

time. However, the argument is quite fundamental as it applies under very 

general assumptions as in [28]. The same reasoning even implies that a 

measurement of a nonnegative observable c annot yield zero in one space-time 

region while, if translated to another, it is positive. In the next sections 

we will prove this for observable concepts described by densities which are 

bilinear forms on the space of wave functions P. 

I. 3 LOCALIZATION OF PARTICLES 

In the last section we have shown some mathematical properties of the 

solutions of the Klein-Gordon or the Dirac equation. Let us now show how 

t h ese properties react in quantities which may have a physical interpretation. 

In sectio n I.1 we have seen how causality is related to a current 

density jµ of a nonnegative observable S. In order to define the current 

density we assume that the space of solutions of the Klein-Gordon or the 

Dirac equation can be transformed into a Hilbert space, cf.[35] for other, 

more fundamental reasons why a Hilbert space is chosen. Let qµ be a bilinear 

form defined on a dense subspace D of Hand let for P E H Px be defined by 

D must be such that P E D implies Px E D for each x E lR
4

• For P E D with 

IIPII = 1 a current density jµ can be defined by 

( 1.12) jµ (x) 

provided that qµ is such that jµ transforms as a Lorentz-four-vector. 

If Sis a bounded observable (for example if jO is a probability den­

sity), for each t and some constant K > 0 we have 

I J 
o ........ I j (t,x)dx 5 K. 

lR3 

Hence for each volume Vin lR
3 
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I 0 -+ -+ 
j (t,x)dx 

V 

is a bounded bilinear form defined everywhere on H. If Sis not bounded, 

we moreover assume that for each volume V c JR
3 

and for each t SV(t) is a 

closed bilinear form on D c H. This means that, if SV(t) is defined on 

{¢m}:=l' if ¢n-+ ¢ in Hand if SV(t) (¢k-¢m,¢k-¢m)-+ 0 as k,m-+ ~, then SV(t) 

is also defined on¢ and SV(t) (¢m-¢'¢m-¢)-+ 0. 

Before continuing with the general situation we will show by an explicit 

example that such current densities jµ exist. We first consider the Dirac 

equation. Let for each x E JR
4

'¥(x) (or actually, for each¢ E S(lR
4

) <'¥,¢>) 

belong to a certain Hilbert space on which the y's act as a linear transforma­

tion. Usually the anti-linear functional associated to 'l'(x) is denoted by 

'l't(x) and the inner product of 'l'(x) by itself is then written as 'l't(x)'l'(x). 
t -+ -+ 1 -+ 3 

Let moreover for each t '¥ (t,x)'l'(t,x) be a L -function of x E JR , then the 

inner product in His defined by 

(~,'¥) ~ I ~t(t,;)'l'(t,;)d; 
]R3 

That this is independent oft follows -from (1.7) and (1.8). In a k-dimensional 
k 

representation 'l'(x) belongs to the Hilbert space~ and for every teach 
2 . 3 

'¥. is a L -function on JR, j=l, •.. ,k. A bounded current density satisfying 
J 

(1.1) (in distributional sense) can be defined by 

(1.13) 

and clearly (1.2) is satisfied, too. 

Thus the density (1.13) withµ= 0 is always causal, i.e., it satisfies 

(1.3). jO equals 'l't'l' and in ,the last section it has been shown that this 

density can never vanish in an open set V of JR3 at any time t if'¥ is a posi­

tive energy solution of (1.7). jO can be interpreted as the probability 

density of some (bounded) observable S. Then at any time there is always a 

positive chance of finding Sin any space volume. 

Let us now turn to the Klein-Gordon equation. The Hilbert space is 

defined by the inner product 

<1'¥ -+ ~ ➔ ➔ ➔ 
at (t,x) - ot (t,x)'l'(t,x)}dx 
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which is independent oft, provided that the solutions~ and 'I' of (1.5) are 

functions for which the above written integral exists. It should be remarked 

that this is an innerproduct only in the space of positive energy solutions, 

in which case (~,~) ~ 0. Indeed 

('1','1') = _1_3 I I$# dp ~ 0, 

(211) JR 4 +m 
3 

an L
2-functi'on + 2 2 -½ + where $ is on m

3 
with respect to the measure (p + m ) dp so 

that by (1.11) 

( 1. 14) 
+ 

'l'(t,x) 1) 

+ 
Thus the condition on the solution of (1.5) is that in (1.6) '1'(0,x) must 

belong to the Sobolev space H½(lR.
3

) and !! (O,~) to H-½(lR.
3
). A current 

density satisfying (1.1) can be defined by 

It is well known that for general solutions 'I' of (1.5) jO does not satisfy 

(1.2) and it is less known that the same is true for positive frequency 

solutions 'I', see [22]. However, in [23] current densities are constructed 

which do satisfy (1.1) and (1.2), where in (1.2) even the> sign holds. 

We will show that, in the general case for any current density, not 

identically zero, arising from a bilinear form on the Hilbert space of 

positive frequency solutions of the Klein-Gordon or the Dirac equations 
+ 

satisfying (1.1) and (1.2), (1.2) cannot hold with the= sign for x in any 

space volume V and for any t. This follows from the causality of the current 

density and from the fact that SV(t) cannot be zero for all t with 0 < t < T 

for any T > 0 and any V. This fact will be proved in the next section. For 

that purpose we have to rewrite the setting of this section so that the 

formalism of the next section can be applied to it. 

1) Here there is a little ambiguity in the Fourier transformation F. In (1.11) 

F transforms tempered distributions in the ~-space lR
3 

into tempered dist­

ributions in the p-space m
3

, which is defined by Parsevals relation if F 

is a map from s ( JR
3

) onto S ( IR 3) . However, in ( 1. 14) F should be understood 

in L
2
-sense, which can be defined by completion if Fis a map from S(lR.

3
) 

onto S(lR.
3
), cf.II§ 2.i. 
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q('I' , 'I' ) 
X X 

We have considered nonnegative densities of the form jO(x) 
0 + + 

such that J j (t,x)dx is a closed bilinear form. For the moment we do not 

bother whe~her this is the zero's component of a four-vector or not. Let V0 
be a fixed space volume and let 

+ 
where V

0 
+xis the over x translated volume V

0
. According to [58,th.VIII.15] 

s
0

(x) can be written as 

('I' ,T'I' ) 
X X 

for some selfadjoint positive operator T. We define 

T 
X 

def u- 1 (x)T U(x) 

where U(x) is the unitary operator with 

Since 

U(x)'I' 'I' 
X 

+ 
U(t,x)'l'(y) 

where¢ is . determined by 'I' according to (1.14), U(x) has a spectral measure 

contained in {p I p
0 

= /2>2
+m

2
}. 

If in theorem 1.2 of the next section we replace T(f) by T (in fact, 

here the testfunction f is the characteristic function of V
0
), this theorem 

shows that s
0 

(x) = ('I' ,Tx'I') ca.nnot vanish for Uxn < £ for every £ > 0. Actually 

the theorem gives more precise information where ,s
0

(x) can vanish. If now 

SV(t) 0 for 0 < t < T, we choose V cc V and theorem 1.2 shows that 
0 .o 

SV(t) 0 for all t and all V, hence that J - 0. We summarize the foregoing 

in the following theorem. 

THEOREM 1.1. Let H be the Hilbert space of positive frequency solutions 'I' 

of the Klein-Gordon equation or the Dirac equation. Let q('l','1') be a non­

vanishing bilinear form on a dense subspace D of H such that for all x E lR
4 



j(x) ~ q(l ,l) ~ 0 
X X 
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and such that for all t and space volumes VJ j(t,;)ch is a closed bilinear 
V 

form on D. Let V
0 

be an arbitrary space volume and let 

I+ j (t,y) dy. 
V
0

+x 

Then for any£> 0 s
0

(x) cannot vanish identically for llxU < £. 

In theorem 1.1 we do not assume that the nonnegative density is causal, 
+ 

but if it is, it follows that for each t s
0

(t,x) cannot vanish identically 

even for 11;0 < £. So also formula (1.4) cannot be used for defining causality. 

For if it holds, it can never occur. Nonnegative causal desities arise, for 

example, from a current density satisfying (1.1). In [25] and [26] nonnegative 

densities corresponding to the energy are discussed which do not satisfy 

(1.1) but ·still are causal. In [13] Dirac proposed a new wave equation yield­

ing only positive energy solutions which satisfy the Klein-Gordon equation, 

too. Moreover, he has defined a current density as in (1.12) satisfying (1.1) 

and (1.2). Hence the zero's component of this density can never be localized, 

contrarily to what Dirac said in [14]. Perhaps, it is also possible to define 

noncausal nonnegative densities which then cannot satisfy (1.1), cf. [28]. 

The solutions of the Klein-Gordon or the Dirac equation are particular 

cases of quantized fields. Therefore, in tire next section we will pass ., 

to the (mathematical) problem of localization of fields, although we do not 

use all ilie axioms defining these fields. We will select only those ,axioms 

which imply the result that s
0

(x) cannot vanish identically for Uxll < £. 

I. 4. ANALYTIC PROPERTIES OF EXPECTATION VALUES 

In the theory of quantized fields satisfying the G;rding-Wightman axioms 

[71] we shall use the same principle as before in order to show that not 

both, the testfunctions and the field operators, are localizable (cf. [72] 

for a stronger result saying that the field operators are nowhere ordinary 

functions, which follows from more conditions than we assume here). We remark 

that from now on all concepts will have only a mathematical meaning and the 

physical interpretation, if there is any, will not be discussed. 

We shall not give all axioms defining a quantized field but only those 

which are needed in this section. For example, we do not need the vacuum 
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state which cannot be missed in defining the general theory and properties 

of quantized fields. Although we introduce them no proper use will be made 

of the testfunctions and therefore, our conditions are as general as in [28] 

and they apply to relativistic quantum mechanics as well. For simplicity we 

shall discuss the case of an observable scalar field; the case of vector and 

tensor fields is similar, see [71]. 

Let F be a nuclear, locally convex, topological vector space of C~ 

testfunctions defined in x-space or in a complexification of the x-space. We 

shall not specify Fin this section; in [36] F equals the space S(lR4) and in 
4 

[71] F equals tl(lR ) (cf. also [68, 29.6]); ultradifferentiable testfunctions 

are discussed in [33] and in [11], whereas in [10], [63] and [52] spaces F 

of analytic functions are considered. If there are testfunctions in F with 

compact support the field is called strictly localizable, see [33]. Further­

more, there is a complex Hilbert space Hof states with inner product< , >. 

In order not to confuse this notation with the action <p,x> of p E JR
4 

to 
4 

x E lR, we shall here denote this action by x•p. 

Axiom I. The field Tis a linear map from Finto linear operators in H. For 

* all f E F the operators T (f) and T (f) possess .. a com:mcm dense domain D on 

which they are defined, such that for all ~,o/ ED <~,T(•)o/> belongs to F'. 

Moreover, for all f E F T(f)D c D. 

Axiom II. The translations over the four-vector x induce a continuous map 

{x} from Finto F by 

{x}f(y) ~ f(y-x), f E F. 

An unitary, continuous representation U of the group of translations exists, 

such that for all f E F 

where 

-1 
U(x) T(f)U(x) T (f) 

X 

T (f) ~ T({x}f). 
X 

Furthermore, U(x)D c D for all x E m.4 • 

Axiom III. U(x) has a spectral decomposition 

I ix•p 
U(x) = e dE(p) 
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where the support of Eis contained in the cone 

r * = { 2 u+11 2 } Po? P , Po? o. 

We show that a strictly localizable field satisfying only the above 

mentioned axioms, as an operator valued distribution, cannot have a support 

which is not JR4 . First, let us assume that the field is positive l), which 

means that for all~ ED <~,T(•)~> is a positive distribution in F'. Thus 

for every real and nonnegative testfunction f the operator T(f) is positive, 

i.e., for all~ ED and for such an f 

<~,T(f)~>? 0. 

Let us call such a field a positive field. Furthermore, let us call x(s) 
+ + 

=(t(s) ,x(s)) a time-like curve if t and x are continuously differentiable 

functions of the real variables with 

where r is the open light cone. If moreover for each A= 0,1,2,3,xA is a real 

analytic function of s, we call the curve an analytic time-like curve. 

THEOREM 1.2. Let T be a positive field as defined by axioms I, II and III, 

let f be a real nonnegative testfunction in F and let x(s) be an analytic 

time-like curve for s E "JR.If for some~ ED and£> 0 

( 1. 15) 0 

for all 0 < s <£,then (1.15) vanishes for alls E JR. 

+ + 
In particular, if x(s) = (Ts,sa) where a varies in the unit ball in 

JR
3 

and T in (1, 00 ), it follows that s
0 

(x), defined in theorem 1.1, cannot 

vanish identically in an open set in JR4 . 

l) For some fields this would be desirable, but unfortunately a strictly 

localizable field (as defined by more axioms than the above) is, in general, 

not positive, see [18]. 
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PROOF. By Friedrichs extension theorem [58, th. X .23] the positive operator 

T(f), defined on D, has a positive selfadjoint extension T(f). By the spec­

tral theorem there exists a positive selfadjoint operator A(f) such that 

A(f)
2 = T(f), which certainly holds on D. Since every translated f is real 

and nonnegative if f is, (1.15) implies 

<~,A({x(s)}f)A({x(s)}f)~> <A({x(s)}f)~, A({x(s)}f)~> 

for O < s <£.Hence A({x(s)}f)~ 0 and so 

( 1. 16) U (x (s) )Tx (s) (fl~ 0, 0 < s < £. 

Therefore, for any TE IR we have I(T,s) 0 for O < s <£where 

def 
I(T,s) = <U(X(T))~, U(x(s))Tx(s) (f)~>. 

According to axiom II I(T,s) can be written as 

I(T,s) 

and by axiom III 

-1 
<U(x(T))~, U(x(s))Tx(s) (f)U(x(s)) U(x(s))~> 

= <U(x(T))~, T(f)U(x(s))~> 

I ix(s) •p 
I(T,s) = e d<T(f)U(x(T))~, E(p)~>. 

0 

Since E has its support in the cone 1* this integral, as a distribution of 
4 

the variable x = x(s) E IR, is the boundary value of a function G holo-

morphic in JR
4 

+ i r. 
Lets be the real part of the complex variables+ iµ and let 

u ( s, µ) E IR 
4 

and v ( s, µ) E lR 
4 

be the real and imaginary parts of the analytic 

continuation of the function x(s), thus u(s,O) = s(x) and v(s,O) = O. Then 

by the Cauchy-Riemann equations 

X 1 (s) E 1 1 

hence for each s E IR v(s,µ) E 1 1 for some 1 1 cc rand for allµ> O with 
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lµI sufficiently small depending on s. Thus 

I(i:,s+iµ) G(u(s,µ)+iv(s,µ)) 

exists and is an analytic function of s + iµ forµ > 0 and lµI sufficiently 

d d · 
1 ) · l · ( · ) 0 .I O f O . small epen ing on s. Since im I i:,s+iµ = asµ T or < s < E, it 

follows that I(i:,s) = O, in particular I(i:,i:) 0. This yields 

COROLLARY 1.3. A nonvanishing, strictly localizable field T satisfying only 
4 

the axioms I, II and III has support JR 

For otherwise there is a testfunction f and E > 0 such that for all 

<PE D T (f) <P = 0 for all x E m4 
with llxll < E , so that (1.16) would hold. 

X 

We can dr0p the assumption of positivity of the field, if we impose a 

condition on the state <P and then we get the stronger result that the expect­

ation values are analytic functions of the translations in space and time. 

The condition implies that the high-energy contributions to the state may 
ix•P 

not be too strong. More precisely, let U(x) ~ e and let P
0 

be the zero'th 

component of the operator P. Then P
0 

is a positive selfadjoint unbounded 

operator and we assume that the state <P belongs to the domain of definition 
oP0 of the operator e for some o > 0. This property is equivalent to the 

following definition 

DEFINITION. A state <P E His called analytic for the energy if <P belongs to 

the domain of definition of any P~ and if 

I 
m=O 

m! 

for some o > 0. 

Nelson's analytic vector theorem tells us that there are many of such 

vectors (namely a dense subset of H) [58, !Ith. X. 39]. 

1) 
Actually, here we have the restriction of a distribution (hyperfunction) 

to an analytic curve defined by the restriction of its defining function, 

here G, see [ 31, lemma 2.1 p.50]. 
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THEOREM 1.4. Let T be a field defined by axioms I, II and III and let I E D 

be an analytic vector for the energy. Then for -any f E F the function 

is analytic in x E JR
4

• 

PROOF. Define the function G of (x, 1;) E 1R 
4 

x lR 
4 

by 

-1 
G(x,1;) = <l,U(x) T(f)U(i;)I>. 

Since for all f E F we have T(f)D c D the expression 

* <l,T(•) T(•)I> 

determines a separately continuous bilinear map on F x F. By Schwartz' kernel 

theorem this map is continuous on F x F . Hence for each f E F 

4 4 -1 
is a continuous function of 1; E lR . Also for x, 1; E lR U (1;) U (x) I varies 

continuously in H. Therefore G is a continuous function: 

l<u(1;)-
1
u(x)l,T i; (f)I> - <U(nl-

1
u(y)l,Tn(f) l> I s 

s l<u(1;)-
1
u(x}l,T({1;}f-{n}f)l>j + U{u(1;)- 1u(x)-u(n)- 1u(y)}IB• 

,DT (f) I U. 
n 

In particular G is measurable. 

For fixed 1; E lR
4 

G can be extended as a holomorphic function of z in 

the tubular domain with base ( o, O, O, O) - r by 

G(z,1;) I e -iz•p-op0 oP0 d <E(p)e l,T(f)U(i;)I> 

satisfying there 
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Since IIT(f)U( /;; )~11 is continuous the right hand side is bounded if I;; varies 

in a bounded set in lR
4

. On the other hand, for fixed x € lR
4 

G can be 

exended as a holomorphic function of z; in the tubular domain with ,base 

-(6,0,0,0) + 1 by 

G(x,z;) I i1;•p-6p * 6P 
e 0 d<T(f) U(x)~,E(p)e 0~> 

satisfying there 

Similarly to above, it follows that the right hand side is bounded if x 

varies in a bounded set in lR
4

. Then it follows from Hartogs theorem for 

real-analytic functions (see [7], cf. also chapter II,§ 3.i of this thesis) 

that G is an analytic function of (x,1;;) € lR
4 

x lR
4

. In particular G(x,x) is 
4 

an analytic function of x E lR . D 

Finally, we make some remarks concerning local commutativity, which 

expresses the fact that two space-like separated events cannot influence 

each other (sometimes also called microscopic causality). For strictly 

localizable fields the axiom of local commutativity is formulated as follows: 

Axiom IV. Let f and gin F have their supports such that any two points x 

in the support of f and yin the support of g are space-like separated, i.e., 
➔➔ I x

0
-y 

0 
I < II x-yll , then 

T(f)T(g) T(g)T(f). 

For the description of non-normalized interactions it is convenient to 

work with distributions growing faster than polynomials in p-space. Hence 

the functions in the Fourier transform of F must decrease more rapidly than 

functions in S. If they decrease too fast at infinity, the space F consists 

of non-localizable functions or even analytic functions. In the last case 

the expectation values are analytic functions anyhow (by axiom II). Theorem 

1.4 reveals that this is not a rare phenomenon . Thus ·there would be no objec­

tion against analytic testfunctions. However, in that case the above given 

definition of local commutativity is impossible. 

In [63] the space Fis taken to be Z, the Fourier transform of V, con­

sisting of certain entire functions, and local commutativity i3 not reauired, 
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but another way of defining microscopic causality is given. In [10] a condi­

tion for causality is given on non-localizable functions in F, namely that 

the distributions in p~space have a growth .at infinity of order one and type 

zero, i.e., they are O(exp Elpl) for any E > 0. In [69] such a field is called 

localizable. In chapter II we shall see that then the Fourier transforms in 

x-space are functionals on a space of real-analytic testfunctions. In spite 

of this such analytic functionals have a uniquely defined support (see 

chapter II, def. 2 .6). As in [47] we will show (ehapter II, th. 2.7) that 
N 

an analytic functional T can be written as k~l Tk, where the analytic func-

tionals Tk have their supports in a priori given closed sets Uk such that 
N 4 

k~l Uk= IR • In a localizable, but non-strictly-localizable field T the 

space F consists of real-analytic testfunctions. Then local commutativity 

might be defined as follows: 

For all f,g E F and all decompositions T = T
1 

+ T
2 

+ T
3 

where T
1 

and T
2 

have 

space-like separated supports, T
1 

(f) and T
2

(g) commute. 

I-~- LOCALIZATION OF TACHYONS 

In the description of tachyons (particles travelling faster than light) 

another application of the theory of functions of several complex variables 

can be made. As physics intend to study phenomena which take place outside 

the human mind, this section is perhaps more of mathematical interest than 

that it pretends to describe something of physical reality. Therefore, we 

shall not ~ake the assumptions as general as possible, but we shall just 

study the solutions of the tachyonic Klein-Gordon equation. This enables us 

to explain a seeming contradiction between [66] and [SO] concerning the exist­

ence of acausal solutions of certain wave equations corresponding to high­

spin-particles. As to tachyons themselves there exists an extensive literature, 

see for example [51]. 

Let a superluminal state be described by a wave function f satisfying 

the tachyonic Klein-Gordon equation 

(1.17) o. 

Since here positive and negative energy solutions can be transformed into 

each other, we allow states which are a mixture of positive and negative 

energy. 

Let us investigate to which situation a solution leads, 
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which is localized in a bounded volume V during some time interval Jtl < T. 
a~ + + 

Then also at (0,x) = 0 for x t V. Hence, since o/ satisfies a hyperbolic 
+ + 

differential equation, for any t o/(t,x) as a function or distribution in x-

space has a bounded support: the support grows to the future and to the past 

with velocity 1, which is the velocity of light, here. If we assume that~ 

belongs to S' (JR
4), it follows that the Fourier transform I can be written 

as 

l(p) F+(p+iO) - F (p-i0), 

where F± (p ± i0) are the boundary values in S' (JR4 ) of hol-omorphic functions 
* * -+ -+ in m.

4 
~ i C with C { (q

0
,q) I q

0 
> llqll}, see [68]. Since~ satisfies (1.17) 

l(p) vanishes for 11;n < m (in fact, similarly to (1.10) I is concentrated 
2 +2 2 

on the hyperboloide p 0 = p - m I. The "Edge of the Wedge" theorem implies 

that F+ and F- are analytic continuations of each other. 

Furthermore, it can be shown (see [68]) that any function F, which is 

holomorphic in {JRn+iC} u {JRn-iC} u Uc a:n, where C = {(y
0

,y)jy
0 

> allyll, 
+ n-1 n 
y € JR } for some a > 0 and where U is an open neighborhood in a of 

{(x ,;) jll;ll<a} for some a > 0, is an entire function. Hence in the above 
+ 0 -

F (p+i0) - F (p-i0) vanishes everywhere. Therefore I, and thus o/, is identi-

cally zero. The conclusion is that except zero no solution o/ of (1.17) with 

a bounded support during some time interval belongs to S'(lR
4
). In particular, 

the fundamental solution belongs to V• (lR
4

) and not to S' (lR
4

) and it does not 
+ 

correspond to real energy Po and impulse p, cf. [19]. Therefore, not every 

pair of initial values ~O and ~l in S' (JR
3

) yields a solution corresponding 

to real p. Only those ~O and ~l in S'(lR
3

J whose Fourier transforms vanish 

for 0;11 < m yield a solution in S' (lR
4
), see formula (1.11) with m2 replaced 

2 
by -m Hence, for any wave function o/ describing a superluminal state, 

+ ao/ + + 
o/(t,x) or ct (t,x) cannot vanish identically for x outside a bounded volume 

at any time t. 

Although equation ( 1. 17) is supposed to describe a superluminal state, 

the characteristics show that any solution localized in a bounded space­

volume cannot grow faster than with the speed of light, cf. the conclusion 

in [66]. However, this phenomenon can never be "observed", since localized 

solutions do not correspond to real values of energy and impulse, cf. the 

conclusion in [SO] that an equation like (1.17) may describe superluminal 

procession. 

Unlike subluminal free particles, it can happen that a solution o/ of 
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1 ) d . . a'!' . h . b d d 1 (1. 7 as well as its time erivative at vanis es in a oun e vo ume at 

some time t. Then such a "hole" would be filled with the speed of light. For, 

if 'I'€ S' (lR4 ) is written as 'I'= 'I'++ 'I' where 'I'+ corresponds+to Pn ~ 0 and 
± ..,. a'!'- ~ 

'I' to p
0 

< 0, and if we require that for any t 'I' (t,x) and -~- (t,x) are 
2 3 + ot a'!' + 

L -function of;€ lR , then the question whether 'l'(t,x) and at (t,x) can 

vanish in the same space-volume at the same time is equivalent to the follow­

ing question: 

Does there exist a function fin the Sobolev space H
1

(m3) such that both 

the function itself and its Fourier transform vanish identically in some 
. 3 . . open set in lR and in m

3
, respectively? 

It is very easy to see that the answer is affirmative if f is a tempered 

distribution, for example we can choose the fundamental solution g of the 

wave equation. Now let~ and~ be C~functions with small supports around 

the origin in m
3 

and m3 
, respectively. Then ~ * Fg is a C~function of poly­

nomial growth and 

is a function in S(lR
3
), which vanishes identically in some open set in m

3 
because Fg does. Also 

1 -1 
(2n)n (g • F ~) * ~ 

vanishes identically in some open set in m3 
because g does. Finally, f 

1 3 . 3 
belongs to H (lR ) because it even belongs to s (lR ) . 
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REAL-CARRIED ANALYTIC FUNCTIONALS AND 

BOUNDARY VALUES OF ANALYTIC FUNCTIONS 
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In [48] Martineau has discussed properties of analytic functionals 

with bounded carrier and their Fourier transforms. Here, we shall treat 

analytic functionals with unbounded carrier defined on spaces of analytic 

functions satisfying certain growth conditions at infinity. Unlike in the 

case of bounded carriers, these growth conditions are involved in the defin­

ition of unbounded carriers, and moreover , a class of neighborhoods has to 

be specified. 

In section 1 properties of real-ca~ried ,-analytic functionals will be 

derived. We shall consider two types of analytic functionals, of which one 

belongs to a Frechet space. The properties are similar to those given in 

[47] for analytic functionals with bounded, real carriers. The proofs given 

here rely on [47] as long as we deal with Frechet spaces, while in the other 

case the proofs are suitably adapted. 

Section 2 is concerned with Fourier transforms of real - carried analy­

tic functionals defined on spaces ZM which are subsets of z, the space of 

Fourier transforms of V. The spaces ZM are determined by growth conditions 

in the real directions. As a limit case the space of exponentially decreasing 

real analytic functions arises and the dual of this space is just the set of 

Fourier hyperfunctions [38]. Since the space of Fourier transforms of elem­

ents in ZM is a subset of V, its dual contains more general objects (name l y, 

ultra-distributions) than distributions in V•. As has been done in [60] for 

distributions, here we shall represent such ultradistributions as boundary 

values of analytic functions. So they arise very naturally between distribu­

tions and hyperfunctions on the one hand . Being boundary values of analytic 

functions, too, their Fourier transforms form the transition from real-car­

ried analytic functionals in Z' to Fourier hyperfunctions on the other hand. 

Since Fourier transformation is an isomorphism it is possible to define 

ultradistributions completely by studying their Fourier transforms which 
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are the analytic functionals we are concerned with. However, for clarity we 

shall discuss ultradistributions and some properties directly, where for the 

proofs we refer to [42]. 

Finally, the "Edge of the Wedge" theorem for distributions and for 

ultradistributions as well will be the subject of section 3. We will give a 

simple proof by means fo Fourier transformation, which is based on techniques 

used in [4]. 

II.1 IW:AL-CARRIED ANALYTIC FUNCTIONALS 

II.1.i THE SPACE Z' 

We consider a familiar example of a space of analytic functionals. 

The Fourier transform of the space V of C~testfunctions with compact support 

is the space Z of entire functions decreasing in the real directions faster 

than each negative power of BzD and increasing exponentially in the imagin­

ary directions. The dual space Z' is a space of analytic functionals and its 

Fourier transform is the space V• of distributions. Tempered distributions 

in S' (lRn) or distributions with compact support K in JR
2n ;;: a:n are examples 

of elements of Z'. For an entire function f and for a multiindex a we have 

sup I D0
f (z) I 

z e: K 
-a 
E: 

sup if(z) I 
z e: K(e:) 

for every e: > 0, where K(e:) denotes the e:-neighborhood of Kin ¢n and e: the 

vector in lRn with components e:. Hence, for all f e: Z and every e: > 0, a 

distribution T with support K satisfies 

(2.1) M sup if(z) I 
e: ze:K(e:) 

for some constants Me: depending one: and T. We may consider K as the support 

of the analytic functional T, but in general such a notion has properties 

different from supports of distributions. In [30, p.105] an example has 

been given of an analytic functionalµ which satisfies (2.1) for all sets 

Kin ¢
2 

of the form K
0 

= {(z 1 ,z2 ) I lz1 Js a,Jz
2

1s~}, but which does not satisfy 

(2.1) for K = n K~o (µ i s the Fourier transform of the distribution in JR2 
a >O a 

def·ined by the function cosh 2~). Therefore a compact set K c a:n 
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satisfying (2.1) for every£> 0 is called the carrier of the analytic func­

tional T. In Z' unbounded carriers can be defined, too. For that purpose we 

fjrst analyze the topology of the space Z. 

Let Z(a) be the Frechet space prij➔l~m Z(a)m' where Z(a)m is the space 

of entire functions endowed with the norm 

(2.2) 

Then Z = ind lim Z(a). Elementsµ E Z'(a) can be written as <µ,f> 
a + 00 

=/h(x)f(x)dx for some entire function h [21, III §2.3]. Henceµ is a function-

al on the space of restrictions to m.n of functions in Z(a). In general, 

this is no longer true forµ E Z'. For example the Fourier transform of the 

infinite order distribution E o(m) (~-m) is defined by E f (ix)meimxf(x)dx 
m m 

for f E Z. 

DEFINITION. An analytic functional µ E Z' is carried by the closed set n c <I:n 

with respect to the decreasing sequence {n }
00 

1 
of neighborhoods of n, if 

k k= 
for every k µ is already a functional on the space z Ink of restrictions to 

nk of functions in Z, where Z/nk carries the topology induced by Z, i.e., 

in (2.2) the supremumshould be taken over all z E nk. 

If the neighborhoods nk are the set of 1/k-neighborhoods 

we will just say thatµ is carried by n. 

According to [16, th.5.13'":l a fundamental system of neighborhoods of 

zero in Z is given by 

V(K,a) ~ {fEZj Jf(z) J:SaK(z)}, 

where a> 0 and where K is a positive, continuous function of the following 

form: let {a.} 
J 

be a strictly increasing sequence of integers with a = a = 
O -ll 

~a2 = O, a. 
2 

> 2a, and let l be a positive integer; set K(z) = (l+llxll) x 
-tJ+ 1 

x(l+llyll) exp((j-2)11yUJ for aj(l+log(l+llxRJJ :S llyll:S2 aj+l(l+log(1+11xll)J; the 

definition of K is completed by requiring that K is a function of llxll, llyll 

which is continuous and such that, for fixed II xii , logK ( II xii , II yll ) + 

+ l[ log ( 1 +II xii ) + log ( 1 +II yll ) ] is linear in II yll in the regions in which it is 
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not already defined above. Then a fundam~ntal system of neighborhoods of 

zero in z In is obtained by {fEZj
0 

I lf(z) !SaK(z),zEOk}. Now the Hahn-Banach 
k k 

theorem and Reisz' representation theorem imply that for every k an analytic 

functionalµ carried by n with respect to {Ok} can be represented as a mea­

sure µk on nk satisfying 

I ~(z) jdµk(z) I S Mk, 

~ 

where~ is a function as described above depending on k. 

In chapter III we shall investigate the Fourier transforms of analytic 

functionals carried by convex sets n can. In this chapter we restrict our­

selves to the case where n is contained in lRn= {zlz=x+iy,y=O,xElRn}. In 

this case the spaces 

z ~ proj lim ind lim z (a) 
F m 

m + "' a + "' 

and 

z ~ ind lim proj lim Z(a) 
m 

a + "' m +"' 

induce the same topology on zl . Indeed, according to [76, th.5.10] a 
ncEl 

fundamental system of neighborhoods of zero in ZF is given by V(K~a), where 

now K'(z) = (l+lzl)-m Ki (y) with m ~ 0 and with Ki a positive, continuous 

function dominating every exp alyl, a> O. ZF is the Fourier transform of 

VF, the test space for the finite-order-distributions. Hence the (inverse) 

Fourier transforms of all elementsµ in Z' carried by the real set n are 

finite-order-distributions and, moreover, for every E > 0 theseµ satisfy 

l<µ,f>I S M sup [CJ+llxO)m(E)lf(zllJ, 
E zEci(E ) 

f € z, 

with ME and m(E) depending on E andµ. The above given representation yields 

that for every E > 0 µ can be represented as a measure µEon O(E) satisfy­

ing 

Idµ (z) I 
E 

(l+Uxn )m(E) 
S M • 

E 
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II.1.ii. GENERAL SPACES OF REAL-CARRIED ANALYTIC FUNCTIONALS 

We introduce real-carried analytic functionals in spaces defined in a 

more general way of which the real-carried elements of Z' are only an exam­

ple. Real-carried analytic functionals, originally defined on some space H 

of entire functions f, can be extended to the space A of restrictions off 

to £-neighboorhoods of lRn by the Hahn-Banach theorem, where A carries the 

topology induced by H. This extension is unique if His dense in A. We shall 

not treat this question, but we shall merely start with spaces A consisting 

of all funcitons analytic in £-neighborhoods of lRn, which satisfy certain 

growth conditions at infinity. We shall consider two types of such spaces 

A. 

Let {¢j};=l be an increasing or a decreasing sequence of continuous 

functions defined on lRn, and let n . be the open 1/j-neighborhood in an of 
n J 

the closed set n in lR . Let Am(Qk) be the Banach space of analytic functions 

fin nk with 

lifll def sup Jf(z)exp-¢ (x) J < 00 

m,k m 
ZE:Qk 

(2. 3) 

If {¢j} is an increasing seque nce, define A(Q) by 

(2.4) A( Q) ~ ind lim Ak(Qk) 
k + 

and if{¢.} is decreasing by 
J 

(2.5) A( Q) ~ ind lim 
k + oo 

proj lim Am (Qk), 
m + oo 

where all needed injections are defined by restriction. If a 

just write A. 

lRn we shall 

Real-carried analytic functionals in Z' are defined on a space Z(lRn) 

of the second type with ¢ (x) = -m log(1+11xll). In section II.2 the functions 
m 

¢j will be negative with order of growth between -j log(1+11xU) and -1/jllxll. 

The limits of the spaces they define are on the one side Z(lRn) and on the 

other side the space of the first type (2.4) defined by ¢k(x) -1/kllxll. 

The duals of these limit spaces consist of Fourier transforms of certain 

distributions and, by definition [38], of Fourier hyperfunctions, respective­

ly. The cases in between correspond to Fourier transforms of certain ultra-
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distributions of Roumieu type or of Beurling type, depending on the respec­

tive cases (2.4) and (2.5) (cf. section II.2.iii). 

Aµ EA' carried by Q can be extended to an element of A(Q)' with the 

same carrier. This extension is unique if A is dense in A(Q) and then every 

µ E A(Q)' is uniquely determined by its action on functions of A. Again, as 

we are here interested in elements of A' only, we do not bother about the 

question whether A is dense in A(Q). l) 

II.l.iii. PROPERTIES OF REAL-CARRIED ANALYTIC FUNCTIONALS 

First we shall show that every analytic functional in A' has a, unique­

ly defined, smallest carrier which joins some properties of supports of dist­

ributions. In order to do so we have to make some assumptions implying the 

triviality of a cohomology group which will be shown in chapter VI for 

spaces A of type (2.4) and in chapter VII (cor.7.5) for spaces A of type 

(2.5). The result is that for each f E A(Q
1 

n n
2

) there are fj E A(Qj), 

j = 1,2, such that 

(2.6) f 

The proof uses the possibility of rewriting the spaces A in a different 

form. Essentially, it is based on the following property of closed sets Q 

in lR.n. 

LEMMA 2.1. (see chapter V, lemma 5.1). For any 1/k-neighborhood Q(l/k) of 

Q there is an open pseudoconvex neighborhood Qk with Q(1/2k) c Qk c Q(l/k). 

Hence formula's (2.4) and (2.5) with pseudoconvex sets Qk define the 

1) n 
This happens certainly if Q is compact, because each compact set in JR. 

is polynomially convex (cf. chapter V, lemma 5.1), hence for f E A(Q) the 
2 

function f(z)exp z can be approximated in every Qk by polynomials Pk 
2 

and then f is approximated by Pk(z)exp- z EA. It follows from results 

obtained in the following chapters (th.4.1 and cor.7.4, cf. also cor.3.1) 

that A is dense in A(Q) if n is convex and if{~.} satisfies the conditions 
J 

of theorem 2.4 below. In [38, th.2.2.1] it is shown that A is dense in 

every A(Q), if A(Q) is a space of type (2.4) with ~k(x) = -1/kUxD and with 

certain neighborhoods nk, larger than €-neighborhoods. 
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spaces A just as well. Furthermore, the spaces A should not change if the 

weight functions¢. of x are changed into plurisubharmonic functions w. of z 
J J 

and if moreover the differences of the functions¢ , are not too small. More 
J 

precisely, the following condition must be satisfied: there is an a-neighbor-

hood ]Rn (a) in a:n of lRn and, if { ¢.} is increasing, for every j there exist 
J 

a plurisubharmonic function w = w. on lRn(a) and, for every N ~ 0, moreover 
J 

an m = m(j,N) ~ j and C = C(j,N) ~ O, or if{¢ , } is decreasing, for every m 
J 

there exist a plurisubharmonic function w = Wm on lRn(a) and, for every 

N ~ 0, moreover a j = j(m,N) ~ m and C = C(m,N) ~ 0, such that 

(2. 7) ¢. (x) 
J 

¢ (x) 
m 

+ c, llyll < a . 

In lemma 5.2 it will be shown that the spaces of the next section satisfy 

this condition. 

According to [ 73, cond. Hs
1 

and HS
2

, p.15] it follows from condition 

(2.7) that A can be written with the L2-norms 

(2.8) { I lf(zll
2 

exp-2wm(z)d).(z)}'i, 

Qk 

where >. (z) denotes the Lebesgue measure in a:n, instead of the sup-norms 

(2.3). We denote by H(Ok;wm) the Hilbert space of holomorphic functions in 

Qk with inner product induced by the norm (2.8). 
(1/m) . . 

Furthermore, let Qk be the open( Ek/ml-shrinking of Qk, where 

Ek > 0 is such that the Ek-shrinking of Qk contains Qk_ 1 . This is possible 

because we deal with £-neighborhoods of closed sets in lRn. Moreover, it 

is clear that (2.5) does not change if the functions in A (Qk) have only 

finite norms on Qk(l/m). Finally, since in (2.4) and (2.5~ only restrictions 
(1/m) . 

of functions in Qk to Qk-l or to Qk , respectively, are important, we 

may change the functions wj of condition (2.7) near the boundary of Qk. So 

we have obtained the following lemma. 

LEMMA 2.2. Let condition (2.7) be satisfied. Then the space A(O) given by 

(2.4) can also be written as 

A( Q) ind lim H( Qk;wkl 
k + 00 

2 
ind lim H(Qk;wk(z) +log(l+llzU ) + 
k + 00 
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and the space A(n) given by (2.5) as A(n) ind lim B(nk) with 
k -+ oo 

(2.9) B(nk) def proj lim H(nk (l/m) ;wm(z)) = proj lim H(nk (l/m) ;Wm(z) + 
m+oo m+oo 

2 C -1 
+ log(l+UzD ) + log(l+d(z,nk) ) ) , 

where the 

from z to 

C 
sets {nk} are pseudoconvex and where d(z,nk) denotes the distance 

the boundary of nk. 

Now bearing in mind that intersections of pseudoconvex sets are again 

pseudoconvex and using lemma 2.1, we can choose in lemma 2.2 pseudoconvex 

neighborhoods { tn
1 

u n
2

)k}, { cn
1

)k} and { cn
2
\} of n

1 
u n

2
, n

1 
or n

2
, respec­

tively, which satisfy 

(2 .10) 

For the spaces of type (2.4) formula (2.6) now follows from lemma 2.2 (cf. 

cor. 7.5 with nk = nk+l and ¢k = ¢k+l, k = 1,2, ... ). 

LEMMA 2. 3. i. Let n
1 

and n
2 

be closed sets i~ m.n with non-empty intersection 

and let condition (2.7) be satisfied. Furthermore, let A(n 1), A(n
2

) and 

A(n
1 

n n
2

) be given by (2.4), then for any f E A(n
1 

n n
2

) there are 

f. E A(n.), j 
J J 

1,2, such that (2.6) holds. 

For spaces of type (2.5) this result is more difficult to prove and 

a further condition (cf. cond. (7.3)) is needed, which implies that the 

differences of the functions Wm may not be too large: for every p and m with 

p ~ m there exists a holomorphic function g is an a-neighborhood of 1R.n 
p,m 

in ~n and, for every k, moreover a constant K = K(p,m,k,) such that 

(2.11) 0 < Jg (z) J ~ K exp-k{w (z) -w (z)}, lly0 <a, k 
p,m m p 

1, 2, ... 

F th f th . . ff" k () 2 
or e spaces o e next section it su ices to ta e g z = exp-z, 

2 p,m 
but if, for example, ¢m(x) exp(l/m expx) condition (2.11) cannot be 

satisfied. Now corollary 7.5 yields (2.6) for the spaces B(nk) given by 

(2.9), because for the function a in condition (4.22) of the corollary we 

can take o(z) = -log d(z,n~) which is plurisubharmonic °[30, th. 2.6.7]. 
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LEMMA 2.3.ii. Let n
1 

and n
2 

be as in lemma 2.3.i and let conditions (2.7) 

and (2.11) be satisfied. Let the pseudoconvex neighborhoods {(n
1

)k} and 

{(n
2

)k} of n
1 

and n
2 

be such that also the neighborhoods {(n
1

)k u (n
2

)k} 

of n
1 

u n
2 

are pseudoconvex. Then fork= 1,2, ... and for any f E B((n
1

)k n 

n W
2
\> there are fj E B( (n j)k), :i = 1 , 2, such that (2.6) holds in 

(n 1\ n (n2\· 

THEOREM 2.4. (cf. [47, prop l]). Let A be given by (2.4) or (2.5) and let 

condition (2.7) be satisfied. If A is of type (2.5), let moreover condition 

(2.11) be satisfied. Ifµ EA' is carried by the closed sets n
1 

and n
2 

in 

lRn with n
1 

n n
2 

f (ii, then µ is already carried by n
1 

n n
2

. 

PROOF. Since by lemma 2.1 n
1 

u n
2

, n
1 

and n
2 

have pseudoconvex neighborhood 

bases which moreover satisfy (2.10), lemma 2 . 3.i and ii shows that any 

function f E A(n
1 

n n
2

) can be written as (2.6) with fj E A(nj), j = 1,2. 

Hence, the following continuous map I is surjective 

(2 .12) 

Furthermore, we assert that I is an open map. Let us first show this 

for spaces A(n) of type (2.4). It follows from lemma (2.2) that such spaces 

are inductive limits of Hilbert spaces, hence DFS:spaces [40] and thus duals 

of reflexive Frechet spaces. Since such spaces are Ptak spaces [61, IV. 

§ Bex. 2, p.162] the open mapping theorem [61, IV.§ 8.3 , cor 1] implies 

that I is an open map. If the spaces A(n) are of type (2.5), we have the 

more precise result (lemma 2.3.ii) that even for every k the map Ik, defined 

similarly to I, is a surjective map between the Frechet spaces 

where B(n) is given by (2.9). Hence the ordinary open mapping theorem 

implies that Ik is open. The maps {Ik} commute with the restriction maps, 

and so lemma 2.2 and the definition of open sets in an inductive limit 

(cf. the characterization of a 0-neighborhood base in [20, § 23, 3.14]) 

imply that I is open. 

Now we fi ;:-st extend µ to an element of AW
1 

u n
2
)' and then to elements 
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-1 
for some (f

1 
,f

2
) E I (f). Since µ

1 
equals µ

2 
on A(rl

1 
u n

2
) µ is independent 

-1 
of the representant in I (f). Furthermore, since µ

1 
and µ

2 
are continuous, 

they are bounded on some neighborhood of zero in A(rl
1

) and A(rl
2
), respec­

tively. The fact that I is an open map implies thatµ is bounded on some 

neighborhood of zero in A(rl
1 

nrl
2
), hence that it is continuous. Finally, 

for any f EA we have 

<µ,f> <µ,f> 

COROLLARY 2.5. Let the conditions of theorem 2.4 be satisfied. Ifµ is 

carried by two disjunct closed sets in IRn then µ = 0. 

PROOF. By enlarging the carriers ofµ suitably theorem 2.4 yields that there 

is a ball S in IRn such that µ is carried by any closed set in S. We may 

assume that S = {x!Uxll:,;1}. For any multiindex a we have 

where 

a 
<µ,z > 

def 
f(I;) 

z•i:; 
<µ ,e >. 

z 

f is an entire function and sinceµ is carried by any closed subset of the 

unitsphere, there are K > 0 and E > 0 with 

Hence the Fourier transform off is, on the one hand, real-analytic and, 

on the other hand, by the Paley-Wiener theorem a C ~ function with compact 

support, thus f = 0. Hence <µ,za> = 0 for all a. Since the polynomials are 

dense in the functions holomorphic in the origin and sinceµ is also carried 

by the origin, it follows thatµ= 0. 0 
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Now we are able to define the support l) ofµ £ A'. 

DEFINITION 2.6. Let the conditions of theorem 2.4 be satisfied. Then the 

intersection of all the carriers of an analytic functionalµ£ A' is called 

the support ofµ. 

REMARK. In the example of [30] given earlier the set 

or 

is not pseudoconvex. For its holomorphically convex hull equals its logar­

ithmic convex hull { (z
1 

,z
2

) I! z
1 

I S2 , I z
2 

! S2, I z
1

11 z
2 

! Sl}, see [68]. The 

intersection of carriers is no carrier and hence the support cannot be 

defined. 

Next we shall prove that (real) carriers can be localized, a property 

which is easy to show for supports of distributions (the property that for 

any finite collection ofNclosed sets {uk}:=l covering lRn every distribution 

g can be written as g =kEl gk where gk has its support in Uk). 

THEOREM 2.7. (cf. [47, prop 21 and [60, proof of th. 4.2]). For any finite 

collection of closed sets {u t 
1 

in lRn with union lRn, each µ £ A' can 
N k k= 

be written as µ = kEl µk where µk £ A(Uk) '. 

PROOF. Define the continuous map 

N 

I: A-+ II A(Uk) 
k=l 

by restriction. Its transposed It between the duals 

N 
t 

I : II A(Uk)'-+ A' 
k=l 

l) The support of a (ultra) distribution g, defined on a space W of C ~ 
testfunctions, is defined as the smallest closed set U in lRn such that 

any x
0 

t Uhas an open neighborhood V
0 

with <g , ~> = 0 for every~£ W 
with ~(x) = 0 if x t V0 . Since there are no analytic functions~ 1 0 sat­

isfying this, this definition of support is impossible for an analytic 

functional. The reason for calling the smallest carrier the support of the 

analytic functional is that this concept has similar properties to the 

support of a distribution, unlike the carrier of an analytic functional 

(cf. the earlier mentioned example of [30]). 
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N 
l < µ , (If) > 

k=l k k 

N 
I <µ , f > 

k=l k 

N 

< I µ , f > . 
k=l k 

Clearly, I is an injective and open map from A into Im I, when Im I carries 

the topology induced by ITA(Uk) (this can be seen by inspection of the open 

sets in the spaces A). Then according to [65, prop. 35.4 and lemma 37 .7] 

It is surjective (if the duals of the spaces A are reflexive Frechet spaces, 

this can be seen also by [65, th. 37.2] since clearly I has closed image, 

cf. [47]). D 

In general, a distribution in V• (U) where U is an open set in 1Rn 

cannot be extended to a distribution in V• (1Rn). We shall now show that 

this property does hold for real carried analytic functionals . l) Before 

formulating this we introduce the concept of local equality of real-carried 

analytic functionals, see [47]. 

If µ E A' with A satisfying the 

to theorem 2.7, can be written asµ= 

N 

I 
k=l 

µ -
k 

Hence for any x E mn 

M 

I 
j=l 

I 
{k J x E carrier 

of µk } 

µ , 
J 

o. 

µ -
k I 

{ j J x E carrier 
of µ. } 

J 

+ I 
{remaining j} 

µ , 
J 

µ . • 
J 

I µ + 
{remaining k} k 

By theorem 2.4 the left hand side and the right hand side have their sup­

port contained in the intersection of their carriers, so that x does not 

belong to the support of the left hand side . We now consider, more gener­

ally, infinite sums of analytic functionals with bounded carriers Uk. There­

fore, no weightfunctions ¢. occur in the definition of A(U) and theorem 
J k 

1) . 
This may be expressed by saying that the sheaf of real-carried analytic 

functionals, and by consequence [47] the sheaf of hyperfunctions, is 

flabby. 



35 

2.4 is valid without its conditions on the weight functions, cf. [47 ,prop 1]. 

Let {uk} and {Uk} be locally finite coverings, consisting of compact 

sets, of the open set U in JRn and let {µk} and {µk} be analytic functionals 

carried by Uk or Uk, respectively. Then we defineµ= E µk andµ= E µk to 
k k 

be locally equal if each x EU does not belong to the support of the analytic 

functional 

µ -
k 

In general,µ= E µk is not an element of A'. However, we shall show that 
k 

there exists an element v EA ' which is locally equal toµ. 

THEOREM 2.8. (cf. [47, prop. 3]). Let {uk}:=l be a locally finite covering 

of the open set U c ]Rn consisting of compact sets and let µ = krl µk, 

where µk is an analytic functional carried by Uk, k = 1,2, ... . Furthermore, 

let A be given by (2.4) or (2.5) where condition (2.7) is satisfied. Then 

there exists av EA ' carried by U which is locally equal toµ in u. 

PROOF. It is convenient to have Frechet spaces of analytic functionals. 

If A(n) is given by (2.4), as in the proof of theorem 2.4, lemma 2.2 implies 

that AW) is a DFS ~ space [40] so that the s trong dual AW)' is a Frechet 

space. If A(n) is given by (2.5), for any fixed m we will find av E A(n)~ 

with the required properties, where 

A(n)m ~ ind lim H(nk;~m) 
k -+ 

Here H(Ok;~m) is the space whose definition preceeds lemma 2.2. Since for 

every k = 2,3, ... and any m B(nk) defined by (2.9) is mapped by restriction 

into H(nk_
1

;~m)' by lemma 2.2 v E A(O)~ certainly belongs to A(O) '. But 

now, as before A(O) ', as the strong dual of an inductive limit of Hilbert 
m 

spaces, is a Frechet space. 

In order to contain both cases, we deno~e by A( n ) (m) the space A(n) 

if A(n) is of type (2.4) and the space A(n)m if A is of type (2.5). Thus 

now A(O ) (m) is a Frechet space and it suffices to find v E A(U) '(m) which 

is locally equal toµ in U. 
00 

In virtue of theorem 2 .7 µ is locally equal to a sum k£l µk where 

µk is car~ied by Vk\Vk-l and where {vk}==O are compact sets such that 
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v = ~. v c int v 
1

, UV = u and U\ Vk only contains unbounded components 
0 k k+ k k 

or components intersecting au. Since A(U\ Vk) (m) is mapped injectively by 

restriction into A(au) (m) (here we define the class of ne ighborhoods of au 

as the £-neighborhoods in ~n of the complements in U of compact sets in U), 

A(au) (m) is dense in A(U \ Vk)' (m)" Now A(U \ Vk) (m) is a Frechet space, thus 

there is a distance dk to the origin defining its topology. Furthermore, 

A(U\ Vk) (m) can be continuously mapped into A(U \ Vj) (m) fork ~ j and there­

fore, for each k there exists an element vk E A(au) (m) with 

0 ~ j ~ k-1. 

Then 

is an element of A(U) (m)' because its distance d
0

(v ) to the origin is fin­

ite. Moreover, for every j we have 

j 

V = L 
k=l 

µ -
k 

where the last term converges in A(U \ Vj) Cm) and where the second term is 

carried by the complement of V . in U. Hence v is locally equal toµ in 
J 

the interior of each V . , thus in U. D 
J 

As an example we consider distributions in V• (lRn). First, let T be 
00 

a distribution with compact support K c ]Rn (hence T c an be defined on C -" 

functions). By restriction to analytic functions T can be considered as 

an element of A(K)' and the support of T as analytic functional is the same 

as the support K of T as distribution, see [42, lemma 7.4 ] . Any g E V• (lRn) 

is a locally finite sum of distributions with compact support. Hence, for 

any g E V• there is a real-carried analytic functional in Z' which is loc­

ally equal tog, but it is difficult to write down an explicite, non-tri­

vial, e xample. 
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II.2. FOURIER TRANSFORMS OF REAL-CARRIED ANALYTIC FUNCTIONALS. 

II.2.i. FOURIER TRANSFORMATION AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS. 

We shall define the Fourier transformation of analytic functionals 

defined on a subset ZM of Z. For a C ~ function cj, with compact support in lRn, 

the dual of lRn, the Fourier transform Fcp is defined by 

(2 .13) Fcj,(x) def J c/>(s) exp i <s,x> ds. 

lR 
n 

Then Fcp is a function on lRn which can be extended to an entire function 

belonging to Z(a::n). If cj, belongs to a certain, locally convex, topological 

vector space VM of C '.'.:' functions with compact support, the image ZM of F in 

Z is given the topology such that F becomes a topological isomorphism from 

V (lR) onto ZM(~n). The transposed map Ft of F defines an isomorphism from 
M n 

ZM(a::n)' onto V (lR ) '. We may restrict Ft to Z (a::n) or to VM(lRn) and we may 
M n M 

identify a s E lRn with an n'-dimensional vector ( s 1 , .•. , sn) in lRn so that 

<s,x> becomes 

Then the maps 

and 

➔ z (a: ) 
M n 

are also given by (2.13) due to Parseval's relation 

Hence we shall call also Ft Fourier transformation and denote it by 

(2. 14) 
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The transposed of the maps Ftlz and Ftlv are isomorphisms 
M M 

z (<C ) ' ->- V (1Rn) ' 
M n M 

and again, restricted to L
1
-functions ~, these maps are given by (2.1 3 ). 

Finally, the transposed of the restriction to ZM(<Cn) of one of these maps 

yields the isomorphism 

V ( lRn) ' ->- z ( a: ) ' , 
M M n 

which for an L
1
-function ~ is also given by (2.13). Hence from (2.13) several 

maps arise which we will call Fourier transformation and denote by F. Thus, 

although we intended to deal with the Fourier transformation (2.14) only, 

this map cannot be defined in this way without introducing naturally the 

other maps 

(2 .15) F: Z (a::)' ->-V (lRn)' 
M n M 

F: V ( lRn) ' ->- z ( a:: ) ' 
M M n 

F: V ( :rn. ) ' ->- Z ( a:n) ' 
M n M • 

As we will see, these definitions have the advantage that, as soon as 

µ E ZM(<Cn)' also belongs to the dual of a space of analytic functions of s 

of which exp i <s ,z> is one for z in a certain open s e t in <Cn, F given by 

(2.15) can be written as the boundary value in some sense of the function 

cf. lemma 2.26. We shall call the functionµ the Fourier transform l) ofµ 

and µ(z) will be denoted as Fµ(z). 

With the aid of Fourier transformation it will be shown that real­

carried analytic functionals in Z~ can be written as sum of boundary values 

l) Sometimes Fis called Fourier-Laplace transformation [68], Fourier-Borel 

transformation [48] or even Fourier-Laplace-Carleman-Sato transformation 

[43], but we shall call F merely Fourier transformation. 
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of functions holomorphic in tubular radial domains, i.e., in domains of the 

form TC def lRn + i C where C is an open convex cone in lRn. The boundary value 

· df ' d fll ltfb hl h' ft· inTCdefTCn{zlllyll<r} is e ine as o ows: e ea o omorp ic unc ion r 

such that, for ally E C with llyll < r, J f(x+iy}lji(x}dx exists for every 

* lji E ZM; the boundary value f off in z~ is defined by 

(2. 16) * def <f ,lji> lim 
y->-0 
y EC 

f f(x + iy}lji(x}dx 

]Rn 

for l/1 E ZM. This limit exists, since the integral is independent of Imx, 

so that for each y
0 

EC with lly
0

11 < r 

(2.17} * <f 'l/1 > lim f f(x + iyo + iy}lji(x + iyo}dx 
y+O 
y EC 

f. f(x+iy
0

}lji(x+iy
0

}dx, l/1 E ZM. 

lRn 

Since the testfunction space 

H(lRn} def ind lim H(lRn (£}; - E:lixll} 
£ ➔ 0 

for Fourier hyperfunctions is contained in all the spaces consisting of 

restrictions to £-neighborhoods lRn ( £} in a:n of lRn of functions in ZM, all 

real-carried analytic functionalsµ in Z' of ZM can be considered as Fourier 

hyperfunctions in H(lRn}'. As the Fourier transform of H(lR } is just H(lRn}, 
n 

the Fourier transforms Fµ of real-carried analytic functionals in Z' or ZM, 
which are certain distributions or ultradistributions, are examples of 

Fourier hyperfunctions in H(lRn} '. Thus the spaces of Fourier hyperfunctions 

form the limit case in which all the real-carried analytic functionals in 

Z' or ZM and their Fourier transforms as well are contained. The other limit 

case is the space of tempered distributions which is contained in all spaces 

of real-carried analytic functionals and their Fourier transforms. 

Now a Fourier hyperfunction can be represented as sum of boundary 

values f* (2.16) of analytic functions fin TC satisfying for all C' cc C 
r 

and all£> 0 

(2 .18) If <z> I E:llxll 
5: K(C' ,E:}e , y E c' , £ < II yU < r - £ 
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where K(C',E) depends on C' and£, see [38]. A tempered distribution g can 

be wriiten as sum of boundary values of analytic functions f satisfying for 

all C' cc C 

(2 .19) y E C' , II yll < r' 

with O < r' <rand with N depending on g, see [49] . In the following sec­

tions we shall give analytic representations of real-carried analytic func­

tionalsµ in Z' or Z~ and of Fµ as boundary values of analytic functions f 

or h, respectively. So these functions certainly satisfy (2.18), whereas 

functions satisfyjng (2.19) are examples of such functions f and h. 

II.2.ii. CHARACTERIZATION OF DISTRIBUTIONS WITH REAL-CARRIED FOURIER TRANSFORMS. 

Let us consider the example of real-carried analytic functionalsµ in 

the space Z'. Thenµ is an element in the space A' where A is given by (2.5) 

with <j>m(x) = -m log(l +DxH) and Fµ is a distribution in V(lRn)'. Nowµ is 

the sum of boundary values of analytic functions and actually the following 

theorem 2.9 holds [60]. Before formulating this theorem we introduce the 

dual 
1

) C * of an open convex cone C in lRn as the open convex cone 

c* def int{;I <;,y> > o, y E c} int{ ;I <; ,y> ~ 0, y E c} 

in lR . 
.fl 

We identify the dual of lRn with lRn and then, if c* ,f 12', the dual 

of C equals C 

* * (C ) C {xi <n,x> > O, n E c*} 

because C is open and convex. 

THEOREM 2.9. Forµ E Z' the following four statements are equivalent: 

(1) µ is carried by lRn 

(2) For any€> 0, 

where G az-e 
a,£ 

Fµ EV • can be represented as Fµ = l o0
G , 

I I< ( ) a,e; 
continuous functions on lR. satisfyiti~ -m e; 

n 

l) In [68] c* stands for {;1;
1

y
1

+ ... +;nyn~0,yEC} and then cc*i* is the 

closed convex hull of C. 



(3) 

I G ( I; l I S K ( E) exp d I; II 
a, E a 

µ is the sum of boundary values in Z' of functions f . holomorphic in 
J 

]Rn+ i C. satisfying for any C' 
J j 

if. cz> I 
J 

cc c. and any E > 0 
J 

y " cj, llyll > E 

{ }k lRn for j = 1, ... ,k, where Cj j=l are open convex cones in such that 

the closure of their duals cover lR. 
n 
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(4) Fµ EV• is the sum of boundary values in V• of functions h . holomorphi~ 
J 

in lR + i C ~ 
n J 

* satisfying for any C ' 
j 

cc c* 
j 

and any E > 0 

s K (C .* ' , E) ( 1 + II nll -m ( E) ) e d !;II , 
J 

* n E C ' 
j 

for j = 1, ... ,p, where {C~}J? 
1 

are open convex cones in lR such that 
J J= n n 

the closure of their duals cover lR. 

This theorem deals with boundary values in Z' in several dimensions 

and in this way i t generalizes the one dimensional case discussed in [46]. 

II.2.iii. ULTRADISTRIBUTIONS 

In the following section we will pay attention to spaces A defined by 

weight functions ,p. with an order of growth between -j log ( 1 + II xii) and 
J 

-1/j llxll. Then the Fourier transforms of elements in A' are certain ultra-

distributions of Roumieu type if A is of type (2.4) and of Beurling type if 

A is of type (2.5). In section 2 .iv we will give characterizations of these 

ultradistributions similar to (2), (3) and (4) of theorem 2.9. Ultradistri­

butions are continuous, linear functionals on spaces of ultradifferentiable 

testfunctions. It follows the lines of this chapter if ultradifferentiable 

functions¢ are defined by growth conditions on their Fourier transforms. 

No direct information about¢ is obtained in this way, and therefore in this 

section we will also give a direct definition. Furthermore, some properties 

of ultradistribut.ions will be mentioned whose proofs can be found in [42]. 

Throughout this and the following chapter M will stand for a continuous 

increasing piece~ise differentiable function on [0, 00 ) with M(O) 0 , M(oo) = oo, 

such that M' is ~trictly decreasing and pM' (p) is increasing to 00 and such 

that 
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(2.20) 

and for some constants T > 1 and K > 0 

(2. 21) 2M(p) $ M(Tp) + K. 

DEFINITION 2.10.i. Let f be an entire function such that for every positive 

m there is a K > O (there are positive constants m and K) with 

(2.22) lf(zll S K exp{-M(mOzll) + allyll} 

for some a> 0. Then the inverse Fourier transform¢ off is an ultradiff­

erentiable function with support in the ball with radius a of class M of 

Beurling type (of Roumieu type), or shortly of class (M) (of class {M}). 

Let {M }
00 

0 
be an increasing sequence of positive numbers satisfying 

pp= 
the following properties (called M.1, M.2 and M.3 in [42]): for some positive 

Kand h 

M2 $ M 
p p-1 

M 
p+l' 

p = 1, 2 Io• o 

M $ K hp min M M , p 
p OSq Sp q p-q 

QI 1, • • • 

00 

I M 
q-1/4 

$ K p 
M /4 

q=p+l PM 
q p+l 

P 1,2 Io o o 

An equivalent, direct definition is obtained as follows: 

DEFINITION 2.10.ii. Let the sequence {M }
00 

0 
satisfy the above given proper­

p p= 
ties. Then a C ~ Lunction ¢ with compact support S is called ultradifferen-

tiable of class M of Beurling type (of Roumieu type), if its derivatives 
p 

can be estimated as follows: for every£> 0 there is a K > 0 (there are 

positive£ and K) with 

(2 . 23) $ K £p M , ~ € s , I (l I 
p 

p, p 0 I 1, o o o o 

In [42] ¢ is called an ultradifferentiable function of class (M) (of 
00 p 

class {M }). The sequence {M} 
0 

and the function M determine each other 
p pp= 

according to 
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M(p) sup log 
ppMo 

f M 
p p 

(2. 24) 
'l pp 

M MO sup 
exp M(p) p 

p 

and this implies the equivalence of definition 2.10 i and ii [42, th. 9.1]. 

The properties of the sequence {Mp};=O are equivalent to those of the func­

tion M. 

As in the case of the space V of all C~functions with compact support, 

the spaces VM of ultradifferentiable functions of class Mp with compact sup­

port in lRn can be given locally convex topologies such that their Fourier 

transforms z 
M 

FV have the following topologies: in case of Beurling type 
M 

ultradifferentiable testfunctions ZM is defined by 

Z(M) def ind lim proj lim H
00

(<rn: -M(mllzll) +allyll) 
a ➔ oo m ➔ oo 

and in case of Roumieu type ultradifferentiable testfunctions ZM is defined 

by 

Z{M} def ind lim ind lim H
00

(«::n; -M(lizll/k) +allyll), 
a-+oo k ➔ oo 

where H
00

(n;~(z)) denotes the Banach space of holomorphic function fin n 

with the finite norm 

sup lf(z)I exp-~(z). 
zEn 

DEFINITION 2.11.i. An ultradistribution of class (Ml (of class {M}) is the 

Fourier transform of an analytic functional in Z(M)' (in Z{M}'). 

DEFINITION 2.11.ii. An ultradistribution of class (M) (of class {M}) is an 

element in the dual of V(M) (of V{M}). 

Just as a distribution can be locally written as a finite sum of 

derivatives of a continuous function, an ultradistribution is locally an 

infinite sum of derivatives of a continuous function. To explain this we 

introduce differential operators of infinite order: 
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DEFINITION 2.12. An operator of the form 

P(D) def I 
lal=0 

(l 
a D 

(l 

is called an ultradifferentiable operator of class (Ml (of class {M}) if 

there are constants Land K (for every L there is a K) with 

(2. 25) IP(z) I I I 
!al 

a z
0

1 :<; K exp M(LUzll), 
(l 

n 
Z E 0: • 

~ 2.13. [42, th. 2.12]. An ultradifferentiable operator P of class M maps 

VM continuously into itself. 

LEMMA 2.14. [42, th. 10.3]. Every ultradistribution of class M can locally 

be written as P(D)G for some continuous function G and for some ultradiffer­

entiable operator P(D) of the same class. 

Ultradifferentiable operators satisfying an additional property exist. 

Before formulating this we define the following concept which plays a role 

in the Roumieu type case. 

DEFINITION 2.15. A positive, increasing function non [0, 00 ), with n(0) 0 

and with n(p)/p + 0 asp+ 00 , is called a subordinate function. 

LEMMA 2.16. For every m > 0 there exists an ultradifferentiable operator 

P (D) of class (M) with 
m 

(2.26.i) IP (iz) I :?: exp M(mllzll), Dyll < 1. 
m 

and for every subordinate function n there exists an ultradifferentiable 

operator P (D) of class {M} with 
n 

(2.26.ii) IP (iz) I :?: exp M(nllzU), Dyll < 1. 
n 

PROOF. The existence of the operators P (D) and P (D) follows from [42, proof 
m n 

of th. 10.1] where it is shown that the entire functions hm and hn in a:, 
whose Hadamard factorizations are, 

h (w) def 
m 

00 

II 
p=l 

(1 + .lw) 
m 

p 



for some l > 0 depending on m and 

for some 

where m 
p 

(2.27.i) 

and 

(2.27.ii) 

h (w) def IT 
n p=l 

l w 
(1 +J?_) 

m 
p 

sequence {l }
00

_
1 

of positive numbers depending 
def p p-
= M /M 

1 
for M given by (2.24), satisfy 

p p- p 

l.nl h (z . JI;,, exp M(mllzU), 
J= m J 

n 
Jj~l hn(zj)J;,, exp M(n(llzll)), 

Re z. ;,, 0 
J 

Re z. ;,, 0. 
J 

on n with l + O, 
p 

In [42, prop. 4.5 & 4.6, cf. remark on p. 60] it is shown that h (D) and 
m 
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h (D) are ultradifferentiable operators of class (M) and {M}, respectively. 
n 

□. 

Distributions can be written as sums of boundary values of analytic 

functions of algebraic growth in 1/IIIm 1,;II for IIIm 1,;II small. Ultradistribu­

tions can be represented in a similar way. For that purpose we introduce a 

* function M associated to M: it follows from (2.'20) that for each o > O 

(2.28) M* (o) def max {M(p) - op} 
p>O 

* * * * exists. M is a convex function on (0, 00 ) with M (0) = 00 and M (00 ) = 0. If M 

* is a function with this properties, a function M can be associated to M, 

* which equals Min (2.28) if this formula defines M, by 

(2.29) M(p) min {M* (o) + po}. 
o>O 

Indeed, for almost every p > 0 and all o > 0 

and hence 

M(p) $ max {M(T) -O(T-p)} 
t>O 

M(p) s min {M*(o) +po} 
o>O 

s max 
t>O 

* M (o)+po 

{M(T)-M'(p)(T-p)}, 
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where in the right hand side we have taken a= M' (p}. There the maximum is 

attained for T satisfying M'(T} = M' (p), thus since M' is monotonous, for 

T = p. Then the right hand side equals M(p} and by continuity (2.29) holds 

everywhere. 

* 
LEMMA 2.17. [42, th. 11.5]. Let f be a function holomorphic in lR +iC for 

n 
* in and some open convex cone C in lR such that for every compact set s lR 

n n 
* 

for every C' cc C there are positive constants t = t(S,C') and K = K(S,C') 

(for every t > 0 there is a K = K(S,C' ,t) > 0) with 

(2. 30) sup lf(E;+inll ~ K exp M*<tllnUJ, n E C', llnU < o 
E;E S 

* where t5 > 0 may depend on Sand C'. Then there is an ultradistribution f 

of class (M) (of class {M}) which is the boundary value off as n ➔ 0, 

* n EC ' cc C, where Mis given by (2.29), i.e., for each¢ E VM 

* <f ,¢ > f(E; + in}¢(E;)dE;. 

REMARK. It is already sufficient for (2.30) to hold if it holds for n only 

on a ray inc* [42, prop. 11.6]. 

The converse of lemma 2.17 is 

LEMMA 2.18. [42, th. 11.7]. Let f* be an ultradistribution of class Mand 

* k let {c .}. 
1 

be open, 
J J= 

duals cover lRn. 

convex cones in lR such that the closure of their 
n 

Then for each bounded open set Sin lR there is a function 
n k k * 

f holomorphic in . u
1 

{s + i c .} which 
* J = J 

C' cc c., such that in S 
j J 

k 
f* l lim f(E;+in). 

j=l n➔0 

nEC'. 
J 

satisfies (2.30) where C' = j~l cj with 

(In [42] M* is defined in a different way and it corresponds to our function 

* M if in the right hand side of (2.28) a is replaced by 1/a). 

Similarly to finite-order-distributions, ultradistributions of "fin­

ite order" can be defined by global versions of lemma 2 .14 or lemma 2.18. 

DEFINITION 2.19. i. An ultradistribution is called of "finite order" if lemma 

2.14 holds globally, i.e., if it can be written as P(D)G globally. 
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DEFINITION 2.19.ii. An ultradistribution is called of "finite order" if it 

can be represented globally as in lemma 2.18, where, in the Beurling type 

case, (2.30) holds fort independent of Sand where, in the Roumieu type 

case, (2.30) holds with K(S,C',t) replaced by a constant of the form 

Kl (S)K
2
(c',t) for K

1 
(S) > 0 depending on Sand for K

2
(c',t) > O depending 

on C' and t. 

The equivalence of these definitions follows from the proofs in [42, § 10 and 

§ 11]. 

We remark that due to the fact that pM' (p) is increasing and to ( 2 .21) 

* the functions Mand M satisfy: 

for each m > 0 and each t > 0 there is at'= t' (m,t) ~ t and a constant 

K K(m,t) > 0, and for each m > 0 and each t' > 0 there is a positive 

t t(m,t') s t' and a constant K = K(m,t') > 0, such that for p ~ 1 and for 

O < a s 1 

(2. 3 1) {

M(p/t') + m log p S M(p/t) + K 

M (t'/cr ) + m log 1/cr s M (ta)+ K. 

Hence M does not increase too slowly, while by ( 2 . 20 ) it does not increase 

too rapidly. 

Condition (2. 20) assures that there are ultradifferentiable functions 

with compact support (Denjoy-Carlman-Mandelbrojt, cf. [42, th. 4.2 ] ). For 

example, if (2 . 22 ) is satisfied only for llyll < 1 with M(p) = p , then (2 .20) 

i s not satisfied and q> is analytic in the tube { 1; I II nil < m} or, correspondingly 

if in (2.23) we set M 
p 

p! then q> is analytic in the £-neighborhood of lRn. 

Furthermor e, it is necessary that for each £> 0 there is a K( £ ) > O 

such that for p ~ 0 

(2 .32) M(p) S £P + K( £ ), 

but this is not sufficient for (2.20) to hold. Finally, condition (2 . 2 1) 

will be used in lemma 5. 2 to allow the replacement of M ( II xD) by M ( I x
1 

I)+ ... 

+M( lxnl) in the defini tion of the spaces A by (2 . 4) or (2.5). 
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II.2.iv. CHARACTERIZATION OF ULTRADISTRIBUTIONS WITH REAL-CARRIED 

FOURIER TRANSFORMS. 

The Fourier transform of an ultradistribution of class Mis an analytic 

functional on the space ZM and conversely, the Fourier transforms of such 

analytic functionals are ultradistributions. Now, similarly to theorem 2.9, 

we shall characterize those ultradistributions g which are the Fourier trans­

forms of real-carried analytic functionalsµ and then, both g andµ, can be 

written as sum of boundary values of analytic functions. As in the case of 

distributions, such ultradistributions g are of "finite order", cf. defini­

tion 2.19 i and ii. 

Let here At(k) be the Banach space of functions~, holomorphic in the 

open 1/k-neighbourhood of IR.n in ~n and continuous on the closure, such that 

,~(z) I exp M(llxU/t) .... 0 as z .... 00 while llyll s 1/k, with the norm u~u def 

= sup l~(z) I exp M(llxll/t). Then real-carried analytic functionals in Z(M) 
llvUst/k 
(1n Z {M}') can be extended to elements of A' , where 

A def ind lim proj lim At(k) 
k-+ 00 t ,j, 0 

(2. 33) 

(A ~ ind lim J\(k)). 
k -+ oo 

THEOREM 2.20. The following four statements are equivalent: 

(1) µ€A', where A is given by (2.33), and g = Fµ, i.e., the ultradistribu­

tion g of class Mis the Fourier transform of a real-carried analytic 

functionalµ in ZM. 
(2) g is an ultradistribution of class (Ml (of class {M}J, which for every 

£ > 0 can be represented as g • P (D)G, where P (D) is an ultradiffer-
£ £ £ 

ential operator of class (M) (of class {M}J and where the continuous 

function G on IR. satisfies 
£ n 

(3) µ is the sum of boundary values in A' of functions f. holomorphic in 
J 

IR.n + i C., such that for every C' cc C. and every£> 0 there are 

K 

K 

J J 
K(C'. ,£) > 0 and 

J 
t = t(C'., £ ) > 0 (for every t > 0 there is a 

J 
K(C'. ,c,t) > 0) with 

J 

It . (z) I S K exp M(tllzll), 
J 

y € C'., llyll > c 
J 
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for 

the 

). - 1 k where {c }k are open, convex cones 1..·n nt such that 
- I ••• I I j j=l 

closure of their duals cover 1R. 
n * 

(4) g is the sum of boundary values of functions h. holomorphic in 1R + i C., 
J n J 

* * such that for every C. ' cc C. and every E > 0 there are positive numbers 

* * J * J 
t = t ( c . ' , £) and K = K ( c . ' , £) (for every t > 0 there is a K = K(C, ', E,t) >0) 

J 
with 

(2. 34) 

J J 

lh .U; JI SK exp{M(tllrill) + Eil ~II}, 
J 

* Tl E C . I, 
J 

* for j = 1, •.. ,p, where the open, convex cones C . in 1R are such that 
n *J n 

the closure of the duals cover 1R and where M is determined by M 

according to (2.28). 

PROOF. ( 1) .,. ( 2) . On any E-nieghborhood fl ( E) of 1Rn in en there exists a 

measure µE which representsµ on proj lim At(l/E) and which satisfies 
t -1- 0 

(2.35.i) I 
[l ( E) 

exp-M(m(E)llxDJldµ (zll s K(E) 
E 

for some positive numbers K(E) and m(E) depending on E. 

(Letµ satisfy for all E > 0 and t = 1,2, ... 

K (t) 
E 

sup lw(zll exp M(llxll/t), 1jJ E ind lim At(l/E) 
llyll SE t + CO 

for some KE (t) > 0 depending on E and t with KE (t + 1) > KE (t) for every E > 0 

and t = 1,2, .... For each E > 0 we define a subordinate function Tl€ (cf. 

definition 2.15) by 

that Tl (p)/p + 0 asp+ 00 follows as in [42, after lemma 9.5]. Then for each 
E 

E > 0 µ satisfies 

K (1) 
E 

sup lw(z)J exp M(TJE(llxU)), 1jJ E ind lim At(l/E). 
Dyll SE t + OO 

Hence for every E > 0 µ can be expressed as a measure µ E on fl(E) which 

satisfies 

(2. 35 .ii) I exp - M ( n ( II x II ) ) I d µ ( z) I s K ( E) 
E E 

[l ( E) 



so 

for some K(E) > 0 depending on£.) 

Now for any e: > 0, let Pe:= Pm(e:), where m(e:) is determined by (2. 35.i) 

and Pm(e:) by lemma 2.16 (let Pe:= Pne:' where ne: is determined by (2.35.ii) 

and Pne: by lemma 2.16). Then Pe:(D) is an ultradifferentiable operator of 

class (M) (of class {M}). For every¢ E VM and for every e: > 0, we get with 

~ = F¢ 

Hence for every e: > 0 g = Fµ = P (D)G where e: e:' 

i <E,;,z> 
e 
P (iz) dµe: (z) 

£ 

is a continuous function on IRn which according to (2.26.i) and (2.26.ii) 

satisfies 

(2) .. (3). Let U be the closure of an open set in IRn and let e: > 0. If 

¢ € V(M) (¢ € V{M}), for every t (for some t) the following norm is finite 

(2.36) D ¢R 
U,e:,t 

~ e:D t,; B sup e 
e:EU 

Cl 

where the supremum is taken over all nonnegative n-dimensional multiindices 

a and where Mlal is determined by the function M according to (2.24). Let 

E (U) denote the completion in this norm of the set of such functions¢ e:,t 
and let 

E(U) def ind lim proj lim E (U) 

e: + 0 t + 0 
e:,t 

(E(u) 
def 

ind lim ind lim E t (U)). 
e: + 0 t .... 00 

e:, 
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k 
T~e restriction map from E(JRn) into j~l E(Uj) is injective and open, when 

U U. = JR . So, as in the proof of theorem 2. 7; its transposed is surj ecti ve. 
j=l J n 

If g satisfies condition (2) of the theorem it belongs to E(JR)'. 
n 

Indeed, for every£> 0 there are t = t(E) > 0 and K = K(E) > 0 (for each t 

there is a K = K(E,t) > 0) with 

(l+llxll)n+l IP1/3£(iz)I s K exp M(llzll/rnt>· 

Hence for¢ E VM, using (2.24) and the fact that for each z E ~n and multi­

index a there is another multiindex S with ISi = !al and (llz/1/,'n) la! s lz 6 1, 
we get 

I I 
2;3£11 sn 1 

1 <g,¢> SK' s?e P1/ 3£(-D)¢(s) $ 

2/3d sll 1 J I -i<s z>- I sup e { inf --- P 
113 

(iz) e ' ¢ (z) dx} s 
s llylls2/3£ (211)n E 

$ K" sup{ inf exp[½ £11 sll +<Cy>+ M(ll zll /;nt) JI~ (z) I} $ 

s llyUs2/3£ 

$ MOK" 
U 211 lal 

I~ (z> I Mok" 
I z Cl I 

I~ (z> I sup rn la! 
$ sup 

tlalM Cl ( nt) Mlal Cl 

llylls2/3£ llylls2/3£ la! 

MK" 
1 

I I ei<s,z>Da¢(sldsl $ sup 
tlalM 

$ 
0 

Cl 

II yU s2/3£ la! 

dsll loa~ m 1 I 1 
U ¢11 $ MOK" sup e 

tlalM 
exp - -d s • lkis I $ K"' 

Cl 3 lRn,£,t 
sElR lal n 

Conversely, the restriction to E(JR) of an element g E E(U)' satisfies 
-1 n 

condition (2) of the theorem. For F maps A continuously into E(JR), be­
n 

cause for w EA, by (2.24), we have 

1 d sll 
$ sup{ --- e 

Ca (211)n 

1 
inf 

t' lalM llyllSE 
!al 

I llz/1 !al le-i<Cz>w(z) lax} $ 

$ 
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n 
(211) MO 

~KI (l+ftxl)-(n+l)dx sup lw<zJJexpM(llxll/4), 
DyD ~e: 

X€ lRn 

where, according to (2.31) with m = n+l, t' determines t (t determines t'). 
-1 

Hence F g belongs to A' and in the proof of (1) .. (2) it has been shown 

already that then g satisfies (2). 
k 

Now choose open, convex cones c . c lRn, j = 1, ••• ,k such that U 2 = lR 
k _ J j=l j n 

and let g .r
1 

g _ with g_ E E(-C~) '. In lemma 2.23 it will be shown that for 
J= J J J 

1j, EA and y EC. 
J 

where f . is the function 
J 

which is holomorphic in lRn + i C . . For each £ 
J 

J fj (z)lj,(z)dx, 

-i <F,; ,z> 
e 

> 0 and C' cc c. there is a 

o = o(e:,C'.) > 0 such that <F,; ,y> ~ - onE,; O if ( € 
J 

* j J -c . and y € C'. wi th llyll :?: e: . 

Then for every£> 0 and for every C'. there are 
J 

J J 
K = K( e: ,C'.) > 0 and 

J 
t(e:,C'.) > 0 (for every t > 0 there is a 

J 
t K = K(e:,C'.,t) > OJ such that for 

J 
y € C' with DyD > e: 

j 

~ KI exp M(tllzl) 
/MO 

sup 
F,;e: =2'.° 

a J 

according to (2 . 24). Thus g satisfies condition (3) of the theorem. 

(3) .. (1). It is obvious that a sum of boundary values as in (3) determines 

an analytic functional in A': for 1j, € A' 

k 

I I 
j=l 

k 
~ K' L 

j=l 



S K supn Jw(z) Jexp M(tllxll), 
XE1R 

llyll SE 

which holds for each E > 0 by choosing yj EC'. with llyjll = E and fort', 
J 

hence t by (2.31), and K depending on E (for each t > 0, by choosing t ' 

according to (2.31) and for K depending on E and t). 
p 

5 3 

(1).,. (4). According to theorem 2.7 µEA' can be written asµ .E
1 

µ_ with 
J= J 

µ . E A ( C.) ' , where the closures of the open, convex cones C. c ]Rn cover 1Rn 
J J J 

The same proof of theorem 2.7 applies if we had taken the closed neighborhoods 

n. (E) def {zJxEC. ,llyilsd instead of the open E-neighborhoods of c. in ctn. 
J J - J 

(Then a space of analytic functions inn is defined by functions holomorphic 

in the interior and continuous on the closure of rl.) Thus assume thatµ_ is 
J 

an analytic functional with respect to these neighborhoods. In lemma 2 . 26 

(which actually deals with the map (2.15) instead of the map (2.14) we have 

here) it will be shown that the Fourier transform of such an analytic func­

tional is the boundary value of the function 

def i <~ z> 
h.( ~ ) < (µ_) ,e ' > 

J J z 

* which is holomorphic in 1R + i C . . For every E > 0 there is a K = K(E) > 0 
* * n J * 

and for every C . ' cc C . there is moreover a positive t = t(E , C.') (for every 
J J J 

t > 0 there is a K = K( E ,C. ',t) > 0) with 

(2.37) 

J 

sup exp{-<i;,y>- <n , x > +M(t•Uxll)} s 
xd:j 

llyll SE 

s K exp{Elli;II +sup[M(t'p) -opllnll]} 
p~O 

s K exp{M*(tllnll) +Elli;II}, n E c*• j , 

fort' depending on E (for every t') , o depending on c*• and with t 
j 

o/t ' , 

where for the last inequality (2.28) has been used. 

(4) .. (7). This in fact will be shown in chapters III and VI. There the 

function h, holomorphic in 1R + i c*, satisfies 
n 

which is more general than (2.34) and its boundary value is the Fourier 

transform of an analytic functionalµ carried by C with respect to neigh­

borhoods larger than E-neighborhoods, namely with respect to the neighborhoods 
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!"l(e:,c*•> ~ {zj-<l;,y>-<n,x><di;;Il,ne: c*•, s e:lR }. 
n 

Such an analytic functionalµ certainly belongs to A'. D 

Note that in condition (4) of theorem 2.9 m( e: ) depends on E only, 

* whereas in (2.34) in the Beurling type case t depends on both C . ' and£. This 
J 

is due to the different behaviour of the function Min case of distributions, 

* where M(tp) has to be replaced by t log(l +p) and where for M (a) the func-
-1 * * * 

tion logo , a$ 1, can be choosen. Then M satisfies M ( ocr) $ M (a) + K 

* where K depends on o (cf. the use of M in (2.37)). 

REMARK. In [60] in the proof of theorem 2.9 the implication (4) .. (2) instead 

of (4) .. (1) is shown, which is performed by integration of the functions h. 

Then we get no information about the carrier of F-lh and in the above theorem 

no such information is needed. A direct proof of the implication (4) • (2) 

in theorem 2.20, is quite complicated and might be performed along the lines 

of [42, proof of th. 11.5]. 

II.2.v. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS. 

In the proof of theorem 2.20 a certain correspondence turned up between 

the boundary value of an analytic function of exponential type and the sup­

port or carrier of its Fourier transform. We shall make this correspondence 

more explicit. Let C be an open, convex cone in lRn and let a be a convex 

function on C, homogeneous of degree one. The pair (a,C) determines uniquely 

a closed convex set U (a,C), not containing a straight line, in lRn by 

(2. 38) U(a,C) def {F.;j- <l;,y> $ a(y) ,y e: c }. 

Conversely, each closed, convex set U in lR, which does not contain a 
n 

straight line, determines uniquely an open, convex cone C in lRn and a 

homogeneous, convex function a on C such that u = U(a,C) according to (2 . 38), 

see [60]. 

The following theorems (th. 2.21 and th. 2 . 24) give the above mentioned 

correspondence explicitly. They are more general than the corresponding 

theorems for tempered distributions in [68, th. 26.2 ] , but as soon as the 

occurring concepts are introduced, the proofs are very similar. They may 

be considered as a version of the real Paley-Wiener theorem for ultradis-
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tributions, whereas in chapter III complex Paley-Wiener theorems will be 

discussed which, actually, may be considered as versions of the Ehrenpreis­

Martineau theorem. 

First we state the theorem for distributions in V•, whose proof can be 

found in [60, th. 4.1], and then we prove the theorem for ultradistributions. 

THEOREM 2.21.i. Let C be an open, convex cone in lRn, let a be a convex 

function on C, homogeneous of degree one, let U(a,C) be the convex set in 

lR n given by ( 2. 38) and let moreover f be a holomorphic function in lRn + i C 

which satisfies: for every E > 0 and C' cc C there is am= m(E,C') > 0 and 

for every E > 0 there is moreover a positive number K K(E,C' ,a) such that 

lf(z)I S K(l+llzll)m exp{a(y) +allyll}, y EC', llyll 2 c 

-<~ y> V 
Then f(z) = F[e ' g~](x) for some distribution g E 'with support in 

U(a,C) satisfying condition (2) of theorem 2.9 and the boundary value off 

in Z' equals Fg. 

THEOREM 2.21.ii. Let C, a, U(a,C) and f be as in theorem 2.21.i, but let f 

now sati.sfy: for every E > 0 and C' cc C there is at= t(E,C') > 0 and for 

every a> 0 there is moreover a positive number K K(E,C',a) (for every 

E > 0, a> 0, C' cc C and t > 0 there is a K = K(E,a,C't) >0) such that 

(2.39) lf(z) IS K exp{M(tllzll) +a(y) +allyll}, y E C', II yll 2 E. 

Then f(z) = F[e-<~,y>g~](x) for some ultradistribution g of class (M) (of 

class {M}) with support in U(a,C) satisfying condition (2) of theorem 2.20 

and the boundary value off equals Fg. 

PROOF. In the proof of (3) ~ (1) of theorem 2.20 the behaviour off only for 

llyll small has been used. Hence it follows from this and from (1) ~ (2) that 

the inverse Fourier transform g of the boundary value off satisfies condition 

(2) of theorem 2.20. For cjJ E VM g is defined by <g,¢> = Jf(z)~(z)dx where 
-1 

~=F ¢, and the integral is independent of yEC. The function ~ ➔ exp-<Cy> 

is analytic and therefore a multiplier in any space of ultradistributions. 

So, for y EC we get 

-<~ y> 
<q,e I ,¢> <g,e-<Cy>cp> f f(z)~(x)dx, 
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hence f (z) 

of g. 

F[e-<~,y>g~](x) and it remains to prove the support property 

Let ~O be a point in lRn \ U(a,C), hence there is an y
0 

E: C with Dy
0

11 

and with -<~
0

,y
0

> > a(y
0

). Furthermore, let n > Obeso small that 

and let ¢
0

1: VM has its support in {~jU~-~
0

Usn}. Then ¢
0 

has its support in 

lRn \ U (a,C), because for ~ in the support of .p
0 

we have 

(2 .40) 

1 
Let C' c c c be such that y

0 
E: C' and let a= 4 n. Then according to lemma 

2.16 there is an ultradifferentiable operator P(D) of class (M) (of class 

{M}, where the construction is performed after the definition of a suitable 

subordinate function as in the proof of (1) .. (2) of theorem 2.20 using the 

constants K(E,cr,C',t) in (2. 39) for E = 1, a=¼ n and C' fixed), such that 

(2.41) I I f<x+iy> I 
P(ixi dx S K exp{M(tilyll) + a(y) + cr llyll } 

for some Kandt and for ally E: C' with llyU ~ 1. Then we have 

(2.42) <g,¢0> In 
f(x+i:z::) { I 

e-i <~ ,x>P(D) [ e <~ ,y>q,
0

( ~) ] ---5!L_}dx. 
P(ix) ( 27T)n 

1R 1R 
n 

Furthermore there are t' and -K' depending on P (depending on <Po> with 

~ I -i<~ z >- I e ' .p
0

(x)dx s 
(27T)n 

<~ 1 y > M(t•UyU) J 
$ e K'e 

]Rn 

M(t•Uxll l 
e dx. 

Now we take y = Ay
0

, A > 1 in (2.42) and taking into account (2.40) and 

(2.41) we find 
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Using (2.32) two times with£=¼ n/t and£ 
4 

n/t', successively, and taking 

the limit for A+ 00 we finally get <g,~
0

> 0. D 

In [60] and [68] it is shown that a dis-tribution g (occurring in [68, 

th. 26.2] and [60, th. 4.1]) with convex (or more general, regular) support 

is a sum of derivatives of measures on its support. This is proved with the 

aid of Whitney's extension theorem, which says that the restriction map from 

C00 (L) into C00 (K) is surjective if K is closed, convex (or regular) and con­

tained in the interior of L. For ultradifferentiable function spaces there 

is no such theorem, except in the one-dimensional case, see [9], but "it is 

quite plausible that this result can be extended to the higher dimensional 

case", see [42] (indeed, cf. foot note 
2
)). Then we would be able to prove 

a sharper theorem than just the converse to theorem 2.21, so that the esti­

mate (2.39) would be improved, see corollary 2.25 (cf. [60] for distributions 

in V• >. 
The above mentioned results on distributions with bounded regular 

support have already been mentioned in [62] and for tempered distributions 

with unbounded regular support in [67]. However, at some places, mostly 

oriented to physics (see for example [12] and [SB]) a particular l) case of 

this result is used which has been proved later [SJ. It is called the lemma 

of Bros - Epstein - Glaser and it says that tempered distributions with support 

in a convex cone can be written as a higher order derivative of a continuous 

function with support in the cone. Fortunately, it is this result that can 

be generalized here, so that we are able to derive a converse to theorem 

2 .21 which is similar to the one for distributions, cf. [60]. Therefore , we 

state the following lemma, which is a generalization of the Bros - Epste i n -

Glaser lemma. 2 l 

l) Indeed, if the support is a convex cone it is easy to see that the fact, 

that a distribution is the sum of derivatives of measures on the cone, implies 

that it is also the derivative of a continuous function with support in the 

cone. The particularity lies in the fact that it only applies to some part­

icular, unbounded sets and not to general, regular sets. 

2
) On the other hand, with the aid of this lemma it can be shown that indeed 

the restriction map from c;(L) into c;(K) is surjective in both cases (M) 

and {M}, if Kcint Lis closed and satisfies some conditions, not as general 

as regular, but mo r e general than convex. 



58 

LEMMA 2. 22 . Let u be the closure of an open set in m.n such that there is a 

fixed, convex, open cone c* with the property that for each~ i Uthe set 

{~-c*} nu is empty and let g be an ultradistribution of class (M) (of class 

{M}J which satisfies condition (2) of theorem 2.20 and which has its support 

in u. Then condition (2) of theorem 2.20 is satisfied for continuous functions 

G£ which have their supports in u. 

* PROOF. Let C be the dual cone of C, then it is possible to choose a base 

{e
1

, •.. ,e} in m.n such that Cc r, where r is the open, convex cone 
nn 

{yly = j~l yj ej,yj >O}. ;hen we have~* cc*. Every z € (tn can be written 

uniquely as z = x + iy = j~l xj ej + i j~l ~j ej and we use these (x 1 , ••. ,xn) 

as coordinates for m.n and { z . = x. + iy.} . 
1 

as coordinates for <rn. 
J J Ji= 

According to theorem 2.20 g is the Fourier transform of a real-carried 

analytic functionalµ. As in the proof of (1) .. (2) of theorem 2.20, letµ 

be represented by measuresµ£ satisfying (2.35.i) for some m(£) > 0 depending 

on£ andµ ((2.35.ii) for some subordinate function n£ depending on£ andµ). 

Let 

def 
n 

(z . + 1/ p (z) IT h (2z.+2), 
£ 

j=l J £ J 

where h ~h (h 
def 

hn£ ) is determined in the proof of lemma 2 .16. 
£ m(£) £ 

Then P (D) is an ultradifferentiable operator of class (M) (of class {M}), 
£ 1 

exp M(m(£) Ax!) /p ( . ) (exp M(n (ftxl) l/p ( . ) ) is an L -function and 1 / . 
/I£ -ix £ £ -ix /P£ (-iz) 

is holomorphic in any a-neighborhood of m.n in en with a < 1 and in m.n + i r, 
where by (2.27.i) (by (2.27.ii)) it satisfies an even stronger estimate than 

(2.39) with a= 0. According to [42, lemma 3.3] the function 

is ultradifferentiable on m. and according to theorem 2.21 A has its 
n £ 

support in r~. We will see that A is "sufficiently ultradifferentiable" 
£ 

such that g can be applied to it. Another property of A is that p (D) A = o, 
£ £ £ 

where o is the Dirac-o-function. 

Now let 



which exists because 1/PE(iz) is holomorphic inn(£) so that we have 

ei<l;,z> 
j<µ, --->! 

z P (iz) 
£ 

ei<E,;,z> 
--- dµ (z) j s 
P£(iz) £ 

dt,;11 f -M(m(£)11xll) j ( ) j ( ) dt,;11 Ke e dµ z SK£ e 

s { (Ke£11t,;U f e-M(n£(llxll)) jd:£(z) j s K(£)edf;III 

by (2.35.i) (by (2.35.ii)). Furthermore GE, as the Fourier transform of a 

bounded measure, is a continuous function on lR which has its support in 
n * 

U, because if E,; i U the set { E,; - °'f'1i} n U is empty since "f"°"" c C . Finally 

we have 

P (D)G 
£ £ 

g*o g. □ 
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The condition on the set U is satisfied by the set U(a,C) given by 

(2.38) if C is an open, convex cone not containing a straight line, or equi-
* -* 

valently , if C # 0. In case we have a cone C with C = 0, for example if 

C = lRn, and hence U(a,C) is a bounded, convex set, we must think of U(a,C) 

to be contained in a larger set U(a,C), where C is an open, convex subcone 

of C containing no straight lines. 

Let g ·be an ultradistribution of class M with support in the set U(a,C), 

which satisfies condition (2) of theorem 2.20. It is shown in the proof of 

(2) =+ (3) of that theorem that g belongs to E(lRn)' and the last lemma shows 

that g can be considered as an element of E(U(a,C)) '. Furthermore the func-
i<E,;,z> 

tion E,; ➔ e belongs to E(U(a,C)) if y € C. Keeping these remarks in 

mind we can interprete the following lemma which characterizes the Fourier 

transform of g. 

LEMMA 2.23 . Let C, a and U(a,C) be as in theorem 2.21 and let g be as in 

lemma 2.22 with U = U(a,C). Then 

i<l;,z> 
<g,e > 

and this is a function holomo.rphic in lRn + i C whose boundary value equals Fg. 
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* PROOF. Let w E ZM, y EC and if C =~instead of C we take a subcone, also 

denoted by C, containing y and no straight lines. Then using lemma 2.22 we 

have 

<F -<f, I y> ·'•> e g,.., I . <F, > 
<g, ei ,z w(x)dx> 

lRn 

I GE (f,)P £ (-Df,) 

U(a,C) 
f 

. <F, > 
ei ,z w(x)dxdf, 

IRn 

f 
U(a,C) 

i<f, z> 
<g,e I >w(x)dx 

where£> O is choosen depending on y such that the integrals exist. It is 

clear that 

f(z) 
def i<f,,z> 

<g,e > 

is holomorphic in IRn + i C and furthermore, a similar procedure to above, 

shows that for y EC 

<Fg,w> <g, In 
i<f, z> 

e ' w (z)dx> In f(zlw(z)dx. 

lR IR 

Hence Fg is the boundary value off in z'. □ M 

Now we are able to prove a stronger theorem than just the converse 

to theorem 2.21.ii. Again, first we mention the theorem for distributions 

in V• given in [60, th. 4.2] and then we prove the theorem for ultradistri­

butions. 

THEOREM 2.24.i. Let C, a and U(a,C) be as in theorem 2.21 and let g be a 

distribution in V• with support 

2.9. Then the function f(z) ~ 
in U(a,C) satisfying condition (2) of theorem 

-<F, y> 
F[e ' gf,](x), whose boundary value equals 

Fg, satisfies: for every£> 0 and C' cc C there are N = N(e:,C') > 0 and 

K = K(e:,C') > 0 such that 
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THEOREM 2.24.ii. Let c, a and g be as in lemma 2.23. Then the function 

f(z) ~ F[e-<~,y>g~](x) , whose boundary value equals Fg, satisfies:for every 

£ > 0 and C' cc C there are t = t(c,C') > 0 and K = K(E,C') > 0 (for every 

£ > 0, C' cc C and t > 0 there is K = K(c,C' ,t) > 0) such that 

(2.43) lf(z) I s K exp{M(tllzll) +a(y)}, y E CI , II yll ;,, £. 

PROOF. According to lemma 2. 23 we have to estimate the II• II ( C) norms . u a, ,£,t 
of the function ei< •,z> , defined in (2.36). Fort> 0 we get 

ID
cxei<~,z>I s lzcxle-<Cy> 1 Mlcxl -<Cy> Jtllzll)PMQ .$ 

s MiaTe sup M 
0 t p=0,1,... p 

MI Cl I 
~ exp { M(tllzll) - <Cy>}. 

* Let C' cc C and in case C is empty let c., j 1, ... ,l be subcones of c 
* ) 

with C. f i covering C and such that there are 
) 

CI cc 
j 

C. which cover C', 
J 

and let C.' cc C " cc C. Then there is a 6 
) j ) * 

= 6 (C. 'l > 
J 

0 with - <C y> s 

-611yllll~II if y E C.' and~ E C.". For each n 
) ) 

> 0 there are t' t' (nl and 

K' = K' (nl (for every t' > 0 there is a K' K' (n,t')) with for¢ E VM 

l <g,¢>1 s K'll¢11 I 
u(a,C.) , n ,t j 1, ... ,l. 

J 

It is possible that a(y) < 0 for some y, so in the following ex def 

=min{a(y) IY E C', llyU = 1} might be negative. Now in the above we choose 

n 
1 

6£ and t' = ..!_ • If ~ ranges in C •* while II ~11 ;,, -2 5¾, we estimate for 2 t .., j .., u 

y E C 'with llyll ;,, £ 
j 

nll ~II - <Cy> s ..!_ 6cll~II - ..!_ 6cll~II - 6ll~llllyll s cxllyll s a(yl. 
2 2 2 

The remaining of U(a,C.l is compact and there by (2.38) we have 
J 

exp{ nll ~II - <Cy>} s K" exp a (y), 

where K" ;,, 1. Hence, for y E C' with Uyll 2: £ 

I 
i <Cz> J <g ,e > 

K'K" s exp{M(tllzll) +a(y)}. □ 
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COROLLARY 2.25. A holomorphic function f, which satisfies (2.39), satisfie s 

already (2.43), i.e., in (2.39) K is independent of o and we may take o = 0. 

Whether the ultradistributions g of theorem 2.24 are defined on certain 

ultradifferentiable testfunctions in :m 
n 

or in real £-neighborhoods of U = 
U(a,C) makes no difference due to the existence of ultradifferentiable func-

tions A which are identically one on u and zero outside an £-neighborhood 

of U. So we can say that the Fourier transform Fis a bijective map from the 

dual of a certain space, say S(U), of ultradifferentiable functions defined 

on real £-neighborhoods of the convex, real set U(a,C) onto a certain space 

H of functions holomorphic in :mn + i c and of exponential type a in Im z. 

Thus shortly 

Fs(ul • - H. 

In the next section we will discuss the case where U is replaced by a complex, 

convex set Q in an and then g becomes an analytic functional µ defined on 

a space of functions holomorphic in complex neighborhoods of n. 

II.2.vi. THE CASE OF COMPLEX DOMAINS 

We consider the following question. Let r be an open, convex cone in 

~n and let a be a convex function on r, homogeneous of degree one, let 

Q = Q(a,1) be the closed, convex set in ~n given by 

(2.44) Q(a,1) {i;;J -Im <i;;,z > :<; a(z), z E 1}, 

and finally, let A(Q) be a space of analytic functions defined on certain 

neighborhoods of Qin an whose growth at infinity is determined by the weight­

functions exp M(tfli;;H), and let H(1) be a space of analytic functions in r 
of exponential type a for ff zll large whose behaviour at the vertex of r (i.e., 

for Uzll small) is determined by the function M. Then one may ask whether it 

is possible to find such conditions that the Fourier transformation Fis a 

bijective map from A(Q)' onto H(1), or shortly, whether 

FA(Q) I H(I) 

In chapters III and IV this question is solved affirmative. In case 
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there exist testfunctions with compact support the injectivity and the sur­

jectivity of F present no problems (cf. the proof of theorem 2.21). In A(fl), 

however, no such testfunctions exist and the proofs are very complicated. 

Actually, using a generalization of Ehrenpreis' fundamental priciple (see 

chapter IV) we will return to a situation where we do have C ~ functions on 
n n n 2n 

real domains. For that purpose we have to identify a: with lR x lR = lR 

z = x+iy~ (x,y) and crn with lRn x lRn lR
2

n by z;; =~+in~ (n,0.Then we 

will deal with distributions defined on a C '!!! testfunction space in a neigh­

borhood of the, now real, domain fl c JR
2

n and with functions holomorphic in 

lR
2

n + ii c c
2

n In the following section we will give a lemma concerning this 

situation , similarly to theorems 2.21 and 2.24 . 

Of particular interest is the case where r is a tubular radial domain, 

i.e. , a domain of the form Tc = lRn + i C with C an open convex cone in lRn, 

and where f E H (1) has ultradistributional boundary values on lRn Then, if 

we interchange the variables z and z;; in theorem 2.20 (1) and (4) the surject­

ivity of F yields the proof of (4) • (1) of that theorem. If a, defined on 

TC, can be continued to a continuous function on lRn + i C' , with c' cc c, i.e. , 

if lim a(x,y) = a(x,O) exists as y + 0 while y EC ', then 

{z;;[- <n,x> - <E,,y> s a(x,y), x E lRn, y E c}, 

given by (2.44), is bounded in the imaginary directions, namely 

max 
llxll=l 

a(x,O)}. 

Also, it may happen that fl is not bounded in the imaginary directions and 

then we give A(fl) the topology induced by ZM, so that the functions w E A(fl) 

have to satisfy 

(2.45) lww I $ K exp{-M(tll~II) +lll nll} 

on a neighborhood of fl, for 

this condition for each z E 

. i<z;;,z> .. 
some l > 0 depending on W- Since e satisfies 

C 
T, we can characterize the Fourier transform 

of an elementµ E A(fl) ', considered as an analytic functional in z~ carried 

by fl, as in lemma 2.23. 

LEMMA 2.26 . Let C, a, fl= fl(a,Tc) and A(fl) be as above and letµ E A(fl) '. 

Then the Fourier transform ofµ is the boundary value in V• as y + 0, while 
M 
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y € C' cc C, of the function 

(2.46) 

which is holomorphic in nt + i c. 

PROOF. For~€ VM and y € C let 

The limit of Riemann sums converges in the topology of the space A(n) and 

furthermore~ + 
n 

~O in A(n) as y + 0 while y € C' cc c, because -<~,y> ~ 

~a(0,y) for alls€ n. Therefore, we may write 

I i<s x> 
<µ, e ' ~(x)dx> 

<µ, I "<7 > 
e 1 .,,z ~(x)dx> lim 

y+O 
yEC' 

D 

In view of this lemma in chapter III we will define the Fourier trans­

form ofµ by formula (2.46) also in the general case where r is not a tubular 

radial domain. There we will tre.at F as a topological isomorphism and there­

fore, it is more convenient to consider L
2
-norms instead of sup-norms, be­

cause the strong dual of a projective (inductive) limit of Hilbert spaces 

can be written as the inductive (projective) limit of the duals, see [40]. 

Using Sobolev embedding theorems, see [73], one can pass from the one norm 

to the other. 

II. 2. vii. A PALEY-WIENER TYPE THEOREM. 

In chapter III we will need the lemma given in this section. It is a 

Paley-Wiener type theorem treating various, rather technical, cases which 

will become clear in chapter III. We will prove only the case exposing the 

most typical features. This section has little connection with the other 

sections of this chapter and we place it here because the proof of the 

lemma proceeds along the lines of theorem 2.21 and 2.24. 

First we introduce some notations and definitions whose meaning will 

be made clear in chapter III. If a is a convex function on the convex, open 
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cone I in ~n which is homogeneous of degree one, we mean by a+£ the function 

on I given by 

(a+£) (z) def a(z) + dzll. 

denotes a sequence of open, relatively compact subcones of I such 
00 

cc 'k+l cc I and k~l 'k 1, and 

(2.47) 

Then the neighborhoods (cf. formula (2.44)) 

(2.48.i) 

l . d f n are the k - neighborhoo s in ~ n o n(a,1), k 1,2, ... , whereas the 

neighborhoods 

(2.48.ii) 

are larger neighborhoods. The subscript£ expresses that we deal with£­

neighborhoods and the subscript c denotes the case of conic neighborhoods. 

If not a particular case is meant we will denote these two cases by a sub­

script a. For the case a=£ we will need the following set 

(2.49) def I 1 k zo + 1 { z z = k zo + z •, z • E 1} 

where z
0 

E pr 1
1 

is fixed. 

TC where c is an open, convex cone In particular we can choose 1 

in lRn. This is of interest because the n one might consider holomorphic 

functions in TC having boundary values on lRn in some sense. We will now 

introduce the above given concepts for this case. For rk we will choose 

(2.50) 

where {ck};=l is a sequence exhausting C, and 

(2.51) 
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Furthermore, let y
0 

E pr c
1 

be fixed and then let 

(2.52.i) 

and 

(2.52.ii) 

where ch means the convex hull. For a domain B c ~n we define the tube domain 

T(B) c ~n x ~n - ~2n by 

(2.53) 

Moreover, if a is a homogeneous, convex function on TC such that a(x,O) 
~ C becomes unbounded, we change the function a into functions ak on T such that 

for each k a'.k is a convex function satisfying 

ak(x,y) 
def 

~(z) a(z), C llyU ;,, 1/2k Z E T , 

and fork 1, 2, ... 

ak(z) $ ~, y E Ck, UyD $ 1/k, llxU $ k 

where~ is a positive constant depending on k and a. For then the growth 

of a function f satisfying lf(zll $ ~ exp{M*(tUyll) +ak(:)} for llyD small 

and Uxll S k is determined completely by the factor exp M (tllyll), while we 

need the growth exp a (z) of f only on rays { :\z I:\ > 0} for :\ large and z E pr TC. 

If lim a(x,y) exists as y + O, t E Ck then a will not be changed and, for 

convenience, in that case we denote 

k 1,2,... . 

We now define the functions 

(2.54.i) k def 
a (z) 

E: 

where a: should be continued as a convex function on Tc, just as ak on Tck, and 



(2.54.ii) ak(z) def~ c ak (z), Z E 

Finally, if n is the closure of a domain in lRn and Ma continuous 
m function on n, let w
2

(n;M(u)) denote the space of measurable functions f 

inn for which the weak derivatives Daf exist for lal 5 mas measurable 

functions such that the norm 

is finite. If n is a domain in ~n and Ma continuous function on n, let 

H
00

(n;M(z)) denote the space of holomorphic functions fin n such that the 

norm 

(2. 55) 

is finite. 

sup lf(z) J exp-M(z) 
zEQ 
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Besides the cases a= E and a= c, in chapter III we will consider four 

other cases, namely ultradistributional boundary values of class (M) and {M}, 

distributional boundary values and boundary values in the sense of Fourier 

hyperfunctions. Depending on these various cases we introduce the following 

spaces: If 1 = Tc in the definition (2.47) and (2.48) of nk let a' 

(2.56) 

and let 

Wm(nk;-M(IIE;ll/t) +kllnll -m log(l+llz;II)) 
2 a 

def 
Ha (m,k,t) H (T ((TC/) ;M* (tllrm e211) + ak (Im 9) + .!._ llrm ell + 

oo a a k 

def J Sa(k,m) = 

1 def 
Ha(k,m) 

+ m log ( 1+11 eU)) 

wm(nk; -m log(l+llz;II) +kllnll) 
2 a 

Ck 2 -m 
H (T ( (T ) ) ; log ( l+llrm 9 ll ) 

oo a 

+ m log (1+11 ell)) 

for a E {E,c}. If I is an open, convex cone in ~n, let 
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s (m,k) 
a 

~ w;cn:; -¼ l1J-m log(l+AzJ)l 

~ H"'(T(¼ 
1 1 2 1 

H (m,k) zo-+f"') ;a(Im e -2k XO' Im 6 -2k y0 ) + 
£ 

(2.57) 1 + - hm eU +m log(l+llell)) 
k 

H (m,kl ~ H (T(r(k)) ;a(Im 6) + .!_ hm eU + m log ( l+U ell) l. 
C "' k 

In the above defined S-spaces the set i/ has to be conside r e d as a c losed 
Cl 

set in lR2n. 

If we take the projective limit of the S-spaces form+ * "', we get FS -

spaces (cf. [40], weakly compact, projective sequences) which have nice 

properties, for example they are reflexive. If we would have S-spaces defined 

with sup-norms instead of L2-norms, due to the fact that nk is convex these 
a 

projective limits would even be FS-spaces (compact, projective sequences) 

* which, of course, have nicer properties. But the properties of FS -spaces 

are all we need and so we don't have to show that in the sup-norm case we get 

FS-spaces. As a matter of fact it doesn't change much whatever norm we have, 

L
2
-norm or sup-norm. This follows from certain Sobolev embedding theorems: 

let~ 
0

(rl;M(u)l denote the space of Cm-functions f on the closed set n (in 
"', 

the sense of Whitney) with the finite sup-norm 

sup I Oaf {u) I exp - M (u) 
ue: rl 

lals:m 

such that moreover joaf(u) jexp-M(u) +Oas u + "' in n for la! s: m; (by Riesz' 

theorem the dual o f such a space consists of weak derivatives of measures 

on rl); let n • be a closed convex set such that an £-neighborhood of n • is 

contained inn, then according to [73, p.11 condition Hs
1 

and p.14 condition 

Hs
2

J the embedding maps 

wm+n+l(rl;M(u) - (m+n+lllog(l+ffull)) + W~(rl;M(u) -m log(l+nuD)J 
"',0 

_ _m+n+1 I D m w
2
. W;M{u) - (m+n+1)1og(1+ u )) + W (rl '·M(u) -m log(l+ffuff)) m,Q , 

are continuous. 

Now similarly to theorems 2.21 and 2.24 we will obtain the following 

Paley-Wiener type theorem. 
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* * LEMMA 2.27. Let the funct i ons M and M satisfy (2.31), where M and M are 

related to each other by (2.28) and (2.29). For every m and k, and for each 

t there is a t' = t' (m,k,t) <'. t and for each t' there is a positive 

t = t(m,k,t' ) :5 t', such that F and F-1 are continuous maps 

F: S (m,k+l,t')' ➔ H (m+n+l,k,t) 
Ct Ct 

-1 
F : Het(m,k+l,t') ➔ Set(m+2n+2,k,t') '. 

Moreover, the maps 

F: S (k+l,m)' ➔ H (k,m+n+l) 
Ct Ct 

F- 1 , H (k+l,m) ➔ S (k,m+2n+2)' 
Ct Ct 

are c ontinuous and for each k there is a p > k such that 

F: S (m,p)' ➔ H (m+n+l,k) 
Ct Ct 

F-l, H (m,k+l) ➔ S (m+2n+2,k)' 
Ct Ct 

are continuous maps for et E {E,c}. In all these cases F can be represented 

as in lemma 2.23. 

PROOF. We only prove the first pair, the other cases are similar. We embed 

the space Set(m,k+l,t')' into the dual of the space 

+{k+l) II nll - (m+n+l) log ( 1+11 i;; II)) . Then as in the proof 

Wm+n+l(rlk+l __ M(IIE,11/t') + 
oo,Q a , 

of theorem 2.24 we have 

to estimate 

(2. 58) sup - <n,x> - <C y > +M(IIE,11/t') - (k+l)llnll + (m+n+l)log(l+lli;;II) 
i;;d,Jc+l 

Ct 

for z E (TC)k where z = (x,y) has to be considered as the imaginary part 
Ct , 

of 6. Lett" < t' be such that according to (2 .31) 

M(p / t') + (m+n+l)log(l+p) :5 M(p/t") +K' (m,t') 

and let C' 
k 

be such that ck cc ck cc ck+l· 

* 
Then there is a 6k > 0 such that 

for y E ck and E, E C' 
k 

- <E, ,y> :o: - 6 llyll II r, 11. 
k 
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We first estimate (2.58) if y E Ck, Dyll $ 1 and llxU $ k. If, varies only 

* in Ck we estimate (2.58) by 

-<Cy>+ M(U,U/t") - <n,x> - kllnU - llnU + (m+n+l)log(l+llnll) + K' ~ 

s sup {-(\t"llyUp + M(p)} + K $ M*(tllyll) + K(m,t') 
p>O 

k+l 
where t = (\t". If I',; varies in the remaining part of Qa then 11,u is bounded 

by a constant~ depending on k and also Hnll is bounded, namely 

Hence then (2.58) can be estimated by a constant depending on m,t'(or t") 

according to (2.31) and on k, while t depends on k and on t" and t" on m and 

on t' (or t' depends on m and on t" and t" on k and t). 

Now let z be a point in the remaining of (TC) k; hence for a = £ 
Cl 

z E Tl/k Yo+c and for a= c there is a p > k depending on k with y E Ck, 

llyU ~ 1 and llxR $ pllyU. Then in both cases for sufficiently small c
1 

and 

O < £2 s £1 

where 

In the Cl 

by 

(2.59.i) 

Uk def T1/2k y0+c 
Cl 

Uk def(Tc) 
c p+l 

£ case we take c
2 

1/k Yo+C . 1/2k and for z ET we estimate (2.58) 

-<n,x> - <t,y-c
2

y
0

> - c
2
<t,y

0
> + M(lltU/t") + K"(m,t',k) s 

s a(x,y-c
2

y
0

) + llzll/k+l - c
2

6kUtD + M(HtU/t") + K" s 

$ a(x,y-1/2k y
0

) + Uzll/k + M*(1/2k 6kt") +K's 

s a(x,y-1/2k y
0

) + llzU/k + K, 

where K depends on t', t" (or only t'), m and k. 

If a= c we proceed as follows: since a is uniformly continuous on 



u: n {zJllzll=l}, for each o > O there is an £
2 

with O < £
2 

S £
1

, depending 

on o and on k, such that 

where z denotes z/U zll . Hence for all z E (TC) n { z J II yll ~1} 
p 

(2.60) 
a(x,y-£

2
y

O
) s a(i)II (x,y-£

2
y

O
)U + ell (x,y-£

2
y

O
)11 s 

s a(z) + oHzll + £2° + £2 max lac';) I s a(z) + oHzH + K"(k). 
ZE(TC) 

p 

Let o 1/k -1/k+l then we estimate (2.58) by 

a(x,y-£
2

y
0

) + HzU/k+l - £
2

oklltU + M(ll tll/t") + K' s 
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(2.59.ii) 
S a(z) + oHzll + K" + HzH/k+1 + M*(£ o t") + K' s a(z) + Hzll/k + K 

2 k 

where again K depends on t', t" (or only t"), m and k. 

For the proof of the continuity of F-
1 

we proceed as in the proof of 

theorem 2.21. Each f EH (m,k+l,t') is a tempered distribution in the variable e k+l . Re 8 for every Im 8 E (T )
0 

; denoting the inverse Fourier transform of 

this tempered distribution by F;~[f(Re 8 +i Im8)]Tl,E we get 

-1 
exp{< (Tl, E) , Im 8 >} F 8 , [ f ( Re 8 + i Im 8) \, E 

and this is a distribution in V' ". For a C ~ function ct, with compact support 
T),<, 

in lR x lR and for a = £ we have 
n n 

-1 <F f,ct, > I I ct, <TJ ,El 

(2.61.i) lR lR 
n n 

whereas for a c we have 

(2.61.ii) 
-1 

<F f,ct, > --
1

- I f(8){ J I cp(TJ,E)exp[-i<(TJ,E),Re 8> + 
(271/n 2n 

lR lR lR 
n n 

+ <(TJ ,El ,Im 8>]dTJdt }d Re a. 
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The integrals exist and are independent of Im9 E (TClk+l because F-
1
[¢](9l 

Cl 

is an entire function which is rapidly decreasing in Re 9 for each Im 9 in 

a compact set in m2n As in the proof of theorem 2. 21 we use the growth of 

If (9l I, either for hm an large in the set { (x,yl IY - Yo/k+l E 

a= e: in which case lf(9
1

,a
2

+iy
0

/2k+2) I is O(exp a(Im 9ll for 

any ray in Tc, or for fl Im an large in the set {(x,y) IY E Ck+l' 

DxU 5 (k+l)DyU} if a= c, to show that F-1
f has its support in 

C, X E lRn} if 

Im 9 + 00 on 

n yU ?: 1/2k+2, 

!tk+l. 
Cl 

In order to find the growth at infinity of the C ~ functions ¢ on which 

F-1
f can be defined, we write (2.61) in a different way. Let y = y(k) be so 

large that 

for 

2n 
IY + l 

j=l 
a~I ?: 1 + he an 

2 

J 

def I Im 9 E Bk= {(x,yl y E ck+l' UyU s 1, Uxll s k+l}. 

Then for such Im 9 we can write (2.61l as 

(211)2n I I { I 2n 
lR lR lR 

f(9lexp-i<(n,E;l,9> d a} 
(y + I:9 ,2):t-- Re 

J 
n n 

where we have set l = [(m+nl/2]+1. The third integral is independent of 
-1 

Im 9 E Bk. Hence F f, which is itself independent of k, is a sum (depending 

on kl of derivatives up to order 2l of a continuous function G ( depending 

on kl which for each (x,yl E Bk satisfies 

* s K(f)K exp{M (t•llyUl +llyll0t;U +<n,x>}, 

where K(fl denotes 

K(f) ~ sup lf(9llexp{-m log(l+H9lll -M*(t'hma 2n )}. 
Im9EBk 

By (2.29l we can choose (x,y) E Bk suitably with x -(k+l)n, so that for 
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lli;II sufficiently large 

jG(n,i;) I :<o: K(f)K exp{M(Hi;ll/t') - (k+l)llnll}. 

Thus if we consider the space of all t with t defined in the £-neighborhood 

of Qk+l where E = 1/k - 1/k+l and with 
ex 

joext(i;;l I :<o: K exp{-M(lli;ll/t') + (k+l)llnU - (n+1)log(1+111;U)},lexl :<o:2.t 

for some K ~ 0, then F-lf is defined and continuous on this space. Embedding 

into this space the space vf1+2n+2 cnk·-M(Ui;H/t') + kUnR - (m+2n+2)log(l+lli;;II)) 
2 ex' 

we find that F-l is continuous from Hex(m,k+l,t') into Sex(m+2n+2,k,t')' for 

ex E {E,c}. 0 

II.3. THE EDGE OF THE WEDGE THEOREM 

In thi s section we shall give a short proof of the edge of the wedge 

theorem for distributions and we shall extend it so that it applies to ultra­

distributions, too. We will be concerned with the general situation, cf, [17], 

where the two cones need not be opposite each other. Our proof also applies 

to the case of the Malgrange-Zerner theorem, cf. [49], where the functions 

are holomorphic only in lower dimensional regions. Usually, the known proofs 

of the edge of the wedge theorem are more complicated and use some functional 

analysis (Schwartz' kernel theorem), see for example [64] or [ 8], whereas 

our proof is based on Fourier transformation. 

II.3.i. THE EDGE OF THE WEDGE THEOREM FOR DISTRIBUTIONS. 

We shall derive the local version from a global one by a transformation 

as performed by Borchers in the proof of [4, lemma 8]. In fact, [4, lemma 8] 

contains already the edge of the wedge theorem for functions with continuous 

boundary values, cf. for example [64, th. 2.14], which is usually needed in 

the proof of the general case, cf. [64, th. 2.16]. Moreover, [4, lemma 8] 

is of the type of the Malgrange-Zerner theorem, cf. [44, th. 3] or [49, 

p. 286-287], i.e., it gives the analytic continuation of a separately holo­

morphic function defined, if n = 2, on 
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where this function has equal continuous boundary values for y
1 

i O and for 

y
2 

i 0. We shall extend the method of [4] so that we get the result for 

distributional boundary values and even for ultradistributional boundary 

values. 

It should be remarked that [4, lemma 8], as a particular case, yields 

the Cameron-Storvick theorem, cf. [44, th. 4], i.e., the analytic continua­

tion into the domain 

of a function which is separately holomorphic, if n 2, in 

where K = R- 1. This is a better constant than K = 1 - 1/fi of [4, th. 4] 

which on its turn is better than the original K 

Storvick, cf. [44]. 

2/(5+2>'2) of Cameron-

For our proof of the edge of the wedge theorem we need lemma's usually 

preceding it, cf. [64]. In particular, we mention the following lemma's 

whose proofs can be obtained from those in [64], cf. also the next section. 

LEMMA 2.28. ([64, th. 2.6 & 2. 10]). Let C be a convex cone in nl (not 

necessarily open) and let C 
def 

{yly E c, llyll < r}. Let f be a holomorphic 
r 

function in an open neighborhood in <Cn of lRn + i C r satisfying 

(2.62) 

where M(r') may depend on r' for O < r' < r, and let f* be the boundary 

value in S' off as y + 0, y EC. Then f* ES' is such that for each 

y E Cr U {O} 

(2.63) 
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LEMMA 2.29. ([64, th. 2.6 & 2 .10]). Let f* ES ' be a tempered distribution 

satisfying (2.63) for y E (C) where C is an open convex cone. Then 
- <f, y> -1 * r n 

He ' F [f ] f,J (x) is a holomorphic function of z = x + iy in lR + i C , 

which tends to F[e-<f,,y>F- 1[f*] f, Jx ins~ on (3C)r and to f* in S' as y ! 0, 

y E C. 

LEMMA 2.30. ([64, th. 2.5]). Let ff, E vk be a distribution such that 

e-<f,,y>f ES ' for y E B, where Bis some set in lRn. Then also e-<f, ,y>f ES' 
f, f, f, f, 

for each y in the convex hull ch B of B. 

THEOREM 2.31. (Edge of the wedge theorem for distributions) .Let Ube a domain 
n 1 2 n 

in lR , let C and C be two open, connected cones in lR and let r 1 > 0 and 

r
2 

> 0. If two functions f 
1 

and f
2

, holomorphic in U + i c1 
and U + i c2 

, 
r1* r2 

respectively, have the same distributional boundary value f in V(U) ', then 

f* is the boundary value in V (U) ' of a function holomorphic in n n lRn + 

+i ch(c1 uc2 ),which coincides with f
1 

and f
2 

on their common domains of 

definition, where n is a certain open neighborhood of U in ~n not depending 

on f
1 

and f
2

. 

PROOF. Let y
0 

E ch(Cl uc
2

) and first assume that Yo 1 0. Let y 1 , ... ,yn E 
1 2 

l!C u C be linear independent vectors such that y 
0 

E ch { y 
1 

, ... , y n}. Since 

analytic continuation is unique, it is sufficient to show that f
1 

and f
2 

can 

be continued analytically into n n lRn+ i[int ch{0,y
1

, ... ,yn}J. We choose 
n 

y
1

, ... ,yn as the new coordinate directions of lR, so that by a change of 

coordinates (cf. [64, th. 2.15]) we may assume that 

* f 
X 

lim 

y/0 

f .(x , ... ,x . +iy ., ... ,x) 
J 1 J J n 

in distributional sense in {x 11 x
1 
I < 1, ... , I xn I < 1}, where the n functions 

fj are holomorphic in a neighborhood in ~n of 

(2.64) { z I I x 
1 
I < 1 , y l =0 , ... , I z . I < 1 , y . > 0 , ... , I x I < 1 , y =0} , 

J J n n 

and that for some M > 0 and ro > 0 there 

lfj(x
1

, ... ,x . +iy . , ... ,x) I <;; 
J J n 

for j 1, ... ,n, cf. [49]. Let 
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ul w. 
def fj/ -1 J -1 ~j e e 

f (u , ... ,w., ... ,u ) = , ... , , ... , 
1 J n \ ul w . 

e +1 e J+l 

Then fj is holomorphic in a neighborhood in ~n of 

and it satisfies there for some K > 0 and k > 0 

~j If <u , ... ,w . , ... ,u > I 
1 J n 

Every fj has the same boundary value in V• and the functions 
u 

* satisfy (2.62). Hence they have the same boundary value h 

By lemma 2.28 

in S', 
u 

1, ... ,n 

and by lemma 2.30 

u 

eun-1) 

e n+l 

c f. (2.19). 

def I v € B= {vv. ~ 0,j=l, ... ,n, 
J 

v
1

+ ... +vn < 1r/ 2 }. 

* According to lemma 2.29 h is the boundary value of a holomorphic function 

in mn + i int B which coincides with the functions hj on the parts of the 

boundary of mn + i B where these are defined, because hj (u
1

, . .. ,w . , . . . ,u ) 

F - <f; ·, V . > -1 * ~j 2 j 2 J n 
[e J J F [h Jf;](u). Since~: (w) = e w h (w) and sinc e ew is entire, 

it follows that the functions fJ can be continued analyti cally to the same 

holomorphic function i n lRn + i int B. * By transforming back, we find that f 

is the boundary value of a holomorphic function in rl nlRn+ i{y ly . > O,j=l, ... ,n} 

coinciding with fj on the boundary, where n is determined by theJtransforma­

tion of the domain lRn + i int B. 
1 

Finally, if y 
O 

= 0, we choose n vectors y 
1 

, ... , y n € ch C such that 
2 

-y 
1 

, ... , -y n € ch C and we perform the s ame steps as above such that now B 

becomes {vJ!v
1

!+ ... +lvnl < 1r/2}. Then f
1 

and f
2 

,: an be continued analytically 
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into a neighborhood of U in ~n and f* is a holomorphic function there. 0 

REMARK. It follows from the proof that the domain into which a function, 

which is separately holomorphic in the regions (2.64) for j = 1, ... ,n and 

which has the same boundary value for every y, + 0, can be continued contains 
J 

(cf. [4]) 

u 
'-j>O 

"l+ ... +An=l 

{zlz. EC°:(A
1

, ... , A )} 
J J n 

+ . 
where C.(>-

1
, ... ,A) 1s the intersection of the upper half-plane with the open 

J n 
circle with center -ip and with radius /1+p2' where p def (tg 1/2A , TT)-

1
. This 

J 
yields the constant K = fi- 1 in the Cameron-Storvick theorem, cf. [44, th.4]. 

II.3.ii. THE EDGE OF THE WEDGE THEOREM FOR ULTRADISTRIBUTIONS. 

The proof of th. 2.31 relies on the fact that we can suppress the growth 

at infinity of the functions fj by a function holomorphic in a tube, namely 
_2 * ~ J· 

bye Now, if f is an ultradistribution in V (U) ', the functions f have 
M 

boundary values in V•, because the growth of f
1 

and f
2 

for llyll small is the 
M ~j ~j 

same as the growth off for v. small, but f (u
1

, ... ,u. +iv,, ... ,u) grows 
J J J n 

faster than exponentially for Hun ➔ 00 • Then we do not have a function like 
2 

e-w, holomorphic in a tube, which suppresses this growth. Therefore, we 

have to generalize the lemma's 2 .28, 2 . 29 and 2 . 30 such that they hold for 

ultradistributions f* in V~ and analytic functionals F- 1
[f*] in z~. The 

proof of the generalization, lemma 2.32, of lemma 2.28 requires some inven­

tion, while the proofs of lemma's 2.33 and 2 . 34 are similar to those of 

lemma's 2.29 and 2.30. 

Ifµ E z~ we mean by e- <z; ,yO>µ E Z' thatµ 
<1; > z; M z; 

functions of the form e- ,Yo ~(z;) with~ E z and 
M 

can be applied to entire 

that I<µ ,e-<z; ,yo>~(z;l>I $ 
z; 

~KIi ~II for some K > 0 where II • II is one of the half norms defining the top-
a a 

ology of ZM. 

LEMMA 2.32. Let C and Cr be as in lemma 2 .28. Let f be a holomorphic func­

tion in an open neighborhood in ~n of IR.n + i C with a boundary value f* in 
def -1 * r 

V~ as y ➔ 0, y EC. Thenµ= r [f] E Z~ is such that 

- <z; ,y> 
e µz; E z~ 
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for every y E Cr u {O}. 

PROOF. Let {Kk}==l be an increasing sequence of convex, compact sets with 

union nt + i Cr. Let Hk be the space of analytic functionals carried by ~ 

provided with the FS-space topology defined by duals of sup-norms and 

finally, let H ~ ind lim Hk, where the injection maps are obtained as 
k ➔ oo 

transposed of restriction maps. Then f is an element of the dual H' of H. 

Now the Ehrenpreis -Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], 

describes the space A of Fourier transforms of elements of H very well: A 

consists of entire functions h with the order of growth at infinity 

exp(e:lltJ +kDnB + sup - <i;,y>) 
yESk 

for all e: > 0 and for some k depending on h, where {sk}==l is an increasing 

sequence of compact subsets of Cr with union Cr. We give A the topology 

which turns the Fourier transformation into a topological isomorphism. Then 

there is an elementµ in the dual A' of A with 

f (z), z E lR.n + i C • 
r 

If Yo E Cr and WE ZM the function C ➔ e-<C,yo>W(C) belongs to A and, 

in fact, it is the Fourier transform of the analytic functional defined by 

~xo(y0 )y where~ E VM is the inverse Fourier transform of wand where o(y
0

) 

is the Dirac-delta function concentrated in the point y
0

. Hence 

Furthermore,µ is also a continuous linear functional on ZM by means 

of the following definition 

<µ,w> ~ lim <µ ,e-<C,y>W(C)> 
y➔O C 
yEC 

lim 
y➔o 

yEC 

I f(x+iy)w(x)dx, 

That the limit exists and indeed defines an element in Z' follows from the 
M 

last equality and the data of the lemma. Thus we haveµ= F- 1[f*] and since 

for Yo EC the space e-<C,yo>z (· th f 11 t· f t· r M i.e., e space o a en ire unc ions 

cl>(C) = e-<c,Yo>W(C) with WE ZM provided with the half norms Dcpll def 

=lle<C,yo>cpn where ll•ll are the half norms defining the topology of ZM) can 
a a 
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be continuously embedded into A, it follows that e-<t;,y>µt; c Z~ for y E Cr. 

[] 

LEMMA 2.33. Letµ E ZM' be such that e-<t;,y>µ E Z' for each yin the closure 
t; M 

of an open, convex cone c with llyll < r. Then F[e-<½,Y>µ ](x) is a holomorphic 
n -<t;,y> t; 

function of z in :m + i C , which tends to Fee µ J in V• on the boundary 
r t; M 

of C and to F[µ] in V• as y ➔ O, y EC. 
M 

PROOF. The space ZM is defined as the space of all entire functions with 

certain finite, weighted, sup-norms. Let C(ZM) be the space of all continuous 

functions with the same finite, weighted, sup-norms. Letµ be an extension 

of µ to C (ZM) '. Then by Riesz' theorem for each testfunction ii can be repre­

sented as a measure µ(t;) on ICn. Furthermore, let y
0 

E Cr. Then as in [64, 

proof of th. 2.6, formula 2.70] it is shown that there is an£> 0 such that 

£~ -<t;,y>~ 
e e µt; 

f~r yin a neighborhood U(y
0

) of y
0 

contained in Cr and for some elements 

µJ E C(ZM)' depending on y. The~ for y E U(y
0

) 

def f i<t;,z> ~ f(z) e dµ(t;) 1 f exp(i<t;,x> - E~)dµj (t;) 

j=1 IC 
n 

exists and is holomorphic in :mn + i U (y 0). By analytic continuation we get a 

function f which is holomorphic in :mn + i C . Now Fubini 's theorem shows 
r 

F[ 
-<t; y> 

that e ' µt;](x) = f(z). Furthermore, let y
1 

E (3C)r' let y
0 

= 0 and 

let y
2

, ... ,yn E Cr such that the convex hull B of {y
0

, ... ,yn} has a non­

empty interior. Then as in [64, proof of th. 2.6, formula 2.68] we can write 

for y EB, where a(y,I;) is a continuous function, bounded uniformly for all 

I; E :m and y E B, cf. the proof of the next lemma. Therefore, 
-<t;,y>~ 

n -<t;,y1>~ 
e µt; 

tends toe µt; in C(ZM) I as y ➔ yl, y E B or to µt; in C(ZM)' as y ➔ O, 

y E B. Hence the statements of the lemma follow. D 

LEMMA 2.34. Letµ E Z' be such that e-<t;,y>µ E z~ for yin some set Bin 
-n- -<t; y~ t; 
:m . Then also e ' µ E z' for all y E ch B. 

t; M 
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PROOF. It is sufficient to 

0 S t :5 1, 
- <l;,y1>~ 

e µi;; 

-</; y> 
e ' µ E z'. 

I; M 
- <l;,y2>~ 

and e µi;; 

show that for y
1 

,y
2 

E B and y = ty
1 

+ (1 - t)y
2

, 

Letµ E C(ZM)' be an extension ofµ, then also 

belong to C(ZM) '. The continuous function I; + 

is bounded in lRn (see [64, proof of th. 2.5]). Accordingly 

so that also e-<i;;,y>µ E C(Z) '. Therefore, its restriction to ZM, which 
-<I; y> I; M 

equals e ' µi;;' belongs to z~. D 

Now the proof of the edge of the wedge theorem for ultradistributions 

is obtained similarly to that of theorem 2.31 using the above given l emma' s 

instead . of the lemma-' s of the .. last section. So we have got the f ollowing 

theorem. 

THEOREM 2.35. (Edge of the wedge theorem for ultradistributions). Let c
1

, 

c
2

, f
1 

and f
2

, U, r
1 

and r
2 

be as in theorem 2.31, where now f
1 

and f
2 

have 

* have the same ultradistributional boundary value f in VM(U) '. Then the 

conclusion of theorem 2.31 holds in VM(U)' instead of V(U) '. 

* REMARK. More general edge of the wedge theorems exist, where f is a sum of 

boundary values of more than two functions, see for example [31] and [43, 

p. 40-81]. If distributional boundary values are concerned, this theorem 

has been shown by Martineau in [49] and an easy proof by induction has been 

given by Bros & Iagolnitzer in [6, section 7], where first the notion of 

essential support is introduced by means of a generalized Fourier transform­

ation. This method might be extendable to ultradistributions, but a forth­

coming paper on this subject, announced in [6] and in [31 ] , has not yet 

appeared. 



CHAPTER Ill 

FOURIER TRANSFORMS OF ANALYTIC FUNCTIONALS 

WITH COMPLEX, UNBOUNDED , CONVEX CARRIERS 

81 

The theorems of this chapter describe the Fourier transformation Fas 

a topological isomorphism between spaces of analytic functionalsµ carried 

by closed, convex sets fl c ctn and spaces of holomorphic functions f of exponent­

ial type in open, convex cones I c ctn. The functionalsµ are carried with 

respect to some class of open neighborhoods of fl and to some class of weight 

functions on these neighborhoods . This determines the behaviour off near 

the vertex of I and conversely. The convex set fl itself determines the cone 

1 and the type a(z) off, and conversely. · These theorems generalize the 

Ehrenpreis-Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], where fl 

is bounded and 1 = ctn, and the one dimensional version due to Polya, [3, 

ch. 5]. 

In [65, th. 2.22 & 2.23] the Ehrenpreis-Martineau theorem is given 

for polydiscs fl and in [73] Fis treated as a topological isomorphism for 

this case. Then the proof can be given directly, but for general, bounded, 

convex sets fl the proof is more complicated. The proof given by Ehrenpreis 

in [16] is based on the case of polydiscs, which by the Oka embedding can 

be extended to convex polyhedrons, using the fact that a bounded, convex set 

can be approximated arbitrarily close from the inside by convex polyhedrons. 

This is no longer true for general, unbounded, convex sets . Hormander' s method 

which uses an existence theorem for the 3-operator, see [30, ch. 41, applies 

directly to general, unbounded , convex sets fl . Therefore, in case fl is un­

bounded we will follow the method of [jo, ch. 4] for proving our theorems, 

but since we deal with non-entire functions f we have to pay attention to 

the growth off near the boundary of 1. 

Unlike in the case where fl is bounded the proof of the injectivity of 

Fis not trivial if fl is unbounded . In this chapter we shall reduce the 

proof of the bijectivity of F to two problems, which will be solved in chap­

ter VI by a generalization of Hormander' s method of [ 30, ch . 7 J . On the 



82 

other hand, this is, in fact, just a version of Ehrenpreis' fundamental 

principle with non-entire functions and looking at it in this way, our proof 

follows Ehrenpreis' method. The generalization of Ehrenpreis fundamental 

principle to non-entire functions will be treated in chapter IV, where also 

the two problems of this chapter will be reformulated in a more general form. 
C def n . 

In pa~icular, it is interesting if r is the open cone T = lR + 1. C 

where C is an open, convex cone in lRn. Then functions f, holomorphic in Tc, 

may have ultradistributional boundary values on lRn (or in the limiting 

cases, on the one side distributional boundary values and on the other side 

boundary values in the sense of Fourier hyperfunctions). They are the Fourier 

transforms of analytic functionals in Z~ carried by certain, convex sets Q 

which may be unbounded in the imaginary directions. Then a more complicated 

aspect of the topology of ZM arises and the testfunctions ~ on which the 

analytic functionals act satisfy (2.45) on a neighborhood of n. This actually 

expresses the fact that we deal with ultradistributions defined on ultra­

differentiable testfunctions with compact support, which is so if M satisfies 

"(2.20). However, in this chapter we shall not need this property and our 

theorems remain valid for ultradistributions defined on quasi-analytic test­

functions. Then, if n is unbounded in the imaginary directions, there is 

perhaps no other reason for requiring the analytic testfunctions to satisfy 

(2.45) on neighborhoods of Q than that the theorems are true as they are 

stated here. Anyhow, we shall not deal with the ultradistributions as bound­

ary values themselves, but we shall define the Fourier transformation F mere­

ly by formula (2.46), which in case M satisfies (2 .20) is justified by 

lemma 2.26. 

III. 1. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS; 

FOURIER TRANSFORMATION AS A SURJECTION. 

In this section we consider functions f, holomorphic in a cone r in 

~n, of exponential type a(z) for DzD large, which do not satisfy growth 

conditions near the vertex of r. Such functions turn out to be Fourier trans­

forms of analytic functionals with unbounded carrier Q(a,1), cf. (2.44). We 

shall discuss two cases: one, denoted by the index£, corresponds to analy­

tic functionals with carriers with respect to £-neighborhoods, i.e., with 

respect to the neighborhoods fn(a+l/k,1)}'" 
1

, cf. (2.48.i), and the other, 
k= 

denoted by the index c, corresponds to conic neighborhoods, i.e., neighbor-

hoods of n(a,1) of the form Q(a+l/k,1k), cf. (2 .48.ii). If r = Tc the case 



83 

of conic neighborhoods is perhaps more suitable for describing quantum field 

theory, cf. [53]. 

Let I c en be an open, convex cone, a a convex function on I which is 

homogeneous of degree one, {1 } 
00 

an increasing sequence of open, convex cones 
k k=1 

exhausting I and let z
0 

E ,
1 

be fixed with llz
0

11 = 1. Then the collection 

{1/k z
0 

+1}:=l given by (2.49) exhausts 1. In the case denoted by £ , let the 

convex function a: on 1/k z
0 

+1 be defined by 

(3.1. i) a(z + w) 

where .s: > 0 is so small that z +w E 1/k+l z
0 

+1 for z E 1/k z
0 

+1 and 

llwll S 6~. Then after a detailed inspection one can see that for each k there 

are q ~ p ~ k and a constant~ > 0 such that for z E 1/k z
0 

+ 1 

Hence we have the following equality of spaces 

(3.2. i) Exp£~ proj lim H
00

(l/k z
0

+1;a:(z) +1/kllzll) = 
k + oo 

proj limH
00

(1/k z +1;a(z-l/ z
0

)+1/kllzll), 
k + 00 0 2k 

where the space H
00

(Q;M(z)) has been defined in section II.2.vii by means of 

the norm (2.55). According to [73, cond. HS
1 

and HS
2

] Exp£ is a nuclear FS­

space (it can also be written as projective limit of Hilbert spaces). If a 

is a bounded function on pr 1, the space Exp may also be written as 
£ 

(3. 3) Exp£ proj lim H
00

(1/k z
0 

+1;a(z) + 1/kllzll), 
k + oo 

cf. (2.60). 

In the case denoted by c we exhaust I by the sequence {1(k)}
00 

given 
k=l 

by (2.47). For each k let oi > 0 be so small that for z E 1(k) and for 

llwll ScScwehavez+wE:1(k+l) anda(z+w) S a(z)+(l/ -1 / )llzll+K for 
k k k+1 k 

some~ > 0, cf. (2.60). Then we define for z E 1(k) 

(3. 1, ii) 
c def 

ak (z) max a(z + w) 

llwll so~ 
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and we have the following equality of spaces 

(3. 2.ii) Exp 
C 

def proj lim H er (k); a (z) + 1/kD zl) 
00 

k -+ 00 

proj lim H (r(k);ac(z) +1/klzl). 
k-+00 00 k 

Furthermore, let for a £ or c 

(3.4) 

where nk is given by (2.48) and let 
a 

(3. 5) A 
a 

def ind lim Ak. 
k -+ 00 

a 

According to [73, cond. HS
1 

& Hs
2

J A
0 

is a nuclear DFS-space (it can also 

be written as inductive limit of Hilbert spaces), hence the strong dual A; 

is a nuclear FS-space. In particular A~ is bornologic. 

For both a=£ and a c the set 

is a subset of A
0 

and it follows from an easy estimate (as in the proof of 

lemma 2.27, formula (2.59)) that the map 

(3.6) 

is bounded, hence continuous, where Fis defined by 

(3. 7) 

Fis sometimes called the Fourier-Laplace or Fourier-Borel transform if the 

factor i is -omitted, but we merely call F Fourier transform and we shall see 

later that there is an analogue with the Paley-Wiener theorem if we maintain 

the factor i in (3.7) as we do here. In the next section we shall pay atten­

tion to the injectivity of F and here we shall show that Fis surjective. 

Then it follows from th.e open mapping theorem that the inverse F-l of F is 

continuous. 



If for each p = 1,2, ... Ii > 0 is such that for z E r 
p p 

Im<l;; ,z> 2: Ii lli;UUzU, then fork 2: max(p+2,p/li) we have 
p p 

(3. 8. i) 
i <1; ,z> k 

e E A , 
C 

Z E i(p}. 

Similarly, for each p there i s a k > p such that 

(3. 8 .ii) 

Denote 

and 1; E r* 
p+l 

8 5 

Now in view of (3.8) for every f E Exp we have to find for each k a contin-
k k a 

uous linear functional µa on Aa with 

(3.9) f (z) 

Indeed, 
~k 

be the closed subspace of Ak defined by completion of the let A 
. a a 

{ 1. <1;, z > I E rP} in Ak, where pis determined by k according to set e z 
a a 

(3.8), then the closed subspace A of A 
a 

, defined 
a 

by completion of the set 

L in A 
a' 

can be written as 

A ind lim Ak 
a a 

k -+ 00 

cf. [20, § 25.13] or [ 40, th. 7'] . By (3.9) we have 

k 00 

so that {µ
0

}k=l determines an elementµ E A~ with F(µ) = f. Finally, accord-

ing to the Hahn-Banach theorem and to definition (3.7) there is aµ E A~ 

with F(µ) = f. 

As in the proof of the theorem with entire functions in [30 ] we try 

to extend fas a holomorphic function Fin 2n complex variables 8 satisfying 

a certain growth condition and we apply the Paley-Wiener theorem of lemma 

2.27. If we identify ~n with JR
2
n, we will writer for both, cones in ~nor 

in lR
2
n. Now assume that for each k we have found a function Fk of the complex 

a 
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variables 8 = (8 1 ,8 2) E en x en 

isfies for some Mk> 0 and mk > 0 

e 2n holomorphic in m2n + ilk+2 , which sat­
a 

(3.10) 

and 

( 3. 11) 

Im 8 E rk+ 2 c m2n 
a 

f(z), z E rP C ~n 
a 

a 
where we take a(k+2 ) different from a only if a= 

£ def 
pr r, in which c:se a (k+2) (z) = a (z - 1/ k+2 z O), 

(3.2.ii). Then Fa belongs to the space H (m,k+2) 
k a 

lemma 2.27 it follows that F can be written as 
a 

(3.12) k 
<(µ) ~· a n,., 

£ and a is not bounded on 

cf. ( 3 . 2 . i) , ( 3 . 3 ) and 

defined by (2.57). From 

Im 0 E rP 
a 

k 
for some µ a E Sa (m + 2n + 2, k + 1 ) ' , 

follows and using [73, cond. Hs
1

J 

cf. (2.57). From (3.11) formula (3.9) 
k 

for$ E Aa we get 

~ Kk supkj$(r;)Jexp 1/k Dr;0 
l';Efla 

because an £-neighborhood of nk+l is contained in nk and for any m 
a a 

(3 .13) 

Henceµ: determines a conintuous linear functional in (A:)' and (3.9) is 

valid, whenever we can find functions Fk satisfying (3.10) and (3.11) for 
a 

f E Expa. Then the map (3.6) would be surjective. 
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Since Expa can also be written as projective limit of Hilbert spaces 

and since the function a~k) may be changed into a~ given by (3.1.i) and 

(3.1.ii), cf. (3.2.i) and (3.2.ii), it is sufficient if (3.10) is satisfied 
2 . £ 

with an L -norm instead of a sup-norm and with weight functions exp - ak (z) 
£ 

instead of exp-a(k)(z). Precisely, this means that (3.10) may be replaced 

by 

2n J k 
lR +ich 1 

a 

for some (other) positive numbers Mk and~ depending on 

denotes the Lebesgue measure in ~
2

n Then the extensions 

exactly from the following theorem, if we choose there n 

k, where >.(8) 

Fk off follow 
a 2 2 
lRn+i•c~n 

2n . k 2n . k+l 
n 1 = lR +ich•a• n 2 = lR +ich•a , s 1 =i8n+1 , ... ,sn =i8

2
n and cj>(8) = 

2a(Im 8) + 2/kllim 811 or in the a= c case where moreover a is not bounded on 

pr•, cj>(8) = 2a(Im8
1
-nx

0
, rma2-ny

0
) + 2/kllrmall with n < a:, cf. (3.1.i), 

so that these functions <Pare convex, hence certainly plurisubharmonic. 

THEOREM 3.1. Let a n-k dimensional hyperplane in ~n be given by the linear 

functions 

k n-k 
or shortly w = s(z) with w E ~, z E ~ • Let n

1 
c n

2 
c n be pseudoconvex 

domains in tn such that an £-neighborhood of n
1

, with respect to closed 

polydiscs in the first k coordinates, is contained in n
2

, i.e., 

(3. 14) {alla.-a
0

1 :,; £ for j 1, ... ,k; 8. = 8~ 
J J J J 

for j k+l, ... ,n;80 E nl} C n
2

. 

Furthermore, let <P be a plurisubharmonic function on n and for 8 E n
1 

let 

j 1, ... ,k}. 
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def j n-k def { I } Finally let n• =- {z -(s(z) ,z) E n} cc and (I'. == z (s(z) ,z) E n . , 
J def J 

j = 1,2, and let¢' be the function in (2 ' given by ¢'(z) = ¢(s(z),z). Then 

for a given function f, holomorphic inn•, there exists a function F, holo­

morphic in n
1

, which satisfies 

(3 .15) F(s (z) ,z) f (z), 

and for some K > 0, depending only on k ands . , j 
J 

1, ... ,k, 

(3.16) 
I F (el I 2 

exp - ¢ ( e ) _______ e: __ dA (9) 

(l+Hel2)3k 
s K e:-

2
k I lf(z) l

2
exp-¢' (z)d).(z) 

I 

(22 

n n-k . 
(where ). (0) and A (z) denote the Lebesgue measures in a: or C .:. ~·respectively), 

if f is such that the right hand side is finite. F depends besides on f also 

on n
1

, e: and¢. 

PROOF. Let 1ji be a c2
-function in a: with values between 0 and 1, which is 

equal to 1 in the disc with radius 1/2 £, which vanishes outside the disc 

with radius e: and which satisfies 

p E a: 

for some K > 0. Define the (0,1) - form 1/1' (pl def 31ji/3p (p)dp and let for 

j = 1, .•. ,k 

then dp , 
J 

def 
p , = p,(9,;z) = 9. -s.(z), 

J J J J J 
n-k 

Z E a: 

- n 
d9 - 0 .E as /az O dz O • We define the function F as follows 

j .(.=lc+l j .{_ .{_ 

1/1 (p < 0 ; 0k 1 , •.• , 0 > > }p. < 0.; 0k 
1

, •.. , 0 > u. < 0
1

, ... , 0 . ; 0 
1

, ..• , 0 > 
m m + n J J + n J J k+ n 

for certain functions U. of n - k + j complex variables, where an empty pro­
J 

duct is defined as 1. For 9 E n
1 

F( 9 ) is defined, because then 
k k 

.!!1 (p.(9,;z)) = 0 for z i {zl3w Ea: ,lw. -s.(zll < e: for j = 1, ... ,k, 
J- J J J J 
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(w,z) E f.11} C f.12. If ej = sj cek+l'" .. ,en), i.e., if pj = 0, for j 

we get (3.15). 

1, ... ,k, 

Now we will choose the functions U. with a suitable bound such that F 
J_ 

is holomorphic in f.1
1

, that is such that aF = 0 there. First we write Fin a 

different form, namely denote 

e[J·J def (S e ) j+n-k = 
1

, .•• , j;z E ([ 

n-k 
for z E ~ , let 

and let 

for j 

G ( ) def f (z) 
0 z 

G ,(8[ j]) def ~,(p.(8,;z))G, 
1

(8[j-1]) -p . (8,;z)U,(8[j]) 
J J J J- J J J 

1, ... ,k successively, then 

G. is defined in 
J 

fl[j] ~ {8[j]J3w E q:k-j,Jw -s (z) I <£ form= j+l, ... ,k 
m m 

and (8 8 w w ·z) E o
1

} c q:j+n-k 1•···• j' j+1•···• k' 

if Gj-l is defined in fl[j - 1]. 

The sets fl[j] are in general not pseudoconvex, so we will define 

pseudoconvex, open sets fl[j] containing fl[j], such that Gj is defined in 

fl[j] if G , 
1 

is defined in ii[j-1]. For that purpose we first note that 
J-

"[J·J = { c·JJ<e e c > c > > E ,..,
1
Cj+l, ... ,k>} u e J 1 , ... , j'sj+l z , ... ,sk z ;z u 

where n:j+l, ... ,k) denotes the £-neighborhood of n
1 

with respect to open 

polydiscs in the (8j+l'···,8k)-space, i.e., 

fl (j+l, ... ,k) 
1 

def I 0 = {8 8 =8 for m=l, ... ,j,k+l, ... ,n and 
m m 

Je -0°1 < c for m=j+l, ... ,k with e
0 

E f.11}. m m 
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In general n~j+l, ... ,k) is not pseudoconvex and we denote by H(n(j+l, ... ,k)) 

the smallest, open, pseudoconvex set containing it. Then we define 

which according to [30, th. 2.5.14] is pseudoconvex. If we show that under 

the projection TTj: 0[j] + 0[j-1] 

(3.17) TT.(fl[j] n {0[jJlle.-s . (zll < £}) c 11[j-1] 
J J J 

the stated conjecture follows. 

Now 

TT . (n[j] n {0[jJl1e . -s . (zll < dl = {e[j-1Jlce
1

, ... ,e . 
1

, 
J J J J-

() () ) (H( ,.., (j+l, ... ,k)))(j) 
sj z , ... ,sk z ;z E " i 

( ' ) 
where n J denotes the open £-neighborhood of a domain n with respect to 

discs in the ej-plane. Let n(j) denote the open £-shrinking of n with respect 

to discs in the e . -plane, i.e., 
J 

If " . d " ( j) . 1 . b " . d ( " is pseu oconvex u , in genera , is not, ut " ( j) is pseu oconvex a 

similar proof to that of [57, p.97, Satz 7] shows that n(j) is pseudoconvex 

in every direction and according to [57, p.111-112 Korollar 14.1] n(.) is 

pseudoconvex). Thus (H(n~j, ... ,k))) (') is pseudoconvex and clearly J 

n(j+l, ... ,k) (Q(j, ... ,k)) (H(~(j, ... ,k))) A d ' 1 1 c 1 ( j) c 1 ( j) . ccor 1.ng y 

H( "1(j+l, ... ,k)) ( ("(j, ... ,k))) d h 
" c H .. 1 (j) an ence 

(3.18) 

which implies (3.17). Therefore, G. is defined in n[J· ] if G is defined 
J j-1 

in n[j-1]. 

11[0] 

n[j J 

By (3.14) we have n[o] c n2 and since n2 is pseudoconvex, we get 

c n2. Therefore, GO is holomorphic in 11[0]. Thus Gj is holomorphic in 

if G. 1 is holomorphic in n[j-1] and if u. satisfies 
J- J 
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(3.19) au.(S[j]) = g.(9[j]) ~ G. (9[j-1])ljl'(p . (9.;z))/p . (9 . ;z) 
J J J-1 J J J J 

in O[j] . Then Fis holomorphic in O[k] = Q[k] = n
1

. Since by assumption Gj-l 

is holomorphic in O[j-1], 1/p is holomorphic outside any neighborhood of zero, 

ljl'(p) = 0 in a neighborhood of zero and since 3ljl'(p.(9.;z)) = 33ljl(p.(8.;z)) =O 
2 - ~JJ JJ 

(because ljl is a C -function), we get ag. = O in n[j]. Furthermore, let u . be 
. j+n-k . n . J J 

the analytic map of¢ into¢ given by 

for some w E ¢j with lw I S£ , m 
m 

1, ... ,j. Then by (3.18) u.W[j]) c 
J ~ 

cH(n~
1
•···•k)) c n

2 
and therefore a function <P. can be defined on Q[j] by 

J 

<P. (9[j]) def max{<j,(u. (9[j])) J lw I S £, m 
J J m 

1, ... , j}. 

For each w E ¢j with lw I S £ form= 1, ... ,j the function <j,(u. (9[j])) is 
~ m J 

plurisubharmonic in Q[j], cf. [30, th. 2.6.4] and if we show that <P . is upper 
J 

semicontinuous, it follows from [30, th. 1.6.2] that <P. is plurisubharmonic 
~ J 

in n[j]. Assuming this for the moment we continue the proof of theorem 3.1. 

All the conditions of [30, th. 4.4.2] are satisfied now and this 

theorem gives a solution u. of (3.19) in O[j] with 
J 

I 
exp - <P . ( e [ j ] ) 

JuJ. (8[j]) 1
2 
---~--dl(8[j]J s 
( 1+119[J· ]II 2) 3j-1 

n[jJ 

I 
exp-<j,_(S[j]) 

S I gJ. (8[j ]) I 2 
-----'--,--- dA (8[j ]) . 
( 1+H 8[J· JU 2 J 3 (j-ll 

?i[j] 

Next we estimate G. in terms 

~1+119[j]U
2

J s M de;ending on 

with I e. - s. (z) I < £: 
J J 

2 2 2 
of Gj-l' using (a+ bl s 2a + 2b , 

s . and q, . ( e [ j J J ~ q, . 
1 

( e [ j -1 J J for 
J J J-

lp.ce.;z>l 21 
J J 

every e. 
J 
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~ 211e:2 I !Gj-1 (6[j-l ]) 12 

n[j-1] 

exp - cp . -1 ( 6 [ j -1 ] ) 
---"----c::--::--:---:-:- d:I. ( 6 [ j-1 ] ) + 
(1+D6[j-1]1 2J3 (j-l) 

+2MJ lgj(6[j])j
2 

nc j J 

exp-<P . (6[j ]) 
---~---- d:\.(6[j]) ~ 
(1+D6[j]R 2 J 3 (j-l) 

2 4 
< 8M11K +211e: 
- 2 

e: 
I !Gj-1 (6[j-1]) ,2 
fi[j-1] 

exp - <P . _ 1 ( 8 [ j -1 ] ) 
___ ..___ ____ d:I. ( 8 [ j-1]) . 

(l+U6[j-1]D 2 ) 3 (j-l) 

Since Gk= F, n[k] = rl[k] = n
1

, GO= f and n[O] c !12, (3.16) follows. □ 

We still have to show the following lemma. 

LEMMA 3.2. Let cp be an upper semicontinuous function in a domain l1 c lR.n. 

Let S be a compact neighborhood of the origin in lR.n and let n
1 

c l1 be a 

domain such that {xlx=x
1 

+w,x
1 

El1
1

,wES} c !1. Then the function cp 1 on n1 
given by 

(3.20) 
def 

cp
1 

(x) = max cp(x+w) 
WES 

is upper semicontinuous. 

PROOF. First we show that an upper semicontinuous function fin a domain U 
def oo 

attains a maximum on a compact set Kc U. Let M = sup f(x) and let {Mk}k=l 
x EKdef 

be an increasing sequence with Mk t M. The sets Uk = {x € U If (x) < ~} 

are open and if there is no x
0 

€ K with f(x
0

) = 
m 

M we have Kc kgl Uk. Since 

K is compact, there is a number m with Kc k~l Uk. This implies f(x) < Mm < M 

for x EK, contrarily to the definition of M. Thus there is x
0 

€ K with 

f(x
0

) M. Hence definition (3.20) (and also the definiiton of <Pe: in theorem 

3.1) is a good definition. 

Now let x
0 

€ {x!<P
1

(x) <c} n n
1

, then <P(x
0

+x) < c for x € S. Since <P 

is upper semicontinuous, there is an open neighborhood U of S with <P(x
0

+x) <c 

for x € u. In particular, since Sis compact, there is e: > 0 such that 

<P(x0+x+w) < c for w €Sand DxH < e:. Since an upper semicontinuous function 

attains a maximum on a compact set, it follows from (3.20) that the set 

{x € n1 !<P 1 (x) < c} is open and thus cp
1 

is upper semicontinuous in n
1

. D 
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Applying theorem 3.1 for obtaining (3.10) and (3.11) we get the fol­

lowing result. 

THEOREM 3.3. Let for ex=£ and ex= c the 

in the unbounded convex neighborhoods nk 
(X 

space A
0 

of holomorphic functions 

of n(a ,1) be defined by (3.5) and 

let Exp
0 

be defined by (3.2.i) and (3.2.ii). Then the map (3.6) F:A~ ➔ Exp
0

, 

given by (3.7), is surjective for ex E {£,c}. 

III.2. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS; 

FOURIER TRANSFORMATION AS AN INJECTION. 

In this section we state the problem whose solution implies the inject­

ivity of the map (3.6). 

(3. 21) 

In formula (3.13) we have embedded Ak into the space 
(X 

cf. (2.57), which is a weakly compact projective sequence. Another possibi-
k -k k 

lity is to take instead of A, defined by (3.4), the subspace A of S cons-
ex k - - ex ex 

isting of those elements¢ Es with a¢= 0, where a is the Cauchy-Riemann 
kcx k k tk 

operator. Then any elementµ E (S
0
)' that satisfiesµ =a; for some 

➔k k n -k 
o E ((S )') vanishes on A. Therefore we define equivalent classes of 

cxk. k ~ k k 
sequences{µ } withµ E (S

0
)' where two sequences {µ

1
} and {µ

2
} are equiv-

➔k k n k k -t ➔k 
a lent if for every k there is o E ( (S cx) ') with µ 

1 
- µ

2 
= a o . Since also 

(3.22) A 
(X 

ind lim Ak 
(X 

where ACX is defined by (3.5), the elements of A~ can be identified with 

h ' 1 h {µk} t e equiva ent classes of sue sequences that for any k and p there is 

a ;k,p E ((Sm) ')n with µk - µP = at ;k,p in (Sm) I where m = min(k,p). 
CX (X 

The space (3.22) is defined by a weakly compact , injective sequence 
-k+l 

in Acx and hence relatively weakly b set in Ak is bounded ecause an open ex 

compact, for the space (3.21) is reflexive, cf. [65, th. 36.3]. Therefore, 

cf. [40, th. 12] the strong dual of (3.22) equals 

(3.23) A' 
(X 

-k 
proj lim (A

0
) '. 

k ➔"' 
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By [40, th. 13] we have 

-k 0 
where (A) denotes 

Cl 
the continuous map 

so that according to [65, prop. 35.4] 

note on page185) in (Sk)' of the range 

-k 
Furthermore, Aa is the kernel of 

(Ak)O is the weak* closure (cf. foot-
a -t 

of the transposed map 3k of ak. Since 
k Cl * 

Sa is reflexive the weak closure of this range equals the closure in the 

strong topology, cf. [65, prop. 35.2]. We denote the closure in (S:)' of 

the range of the map 

by R(Tk). Hence we have 

(3.24) 

According to lemma 2.27 for every k there is a p > k such that the 

following maps are continuous 

(3. 25) 

where 

l= (S~) I -+ 

lF-1: Hk+l-+ 
Cl 

Hk def ind lim H (m,k) 
Cl Cl 

m -+ co 

with HCl(m,k) defined by (2.57), and where Fis defined by a formula like 

(3.12). Let P def (0 1 - i0n+l' ... ,an - i0
2

n) and let P•H: be the subspace of 

Hk . . 
a consisting of functions F which can be written as 

n 
F(0) I 

j=l 
(0. -i0 .)G.(0) 

J n+J J 

1, ... ,n. Then 



(3.26) F: R(T) 
p 

95 

Now by (3.23), (3.24), (3.25) and (3.26) the maps (3.25) induce an isomorphism 

F between 

(3. 27) F: A' 
Ct 

Furthermore, for each k there is a p > k such that 

is a continuous injection, for let F
8 

E P•8; be a Cauchy net converging to 
p -+ -+ pn 

FE Ha. Then FB = P•Gs with GB E (Hal , so that FB, and hence F, vanishes 

on the set 

The inclusion follows if we have solved the following problem. 

PROBLEM 3.1. For each k there is a p > k such that a function FE Hp vanishing 
Ct 

on vP can be written as 
Ct 

.... 
F(8) P•G(8), 

Assuming that this problem has been solved we have the following com­

mutative diagram of continuous maps 

here the upper spaces are Hausdorff spaces, but in the lower space we do not 

have to bother about the closure. Anyhow, this implies that 



96 

(3.28) 
k +k 

proj lim (Ha/P•Ha) 
k + oo 

and this is always a Hausdorff space. Its elements can be described as follows, 

cf. [20, §6.2]: define equivalence classes of sequences {Fk} with Fk € H:, 

where {Fk} ~ {Hk} if Fk (8) - Hk (8) = P (8) •Gk (8) for 8 € lR2n + i1k and for 
a 

+k +k 
G € Ha; then the elements of Ha are the equivalence classes 

{Fk} that for every k and p there is a Gk,p €~with 

of such sequences 

(3.29) 

We have to solve problem 3.1 anyway, 

closure of P•~k in Hk and (3.28) is valid. 
a a k 

define continuous restriction maps I 

8 € lR2n + . 1m 
i a' m min(k,p). 

so we don't pay attention to the 

Since P•~k vanishes on Vk we can 
a a 

Here Hki0 is the space of restrictions of functions in Hk to 0 with the 
a a k 

topology induced by Ha. 
a a 

Then Ik is surjective. Furthermore, there is a natural 

continuous injection Jk 

defined by (JkF) (z) def F(iz,z). Hence we can complete (3.27) as 

(3. 30) 

so that J 0 I°F is the map F defined by (3.7). Indeed, 

then for p ~ k and fore€ Vk we have FP(e) = Fk(8). 
k .. k a 

P\Oj+llm (Hal~~) are just those functions f on 

V def u 0 {lR2n + i1} n {els. i9 
k 

() J n+j 

such that for any k there is 
k k 

with a F € H 
a 

(3.31) 

Thus J is defined similarly to Jk and J is injective. 

by (3.29) if {Fk} € H 
a 

Hence the elements of 

0, j 1, ... ,n} 
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k 
Theorem 3.1 shows that the map J is surjective. However, the by {I} 

k 
induced map I is a priori not surjective, although each I is surjective. 

We have the following commutative diagram 

Hp/P•Hp 
a a 

Ct 
p,k l k +k 

Ha/P•Ha 

where a k and 8 k denote 
p, k k p, 

the restriction maps. Hence the range of I in 

proj lim (H jV) consists V F
k k 

of those f on which, besides (3.31) for E H
0

, 
k+oo Cl Cl 

moreover satisfy (3.29). The solution of problem 3.1 implies that I is injec-
p 1) 

tive and surjective (actually it says that Ker I c Ker a k) . p, 
Vis defined as the simultaneous zero-set of the polynomials 

p. def e. - i8 . , j = 1, ... ,n. These polynomials generate a prime ideal in 
J J n+J 2n 

any point of a pseudoconvex, open set n c ~ . Therefore, according to Hil-

bert's Nullstellensatz, see [27, ch.III. A], every holomorphic function fin n 

vanishing on V can locally, that is in a neighborhood w of any point in n, 
be written as 

(3.32) f 

where A(W) is the set of holomorphic functions in w. With the aid of Cartan's 

theorem Bit can be shown, see for example [27] or [30, th. 7.2.9 & th. 7.4.3], 

1) 
If we do not assume that problem 3.1 has been solved, it still might hap-

pen that I is surjective without its injectivity being established and this 

is actually the case here. Indeed, in section III.1 we have shown that for 

any f E proj lim (HkjVk) there is aµ EA' with F(µ) Jf, where Fis given 
k+oo aa a 

by (3.7). But if we apply the maps F and I in (3.30) successively, we get 

f = I•F µ E R(I). Hence I is surjective. This means that for any sequence 

{pk} with Fk E Hk and pP - Fk O on 0 for all k and p ~ k, there exists 
a k k a 

another 

on Vk 
a· 

in the 

3.1. 

sequence {F} with F E Hk satisfying (3.29) and with Fk - Fk = O 
a 

However, here we are not interested in the surjectivity of I, i.e., 

above solved statement, but in the injectivity of I, i.e., in problem 
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that f E A(O) satisfying (3.32) can be written globally as 

f 
+ 

P•g, 

+ 
Problem 3.1 asks for a function G which satisfies almost the same growth 

conditions as F, so it is the analogue with estimates of the above mentioned 

problem. If n = ~n this problem is solved in [30, th. 7.6.11] and in chapter 

VI we will perform the same method of proof, but there we have to take care 

of the estimates near the boundary of n. For the general case, as in theorem 

3.1, all conditions, besides the one that$ is plurisubharmonic in the density 

exp - $, will be discussed precisely in the next chapter. 

Since problem 3.1 implies the injectivitv of F, its definition (3.7) 

implies the following corollary. 

COROLLARY 3.4. The set {e:t <r;,z>lz El} is dense in the spaces A given by 
Cl 

(3.5) for a=£ or a= c. 

REMARK. Since Fis surjective, Ft, Exp' 
Cl 

given by 

because forµ EA~ 

<o ,Fµ > 

+ A is injective, where Ft is 
Cl 

0 E Exp~ 

i <r; z>I by Fubini 's theorem. Hence also the set { e ' r; E n ( a ,r) } is dense in 

ExpCI for both Cl=£ and Cl= c. 

So finally, we have obtained the following theorem. 

THEOREM 3.5. The map F of theorem 3.3 is also injective. 

REMARK. Theorems 3.3 and 3 .5 state that the map (3.6) is bijective. This 

fact can be considered as a generalization of the Ehrenpreis-Martineau 

theorem, which gives the isomorphism (3.6) for a = £ if n is compact and 

I= ~n, just as the Paley-Wiener theorems of chapter II, cf. also [68, § 26.4, 

th. 2], can be considered as a generalization of the original Paley-Wiener­

Schwartz theorem for distributions with compact support. 
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III.3. PALEY-WIENER THEOREMS FOR FOURIER HYPERFUNCTIONS. 

In this section we treat the particular case of theorems 3 . 3 and 3 .5 

where 1 = Tc with Can open, convex cone in lRn. Again as a particular case 

of this situation we may consider functions a(z) which are only functions 

of y = Im z. Then !"l(a,TC) is a subset of lRn and a function in Exp£ determines 

a Fourier hyperfunction. 

Let (Tc)k and (Tc) (k) be given by (2.50) and (2.51), respectively. If 
C 

in (3.2.i), (3.2 .ii) and (3.5) 1 = T, we get the spaces 

(3.33) 

C def . . 1/kyo+C 
Exp [a(z) ,T ] = proJ 11.m H (T ;a(x,y - 1/ y

O
) + 1/kllzll) 

{ £ k + 00 "' 2k 

A (a,TC) def ind lim H
00

(!"l(a+l/k,Tc); -1/kUt;II) 
£ k + "' 

where y
O 

E prc
1 

is fixed, and 

(3.34) 

C def . . C II U Expc[a(z) ,T ] = proJ 11.m H
00

( (T ) (kl ;a(z) + 1/k z ) 

{ k + "' 

A (a,Tc) def ind lim H (!"l(a + 1/k, (Tc) ) ; - 1/kll 1;8) . 
C "' k k --,. "' 

By theorems 3.3 and 3 .5, in both pairs of spaces Fourier transformation is 

an isomorphism from the strong dual of the second space onto the first space. 

Similarly, the same statement can be derived for the following pair of spaces, 

where we have a mixture of the two foregoing cases, namely analytic function­

als carried by !"l(a,TC) with respect to £-neighborhoods in the imaginary 

directions and to conic neighborhoods in the real directions: 

(3.35) 

C def . . 1/kyo+Ck 
Exp [a(z) ,T ] = proJ 11.m H (T ;a(x,y - 1/ y

O
) + 

I c,c k + "' "' 2k 

l d C + 1/kllzff) 
A (a,TC) ef ind lim H

00
(fl(a+ 1/k,T k);-1/klit;II). 

£ ,C 
k + "' 

Thus we obtain the following theorem. 

THEOREM 3.6. In thepairs of spaces (3.33), (3.34) and (3.35) the strong dual 

of the second space is topologically isomorphic to the first space by means 

of the map F defined by (3.7). 

The pair (3.33) will be used in chapter V to derive the Newton inter­
C 

polation series for functions in Exp
8
[a(z),T ], if lim a(x,y) as y-->- O, y Eck 
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exists for- , every · k, i.e., if Q(a,TC) is bounded in the imaginary directions. 

If the convex, homogeneous function a is only a function of y EC, i.e., 

if a(z) = a(y) then 

C C 
In that case for each k every function fin Exp [a(y),T J or in Exp [a(y),T J 

£ £,c 
satisfies 

lf(z) I !s Kk exp 1/kDxll, y Eck, 1/k !s Ilyll !s k 

for some positive constants Kk depending on k and f. Hence it determines a 

Fourier hyperfunction, see [38]. Then theorem 3.6 is the Paley-W~ener theorem 

for Fourier hyperfunctions: 
C 

i. The elements of Exp [a(y),T] are just the Fourier hyperfunctions 
£,c 

ii. 

which are the Fourier transforms of the Fourier hyperfunctions with 

support in Q(a,Tc), where the support is defined as the smallest carrier 

with respect to conic neighborhoods Q(a+l/k,Tck) in the real directions, 

which is done in [38]. 
C 

The elements of Exp [a(y),T] may be considered as the Fourier transforms 
£ 

of the Fourier hyperfunctions with support in Q(a,TC), where this kind 

of support with respect to £-neighborhoods is defined by means of de­

finition 2.6. 

iii. In [53] analytic functionals carried by real sets with respect to conic 

neighborhoods in en are mentioned. They are called Fourier hyperfunctions 

of the second kind and they seem to be more useful for describing 

quantum field theory. In ·this view the elements of Exp [a(y) ,Tc] are 
C 

the Fourier hyperfunctions of the second kind which are the Fourier 

transforms of the Fourier hyperfunctions of the second kind with support 

in the set Q(a,Tc), where this kind of support is defined with the aid 

of conic neighborhoods. 

III.4. ANALYTIC FUNCTIONALS IN Z{M}; FOURIER TRANSFORMATION AS A BIJECTION; 

PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF ROUMIEU TYPE. 

In this section we shall mention the problems which have to be solved 

in order that the Ehrenpreis-Martineau theorem can be extended to analytic 

functionals in Z{M} carried by unbounded, convex sets with respect to various 
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classes of neighborhoods. Now we no longer exhaust an open, pseudoconvex set 

1 by sets {,k}
00

k 
1 

such that an £-neighborhood of ,k is contained in ,k+l as 
a = a a 

in problem 3.1. In this section we shall get problems similar to theorem 3.1 

and problem 3.1, but with estimates extending to the boundary of the domain. 

As in section II.2.iii we require that Mis a continuous, increasing, 

piecewise differentiable function on [0, 00 ) with M(O) = 0, M( 00 ) = 00 , such 

that M' is strictly decreasing. Furthermore, in this and the following section 

* we only require that (2.31) is valid. Then M, defined by (2.28), is a con·· 

* * vex function on (0, 00 ) with M (0) = 00 and M (00 ) = 0, satisfying (2.29) and 

(2.31 ) . Briefly, the following formula's hold: 

(3. 36) 

(3 . 37) 

* M (a) 

M(p) 

max {M(p) -ap} 
p>O 

min {M* (a ) +pa}; 
a>O 

Vt > O, Vm > 0, 3t' ~ t, 3K 

0 < t ~ t', 3K > 0 

0 and Vt' > 0, Vm > 0, 3t with 

such that for p ~ 1 and O <as 1 

(3.38) 
{ M~p/t') +mlog p S M(:/t) +K 

M (1. 'a) +m log 1/a s M (ta) +K. 

We shall fi . ·st describe the analogue of sections III .1 and .III. 2, but 

now with 1 = TC. '.'his will yield the most general setting of the problems 

to be solved. Next we shall state the Paley-Wiener type theorems and, for 

arbitrary cones 1, the Ehrenpreis-Martineau theorem. Let C be an open, convex 

cone in IR.n, let for a=£ and a= c (TC)k be given by (2.52.i) and (2.52.ii), 
a n: by (2.48.i) with I replaced by Tc and by (2.48.ii) with 'k replaced by 

(TC)k, defined in (2.50), and let a: be given by (2.54.i) and (2.54.ii), 

respectively. Then we define the following pair of spaces 

(3.39) 
k + oo 

C def k 
A (a,T ;M) = ind limH (Q ;-M(ll1;;11/k)+kllnll). 

a 00 a k + oo 

C * By lemma 2.17 each f E Exp [a,T ;M] determines an ultradistribution of 
a 

Roumieu type. 
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As in section III.2 formula (3.21), here too we introduce an S-space 

of C ~ functions. In this section for o E { e:, c} we denote by Sk the space 
Cl 

s: ~ proj lim S
0

(m,k,k) 
m + co 

whexe S (m,k,k) is defined by (2.56) and again we write the strong dual of 
Cll 

A
0

(a,T ;M) as 

proj lim (S:) '/R(Tk) 
k + co 

where Tk is the transposed of the Cauchy-Riemann operator. Let us now denote 

by H
0 

the space 

where Hk def ind lim H (m,k,k), cf. (2.56). Then by lemma 2.27 the Fourier 
Cl m+co ll 

transformation Fis an isomorphism 

As before, the maps I and J are introduced 

H
0 

....!......proj lim (H: IV:) ....!!......Exp/a,TC;M*]. 
k + co 

We shall investigate which problems have to be solved in order that I is 

bijective and J surjective. 

The bijectivity of I will follow from a problem similar to problem 

3.1. It asks for a function; E A(n)n with p.; = f if (3.32) is satisfied, 
+ 

where now g is holomorphic in .the same pseudoconvex domain n as f and satis-

fies some estimates. This is only possible if some conditions are imposed 

on the densities in the estimates. Therefore, we have to introduce the fol­

lowing concepts. Let n be a pseudoconvex domain and let¢ be a function in 

n such that for each N there exists a plurisubharmonic function ¢Nin n 

which satisfies 

(3.40) 

lu U 
• N C N C 

z-z' $ min[N,(e -l)d(z,n ),(e -l)d(z•,n )]} 
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for some K > 0 depending on$ and N, where d(z,nc) denotes the distance from 

z to the complement of n. Furthermore, we define the plurisubharmonic function 

$ by 

(3.41 ) • d=ef ~ fl g2 c -N $(z) $N(z)+Nlog(l+ z )+log(l+d(z,n) ). 

Then$ satisfies the following inequalities 

Let 

if a= c fore E T((TC)k) or if a= E fore E T((TC)k), in which case we 
k c C E 

complete~ ,m arbitrarily to the remaining of T(T ), cf. (2.53) for the 

definition of T(B). Then in virtue of (3.38) for each q and N there are p > q 

and K > 0 such that for a= E or a= c 
q 

* For a fixed ~O E pr c there is o > O such that oiyN 5 <~
0

,y> 5 Uyll for 

y E C and therefore, for each k there is a q > k with 

y E C. 

* 2 But now M (q<~
0

,rme > ) is convex, hence plurisubharmonic, in 

for each k there is a p > k such that by a suitable choice of 

get 

(3.42) 

in T((TC/J. 
a 

A 
~p,m 5 ~k,m+2N 

In the a= E case an extra complication arises by the fact that the 
C k . 

domain T((T) ) is not pseudoconvex, because by Bochners theorem its pseudo-
E C k C k 

convex hull H(T ( (T ) E)) equals T(T ). Hence every F E HE 

T(Tc) and if F vanishes on Vk it vanishes on V. Each F E E , 

some m and K 

is holomorphic in 

HP satisfies for 
E 
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jF(6) J !> K exp ij,p,m(6), 

Then with ij,(6) ~ max{1ogJF(8) J,ij,P'm(8)} for 8 E T(TC) F satisfies 

(3.43) I F ( 8 ) I s K exp 1/1 ( 8 ) . 

Furthermore, we make the restriction that ij,p,m on T((TC)p) has been extended 
e: 

to T(TC) in such a way that (3.40) can be satisfied for the function ij, of 

formula (3.43). If a= c and FE Hp we set ij, = ij,p,m for some m depending 
c' 

on F and (3.43) is satisfied for 8 E T((TC)p), which is a pseudoconvex 
C 

domain. 

Now assume that for a= e: and a= c every FE Hp vanishing on V if 
a + 

a= e: or on VP if a= c and satisfying (3.43) can be written as F = P•G for 
C 

holomorphic functions G in T(TC) if a= e: or in T((TC)p) if a= c which 
j C 

satisfy there G.(6) s K exp ~(6), j = 1, ... ,n, where~ is obtained from~ 
J 

as in (3.41) for some N. Then if pis sufficiently large there is a k such 

that in view of (3.42) G. would belong to Hk. If this can be done for every 
J a 

k, the bijectivity of the map I would be implied. Taking into account (3.32) 

and the embedding maps between spaces with L
2
-norms and sup-norms (cf. [73]), 

we really get the foregoing if the following problem is solved. 

PROBLEM 3.2. Let n be a pseudoconvex domain, let~ be a function inn such 

that (3.40) can be satisfied for every N and let P be a vector of polynomials. 

If a holomorphic function fin n can locally, i.e., in a neighborhood w of 

each point inn, be written as f 

f(z) 

+ + 

+ 
P(z) •g(z), 

+ + + 
P•gw with gw E A(w), then 

Z E 0 

for some g E A(O) satisfying for some K independent off 

J 
+ 2 -

U g ( z) U exp - ~ ( z) d;\ ( z) s K J I f(z) I 2 
exp - ~ (z)d;l, (z) 

n 
where ll;(zJU

2 = i:Jg. (z) 1
2 

and where$ is given by (3.41) for some N indepen­
J 

dent of f,provided that f is such that the right hand side is finite. 

Since in problem 3.1 an e:-neighborhood of T(rk) is contained in T(rPJ 
a a 

and since the equalities (3.2.i) and (3.2.ii) hold, problem 3.1 follows from 



problem 3.2. Furthermore, problem 3.2 implies that (cf. (3.28) where the 

spaces Hk are different from the Hk of this section) 
a a 

k +k 
proj lim (H /P•H ), 

k+oo a a 

+k k 
hence we don't need to pay attention to the closure of P•H

0 
in H

0
• 
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We will now state the problem whose solution implies the surjectivity 

of the map J. Theorem 3.1 yields local extensions {F lw cc n} off with 
w 

FW(iz,z) = f(z) and problem 3.3 will state that the functions Fw can be changed 

and glued together to one global function Finn with F(iz,z) = f(z) and 

with good bounds. The conditions on the bounds will be the same as those of 

problem 3. 2. 

Let w be a pseudoconvex open set with w cc T((TC)p) if a 
C 

w cc T(Tc) if a=£ and let 

Then for some q > p and for w c T((TC)p) 
a 

c or 

C * Let f € Exp
0

[a,T ;M] and let the convex function ¢q be defined by 

¢ (z) ~ M (q<' ,y>) +aq(z) +1/qDzll, 
q O a 

z € 

where in case a=£ ¢q is extended to a convex function on TC such that for 

some K > 0 

C 
for z € T 

::T(Tc) and 

domain in 

If (z> I 5 K exp ¢ (z) 
q 

If a= c this formula holds for z € (TC)q. Let H(T((TC)q)) = 
C £ 

H(T((TC)q)) = T((TC)q), which in both cases is a pseudoconvex 
2 

C C 

q: n. The function 8 + ¢ (Im 8) is a convex, hence plurisubharmonic, 

function 
C q 

on H(T((T )q)). Hence we can apply theorem 3.1 and for each w we 
a 

obtain a holomorphic function FW in w with FW(iz,z) = f(z) for 

z € {zJ (iz,z) € w} which, in view of (3.40) and (3.42), for some m and K 

satisfies 
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w {zl (iz,z)EW'} 

where l =- [n/2] + 1 and where the extension of ij,p,m on T( (TC)p) to T(TC) is 
e: 

determined by$. We select a collection U of sets w with the property that 
q 

each point in H(T((TC)p)l is contained in at least one set w EU and each 
C a 

point in H(T((T )q)) in not more than~ sets w' for a fixed L. In section 
a 

VI.1 it will be shown that such a covering exists. Then with ij, def 2ij,p,m we 

get 

J IF w c el I 
2 

exp - ij, <el d>.. <el 

w 

s KL J ifCzil
2 

H(T( (TC)q)) 
a 

exp - 2$ (z) 
___ _.q~ dA(Z) < OO 

(l+lzl 2)l 

It is sufficient if we can find a holomorphic function Fin H(T((TC)p)) 
a 

with F -F 
w 

0 on w n V and with 

exp-ij,(6)d>..(6) S Kl{F }D 
w 

for some K, where ij, is obtained from ij, according to (2.41) for some N. For 

by (2.42) if pis sufficiently large we would have FE Hk. 
a 

U Fw -Fw vanishes on V n w
1 

n w
2

, hence 
1+ 2 

For two sets w
1 

and w
2 

in 
-+ 

Fw -Fw = P•G12 in w1 n w2 for 
1 2 

some G
12 

holomorphic in w
1 

n w
2

. Now if the 

following problem is solved, we can find a function Fas above and the map 

J would be surjective. 

PROBLEM 3.3. Let n, P, $and$ be as in problem 3.2 and let Ube the covering 

of n specified in section VI. l. Furthermore, let {f . lw. EU} be a collection 
J J 

of holomorphic functions f. in w. such that for each w . and wk in U f . - fk 
-+ -+ J J J J 

P•g. k for some g, k holomorphic in w. n wk. Then there is a holomorphic 
J, J, J -+ -+ 

function f in n with for each w. E U f - f. = P•g . for some g. holomorphic 
J J J J 

in wj such that 

J if(zll
2 

exp-~(z)d>..(z) 

n 
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for some K and N independent of { f. J w. E U}, provided that the collection { f. } 
J J J 

is such that the right hand side is finite. 

REMARK. If a=£, T(TC) = U
1 

T((TC)p} and the densities on T((TC)p) had first 
--- p=C E £ 

to be extended to all of T(T) before applying problems 3.2 and 3.3. These 

extensions depended on the particular holomorphic function For f one was 

dealing with. Therefore in the a= E case we may get estimates with K depend­

ing on For f, although in problems 3.2 and 3.3 K is independent off or 

{f . }, respectively. However, the open mapping theorem helps us to overcome 
J 

the difficulty of not getting uniform bounds. In the next chapter we will 

treat the case of holomorphic functions fin n = kQ1 nk which are bounded 

with respect to some density on each nk, uniformly inf. But the condition, 

cf. (4.22), which must be satisfied then, is not valid for n =T(Tc) = 

'\Q1 T ((Tc):) of this chapter. 

In chapter IV problems 3.2 and 3.3 will be reformulated and in chapter 

VI they will be solved. Therefore, the Fourier transformation Fis a topo­

logical isomorphism from A (a,TC;M)' onto Exp [a,TC;M*] for a 
a a 

r. or ex= c, 

where the spaces are determined by (3.39). Similarly, the same can be derived 

for the following pair of spaces, which is a mixture of E- and conic neigh­

borhoods, 

(3.44) 

and if a 

(3.45) 

J 
1 

A (a,Tc;M) ~ ind lim 
E,C k + 00 

k * a (z)+1/kDzD+M (kRyU)) 
E 

H (n(a+1/k,Tck); -M(ll{;D/k) +kUnD) 
00 

£ or a c for the pair 

* def k k * ExpN[a,r;M] ~ proj lim H (r ;a (z) +1/kDzU +M (kffzD)) 

{ 

~ oo a a 
k + oo 

where r is an open, convex cone in cz:n with rk ~ r u {1/k z
0
+r} and 

r k =def r , k de.f / E /k r k c k where aE(z) = a(z -1 2k z0 ) for z E 1 k z0 + and aE must be 
. d f . ,= h k def d nk . continue as a convex unction on , were ac = a an where a is given 

by (2.48.i) and (2.48.ii). The last pair yields the Ehrenpreis-Martineau 

theorem for analytic functionals carried by arbitrary unbounded, convex 

sets in CZ:n with respect to E- or conic neighborhoods and to the class of 
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weightfunctions {exp M(l~U/k)};=l· 

Summarizing we get the following theorem. 

THEOREM 3.7. If (3.38) is satisfied, in the pairs (3.39), (3.44) and (3.45) 

the strong dual of the second space is topologically isomorphic to the first 

space by means of the map F defined by (3.7). 

C 
If lim a(x,y) exists as y + 0, y € ck the set O(a,T) is bounded in 

the imaginary directions in ~n· Then in (3.39) for a=£ and in (3.44) the 

restriction lxl <kin the definition of the first space and the term kBnl 

in the definition of the second space can be omitted. In both cases functions 

in Exp [a,TC;M*] and in Exp [a,TC;M*] determine ultradistributions of 
£ £,C 

Roumeiu type of "finite order", cf. definition 2.19.ii. Hence we obtain 

COROLLARY 3.8. Fourier transforms of "infinite order" ultradistributions of 

Roumieu type can never have a carrier with respect to neighborhoods which 

are bounded in the imaginary directions. 

If a(x,O) exists·, as in (3.3) Exp becomes 
£,c 

C * Exp [a,T ;M] 
£,c 

C * proj lim H
00

(T k;a(z) +1/knzD +M (klyR)) 
k + "" 

and if a(z) = 0 for all z we get the particular case which yields the proof 

of (4),. (1) of theorem 2.20. 

III.5. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF BEURLING TYPE. 

As in section III.4 it can be derived that the Fourier transformation 

Fis an isomorphism between a space of analytic functionals with a fixed 

carrier onto a space of functions, holomorphic in a certain tubular cone 

and of certain exponential type, which have ultradistributional boundary 

values of Beurling type. However, the topologies of the occurring spaces 

become more complex, especially we don't get a space of analytic functionals 

which has the topology of the strong dual of a certain space of analytic 

functions. Therefore, we only state the Fourier transformation Fas a bijec­

tion. Spaces of a more simple topological structure arise if we consider 

Fourier transforms of analytic functionals such that sufficiently small 

conic neighborhoods of their carriers are contained in a given, open, convex 

set. In this form we shall give extensions of the Ehrenpreis-Martineau theo-
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rem and of the Paley-Wiener theorem for ultradistributions of Beurling type. 

Let now a= 1,2,3 denote the cases of analytic functionals carried 

with respect to £-neighborhoods, conic neighborhoods or a mixture of these 

neighborhoods, respectively. So here we denote 

(TC)k def Tl/k Yo+C 
1 

(TC? def C 
2 (T \ 

(TC? def Tl/k Yo+Ck 
3 

k def~ k def k def 
and furthermore, cf. (2.54) a

2
(z) = ¾(z) and a

1 
(z) = a

3
(z) = a(z-1/

2
k y

0
) 

in (TC)~ or (Tc)~, respectively and these functions must be continued as 

convex functions on Tc. Let f be a holomorphic function in Tc, which for 

every k and for some positive\: and~ depending on k satisfies 

(3 .46) If (z> I * k :<; J\: exp{M (UyU/~) + aa(z) + 1/kllzD, 

z E {zjllxU :<; k,y E Ck} u (Tc): 

for a= 1,2, or 3. According to lemma 2.17 f uniquely determines an ultra­

distribution of Beurling type. Now we begin with a formula like (3.23) and 

we don't have to show that it is the dual of some space of holomorphic func­

tions as the space (3.23) is of the space (3.22). Then by the same procedure 

as before lemma 2.27, problem 3.2 and 3.3 show that f can be written as 

(3.47) f(z) 

whereµ is an anlytic functional in Z(M) uniquely determined by f which is 

carried by n(a,TC) with respect to neighborhoods of the form 

nk ~ C 
1 

n( a + 1/k,T ) , 

f 
nk ~ n (a + 1/k, (Tc\> (3.48) 

l 2 

nk ~ n(a + 1/k,Tck) 
3 

for a= 1,2 or 3, respectively. Thusµ can be uniquely extended such that 

it acts on functions¢ which are holomorphic in these neighborhoods and 

satisfy there 
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K exp{-M(mD ~ft) + kl nn} 
m 

for some k depending on cf,, for every m > 0 and for Km> 0 depending on m. 

So (3.47) is defined. Furthermore, there are positive~ and mk depending 

on k andµ such that for such cf,µ satisfies 

(3.49) 

for a= 1,2 or 3, respectively. Thus the following Paley-Wiener theorem for 

ultradistributions of Beurling type holds. 

THEOREM 3.9. If M satisfies (3.8) and f (3.46), then (3.47) holds for a unique 

analytic functionalµ E Z(M) which sati-sfies (3.49). 

If a(x,O) exists, O(a,TC) is bounded in the imaginary directions and 

for a= 1 and 3 the condition Uxi Skin (3.46) and the term -klnl in (3.49) 

can be omitted. Then f determines an ultradistribution of Beurling type of 

"finite order", cf. definition 2.19.ii. 

COROLLARY 3.10. Fourier transforms of "infinite order" ultradistributions 

of Beurling type can never have a carrier with respect to neighborhoods 

which are ·bounded ,in the imaginary directions. 

If a= 3 and a(z) = 0 for all z, we get the particular case which yields 

the proof of (4) • (1) of theorem 2.20 for ultradistributions of Beurling 

type. 

We will now define topological spaces of holomorphic functions and 

we will treat Fas a topological isomorphism from the strong dual of an A-
m 00 m 00 

space onto an Exp-space. Let {r }m=l and {C }m=l be a decreasing sequence 

of convex cones in ~nor IRn with intersection r or C, respectively, and 

with r cc rm, C cc Cm and let {am}==l be an increasing sequence of convex 

functions, homogeneous of degree one, each a defined on rm or Tcm with 
m+1 _,..m+IJ.1 

a (z) + E Sa 
1

(z), z E pr r or pr 'I"-- for some E > 0, converging 
m m m+ C m 

in any point of r or T to the convex, homogeneous function a. Define 

(3.50) 
def m 

A [a,r;M] = proj lim H (rl(a ,r ); -M(mNz;;U)). 
C 00 m m -+ oo 
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In virtue of (3.38) and [73, conditions HS
1 

and HS
2

] the first space is a 

nuclear DFS-space and the second a nuclear FS-space. The generalization of 

the Ehrepreis-Martineau theorem states in this case that the dual of the 

second space is topologically isomorphic to the first space by means of 

Fourier transformation. We shall also give a Paley-Wiener version for ultra­

distributions of Beurling type. For simplicity we assume that for each m 
cm 

am(x,0) exists, so that each n(am,T ) is bounded in the imaginary directions. 

Define 

(3.51) 

c * def cm * 
Expc (a,T ;M ) = ind lim H (T ;M (UyD /m) + a (z)) f m-+00 00 m 

l A [a,Tc;M] ~ cm II II c projlimH00 (!1(am,T );-M(mF,;)). 
m -+ 00 

C * C Again Expc(a,T ;M) is a nuclear DFS-space and Ac[a,T ;M] a nuclear FS-space. 

It follows from an estimate as we have already met several times that for 
i<z;,z>I _1 p 

each m and l > m the collection {e z E ,- or z ETC'"} of functions of 

z; i's a subset of H (!1 (a ,r-111); - M (ml z;n)) or H (!1 (a ,Tern); - M (mR F,;I)), respec-
oo m oo m 

tively. Therefore, the Fourier transformation can be defined by (3.7) and 

it follows f~om the injectivity of F that these subsets are dense. Hence 

the projective limits in (3.50) and (3.51) are strict, cf. [20, § 26.1] so 

that there strong duals can be represented as inductive limits of strong 

dual spaces. In the same way as the other theorems of this chapter are de­

rived and by the fact that the open mapping theorem also holds for duals of 

reflexive Frechet spaces, cf. [61, IV, §8.3, car. 1 and ex. 2, p. 162], the 

following theorem is derived 

THEOREM 3.11. If M satisfies (3.38), in the pairs (3.50) and (3.51) the 

strong dual of the second space is topologically isomorphic to the first 

space by means of the map F defined by (3.7). 

C 
Note that the strong dual of A [a,T ;M], and 

C 

ries a finer topology than the one induced by Z(M) 

C * hence Expc(a,T ;M), car-

or V(M), respectively. 

III.6. PALEY-WIENER THEOREMS FOR DISTRIBUTIONS INV•. 

The same ramarks made for ultradistributions of Beurling type can be 

made for distributions in V•. Instead of (3.36) and (3.37) here we have 

def 
M ( p ) log (1 + p ) • 
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Let f be a holomorphic function in Tc which for every k satisfies 

(3.52) I f<z> I -~ k 
5 ~(l+UyU )exp{aa(z) +1/kDzl}, 

z E {zlDxD 5k,yECk} u (Tc):, 

mere (Tc): and a: for a= 1,2 or 3 are as in section III.5. Then f determines 

uniquely a distribution in V•. Lennna 2.27 and problems 3.2 and 3.3 show that 

f can be written as (3.47) for 

by O(a,TC) with respect to the 

some unique, analytic functionalµ E Z' carried 

neighborhoods nk defined by (3.48). Thusµ 
a 

can be uniquely extended to an analytic functional acting on functions cp 

which are holomorphic in these neighborhoods and which satisfy there 

K 
m 

exp kl nD 

c1+1,1 )m 

for some k depending on cp and for every positive m and some positive Km 

depending on m and cp. Furthermore, for such a cp µ satisfies 

(3.53) 

for a= 1,2 or 3, where the positive numbers Kk and~ depend on k andµ. 

Now the following Paley-Wiener theorem for distributions in V• is valid. 

THEOREM 3.12. Let f satisfy {3.52), then f is the Fourier transform of a 

unique analytic functional µ E zi ,·• carried by O(a,TC), i.e., {3.53) holds. 

If O(a,Tc) is bounded in the imaginary directions, the condition 

DxH 5 k in (3.52) and the factor exp-klnD in (3.53) can be omitted if a 1 

or 3. Then f determines a distribution of finite order. 

COROLLARY 3.13. The Fourier transform of a distribution of infinite order 

can never have a carrier with respect to neighborhoods which are bounded in 

the imaginary directions. 

REMARK. The Fourier transform of any distribution can always be represented 

as a sum of analytic functionals which are carried by the 3n sets of the 

form 



(3.54) 

+ 
where <1:- are the 

geneous function 

geneous function 

upper 
+ 

on <I: 

on a: 
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and lower halfplane and where a is a convex, homo­

which is unbounded on pr <I:+, or the convex, homo­

given by a{z) = a{z), so that Q(a,<t±) c <I:1 is not 

bounded in the imaginary direction. The analytic functionals are carried 

with respect to any class of neighborhoods and, a fortiori, they can be re­

presented as measures on the sets (3.54), see [16, th. 5.24, where these sets 

are shown to be sufficient for V•]. 

A theorem similar to theorem 3.12 can be derived for functions f which 

are holomorphic in a cone r c <tn, but we merely state the theorem with analy­

tic functionals such that sufficiently small, conic neighborhoods of their 

carriers are contained in a fixed, open, convex set. Let the notations be 

as in (3.50) and (3.51) and let 

(3.55) 

Expc(a,1) ~ ind lim H (,m;log(1+DzD-m) + a (z)) 

{ 

00 m 
m -+ 00 

A [a,,]~ proj lim H (Q(a ,tm); -m log(1+UzJ)), 
C 00 m 

m -+ 00 

and 

(3.56) 

c def cm -m 
Expc(a,T) ~ ind lim H

00
(T ;log(1 +HyD ) + am(z)) 

{ m -+ 00 

C def cffi 
A [a,T ] = proj lim H (Q (a ,T ) ; -m log (1 + D !;U)). 

C 00 m 
m -+ 00 

The first space in each pair is a nuclear DFS-space and the second a nuclear, 

strict FS-space. For these pairs the Ehrenpreis-Martineau theorem can be 

generalized, where in the second pair it might be considered as an extension 

of the Paley-Wiener theorem: 

THEOREM 3.14. In the pairs (3.55) and (3.56) the strong dual of the second 

space is topologically isomorphic to the first space by means of the Fourier 

transformation F given by (3.7). 

We conclude this chapter with the remark that in (3.56) the isomorphism 

Facts between spaces with a finer topology than the ones induced by Z' and 

v•. 
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CHAPTER IV 

THE FUNDAMENTAL PRINCIPLE 

In [16] Ehrenpreis and in [56] Palamodov proved, independently, a 

fundamental principle in the theory of systems of linear partial differential 

equations with constant coefficients. This principle completes the theory 

of those systems in a very natural way, but the proof is very hard. Let W' 

be a locally convex topological vector space such that the space Hof Four­

ier transforms of elements of W' consists of entire functions whose growth 

conditions at infinity satisfy certain properties, and let W be the dual of 

W'. Briefly, the fundamental principle says that all weak solutions in W of 

the homogeneous system can be represented as Fourier transforms of finite 

sums of weak derivatives of measures concentrated in the zero set of the 

Fourier transform of the transposed differential operator. If there is only 

one ordinary linear differential equation with constant coefficients this 

is just the usual representation of Euler. In [16 ] a space W for which the 

fundamental principle is valid is called localizable. In the last chapter 

we have studied spaces W (namely the Exp- and A-spaces) with H = Fw•, or 

equivalently W = FH 1 l) such that the elements of Hare non-entire functions. 

In this chapter the fundamental principle will be generalized so that it 

applies to spaces W which are the Fourier transforms of the duals of spaces 

l) As in the foregoing sections the following definition is used: when Fis 

a topological isomorphism between the spaces Band FB = A, then the Fourier 

transform of an element fin the dual A' of A is the element Ff of B' defined 

by 

<Ff,w> = <f,Fw > , 
B A 

W E B. 

By use of this definition the ambiguity mentioned in [16, p.140] is avoided. 

Of course, as in [16], this definition corresponds to the following action 

of a function f, regarded as a distribution in V•, to testfunctions ~EV 

<f,~ > = I f(x)~(x)dx. 
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H consisting of functions holomorphic in pseudoconvex domains n, not neces­

sarily <Cn. 

For a vector P of complex polynomials, in [16] Ehrenpreis has defined 

a multiplicity variety Win the set where all the components of P vanish. 

Let H(W) be the space of restrictions to W of all entire functions satisfy­

ing on W the same growth conditions as the entire functions of H. Then for 
+ 

deriving the fundamental principle Ehrenpreis showed that H modulo P•H is 

isomorphic to H(W). In order to prove this isomorphism he first constructed 

a local and a semilocal (i.e., in an a priori given covering of <Cn consist­

ing of bounded sets) theory and then the extended the semilocal results to 

global results. The same can be done if Pis a matrix of polynomials and if W is 

an associated vector multiplicity variety. For our purpose the local and 

semilocal theory remains unchanged (except for the a priori given covering 

of n), but we will use a different method for getting global results. If 

then in particular n = <Cn we will obtain a weaker form of the isomorphism 

than in [16]. The difference is that in [16] one globally defined function, 

whose restriction to W has been given, is obtained that satisfies all the 

bounds required in H, while in this chapter for every bound a different 

global function will be constructed. As to this the fundamental principle 

obtained by Palamodov in [56] is similar. On the other hand, here often less 

restrictive conditions on the bounds are required then in [16], so that for 

example the space of C ~ functions in an open, convex set is localizable 

here as well as in [56], where in [16] it is in general not. 

Compared with [56] our conditions are simpler, -although if n = <en 

the method of Hormander in [30] we will use cannot be applied to the space 
2 -1 n Z because the function log(l+RzU ) is not plurisubharmonic in <C, while Z 

satisfies the conditions of both [16] and [56]. If n is a convex tube domain 

(f <Cn) this objection is disposed of (cf. lemma 5.2) and our treatment of 

this case is much more general than in [56]. Moreover, we will derive the 

isomorphism H mod P•H.,. H(W n n) for general pseudoconvex domains n, where 

in [56] it is essential that n is a convex tube domain. 

Sections 1 and 2 of this chapter will give an introduction along the 

lines of [16] to the problems without growth conditions. In section 3 Ehren­

preis' and Palamodov's formulations of the fundamental principle will be 

discussed. The remaining part of this chapter will be devoted to derive the 

weak form of the above mentioned isomorphism for spaces of non-entire func­

tions. In chapter V we will show that this implies the representation of 

solutions of homogeneous systems of partial differential equations with 
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constant coefficients and in chapter VII we will make some remarks concerning 

the strong form of the isomorphism for certain spaces of non-entire func­

tions. 

IV.1. LOCAL THEORY 

In this section we will discuss Ehrenpreis' generalization of Hilbert's 

Nullstellensatz. 

Let z E ~n and let A be the ring of germs at z of holomorphic func­
z 

tions in a neighborhood of z. Consider an ideal J in A generated by the 
z z 

germs (h
1

) , ... , (h ) at z of functions 
z q z 

We define the analytic variety 

(4.1) 0, .•. ,h (w) 
q 

h
1

, ... ,hq in a neighborhood w of z. 

o, w E w} 

and let V be the equivalent class of V under the equivalence relation 
z 

V ~ W if there is a neighborhood of z in which they are equal. V is called 
z 

the germ at z of V. It is clear that the ideal J is not trivial only if 
z 

h (z) = 0. When f 
q 

EA we 
z z 

will denote by fa holomorphic 

function in a neighborhood of z such that fz is the germ off at z. Then 

for any f E J, z EV, there 
z z 

is a neighborhood w of z with 

(4.2) f(w) o, w E V n w. 

Conversily, consider the ideal Iz in A
2 

of all the germs at z of holomor­

phic functions vanishing on V, i.e., 
z 

(4. 3) I ~ { f j there is a neighborhood Crl of z such that f j V = 0}. 
z z nw 

It is clear that I is an ideal and by (4.2) J c I . 
z z z 

Hilbert's Nullstellensatz says that for f
2 

E I
2 

there is a positive 

integer m with (f )m E J, or 
z z 

r 1 ~ {f I <f im € 1 l z: rad z z z z for some m depending on f
2

, 

see [27, II.E. th. 20 ] . Obviously, when J is a prime ideal this yields 
z 

[27, III.A. 7] 
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(4.4) J 
z 

I , 
z 

i.e., any fz can be written as, cf. {3.32), 

q 
f(w) l gk{w)hk{w) 

k=l 

for win a neighborhood w of z and for some gk E A{W), k = 1, ... ,q. 

Ehrenpreis generalized this result in such a way that (4.4) always 

holds if in (4. 3) V is replaced by the germ W of a certain local 
z z 

multiplicity variety W depending on the functions h 1 , •.. ,hq and z. In gen-

eral a local analytic multiplicity variety W in a point z E a:n is defined 

as a finite collection W = {V1 ,a 1; ..• ;Vr,ar} of pairs {Vj,aj), where the 

V•s are analytic varieties in a neighborhood of z {i.e., V. is defined by 
J . 

(4.1) in a neighborhood W of z for c:rtain holomorphic f~ctions ~ in W 

depending on z and j fork= 1, ..• ,qJ, where the number qJ of functions 

also may depend on j and z) and where a. is a differential operator with 
J 

coefficients holomorphic in a neighborhood of z for j 1, ••• ,r. If for each 

z E en all the defining functions hi, k = 1, ... ,qj, j 1, ... ,r are the same 

polynomials for every z and if the coefficients of the differential opera­

tors a. are the same polynomials, W is called a polynomial multiplicity var-
J n 

iety in a:. In this case for w c a:n, W n w is the restriction of W to the 

points of w. Let fz be the germ of a holomorphic function at z, then fzlw, 

the restriction off to W, is defined as the collection of functions z 
z z 

{fj};=l' where each fj is defined on Vj in a neighborhood wof z, by 

(4.5) 
def 

f , =-= 
J 

a. fiv 
J 1 .nw 

J 

Conversely, a collection of functions {f.}~ 
1 

with f . defined on VJ. in a 
J J= J 

neighborhood of z is called a holomorphic function on W if there exists a 
z 

holomorphic function fin a neighborhood w of z with fjW = {f . }~ 
1

. 
nw J J= 

LEMMA 4.1 [16, th. II.2.4]. Let {hk}~=l be a q-tuple of holomorphic functions 

in w. Then it is possible for each z E w to define the germ W at z of a 
z 

local analytic multiplicity variety, such that for each z E w the germ at z 

of every function f, holomorphic in a neighborhood of z in w, vanishes on 

W 'if and only if it can be written as 
z 

q 
f(w) l hk(w)gk(w) 

k=l 
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for w i n a neighborhood of z i n wand for func tions gk holomorphic there, 

k = 1, .•. ,q. 

➔ 
Thus for any vector hz 

variety such that the subset 

EA; there exists the germ Wz of a multiplicity 

1 of A of germs of functions vanishing on W 
z z z 

is always an i deal whi ch sati s f ies (4. 4). It should be remarked that W is not 

uniquely determined by the functions h
1

, ... ,hq. Instead of proving lemma 

4.1 we shall give some examples of polynomial multipli c ity varieties. 

(i} For n = 2, q = 1 and h(z) = z7(z
1 

- z
2

/ · both the multiplicity varieties 

W• def { 0 ' d . 0 am-1/a m-1 'd 

(ii) 

z
1 

= , 1 entity; ... ; z
1 

= , z
1 

;z
1 

= z
2

,1 ; ••• ;z
1 

= z
2

, 

/-1 /a z7-1} 

m+.f-1 m+.f-1 
z

2 
= O,id; ... ;z

1 
= z

2 
= 0, a /az

1 
;z

1 
= O,id; ... ; 

m-1 m-1 . .f-1 .f-1 
z

1 
0, a / az

1 
; z

1 
z 21 1d; ... ;z

1 
= z

2
, a /3z

1 
} 

are such that, if they replace Vin (4.3), then (4.4) is satisfied 

for each z E Q;n, cf. [16, ch II,§ 2, ex. 3] . 
2 

Let n = 2, q = 2, h
1 

(z) = z
2 

c f. [16, ch. II,§ 2, ex. 4] 

2 
z

1
• Then we may take 

W ~ {z
1 

=z
2

=0,id.;z
1 

= z
2

=0, a/az
2

;z
1 

=z
2

=0, 
2 1 3 3 

zl = z2 = 0, a /azl a z2 + 6 a /3z2} I 

because obviously for every z E Q;n and f 
z 

h 2fJwnw = 0 for some neighborhood w of z, 

expand fin a power series 

E AZ h1flwnw = 0 

and if flwnw = o, 
and 

we first 

Since f(O,O) = 0 we have f
00 

= 0, since af/az
2

(0,0) =Owe have f
01 

=O, 
1 2 2 

since af/ 3z
1 

(0,0) + 2 a f/az
1 

(0,0) =Owe have f
10 

+ f
02 

= 0 and 

finally since a
2
f/ az 1az

2
(0,0) + ¼ 33

f/az~(O,O) we have f
11 

+ f
03 

0. 

Next writing 

2 i-2 zj z j 
J. 

zl I f '' zl + zl I flj + I fOj 
zj 

1J 2 2 2 i22 j <! O j <! O 
j <! O 

and using 
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3 2 + + 
z

2 
z

2
(z

2 
-z

1
) +z

1
z

2 
= z

1
z

2 
mod h•Az 

4 2 2 2 2 4 + + 
z

2 
(z

2
+z

1
)(z

2
-z

1
) +z

1 
E h•Az 

by the above we get 
++ 

f(z1,z2) =f10z1 :f4-1zlz2+fOO+f01z2+f02z1 +f03zlz2 mod h•Az -

= 0 mod h•Az· 

(iii) Finally we give an example which shows that the differential operators 

do not necessarily have constant coefficients. Let n = 3, h
1 

(z) = 

=z
2 

- z
1

z
3 

and h
2

(z) = z~, cf. [16, II exercise 2.2]. Then as in example 

(ii) one can check that the polynomial multiplicity variety 

W ~ {z
2
:z

3
=0,id;z

2
=z

3
:0,z

1
a/az

2
+a/az

3
;z

1 
=z

2
=0,id.; 

z 1 z z
2 

= o,a/az 1 + zi/az) 

satisfies the required properties. To see how the multiplicity variety 

W could be obtained one !first determines a multiplicity variety W
1 

be­

longing to the polynomial z
2 

- z 
1 

z
3

. For that purpose, we introduce 

the change of variables u = z
1 

+ z
3

, v = z
2 

and w = z
1 

- z
3 

so that any 

holomorphic function f(z
1

,z
2

,z
3

) can be written as 

f(u,v,w) f(u+w 
2 

,v, 

and so that the polynomial z
2 

- z
1 

z
3 

multiplied by 4 becomes 

2 2 
w - u + 4v, 

which now is a distinguished polynomial in w. A multiplicity variety 

belonging to it is 
~ def 2 2 . 2 
W1 ~ {w -u +4v=O,id.;w=u -4v=O,cl/clw}, 

which in the original coordinates is 
def . 2 

W1 -= {z
2

-z
1

z
3

=0,id.;z
1 

-z
3

=z
2
_-z

1 
=O,cl/az

1 
- a/az

3
}. 

Now we write an analytic function f(u,v,w) as 
~ 2 2 
f(u,v,w) = K

0
(u,v) +w K

1
(u,v)mod(w -u +4v), 

where K
0

(u,v) and K
1 

(u,v) are computed by the values off on the 

variety w
2

-u
2

+4v=O above the point (u,v), if u
2

-4v;,!O. Precisely, 

since f(u,v,w) :K
0

(u,v) +wK
1 

(u,v) for w=±lu2 -4v'we get two equations 

with two unknowns yielding the solution 



~ ~ ~ 
f(u,v, ✓u- - 4v) + f(u,v, - lu~ - 4v) 

2 

f(u,v,~) - f(u,v-~) 

2/u2 - 4v 

if u
2 

- 4v '/ 0, while for u
2 

= 4v we have the equations 

f(u,v,O) =K
0

(u,v) & at/aw (u,v,O) =K
1 

(u,v), u
2 

=4v. 

Hence the functions K
0 

and K
1 

can be continued analytically over 
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. 2 the van.ety u - 4v = 0. Furthermore, the multiplicity variety belonging 
2 

to the polynomial v is 

W
2 
~ {v=O,id.;v=O,a/av}. 

So we write K
0 

and K
1 

as 

K
0

(u,v) - KOO(u) +v KOl (u) mod 
2 

V 

K
1 

(u,v) = KlO (u) +v K
11 

(u) mod 
2 

V 

and compute Kij(u) by the values of K
0 

and K
1 

on the variety v O, 

which yields 

KOO(u) K
0

(u,O) 

KlO(u) K
1 

(u,O) 

KOl (u) aK
0
/av (u,O) 

Kl 1 (u) aK/av (u,O) 

Using the expressions for K
0 

and K
1 

we find 

() 
f(u,O,u) + f(u,0,-u) 

Koo u = 2 

Defining 

f(u,O,u) - f(u,0,-u) 
2u 

W' ~ {z
2 

=z
3 

=O,id.;z
1 

=z
2 

=O,id.} 

f(u,0 , 0) + f(O,O,u) 
2 

f(u,0,0) - f(O,O,u) 
2u 

by a power series expansion off we see that K
00 

and K
10 

can be 

expressed in terms of the restriction off to W•. The expressions 

for K
01 

and K
11 

become 
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and 

1 at 1 at 1 at 
-- (u,O,u) - (u,O,u) + -

2 
~v (u,0,-u) + 

2 av u aw 0 

1 at' 
+-;;- aw (u,0,-u) 

at at 
(u,0,0) - -- -~- (u,0,0) + 

2 az2 2u oZl 

at 1 at 1 at 
+ - -- (u,0,0) + - -- (0,0,u) + -2 -a- (0,0,u) -

2u az
3 

2 az
2 

u z 1 

at 
- -- (0,0,u) 
2u az3 

.!. { .!. ~ at 1 at 
u 2 av (u,O,u) - u aw (u,O,u) - 2 av (u,0,-u) -

at 1 ~ 
(u,0,-u)} + -

3 
{ f(u,O,u) 

u aw 
u 

f(u,0,-u)} 

.!. { .!. ~ 1 at 1 af (u,0,0) - - -~- (u,0,0) + -
2 

-~- (u,0,0) -
u 2 az

2 
2u oz

1 
u oz

3 

1 af at af 
(0,0,u) - --- (0,0,u) + --- (0,0,u)} + 

2 az
2 

2u az
1 

2u az
3 

1 + 3 { f(u,0,0) - f(O,O,u)}. 
u 

+ 2 Finally, expressing u K
01

(u) _ u K
11 

(u) in terms off and bearing 

in mind that K
01 

and K
11 

are analytic, we see that K
01 

and K
11 

can be 

expressed in terms of flw• and the restriction off to the multipli­

city variety 
def W" =-= {z

2 
=z

3 
=O,z

1 
a/az

2 
+ a/az

3
; z

1 
=z

2 
=O,z

3 
a/az

2 
+ a/az

1
}. ..,.+ 

Thus any f can be expressed modulo h•A in terms of the restriction 
~-~ + z 

c;f f to ·W ~ W• u W" and clearly h•A vanishes on W for each z. 
z 

Furthermore, [16, th. 2.5] determines a procedure (called parametri­

zation) which extends the restriction to the germ of a local multiplicity 

variety (II of the germ of an analytic function f to the germ of an unique 

analytic function f; if f vanishes on W then always f - 0. Moreover, 
z z z 

this procedure is linear in the following sense: for a,b EC we have 

-----(af+bg) = a f + b g. In example (iii) the extension of flw is 
z z z 

KOO (zl + z3) + z2K01 (zl + z3) + (zl - z3)K10 (zl + z3) + (zl - z3) z2K11 (zl + z3) · 

The case of modules in AP generated by a p xq-matrix H = (h.k) of 
z J 

holomorphic functions is more delicate. The difficulty is that we want to 
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+ + 
solve a matrix equation H•g=f in a ring. In this and the next section lemma's 

4.2 and 4.3 will express the following facts: 

(1) Any submodule M of AP is ~-linearly isomorphic to a direct sum of p ide-
1 p z 

als I , ... ,I in the ring A and moreover, there exists a ~-linear bi-
z z z p . 

jective map o: AP+ AP such that Mis mapped onto ,Gl
1 

IJ. That such a 
z z J= z 

map exists can be seen by induction. For p = 1 it is trivial. Let the A -
p p . def z 

module homomorphism¢: A + A be defined by ¢(f
1

, ... ,f) = f
1

. Then 
z z l p 

A;-l can be identified with Ker¢= (0,A;- ). Furthermore, let M
0 

be the 

module M n Ker ¢ and let the ideal I 1 
c A be the image of M under ¢. If 

z z 
A and Au B are Hamel bases of M

0 
and M, respectively, this determines a 

linear direct decomposition M = M
1 

Gl M
0

, where M
1 

is a linear space which 
1 

is mapped by¢ linearly and bijectively onto I. Moreover, by using com-
z 

pletions of A to a Hamel basis Au C of (0 ,Ap-l) and of Au Bu C to a Hamel 
z 

basis of AP 
z 

we find that M
1 

is a linear subspace of a linear space N
1 

= 

N c Ap-l, such that AP is linearly decomposed as AP= N
1 

Gl =<A ,N) with 
z 1 

91(0,Ap- ) , where 
z 

z z -1 z 
MO can be considered as a submodule of A; . By the in-

ductive Ap-l + Ap-l which 
z z hypothesis there exists a linear bijection cr

0
: 

be the projection of AP onto 
z 

maps MO onto a direct sum of ideals. Let P
1 

N
1

, then we define a~ a
0 

° (1-P
1

) +¢ 0 P
1

. 

+k}q (2) If M is generated by the vectols {h k=l of germs at z of holomorph.ic 

vector functions, the ideals I can depend on these vectors by 

(3) 

z 
q 

l gk h~ = 0 for j = 1, ... ,l-1 if l > 1}. 
k=1 J 

Il 
z 

1 { k I+ q} +k I+ q This follows from ( 1) where 1 z = I:gk h 1 g e: Az and M
0 

= { Egk h g e: Az 

with Egk h ~ = 0}. Note that any module in A; is finitely generated because 

the ring A is Noetherian [30, lemma 6.3.2 & th. 6.3.3]. 
z 

According to lemma 4.1 to the vector 
+ 1 

accociated the germ W = (W , ... ,wP) 
z z z 

plicity varieties, such that 1 consists of the vector functions vanish-
+ z 

+r r 1 rP ( , ... , ) of ideals there is 
z z z 

at z of a vector of local multi-

The need of Hamel bases in (1) makes it impossible to obtain ideals of func­

tions satisfying growth conditions. Therefore, with the aid of parametriza­

tion (see p.122) in the proof of lemma 4.2 we will perform the steps of (1) 

in a more constructive way. However, in order to get bounds later, we will 

keep some freedom in the definition of the map there. The result will be a 
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map p : AP+ AP which depends on z and is only ~-linear from AP onto AP/ 
z z z z z 

~il I~. As (1) also holds for sections over - a domain, in lemma 4.3 it will 

be shown that the freedom in the definition of p will not prevent us from 
z . 

obtaining sections on the multiplicity varieties wJ. 
For a pxq-matrix Hof holomorphic functions we will denote the module 

in AP of germs at z of functions f = H•; with; E Aq by j. 
z z z 

LEMMA 4.2. For each pxq-matrix H = (hjk) of holomorphic functions hj~ E A(w) 

and for each z E w, there exist a local vector multiplicity variety W and 
+ +Z 

a linear, surjective map p from A~ontoAP/1 whose kernel is just J, 
➔ z z z z z 

where I is the module associated to W. 
z z 

PROOF. ·For each z E W define W1 
as the analytic multiplicity variety belong-

z 
Let,/- be ing to the functions h11•··· 1hlk'"""' h lq by lemma 4.1. the sheaf 

+ ,/- ifzand of relations at z of the first l rows of H, i.e., gz E only if 
z 

q 
(4.6) I (h ' k' (gk) = o, 

k=1 J z z 
j = 1, ... ,L 

l 
Now by Oka's theorem [30, th. 7.1.5] M is locally finitely 

+ z 
generated, hence 

the functions~ hl+l k gk with g satisfying (4.6) determine 

at z of an analytic multiplicity variety according to lemma 

vanishes on wl+l (i.e., f E Il+l) if and only if 
z z 

(4. 7) f 
z 

wf+1 the germ z 

4.1. Thus f EA 

+ + 
Now we will define the map pz for fz EA;: (pzfz)l is given by 

I 
+1 

Let (f1 )z be the extension of f
1 

W1 at z and let gz be such that 

(4.8) 

+1 
According to lemma 4.1 it is always possible to find such gz Then we define 

(4.9) 

Successively for l 2, ... ,p-1 let fl be the extension of the restriction 

z 



(4.10) 

and define 

( 4. 11) 

t-1 

f - L 
l j=l 
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+l 
The functions g are not 

l z +l 
ment of M can be added tog. 

z z 
,~+1 and (pf l,t ., j ~ 2, are 

uniquely determined, since an arbitrary ele­

This changes (pf lo 
1

, although (pf lo 1 j 
z z ~+ z z ~+ 

z 1) z z +J 
4.3) . Sop is determined by 

not altered (see next section proof of lemma 
+l 

the choices of gz and we may choose suitable 
+l z 
gz depending on z E w to be determined later. Therefore, we get a map pz 

from AP into AP which can depend on z. It is clear that pz is surjective 
z z 

from AP onto AP. Furthermore, it follows from the linearity of the map 
z z +l 

fzlwz-->- fz and from the fact that a differen~ choice--,.of gz for l 1, ... ,p-1 

has the effect of addition of an element of I top f, that the map pz is 
z z z 

linear from A~ into Apr;. 
+~- + z z ➔ q ➔ 

Let fz E Jz, thus fj = ~ h

1
k gk for some g' E Az. Then (pzfz)l vanishes 

on Wz1 , hence f 1 = O and g1 = g' - tii for some tii1 E M1 depending on the choice of z z z z z 

g½. This implies that (pzfz)
2 

=~ h
2

k m~ which vanishes on W2 in a 

hood of z. Successively for l = 2, ... ,p-1 we find that f,t = 0, that 

_;;{ for some r:ii EM{ and that (pzfz) l+l = { hl+l km~ which vanishes 

in a neighborhood of z by (4. 7l. Thus Pzfz E Iz. 
➔ ➔ ➔ w Conversely, if p f E I , thus if pz f vanishes on , then 

1 -->-1 z z z z z 

neighbor­
--,.£_ +l-1 
gz = mz -

on wl+ 1 

fl = 
=·z: h lk gk for some gz E Aq by lemma 4.1. Since f. - 0 for j = 1, ... ,p-1, by 

z J k 
(4.10) we get for l = 1, ... ,p-1 

l) At this point [16] is a little puzzling. On page 49 it is remarked that 
➔ ~ 

(pzfz)l+2 iwl+2 does change by a different choice of gz. On the oth!r hand 

this should not be true if one wants to obtain global sections on W (see 

next section), which is really the case in [16, p.100-105, especially p.104, 

proof of b, shows that one is concerned with global sections]. The key lies 

perhaps in the fact that systematically the wrong formula has been used in 

[16], where in the formula's (2.19l, (2.20l, (2.58l, (2.59) and (3.44) F. 
1 

. 
l.+ ,J 

should be replaced by Ft+l,j' Ft+l,j' Fk+l,j' Fk,j or Fk,j' respectively. 
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.l-1 q 

l l h.lk gj 
j=l k=l k 

+.l .1. 1 -+P un-1 with gz EM;- and this holds also for .l = p for some gz E ~ , because 
-+. 

(4.11) vanishes on~ if .l = p-1 there. Thus since~ h.lk g~ = 0 for j > .l, 

f can be written as 

-+ 
i.e., f E J. 0 z z 

REMARK. If the map fzlwz + fz would be multiplicative, pz would be multi­

plicative. It is possible, cf. [16, th. 2.5 & lemma 2.14] to give a rule 

of multiplication by an element of Az in A;/iz such that pz becomes a homo­

morphism of A -modules. 
z 

IV.2. GLOBAL THEORY. 

We will study the global analog of the foregoing with sections over 

a pseudoconvex domain n instead of germs at a point z. 

Let J be a sheaf of ideals generated in each point of n by holomorphic 
-+ 

functions h = (h
1

, •.. ,hq) inn. Their simultaneous zero set defines a global 

analytic variety V = U V 
ZEQ Z 

inn (at points z where some hk(z) # 0 V is 
z 

empty). We will define the sheaf of analytic functions on V. Let I be the 

sheaf on n 

where I 
z 

~A is defined by (4.3); let Iz 
z 

when z E O\V. We define a sheaf 

Fon n by 

(4.12) F ~AI z z I ' z 
Z E 0, 

so that the following sequence is exact 

o -+ I-+ A + F-+ o. 
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For z E Q\V I =A, thus F = 0 . Hence Fis only non-trivial in points of 
z z z 

V, thus we may just as well consider the restriction F• of F to V 

which is a sheaf on V. By definition a section fin 1(V,F 1
) is a holomorphic 

function in V; considered as a section f
1 

in 1(Q,F) we would have f
1 

(z) = 

=f(z)for zEV and f
1

(z) = 0 for z E Q\ V. So, it makes no essential differ­

ence if we regard the sections in 1(Q,F) as the holomorphic functions on V. 
Finally, let R be the sheaf of relations of h, so that we have the 

exact sequence 

o -+ R -+ Aq ~ J -+ o. 

By [27, IV. D.2] the sheaf I is coherent and by Oka's thoerem [30, th. 7.1.5] 

or [27, IV. B.8 and IV. C.1] also R is coherent. Hence we can apply Cartan's 

theorem B [27, VIII. A.14] or [30, th. 7.4.3], which says that the first 

cohomology groups H
1

(0,I) and H
1

(0,R) vanish. This means that the following 

sequences of sections over Qare exact 

(4.13) 

-+ 
(4.14) rcn,Aq) ~ l(Q,J) -+ H

1 W,R) 0. 

(4.13) means that the restriction map from 1(Q,A) = A(Q} to Vis a surject­

ion and if (4.4) holds for all z En, for example if J is a prime ideal 
z 

for each z E Q (cf. chapter III), by (4.14) we find that in 

-+1<n ,A>!'. -+ rcn,F•J 
1(Q,I) 

both maps are isomorphisms. Thus any holomorphic function on Vis the re­

striction of a holomorphic function in Q and any function fin A(Q) vanish­

ing on V can be written as 

f(z) 

q 

l hk(z)gk(z), 
k=l 

for some gk E A(Q), k = 1, ... ,q. 

Z E Q 
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+ 
Now we will study the sheaf of modules Jin AP generated by a matrix 

Hof holomorphic functions h.k inn. The difference with the above is that 
+ J 

for p > 1 J is not equal to the sheaf 1 of vector functions vanishing on an .... 
associated vector multiplicity variety W, but the maps pz of lemma 4.2 

+ + 
determine a bijection between AP f] and AP /I. The multiplicity varieties cl, 
l = 1, ... ,p were defined locally according to lemma 4.1. In the overlap of 

two neighborhoods w
1 

of z 1 and w
2 

of z
2 

i~ Q wher: w;:
1 

and ~
2 

are defined 

they can be choosen to coincide, so that W = Un W is a global, analytic 
Z€u Z 

vector multiplicity 
+ 

pzfz is the germ of 

variety inn. Moreover, in lemma 4.3 we will show that 

a section in 1(w,AP/t) if f is a germ of a section 
z 

z 

f € 1(w,Ap) = A(W)P. This means that p 
z 

determines a sheaf homomorphism be-

tween sheafs of linear spaces, so that the following sequence is exact 

+ p 
o + J + AP -+ F + 0. 

where, as before, we may consider 

F ~ U AP/+ 
ZEQ z I 

z 

+ 
as the sheaf of holomorphic functions on W. As in (4.14), it follows that 

the map H: 1(rl,Aq) + 1(rl,J) is surjective. So finally, since H1 (n,J) 0, 

we obtain an isomorphism pL between linear spaces, defined by the map p fol-
+ 

lowed by restriction to W 

(4.15) 

+ + 
where A(W) is the sheaf of holomorphic functions on W. 

LEMMA 4.3. [16, th. 2.6]. For any matrix Hof holomorphic functions inn, 
+ 

there exist an analytic vector multiplicity variety Wand a local restric-

tion map pL ~ueh that (4.15) is -an isomorphism between linear spaces. 

+ + 
PROOF. We will show that pzfz is the germ of a section over win AP;I if 

f € A(w)P_ We may assume that w is pseudoconvex. That (pf) is the germ 
z z 1 

of a section in A(W) follows immediately from the definition. Since (fl)z 

is uniquely determined by f
1

Jw1 
it follows from (4.14) that 
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+ + 
E A(w)q. Thus (4.8) 

+1 
g(z) 

+1 
for some 

+1 Ml for a section g in g = - m m E and 
z z z z 

(4.9) becomes 

q q 
+ 

I I 1 
(pzfz) 2 = f2 (z) - h2k(z)gk(z) + h2k (z) (mk) z' 

k=l k=l 

which is a section in rcn,A/1
2
), because the last term belongs to 1

2
. Let 

+ + z 
M be a locally finitely generated subsheaf of A over w, let h be a vector 

of holomrphic functions in wand let F be the sheaf h•M, i.e., the sequence 

+ 
O+R+MJ:l..F+o 

is exact for some coherent analytic sheaf R, cf. [30, th. 7.1.5] & [30, th. 

7.1.7] or [27, IV. B.13]. Hence as in (4.14) the map h:r(w,M) + r(w,F) is 

surjective. For a function k E A(W) klc/ determines uniquely a function 

j;/ E A (w) , hence k - k/- is a section i~ r (W, F) where F is determined as above 
Y-1 + -l ~l-1 

with M = Ir an.'.; h = (h£1 , ... ,hp_). Therefore, k-k = i:: h.e_k ~ for some 
~l-1 q "'"'q k ~l-1 

vector function m E A(W) satisfying (4.6) (with gk replaced by~ ). 

Thus for .l = 2, ... ,p-1, successively, we find that there is some global func-
:::i-1 tion m E A(W)q with 

+ 
+.l ~l-1 +.t-1 +.l +.l .l 

hence by (4.10) that gz=m (z) +mz -m for some m EM, and by (4.11) that z z z 

determines a section in A/1.l+l, because the last term vanishes on c/+1 . 
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From the last formula is can also be seen that a change 
+l 

of g does not 

alter 
+ ~ 

(p f ) 0 • for j ~ 2, because the choice of mz determines the germ 
z z -1.-+J 

□ 

+l 
g . 

z 

+ 
Thus any holomorphic function in rcn,A(W)) is the image under pL of a 

holomorphic vector function inn and any holomorphic vector function 
-+- + -+ -+ 
f E A(O)p vanishing under pL on W can be written as f = H•g for some 

g E A((2)q. 

REMARK. It follows that the holomorphic functions f on a vector multiplicity 
+ 

variety Ware defined as restrictions of a collection {fwlw cc n} of locally 

defined holomorphic functions, i.e., by (4.5) for all w cc n we have, if 

f = {f
1

, ••• ,fr}, 

f. (z) 
J 

z E V. n w. 
J 

Only if p = 1, a holomorphic function on Wis also the restriction of an 

entire function, where restriction is defined in (4.5) which in this case 

defines the map pL, too. 

IV.3. EHRENPREIS' AND PALAMODOV'S FUNDAMENTAL PRINCIPLE. 

In this section we will mention the fundamental principle with spaces 

bf entire functions satisfying certain growth conditions, formulated by 

Ehrenpreis in [16] and by Palamodov in [56]. We shall not discuss all these 

conditions in full detail, but in the next section we shall give alternative 

conditions, which enables us to generalize the principle. The only purpose 

of this section is to relate our work to that of Ehrenpreis and Palamodov. 

If n = ¢n, His a matrix of polynomials and if all the functions in 

(4.15) are bounded with respect to certain weighted sup-norms, then the fact 

that PL is a topological isomorphism is sometimes also called the fundamental 

principle. This is formulated by Ehrenpreis in [16, th. 4.2] and by Pala­

modov in [56, IV, §5. th. 2] and the difference between these two are the 

conditions on the ·bounds. The need for bounds makes it necessary to consider 

matrices P of polynomials with associated polynomial vector multiplicity 
=>-

varieties W, instead of matrices Hof arbitrary entire functions. Our dis-

cussion will mainly follow the lines of [16], but at the end of this section 

we will make some remarks on Palamodov's formulation, which holds in convex 
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tube domains n, too. 

Firstly, we remark that the sheaf of relations between a finite number 

of polynomials is globally finitely generated by polynomilas [30, lemma 
+ 

7.6.3]. Hence the vector multiplicity variety W of lemma 4.3 will be a poly-

nomial vector multiplicity variety. Furthermore, there are only finitely 
+ 

many possible polynomial vector multiplicity varieties to choose W from. 

Unfortunately, for obtaining bounds one cannot use the same multiplicity 
+ 

variety at each place. This difficulty can be overcome by taking for W the 

union of all the possibilities, so that at every place the bounds hold for 

at least one multiplicity variety. That this yields no more complications, 

has been shown in [16, proof of (4.9), p. 102-105]. Moreover, the choice of 
+ 

the functions g at every place in the definition of the map p (cf. (4.11)) 

can be done in such a way that we obtain good bounds. Due to this the func-
+ + 

tions gz depend on the place z (actually, g {~} depends on a priori given 
w 

bounded sets w of a covering of ~n), but in the proof of lemma 4.3 we have 
+ 

seen that this produces no problems for obtaining sections on W. We only 

remark that the map pL has been defined by restricting the entire functions 
+ 

to any set w of the covering, next by applying t~e map pz with the g~s be-

longing to that wand finally by restriction to W. This yields a section on 
+ 
W which is defined by a collection of semi-local functions. 

In order to discuss the conditions on the bounds, we describe the gen­

eral structure of the allowed spaces Hof entire functions. An analytical 

uniform structure Kon His a collection of continuous positive functions 

k on ~n, such that for each FE Hand each k E K 

F(z) / 
k(z) 

and such that the sets 

..,. 0 as II zll -,. oo 

form a fundamental system of neighborhoods of zero in H. Then the space 

W = FH 1
, the Fourier transform of the dual H' of H, is called an analyti­

cally uniform space, AU - s pace, cf [ 16, p. 9, (a), (b) & (c)] or [2, p. 7 

(1) (iii)]. 

The set K is not uniquely determined by H. We require that [16, p. 96 

(a) & (b)] or [2, p. 8 (iv)] 



132 

(i) any entire function which is O(k(z)) for all k EK is in H 

(ii) for any N > 0, if we replace the analytically uniform structure K={k} 

by~ 

(4.16) 
def N 

· kN(z) = max k(z') (l+Hz•II) , 
u z-z, n !>N 

then~ is again an analytically uniform structure for W. 

The AU-structure K provides the space H(~) of restrictions to W sat­

isfying the bounds induced by K with a topology in a very natural way: from 

(4.16) it follows that together with Falso all its derivatives belong to H; 

let W = {V1,a
1

; ... ;Vr,ar} and let g = (g
1

, ... ,gr) be a section on W, i.e., 

in the bounded sets win ~n with w n V.; ~ for some j E {1, •.. ,r} there is a 
J 

holomorphic function hw with a.hwJV. = g., j = 1, •.. ,r, cf. (4.5); then the 
J J J 

space H(W) is defined as the set of all sections g on W satisfying for every 

k E K 

(4.17) z E V., j 
J 

1, ... ,r 

for some C ~ 0 depending on k; with C > 0 and k EK fixed condition (4.17) 

determines an open set of a 0-neighborhood base of the topology of H(W). 

LEMMA 4.4. (Ehrenpreis' fundamental principle) Let H be a space of entire 

functions with an AU-structure satisfying certain conditions discussed be­

low. Then to any matrix P of polynomials there is associated a polynomial 
➔ 

vector multiplicity variety W, such that the map pL, determined by lemma's 
➔ ➔ ➔ 

4.2 and 4.3, is a topblogical isomorphism from H/P•H onto H(W). 

An example shows that indeed further conditions are required. 

EXAMPLE. Let H be the space of entire functions Fin ~2 satisfying for 

every e: > 0 

JF(6) J !> M (1+11611 )m exp e:llrm ell 
£ 

where m depends on F. Let W def ({(6
1

,6
2

) Je
2 

-i6
1 

= O},id.), then the 

growth conditions of H yield the space H(W) of entire functions fin 

~ satisfying for every e: > O 

Jf(z) J !> M exp e:JzJ. 
£ 
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However, it is not true that any function in H(W) can be extended to a 

function in H. For example, the function 

f (z) def ~ exp (izl; + 1/1;) di; E H (W) 

cannot be written as f(z) = F(z,iz) with FE H, since all functions in 

Hare polynomials, see [68, 29.1], while f is not. 

An AU-space Wis called localizable, LAU-space, if H satisfies such 

conditions that lemma 4.4 holds. In order to let W be localizable in [16, 

p. 96(c)] or [2, p. 8(v)] the following condition has been imposed: there 

is a family M (BAU-structure) of continuous positive functions m on a:n with 

for every m EM and k EK m(z) = O(k(z)) such that the bounded sets 

Cl> 0, m EM 

define a fundamental system of bounded sets in H; moreover, the functions 

k EK and m EM can be written as a product of functions ki and mi, respec­

tively, of the variable zi, i 1, ... ,n and these functions must satisfy 

certain conditions [16, (4.3) & (4.4)] or [2, p. 21 (vii) & (viii)], among 

others [2, (viii)]: for every£> 0 and for every m = m
1 

... m E M there 
n 

f . 1 d · l * * * ism = m
1 

... mn EM such that or every J = , ..• ,n an any z
0 

= x
0 

+1.y 
O 

E a: 
. 1 

there exists an entire function ~ 1.n a: for which 

(4 . 18) 
1 

Z E 0: • 

If these conditions are satisfied the space Wis called product localizable, 

PLAU-space, cf. [16]. 

In the example we have defined the space H by the PI.AU- structure 

K = {klk(0) = k
1

(Re0
1
)k

2 
(Im0

1
) k

1 
(Re0

2
)k

2 
(Im0

2
), k

1 
is a 

continuous function dominating all polynomials and k
2

(y) = 

= exp £ I y I , £ > 0} . 

Another possible PLAU-structure would be 

K' = {k/k(8) = k
1 

(l8
2

1) k
1 

(l8
2

1), k
1 

is a continuous function 

dominating all polynomials}. 
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A BAU-structure M belonging to K is 

M {mlm(6) = m
1 

(Re e
1

) m
2 

(Im6
1

) m
1 

(Re e
2

) m
2

(Im e
2
), m

1 
(x) = 

l = a(l+lxl) , a> 0, l > 0 and m
2

(y) is a continuous, positive 

function which is dominated by every function exp Eiyl,E > O} 

and a BAU-structure M' belonging to both Kand K' is 

M' {mlm(6) 
l a(l+lxl) ,a>O,l>O}. 

M' satisfies condition (4.18), but M does not satisfy it, because m
2 

is 

allowed to be a function that itself dominates all polynomials. In the 

example K defined the PLAU-structure and the growth conditions of H(W). 

Hence the BAU-structure, which completes the conditions for product local­

izablity, must be M'. However, M' does not induce a BAU-structure on H(W). 

A BAU-structure · on H(W) would be the one induced by M. 

Besides condition (4.18), the condition that M induces a BAU-structure 

on H(W) is used to extend a collection of semilocally defined functions 

satisfying the bounds on W to a globally defined function in ~n satisfying 

the right bounds. Thus in the example this condition is not satisfied. 

Now there are two ways to get rid of the problems exposed by the ex­

ample. Either, if one wants to define H(W) by one of the AU-structures Kon 

H, cf. [2], one moreover has to require that the BAU-structure Mon H, be­

longing to Kand satisfying the conditions for PLAU-structure (among others 

condition (4.18)),induces also a BAU-structure on H(W). This assumption has 

been omitted in [2]. Or, the space H(W) should be defined as the one induced 

by all the possible AU-structures on H, cf. [16]. The special condition is 

satisfied then, but one has to know all the possible AU-structures on H. 

REMARK. In the following sections we will present the fundamental principle 

in a different way using the L
2
-estimates for the Cauchy-Riemann operator 

given by Hormander in [30]. Then the above mentioned problems are avoided 

and less involved conditions will be required on the growth conditions for 

the functions in H. These conditions and those of [16] are not always com­

parable. For example, the space V• of distributions is LAU in the sense of 

[16], but our method does not work for the space H = Z. On the other hand, 

the approach followed here enables us to derive the principle for the space 
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E (U) of C ~ functions in a convex set U c m.n, while the methods of [ 16] only 

yields that E(u) is PLAU when U is a cube or that E(U) is LAU when U is a 

convex polyhedron, cf. [16, remark 4.5]. As far as the Ehrenpreis-Martineau 

theorem [16, th. 5.21] is concerned the fact that U must be a polyhedron is 

not serious, because between any two £-neighborhoods of a bounded, convex 

set in lRn there lies a convex polyhedron P and the theorem follows by ap­

plication of the fundamental principle to the space E(P). However, in chapter 

III we discussed a similar theorem for analytic functionals carried by un­

bounded convex sets with respect to £-neighborhoods and in general no poly­

hedra lie between two such neighborhoods. The Fourier transforms of these 

analytic functionals are no longer entire functions and we need the funda­

mental principle for spaces H consisting of functions holomorphic in some 

pseudoconvex domain and satisfying certain growth conditions there. 

For some parts of our needs the fundamental principle of Palamodov in 

[56] suffices. For, he does not necessarily deal with entire functions, as 

the theorems of [56] are valid for functions holomorphic in convex tube do­

mains. More, precisely he considered an increasing sequence of majorants Ma 

of the form 

M (z) 
a 

[56, III.§ 1.1° & 4°]. Here R is an everywhere finite and positive function 
a 

in ~n and I is a convex function which need only to be defined in a convex 
a 

set U a in m.n with -th:e property that an £a-neighborhood of U a+ 
1 

is contained in 

Ua. Furthermore, the functions {Ra}:=l and {Ia}:=l have to satisfy a condi­

tion similar to (4.16), namely for y E Ua+l 

sup 
II z-z' II:,;£ 

a 

and a condition somewhat similar to (4.18) but less involved. The fundamental 

theorem in [56, IV. §5, th. 2], the isomorphism (4.15), has a weaker form 

with respect to the bounds than in [16]. 
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LEMMA 4.5. (Palamodov's fundamental principle). For any matrix P of ~ly­

nomials there is associated a polynomial vector multiplicity variety W, such 

that any holomorphic function in W n (lR.n + i U ) , which is bounded in absol-
+ a -1 

ute value by M on W, can be extended under (pl,) to a function holomorphic 
Cl 

in lR.n + i u and bounded there in absolute value by KM , for some K > 0 
a+m a + 

and positive integer m. Moreover, any holomorphic function fin (lR.n+ iU )P, 
+ Cl 

bounded in absolute value by M there and vanishing under pL on W n (lR.n + i U ) , 
Cl Cl 

can be written as 

+ 
(4.19) f 

+ 
P•g 

for some ~ holomorphic in (lR.n + i u ) q and bounded there in absolute value 
a+m 

If n = ~n we have u 
Cl 

that in [16] a holomorphic 

= lR.n for every a. Then the difference with [ 16] is 
+ -1 

function in H(W) has been extended under (pL) 
+ + 

to one function satisfying all the bounds and if f vanishes on Wit can be 
+ 

written as (4.19) where g also satisfies all the bounds. 

Now problem 3.1 of the last chapter can be solved by lemma 4.5 and 
0 indeed it is contained in [56, III, §5, theorem and g ], but problems 3.2 

and 3.3 cannot be solved in this way. Palamodov applied the fundamental 
0 principle to the Cauchy-Riemann equations in [56, VI, §4, 4, car. 3] which 

contains the Ehrenpreis-Martineau theorem. From this corollary the theorems 

of chapter III.3 can be derived l), but we can not apply it to obtain the 

remaining theorems of chapter III. The reason is that we are concerned with 

holomorphic functions in the tube domains {lR.n + ilk}
00 

1
, where the convex 

k= 
sets rk c rk+l c I do not have the property that an Ek-neighborhood of rk 

is contained in ,k+l_ 

In the next section we will discuss different conditions on the bounds 

and the fundamental priciple (in a similar weak form as in [56]) for func­

tions holomorphic in tube domains n f ~n will be considerably more general 

than in [56]. For n =~none has in fact three fundamental principles, which 

supplement each other. 

l) Actually, due to condition [56, (5.3) p. 240] one has to assume that 

Q(a,I) contains a neighborhood of the origin, i.e., a is a positive func­

tion on r. 
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IV.4. THE FUNDAMENTAL PRINCIPLE FOR SPACES OF NON-ENTIRE FUNCTIONS. 

In this section we will formulate the fundamental principle for spaces 

Hof non-entire functions. As in [16] we will e-xpress the topology of H by 

projective limits, i.e., H will have an AU-structure. As far as the funda­

mental principle (the isomorphism pL) is concerned this will not be neces­

sary, as the principle essentially follows from the semilocal theory of 

[16, ch. III] and from theorems 4.11 and 4.12 of section 6 of this chapter, 

but in chapter V it will be convenient to have spaces H whose topology is 

defined by a projective limit, although an extra condition is needed then. 

We will assume that the growth conditions on the functions of H can 

be expressed by LP-norms with respect to weight functions of the form exp-¢
0 

for a E A, where A is a directed set and where {¢
0

} is a decreasing net 
aEA 

of plurisubharmonic func tions in a pseudoconvex domain n c <tn. Furthermore, 

let {nk}==l be an increasing sequence of relatively closed subsets of n with 

union n. Denote for p = 1,2, ... and for a function f 

(4. 20) II fll (p) d=ef { J I Ip a }1/p f(z) exp - p¢ (z)dA(z) 
a ,k 

nk 

where A(z) is de Le b e sgue measure in <tn, and for p 00 

llfll( oo ) ~ sup lf(zllexp-¢
0

{z); 
a ,k ,.., 

ZE>Ok 

when p = 2 we will write U •II instead of II •II <
2

> If f is bounded with 
a,k a,k· 

respect to the norm 

for p 

llfll~p) def { f lf(z) Ip exp -p¢ 0 (z)dA{z) }l/p 

n 

1,2, ... or 

for p = 00 , we will sometimes express this by saying that the sequence 

{llfll(p)} 00 
, let a,k k=l is bounded. For p = 1,2, ... , 00 
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be the Banach space of functions holomorphic in int nk, and in case p 

also continuous on nk, such that the norm (4.20) is finite, and let 

where in the projective limit the restriction maps from nk+l tonk are in­

tended. When p = 2 we will just write H[Q;¢
0 J. 

If all the sets nk are different, the following conditions are imposed: 

(4. 21) 'v'k, 3i. > k: Vz E nk, Vz' E B(z;l/2,1),. z' E nl , 

where for O $ 6 < 1 and K ~ 0 

def J c B(z;o,K) = {z' Dz•-zD $ min[K,od(z,Q )]}; 

here d(z,nc) denotes the distance from z to the complement of n, i.e., 

d(z,Qc) ~ inf Dz-z•II. 
Z 1 €QC 

There must exist a plurisubharmonic function o inn with 

(4.22) {zjz E n,o(z) s k}. 

For compact sets nk (4.22) is not a special condition on n, cf. [30, th. 

2.6.7.ii], but we have in mind unbounded sets nk. 

Finally, we have to make an assumption on the net {¢
0

}. Although it 

is not necessary, the proof of theorem 6.4 will be simpler if we would have 

neighborhoods B(z;o,K) of z with the property that the neighborhood 

U{B(z';c,L) I z' € B(z;o,K)} 

of z itself is contained in a neighborhood B(z;n,M) of z for some n and M. 

Since this is not true for the neighborhoods B we will define quite similar 

neighborhoods S which do have this property. Let for£~ O and K ~ O 



Then 

(4.23) B(z;o,K) c D(z;o/(1-o),K) 

and 

U{D(z'; £ ,L) I z' E D(z;o,K)} C D(z;£+£O+o,K+L). 

So if for positive K we define the neighborhood of z 

(4. 24) S (z;K) 

then 

(4.25) U{S(z';K) J z' E S(z;L)} c S(z;K+L). 

For a function¢ inn and for N,M,K ~ 0 define, cf. (3.40), 

(4.26) max{¢(z') +N log(l+llz•ll 2) +log(l+d(z•,nc)-M)J 

Jz• E S(z,K)}. 
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If N = M = K we will just write ¢N and if for p = 2 in the norm (4.20) ¢
0 

is replaced by ¢ a K or ¢ a we will denote that norm by II • II N ,Mk ,K or II • II N k, 
N,M, N 

2 
a, a, 

respectively. The functions log(l+Hzll ) and log(l+d(z,nc)-M) are plurisub-

harmonic inn, [30, (4.4.6) and th. 2.6.2] and [30, th. 2.6.7 (i) and cor. 

1.6.8]. For n = En we have S(z;K) = {z' Jllz-z•II s K} and then, as in the 

proof of theorem 3.1, [30, th. 1.6.2] and lemma 3.2 imply that¢ (which 
N,M,K 

in this case does not depend on M) is plurisubharmonic if¢ is. Due to pro-

perty (4.25) for N
1

,N
2 

~ 0 and for a function¢ inn we have 

(4.27) (¢N )N 
1 2 

S ¢N +N. 
1 2 

Our final requirement is that for every N ~ 0 and a EA there is a a'~ a 

and a positive constant C with 
a ,N 



140 

(4.28) 

We now define the space H. Condition (4.28) implies that for every 

N <! 0 

(4.29) 
def a a 

H proj lim H [n;$] = proj lim H [n;$ ], 
a EA p ae:A p N 

a' a 
where the identity maps from H [n;$ ] into H [n;$ ], a' <! a, determine the 

p p 
projective limit. Conditions (4.21) and (4.28) imply that His independent 

of p E {1,2, ... , 00 }, cf. [73, cond. - Hs
1 

& HS
2

, p. 15], and that moreover 

for f EH, a EA and every k 

(4.30) if(z) Jexp-$a(z) + o as z + an 

If n = ~n and k =exp$, then (4.26) yields that kN = exp $N, where kN is 

given by (4.16) and the condition on the AU-structure of H given there is 

just our condition (4.29). 
+ 

Let P be a pxq-matrix of polynomials and let W be an associat!d poly­

nomial vector multiplicity variety. We define the Frechet space H
00

[W n n; 
+ + 

log k] as the space of sections g on W n n such that for each component 
+ + 

g = {g
1

, ... ,gr} of g (4.17) holds only for z E nl n Wand for c depending 

on l, provided with the semi-norms obtained by taking from all the compon-
+ 

ents g of g the largest supremum of the left hand side of (4.17) over z E 
+ 

tnlnVj,j 

instead of 

= 1~ ... ,r. Again if nl = n for all l we will write H
00

(W n n;logk) 

H
00

[W n Q;log k] and then this is a Banach space. 

The fundamental princ iple proved in this chapte r (the completions of 

the proofs will be given in chapter VI) says that the map pL 

(4.31) 
+ 

proj lim H
00

[W n n;$a] 
a E A 

is a toplogical isomorphism between linear spaces. Here pL is defined by 

restriction if p = 1 and (only semilocally) by lemma's 4.2 and 4.3 if p > 1. 

In section 6, formula (4.44) we will show that the space on the left hand 

side remains the same if we replace H[n;$a]p n P•H[Q;$a]q in the denominator 

by its closure in H[ Q;$a]p. Hence the left hand side of (4.3) is a Hausdorff 

space; its elements can be described as follows: for f a E H[Q;$a]p let [fa] 
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denote the equivalence class of ? , where fa. ~ h° if ? -h° = P .;a. for some 

ga. E H[0;¢a.]q; then the elements of the space on the left hand side of (4.31) 

can be identified with such nets {[fa.]} A of equivalence classes, where 
ct.E 

fa. E H[0;¢a.]p for every a.EA, that for every a. and 8 in A with 8 ~a.there 

is a ga.,S E H[0;¢a.]q with 

-+a. -+8 
f - f 

-+ct. I 8 
P•g . 

If nk = n for every k, we define a space H with the only requirement 

that for every N ~ 0 H can be written as 

(4.32) H ~ proj lim H (0;¢a.) 
a. E A p 

proj lim H (0;¢a.). 
p N 

a. E A 

Finally, if {nl};=l is a decreasing sequence of pseudoconvex domains and if 

{¢a.} is a decreasing net of plurisubharmonic functions in n
1

, it is possible 

to consider the following space H, which for every N ~ 0 by assumption can 

be written as 

(4.33) H ~ ind lim 
l -+ oo 

ind lim 
l -+ oo 

where¢: is defined by (4.26) with n replaced by n
1

• Also here the spaces 

(4.32) and (4.33) are independent of p E {1,2, ... , 00}, provided that in the 

last case 

(4.34) 

For the spaces H given by (4.32) or (4.33) the fundamental principle yields 

the isomorphisms pL 

(4.35) 

and 

(4.36) 

ind lim 
,e -+ 00 

-+ 
proj lim H (W n n;¢a.) 

00 

a. E A 
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L 
..e.._ ind lim 

.t + a, 

respectively. 

+ 
proj lim H (W n n ;¢

0
), 

a, 

a E A 

THEOREM 4.6 (fundamental principle). Let n be a pseudoconvex domain and let 

{¢
0

} be ' a decreasinq net of plurisubharmonic functions in n . To any p xq­

matrix P of polynomials there are associated a polynomial vector multipli-
+ 

city variety Wand a restriction map pL, such that (4.35) is a topological 

isomorphism between linear spaces, provided that condition (4.32) is satis­

fied. If moreover, n = kQl nk satisfies (4.21) and (4.22), the map pL in 

(4.31) is a topological isomorphism provided that (4.29) holds. Finally, if 

{n.e,};=l is a decreasing sequence of pseudoconvex domains satisfying (4.34) 

and if {¢
0

} is a decreasing ne t of plurisubharmonic functions in n
1

, the map 

pL in (4.36) is a toplogical isomorphism, provided that (4.33) is valid. 

In chapter VII, cor. 7.4, we will supplement this theorem. 

PROOF. That pL in (4.36) is an isomorphism follows from (4.33), (4.34) and 

the fact that pL in (4.35) is an isomorphism. The remaining two sections of 

this chapter, as well as chapter VI, will be devoted to the proof of the 

assertion that the maps (4. 31 ) and (4. 35) are topo logical i s omorphisms. D 

REMARK. Let W' be a locally convex space whose Fourier transform is topo­

logically isomorphic to one of the spaces H given by (4.29), (4.32) or 

(4.33) and let W be the dual of W'. Then, as in [16], in view of theorem 

4.6 we might call W localizable. In most examples it is obvious how the 

Fourier transformation Fis defined. In general, since the 6-functions in 

the points z
0 

En belong to H', their Fourier transforms ei<•,zo> belong 

to W. Then we can define the Fourier transform f E H of¢ E W' by 

f(z) 
def i <l;,z> 

(F¢) (z) <e ,¢ > , 
r,; 

* cf. (2.46). Here r,; varies in a certain set n in~ and W consists of ob-
n 

jects (such as functions or distributions) in n*. From the requirement that 

Fis a topological isomorphism from W' onto Hit follows that the set 

{ei <r,;,zo>lz
0 

En} of functions of r,; must at least be weakly* dense in W. 

Furthermore, if besides this set W contains all other holomorphic functions 
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of s En* which are bounded in absolute value by lexp i<s,z
0

>1 with z
0 

En, 

it follows from the fact, that the geometric mean is smaller than the arith­

metic mean, that for z
1
,z

2 
En and 0 ~ t ~ 1 also 

Hence then the set n would be convex. On the other hand, it may happen that 

{ i<so,z> I *} the set e s
0 

E n of functions of z is contained in H, cf. the A- and 
* i<s0 ,z>I Exp-spaces of chapter III. Then n is convex, too and the set {e 

ls
0 

En*} is dense in H. However, all these properties will not be used to 

derive the fundamental principle of theorem 4.6, as they are only needed 

when Fourier transformation comes in. 

IV.5. SEMILOCAL THEORY. 

In this section we shall mention the semilocal theory of [16] and we 

shall indicate the differences with the theory we need. 

Let U = {u . }~ 
1 

be a certain open covering of n with ui. cc n and let 
ii= 

u<l) be a certain open shrinking of U. Then the proof in [16, proof of c, 

p. 104] shows that any f E proj lim 
+ (l 

H
00

[W n 0;¢] can be extended to a col-
Cl E A 

lection of functions ci holomorphic in Ui 

fact, a method similar to theorem 3.1 can 

and satisfying good bounds. In 

be applied, see [2]. Only now one 

has to take into account coinciding roots of a polynomial. The procedure 

followed in [16], [56] or [2] uses the Weierstra8 division theorem and the 

Lagrange interpolation formula, cf. [2, IV lemma's 1-4]. 

Define cI'[U,F,¢a] as the Hilbert space of all alternating p-cochains 

con the covering U with values in the analytic sheaf F that satisfy for 

every k 

(4.37) 

Where Uf(z),1 2 ~ I < , 1
2 

I < , 1
2 

· f
1 

z + ..• + fq z if f = (f
1

, ... ,fq) is a vector-

f t . Th . U d U(l) h . f ' . 1· d unc ion. e coverings an ave to satis y certain properties iste 

in chapter VI, section 1, in order that the estimates can be carried over 

to globally defined functions and conversely. 

Let A be the sheaf inn of germs of holomorphic functions and let F 
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be the image wider P of the sheaf Aq, thus F ~ P•Aq c AP. Finally, let 

ct[U,AP,¢;P] be the set of t-cochains c E Ct[U,AP,¢] with 

t+1 cc E C (U,F) 

where o is the cobowidary operator. 

LEMMA 4.7. For any pxq-matri! P of polynomials and associated polynomial 

vector multiplicity variety W the map 

proj lim c 0[U,Ap,¢a;P ] 
a E A 

proj lim c0cu,AP,¢a;P] n P• proj lim c 0cu<1l ,Aq,¢a] 
a E A a E A 

+ 
___... proj lim H

00
[W n n;¢a] 

a E A 

given by lemma 4.3 is a topological isomorphism. 

PROOF. We shall not give all the details, because these can be found in [16]. 
+ 

There a function f E proj lim H [W n n;¢a] has been extended to a collection 
00 a EA 00 

of fwictions {c} 
1 

with c holomorphic in U. Firstly, in [16, proof of· 
s s= s s 

c, p. 104] for each s ~f is extended to a finite collection of fwictions holo-

morphic in finitely many very small sets covering Us, whose differences in 

the overlaps are sections in F. Then one has to apply a piecing together 

process of this collection of fwictions to one function cs in Us. As is re­

marked in [16] this process follows the same lines as the proof of the sim­

ilar statements for the map A we will define in the next section and even 

it is simpler, because Us is a bounded set so that no convergence factors 

such as¢ arising in condition (4.18) are needed. We have not assumed this 

condition, so that the proof of [16] is valid here, too. Of course, one can 

also follow the piecing together process we will perform in chapter VI. 

Let us briefly mention the differences with [16] arising from the 

sizes of the sets of the covering of n we have here. In [16] all the sets 

of the covering of a:n have the same size. There each set U is covered in 
s + 

such a way that the bounds for cs depend on the bounds for f on V n W, 
s 

where V is -the enlargement by a factor 2 of u the center zs kept fixed. s s 
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sets that cover Us is proportional to Furthermore, the minimal size of the 
-1 

a power of ( l+U z II) and to a power of the size 13 
s 

of U. Also, the 
s s 

maximal 
-1 

number of sets covering Us is proportional to 

However, these powers do not depend on s, see 

the piecing together process of chapter VI or 

for some N and K independent of s 

2 

{ I 2 yl /l+H zsll 
llcs(z)II dA(z) $ K 

\ 13 s u 
s 

a power of 1 + II z II and to 
s 

13 • 
s 

[16, ch. III]. It follows from 

of [16] that C satisfies 
s 

N 

\ II f (zl II. SUP+ J zEV nW 
s 

where 

if /-

II f ( z) II here denotes the maximum of / -( z) for l 

(ff, .•. ,f;,e_> is the section on J'- ~etermined 

= 1, ... ,p,j = 1, ..• ,r,e_ 

by f. Actually, in 

HS
1

, p. 15] shows that this [16] c is bounded in sup-norm, but [73, cond. 
s 

implies the estimate we have here, because the sizes of the sets Us will be 

bounded. 

The sets U will be such that they have a fixed size if they are far 
s 

enough from an or that the size is proportional to ds' where ds is the dis-

tance from Us to an. Therefore, since by (4.24) for sufficiently large N we 

have z E S(z;N) if z EU and V cs(z ;N), for every a EN we get 
s s s s 

{ I 
u 

s 

a' 
su:r.. llf(z)II exp-<j, (z) 

zEV nW 
s 

where a' is determined by (4.28). Since the sets Us will be chosen such that 

every z En is contained is not more than L different sets Vs and since Vs 

will be contained in n,e_ if Us n nk r 0 for some l > k, in virtue of (4.29) 

for every k and a EA we get 

(4.38) llcU :,; LK 
a,k 

a' 
su:r.. II f ( z) II exp - <P ( z) . 

ZEn,e_nW 

( 1) 
A similar procedure, now with respect to the covering U , shows that 

the map of the lemma is injective . Finally, (4.38) implies that its inverse 

is continuous. D 

If we want to derive the strong version of the fundamental principle 

(i.e., all the bounds are satisfied simultaneously) as in chapter VII, we 

should apply this lemma together with the strong versions of theorems 4.11 

and 4.12 below, cf. corollary 7.4. But for the weak form treated in this 
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chapter it is convenient to have the following isomorphism. 

LEMMA 4.8. Let E denote the space on the left hand side of the isomorphism 

of lemma 4.7 and let 

and 

Then there is a topological isomorphism between 

E + proj lim (Fa/Ma). 
a E A 

PROOF. We define the map by restriction. That it is injective can be seen 

as follows: any c E proj lim c0[U,Ap,~a;P] that can be written as c = P•g 
0 (1) a E A + (1) 

with g EC (U ,Aq) vanishes on n n W, because also U is a covering of 

n, so that by lemma 4.7 c can be written as c P•g with g E proj lim 

c0cu<l) ,Aq,~a]. Similarly, it follows that Ma is a closed subsp°ac! tf Fa. 

Hence the space Fa/Ma is a Frechet space, thus bornologic. In order to con­

clude the continuity of the inverse of the map we need to know that the 

bounded sets in Fa/Ma arise from bounded sets in Fa. Let us assume this for 

the moment. Then the method (as in the proof of lemma 4.7) of proving that 

the map of the lemma is surjective shows that its inverse is continuous 

(here each set U EU is covered by finitely many sets from U(l), the num-
s 

ber and size depending only on the size of Us). D 

It remains to prove the following lemma. 

LEMMA 4.9. Let Fa and Ma be as in lemma 4.8. Then the bounded sets in Fa/Ma 

arise from bounded sets in Fa. 

PROOF. Let a bounded set Bin Fa/Ma be determined by cochains f E Fa which 

for all k satisfy 

ilf +P•gll 
a,k 
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This means that for 

u E u 0 l with u 

arbitrary k
1 

there are functions g
1 

E A(U )q for every 
s s 

s s 
n nk

1 
# 0 such that 

1 
llf+P•gll :'>Kk +1. 

a,kl 1 

b th h U(l) . h ~ Let k
1 

e so large at eac set U E wit U n "l # 0 is contained in 
0 s O d f sl 

nk
1

, define g E A(U )q if u n n
1 

# 0 by g e g and 
s s s s s 

Assume that a cochain gm has been defined on the union of all sets 

U E U(l) with U n Qk # 0 satisfying 
s s m 

:,; C 
m 

for some positive C and that gm 
m (lf 

so large that each set U EU 
s 

and for U E U(l) with U 
s s 

satisfy 

Now we define 
m+l def m 

gs = gs if 
m+l 

ing s. Then g is defined on the 

nkm+l t u n 
s 

m+l 0, m 
if gs = gs 

m+l ll f +P•g II 
a,km+l 

u n 
s 

:,; C 
m 

c nkm and 
m+l u gs s 

union of all sets 

nkm-1 # 0, and 

+ ~ + 1. 
m+l 

So we obtain a cochain g E c
0

cu<l) ,Aq) with for all m 

m+2 

I ~- + m+2. 
j=l J 

def ~m+l 
=g for the 

s(l) 
U E LJ with 

s 

0, 1, 2, ... 

remain-

This determines a bounded set in Fa whose image in Fa/Ma contains B. D 

In case nk = n for every k, as in lemma's 4.7 and 4.8 there is a top­

ological isomorphism between 

(4.39) proj lim{c
0

cu<1l ,Ap,cj,a;P 
a E A 

c 0 cu<1l ,Ap,cj,a;P) nP•c0 cu 0 l ,Aq) }-

+ a 
--->-proj limH

00
(Wnn;cj, ), 

a E A 



148 

where c0
(U(l) ,Ap,~a1P) denotes the space of those c E Fa with the norms 

(4.37) bounded by a constant independent of k, i.e., instead of (4.37) we 

have 

(4.40) 
2 a ½ Uc (z) U exp - 2~ (z)d).(z)} < 00 

s 

IV.6. TRANSITION FROM SEMILOCAL TO GLOBAL RESULTS. 

In this section we will formulate the two theorems which together 

with lemma's 4.7 and 4.8 and formula (4.39) imply theorem 4.6. Besides, 

these theorems, especially the second whose formulation is not concerned 

with cochains, may be of interest by themselves, cf. chapter V.4. The main 

problem is to extend the semilocally defined functions to a globally defined 

function. 

LEMMA 4.10. Let the conditions of theorem 4.6 be satisfied and let Fa and 

Ma be as in lemma 4.8. Then there is a topological isomorphism A: 

(4.41) 

A similar isomorphism exists if nk = n for every k. 

proj lim (Fa/Ma). 
a E A 

Let us decompose the map A into a collection of continuous restriction 

maps Aa. Then denoting 

and 

we have to show for each fl there is an a ~ fl and a continuous mapµ 
0 

such a,., 
that the following diagram is commutative: 
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where the maps I f3 and I' f3 are determined by the identity maps. We will 
a, a , 

define the mapsµ f3 by means of the following theorems. 
a, a ~a 

For a positive number Nanda function¢ inn let ¢N be a plurisub-

harmonic function inn such that for some positive CN 

(4.42) 

where¢ = ¢ N N is defined by (4.26), cf. (3.40). This might not be poss-
N N, , 

ible for an arbitrary function ¢a, but if we refer to (4.22) we will always 

mean that ¢a 
~a 

is such that there exists a plurisubharmonic function ¢N satis-

fying (4.42) (for example, by (4.28i this is true if ¢a belongs to the set 

{ ~a} in the conditions of theorem 4 6) 
't' aEA • · 

THEOREM 4.11. Let n = k~l nk be a pseudoconvex domain satisfying (4.21) and 

(4.22), let the covering UC1) of n be given as in section VI..l and let ¢a 

be a function on n such that (4.42) can be satisfied for every N. Then for 

any pxq-matrix P of polynomials there is a positive number N and moreover 

for each sequence {1\:}:=l of positive numbers there is another sequence 

{Mk}:=l of positive numbers, such that for every h E c
0

cu<l) ,Ap, ¢a;P] with 

llhlla,k:,; Kk, k = 1,2, ... , there is a function v E A(Q)p and a gEc
0

cu<1l ,Aq) 

with 

(4.43) u uO> 
S E , 

and with 

k 1, 2, ... , 
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where the plurisubharmonic function ¢6 is given by 

~6 ~ ~a 2 c -N 
~ - ¢N + N log(l+UzD ) + log(l+d(z,O) ) 

~a B p 0 (1) AP a 
for ¢N determined by (4.42); thus v E H[0;¢] . If h EC (U , ,¢ ;P), 

i.e., if {~}==l is bounded, (4.21) and (4.22) need not be satisfied and 

{Mk}==l is bounded, too, i.e., v E H(0;¢B)P. 

THEOREM -4.12. Let n and ¢a be as in theorem 4.11. Then for any pxq-matrix P 

of polynomials there is a positive number N and moreover for each sequence 

{~}==l of positive numbers there is another sequence {~}==l of positive 

numbers, such that every f E H[0;¢a]p with lfl ks K, k = 1,2, ... , which 
W W a, k 

can locally be written as f = P•g, g E A(w)q, w cc n, Uw = n, can be writ-

ten globally as f = P•~ for some v E H[0;¢ 6Jq with UvH
6

,k S Mk, k = 1,2, ... , 

where ¢ 8 is determined by ¢a and N as in theorem 4.11. Moreover, if h E 

H(0;¢a)p i.e., if {~}==l is bounded, then (4.21) and (4.22) need not be 

satisfied and {~}==l is bounded, i.e., v E H(0;¢B)q. 

In chapter VI we will give the covering u<l) and we will prove these 

theorems (if n = ~n, theorem 4.12 follows from [30, th. 7.6.11]). It is 

clear from ~3.40) and (3.41) that problem 3.2 follows from theorem 4.12 and 

problem 3.3 from theorem 4.11. The mapµ 
0 

can now be defined by means of 
a,µ 

theorems 4.11 and 4.12. 

PROOF OF ,LEMMA 4.10. According to (4.28) for each 8 EA and N ~ 0 there is 
~a 6 

a a EA with a~ 6 such that in (4.42) we can choose ¢N =¢;hence for each 

8 EA there is a a EA, a~ B, such that theorems 4.11 and 4.12 hold with 

the functions ¢a and ¢ 6 belonging to the set {¢a} • Now for each 8 EA 
aEA 

let y EA, y ~ B, be such that theorem 4.12 holds if ¢a is replaced by ¢y 

there, and let a EA, a~ y, be such that theorem 4.11 holds if ¢ 6 is re­

placed by ¢y there. Then for h E Fa we define 

µ 
0

(h) = I 
0
v a,µ y,µ 

where v E Hy is determined by h according to theorem 4.11. If h E Ma then 

by (4.43) vju = P•g for some g E A(U )q, U E u<l), hence according to 
s s s s s 

theorem 4.12 vis mapped by I O into TB. Thusµ 
0 

is well defined. 
y,µ a,µ 

Moreover, it follows from lemma 4.9 and from theorem 4.11 thatµ 
a,6 
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is a bounded, hence continuous, map. Furthermore, that I B = \J B O A fol-
a, a , a 

lows from (4.43) and theorem 4.12, whereas (4.43) alone implies that I' = 
a,B 

:>- B O \J a, B. Hence the diagram is commutative, so that the maps { A a} a EA deter-

mine the map A and the mapsµ Bits inverse. 0 
ct , 

Finally, we show that the space on the left hand side of (4.41) is 

well behaved. Let {fm}:=l c Ta be a ~auchy sequence which converges in Ha 

to a function f. Then f vanishes on W n n, hence satisfies the conditions 

of theorem 4.12. Therefore f can be written as f P•g with g E HB. Thus 

for each B E A there is a EA with a ~ B such that the following diagram is 

commutative: 

~berefore, the space on the left hand side of (4.41), or (4.31), is a Haus­

dorff space and equals (cf. (3.28)) 

(4.44) 
ct E A a E A 

REMARK. In our notation Ehrenpreis formulation of the fundamental principle 

has the form 

(4.45) proj lim 
ct E A 

+ 

H(<tn;cj)ct)1/ 

/4proj lim 
a E A 

Thus a function on W satisfying the bounds is extended to one global func-

tion satisfying all the bounds simultaneously. In this chapter there is no 

problem in the semilocal extension, but the transition from semilocal re­

sults to global results yields different global functions for the different 

bounds. Ehrenpreis requires more conditions and, in fact, his result is 

too strong, as the weaker fundamental principle, formulated here and in [56], 
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satisfies quite as well, i.e., it implies the Fourier representation of all 

solutions of homogeneous systems of differential equations, see chapter V.3. 

For example, in our formulation and in that of Palamodov the example given 

in section IV.3 presents no problems, s.i:nce the weightfunctions are of the 

required type. Also, this example exposes the impossibility of getting glo­

bal extensions satisfying all the bounds simultaneously without further con­

ditions. l) In chapter VII, corollary 7.4, we will give such conditions for 

spaces of non-entire functions. There we will improve theorems 4.11 and 

4.12 so that they hold for functions v satisfying all the bounds. Then it 

follows from lemma 4.7 that we would get a strong fundamental principle like 

(4.45). However, in that case we will not get uniform bounds as in 

theorems 4.11 and 4.12. Therefore, we will have to use the open mapping 

theorem for the conclusion that the inverse of the map (4.41) is continuous. 

l) This example leads to a family of majorants with non-trivial cohomology 

which seems to fit a similar condition to that discussed in [56, p. 121] 

for the case where the bounds must be satisfied only separately. 
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CHAPTER V 

EXAMPLES AND APPLICATIONS 

In chapter III we have introduced certain spaces of analytic functions 

in pseudoconvex domains. In this chapter we will show that these spaces W 

are localizable. This means that they are duals of spaces W' whose Fourier 

transforms H satisfy theorem 4.6. Here the Fourier transformation F has been 

given in chapter III as a generalization of the Ehrenpreis-Martineau theo­

rem. In the proof we have used theorem 4.6. So the fundamental principle 

helps us to find new examples of localizable spaces W such that H = Fw• con­

sists of non-entire functions. We will show that in such spaces the Fourier 

representation of all weak solutions of a homogeneous system of partial dif­

ferential equations, mentioned in the last chapter, is valid. This repre­

sentation is sometimes called the fundamental principle, too. For applica­

tions of this principle we refer the reader to [ 16]. F·urthermore, we will 

give the Fredholm alternative for non-homogeneous systems in localizable 

spaces. In particular these theorems are valid in spaces of (ultra) distri­

butions which are the boundary values of functions of exponential type, 

holomorphic in tubular cones. Finally, we will indicate how the theorems of 

chapter III can be used to derive the Newton interpolation series for non­

entire functions of several complex variables. 

V.1. TWO LEMMA'S ON PSEUDOCONVEX DOMAINS AND PLURISUBHARMONIC FUNCTIONS. 

In chapter II we have considered spaces of holomorphic functions in 

£-neighborhoods in ~n of closed sets Sin lRn. In lemma 5.1 we will show 

that such sets have a neighborhood base of pseudoconvex sets equivalent to 

the neighborhood base of £-neighborhoods, a result which we have used in 

lemma 2.1. In chapter II and III we had weight functions of the form 

exp M(tllxll), which are not plurisubharmonic. In lemma 5.2 it will be shown 

that these weight functions can be changed into plurisubharmonic functions 
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without damaging the spaces they define. This is needed in order to satisfy 

the conditions of theorem 4.6. 

Two systems {rv and {nk} of neighborhoods are said to be equivalent 

if for each k there is an l such that nk c nl and nk C n1. Then both systems 

determine the Sail)e spaces A (2.4) or (2.5) and the same space H (4.29). 

LEMMA 5.1. Let S be a closed set in lRn and let n
1 

be an £-neighborhood of 

sin ~n. Then there is an open pseudoconvex set n with n
2 

c n c n1 , where 

n
2 

is the ½£-neighborhood of Sin ~n. 

PROOF. Define n as the holomorphic envelope of 

u {zJUx-x
0u + Uyl < E/fi}. 

XO€S 

It is clear that n
2 

c n. If we show that 

n C u {zJUx-x0 u < E//2; llyll < E/fi} 
XO€S 

it follows that n c n
1

• 

n is contained in the E/r'2-neighborhood in 11:n of lRn because this is 

pseudoconvex. Furthermore, let z = x + iy with x I. n2 n lRn. Then the func­

tion 

is holomorphic in n2 and satisfies JF(z) I~ 1 and JF(z) I < 1 for z € n2. 
Hence z I. n, because every holomorphic function in n2 attains the same 

values in its holomorphic envelope n, see [68, §20.3]. D 

In order to show that the spaces of chapters II and III do not alter 

by a change of the weight functions into a sequence of plurisubharmonic 

functions we define the equivalence of two sequences of weight functions, 

cf. (2.7). Two increasing or decreasing sequences{¢.} and{~.} of weight 
J J 

functions on the set n are equivalent if for each j there is an m, or for 

each man index j, depending on whether the sequences are increasing or de­

creasing, respectively, and a positive number c such that 

¢. (z) s ~ (z) + C 
J m 

and ~ . (z) s ¢ (z) + C, 
J m 

z € n. 
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It is clear that t ne spaces (2.4)and (2.5) are the same if they are defined 

by{¢.} or by{~. :. 
J J 

LEMMA 5. 2. The se~. ,ences {-j log ( 1+11 xU)}, {-1/j II xU}, {-M ( 1/j II xU)} and 

{ -M ( j II xii) } in an £ ··neighborhood n of lRn in a:n are equivalent to sequences 

of plurisubharmonJ functions, where Mis a function as in section II.2.iii. 

PROOF. It is clea1 that the sequence {-j log(l+llxU) };=l in n is equivalent 

I 2 1-- 00 
00 to {log a +z•z · }j=l if a>£, and the sequence {-1/j llxll}j=l to {log 

kxp - 1/j /a2+z•~J};=l· These sequences consist of plurisubharmonic functions, 

because logjfj is plurisubharmonic if f is holomorphic, see [30, cor. 1.6.6]. 

In case we ceal with {-M (1/j II xii) } ~ 
J=l 

-M ( ti/ xii ) by the function 

where 

def 
gt (z) 

or {-M(jDxU)}~ 
1 

we replace 
J= 

for a>£ and for C so large that logJexp - /a2+w2 'l+c > -M(tlul) in an open 

neighborhood in a:
1 

of {wlw:u+iv,u=O,Jvl <aLSince-M(tJuJ) is a convex fun­

ction in the sets { w 11 v I < £, ± u > 0}, the function ht is plurisubharmonic in 

the strip {wJ !vi<£}. Hence the function g is plurisubharmonic inn. 
t 

Furthermore, the properties of M imply that 

Ann times repeated application of property (2.'21) yields that the last 

inequality can be further estimated by 

Finally, this together with the fact, that -M(tp) dominates -p by (2.32), 

yields that the sequences {gl/j(z)};=l and {gj(z)};=l are equivalent to 

{-M(l/jllxll)}~ and to {-M(jllxll)}~ inn, respectively. D 
J=l J=l 
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For spaces Hof holomorphic functions defined in tubular cones Tc and 

bounded with respect to sup-norms with densities exp-M*(tllyll), t > 0, cf. 

* chapter III, we can harmless change these densities into exp-M (t<~
0

,y>) 

* for some fixed ~OE c with U ~ II = 1', because there is a o > 0 such that 
0 

Now the functions M*(t<~
0

,y>) are convex in Tc, hence plurisubharmonic. In 

case the topology of His given by an inductive limit, H = ind lim H [n;¢ ], 
m-+oo 00 m 

as in [16] this can be changed into a projective limit, H = proj lim 
a 

H [n;¢a], where {¢a} is the collection of convex functions dominating every 
"' 

¢m' m = 1,2, ... 

Finally, let us make some remarks concerning condition (4.22) in the 

space H given by (4.29). In particular this condition implies that each 

set int nk is pseudoconvex, see [68, 12.9]. So not all the Exp-spaces 
C * of chapter III satisfy this condition, for example the space Exp [a,T ;M] 

£ 

given by (3.39) does not satisfy it. In the other cases it is not difficult 

to see that a plurisubharmonic, even convex function a exists such that the 

sets {nk} determined by condition (4.22) are equivalent to the sets in the 

definition of the Exp- and A-spaces of chapter III. 

V.2. EXAMPLES OF LOCALIZABLE SPACES. 

We say that a space Wis localizable if it is the dual of a space W' 

whose Fourier transform H can be written as (4.29), (4.32) or (4.33), where 

the conditions of theorem 4.6 are satisfied and where moreover His 

dense in each H[n;¢a] or in H(n;¢a), or proj lim H(n 0 ;¢a) in each H(n
0
;¢a), 

a E A -<.- -<.-
respectively. Some spaces W such that H = Fw• consists of entire functions 

are localizable here, but not in the sense of [16], cf. example 4, while 

others, such as C•, are localizable in [16] but not here. That V• is not 
2 localizable here is due to the fact that -log(l+H~U ) is not plurisubharmo-

nic in ~n· Below we will see that there are subsets of V• (with a finer top­

ology than the one induced by V•) which are localizable in our sense. These 

are the spaces of distributions in V• whose inverse Fourier transforms have 1 

their carrier contained in some unbounded, convex, open set. 
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EXAMPLE 1. Spaces of Fourier hyperfunctions, ultradistributions of Roumieu 

type and of Beurling type, and distributions, which are the boundary values 

of functions of exponential type, holomorphic in tubular radial domains Tc. 

These are precisely the Exp-spaces of chapter III defined in (3.33), (3.34), 

(3.35), (3.39), (3.44), (3.51) and (3.56). The spaces Hare given by the 

corresponding A-spaces. Also the Exp-spaces (3.2.i & ii), (3.45), (3.50) 

and (3.55) are examples of localizable spaces. 

EXAMPLE 2. Spaces of analytic functions in convex sets decreasing at in­

finity. These are exactly the A-spaces of chapter III defined in (3.5), 

(3.33), (3.34), (3.35), (3.39) for a= c, (3.45) for a= c, (3.50), (3.51), 

(3.55) and (3.56). The spaces Hare given by the corresponding Exp-spaces. 

EXAMPLE 3. Spaces of C '.=' functions in convex sets decreasing at infinity. 

These ar~ essentially the S-spaces of lemma 2.27. Precisely, they are the 

spaces of c'.='functions which are the duals of the spaces of distributions 

proj lim ind lim S (m,k,k) ', S (k,m)' and Sa(m,k) '. The spaces Hare deter-
k + oo m+oo C C 

mined by lemma 2.27. Also spaces of C~functions in a fixed, open, convex 

set decreasing at infinity can 

proj lim wm
2 

(rl (a ,1m); -M (mil 1;11)) 
m -+ 00 m 

be localizable. For example, the spaces 

and proj lim wm
2 

(rl (a ,r-111); -m log ( 1+111;11)) , cf. 
ffi-+oo m 

(3.50) and (3.55) are localizable. The spaces Hare determined as in lemma 

2.27. 

EXAMPLE 4. 

His given 

{Uk} is an 

The spaces of C~functions in an open, convex set U. The space 

by H = ind lim H (Cin;k log(l+llzll
2

) + sup{-<F,;,y>jF,:EUk}), where 
k-+oo oo 

increasing sequence of compact, convex subsets of U exhausting 

U. If W is the space of C ~ functions in the compact set U, in the above 

we set Uk= U for every k. Cf. the remark in the next section. 

V.3. REPRESENTATIONS OF SOLUTIONS OF HOMOGENEOUS SYSTEMS OF PARTIAL 

DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS. 

In this section we will show that the exponential representation of 

[16, th. 7.1], [56, VI§ 4] or [2, (9), p. 93] of all solutions of a homo­

geneous system of partial differantial equations with constant coefficients 

remains valid in localizable spaces Was defined in the last section. This 

representation follows immediately from theorem 4.6 and therefore it is 

also called the fundamental principle. 
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THEOREM 5.3. Let TEW be a weak solution of the system 

(5 .1) 
+ 
P(D)T 

+ 
a 

+ 
in the localizable space w, where P 

polynomials and 

D 
a 

-i~) 
n 

Let W = (V
1
,a

1
;,,,;Vr,ar) be a polynomial multiplicity variety associated 

+ 
to the vector of polynomials P(z) according to lemma 4.1 and let W be the 

dual of W' whose Fourier transform His given by (4.29). Then there are an 

index k, an index a
0 

EA and bounded measures µj on Vj n nk, j = 1, ••. ,r, 

such that symbolically 

r 

I ao 
(5.2) T(~) I fa, exp i<~,z>} exp - 4> (z) dµ. (z), 

j=l J J 
Vjnnk 

i.e., for 1/J E W' 

r 

I 
ao 

(5 . 3) <T,1/J> I e -4> (z) ca .Fl/J) (z)dµ. (zl. 

j=l J J 
Vjnnk 

Conversely, if T E Wis determined by (5. 3) then it satisfies (5 .1). If H 

is given by (4.32) we just set nk = n in (5.2) and (5.3), and if His given 

by (4.33), for every l = 1,2, ... there are an index a1 EA and bounded mea-

sures (µ.t). on V. n . n 0 , j = 1, ... ,r, such that any weak solution of (5.1) 
J J ,{, 

in W can be represented symbolically as 

T(O 

r 

I 
j=l I 

Vjnn.e, 

al .l 
{a. exp i<~,z>} exp-4> (z)d(µ) ,( z) 

J J 

for every .l = 1,2, ... , and conversely as above. 

PROOF. As in section IV.6 we denote 
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and 

If His given by (4.29) each T € W can be written as T = Fµ for some 

µ € (HS)' for a certain S €A.That T satisfies (5.1) means that for all 

-; € (W')q 

(5.4) 
+ + 

<T,P(-D) •~> 

and moreover this holds 

HaO + it0 s 
and P: +H is 

Let fao € Hao be 

Then 

Hence in fact 

(5. 5) 

0, 

+ 
F¢ € 

+ClQ 
for all ~ such that H , 

s. continuous for some ClQ ;::, 

such that faO(z) = P < z l . gao ( z l 

Conversely, if (5.5) holds, then 

0 

because H is dense 

for some ~o +ao 
€ H . 

+Cl +Cl a def + +Clo +Cl + + 
for all g O €HO with f O = P •g € H 0 , so certainly for all g € H. 

Hence (5.4) holds. 

in 

Now the representation (5.3) follows from (4 . 44) , the isomorphism 

(4.31) and the Riesz representation theorem, where property (4.30) and the 

fact that nk is relatively closed inn are used. 

The case where His given by (4.32) is similar and if His given by 

(4.33) for T € W we have T = Fµ withµ€ H(Ql;~al) ' for every l = 1,2, ... 

and a certain sequence {al};=l c A. Then similarly to above we find that 

for every l 
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jJ E 

and the theorem follows from the isomorphism (4.36). 0 

For a system of differential equations we use the local restriction 

map pL determined by lemma's 4.2 and 4.3 and similarly to above we get the 

following theorem, cf. [16, th. 7.3]. 

THEOREM 5.4. For a qxp-matrix P of polynomials let TE wP be a weak solution 

of 

-+ -+ 
P(D) •T 0 

-+ 
in the localizable space W. Let W be a vector of polynomial multiplicity 

varieties wm = cV7,a~; ... ;~m'~~m), rn = 1, ... ,p, .with the local restriction 

map pL associated to the pxq-matrix tP(z) of polynomials according to lem­

ma's 4.2 and 4.3, and let H be given by (4.29). Then there are an index k, 

an index a
0 

EA a1d bounded measuresµ; on v; n nk, rn = 1, ... ,p, j = 1, .•. , 

r, such that for~ E (W')p 
rn 

! 
rm 

J 
0 o rn -+ rn -+ -+ I (5.6) <T,~> exp - cj, (z) a. (p F~) (z)dµ. (z). 

rn=l j=l J z m J 
~nn 

J k 

-+ -+ -+ -+ 
Conversely, if T is determined by (5.6), it satisfies P(D) •T o. If His 

given by (4.32) we just set nk = n in (5.6), and if His given by (4.33), 

f O there are an · d d bo d d ( l)m ,,m n or every -<-- .1.n ex cxf. E A an un e measures µ j on v j n "f. 

such that (5.6) becomes 

p rm 

I I 
m=l j=l 

for every f. = 1,2, .•. , and conversely as above. 

Note that, by construction of the map pz, there is no 1-1 correspond­

ence between Tm E Wand the measure µm on wm, but Tm is determined by all 

the measures µk on Ctf for k = rn,m+l, ..• ,p. 
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REMARK. In [16] Wis provided with the strong dual topology and there it is 

shown that the integrals in (5.3) and (5.6) converge in this topology. Here 

* we have considered W with its weak topology. Moreover, our condi_tion that 

His dense in each Ha is not required in [16]. This condition restricts the 

possible AU-structures. For example, the AU-structure K of the example in 

section IV.3 does not satisfy it. It should be remarked that this condition 

is only required if the topology of His written as a projective limit. In 

some of the examples of the last section H has been given as an inductive 

limit. It is true that in these cases H can be written as a projective limit 

such that His dense in each Ha. For instance, in example 4 this follows 

roughly from the fact that the intersection of all classes of ultradistribu­

tions with compact support is the set of distributions with compact support 

(because any C !!I function is ultradifferentiable of some type in a compact 

set) and from the fact that the space of distributions with compact support 

is dense in any space of ultradistributions with compact support (which on 

its turn follows from the injectivity of the embedding of the space of ultra­

differentiable functions into the space of C ~functions). However, in these 

cases theorems 5.3 and 5.4 can be proved for spaces H which are inductive 

limits directly along the same lines as the proof of theorem 5.3, cf. [56, 

VI. §4]. So it was right to give Has an inductive limit in example 4. The 

only reason for writing Has a projective limit is to give a uniform treat­

ment of all the examples of section 2. 

V.4. INHOMOGENEOUS SYSTEMS. 

In the last section we have studied the kernel of the map 

wP ....!'.iEL. wq. 

here we will discuss its image. We will show that for certain spaces W the 

obviously necessary - so called compatibility - conditions are also suffi­

cient. For LAU-spaces W this result has been shown by Ehrenpreis in [16, th. 

6.1]; similar results have been obtained by Malgrange, Hormander in [30, th. 

7.6.13] and Komatsu in [ 41 ] , cf. also [1, ch. 3]. Our spaces Ware duals of 

spaces the Fourier transforms of which consist of non-entire functions, such 

as the examples of section 2. In particular, we get the result for spaces 

of analytic functions in convex sets satisfying certain growth conditions, 

whereas in [41, th. 2] it has been shown without growth conditions. 
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The following theorem is valid for all the examples of section 2. 

It can be seen as the Fredholm alternative for systems P of partial differ-
+ + + 

ential equations with constant coefficients: P•u = v has a solution u if 

and only if vis "orthogonal" to the null space of the adjoint of P. 

THEOREM S.S. Let W be a localizable space, let P be a qxp-matrix of poly­

nomials and let D = -i a/a~. Then for; E Wq the equation 

+ + 
P(D)•u v 

has a weak solution; E wP if and only if; satisfies 

+ + 
Q(D) •v 0 

+ 
weakly for all polynomials q-vectors Q with 

t + + 
P(z) •Q(z) = 0. 

+ + 
PROOF. It is clear that the condition Q(D)•v = O is necessary. Now let 

; E Wq satisfy this condition. We want to solve P(D)•; =; weakly, i.e., 

for all; E (W')q 

+ 
Let u 

+ + 
Fµ and v F; for someµ E (H')p and; E (H')q with Q(z)•; = O weak-

z 
ly. Let H be given by (4.29). Since His dense in HY, we may assume that 

; E ("ifY)• for some y EA and, as in the proof of theorem 5.3, that cr vanish­

es on "ifY n QH Y. We want to find an index a <!: y and µ E (ii°) ' such that for 
+ + 

all g EH 

(5.8) 

Thusµ is already defined on the subspace M of ii° consisting of all f for 

which there is a g E HS with tP(z)•g(z) = f(z), where a<!: S <!: y are suffi­
+ 

ciently large. If we show thatµ is continuous on M, then by the Hahn-
+ +a + + 

Banach theorem we can extendµ to all of H and u = Fµ is the required sol-

ution. 
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It is clear that an arbitrary element of the kernel of tp may be add-
➔ ➔ 

ed tog without changing f. By [30, lemma 7.6.3] this kernel is generated 

by finitely many (say r) polynomial q-vectors. So there is a rxq-matrix Q 

of polynomials such that in the following sequences, where the matrices tp 

and tQ determine densely defined closed operators, 

the image of one map is contained in the kernel of the other. Here the first 

sequence is dual to the second and we have to show that it is exact. Theorem 

4.12 implies that Ker tp = R(tQ) if S ~ y is sufficiently large, i.e., the 

second sequence is exact. Denoting the range R(tP) of tp by M we get the 

following inverse map 

(5.9) M 

We have to show that the map (5.9) is continuous and because M, as a 

subspace of a Frechet space, is bornologic, it is sufficient to show that 
t -1 ➔ c+a ➔ t ➔ ➔ ➔S 

( P) is a bounded map. So let f EH with f P•g for some g EH satis-

fy llfll s ~• where this norm is defined in (4.20). According to theorem 
a,k ➔ ➔S t ➔ ➔ ➔ 

4.12 there is a g' EH with P•g' = f and with llg•II S M, k = 1,2, ... , 
S,k k 

where 

Hence 

R(tQ) 

~Sis sufficiently large. {Mk} on {Kk} but 
➔ 

depends not on f, if a 

the map (5.9) is continuous. 
➔ 

Finally, "ir n tQ•ii'Y, since CJ vanishes on it certainly vanishes on 

element of { (HSlq/R(·tQ)} 1 • 

➔ 

C HS. 
➔ 

Therefore, we may consider CJ as an 

Thus the functionalµ on M satisfying (5.8) is given by 

➔ ➔ 

<µ,f> 
➔ t -1 ➔ 

<CJ, ( P) •f>, 
➔ 

f EM, 

➔ 

and this determines a continuous linear functional on M. Therefore,µ can 

be extended to an element of (fl°)'. 
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If His given by (4.32) or (4.33) the proof is similar. In the last 

case Mis also bornologic, because an inspection of a 0-neighborhood base 

(cf. [20, § 23.3.14]) shows that ind lim H(n 0 ;~
0 l) induces on its subspace 

l + °" -<--
Man inductive limit topology. D 

It follows from the proof that there are only finitely many conditions 
+ 

on v. 

REMARK. The condition that His dense in Ha is not required for a strong 

fundamental principle as (4.45) of [16]. In chapter VII a similar strong 

isomorphism will be derived. Therefore theorems 5.3, 5.4 and 5.5 are also 

valid in spaces W such that H satisfies the conditions of corollary 7.4. 

V.5. THE NEWTON INI'ERPOLATION SERIES. 

In [39] Kioustelidis has derived the Newton interpolation series for 

entire functions of exponential type in ~n. This generalizes the one dimen­

tional case only partially, because in one dimension the Newton series also 

holds for functions holomorphic in a half-plane, see [55]. Kioustelidis 

used the Ehrenpreis-Martineau theorem for entire functions. As we have 

generalized this theorem in chapter III, we are able to derive the Newton 

series in several variables also for non-entire functions of exponential 

type. In this section we will mention the results, where for the details 

we refer to [59]. 

Let f be an entire function. For h € ~n define the operator 

so that 

k 

I 
m=O 

k k-m 
()(-1) f(z+imh). 
m 

The Newton series expresses the value off in an arbitrary point in terms 

of the values off at equidistant points. Precisely, for s EC 

(5. 10) f (z+ish) I 
k=O 

( s) k 
k t,ih f(z). 



165 

The polynomials (:) s(s-1) ... (s-k+l)/k! are the Newton polynomials pk(s). 

Usually, the factor i is omitted, but here it will appear to be convenient 

to use formula (5.10) for the Newton interpolation series. 

Inverse Fourier transformation of (5.10) yields formally 

(5 .11) 

It is clear that (5.11) can only hold if f is concentrated in the set where 

the series converges. Denoting -<~,h> 

condition (cf. [39] or [59, section 9]) 

u < log(2 cos v). 

u + iv E It for this set we find the 

The component of this set containing the origin is a unbounded, convex set 

in It which is bounded in the imaginary directions. Hence the domain of con­

vergence of (5.11) is an unbounded, convex set n in ltn depending on the 

region in which h may vary. In chapter III we have seen that functions f, 

which are the Fourier transforms of analytic functionals carried by unbound­

ed subsets of n, are functions of exponential type holomorphic in cones in 

irn. In [39] only those f have been considered which are the Fourier trans­

forms of analytic functionals with bounded carrier inn. So in [39] the 

functions f for which the series (5.10) is valid are entire, while here we 

get the result for non-entire functions. 

In [59, section 9] it has been shown that (5.10) can be generalized 

to non-entire functions only if h varies in a subset of ltn of real dimen­

sion n. So we may take h real and in particular we will require that 

where b > 0 and C is an open, convex cone in m.n. Let n be the component 

containing the origin of the set 

The other components will not give a series (5.10) for non-entire functions, 

cf. [59]. Since n is a convex set in~ which is bounded in the imaginary 
C n 

directions, a function a - n on T can be defined by 
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(5 .1 2) 
def 

{a ~ n) (z) sup {-Im<z;, z >} - nllzll, 
z; e:fl 

where n > O is small. The Newton series will be valid for functions f of 

exponential type a - n and holomorphic in Tc Moreover in [ 59, section 9 J it 

has been shown that if Re s > p ~ 0 the series ( 5 .10) does not depend on the 

values of f at the points z + imh, where m = 0, 1, ... ,p. Hence the series will 

be valid also for certain points z not in Tc. 

According to [59, lemma 9.1 and p. 78], for h E Cb and for s E ~ and 

z E «:n such that z + ish € TC, the series 

i <l; ,z + ish> 
+ e 

converges for N + 00 in the space A (a-n,TC) given by (3.3 3), where n > 0 
£ 

is so small that this space is defined and where r* means that the terms 

with e -m<I; ,h> for m = 0, 1, ... ,p should be taken zero if Re s > p ~ 0. Hence 

the following theorem can be derived, see [ 59 , th. 9 .1 & 9 .1* ] . 

THEOREM 5.6. Let C be an open, convex cone in nt, let b > 0 and let a -n 
C 

be given by (5.12) for n > 0 so small that the spaces Exp/ a - n,T ] and 

A (a-n,TC) can be defined by (3.33). Then for any h E Cb, s E a: and z E «:n 

such that z +ish € TC the series (5.10) is valid for functions f EExp [ a-n, 
£ 

Tc], where-if Res > p ~ 0-in the points {z +imh jm=0,1, ... ,p}, a t which f 

is singular or undefined, we take zero instead of f ( z + imh) . 

The series (5.10) converges uniformly for z in a compact set K c an 
such that K + ish c Tc, and even in [59] a more precise result on the con­

vergence has been given. The series remains valid for functions in the other 

Exp-spaces of chapter III, but since this would mainly change the rate of 

convergence, we will not state the precise results here. 

In [55, p. 237, first example 123] the Newton series (without the fac­

tor i) in one variable has been given for the function f(z) = 1/z and for 

h = 1. It has been shown there that (in our notation) (5.10) converges if 

z + is E ~ +, where IC+ is the open upper half-plane. So obviously theorem 5. 6 

is the generalization to several dimensions of this one dimensional case. 

The above formalism has the disadvantage that one cannot see directly 

what the type off should be in order that the serie s (5.10) is valid if h 

varies in a given domain (for a detailed study of the corresponde nce be­

tween hand the type in case of entire functions f and complex h, see [39 ]). 
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Another approach would be to start with an f E Exp [a,TC] for a given type 
£ 

a and to find out what the domain of his such that (5.10) is valid. Then 

it turns out that the bounds for Uhll will not be the same in every direction 

in C. For a precise result, which is however not as best as possible, see 

[59, cor. 9.1 & 9.2]. Here we shall only mention the case where a(z) = aUzll 

for a positive number a > 0. Then (5.10) holds for f E Exp [a-n,TC ] if 
£ 

z + ish E Tc and if 

For n 1 this condition for Uhll is exactly the one given in [55, p. 237]. 
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CHAPTER VI 

PROOFS OF THEOREMS 4 .11 AND 4 .12 

In this chapter we shall prove theorems 4 . 11 and 4.12 . Since problems 

3.2 and 3.3 follow immediately from these theorems, in this chapter the proofs 

of theorem 2.20 and of the theorems in chapter III are complet ed. Our method 
2 

uses the L -estimates for the Cauchy-Riemann operator given by Hormander in 

[30]. In [30, ch. 7.6] cohomology with bounds in ~n has been derived. Along 

the same lines we shall derive cohomology with bounds in an arbitrary, open, 

pseudoconvex set n. It relies on appropria te coverings of n which will be 

constructed in section 1. In [54] cohomology with bounds in a bounded, pseudo­

convex set n has been treated also based on the method of [30]. There the 

same growth conditions at the boundary of n appear as we will get here. 

VI. 1 . COVERINGS 

We construct open coverings U(A) = {u!A) } . A = 0,1,2 , ... of the 
1 1 E I A 

pseudoconvex open set n that satisfy the following p roper ties: 

(6 1) (1. ) (A) d d ( A) ,-, . every ui is pseu oconvex an ui cc u; 

(ii) the re is a positiv e integer L such that more than L distinct 

· U(A) h . · sets in ave empty intersection; 

(iii) the size of U(A)satisfies 
i 

( A) 
diam U, $ 

1 

-A -A 
min[b4 d, , B4 ], 

1 

where d. is the di s tance from 
1 

a cube whose side for any z E 

(A) 
u . to an, and 

1 

U ()_) satisfies 
i 

- A c -A 
side ~ min[a4 d(z,rl ), A4 ], 

for some constants a < band A < B; 

(A) 
u. 

1 
contains 

( . ) for h U(µ+l) . f " f U(µ) d iv eac )J is a re inement o an, moreover, each 
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(v) 

U~µ) EU(µ) enlarged 2µ-A times 
l. 

u . (µ) is contained in some uJ(A) 
l. i 

with respect to some center in 
(A) 

EU for every A= 0,1, ... ,µ-1; 

denote the map p between Iµ and IA with p(i) = ji by PA,µ; 

there are positive integers L, depending on A and µ (µ>A) 
",µ 

such that for each j E IA there are at most LA,µ indices 

ik EIµ with PA,µ(ik) = j, k = 1,2, ..• ,LA,µ 

When Q kQl Qk satisfies (4.21) it follows from property (iii) that 

(vi) every set in U(A) that intersects Qk is contained in some Ql' 

where l = l(k) > k depends on k. 

(0) 
The essential idea for the construction of U has already been used 

in [70], and it can be found in [29] too. 

Divide ~n into a collection of closed cubes with side 1 (such that the 

vertices form a retangular lattice), select those cubes in Q whose distances 

to Qc are larger than the length & of their diagonal and call this collec­

tion U
0

• Divide the remaining cubes into a collection of cubes of side½, 

select those cubes in Q whose distances to Qc are larger than i,nn and call 

this collection U
1

. Generally, when the collections U
0

,U
1

, ... ,Uk-l have been 

defined let Uk consist of those closed cubes with side 'i,k that are not con-
k-1 

tained in the union of the cubes of l~o Ul, but that are contained in Q and 
c c- k def 00 

whose distances to Q are larger than •2n/2 . Then U0 k~O Uk covers Q and 

a cube in Uk can intersect cubes of Ul only if l = k-1, k or k+l. Hence U0 
satisfies property (ii) (with L = 2

2
n) and property (iii) (with A= 0, A= 1, 

B =~.a= 1/(4nn) and b = 1). 

Define a map a on U0 by mapping U{ E U0 to the enlargement of the in­

terior of U{ with a factor 3/2, the center kept fixed. Finally, define 

It is still true that u_(O) n u<. O) J.,. 1.'f and · -l (O) -l (O) r P only if a ui n a UJ. # 0. 
l. (0) J 

Hence, the open covering U of Q satisfies properties (i), (ii) (with 

L 2
2

n) and (iii) (with A= 3/2, B = nn 3/2, a= 1/(3nn) and b = 2) for 

A 0. 
(0) (A-1) 

Now let U , .•. ,U be defined with the properties (i), (ii), (iii), 

(iv) and (v) satisfied and let each U(µ) consist of open cubes U~µ), such 

that the collection~~ of the closed cubes a-
1
u~µ) covers Q, µ = 0,1, ... ,A-1. 
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Define U~ as the collection of all closed cubes obtained by dividing each 

cube in U~~l into 4
2

n closed cubes. Then define 

It is clear that U(A) satisfies properties (i), (ii) and (iii) and it satis­

fies (iv), since 2 times a cube u'."l e: U(A) is contained in the cube u~>..-l) e: 
(A-1) -1 (A) . 

LJ , when a u. is one 
i 

Hence (v) is satisfied with 

i 2n -1 (A-1) J 
of the 4 cubes a U. had been divided in. 

2n J 2n µ-A 
LA,A-l = 4 , so that LAµ= (4 ) . 

If n = ~n we just get the usual coverings of ~h given in [30, p. 188]. 

VI.2. COHOMOLOGY WITH BOUNDS IN AN OPEN, PSEUDOCONVEX SET. 

In this section we will prove a theorem B with bounds in an open, 

pseudoconvex set n , just as [30, th. 7.6.10] for n =en.The following lemma 

is an extension of [30, th. 4.4.2]. 

LEMMA 6.1. Let n be an open pseudoconvex set, let {nk}==l be an increasing 

sequence of subsets of n satisfying (4.22) and let¢ be a plurisubharmonic 

function on n . For any sequence {Kk}==l there is a sequence {Mk}==l such 

that for every (O,q+l)-form g with locally square integrable coefficients 

and with ag = 0 there is a (O,q)-form u inn with locally square integrable 

coefficients, so that au g and for every k = 1,2, ... 

II u (z) U 2 exp-2 <P (z) dA(z) s Mk2 , 

(1+11zU
2 i2 

provided that for each k 

2 2 
llg(z)I exp-2¢(z) dA(z) s ~-

Here a acts in distributional sense. We remark that u will depend on 

the sequence {~}==l' too. In the above formulation [30, th. 4.4.2] says 

that {Mk}==l is bounded when {Kk}==l is bounded, while (4.22) need not be 

satisfied (in fact, if Kk = K, then Mk= K fork= 1,2, •.. ). 
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PROOF. Let x be a convex majorant of the nonnegative function X 

fort < 

for k S t < k+l, k 1, 2, .... 

Then ~(z) ~ x(o(z)) ~ 0 is plurisubharmonic inn, so that we may apply 

[30, th. 4.4.2] in the domain n with the plurisubharmonic function 2~ +~. 

This yields a (O,q)-form u inn with au= g and with for each k 

I Du(z) D 
2 ex,12-2~(z) d).(z) s 

(l+lzD 2) 2 
nk 

< x(k) I lu(z)B
2 ex,12{-2~(z)-~(z)} dA(z) s - e 

(1+1zl
2

)
2 

nk 

s X(k) I Du(z)D
2 ex,12{-2t(z)-~(z)} d>. (z) s e 

(l+Uzl 2)
2 

n 

s e 
x (k) I 2 

lg(z)U exp{-2~(z)-~(z)}d>.(z) s 

n 

{ I "' 
n f ,n } 

X(k) }: 2 s e + Ng(z)D exp{-2~(z)-~(z)}d>.(z) s 

fl 
f.=m '.l+l '.l 

m 

{K! + 
"' 

1;/+l} s x(k) }: eX(k){K2 + 1/2m} e 
f.=m 

m 

for arbitrary m € { 1, 2, ... } . So we may take Mk = [ e x (kl (K~ + 1/2) ]~. 

It also follows that, if {gn}:=l is a sequence converging in every 

norm U•Dk to zero, {un}:=l converges in every norm to zero. This follows 

from the continuity of a bounded map from a bornological space (here a 

Frechet space) into another locally convex space, too. 

2 
REMARK. If g is such that every L -norm on flk with respect to a different 

k 
density exp-2~ is finite and if the u of lemma 6.1 would have the same 

property (cf. chapter VII), then the following lemma's and theorems could 

be changed in such a way that theorems 4.11 and 4.12 would hold with one 

D 
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global function v satisfying all these bounds. 

The following lelllllla is an extension of [30, prop. 7.6.1]. The proof 

follows the same lines, only here one has to look more carefully to the 

estimates near the boundary of n. 

LEMMA 6.2. For every A and for each sequence {Kk}==l there is a sequence 

{Mk}==l such that every cocykel c E cp[U(A) ,A,<j>a], p ~ 1, with llclla,k s Kl< 

can be written as c = cc' for some c' E cp-l[U(A) ,A,<j> J with Uc•IIN,M,O SM 
0 2 N,M,0 a,k k 

for every k, when U•IIN,M, denotes the L -norm with respect to the density 
a a,k 

exp - 2</>N,M,O with 

where N = M = min[p,n], when the pseudoconvex open set n = kQl nk satisfies 

(4.21) and (4.22) and when the function <Pa .is p.1.uri subharmonic .;.n n. Moreover, 

when {Kk}==l is bounded, (4.21) and (4.22) need not be satisfied and {Mk}==l 

is bounded. 

PROOF. Let Lq be the sheaf of germs of (0,q)-forms with locally square integr­

able coefficients and let Z be the subsheaf of a-closed forms of type (0,q). 
- q 

Here a acts in distributional sense. By [30, th. 4.2.5] and the Sobolev em-

bedding theorem ac 0, weakly, for an L
1
2 -function c implies that c is a 

i . oc 
C -function, hence a holomorphic function. Thus a section c E 1( 0. ,2

0
) is a 

holomorphic function c E A(n ) . For c E cPLLl(A) ,Z . cj,aJ with cc= 0 and llcll S 
' p-· : . p ) a q ,.. a , k 

S K.wewanttofindac E C [Ll ,Z,cj, 
0

Jsuc.1tl1at oc'= c and -x c; N,M, 
llc•IIN,M,O s M when q = 0. As s ume that thi s has a l r eady been .or oved f or 

a,k k' 
smaller values of p and all q , when p > 1 , N = M = p and when {Mk }== l depends 

moreover on p. 

We construct a parti t ion {cj, . 1- . of unity s ubora i ,·,c,t.e ~o t !'le covering 
(A) i i EIA 

U of n sati s fying for s ome constant CA 

(6.2) 

where 

n 

I 
j =l 
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oo n 2n 
For example, let x be a nonnegative C - function on (t ;;;- IR equal to 1 in · 

the closed cube with center O and sides 1 and with its support contained in 

the open concentric cube with sides 3/2. Let the length of the side of 

uiA) E U(A) be 3/2Bi and let the center of uiA) be zi, then define 

and let 

x. (z) def 
J. 

X. (z) 
2 

def i 

4>i (z) = -l--X-. (-z-)..,..2 

J j EIA 

By property (6.1) (ii) for each z not more than L terms in the denominator 

differ from zero and since U~ covers n at least one term equals 1. Hence, 

(6.2) follows from this and from property (6.1) (iii). Furthermore, ¢i has 

its support contained in U(A) i . 

Fors E rf we set 

_p (A) a 
when c € c-[U ,zq,¢ ]. Using ri ¢i = 1, by computing we find og = c, if 

oc = 0. Furthermore, writing ¢J.. = /¢. ~ and using Cauchy-Schwartz and 
J. J. 

again ri ¢i = 1, for any function w we find 

n u 2 
cis W,k 

2 
a g ( z) U exp - 2w ( z) d A ( z) s 

s 

¢. (z) Uc. (z) 0 
2 

exp - 2W (z) d¢ (z) S 
J. J.S 

By summing up f or each k we get 

(6. 3) II gll s II ell 
W,k W,k 



for~ such that the right hand side 

Let ag = f be defined by 

This yields 

f 
s 

II f II 0, 1,0 
s a,k 

2 ~ ca~ Ac. i, 
l. l. l.S 

and by summing up, in virtue of (6.2) for every k we find 

p-1 { A) a 
so that f EC [U ,zq+1'¢0,1,0]. 
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S E 

Now of= aog = ac = 0. If p > 1, by the inductive hypothesis {note, 

that 

f' E 

¢
0 

is plurisubharmonic because n is pseudoconvex) there is a cochain 
N,M,0{).) 

cP- 2[U Z ¢
0 

] with of'= f and with for every k 
'q+l' p-1,p,0 

where the sequence {Mk}==l depends on {2CA~}==l' hence on {~}==l· By lemma 

6.1 second part{actually [30, th. 4.4.2])and by property (6.1) {i) for every 

s E rf- 1 
there is a {g')s E ,{U{A) ,L ) so that a{g') = {f') in u{A) and 

A S q S S S 

(6.4) II ( 'l 11P,p,O 
g S Cl 

$ II { f • l II p-l 'P 'o 
S Cl 

By summing up by property (6.1) {vi) we get 

llf•llp-1,p,O $ Mi{kl, 
a,.l{kl -<-

, p-2 (A) a 
so that g EC [U ,z ,¢ 

0
J. 

q p,p, 

def 
Finally, set c' = g - og' , then for every k 

(6.1) {ii) and the above estimate yield 

1 , 2 , . . . { 6. 3) , property 
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n c, u P,P, 0 ::; n en P,P, 0 + plL-p+1 u g' u p,p,o ::; 
a,k a,k a,k 

def r.:----7' 
$ Mk = ¾_ + p>'L-p+l M.l(k) . 

Furthermore, oc' = og = c and ac• = f - oag• f-of' = f-f 0, hence 

c' E cp-l[(/"l ,z ,<1>
0 

]. 
q p,p,O 

It remains to consider the case p = 1. The fact that of= 0 then means 

that f defines uniquely a (O,q+l)-form fin rl with lif = 0. By l emma 6 . 1 

there is a g E 1(0,Lq) with ag = f and a sequence {Mk}==l depending on 

{2C ¾_}==l with 

I Dg(z)D
2 

Ok 

exp - 2p (z) 
2 2 C -2 

(l+llzR ) (l+d(z,rl ) ) 
k 1,2, . .•• 

Setting (c'). ~ g , - gJ 0 (A) we obtain a cochain with the required properties 
l. l. i 

(using property (6.1) (ii) in the estimate for the cocha i n Frlui"'} . ) . 
l. l. E I ;i_ 

In fact, there are not more than n induct ion steps , because al l 

(O,n)-forms g satisfy lig = 0. Therefore, t he estimates hold already when p 

is replaced by min[p,n] and the sequence {~}==l may be taken i ndependent 

of p. 

The second part follows from the second part of lemma 6.1 in case 

p 1. □ 

2 
The following lemma is a rewriting of [30, prop . 7.6. 5] with L - norms 

instead of sup-norms 

LEMMA 6 .3 . Let P be a matrix o f pol ynomials, <j, a wei gh t f unction, for some 

A let v. - E U(A) and l e t u E A (V. }q . Then there ar e µ > A and posi t ive n um-
l. l. 

bers N and C (A ) such tha t for u . E U(µ) wi th p , ( j ) 
J A, µ 

V E A(U . )q with 
J 

P(w)v(w) 

and with 

P(w)u (w), W E U. 
J 

i t here is a 

I Uv(w)ll
2 

exp - 2,j,N(w ) dA (w) $ C(A) I II P(w)u(w) ll 2 exp - 2,j, 'w)dA(w) , 

u . 
J 

V . 
l. 
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where ¢N is determined by¢ according to (4.26). 

PROOF. In [30, prop. 7.6.5] (or [16, th. III. 3.4. (3) when p = q = 1, cf . 

also th. 1.4, and the general case is contained in th. III. 3.6]) it is shown 

that for each pxq-matrix P with polynomial entries there are a number 

0 < c < 1 and constants C, N and N' such that, when S denotes the unit cube 

(actually in [30] the unit ball is used, but this only changes the constants), 

for every O < £ s 3/2 and for every u E A(S+z/£)q there is av E A(oS+z/c)q 

with 

and with 

P(cw)v(w) 

sup 
wEoS+z/£ 

P(cw)u(w), 

Uv(w)U 

w E cs+ z/£, 

sup 
WES+z/£ 

IIP(£w)u(w) II. 

In fact this is [30, formula (7.6.5)] and .. it follows from the proof given 

in [30], that the constants c, C, N' and N c~n be taken i n dependent of£, 
-N' 

if we write Cc in the above estimate. Therefore , by shrinking the variable 

w with a factor£, we find again constants C, t > 1, Mand N such that for 

0 < n < 3/2t-l and for every u E A(tnS+z)q there is av E A(nS+z)q with 

P(w)v(w) P(w)u(w), w Ens+ z 

and with 

sup 
wEnS+z 

llv(w)II s Cn-M(l+UzU)N IIP(w)u(w)II. 

Now we change this estimate into one wi th L
2
-norms. 

chooseµ > A so that 2µ - A ~ t+l and let u . E U(µ ) be such 
J 

(A) 
Let Vi E LJ , 

that p , (j) = i. , , µ 
We write U. with cencer z. and sides n . as u. = n.S+z .. S ince by the con-

J () 1 J - 1 J J J J 
struction of U µ a- U. ca V we have tu = tn . s + z . c {zjliz-z•ll.,; 

J i j J J 
~\diam a- 1v. +diam r; . } (or any z' E U . and by proper ty (6 .1) (iii) t U . c 

i A+l J C J J 
c{zjllz-z•ll -s(¼ +~µ)mi n[bd(z', n ) , BJ }. Therefore , in view of (4.23), b = 2, 

r,::-, , . def r.:--
B = v2n 3/2, A~ 0 and µ~ 2 we take K = max[ log 8/3 , 15/32 r2n] ub t aining 

tu. c { z I z E s ( z • ; Kl } , 
J 
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where S(z;K) is given by (4.24). Also, for z E (t+l)U. there is a z.' E tU. 
J J 

with D z-z' II s diam u . , hence similarly to above 
J 

(t+l)U . C 

J 
u 

Z 1 EtU , 
J 

S(z' ,K) 

with K = max[log 8/7, 3/32 nn]. Now for a weight function¢ and for N def 

-max{N/2 + (n+l)/4, M+n, K+K} define the plurisubharmonic function ¢N by (4.26). 

In virtue of [73, conditions HS
1 

and HS
2

, p. 15] property (6.1) (iii) and 

(4.27) we get 

r I 2 ]~ 
L 

D v (w) II exp - 2¢N (w) dA (w) s 

u . 
J 

M+n 

s Cl (?) sup Dv(w) D exp - ¢~ ~ -(w) s 
WEU . 

N/2,0,K+K 
J 

N 
/l+Uz . U) \-i+J¼ sup 

wEtn .S+z . 
DP(w)u(w)U exp-¢O,O,K(w) s 

J J 

s C()..) [ J UP(w)u(w)D
2 

exp-2¢(w)dA(w) ]~, 

V. 
l. 

where in [73, cond. Hs
2

, p. 15] the radius dz of the polydisc D(z , dz) is 

taken dz= nj for every z E tnjs + zj, so that the constant there depends 
-n 

on nj and where 

{wlwED(z,n.),zEtn .s+z.} c (t+l)n .s+z . c v.. D 
J J J J J l. 

The next theorem is Cartan's theorem B with bounds in an open, pseudoconvex 

set n. It is an extension of [ 30, th. 7.6.10 ] . Let F be either the sheaf of 

relations of Pon n, thus F = RP or the image under P of the s heaf Aq, thus 

F = PAq. 

THEOREM 6.4. For all polynomial matrices P there is a positive N, for al l 

nonnegati ve integers A there is aµ > A (depending moreover on P) and for 
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each sequence {Kk}:=l a sequence {Mk}:=l (depending moreover on A and P), 

such that every cocykel f E cP[U(A) ,F,q/'J, p 2: 1, with I/fl/ SK can be 
* a,k k +l 

written as of'= P, f (i.e., (of') = f wi ths'= P, (s) for s E IP J 
Ar\J S S I A,\J \J 

for some f' E cp-l[ U (µ) ,F,q,fl] with l/f 1 U
0 

s M, when the pseudoconvex open 
µ,k k fl 

set n = kQl nk satisfies (4.21) and (4.22) and when q, if the plurisubharmonic 

function determined by ,Pa and N as in theorem 4.11. Moreover, when {Kk}==l 

is bounded, (4.21) and (4.22) need not be satisfied and {Mk}:=l is bounded. 

~- Conversely to lemma 6.2 this theorem is proved by induction for 

decreasing p, since the theorem is true for p ~ L (see property (6.1) (ii)), 
L (A) a 

because there are no non-zero cochains f EC [U ,F,<j> ]. Thus assume that 

the theorem has been proved for all matrices P, when pis replaced by p+l 

and when the constants N, µ and {~}==l depend moreover on p. 

In case F = R there is a polynomial matrix Q, such that F = QAr in p 

virtue of [30, lemma 7.6.3] and we can write f E cPcu(A) ,F,,pa] as f 
s 

p (:\) Ar where g EC (U , ), cf. [30, lemma 7.6.4] or (4.14) where the fact, 

Qgs 

that 
(:\) (:\) . q 

every U. E U is pseudoconvex, has been used. In case F = PA we write 
1 

. p (A) r 
Q = P and r = q, then also f = Qg with g EC (U ,A), cf. [30, th. 7.2.9] 

or again (4.14). Accordi.ng to lemma 6.3 there are v > :\, N
1 

> 0 and a cochain 

~g E cPcu<v) Ar ~a J wi'th Q~g = Qg I f wheres' - p (s) hence p* f , •~N - ' , ' 1 s s s' A,V A,V 
=Qg and with 

N 

Ilg II 1 
s c(:\) 1/f II • 

s fl s' a 

Since (4.21) holds property (6.1) (vi) is satisfied and it follows from this 

property and from property (6.1) (v) that for every k there is an l(k) > k 

with 

N 
II ~ii 1 d=ef p+ 1 II II 

g a,k s ~• (L:\,v) C(A) fs' a,l(k) 0 

When of = 0, oQg = Qog 0, whence 6g = c is a cocykel in cp+l[U(v) ,RQ,,p~
1

J. 
a ::, 

In view of (4.27) for N' 2: 0 we have (,PN
1

)N' S <PNi+N'" 

By the inductive hypothesis we can find \J > v , a positive N' , a sequence 
00 ~ 00 () 

{Mk}k=l (belonging to {(p+2)vL-p-1 Kk}k=l) and a cochain c' E cP[LJ \J ,RQ, 

<j>~, N oJ with 6c ' = o c a :id II c' II 1:/ 'k,N', 0 s Mk', where the plurisunharmonic 
, ' 'V, µ µ, 

function ,p8 is determined by (4.42): ,pfl def 1~ +N'· 

We set go def p* ~g - c' E cP[LJ(lJ) Ar ~e ] so that ogo 
v,µ ' ''+'N' ,N' ,0 
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P~,µc-p~,µc = O. According to lemma 6.2 there is a sequence {MiUk=l belong­

ing to {(Lv,µ>p+l Kk+Mk}k=l and a cochain g' E cP- 1[LJCµ) ,Ar,¢~2 ,N2 ,oJ with 

II nN2 N2,O og• gO and g' S,k s Mk for some N2 > N'. 

Finally define f' ~ Qg' E cP- 1[U(µ) ,F,¢~
2

+N3 ,N2 ,oJ, where N3 depends 

r r * ~ * * f * f h 1 on Q. Then uf' = Qug' QgO = Pv,µQg = Pv,µPA,µ PA,µ . Furt ermore, et 

N denote N2 + N3 , then for every k and some C' depending on Q we get 

N ,N ,0 d 
nf•UN,N,O s c•0 •II 2 2 s Mk ef C'M_". 

S,k g S,k k 

Here {Mk}k=l depends on Q, A, v, µ, p and {Kk }k=l • but v depends on A and 

p (since t in the proof of lemma 6.3 depends on P) and µ on v; N3 depends 

on Q; N2 depends on p by the inductive hypothesis and on P, since the cons-

tants N and Min the proof of lemma 6.3 depend on P; Q depends on P; C' de­

pends on Q; and finally {Kk}k=l depends on P and on {Dfna,l(k)}k=l· However, 

there are only finitely many induction steps, so that we can take the larg­

est of all the constants. Therefore, the theorem is true for all p with con­

stants {Mk}k=l depending on P, A and {Kk}k=l; N depending on P; µ depending 

on A and P. 

Moreover, when {Kk}k=l is bounded, so that in the above proof we do 

not use (4.21) and {Kk}k=l is bounded, it follows that {Mk}k=l is bounded 

and by lemma 6.2 (4.21) and (4.22) need not be satisfied and {Mk}k=l is 

bounded. Hence (4.21) and (4.22) need not be satisfied and {Mk}k=l is 

bounded. D 

VI,3, PROOF OF THEOREM 4.11. 

Let F be the sheaf PAq. We can estimate the cocykel f = oh in terms 

of h, then II f0 a ,k S ii:=T' Kl (k) and f E c 1 [U (1) , F, ¢0 ]. According to theorem 

6.4 there is a cochain f' E cO[LJ(µ) ,F,¢S] with of'= pr µf and a sequence 

{Mk}k=l with Df•Ua,k S Mk for someµ and for some pluri~ubharmonic function 

¢a determined by ¢0 and by a positive integer N as in theorem 4.11. 

For every i EIµ and z E uJµ) let 

v.(z) ~ h.(z) -f'.(z) 
l. J l. 

where j = Pi,µCi). Then ov Pi µoh-of'= p*1 µf-pi µf = 0, thus {v . Ji EI } 
f I I 1 µ 

determines a function v E A(n)P. Furthermore, using property (6.1) (v) for 



every k we obtain 

[ I llv(z)ll
2 

exp-2lcz)dA(z)]i, s 

I\ 

s II vii s L II hll 
O 

+ M' s M ~ L K + M • 
S,k 1,µ µ,k k k 1,µ k k

0 
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Moreover, if {Kk}:=l is bounded, (4.21) and (4.22) need not be satisfied and 

{Mk}k=l is bounded, so that {Mk};=l is bounded, too. 

Fors E r 1 , let I' (s) EIµ be the set of those i E Iµ with Vi def U{µ) n 

n u!l) ~ 0. For each i E I' (s) and z E Vi we have 

v(z) -h (z) 
s 

h,(z) -f:(z) -h (z), 
J l. s 

( 1) '(U(,1) (1) F This is a holomorphic function in U and since h - h E , J n Us , ) s j s 
and also f' E 1(u:µ) ,F), we obtain 

i l. 

(1) 
Since the sets Vi and Us are pseudoconvex (property (6.1) (i)), Cartan's 

theorem B yields, cf. (4.14), 

that is vi - h u(l) s 
s 

P•g 
s 

0 (1) q 
for some g EC (Ll ,A). 

VI.4. PROOF OF THEOREM 4.12. 

□ 

From Cartan's theorem, namely from (4.14), it follows that fo r every 

i E r
0 

f = Pg, in u:O) E Ll(O) with g E CO(Ll(O) , Aq). According to lemma 6 . 3 
l. l. 

there are positive integers v and N
1 

and a cochain g E c0 [U(v) Aq $Na J with , , 1 

Pg,= fin U~v) for each j EI and with 
J J V 
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. 0 (0) p Cl 
where f is regarded as a cocykel in C [U ,A,¢]. Summing over j and using 

properties (6.1) (ii) and (vi) for each k we get an l(k) > k with 

N 
11~11 1 

g a,k 

Consider the differences c of the functions gj in the overlaps of the 

sets u;v) for j E Iv' i.e., c = og. Then 

N 
II cU 1 s 2 li.="i' K' 

a,k k 

and Pc= Pog of= 0 and also oc 0, hence c is a cocykel in 
1 (V) Cl 

C [ u I RP I ¢N J . 
1 

According to theorem 6.4 and (4.27) there areµ > v, a sequence {Mk}==l 

(depending on {21:L-T Kk}:=
1
), a plurisubharmonic function¢$, which satisfies 

the condition of theorem 4.11 for some N > N
1

, and a cochain c' E c0
[U(µ), 

$ 
RP,¢ J with oc' = p c and with v,µ 

llc•U s Mk'. 
$,k 

~ Finally, for every s EIµ we set vs(z) gs' (z) -c' (z) for z 
s 

(µ) 
E Us , where 

s' = p (s), which defines a function v E A(fl)q, v,µ because ov p * Og-p * C = 0, 
v,µ v ,µ 

that satisfies for every k 

r I 2 s li, 
llv(z)B exp-2¢ (z)d>.(z) J s DvD s L DgO $ +M' s l 

nk 

s Mk ~ L K' -+'M' v,µ k k
0 

If {Kk}==l is bounded, (4.21) 

bounded, hence also (4.22) need not 

so that {Mk}==l is bounded. 

Furthermore, for every s EI 
µ 

$ ,k v,µ ,k k 

need not be satisfied and {K'}
00 

1 
is 

k k= 
be satisfied and {M'}

00 

is bounded, 
k k=l 

in U(µ) we have 
s 

Pv Pv 
s 

Pg -Pc' = f. 
s' s □ 
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CHAPTER VII 

A COHOMOLOGY VANISHING THEOREM 

In chapter II we had assumed that the map (2.12) was surjective . In 

fact, this expresses the triviality of the first Cech-cohomology group of 

a covering consisting of two open , pseudoconvex sets with values in the sheaf 

of germs of holomorphic functions satisfying countably many bounds. Explicite-
1 2 1 2 n 

ly, let n n u n, where n , n and n are open , pseudoconvex sets in a:, 
let a set of countably many growth conditions inn be given and let f be a 

,., l n
2 · f · h th d " . h holomorphic function in" n" satis ying t ese grow con itions t ere. 

Then the question is whether there exist holomorphic functions f
1 

and f
2 

in 

n
1 

and n
2 

satisfying the growth conditions in n
1 

and n
2

, respectively , such 

that f = f
2 

- f
1 

in n
1 

n n
2

. We will solve this problem with functions bounded 

with respect to countably many, weighted L
2

-norms instead of sup-norms. How­

ever, the conditions imposed in chapter II are such that this makes no essen­

tial difference . In chapter II the above mentioned result was also needed 

for functions satisfying only one growth condition and, actually, this is 

lemma 6.2. As is noticed in the remark after lemma 6 . 1, lemma 6.2 holds with 

functions satisfying countably many bounds if lemma 6.1 does. Then a theorem 

B with functions satisfying countably many bounds can be derived and the 

stronger version of the fundamental principle can be given . In this chapter 

we will improve lemma 6.1 by functional analytic methods. 

Let n = kQl nk be an open,pseudoconvex domain in a:n with nk c nk+l c n. 

Furthermore, let for some integer q with O $ q $ n-1 and for j = 1,2 Hk(n ) 
J m 

be the Hilbert space of (O,q+j-1)-forms inn with square integrable coeffi­
m 

cients with respect to the density 

(7. 1) 
k . 2 

exp-2{,P (z) + (2-J)log(l+llzll )}, 

k oo 
where {,P }k=l is a decreasing sequence of plurisubharmonic functions with 

k · ~1 
<P defined on n . Then the restriction map TI~+l,k from Hj (rlk+l) into 

H~( rlk) is continuous, so that the projective limits can be defined 
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(7. 2) d=ef k( ) 
Hj proj lim Hj nk, 

k + oo 

j 1, 2, ... 

Often we shall write H~ instead of 
k 

Hj(nk). 
k J 

Let f E H
1 

be such that 3f E H~, where 3 is defined in distributional 

sense. We denote the operator which assigns to such f the (0,q+l)-form 3f 

by Tk. Then Tk is a closed, densely defined operator 

T H
k 

k: 1 k 1, 2, ... 

That Tk is closed follows from the continuity of a in distribution theory. 

This also implies that the sets 

F def {g E H
2 

I 3g = 0 in distributional sense} 

def k I -Fk = {g E H
2 

ag = 0 in distributional sense} 

k 
are closed subspaces of H

2 
and H

2
, respectively. For p > k we have 

2 
7T T 
p,k p 

so that {Tk} determines a closed, densely defined operator T from H
1 

into 

H
2

. That Tis densely defined follows from the fact that the space of 

(0,q)-forms with C~coefficients with compact support inn lies in DT and 

is dense in H
1 

by Lebesgue's theorem. The following diagram is commutative 

Since also 

F 1, 2, ... } 
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we have R(T) c F. We want that R(T) = F, but by [30, th. 4.4.2] (lemma 6.1) 

know that R(Tk) = Fk for every k. In particular, R(Tk) is closed in we only 
k 

H2. 

We 

T: E -+ F 

will use that the range R(T) of a closed, densely defined operator 

is closed if and only if R(T*) is weakly* closed l) in E' provided 

that E and Fare Frechet spaces. This follows from [61, IV 7.3], cf, also 

[65, lemma 37.4], [61, IV 7.4 ] or [65, lemma 37.6] and the open mapping 

theorem for closed operators [61, IV 8.4], see also [40, th. 19(i)]. If more-

* over Eis reflexive the weak topology on E' equals the weak topology and 

accordingly [65, prop. 35.2 ] in that case R(T*) is closed in the strong top­

ology of E', because R(T*) is convex. 

LEMMA 7.1. Let T : E-+ F be a closed, densely defined operator from the re­

flexive Frechet space E into the Frechet space F, then the following three 

statements are equivalent: 

(1) R(T) is closed in F 

(2) * * R(T) is weakly closed in E' 

* (3) R(T) is strongly closed in E'. 

For the improvement of lemma 6.1 we will apply a similar trick as 

Kawai has done in [38, lemma 2 .1.2]. Besides condition (4.22) on the domains 

{nk} we impose the following condition on the weight functions {~k} inn: 

for every k and every p > k there exists a holomorphic function $k,p in Q 

and moreover for every m = 1,2, ... a positive number K(k,p,m) such that 

(7. 3) Z E Q, m 1, 2, ... 

and such that log $k,p is holomorphic in Q. Since ~k ~ ~p for p ~ kit follows 

that this condition cannot be satisfied if n = ~n, unless all the functions 

{~k} are equal. Hence (7.3) is a condition on the domain Q, too. 

Our stronger version of lemma 6.1 is based on the following lemma, 

cf. [38, lemma 2 .1.2 ] . 

1) * The weak topology on the dual H' of a locally convex space H, sometimes 

denoted by the o(H',H)-topology, is the one induced by the polars of finite 

subsets of H. The weak topology on H', sometimes denoted by o(H' ,H"), is 

induced by the sets in H' on which a finite number of strongly continuous 

* functionals are bounded. If His reflexive the weak and weak toplogies on 

H' coincide. 
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k 
LEMMA 7.2. Let Q be a pseudoconvex domain and{~} be a decreasing sequence 

of plurisubharmonic functions in Q satisfying condition (7.3). Furthermore, 

let H. be given by (7.2) with nk 
J 1* k 

n for j = 1,2. If for f EDT* c H2 we 

c (Hk)' with have T*f E Tik (H
1
)' , then there is an fk E Di,~ 

2 

* T f. 

PROOF. Let H~ H~(Q). If p > k, let Wm(z) def (Wk,p(z))l/m; by (7.3) these 
J J 

functions satisfy 

Z E Q, m 1, 2,... . 

Hence multiplication of each coefficient of a (0,q+j-1)-forrn inn by Wm 
k . 

defines a continuous map from H. into H~; we denote these map by wJ. Its 
J J m 

adjoint (multiplication by w) 
. m 

is a continuous map from (H~)' into (H~)' 
J J 

which we denote by ~J. We have the following diagram 
m 

* 
H' 

T 

r·" ,'.) 
T* 

1 * (H:~, TI:Hp) I 

TI k h E 
p 

p, .... I)~· C\ 2 * TI 
p,k m p,k 

* 

h E (Hk) I 
Tk 

1 

3 f 
p 

-2 
wm 

fk 

Here all maps TI and TI* are identity maps, because nk = n for every k. 

Since Wm is holomorphic inn, for all u E o.i,k we have in distributional 

sense 

Thus w
1 
m 

U E 

w au 
m 

Di, and w
2 

Tk u = T Wl u. Therefore, if g En...* p m p m -·1·p 

1 
<g,T Wu> 

p m 
* 1 <T g,W u> 

p m 

we get 



-2 
This means that ljimg E o.r; and that 

Now 

for 

on D * 
T 

p 

let p > k and f E D.r * be such that f = TT
2

* f, and let T *f 
k p p pp pp 

some h E (H
1

) '. Then in the above we take this p and we find 

-1 1 * ljJ TT h. 
m p,k 

187 

1 * 
TT k h p, 

-1 1 * k Furthermore, by Le be s gue ' s theorem ljim TT h ➔ has m ➔ 00 in (H) '. Since 
kp,k 

* by lemma 7.1 Tk has closed range in (H
1

) ', it follows that there exists an 

fk E °'r~ with Tk* fk h. Hence 

* T f. 

D 

Now using lemma 6.1 we can easily prove its following extension, cf. 

[38, lemma 2.1.1]. 

THEOREM 7.3. Let n kQl nk satisfy (4.22) .for a plurisubharmonic function 

a in the pseudoconvex domain n, let {¢k} be a decreasing sequence of pluri­

subharmonic functions in n satisfying condition (7.3) and let H. be given 
- J 

by (7.2) for j = 1,2. Then for each g E H
2 

with ag = 0 there is an u E H
1 

with au= gin distributional sense. 

PROOF. Let g E F be fixed. Then there are positive numbers Kk with 

k 
exp- 2¢ (z)dA(z) $ Kk, k 1,2, ... 

As in the proof of lemma 6.1 the function a and the numbers{~} determine 

a plurisubharmonic function ljJ . For g we get the estimates 

I llg(z)ll
2 

exp{-2l(z)-ljJ(z)}d1,.(z) S 

n 

+ I 
-f.=k J } 

n .e.+ 1 \ n ,e_ 

llg(z)ll
2 

exp{-2l(z}-ljJ(z)Jd1,.(z) $ 
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2 2 k 2 -k 
Dg(z)fl exp-2,j> (z)dA(z) :S Kk+2 <00 , :S K + 

k 

k 
because {<j>} is decreasing so that 

2 k f llg(z)D exp- 2 ,j> (z)dA(z) :S 
2 l+l 

lg(z)D exp-2,j> (z)dA(z). 

For j = 1,2, let now Hj be the space (7.2) with nk = n and with in (7.1) <j> k 
k 

replaced by <j> + 1/2~, k 1,2, .... The above estimates show that g belongs 

to this space H
2

. Assume that the theorem has been proved for spaces (7.2) 

with nk = n for every k. This would yield an u in the above given H
1 

with 

au= g and so (cf. the proof of lemma 6.1) 

k 
exp-2,j> (z) 

Cl+NzU
2

/ 

k 
exp{-2p (z)-~(z)} 

(1+1zll
2

/ 
dA (Z) < "" 

for every k. Thus u would satisfy the conclusion of the theorem. It remains 

to prove the theorem for spaces H. with nk = n for every k. 

S . th ' ' J h Hk k " o in e remaining we assume tat . H.( u ). 
J J 

(i) R (T) is dense in F. 

Let f E H2 with <f,Tu> = 

Since OT is dense in H
1

, 
2* * 

0 for all u E OT c Hl, hence f E OT* and <T*f ,u> = 0. 

we get T*f = 0. There are k and fk E ~~ with 

Now let g E F, then n! g E Fk. According to [30, f = nk fk and Tk fk = 0. 

th. 4.4.2 ] (lemma 
2 

6.1) nk g = Tkuk for some uk E ~k· So we have 

<f,g> 
2 

<n *f ,g> 
k k 

This implies that R(T) is dense in F. 

(ii) R(T) is closed in H
2

. 

<T * f ,u > 
k k k 

o. 

The spaces H
1 

and H
2 

are reflexive Frechet spaces, namely they are Fs*­

spaces see [40]. Therefore, b y lemma 7.1 it is sufficient to show that 

* * R(T) is weakly closed in Hi· According to the theorem of Banach-Dieudonne 

[65, th. 37.1], [45, § 2 1, 10(5)] or [61, IV. 6.4, where it is called the 

Krein-Smulian theorem ] it suffices to prove that R(T*) n Bis weakly 
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* closed in Hi for every bounded, convex, weakly closed subset B of Hi· Bear-

* * ing in mind that Hi is a DFS -space, hence reflexive so that the weak and 

weak topologies on Hi coincide, by [40, th. 6] there is a k such that Bis 

weakly homeomorphic with a bounde d, convex, weakly closed set in (H~ ) '. Thus 
k . 1* * t*• 

there is a bounded set Bk c (H
1
)' with Tik Bk= R(T) n B, where Tik is a weak 

homeomorphism. Since Bk is convex its weak closure equals its strong closure 

in (H:)•. Thus we have to show that Bk is closed in (H:) '. 

Let hm +has m + 00 in (H:)' with hm E Bk. Thus for each m there 

f
m 1* m * m 

is an E DT* c H2 with Tik h = T f. According to lemma 7.2 for each m 
m k * m m * 7.1 R(Tk) is there is a fk E ~k c (H

2
)' with Tk fk = h .*Since by lemma 

closed in (Ht)•, there is an fk E DT~ with Tk fh 

and thus Bk is closed in (H:) '. This implies that 

1 * * h. Hence Tik h E R(T) 

* * R(T) n Bis weakly clo-

* sed in Hi for every bounded, 

fore R(T) is closed in H
2

. 

convex, weakly closed subset B of Hi· There-

□ 

REMARK. Unlike lemma 6.1 theorem 7.3 does not give uniform bounds. The only 

thing which can be said is that, in virtue of the open mapping theorem, T 

is an open map, i.e., 

-1 
T F + H

1
/Ker T is continuous. 

As is remarked after lemma 6.1 using theorem 7.3 instead of leamm 6.1 

one could obtain a theorem B with countably many bounds. However, there re­

mains one difficulty. Since theorem 7.3 does not give uniform bounds, in 

the proof of lemma 6. 2 formula (6.4) becomes 

II (g') llp,p,O < oo , 
s k 

k 1, 2, ... 

only, and we cannot sum overs for getting llg•U~:~,O < 00 , k = 1,2, .... We 

solve this problem by a direct proof of the existence of u E P:'£'j+llm 

cI'[U( A) ,L ,¢k ] with au= g for a given g E proj lim cP[LJ(A) ,Z 
1

,¢k]. 
q 1 , 0 , 0 k + oo q+ 

The proof is exactly that of theorem 7.3; we only have to take for H~ the 

Hilbert space of cochains c with norm II ell given by ( 4. 3 7) . In lemma 7. 2, 
k k,k 

which is needed in this proof, H
2 

should be the Hilbert space of cochains c 
k 

(4.40). In both cases, the replacement of¢ by with norm llcUk given by 

¢1,o,o yields the space 
k 

Hl. 

Thus if condition (7. 3 ) holds, theorems 3 .1, 4.11 and 4.12 could be 

derived for functions satisfying countably many bounds and we get the 

oc' = c.This means that on UJ n UJ we have c' (UJ) = c' (U~) for j = 1,2 so 
s t s 

that c' determines two holomorphic functions f. in n., j 1, 2, with f2-f1= 
=r-' 1r/1 ,.. I 1n 1 l 1 TT2 J J 

- = f "" TT n fr,y ,.,, 
" t- " T H,::1nr,p f -f f in n 1 n n 2 
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L -1 
strong version of the fundamental principle. The continuity of (p) in this 

case follows from the open mapping theorem, because we deal with Frechet 

spaces. 

COROLLARY 7. 4. 

( 4 . 2 2) and 1 et 

Let n = kQl nk be a pseudoconvex domain satisfying (4.21) and 
k oo 

{~ }k=l be a decreasing sequence of plurisubharmonic functions 

inn satisfying condition (7.3). Furthermore, for every k and N ~ 0 let 

there be a p ~ k and a ck,N ~ 0 with 

Then for each pxq-matrix P with polynomial entries and associated vector 

multiplicity variety W the map pL, defined by lemma 4.3, 

{proj lim 
k + oo 

is a topological isomorphism between linear spaces. 

For the spaces in chapter II and III in condition (7.3) we may choose 

2 
exp - z , 

because n is bounded in the imaginary directions or n is a conic neighbor­

hood in ~n of a real domain, and ~k = -M(klxH). Here M satisfies (2.32) so 

that for some K ~ 0 and£> 0 we have 

Moreover, lemma 5.2 shows how the difficulty that -M(lxl) is not plurisub­

harmonic can be overcome. For example, t:he A .... apaces in (3.51) or (3.56) sat­

isfy the conditions of corollary 7.4, because for cr we can even find a con­

vex function. 

In chapter II the domains h were beunded ,in the imaginary directions, 

so that any holomorphic function g satisfying (2.11) is such that logg 
p,m p,m 

is holomorphic inn. In lemma's 2.3.i and 2.3.ii we have used the following 



corollary, which solves the problem discussed at the beginning of this 

chapter. 
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COROLLARY 7.5. Let n k~l nk be a pseudoconvex domain satisfying (4.22) 

and let {¢k}
00 

1 
be a decreasing sequence of plurisubharmonic functions in 

k= 1 2 
n satisfying condition (7.3). Let moreover n and n be pseudoconvex open 

sets with n = n
1 

u n
2 

such that for some positive£ with£< 1 and for each 
1 2 1 2 def . { c } z En n n there is a z' E n n n with llz-z•II < £(z') = £min 1,d(z' ,n) 

and with 

(7. 4) llz• -wll < £(z') .,. w E n
1 

n n
2

. 

Then for every holomorphic function f E proj lim H w1 
n n

2 
n nk; ¢kl there are 

k ➔"" 
holomorphic functions f. E proj lim H(rlj nnk;¢k

1 1 0
) for j = 1,2 with 

J k -+- co , , 

f(z) = f
2

(z) -f
1 

(z) for z E nl n n2, where 

k def k 2 c -1 
¢ (z) = ¢ (z) + log(l+llzll ) + log(l+d(z

1
n) ) • 

1, 1,0 

PROOF. The proof will be that of lemma 6.2. Let for j 1,2 

u 
s 

U def U U u<>-) . for some A and let 
1 

u 
2 

be a covering of n, where 1.s the cov-

erinq· constructed in sec~~on VI.1. Due to (7.4) for A sufficiently large 

there is an embedding T of U(A) into U given by TU u
1 

if U c n
1 

and 
s s s 

u
2 

for the remaining U E U(A). Hence the partition of unity subordin-
s (>.) s 

TU 
s 

ate to the covering U , constructed in the proof of lemma 6.2, induces a 

partition of unity subordinate to the covering U of n. We let c be the 1-

cocykel defined by C = 0 on every set u1 n uj for j = 1,2 and c = f on every 
1 2 s t 

set U n u for all s,t E IA. In the proof of lemma 6.2 with p = 1 and with 
s t 

U as the covering of n, we take the above given partition of unity and we 

apply theorem 7.3 instead of lemma 6.1. So we find a 0-cochain c' satisfying 

good bounds (note 

oc' = c.This means 

that for p = 1 property (4.21) is not necessary) with 

that on Uj n Uj we have c' (Uj) = c' (Uj) for j = 1,2 so 
s t s t 

that c' determines two h~lomo~phic functions fj in nj, j = 1,2, with f
2
-f

1 
= 

=c' (u
2

) c' CU
1

) = f on 
t s 

us n u t for all s, t E I A. Hence f 
2 

- f 
1 

= f in n 1 n n 2 
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and the bounds of c' imply that f. E proj lim H(nj n n ;~k) for j = 1,2. 0 
J k-+oo k 

This corollary concludes all the promised proofs of the assertions in 

chapter II. 
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SAMENVATTING 

Fourier getransformeerden van distributies met begrensde drager zijn 

gekarakteriseerd in de stelling van Paley-Wiener-Schwartz. Deze stelling 

geldt ook voor distributies met onbegrensde drager. Een soortgelijke stel­

ling van Ehrenpreis en Martineau karakteriseert de Fourier getransformeerden 

van analytische functionalen met begrensde steunsels. Maar onbegrensd ge­

steunde analytische functionalen zijn niet eerder diepgaand bestudeerd. In 

dit proefschrift wordt in deze leegte voorzien en wordt de stelling van 

Ehrenpreis-Martineau uitgebreid tot het geval van onbegrensd gesteunde 

analytische functionalen. 

De generalisaties van de stelling van Ehrenpreis-Martineau worden 

behandeld in hoofdstuk III. De bewijzen zijn veel lastiger en !anger dan 

die van de stelling van Paley-Wiener-Schwartz. Het komt erop neer het fun­

damente le principe van Eh r e np r e is af te l e iden voor ruimte s van niet-gehele 

functies. Aangezien dit principe moeilijk te begrijpen is, wordt in hoofd­

stuk IV enige aandacht besteed aan het uitleggen van zowel Ehrenpreis' als 

Palamodov's versie. De generalisatie tot niet-gehele functies wordt in 

hoofdstuk VI bewezen met behulp van technieken die door Hormander ontwikkeld 

zijn voor L
2
-schattingen voor de Cauchy-Riemann operator. 

De Paley-Wiener-Schwartz stelling voor distributies met onbegrensde 

drager heeft zijn nut bewezen in de quantum veldentheorie . Wil men deze 

uitbreiden dan zijn ook Paley-Wiener stellingen voor onbegrensd geste unde 

analytische functionalen wenselijk. Om iets als localiseerbaarheid t e be­

houden dient men te volstaan met analytische functionalen die gesteund 

worden door reele verzamelingen. Reele steunsels hebben namelijk prettige 

eigenschappen die overeenkomen met die van dragers van distributies. Dit 

wordt uitvoering besproken in hoofdstuk II voor reeel gesteunde analytische 

functionalen waarvan de Fourier getransformeerden distributies en ultra­

distributies zijn. Zulke ultradistributies vormen een natuurlijke schakel 

tussen tamme distributies en Fourier hyperfuncties. 

In hoofdstuk I treft men beschouwingen aan omtrent causaliteit en 

localiseerbaarheid in de quantum velde nthe orie , waar het gebruik van holo­

morfe functies in meer veranderlijken geillustreerd wordt. Hierin speelt 

de "kant van de rand" stelling een belangrijke rol. Een eenvoudig bewijs 

van deze stelling is te vinden aan het slot van hoofdstuk II. 
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Hoofdstuk V geeft enkele toepassingen van het fundamentele principe 

uit hoofdstuk IV op stelsels partiele differentiaalvergelijkingen met con­

stante coefficienten. Verder wordt aangegeven hoe de stellingen uit hoofd­

stuk III gebruikt kunnen worden om de Newton interpolatiereeks af te leiden 

in zijn meest algemene vorm, namelijk in meer veranderlijken voor niet­

gehele functies van exponentieel type. Tenslotte wordt in hoofdstuk VII 

cohomologie met aftelbaar veel grenzen afgeleid om een nog onbewezen uit­

spraak uit hoofdstuk II te staven. 



STELLING EN 

I 

Het vermoeden van Komatsu, dat ultradifferentieerbare functies op een regu­

liere compacte verzameling V c lRn, met niet-leeg inwendige, voortzetbaar 

zijn tot lRn als ultradifferentieerbare functies van dezelfde klasse, is 

juist als V convex is of een c
1
-rand heeft. 

H. Komatsu, Ultradistributions, I, Structure theorems and a characterization, 

J. Fae. Sci. Univ. Tokyo, Sec. IA, 20 (1 973), p. 45. 

II 

~ 

Zij F : S + S de Fouriertransformatie in de ruimte S van snel-dalende C-

functies in lRn. Voor iedere begrensde open verzameling V c lRn is er een 

$ E S met drager buiten V zodat ook F$ zijn drager buiten V heeft. 

III 

Zij T : S' + S' de p se udodiffere ntiaaloperator in d e ruimte S' van g e t e mpe rde 

distributies in lRn bepaald door het symbool /1+~2. Voor iedere open ver­

zameling V c lRn en voor iedere distributie f ES' met drager buiten V geldt 

dat V bevat is in de drager van Tf. 

IV 

Laat Ode verzameling van equivalentieklassen zijn van functies van x € lR+ 

die monotoon zijn voor grote x, onder de equivalentierelatie: f ~g d.e. s .d.a. 

er een positieve K is zodat f{x) -K S g{x) S f{x) + K voor grote x. Onder 

de partiele o rdening 

f $ g .. 3K,3M: f{x) $ g{x) + K, X ~ M 

0 2
~0 wordt een distributief tralie met machtigheid , bestaande uit positieve 

en negatieve elementen plus nul, waarin geen aftelbare deelverzameling cofi­

naal is en dat zelfs voldoet aan: 

voor elk tweetal totaal geordende deelverzamelingen A,B c O met !Al s ~
0

, 

!Bl s ~0 en 



Vf E A, Vg E B: 

is er een h
0 

E O met 

Vf EA, Vg EB: 

f < g 

V 

Zij f een holomorfe functie in het 

convexe kegel is met (1,0, ... ,0) E 

gebied lRn + i C , waarbij C c lRn een open 
r 

C en C = {y I y EC, lyl < r}. Laat verder 
r 

een van de volgende eigenschappen gelden 

a) f heeft een distributionele randwaarde op lRn 

b) f heeft een ultradistributionele randwaarde van klasse M 

c) f heeft geen randwaarde. 

Zij tenslotte ~ een C~functie in lR
1 

zodanig 

G (x') def J f(x+iy,x•)~(x)dx, 
y :R 

dat 

n-1 
x' € IR 

00 

bestaat voor O < y < r. Dan is lim G voor y f O in geval a) een C-functie 
y 

n-1 
in lR , in geval b) een ultradifferentieerbare functie van klasse M mits 

~ dat ook is, en in geval c) een analytische functie mits ~ dat ook is. 

VI 

De fundamentele oplossingen van geitereerde golfvergelijkingen zijn eenvou­

diger te vinden door distributies als hyperfunties te schrijven dan door 

gebruik te maken van Fouriertransformatie. 

J.W. de Roever, Boundary values of holomorphic functions and the iterated 

wave equation, in Conference on the theory of -ordinary and par­

tial differential equations, Leet. Notes in Math., no. 280, 

Springer, Berlin (1972), p. 325-329. 

D.W. Bresters, Initial value problems for iterated wave operators, Thesis, 

Enschede, 1969. 

VII 

De bewering van Jauch dat op grond van localiseerbaarheid de logica van de 

quantummechanica geen modulair, niet-atomair, orthocomplementeerbaar 

tralie kan zijn (zodat het tralie van de gesloten lineaire deelruimten van 

een Hilbertruimte overblijft) is onjuist. 



J.M. Jauch, Foundations of quantum mechanics, Addison-Wesley, Reading, Menlo 

Park, London, Don Mills, 1968. 

VIII 

Betreffende de vraag, o.a. gesteld door Hegerfeldt, of de kans een deeltje 

buiten een bepaald volume aan te treffen willekeurig klein kan zijn, kan het 

volgende gezegd worden: er bestaan oplossingen van de Diracvergelijking 

behorende bij positieve energie, waarvan de dichtheid buiten een gegeven 

ruimtevolume op een gegeven tijdstip, weliswaar niet nul, maar wel wille­

keurig klein kan zijn. 

G.C. Hegerfeldt, Remark on causality and particle localization, Phys. Rev. 

D., 10 (1974), p. 3320-3321. 

IX 

De bewering van Westerskov dat alle kleinst waterhoenen (porzana pusilla) 

olijfgroene poten hebben, is weerlegd door Oreel, de Roever, e.a. door het 

signaleren van enkele exemplaren met vleeskleurige poten. Dit feit is niet 

veer ieder even overtuigend. 

K.E. Westerskov, Leg and foot colour of the marsh crake (porzana pusilla) 

Notornis _!2. (1970), p. 324-330. 

G.J. Oreel, Letter (on Leg and foot colour of the marsh crake), Notornis 

.!2_ (1972), p. 93-94. 

S.D. Ripley, Rails of the world, M.F. Feheley Publ., Toronto (1977), p. 

242. 

X 

Grossman & Hamlet hebben 73 kleuren bruin gedefinieerd en van Engelse namen 

voorzien; Smithe deed hetzelfde veer 86 kleuren, waaronder 23 kleuren bruin . 

Er zouden gestandaardiseerde kleurtabellen moeten komen met o.a. Nederlandse 

namen. 

M.L. Grossman & J. Hamlet, Birds of prey of the world, Cassell, London, 

1964. 

F.B. Smithe, Naturalist's color guide, Am. Mus. Nat. Hist., New York, 1975. 
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