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INTRODUCTION

In distribution theory the Paley-Wiener-Schwartz theorem is well known.
It describes the Fourier transforms of distributions g with compact support
as a certain class of entire functions f. Here, distributions with compact
support in Bgl are continuous, linear functionals on the space E of C Ztest-
functions in R". Distributions with unbounded support can be defined if
the testfunctions are submitted to growth conditions at infinity. For exam-
ple, tempered distributions are obtained in this way as weak derivatives of
continuous functions of polynomial growth. The Paley-Wiener-Schwartz theorem
can easily be generalized for tempered distributions g with unbounded sup-
port. Then the function f is holomorphic only in a subdomain of ¢" determined
by the directions in which the support of g is unbouncded. Similar to E'
analytic functionals with compact carriers in ¢” are defined as continuous,
linear functionals on the space of entire functions in Cn. The Ehrenpreis-
Martineau theorem describes the Fourier transforms Fu of analytic function-
als p with compact carriers as the class of entire functions of exponential
type. Martineau has dealt with analytic functionals with bounded carriers
in [48], but analytic functionals with unbounded carriers have never been
studied extensively. It is our aim to fill up this gap in the theory and
to extend the Ehrenpreis-Martineau theorem to analytic functionals with un-
bounded carriers.

The extension of the Paley-Wiener-Schwartz theorem to distributions
with unbounded support does not give rise to any new problems, cf. [68,
§ 26.2, th. 2]. In the proof the possibility of having testfunctions with
compact support is used. Since there are no such analytic testfunctions the
proof of the Ehrenpreis-Martineau theorem cannot proceed along the same
lines. For carriers which are polydiscs the proof is not very hard, cf. [65,
th. 2.22 & 2.23] or [73, §26], but it is the precise correspondence between
an arbitrary, convex, compact carrier of an analytic functional u and the
exponential type of Fu which complicates the proof. Polya has shown the
theorem for n = 1, cf. [3, ch. 5] or [30, th. 4.5.3]; using quite different
methods Ehrenpreis and Martineau proved it for the higher dimensional cases,
cf. [15], [16, th. 5.21] and [48]. Later Hérmander applied his existence
theorems for the Cauchy-Riemann operator to give another proof, cf. [30, th.

4.5.3].
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The generalization of the Ehrenpreis-Martineau theorem is not straight-
forward and causes new difficulties: the proof that different analytic func-
‘tionals with unbounded carriers yield different Fourier transforms is not
trivial. One has to derive Ehrenpreis' fundamental principle for spaces of
non-entire functions. This principle, first announced in [15], extends a
given function f on a lower dimensional subset W of ¢” to an entire function
F satisfying certain bounds at infinity and also it describes the entire
functions vanishing on W. The principle is only valid if the bounds satisfy
certain conditions. In order to derive it in [16] Ehrenpreis first extended
f to a collection of holomorphic functions in neighborhoods of all the points
of ¢” and then he showed that these functions could be changed without chang-
ing the values on W so that they can be glued together to one global func-
tion F.

For our purpose we will use Ehrenpreis' local theory, but for the
piecing together process we will use another method based on the L2—estimates
for the Cauchy-Riemann operator given by Hérmander in [30]. Furthermore, we
will extend f to a function F holomorphic only in a subdomain £ of c” and
satisfying bounds also at the boundary of Q. In our case the conditions on
the bounds are rather weak, but this is paid .by the fact that a single f on
0 will be extended to different global functions each satisfying one bound,
whereas in [16] f has been extended to one function F satisfying all the
bounds simultaneously. In [56] Palamodov has derived a fundamental principle
in the same weak form as our version. It is valid for functions holomorphic
in convex tube domains 2, but Palamodov's method does not yield estimates
near the boundary of 1. Therefore, although his work contains a generaliza-
tion of the Ehrenpreis-Martineau theorem [56, VI, §4.40, cor. 3], we cannot
use it for our purposes.

The Paley-Wiener-Schwartz theorem for distributions with unbounded
support is very useful in quantum field theory, where physicists are con-
cerned with distributions g in p-space with support contained in a convex
cone (the dual of the light cone). They search for properties of the Fourier
transforms £ in x-space. In particular they are interested in the holomor-
phic function f itself and not so much in its boundary value f* on R" or
in the spaces of testfunctions on which f* is a continuous, linear function-
al. The distribution f* is tempered if g is. However, in [33] Jaffe remarks
that it would be desirable to have distributions g which are weak deriva-

tives of continuous functions G growing faster than polynomials. Then it
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turns out that f* is a continuous, linear functional on a space of ultra-
differentiable testfunctions; f* is called an ultradistribution. Ultradiff-
erentiable functions form a transition between ordinary C 2 functions and
analytic function;. If G grows too fast there are no longer testfunctions
in x-space with a compact support. A field, defined on testfunctions in x-
space which may héve a compact support, is called strictly localizable.
This is a desirable property in quantum field theory that, however, restricts
the growth at infinity of the functions G in p-space. Similarly, a faster ‘
growth at infinity of the distributions in x-space would make the testfunc-
tions in p-space ultradifferentiable or even analytic. So one might need a
Paley-Wiener theorem for continuous, linear functionals with unbounded car-
riers defined on analytic testfunction spaces.

For example, it looks reasonable to consider distributions defined on
Gauss-functions. 3ince these distributions and their Fourier transforms
are in fact functionals on a space of entire functions, their carriers can
be any subset of ¢n. But then another difficulty arises. Unlike supports of
distributions analytic functionals do not have uniquely defined carriers
and, worse, the intersection of carriers need not be a carrier. Hence it
seems hopeless to try to generalize the notion of strictly localizable field
for this case. To overcome this difficulty the best one can do is to con-
tent oneself with distributions in x-space and p-space which are weak deri-
vatives of continuous functions growing slower than any exponential. For in
that case their Fourier transforms have real, unbounded, carriers and a
real-carried analytic functional u does have an uniquely defined, smallest
carrier, which therefore is called the support of u. Fields of this type
are called localizable, cf. [69].

Properties of real-carried analytic functionals have been studied by
Martineau in [47] for bounded carriers and by Kawai in [38] for Fourier
hyperfunctions. These are real-carried analytic functionals on the space
of exponentially decreasing analytic testfunctions. We will derive the same
properties for analytic functionals with unbounded, real carrier on spaces
of slower decreasing analytic testfunctions. We will treat all cases between
tempered distributions and Fourier hyperfunctions, i.e., all distributions
and ultradistributions whose Fourier transforms are real-carried analytic
functionals.

In chapter I the Paley-Wiener theorem will be applied in quantum field

theory. We shall not choose a particular testfunction space using only the
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properties of boundary values of holomorphic functions. For these properties
the Edge of the Wedge theorem is essential. We shall discuss problems aris-
ing from causality and localizability. It is known that particles cannot

be localized in a bounded volume, cf. [28]; here it will be shown that they
cannot even be absent in a bounded volume. Furthermore, we will prove that
under a reasonable condition, the expectation value of any measurement is
an anlytic function of space and time. So it certainly cannot be localized
and if it is known in one space-time region it is known everywhere. Those
interested in physics only may read merely this chapter and perhaps also
section II.3.i, where a short proof of the Edge of the Wedge theorem for
distributions is given. Others, not interested in physics, may skip this
chapter.

In chapter II properties of analytic functionals u with real, unbound-
ed carrier will be discussed. Furthermore, analytic representations, i.e.,
sums of boundary values of holomorphic functions, of u and of Fu will be
treated. In particular Paley-Wiener theorems for ultradistributions with
unbounded, convex support are studied in many details. It is our opinion
that ultradistributions cannot be seen isolated from distributions and
hyperfunctions, as they form a natural transition between these two. Chap-
ter II concludes with an easy proof of the Edge of the Wedge theorem for
distributions based on Fourier transformation which will be extended to the
case of ultradistributions.

Chapter III deals with Fourier transforms of analytic functionals u
with complex, unbounded carriers as a generalization of the Ehrenpreis-
Martineau theorem. It treats the precise correspondence between the carrier
of ¥ and the exponential type of Fu in the directions determined by those
in which the carrier of u is unbounded. Particular cases yield Paley-Wiener
type theorems that express a distribution or ultradistribution, which is
the Fourier transform of an anlytic functional with a certain unbounded,
convex carrier, as a boundary value of a holomorphic function. This chapter
is more or less self-contained, except for the solutions of some problems
which can be found in chapter VI.

In chapter IV the fundamental principle of Ehrenpreis and Palamodov
will be discussed and moreover, it will be generalized so that it holds in
spaces of non-entire functions. For entire functions there are actually
three fundamental principles, as the conditions on the bounds in [16], [56]

and here are not comparable and they supplement each other. The fundamental
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principle for non-entire functions is in fact a rewriting of the problems
of chapter III in a more general frame. However, the contents of chapter III
will not be needed for the understanding of chapter IV and those who are
interested in the fundamental principle only may start reading at chapter
IV,

In chapter V we will use the fundamental principle of chapter IV in
a Fourier representation of all weak solutions in a certain space W of a
homogeneous system of partial differential equations with constant coeffi-
cients. The spaces W are duals of spaces whose Fourier transforms consist
of non-entire functions. Chapter III gives many examples of such spaces W.
Also non-homogeneous systems are discussed. The Fredholm alternative, or
if you like a generalized Poincaré lemma, will be derived for solutions in
our spaces W. For other spaces this has been shown by Ehrenpreis, Malgrange,
Hérmander and Komatsu, cf. [1]. Finally, we will indicate how the general-
ized Ehrenpreis-Martineau theorems of chapter III can be used to derive the
Newton interpolation series for non-entire functions of exponential type of
several variables. For a long time this series has been known to hold for
exponential type functions of one variable holomorphic in a half-plane, cf.
[55]. Recently, the series has been derived rigorously for entire functions
of exponential type of several variables by Kioustelidis in [39].

Chapter VI will be devoted to the proofs left over from chapter IV.
We will generalize the existence theorem [30, th. 4.4.2] for the Cauchy-
Riemann operator of Hérmander slightly and derive cohomology with bounds
in an arbitrary pseudoconvex domain.

In chapter VII we will prove an assertion made in chapter II in order
to show the support property of real-carried analytic functionals. By func-
tional analytic methods the existence theorem [30, th. 4.4.2] of H&rmander
will be further generalized, so that it holds for functions satisfying
countably many bounds. However, no uniform bounds will be obtained. The
generalized existence theorem enables us to derive a stronger form of the
fundamental principle than in chapter IV for certain spaces of non-entire

functions.






CHAPTER |

CONNECTIONS WITH THEORETICAL PHYSICS

It is well known (cf. [37]) that the assumption of free particles be-
ing localized in a certain volume leads to inconsistencies in the mathema-
tical description of this phenomenon. For a bounded volume this is clearly
and shortly illustrated in [28]. We will show that under the same general
conditions as in [28] even the assumption that a particle is absent in a
bounded volume yields difficulties. For that purpose it is useful to consi-
der functions or tempered distributions and their Fourier transforms as bou-
ndary values of analytic functions. This technique (see [49]) is essentially
the basis for the more general theory of hyperfunctions (see [31] or [43]).
In recent years this theory has been used in theoretical physics at several
places, cf. [31], [32] and [52].

For simplicity, we will first show that no positive energy solutions
in the space S' of tempered distributions of the Klein-Gordon.and Dirac
equations exist which vanish in a bounded space volume at some time t. Then
the same technique reveals that any measurement of a positive observable
cannot be zero in one space-time region while, if translated to another, it
is positive. We will formulate this result in the theory of quantized fields
(see [36] or [64]) and under a reasonable condition we will even obtain that
the measurement of any observable yields a real analytic function of these
translations. Finally, we will breifly discuss the localization problem of
tachyons.

Fields satisfying the Ggrding-Wightman axioms [71] are defined on a
certain space of testfunctions, which themselves have no physical meaning.
Therefore, the choice of the testfunction space is not forced by nature. The
simplest choice is the space S of rapidly decreasing cZfunctions, but smal-
ler spaces of testfunctions with a larger class of distributions are also
possible. Then one may ask for which testfunction spaces our reasoning yield-
ing the above mentioned results remains valid. Very naturally, this leads

to problems of purely mathematical nature concerning Fourier transforms of



distributions, ultradistributions and analytic functionals. The remaining of
this thesis deals with these problems put in a more general form than the
special cases to which a physical sense might be ascribed. On the other hand,
recent developments show that the mathematical generalizations may be app-
lied to physics again; see [33] and [11] for ultradifferentiable testfunc-
tion spaces and [10], [63] and [52] for spaces of analytic testfunctions.
Not only the above discussed impossibility of localization, but many
more physical properties such as local commutativity of microscopic causal-
ity (see [68, 29.6]) and the analytic continuation of the Wightman-functions
(see [36] or [64]) depend on the way the occurring distributions are written
as hyperfunctions. In fact, it seems that all physically interesting cases
may fit in the frame of Fourier hyperfunctions [38]. A survey of the various
cases is given in [69] and although not mentioned Fourier hyperfunctions
actually enter at several places. Later, this has been made explicite and a
Fourier hyperfunction quantum field theory has been formulated in [52].
Maybe the results of this chapter are not new to all physicists. For,
the technique we use are so closely related to those of quantum field theory,
for example exposed in [72] and [4], that it is hard to beleive that the
conclusions have not been drawn. However, as in [28] we apply these techni-
ques to relativistic quantum mechanics and we do not use the cyclic vacuum

state which plays such a central role in quantum field theories.
I.1. CAUSALITY

The formulation and measurement of causality is closely related to the
possibility of localization of a particle. Causality expresses the physical
law of special relativity that no particle or signal can travel faster than
light.

Let V be a space volume (an open set in 1R3), then for t > 0 we denote
by V + ct the larger volume

F
Vect SSE {y | Iy-xl < ct for some xeV}.

Causality implies that a particle being in V at time O must be in I + ct at
time t > 0 (cf. the definition of causality in [28]). For this characteriza-
tien of causality the possibility of localization is necessary. However, if
the volume V is bounded and if the above given formulation of causality is

valid, a particle can never be localized, cf. [28]. Hence this formulation



of causality is senseless.
The next step is to assume that it might be possible that a particle

is absent in a bounded volume V. For t > 0 we denote by V - ct the largest

volume V' such that
V' +ct c V

Causality implies that a particle being absent in V at time O must be absent
in V-ct at time t > 0. However, we will show that, if this formulation of
causality is valid, a particle can never be absent in any space volume. Hence,
in order to give a meaningful formulation of causality, the above given
characterizations need to be generalized.

In fact, what is needed is a flow of an observable quantity S and by
causality this flow cannot go faster than light. To measure this it would
be desirable if no part of S is destroyed or created during the observation
time. Therefore, we assume that the density j0 of S is the zero'th component

of a Lorentz-four-vector ju which satisfies the continuity equation

LH
1.1 ] =0
( ) i3
where
def ] 9 39 9
(alalala)z(—l-—l_'—)
0" 1" 2""3 ot ax1 ax2 8x3
0 .1 .2 .3 def 3 -9 -3 -3
(3'3'3'3)=‘at'ax1'ax'ax)

2 3

and where -u'u means the summation over p = 0,1,2,3. Formula (1.1) expresses
the property that during any time interval the change of the density jo in

a certain volume is due to what flows in and out of that volume. Furthermore,
if S, in principle, can attain every real value, it is impossible to say
whether an increase of S in a volume V is due to a flow of a positive part
of S into V or to a flow of a negative part of S out of V. Therefore, we
assume that S attains only nonnegative values, i.e., for any space-time

3.
point x = (t,x)
(1.2) %) 2 0.

We now define causality by the (equivalent) requirements (see [24]):



for any space volume V, any time t and any amount of time T

J 1O (erT, 0% < J %t % ax
V-ct

(1.3)

J (e, dx < J 30 (bt %) dx

Vet

It is clear that (1.3) expresses causality only if jO is nonnegative, for
the part of S that is in V at time t has to be in V + cT at time t + T, but
perhaps due to a flow into V + ctT from the outside during the time between
t and t + T there is more in V + cT at time t + T only if jo 2 0, or if a
surplus in V + ct flows to the outside during the time between t - T and t
there was more in V + ct at time t - T only if the surplus was positive.
Hence for a non-definite density causality cannot be defined in this way.
Thus it is a meaningless to say that such a density (for example the charge
density) propagates acausally and it is not true that causality implies the
nonnegativity of the density as is pretended in [24].

In [24] it is shown that a density satisfying (1.1) and (1.2) necessarily
satisfies (1.3). For example, any probabilit& density which is the zero'th
component of a current density satisfying (1.1) is causal. If it were possible
to localize a particle in a bounded volume or the complement of a bounded
volume, the earlier given characterizations of causality follow from (1.3)

by taking for jo(x) the probability of finding the particle at x and by taking

V bounded:
1= J 3%, Max < f 1% (e+r, My ax
v V+ct
and
(1.4) j 3% (e4t, 0 ax < J 2, 0rdx = o,
V-ct v

respectively. It follows that the right hand side of the first formula equals
1 and that the left hand side of (1.4) equals O.

We remark that the assumption of a probability density which satisfies
(1.1) does not lead to acausal situations as in [28]. Another observable S

suitable for describing causality is the energy because it is always non-



negative. In general the energy does not satisfy (1.1), but in [25] and [26]

this condition has been weakened so that also energy propagates causally.
I.2. LOCALIZATION OF WAVE FUNCTIONS

We will consider free particles whose properties are determined by
solutions of the Klein-Gordon or the Dirac equation. We only consider the
positive frequency parts of these solutions (i.e., the energy remains positive)
and we first investigate the localization of such solutions.

Let Y be a complex function (or more general a tempered distribution)

5
of the real parameters x = (xo,xl,x ,x3) = (t,x) € IR4 indicating the time

2
and space variables and let ¥ be its complex conjugate. Furthermore, let Y

be a solution of the Klein-Gordon equation
2
(1.5) (aua“+m )¥ = 0.
For each t Y is a tempered distribution in IR3 and ¥ defines a continuous
map from IR into S'(IRB), (this can be seen by inspection of the Pauli-

Jordan propagator A, see [34, formula (5.10)]). ¥ determines uniquely two

tempered distributions ¥, and ¥ inim3 such that symbolicall
1 2 ¥

v @ ->

(1.6) (0,x) = wl(x)

:aw > ->
3t (0,x) = wz(X)

4
and conversely, since A belongs to S'(IR' ) each wl and wz determines a solu-
tion which is a tempered distribution in R .
From (1.5) a first order equation, the Dirac equation, can be derived:

(1.7) (y“iau—mr)w = 0.

Here the coefficients Yu and I are elements of a non-commutative group with

unit I satisfying
VY v
(1::8) Yuy +y yu = 2gu I

where



d
(gw) def

OO0 O
ool Nl
O’LOO
= O OO

Now Y is no longer a single distribution, but it belongs to a certain linear
space in which the y's act as linear transformations. For example, if the
coefficients Yu are represented as certain k X k-matrices, Y consits of k
components Y = (Wl,...,Wk), where each Wj is a tempered distribution satisfy-

ing the Klein-Gordon equation. For, in any representation of the y's we have
(-y’13_-mI) (y"id -mI)¥ = 0
v u
and hence by (1.8)
vV U 2 T
9 0 +4m I)¥ = (3 9" +m )Y = 0.
vy v ) ( " )
We can write (1.7) as

3
3y .0 0k d¥
(1.9) == -imy ¥ - ) oYY —

ot =i Bxk

Hence if W(O,;) is given, %% (O,;) is uniquely determined and the solution

of the Dirac equation equals the solution of the Klein-Gordon equation with
these initial values. Therefore, we only have to consider the initial value
problem (1.5) and (1.6) and in particular we will consider only those solu-
tions belonging to positive energy.

The energy P, and impulse ; are real parameters arising as the varia-
bles in the dual IR4 of the (t,;)—space IR4. Hence Fourier transformation of
a tempered distribution in x-space yields a tempered distribution in p-space.
Thus the fact that we consider solutions ¥ in S' agrees with the fact that
x and p must be real.

The Fourier transform ¢ € S' (IR4) of a solution Y € S'(]R4) of (1.1)

satisfies
(1.10) (pg-gz—mz)w(p) = 0.

The general solution in S'(IR4) of this equation determines two distributions

¢1 and ¢2 in S'(IR3), one corresponding to po > 0 and one to Py < 0, and



conversely, any two ¢1 and ¢2 in s' (]R3) determine a solution ¥ of (1.5) in

the following symbolical way

(1.11) vig,m = FL l

-1
where F denotes the inverse Fourier transformation. The initial functions

(or distributions) satisfy symbolically

¢, (B)+4. ()

_ P P

w<o,§)=F1[1 222 ](1)
D +m

and
o (O ) = F i ( ) i ( ) I( )
3 X l¢1 P +l¢ P X

For a positive energy solution ¥ of (1.5) we require that ¢2 = 0. In-

stead of (1.6) the initial values now have to satisfy symbolically

av
ot

—'<+—>+> 2 2 i o
(0,%) = j J e PR iy bl (0,0 dkdp,

(2m)

where only Y¥(0,x) can be chosen arbitrarily in S' (]R3) . Now Y is the inverse
Fourier transform of a distribution in S' (]R4) with support in the cone

* = {(po,;) | Py 2 l|;||} € R,. Then ¥ can be written as a boundary value
in 8" (1R4) of a function f helomorphic in IR4+ il", where [ is the interior of

the lightcone in IR4, i.e., for every ¢ € S(]R4)

<¥,¢> = lim ff(x+iy) ¢ (x)dx.

y>0
yeC'ecl™

4
Here [ *is the dual cone of the open cone [ c IR :

™ = {p|<p,x> > 0,x e} c R,-



Roughly, this can be seen as follows: let g be a distribution in s'(n%)
which can be written as a certain derivative of a measure u with support in

a closed cone C* c nﬂl satisfying

< o

[ alu) |
(1+1g12)K
c*

for some k > 0. Then for some multiindex a

£(z) 28 e Y5010 = f (12) %l <E X <8 ¥4, (g)

5]
exists if -<g,y> < -5y“€" for some Gy > 0 depending on y, thus for y € C if

n
Cc* is the dual of the open cone C ¢ IR . Then

Flgl(x) = 1lim f(x+iy) = £(x+i0)

y>0
yeC'ccC

in s'(®Y) , see [12] or [681].

Now let f+ be holomorphic in r" + iC and £ in R - iC for C an open
cone in Bfl, such that f+(x+iO) and f_(x—iO) exist in S'(Bf” . Furthermore,
let the distributions f+(x+i0) and f-(x—iO), considered as distributions in
D' (U) for some open set U c B{I, be equal. Then f+ is the analytic continua-
tion of f . This theorem is the celebrated "Edge of the Wedge" theorem, see
[64], [68] or for a simple proof Ch.II §3.i of this thesis. In particular
it follows by choosing £ =0 that, if f+(x+i0) = 0 in U, then f+ = 0.

Thus every positive energy solution ¥ of the Klein-Gordon equation can-
not vanish identically in any open space-time region without vanishing every-
where. In particular, the initial values wl and wz cannot vanish identically
in the same open set in IR3. For, if they do it follows from the fact that
Y satisfies the hyperbolic differential equation (1.5), that then ¥ would
vanish identically in some open set inim4. Similarly, the initial values
of the Dirac equation cannot vanish identically in an open set in 1R3. For
(1.9) implies that %% (0,x) would vanish together with ¥(0,x) in the same
open set in IR .

In the above we have shown some mathematical properties of solutions

of certain differential equations. Only a few of the used mathematical

concepts have also relation to physical phenomena. These phenomena cannot



be seen directly, but only by means of measurements of observable concepts
which are supposed to be influenced by them. Therefore, it may be disputable
to conclude that free particles cannot be absent in any space volume at any
time. However, the argument is quite fundamental as it applies under very
general assumptions as in [28]. The same reasoning even implies that a
measurement of a nonnegative observable cannot yield zero in one space-time
region while, if translated to another, it is positive. In the next sections
we will prove this for observable concepts described by densities which are

bilinear forms on the space of wave functions Y.
I.3 LOCALIZATION OF PARTICLES

In the last section we have shown some mathematical properties of the
solutions of the Klein-Gordon or the Dirac equation. Let us now show how
these properties react in quantities which may have a physical interpretation.

In section I.1 we have seen how causality is related to a current
density ju of a nonnegative observable S. In order to define the current
density we assume that the space of solutions of the Klein-Gordon or the
Dirac equation can be transformed into a Hilbert space, cf.[35] for other,
more fundamental reasons why a Hilbert space is chosen. Let qu be a bilinear
form defined on a dense subspace D of H and let for ¥ € H Wx be defined by

v (v % viyx.

D must be such that ¥ € D implies Wx € D for each x 62R4. For Y € D with

¥l = 1 a current density ju can be defined by
Hicx o W
(1.12) j (x) =q (WX,WX)

provided that qu is such that ju transforms as a Lorentz-four-vector.
If S is a bounded observable (for example if jO is a probability den-

sity), for each t and some constant K > 0 we have

| J %t 0ax| < k.
IR

3
Hence for each volume V in IR
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[oN)
H

e

|

j 1%, 0 ax

v

Sy(t)

is a bounded bilinear form defined everywhere on H. If S is not bounded,

we moreover assume that for each volume V c:m? and for each t SV(t) is a
closed bilinear form on D © H. This means that, if Sv(t) is defined on
{¢m}:=1, if 6> ¢ in H and if S(t) (0,=¢ ,0,-¢ ) > 0 as k,m > =, then S (t)
is also defined on ¢ and Sv(t)(¢m—¢,¢m—¢) - 0.

Before continuing with the general situation we will show by an explicit
example that such current densities ju exist. We first consider the Dirac
equation. Let for each x € ]R4‘i’(x) (or actually, for each ¢ € S(]R4) <Y,¢>)
belong to a certain Hilbert space on which the Yy's act as a linear transforma-
tion. Usually the anti-linear functional associated to ¥(x) is denoted by
W+(x) and the inner product of ¥(x) by itself is then written as WT(x)W(x).

+ -+ > 1 >
Let moreover for each t ¥ (t,x)¥(t,x) be a L -function of x eim3, then the

inner product in H is defined by

(o,v) &£ j ot (e ¥, DR .

33

That this is independent of t follows from (1.7) and (1.8). In a k-dimensional
representation Y¥(x) belongs to the Hilbert space ck and for every t each

Wj is a L2—function on IR3, j=1,...,k. A bounded current density satisfying
(1.1) (in distributional sense) can be defined by

(1.13) g def 7,01y

and clearly (1.2) is satisfied, too.

Thus the density (1.13) with p = 0 is always causal, i.e., it satisfies
(1.3). jO equals W+W and in:.the last section it has been shown that this
density can never vanish in an open set V of 1R3at any time t if ¥ is a posi-
tive energy solution of (1.7). j0 can be interpreted as the probability
density of some (bounded) observable S. Then at any time there is always a
positive chance of finding S in any space volume.

Let us now turn to the Klein-Gordon equation. The Hilbert space is

defined by the inner product

Y

> 53 > > >
3 (t,x) - EE-(t,x)W(t,x)}dX

(0,v) %&£ %-J {3(t,%)
2
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which is independent of t, provided that the solutions ¢ and ¥ of (1.5) are
functions for which the above written integral exists. It should be remarked
that this is an innerproduct only in the space of positive energy solutions,

in which case (¢,y) 2 0. Indeed

1 b@ 1> >
(¥,¥) = = J ’zp—r dp = 0,
(2m) p +m
By

2 : . >2 2 -k >
where ¢ is an L -function on IR, with respect to the measure (p +m ) 12dp so

that by (1.11)

3

—in2+m2 b >

(1.14) Yo, 2 = F L8 F2=2=¥L(E) 1 . 1)
p +m

<
Thus the condition on the solution of (1.5) is that in (1.6) ¥(0,x) must

3 - -
belong to the Sobolev space H%(ng) and 5% (0,x) to H 5

density satisfying (1.1) can be defined by

(]R3) . A current

M odef i

j 5 {¥aly- (a"9) v3.

It is well known that for general solutions ¥ of (1.5) jO does not satisfy
(1.2) and it is less known that the same is true for positive frequency
solutions ¥, see [22]. However, in [23] current densities are constructed
which do satisfy (1.1) and (1.2), where in (1.2) even the > sign holds.

We will show that, in the general case for any current density, not
identically zero, arising from a bilinear form on the Hilbert space of
positive frequency solutions of the Klein-Gordon or the Dirac equations
satisfying (1.1) and (1.2), (1.2) cannot hold with the = sign for ; in any
space volume V and for any t. This follows from the causality of the current
density and from the fact that SV(t) cannot be zero for all t with 0 < t < T
for any T > 0 and any V. This fact will be proved in the next section. For
that purpose we have to rewrite the setting of this section so that the

formalism of the next section can be applied to it.

1) Here there is a little ambiguity in the Fourier transformation F. In (1.11)
> 3
F transforms tempered distributions in the x-space IR~ into tempered dist-

>
ributions in the p-space IR which is defined by Parsevals relation if F

3 ’

is a map from S(IR3) onto S(IR3). However, in (1.14) F should be understood
3

in L2—sense, which can be defined by completion if F is a map from S(IR”)

onto S(1R3) p GE.IL §12.4.
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0
We have considered nonnegative densities of the form j (x) = q(Wx,Wx)
> >
such that [ jo(t,x)dx is a closed bilinear form. For the moment we do not
bother whegher this is the zero's component of a four-vector or not. Let VO

be a fixed space volume and let

def
SO (x) == SV +;(>(t)
0
where VO + X is the over x translated volume VO. According to [58,th.VIII.15]

So(x) can be written as
S . (x) = (Y ,TY )
0 x X

for some selfadjoint positive operator T. We define

def

T v T v

X

where U(x) is the unitary operator with
ux)¥ =Y .
%

Since

= B 2+ 2 (t ) _<—-> > —>> N d—»
U(t,x)¥(y) = J et'p m Yo! *1<P.x7Y ¢ (p) ;ZEELjp
D +m

where ¢ is determined by Y according to (1.14), U(x) has a spectral measure
contained in {p Ipo = p2+m2}.

If in theorem 1.2 of the next section we replace T(f) by T (in fact,
here the testfunction £ is the characteristic function of VO), this theorem
shows that So(x) = (W,TXW) cannot vanish for lIxl < e for every € > 0. Actually
the theorem gives more precise information where\so(x) can vanish. If now
SV(t) =0 for 0 < t < 1, we choose VO cc I and theorem 1.2 shows that
SV(t) = 0 for all t and all V, hence that jo = 0. We summarize the foregoing

in the following theorem.

THEOREM 1.1. Let H be the Hilbert space of positive frequency solutions Y
of the Klein-Gordon equation or the Dirac equation. Let q(¥,Y¥) be a non-

vanishing bilinear form on a dense subspace D of H such that for all X € 3R4
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j §—=e.£ -]
j (%) q(‘l’x,‘!’x) 20

and such that for all t and space volumes V [ j(t,;)d;-is a closed bilinear

; v
form on D. Let VO be an arbitrary space volume and let

def s W

5, (£, %) = J j(t,y)ay.
V +x
O X

Then for any € > 0 So(x) cannot vanish identically for Ixl < e.

In theorem 1.1 we do not assume that the nonnegative density is causal,
but if it is, it follows that for each t SO(t,;) cannot vanish identically
even for Ixl < . So also formula (1.4) cannot be used for defining causality.
For if it holds, it can never occur. Nonnegative causal desities arise, for
example, from a current density satisfying (1.1). In [25] and [26] nonnegative
densities corresponding to the energy are discussed which do not satisfy
(1.1) but still are causal. In [13] Dirac proposed a new wave equation yield-
ing only positive energy solutions which satisfy the Klein-Gordon equation,
too. Moreover, he has defined a current density as in (1.12) satisfying (1.1)
and (1.2). Hence the zero's component of this density can never be localized,
contrarily to what Dirac said in [14]. Perhaps, it is also possible to define
noncausal nonnegative densities which then cannot satisfy (1.1), cf. [28].

The solutions of the Klein-Gordon or the Dirac equation are particular
cases of quantized fields. Therefore, in the next section we will pass.
to the (mathematical) problem of localization of fields, although we do not
use all the axioms defining these fields. We will select only those ‘axioms

which imply the result that So(x) cannot vanish identically for lIxl < g.
I.4. ANALYTIC PROPERTIES OF EXPECTATION VALUES

In the theory of quantized fields satisfying the G;rding—Wightman axioms
[71] we shall use the same principle as before in order to show that not
both, the testfunctions and the field operators, are localizable (cf. [72]
for a stronger result saying that the field operators are nowhere ordinary
functions, which follows from more conditions than we assume here). We remark
that from now on all concepts will have only a mathematical meaning and the
physical interpretation, if there is any, will not be discussed.

We shall not give all axioms defining a quantized field but only those

which are needed in this section. For example, we do not need the vacuum
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state which cannot be missed in defining the general theory and properties
of quantized fields. Although we introduce them no proper use will be made
of the testfunctions and therefore, our conditions are as general as in [28]
and they apply to relativistic quantum mechanics as well. For simplicity we
shall discuss the case of an observable scalar field; the case of vector and
tensor fields is similar, see [71].

Let F be a nuclear, locally convex, topological vector space of ¢=
testfunctions defined in x-space or in a complexification of the x-space. We
shall not specify F in this section; in [36] F equals the space S(1R4)and in
[71] F equals u(n{% (cf. also [68, 29.6]); ultradifferentiable testfunctions
are discussed in [33] and in [11], whereas in [10], [63] and [52] spaces F
of analytic functions are considered. If there are testfunctions in F with
compact support the field is called strictly localizable, see [33]. Further-
more, there is a complex Hilbert space H of states with inner product < , >.
In orifr not to confuse this notation with the action <p,x> of p € IR4 to
x € IR, we shall here denote this action by x°p.

Axiom I. The field T is a linear map from F into linear operators in H. For
all £ € F the operators T(f) and T(f)* possess -a common dense domain D on
which they are defined, such that for all ¢,Y € D <$,T(*)Y¥> belongs to F'.
Moreover, for all £f e F T(f)D < D.

Axiom II. The translations over the four-vector x induce a continuous map
{x} from F into F by

{x}f(y) gt f(y-x), £ € F.

An unitary, continuous representation U of the group of translations exists,

such that for all f € F

U(x)_lT(f)U(x) = T_(f)

where

T (5) S5 r(x}e).

Furthermore, U(x)D c D for all X € 1R4.

Axiom III. U(x) has a spectral decomposition

U(x) = J Pz (p)
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where the support of E is contained in the cone

r* = {pé > 1P, p, > 0J.

We show that a strictly localizable field satisfying only the above
mentioned axioms, as an operator valued distribution, cannot have a support
which is not ]R4. First, let us assume that the field is positive 1), which
means that for all ¢ € D <9,T(*)®> is a positive distribution in F'. Thus
for every real and nonnegative testfunction f the operator T(f) is positive,

i.e., for all ¢ € D and for such an f
<®,T(£)%> = 0.

Let us call such a field a positive field. Furthermore, let us call x(s) =
- e
=(t(s),x(s)) a time-like curve if t and x are continuously differentiable

functions of the real variable s with
>
(t'(s),x\s)) el

where ' is the open light cone. If moreover for each A = 0’1’2’3’XA is a real

analytic function of s, we call the curve an analytic time-like curve.

THEOREM 1.2. Let T be a positive field as defined by axioms 1, I1 and II1I,
let f be a real nonnegative testfunction in F and let x(s) be an analytic

time-like curve for s € IR.If for some ® ¢ D and € > 0

(1.15) <®,Tx(s)(f)¢> =0

for all 0 < s < g, then (1.15) vanishes for all s € IR.

> ->
In particular, if x(s) = (Ts,sa) where a varies in the unit ball in
Bg and T in (1,«), it follows that So(x), defined in theorem 1.1, cannot

vanish identically in an open set in 1R4.

1) For some fields this would be desirable, but unfortunately a strictly

localizable field (as defined by more axioms than the above) is, in general,

not positive, see [18].
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PROOF. By Friedrichs extension theorem [58, th. X .23] the positive operator
T(f), defined on D, has a positive selfadjoint extension ;(f). By the spec-
tral theorem there exists a positive selfadjoint operator A(f) such that

A(f)2 = ;(f), which certainly holds on D. Since every translated f is real

and nonnegative if f is, (1.15) implies
<¢,a({x(s)})Aa({x(s) }£)®> = <a({x(s)}f) e, A({x(s)}£)d> = 0
for 0 < s < €. Hence A({x(s)}£f)® = 0 and so

(1.16) U(x(s))T (£)¢ = O, 0 <s < e.
x(s)

(
Therefore, for any T € IR we have I(t1,s) = 0 for 0 < s < € where

I(t,s) =L wix(1))e, Ux(s)T . (£)0>.
x(s)

(

According to axiom II I(T,s) can be written as

<U(x(1))¢e, U(X(S))Tx(s)(f)U(x(s))—IU(X(S))@> =

<U(x(T1))®, T(£)U(x(s))d>

I(t,s)

and by axiom III

I(t,8) J eix(S).pd<T(f)U(x(T))@, E(p) &>.
Since E has its support in the cone ™ this integral, as a distribution of
the variable x = x(s) € Eﬂ, is the boundary value of a function G holo-
morphic in rYvim

Let s be the real part of the complex variable s + ip and let
u(s,u) € Eﬁ and v(s,u) € IR4 be the real and imaginary parts of the analytic
continuation of the function x(s), thus u(s,0) = s(x) and v(s,0) = 0. Then

by the Cauchy-Riemann equations

Bvo ov
( T (S40) 4 s 50 75;—(5,0) =x"(s) e,

hence for each s € IR v(s,u) € ' for some ' cc ™ and for all u > 0 with
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|ul sufficiently small depending on s. Thus
I(t,s+iy) = G(u(s,u)+iv(s,u))

exists and is an analytic function of s + iy for pu > 0 and lul sufficiently
1
small depending on s. ) Since 1lim I(t,s+ip) = 0 as p ¥+ 0 for 0 < s < g, it
follows that I(t,s) = 0, in particular I(t,t) = 0. This yields
<U(x(t)) 9, U(x(T))Tx

T)(f)(1>> = <9,T T)(f)<I>> = 04 ]

( x(

COROLLARY 1.3. A nonvanishing, strictly localizable field T satisfying only
the axioms I, II and III has support IR4.

For otherwise there is a testfunction f and € > 0 such that for all
®eDT (£)¢ =0 for all x ¢ ®? with Ixl < €, so that (1.16) would hold.

We can drep the assumption of positivity of the field, 1if we impose a
condition on the state ¢ and then we get the stronger result that the expect-
ation values are analytic functions of the translations in space and time.
The condition implies that the high-energy contributions to the state may
not be too strong. More precisely, let U(x) = eix.P and let PO be the zero'th
component of the operator P. Then PO is a positive selfadjoint unbounded
operator and we assume that the state ¢ belongs to the domain of definition
of the operator edpo for some 6§ > 0. This property is equivalent to the

following definition

DEFINITION. A state ® € H is called analytic for the energy if & belongs to
m

the domain of definition of any P0 and if
o | p‘;cpn
[ 8 RS
m=0 m!

for some § > 0.

Nelson's analytic vector theorem tells us that there are many of such

vectors (namely a dense subset of H) [58, IIth. X. 39].

1 " ; 3 ; .
) Actually, here we have the restriction of a distribution (hyperfunction)

to an analytic curve defined by the restriction of its defining function,

here G, see [31, lemma 2.1 p.50].
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THEOREM 1.4. Let T be a field defined by axioms I, II and III and let ® € D

be an analytic vector for the energy. Then for any f € F the function
<d,T (f)0>
X

is analytic in x € IR .

PROOF. Define the function G of (x,§) ¢ IR x ]R4 by

-1
G(x,8) = <¢,U(x) "T(£)U(E)d>.
Since for all f € F we have T(f)D ¢ D the expression

<0,T(*)"T(+)0>

determines a separately continuous bilinear map on F x F. By Schwartz' kernel

theorem this map is continuous on F X F . Hence for each f € F

It ()8l = IT(DuE) el = [<,T({E}6) *T({£}£) 051"

Also for x,& € IR4 U(E)—IU(x)ﬁb varies

is a continuous function of £ € IR .
continuously in H. Therefore G is a continuous function:

|<U(£)—1U(x)¢,TE(f)¢> - <U(n)_1U(y)®,Tn(f)¢>| <

< |<u@ oo, TE e-Inke) 05| + 1{u(E) “lux)-un) tuy) Yol -

JT_(£)ol.
n

In particular G is measurable.
For fixed & € IR4 G can be extended as a holomorphic function of z in

the tubular domain with base (6§,0,0,0)-I by
G(z,8) = j e 12 P8R0 4ek (p)eP0 4,7 (£)uU(E) 0>

satisfying there

lc(z,8)| < 1806l -IT(£)u(E) 0l .
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Since IT(£f)u(£)®l is continuous the right hand side is bounded if £ varies
in a bounded set in Eﬁ. On the other hand, for fixed x € Bfg G can be
exended as a holomorphic function of z in the tubular domain with base

-(6,0,0,0) + by
G(x,z) = J e*2"P70P0 ger(£)*u(x) 9,E (p) e SF00>

satisfying there
* 5P0
le(x,z)| < IT(£) ux)ol-le  Opll.

Similarly to above, it follows that the right hand side is bounded if x
varies in a bounded set in IR4. Then it follows from Hartogs theorem for
real-analytic functions (see [7], cf. also chapter II, § 3.i of this thesis)
that G is an analytic function of (x,§) € n¥4 x 1R4. In particular G(x,x) is

4
an analytic function of x € R . O

Finally, we make some remarks concerning local commutativity, which
expresses the fact that two space-like separated events cannot influence
each other (sometimes also called microscopic causality). For strictly
localizable fields the axiom of local commutativity is formulated as follows:
Axiom IV. Let f and g in F have their supports such that any two points x
in the support of f and y in the support of g are space-like separated, i.e.,

|x.-y .| < Ix=yl, then
0 Yo Yy
T(£)T(g) = T(g)T(f).

For the description of non-normalized interactions it is convenient to
work with distributions growing faster than polynomials in p-space. Hence
the functions in the Fourier transform of F must decrease more rapidly than
functions in S. If they decrease too fast at infinity, the space F consists
of non-localizable functions or even analytic functions. In the last case
the expectation values are analytic functions anyhow (by axiom II). Theorem
1.4 reveals that this is not a rare phenomenon. Thus ‘there would be no objec-
tion against analytic testfunctions. However, in that case the above given
definition of local commutativity is impossible.

In [63] the space F is taken to be Z, the Fourier transform of D, con-

sisting of certain entire functions, and local commutativity is not reaquired,
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but another way of defining microscopic causality is given. In [10] a condi-
tion for causality is given on non-localizable functions in F, namely that

the distributions in p~space have a growth at infinity of order one and type
zero, i.e., they are 0 (exp elpl) for any € > 0. In [69] such a field is called
localizable. In chapter II we shall see that then the Fourier transforms in
x-space are functionals on a space of real-analytic testfunctions. In spite

of this such analytic functionals have a uniquely defined support (see

chapter II, def. 2.6). As in [47] we will shgw (chapter II, th. 2.7) that

an analytic functional T can be written as k§1 T , where the analytic func-

k

tionals Tk have their supports in a priori given closed sets Uk such that

kgl Uk = ]R4. In a localizable, but non-strictly-localizable field T the
space F consists of real-analytic testfunctions. Then local commutativity
might be defined as follows:

For all f,g € F and all decompositions T = T1 + T2 + T3 where T1 and T2 have
space-like separated supports, Tl(f) and T2(g) commute.

I.5. LOCALIZATION OF TACHYONS

In the description of tachyons (partiéles travelling faster than light)
another application of the theory of functions of several complex variables
can be made. As physics intend to study phenomena which take place outside
the human mind, this section is perhaps more of mathematical interest than
that it pretends to describe something of physical reality. Therefore, we
shall not make the assumptions as general as possible, but we shall just
study the solutions of the tachyonic Klein-Gordon equation. This enables us
to explain a seeming contradiction between [66] and [50] concerning the exist-
ence of acausal solutions of certain wave equations corresponding to high-
spin-particles. As to tachyons themselves there exists an extensive literature,
see for example [51].

Let a superluminal state be described by a wave function ¥ satisfying

the tachyonic Klein-Gordon equation
(1.17) (3u3u—m2)‘l’ = 0.

Since here positive and negative energy solutions can be transformed into
each other, we allow states which are a mixture of positive and negative
energy.

Let us investigate to which situation a solution leads,
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which is localized in a bounded volume V during some time interval |t| < T.
Then also 5{ (0, x) = 0 for x ¢ V. Hence, since ¥ satisfies a hyperbolic
differential equation, for any t Y(t, x) as a function or distribution in x—
space has a bounded support: the support grows to the future and to the past
with velocity 1, which is the velocity of light, here. If we assume that Y
belongs to S'(Eﬁ), it follows that the Fourier transform ¢ can be written

as
+ ; - "
d(p) = F (p+i0) - F (p-i0),

where Ft(p +i0) are the boundary values in S' (nz) of holomorphic functions
in E& + ic" with ¢ {(qo,q) |qO >“q"}, see [68]. Since Y satisfies (1.17)
®(p) vanishes for "p" < m (in fact, similarly to (1.10) ¢ is concentrated

on the hyperboloide pg = ;2-m ). The "Edge of the Wedge" theorem implies
that F+ and F_ are analytic continuations of each other.

Furthermore, it can be shown (see [68]) that any function F, which is
holomorphlc in {R®+ic} u {R"-ic} v U c ¢", where C = {(yo,y)]yO > a"y"

y e R } for some o > 0 and where U is an open neighborhood in a” of

{(x x)lﬂx“<a} for some a > 0, is an entire function. Hence in the above

F (p+10) -F (p-i0) vanishes everywhere. Therefore ¢, and thus ¥, is identi-
cally zero. The conclusion is that except zero no solution ¥ of (1.17) with
a bounded support during some time interval belongs to S'(]R4). In particular,
the fundamental solution belongs to D' (IR4) and not to S' (]R4) and it does not
correspond to real energy po and impulse p, cf. [19]. Therefore, not every
pair of initial values wo and w in s' (%z ) yields a solution corresponding
to real p. Only those wo and wl in S'(IR') whose Fourier transforms vanish
for HEH < m yield a solution in S'(]R4), see formula (1.11) with m2 replaced
by —m2. Hence, for any wave function Y describing a superluminal state,
W(t,;) or gE'(t X) cannot vanish identically for x outside a bounded volume
at any time t.

Although equation (1.17) is supposed to describe a superluminal state,
the characteristics show that any solution localized in a bounded space-
volume cannot grow faster than with the speed of light, cf. the conclusion
in [66]. However, this phenomenon can never be "observed", since localized
solutions do not correspond to real values of energy and impulse, cf. the
conclusion in [50] that an equation like (1.17) may describe superluminal

procession.

Unlike subluminal free particles, it can happen that a solution Y of
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Y
(1.17) as well as its time derivative R vanishes in a bounded volume at
some time t. Then such a "hole" would be filled with the speed of light. For,
+ - +
if ¥ e S (IR4) is written as Y =¥ + Y where Y corresponds+to P~ 2 0 and

‘l’; to P, <o, a_r:d if 3we require that for any t ‘l’t(t,;)_)and a—:;; (t,x) are
L"-function of x € IR", then the question whether Y¥(t,x) and vy (t,x) can
vanish in the same space-volume at the same time is equivalent to the follow-
ing question:

Does there exist a function f in the Sobolev space H1(1R3) such that both
the function itself and its Fourier transform vanish identically in some

open set in ]IR3 and in IR respectively?

3!
It is very easy to see that the answer is affirmative if f is a tempered
distribution, for example we can choose the fundamental solution g of the
wave equation. Now let ¢ and § be CZfunctions with small subports around

3
the origin in IR, and IR*, respectively. Then ¢ * Fg is a C®function of poly-

3
nomial growth and

£05) & Fye)- (6 % Fo) (8)

is a function in S(2IR3) , which vanishes identically in some open set in ]R3

because Fg does. Also
def -1 1 -1
£ Fle=mmm (@F ¢ xy

; z . : : 3
vanishes identically in some open set in IR™ because g does. Finally, f

1
belongs to H (1R3) because it even belongs to S(1R3) 8
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CHAPTER Il

REAL-CARRIED ANALYTIC FUNCTIONALS AND
BOUNDARY VALUES OF ANALYTIC FUNCTIONS

In [48] Martineau has discussed properties of analytic functionals
with bounded carrier and their Fourier transforms. Here, we shall treat
analytic functionals with unbounded carrier defined on spaces of analytic
functions satisfying certain growth conditions at infinity. Unlike in the
case of bounded carriers, these growth conditions are involved in the defin-
ition of unbounded carriers, and moreover, a class of neighborhoods has to
be specified.

In section 1 properties of real-carried:analytic functionals will be
derived. We shall consider two types of analytic functionals, of which one
belongs to a Frechet space. The properties are similar to those given in
[47] for analytic functionals with bounded, real carriers. The proofs given
here rely on [47] as long as we deal with Frechet spaces, while in the other
case the proofs are suitably adapted.

Section 2 is concerned with Fourier transforms of real-carried analy-
tic functionals defined on spaces ZM which are subsets of Z, the space of
Fourier transforms of D. The spaces ZM are determined by growth conditions
in the real directions. As a limit case the space of exponentially decreasing
real analytic functions arises and the dual of this space is just the set of
Fourier hyperfunctions [38]. Since the space of Fourier transforms of elem-
ents in ZM is a subset of D, its dual contains more general objects (namely,
ultra-distributions) than distributions in D'. As has been done in [60] for
distributions, here we shall represent such ultradistributions as boundary
values of analytic functions. So they arise very naturally between distribu-
tions and hyperfunctions on the one hand. Being boundary values of analytic
functions, too, their Fourier transforms form the transition from real-car-
ried analytic functionals in Z' to Fourier hyperfunctions on the other hand.
Since Fourier transformation is an isomorphism it is possible to define

ultradistributions completely by studying their Fourier transforms which
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are the analytic functionals we are concerned with. However, for clarity we
shall discuss ultradistributions and some properties directly, where for the
proofs we refer to [42].

Finally, the "Edge of the Wedge" theorem for distributions and for
ultradistributions as well will be the subject of section 3. We will give a
simple proof by means fo Fourier transformation, which is based on techniques

used in [4].
II.1 REAL-CARRIED ANALYTIC FUNCTIONALS
II.1.i THE SPACE 2Z'

We consider a familiar example of a space of analytic functionals.
The Fourier transform of the space D of CZtestfunctions with compact support
is the space Z of entire functions decreasing in the real directions faster
than each negative power of lzl and increasing exponentially in the imagin-
ary directions. The dual space Z' is a space of analytic functionals and its
Fourier transform is the space D' of distributions. Tempered distributions

2n

in s'(n¥5 or distributions with compact support K in IR = ¢n are examples

of elements of Z'. For an entire function f and for a multiindex o we have

[l
sup IDuf(z)l < Si%él___ sup |£(z) |
zeK € zeK (g)

for every € > 0, where K(e) denotes the e-neighborhood of K in ¢” and € the
vector in n{’ with components €. Hence, for all f € Z and every € > 0, a

distribution T with support K satisfies

(2.1) l<r,£>| <M sup |£(z)]
€
zeK (€)
for some constants Me depending on € and T. We may consider K as the support
of the analytic functional T, but in general such a notion has properties
different from supports of distributions. In [30, p.105] an example has
been given of an analytic functional p which satisfies (2.1) for all sets
. 2 1
K in €° of the form Ka = {(zl,zz)llzllsa,lzzlsa}, but which does not satisfy

(2.1) for K = K&c(u is the Fourier transform of the distribution in ng

n
a>0
defined by the function cosh 2#5152 ) . Therefore a compact set K c ¢n
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satisfying (2.1) for every € > 0 is called the carrier of the analytic func-
tional T. In Z' unbounded carriers can be defined, too. For that purpose we
first analyze the topology of the space Z.

Let Z(a) be the Frechet space pﬁgj*lgm Z(a)m, where Z(a)m is the space
of entire functions endowed with the norm

(2.2) tel 255 sup (14120

ze@?

m -alyl
s y

If(z)l.

Then Z = igd+l&m Z(a). Elements U € Z'(a) can be written as <u,f> =
Jﬁ(x)f(x)dx for some entire function h [21, III §2.3]. Hence u is a function-
al on the space of restrictions to ®" of functions in Z(a). In general,

this is no longer true for u € Z'. For example the Fourier transform of the

inflnite order distribucion § §™ (E<u) is defined by z [ (ix) "™ e (x) ax

m
for £ ¢ 4.

DEFINITION. An analytic functional y € 2' is carried by the closed set Q cc“

Lo
k=1
for every k Y is already a functional on the space Z Q of restrictions to

with respect to the decreasing sequence {Qk} of neighborhoods of Q, if

Qk of functions in Z, where Z carries the topology induced by Z, i.e.,

S
in (2.2) the supremum should be taken over all z € Qk.

If the neighborhoods Qk are the set of 1/k-neighborhoods
a(1/k) LE (z|lz-z'1<1/x, 270}

we will just say that p is carried by Q.
According to [16, th.5.13*] a fundamental system of neighborhoods of
zero in Z is given by

Vix,a) 285 {fez||£(2) | <ok (2)},

where o > O and where K is a positive, continuous function of the following
form: let {aj} be a strictly increasing sequence of integers with a; = zl =
=a, = o, zj+2 > 2a, and let £ be a positive integer; set K(z) = (1+hxly ™ x
x(1+lyl) “exp((5-2)Iyl) for aj(1+log(1+||x")) < ||y||$% aj+1(1+log(1+||x||)); the
definition of K is completed by requiring that K is a function of Ixl, Iyl
which is continuous and such that, for fixed Ixl, logk(lxl,6Iyl) +

+ £[log (1+lxl) + log(1+lyl)] is linear in Iyl in the regions in which it is
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not already defined above. Then a fundamental system of neighborhoods of

zero in Z Q is obtained by {erIQkIIf(z)ISaK(z),zer}. Now the Hahn-Banach
theorem and Reisz' representation theorem imply that for every k an analytic
functional u carried by Q with respect to {Qk} can be represented as a mea-

sure J, on Qk satisfying

J Kk(z)|duk(z)| S M
where Kk is a function as described above depending on k.
In chapter III we shall investigate the Fourier transforms of analytic
functionals carried by convex sets Q c Gn. In this chapter we restrict our-
n n
selves to the case where § is contained in IR = {z|z=x+iy,y=0,xen! }. 1In

this case the spaces

zZ def proj lim ind lim Z(a)m

F m > ® a > ®
and
Z 225 ind lim proj lim Z(a)
a> ® m > « m
induce the same topology on Z By Indeed, according to [76, th.5.10] a
€

fundamental system of neighborhoods of zero in ZF is given by V(K%), where
now K'(z) = (1+lzl)™ Ki(y) with m 2 0 and with Ki a positive, continuous
function dominating every exp alyl, a > 0. ZF is the Fourier transform of
DF' the test space for the finite-order-distributions. Hence the (inverse)
Fourier transforms of all elements u in Z' carried by the real set Q are

finite-order-distributions and, moreover, for every € > 0 these u satisfy

|<u,£>] < M_ sup Caxh)™® |£(2) |7, £fez,
zeQ (e)
with M: and m(e) depending on € and u. The above given representation yields
that for every € > 0 y4 can be represented as a measure ue on Q(e) satisfy-

ing

Idue(z)l

<
m(e) = e
Q(e) (140 xl)
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II.1.ii. GENERAL SPACES OF REAL-CARRIED ANALYTIC FUNCTIONALS

We introduce real-carried analytic functionals in spaces defined in a
more general way of which the real-carried elements of Z' are only an exam-
ple. Real-carried analytic functionals, originally defined on some space H
of entire functions f, can be extended to the space A of restrictions of £
to e-neighboorhoods of 351 by the Hahn-Banach theorem, where A carries the
topology induced by H. This extension is unique if H is dense in A. We shall
not treat this question, but we shall merely start with spaces A consisting
of all funcitons analytic in e-neighborhoods of Efl, which satisfy certain
growth conditions at infinity. We shall consider two types of such spaces
A

Let {¢j};=1 be an increasing or a decreasing sequence of continuous
functions defined on B{‘, and let Qj be the open 1/j-neighborhood in a” of
the closed set 2 in R'. Let Am(ﬂk) be the Banach space of analytic functions

£ in Qk with

(2.3) 1el . %L op |fz)exp -6 (x)] < .
m,k m
zer

If {¢j} is an increasing sequence, define A(R) by

def . :
(2.4) A(R) == ind lim Ak(Qk)

k>

and if {¢j} is decreasing by

(2.5) A(Q) - ind lim proj lim A (Qk),
k > « m > «© I

where all needed injections are defined by restriction. If Q = r"® we shall

just write A.

Real-carried analytic functionals in Z' are defined on a space z(355
of the second type with ¢m(x) = -m log(1+lxl). In section II.2 the functions
¢j will be negative with order of growth between -j log(1+lxl) ana -1/5lxl.
The limits of the spaces they define are on the one side Z(Hf” and on the
other side the space of the first type (2.4) defined by ¢k(x) = -1/klxl.

The duals of these limit spaces consist of Fourier transforms of certain
distributions and, by definition [38], of Fourier hyperfunctions, respective-

ly. The cases in between correspond to Fourier transforms of certain ultra-
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distributions of Roumieu type or of Beurling type, depending on the respec-
tive cases (2.4) and (2.5) (cf. section II.2.iii).

A U €A' carried by Q can be extended to an element of A(Q)' with the
same carrier. This extension is unique if A is dense in A(Q) and then every
M € A(Q)' is uniquely determined by its action on functions of A. Again, as
we are here interested in elements of A' only, we do not bother about the

1
question whether A is dense in A(Q). )

II.1.iii. PROPERTIES OF REAL-CARRIED ANALYTIC FUNCTIONALS

First we shall show that every analytic functional in A' has a, unique-
ly defined, smallest carrier which joins some properties of supports of dist-
ributions. In order to do so we have to make some assumptions implying the
triviality of a cohomology group which will be shown in chapter VI for
spaces A of type (2.4) and in chapter VII (cor.7.5) for spaces A of type
(2.5). The result is that for each f € A(Q1 n 92) there are fj € A(Qj),

j = 1,2, such that

(2.6) f=f_ -f

The proof uses the possibility of rewriting the spaces A in a different
form. Essentially, it is based on the following property of closed sets

g n
in R .

LEMMA 2.1. (see chapter V, lemma 5.1). For any 1/k-neighborhood Q(1/k) of
Q there is an open pseudoconvex neighborhood Qk with Q(1/2k) c ﬂk c Q(1/k).

Hence formula's (2.4) and (2.5) with pseudoconvex sets Qk define the

1
) This happens certainly if @ is compact, because each compact set in R

is polynomially convex (cf. chapter V, lemma 5.1), hence for f € A(Q) the
function £f(z)exp 22 can be approximated in every Qk by polynomials Pk
and then f is approximated by Pk(z)exp--z2 € A. It follows from results
obtained in the following chapters (th.4.1 and cor.7.4, cf. also cor.3.1)
that A is dense in A(Q) if Q is convex and if {¢j} satisfies the conditions
of theorem 2.4 below. In [38, th.2.2.1] it is shown that A is dense in
every A(Q), if A(Q) is a space of type (2.4) with ¢k(x) = -1/klxl and with

certain neighborhoods Qk, larger than e-neighborhoods.
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spaces A just as well. Furthermore, the spaces A should not change if the
weight functions ¢j of x are changed into plurisubharmonic functions wj of z
and if moreover the differences of the functions ¢j are not too small. More
precisely, the following condition must be satisfied: there is an a-neighbor-
hood R%(a) in @ of R" and, if {¢.} is increasing, for every j there exist
a plurisubharmonic function y = wj on an(a) and, for every N 2 0, moreover
anm = m(j,N) =2 j and C = C(j,N) 2 0, or if {¢ .} is decreasing, for every m
there exist a plurisubharmonic function Y = ¢m on EP(u) and, for every

N > 0, moreover a j = j(m,N) 2 m and C = C(m,N) > 0, such that
2
(2.7) ¢j(x) < P(z) + N log(1+lzl®) < ¢m(x) +C, Iyl < a.

In lemma 5.2 it will be shown that the spaces of the next section satisfy
this condition.

According to [73, cond. HS, and HSZ, p.15] it follows from condition

1
(2.7) that A can be written with the Lz—norms

2
(2.8) { J [£(2) | exp—2xpm(z)d,\(z)}12 ,
Qk .
where A(z) denotes the Lebesgue measure in €, instead of the sup-norms

(2.3). We denote by H(Qk;wm) the Hilbert space of holomorphic functions in

. with inner product induced by the norm (2.8).

k (1/m)

Furthermore, let Qk be the open(ek/m)—shrinking of Qk, where

ek > 0 is such that the ek—shrinking of Q contains This is possible

k k-1"
because we deal with e-neighborhoods of closed sets in Hfl. Moreover, it

is clear that (2.5) does not change if the functions in Am(Qk) have only

(1/m)- Finally, since in (2.4) and (2.5) only restrictions

finite norms on Qk
(1/m)

of functions in Qk to Q or to Qk , respectively, are important, we

k-1
may change the functions wj of condition (2.7) near the boundary of Qk. So

we have obtained the following lemma.

LEMMA 2.2. Let condition (2.7) be satisfied. Then the space A(Q) given by

(2.4) can also be written as

A(Q) = ind lim H(Q ;¢ ) = ind lim H(Q ;V. (z) +log(1+||zﬂ2) +
k' "k k' "k
k > o k > x

+ log(1+a(z,09) ™)
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and the space A(R) given by (2.5) as A(Q) = ind lim B(Q ) with
k >
def R (1/m) _  wg (1/m)
(2.9) B(Qk) == proj lim H(Qk ,wm(z)) = proj lim H(Qk ,wm(z)+

m > ® m > ®

+ log(1+ﬂzﬂ2) + log(1+d(z,9§)-1)),

where the sets {Qk} are pseudoconvex and where d(z,Q;) denotes the distance

from z to the boundary of Qk.

Now bearing in mind that intersections of pseudoconvex sets are again
pseudoconvex and using lemma 2.1, we can choose in lemma 2.2 pseudoconvex

neighborhoods {(QllJQZ)k}, {(Ql)k} and {(Qz)k} of Ql uQ., Q, or 92, respec-—

2" M
tively, which satisfy

(2.10) (91 u Qz)k = (Ql)k u (Qz)k.

For the spaces of type (2.4) formula (2.6) now follows from lemma 2.2 (cf.
k k+1 k+1

cor. 7.5 with @ = Q = ¢ = 3520

LEMMA 2.3.i. Let 91 and 92 be closed sets in R with non-empty intersection
and let condition (2.7) be satisfied. Furthermore, let A(Ql)' A(Qz) and

A(Q1 n 92) be given by (2.4), then for any f € A(Qltwn2) there are

fj € A(Qj), j = 1,2, such that (2.6) holds.

For spaces of type (2.5) this result is more difficult to prove and
a further condition (cf. cond. (7.3)) is needed, which implies that the
differences of the functions w may not be too large: for every p and m with
p 2 m there exists a holomorphic function gP i is an a-neighborhood of R

in C and, for every k, moreover a constant K = K(p,m,k,) such that
L1 < < - - I =
(2.11) 0 ]gp'm(z)l K exp-k{y_(z) q;p(z)}, vl <a, k = 1,2,

For the spaces of the next section it sufflces to take g (z) = exp- z2,
but if, for example, ¢m(x) = exp(1/m expx ) condition (2 11) cannot be
satisfied. Now corollary 7.5 yields (2.6) for the spaces B(Qk) given by
(2.9), because for the function ¢ in condition (4.22) of the corollary we

can take o(z) = -log d(z,Qi) which is plurisubharmonic [30, th. 2.6.7].
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LEMMA 2.3.ii. Let Ql and 92 be as in lemma 2.3.i and let conditions (2.7)
and (2.11) be satisfied. Let the pseudoconvex neighborhoods {(Ql)k} and
{(ﬂz)k} of , and Q. be such that also the neighborhoods {(Ql)k U (Qz)k}

4 2

of 91 u 92 are pseudoconvex. Then for k = 1,2,... and for any f € B((Ql)k n
n (Qz)k) there are fj € B((Qj)k), i = 1,2, such that (2.6) holds in

@)y 0 ()

THEOREM 2.4. (cf. [47, prop 1]). Let A be given by (2.4) or (2.5) and let
condition (2.7) be satisfied. If A is of type (2.5), let moreover condition

(2.11) be satisfied. If yu € A' is carried by the closed sets 91 and 92 in

Hgl with n92 # @, then u is already carried by Ql n o

1 2

PROOF. Since by lemma 2.1 Ql u 92, Ql and 92 have pseudoconvex neighborhood
bases which moreover satisfy (2.10), lemma 2.3.i and ii shows that any
function f € A(Q1 n 92) can be written as (2.6) with fj € A(Qj), j=1,2.

Hence, the following continuous map I is surjective
(2.12) I: A(Ql) X A(Qz) -+ A(Q1 n Qz)

with I(fl'fZ) = f2 —fl. The kernel of I is just {(f,f)IfEA(QILJQZ)}.

Furthermore, we assert that I is an open map. Let us first show this
for spaces A(2) of type (2.4). It follows from lemma (2.2) that such spaces
are inductive limits of Hilbert spaces, hence DFStspaces [40] and thus duals
of reflexive Frechet spaces. Since such spaces are Ptak spaces [61, IV.

§ 8ex. 2, p.162] the open mapping theorem [61, IV. §8.3, cor 1] implies
that I is an open map. If the spaces A(Q) are of type (2.5), we have the

more precise result (lemma 2.3.ii) that even for every k the map I , defined

k
similarly to I, is a surjective map between the Frechet spaces

I: B((Ql)k) x B((Qz)k) » B((Ql)k n (Qz)k)
where B() is given by (2.9). Hence the ordinary open mapping theorem

implies that I, is open. The maps {Ik} commute with the restriction maps,

k
and so lemma 2.2 and the definition of open sets in an inductive limit
(cf. the characterization of a O-neighborhood base in [20, § 23, 3.14])
imply that I is open.

Now we first extend p to an element of A(Q1 UQZ)' and then to elements
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' A(R.)'.Define 1 € A(R, nQ.)"' b
Hy € A(Ql) and M, € ( 2) efine u € A( 1 2) Y

~ def
<]—llf> =e= <u21f2> - <111,f1>
for some (fl'f2) € I_l(f). Since u1 equals u2 on A(QllJQZ) ; is independent

-1
of the representant in I = (f). Furthermore, since u, and u2 are continuous,

1
they are bounded on some neighborhood of zero in A(Ql) and A(Q2), respec-—
tively. The fact that I is an open map implies that 3 is bounded on some
neighborhood of zero in A(Q1 092), hence that it is continuous. Finally,

for any £ € A we have

<;,f> = <u2,f2+h> - <u1,h> = <u2,f> = <u,f>

for some h € A(Q1 UQz). O

COROLLARY 2.5. Let the conditions of theorem 2.4 be satisfied. If u is

carried by two disjunct closed sets in R" then u = 0.

PROOF. By enlarging the carriers of u suitably theorem 2.4 yields that there
is a ball S in R" such that u is carried by any closed set in S. We may

assume that S = {x|lxl<1}. For any multiindex a we have
a
<p,z"> = D £(0)

where

£(E) def <uz,ez.g>.

f is an entire function and since u is carried by any closed subset of the

unitsphere, there are K > 0 and € > 0 with
1
|£(@)] < K expl- 2 Iel+elnl}.

Hence the Fourier transform of f is, on the one hand, real-analytic and,

on the other hand, by the Paley-Wiener theorem a C = function with compact
support, thus £ = 0. Hence <u,za> = 0 for all a. Since the polynomials are
dense in the functions holomorphic in the origin and since p is also carried

by the origin, it follows that u = 0. 0
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1
Now we are able to define the support ) of u € A'.
DEFINITION 2.6. Let the conditions of theorem 2.4 be satisfied. Then the
intersection of all the carriers of an analytic functional w € A' is called

the support of u.
REMARK. In the example of [30] given earlier the set

1 1 2
2 = <
{(21'22)| IZIISZ, 122]S2 or ]zllsz, ]22I_2} cc

is not pseudoconvex. For its holomorphically convex hull equals its logar-
ithmic convex hull {(21,22)1121|$2, !22|52, |lelzz|51}, see [68]. The
intersection of carriers is no carrier and hence the support cannot be
defined.

Next we shall prove that (real) carriers can be localized, a property
which is easy to show for supports of distributions (the property that for
any finite collection of closed sets {U }N

k k=1
N
g can be written as g =k21 g, where gk has its support in Uk).

i n z ; <
covering IR every distribution
k

THEOREM 2.7. (cf. [47, prop 2] and [60, proof of th. 4.2]). For any finite

: N . . .
collection of closed sets {Uk}k—l in R" with union nfl, each u € A' can
N =

i _ i
be written as u kgl uk where uk € A(Uk) %

PROOF. Define the continuous map
N
I: A~ I A(Uk)
k=1
t
by restriction. Its transposed I between the duals
£ N
I: 1 A(Uk)' - A'
k=1

©

4 The support of a (ultra) distribution g, defined on a space W of C 2
testfunctions, is defined as the smallest closed set U in r" such that
any X, ¢ U has an open neighborhood VO with <g,¢> = 0 for every ¢ ¢ W
with ¢(x) = 0 if x ¢ Vo. Since there are no analytic functions ¢ Z 0 sat-
isfying this, this definition of support is impossible for an analytic
functional. The reason for calling the smallest carrier the support of the
analytic functional is that this concept has similar properties to the
support of a distribution, unlike the carrier of an analytic functional

(cf. the earlier mentioned example of [30]).
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a t N
is given by I (u1,...,uN) = kgl uk, for
£ N N N
ST (Hyreeerbg) > = ) <uk,(1f)k> = 3 U £ =< ) W o £,
k=1 k=1 k=1

Clearly, I is an injective and open map from A into Im I, when Im I carries
the topology induced by HA(Uk)(this can be seen by inspection of the open
sets in the spaces A). Then according to [65, prop. 35.4 and lemma 37.7]

It is surjective (if the duals of the spaces A are reflexive Frechet spaces,
this can be seen also by [65, th. 37.2] since clearly I has closed image,

cf. [47]). 0

In general, a distribution in D' (U) where U is an open set in R
cannot be extended to a distribution in D' (R™) . We shall now show that
this property does hold for real carried analytic functionals. 1 Before
formulating this we introduce the concept of local equality of real-carried
analytic functionals, see [47].

If u € A' with A satisfying the conditions of theorem 2.4, according

N M
to theorem 2.7, can be written as u = kéluk and as u = jgluj, we have
N M
I w -1 W =o
k=1 4=1
I
Hence for any x € IR
A ) M, = - ) o+
{k|x € carrier {j|x € carrier J {remaining k}
of pk} of l.lJ}

~

§ ) u..
{remaining j} 3

By theorem 2.4 the left hand side and the right hand side have their sup-
port contained in the intersection of their carriers, so that x does not
belong to the support of the left hand side. We now consider, more gener-

ally, infinite sums of analytic functionals with bounded carriers U There-

K
fore, no weightfunctions ¢j occur in the definition of A(Uk) and theorem

1
) This may be expressed by saying that the sheaf of real-carried analytic

functionals, and by consequence [47] the sheaf of hyperfunctions, is

flabby.



~

U

k
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2.4 is valid without its conditions on the weight functions, cf. [47,prop 1].
Let {Uk} and {Gk} be locally finite coverings, consisting of compact
sets, of the open set U in R® and let {uk} and {ﬁk} be analytic functionals
carried by U or 5 , respectively. Then we define y = Z p,_ and T ==Ly to
k k k Kk x k
be locally equal if each x € U does not belong to the support of the analytic

functional

Uk 2
{klerk} {kasUk}

In general, u = I uk is not an element of A'. However, we shall show that

there exists an element v € A' which is locally equal to u.

THEOREM 2.8. (cf. [47, prop. 31). Let {Uk}:=1 be a locally finite covering
(o]

of the open set U < H{’ consisting of compact sets and let u = k§1 uk,
where uk is an analytic functional carried by Uk’ k =1,2,... .Furthermore,
let A be given by (2.4) or (2.5) where condition (2.7) is satisfied. Then

there exists a v € A' carried by U which is locally equal to p in U.

PROOF. It is convenient to have Frechet spaces of analytic functionals.
If A(Q) is given by (2.4), as in the proof of theorem 2.4, lemma 2.2 implies
that A(Q) is a DFS 3space [40] so that the strong dual A(Q)' is a Frechet
space. If A(Q) is given by (2.5), for any fixed m we will find a Vv € A(Q)A
with the required properties, where

A(Q)m gst ind 1lim H(Qk;wm)

k > o

Here H(Qk;wm) is the space whose definition preceeds lemma 2.2. Since for
every k = 2,3,... and any m B(Qk) defined by (2.9) is mapped by restriction
into H(Qk_l;wm), by lemma 2.2 v € A(Q)é certainly belongs to A(Q)'. But
now, as before A(Q)&, as the strong dual of an inductive limit of Hilbert
spaces, is a Frechet space.

In order tc contain both cases, we denote by A(Q) the space A(Q)

(m)
if A{Q) is of type (2.4) and the space A(Q)m if A is of type (2.5). Thus

is a Frechet space and it suffices to find v € A(U)' which

now A(Q)! i)

(m)
is leccally equal to u in U.

K1 uk where

————— oo
is carried by V, \V, , and where {vk}k=0 are compact sets such that

In virtue of theorem 2.7 u is locally equal to a sum

®©
©
b
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= i = U\Vv tai unbounded components
VO a3, Vk c int Vk+1' E Vk U and U\ X only contains D
or components intersecting 3U. Since A(U\Vk)(m) is mapped injectively by
restriction into A(BU)(m) (here we define the class of neighborhoods of 3U
as the e-neighborhoods in ¢n of the complements in U of compact sets in U),

! i i d s A(U\v, )" is a Frechet space, thus

A(GU)(m) is dense in A(U\Vk) ) Now A (U\ k)(m) re D 7
there is a distance dk to the origin defining its topology. Furthermore,
A(U\Vk)zm) can be continuously mapped into A(U\Vj)}m) for k 2 j and there-

fore, for each k there exists an element vk € A(BU)Em) with

Then

ol

ef

|

v ) (1, =v.)
k=1 " K

is an element of A(G)zm), because its distance do(v) to the origin is fin-

ite. Moreover, for every j we have

J )
ﬂ - Z v, + z (; -v. ),
K gt X gmger XK

where the last term converges in A(U\Vj)zm) and where the second term is
carried by the complement of Vj in U. Hence v is locally equal to u in

the interior of each Vj' thus in U. 0

As an example we consider distributions in D'(HJB. First, let T be
a distribution with compact support K < IRn (hence T can be defined on C 2
functions). By restriction to analytic functions T can be considered as
an element of A(K)' and the support of T as analytic functional is the same
as the support K of T as distribution, see [42, lemma 7.4]. Any g € D'(nfﬁ
is a locally finite sum of distributions with compact support. Hence, for
any g € D' there is a real-carried analytic functional in Z' which is loc-
ally equal to g, but it is difficult to write down an explicite, non-tri-

vial, example.
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II.2. FOURIER TRANSFORMS OF REAL-CARRIED ANALYTIC FUNCTIONALS.

II.2.i. FOURIER TRANSFORMATION AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS.

We shall define the Fourier transformation of analytic functionals
defined on a subset ZM of Z. For a C % function ¢ with compact support in Bﬂv
the dual of n{ﬂ the Fourier transform F¢ is defined by

def .
(2.13) Fo(x) == J ¢ (&) exp i <g,x> dE.

IR
n

Then F¢ is a function on r"? which can be extended to an entire function
belonging to Z(Cn). If ¢ belongs to a certain, locally convex, topological
vector space DM of ¢ Z functions with compact support, the image ZM of F in

Z is given the topology such that F becomes a topological isomorphism from
DM(BﬂJ onto ZM(¢n). The transposed map F* of T defines an isomorphism from
ZM(¢n)' onto DM(BﬂQ'. We may restrict Ft to ZM(Cn) or to DM(BJH and we may
identify a £ € Bﬂl with an n-dimensional vector(El,...,En) in R so that

<§,x> becomes

[oN)
H

e

Il

X, E . +...4%X E .

R = R 154 n°n

Then the maps

F¥l, sz, @ > D (R )
M

and

Folp : D, (B > z,(c)
M

are also given by (2.13) due to Parseval's relation

]

<y, Fg> j (0 { f X84 ()artax = J o)1 j &= Bl b =
= <Ft1p,¢>.

t
Hence we shall call also F~ Fourier transformation and denote it by

n L} 1
(2.14) F: zM(cc y' o> DM(mn) :
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t g G
The transposed of the maps Ftlz and F ID are isomorphisms
M M
t t , fii, 4
(F [ZM) s D (R >z (@)

t £ : i
(F lDM) 2 2, (€)' > D (R)

1 :
and again, restricted to L -functions ¢, these maps are given by (2.13):
Finally, the transposed of the restriction to ZM(¢n) of one of these maps

yields the isomorphism

((FtIZM)tIZM)t D (R >z (),

which for an Ll-function ¢ is also given by (2.13). Hence from (2.13) several
maps arise which we will call Fourier transformation and denote by F. Thus,
although we intended to deal with the Fourier transformation (2.14) only,
this map cannot be defined in this way without introducing naturally the

other maps

L} n L}

(2.15) F: zM(cn) > DM(IR )
n 1] 1]

F: DM(m L zM(cn)

] n )
F: DM(HﬂJ % ZM(¢ ).

As we will see, these definitions have the advantage that, as soon as
H € ZM(Cn)' also belongs to the dual of a space of analytic functions of ¢
of which exp i <Z,z> is one for z in a certain open set in Gn, F given by

(2.15) can be written as the boundary value in some sense of the function

~ def i<g,z>
iz) & o 07,
z
cf. lemma 2.26. We shall call the function ﬁ the Fourier transform ot of u

and u(z) will be denoted as Fu(z).
With the aid of Fourier transformation it will be shown that real-

carried analytic functionals in Zﬁ can be written as sum of boundary values

1)

Sometimes F is called Fourier-Laplace transformation [68], Fourier-Borel
transformation [48] or even Fourier-Laplace-Carleman-Sato transformation

[43], but we shall call F merely Fourier transformation.
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of functions holomorphic in tubular radial domains, i.e., in domains of the
: n
form Tc gg£ R" +iC where C is an open convex cone in IR . The boundary value
C def _C

is defined as follows: let f be a holomorphic function in T == T  n {z|lyl<r}
such that, for all y € C with Iyl < x, f(x+iy) P (x)dx exists for every

*
Y e ZM; the boundary value £ of f in ZQ is defined by

(2.16) " g 228 J £(x +iy) ¥ (x)ax
n

y>0
yeC
for Y € ZM' This limit exists, since the integral is independent of Imx,

so that for each y, ¢ C with Hyoﬂ <r

(2.17) <£%,9> = lim J E(x+ iy, +iy)¥(x + iy )ax =
y>0
yeC

J f(x+iy0)w(x+iyo)dx, V€ ZM.
=~

Since the testfunction space

i) 2L jed 1iw al® ) - elxl)

e >0

for Fourier hyperfunctions is contained in all the spaces consisting of
restrictions to e-neighborhoods n{](e) in Cn of n?’ of functions in ZM, all
real-carried analytic functionals u in 2' of Zé can be considered as Fourier
hyperfunctions in H(B{H' . As the Fourier transform of H(IRn) is just H(BJB,
the Fourier transforms Fu of real-carried analytic functionals in Z' or Zﬁ,
which are certain distributions or ultradistributions, are examples of
Fourier hyperfunctions in H(Bﬂﬂ '. Thus the spaces of Fourier hyperfunctions
form the limit case in which all the real-carried analytic functionals in
Z' or Zﬁ and their Fourier transforms as well are contained. The other limit
case is the space of tempered distributions which is contained in all spaces
of real-carried analytic functionals and their Fourier transforms.

Now a Fourier hyperfunction can be represented as sum of boundary
values f* (2.16) of analytic functions f in TS satisfying for all C' cc C
and all € > 0

Il
(2.18) l£(z)| < x(c',e)e® ™ , yec,e<lyl <r-e¢
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where K(C',e) depends on C' and €, see [38]. A tempered distribution g can
be wriiten as sum of boundary values of analytic functions f satisfying for

all ¢’ cc C
N -N
(2.19) [£(z)]| < k@) @ +Ix) Mgl ™, 'y ecr, Iyl < x*

with 0 < r' < r and with N depending on g, see [49]. In the following sec-
tions we shall give analytic representations of real-carried analytic func-
tionals y in 2' or Zﬁ and of Fu as boundary values of analytic functions f
or h, respectively. So these functions certainly satisfy (2.18), whereas

functions satisfying (2.19) are examples of such functions f and h.
II.2.ii. CHARACTERIZATION OF DISTRIBUTIONS WITH REAL-CARRIED FOURIER TRANSFORMS.

Let us consider the example of real-carried analytic functionals u in
the space Z'. Then u is an element in the space A' where A is given by (2.5)
with ¢m(x) = -m log(1 +lxl) and Fu is a distribution in D(nﬂQ'. Now U is
the sum of boundary values of analytic functions and actually the following
theorem 2.9 holds [60]. Before formulating this theorem we introduce the

1) * . n
dual C of an open convex cone C in IR as the open convex cone

C* g== int{El <g,y> >0, y € ¢} = int{EI <g,y> 20, y € E}

H

*
in IR . We identify the dual of nﬁl with R and then, if C # @, the dual

of C equals C

* %
(c) =C={x] <n,X>>0,néc*}

because C is open and convex.

THEOREM 2.9. For u € Z' the following four statements are equivalent:

(1) u is carried by Eﬁ

(2) For any € > 0, Fu € D' can be represented as Fu = Z G ,

P>
< (4
where Ga ¢ are continuous functions on nﬁ]satisfyiAglnm(E)
’

1 *
) In [68] C stands for {El51y1+...+£nyn20,yec} and then (C*)* is the

closed convex hull of C.
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IG , ( ) | < K (E) exp €

(3) u is the sum of boundary values in Z' of functions fj holomorphic in
r” + iCj satisfying for any Cj cc Cj and any € > 0

N(Ca,e)

£ (z)] < x(c',e) (1 +1zl) e ct, Iyl > ¢
IJ | j p'd 5 y

k 3
for j =1,...,k, where {C:j}j_1 are open convex cones in R" such that

the closure of their duals cover Hﬁf

(4) Fu € D' is the sum of boundary values in D' of functions hj holomorphic

*
in n§1+i_c; satisfying for any Cj' ce C; and any € > 0

- Izl
In, (0] < K@ v, e) (1 +Mnh™®E)EEL 0¥
J J J
for j=1,...,p, where {CT}E are open convex cones in IR such that
i o n

the closure of their duals cover IRn.

This theorem deals with boundary values in Z' in several dimensions

and in this way it generalizes the one dimensional case discussed in [46].
II.2.iii. ULTRADISTRIBUTIONS

In the following section we will pay attention to spaces A defined by
weight functions . with an order of growth between -j log(l +lIxl) and
-1/3 Ixl. Then theJFourier transforms of elements in A' are certain ultra-
distributions of Roumieu type if A is of type (2.4) and of Beurling type if
A is of type (2.5). In section 2.iv we will give characterizations of these
ultradistributions similar to (2), (3) and (4) of theorem 2.9. Ultradistri-
butions are continuous, linear functionals on spaces of ultradifferentiable
testfunctions. It follows the lines of this chapter if ultradifferentiable
functions ¢ are defined by growth conditions on their Fourier transforms.
No direct information about ¢ is obtained in this way, and therefore in this
section we will also give a direct definition. Furthermore, some properties
of ultradistributions will be mentioned whose proofs can be found in [42].

Throughout this and the following chapter M will stand for a continuous
increasing piecevise differentiable function on [0,®) with M(0) = 0, M(®) = =,
such that M' is ctrictly decreasing and pM'(p) is increasing to ® and such

that
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M(p)
(2.20) J g W<w
1 P

and for some constants T > 1 and K > 0
(2:21) 2M(p) < M(tp) + K.

DEFINITION 2.10.i. Let f be an entire function such that for every positive

m there is a K > 0 (there are positive constants m and K) with
(2.22) |£(z)| < K exp{-M(mllzl) + alyl}

for some a > 0. Then the inverse Fourier transform ¢ of f is an ultradiff-
erentiable function with support in the ball with radius a of class M of

Beurling type (of Roumieu type), or shortly of class (M) (of class {M}).

o
Let {Mp}p—O be an increasing sequence of positive numbers satisfying

the following properties (called M.1, M.2 and M.3 in [42]): for some positive

K and h
M2 <M M p=1,2,...
p p-1 ptt’ e
M <kh® min M M, p=0,1,...
P 0<g<p p=q
oo
] M <KpM s P=1,24u..
. q-l/ p/
g=p+1 Mq MP+1

An equivalent, direct definition is obtained as follows:

DEFINITION 2.10.ii. Let the sequence {Mp};=0 satisfy the above given proper-
ties. Then a C = tunction ¢ with compact support S is called ultradifferen-
tiable of class Mp of Beurling type (of Roumieu type), if its derivatives
can be estimated as follows: for every € > 0 there is a K > 0 (there are
positive € and K) with

(2.23) D% g)| < x €° M E €S, la] = p, p=0,1,... .

In [42] ¢ is called an ultradifferentiable function of class (Mp) (of
-
class {Mp}). The sequence {Mp}p=o and the function M determine each other

according to



43

M
M(p) = sup log E];Q
p p
2.24
( ) 1 pp
M = M su

he) 0 pp exp M(p)

and this implies the equivalence of definition 2.10 i and ii [42, th. 9.1].

are equivalent to those of the func-

The properties of the sequence {Mp}p=0

tion M.

As in the case of the space D of all C 2 functions with compact support,
the spaces DM of ultradifferentiable functions of class M_ with compact sup-
port in ﬂﬂ] can be given locally convex topologies such that their Fourier
transforms ZM = FDM have the following topologies: in case of Beurling type

ultradifferentiable testfunctions ZM is defined by

Z == ind lim proj lim Hm(cn; -M(mlzl) +alyl)
a > x m >

and in case of Roumieu type ultradifferentiable testfunctions ZM is defined
by
def

Zgy) — ind lim ind lim H (€ -m(lzl/k) +alyl),

a > o« k > o
where Hw(9;¢(z)) denotes the Banach space of holomorphic function f in Q

with the finite norm

sup |f(z)] exp - ¢(z).
zef

DEFINITION 2.11.i. An ultradistribution of class (M) (of class {M}) is the

Fourier transform of an analytic functional in Z (in Z

(M)l {M}')'

DEFINITION 2.11.ii. An ultradistribution of class (M) (of class {M}) is an

element in the dual of’D<M) (of D{M})'

Just as a distribution can be locally written as a finite sum of
derivatives of a continuous function, an ultradistribution is locally an
infinite sum of derivatives of a continuous function. To explain this we

introduce differential operators of infinite order:
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DEFINITION 2.12. An operator of the form

p) £ 7 ap®
|=

la|=0 o

H

is called an ultradifferentiable operator of class (M) (of class {M}) if

there are constants L and K (for every L there is a K) with

(2.25) lpz)| = |} aaza[ < K exp MLIzI), ze .

lal

LEMMA 2.13. [42, th. 2.12]. An ultradifferentiable operator P of class M maps

DM continuously into itself.

LEMMA 2.14. (42, th. 10.3]. Every ultradistribution of class M can locally
be written as P(D)G for some continuous function G and for some ultradiffer-

entiable operator P(D) of the same class.

Ultradifferentiable operators satisfying an additional property exist.
Before formulating this we define the following concept which plays a role

in the Roumieu type case.

DEFINITION 2.15. A positive, increasing function n on [0,»), with n(0) = 0

and with n(p)/p - 0 as p > », is called a subordinate function.

LEMMA 2.16. For every m > 0 there exists an ultradifferentiable operator

Pm(D) of class (M) with
(2.26.1) lpm(iz)| > exp M(mlzl), Iyl < 1.

and for every subordinate function n there exists an ultradifferentiable

operator Pn(D) of class {M} with
(2.26.1ii) an(iz)l > exp M(nlzl), Iyl < 1.
PROOF. The existence of the operators Pm(D) and Pn(D) follows from [42, proof

of th. 10.1] where it is shown that the entire functions h and h in C,
m n

whose Hadamard factorizations are,

n o B § 1.
m m
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for some £ > 0 depending on m and

¥ m L w
ho(w) == I, (1+-2
n p=1 .

Q

for some sequence {£ };_ of positive numbers depending on n with Kp > 10,

1
def
where m === M /M for M iven by (2.24), satisf
n p/ -1 L, @ Y ’ Y

n
(2.27.4) | . I, h (z,)] > exp M(mllzl), Re z, 20
j=1 m 73 j
and
I |
(2.27.4i1) I, h (z.)| =2 exp M(n(llzl)), Re z, > 0.
lJ=1 nj a ]

In [42, prop. 4.5 & 4.6, cf. remark on p. 60] it is shown that hm(D) and
hn(D) are ultradifferentiable operators of class (M) and {M}, respectively.

O.

Distributions can be written as sums of boundary values of analytic
functions of algebraic growth in 1/lIm ¢l for liIm zl small. Ultradistribu-
tions can be represented in a similar way. For that purpose we introduce a

*
function M associated to M: it follows from (2.20) that for each ¢ > 0

(2.28) M*(c) det max {M(p) -op}
p>0
* * * *
exists. M 1is a convex function on (0,®) with M (0) = ® and M (®) = 0. If M

*
is a function with this properties, a function M can be associated to M ,

which equals M in (2.28) if this formula defines M*, by
*

(2.29) M(p) = min {M (0) +po}.

o>0
Indeed, for almost every p > 0 and all ¢ > 0O

*
M(p) < max {M(1) -o(t-p)} =M (0) +po

™0

and hence

M(p) < min {M"(0) +po} < max {M(T) -M' (p) (T =p) },
>0 >0
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where in the right hand side we have taken 0 = M'(p). There the maximum is
attained for T satisfying M'(t) = M'(p), thus since M' is monotonous, for
T = p. Then the right hand side equals M(p) and by continuity (2.29) holds

everywhere.

*
LEMMA 2.17. [42, th. 11.5]. Let f be a function holomorphic in ]ﬂl+ ic for
*
some open convex cone C 1in Bﬁl such that for every compact set S in ﬂﬂl and
*
for every C' cc C there are positive constants t = t(S,C') and K = K(S,C")

(for every t > 0 there is a K = K(S,C',t) >0) with

*
(2.30) sup |[E(E+in)| < K exp M (thnl), nec', Inl <6
EeS
*
where 6§ > 0 may depend on S and C'. Then there is an ultradistribution f
of class (M) (of class {M}) which is the boundary value of £ as n »> 0,

*
n e C' cc ¢ , where M is given by (2.29), i.e., for each ¢ ¢ DM

<£%,¢> = lim J £(E+1in) ¢ (E)AE.
n>0
nec' n

REMARK. It is already sufficient for (2.30) to hold if it holds for n only

on a ray in c* [42, prop. 11.6].

The converse of lemma 2.17 is

*
LEMMA 2.18. [42, th. 11.7]. Let £ be an ultradistribution of class M and
*
let {Cj}]j(=1 be open, convex cones in R such that the closure of their

n ; ; ;
duals cover IR . Then for each bounded open set S in nﬁ] there is a function

~

k
f holomorphic in jyl {s+i C;}which satisfies (2.30) where C' = jgl Cé with
C% cc C;, such that in S
k
*
£ = )] lim f(£+in).

j=1 n>0

nec'
3

*
(In [42] M is defined in a different way and it corresponds to our function
*
M if in the right hand side of (2.28) o is replaced by 1/0).
Similarly to finite-order-distributions, ultradistributions of "fin-

ite order" can be defined by global versions of lemma 2.14 or lemma 2.18.

DEFINITION 2.19.i. An ultradistribution is called of "finite order" if lemma

2.14 holds globally, i.e., if it can be written as P(D)G globally.
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DEFINITION 2.19.ii. An ultradistribution is called of "finite order" if it
can be represented globally as in lemma 2.18, where, in the Beurling type
case, (2.30) holds for t independent of S and where, in the Roumieu type
case, (2.30) holds with K(S,C',t) replaced by a constant of the form
Kl(S)KZ(C',t) for xl(s) > 0 depending on S and for K2(C',t) > 0 depending

on C' and t.

The equivalence of these definitions follows from the proofs in [42, § 10 and
5117,

We remark that due to the fact that pM'(p) is increasing and to (2.21)
the functions M and M* satisfy:
for each m > 0 and each t > 0 there is a t' = t'(m,t) 2 t and a constant
K = K(m,t) > 0, and for each m > 0 and each t' > 0O there is a positive
t = t(m,t') < t' and a constant K = K(m,t') > 0, such that for p 2 1 and for
0<o<=<1

M(p/t') + m log p < M(p/t) + K

(2.31) {M (t'/o) + m log 1/0 < M (to) + K.

Hence M does not increase too slowly, while by (2.20) it does not increase
too rapidly.

Condition (2.20) assures that there are ultradifferentiable functions
with compact support (Denjoy-Carlman-Mandelbrojt, cf. [42, th. 4.2]). For
example, if (2.22) is satisfied only for Iyl < 1 with M(p) = p, then (2.20)
is not satisfied and ¢ is analytic in the tube {;I"nﬂ <m} or, correspondingly
if in (2.23) we set Mp = p! then ¢ is analytic in the e-neighborhood of HEV

Furthermore, it is necessary that for each € > 0 there is a K(g) > 0

such that for p =2 0
(2.32) M(p) < ep + K(g),
but this is not sufficient for (2.20) to hold. Finally, condition (2.21)

will be used in lemma 5.2 to allow the replacement of M(lxl) by M(|x1|)+...

+M(lxn|) in the definition of the spaces A by (2.4) or (2.5).
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II.2.iv. CHARACTERIZATION OF ULTRADISTRIBUTIONS WITH REAL-CARRIED

FOURIER TRANSFORMS.

The Fourier transform of an ultradistribution of class M is an analytic
functional on the space ZM and conversely, the Fourier transforms of such
analytic functionals are ultradistributions. Now, similarly to theorem 2.9,
we shall characterize those ultradistributions g which are the Fourier trans-
forms of real-carried analytic functionals p and then, both g and u, can be
written as sum of boundary values of analytic functions. As in the case of
distributions, such ultradistributions g are of "finite order", cf. defini-
tion 2.19 i and ii.

Let here At(k) be the Banach space of functions Y, holomorphic in the
open 1/k-neighbourhood of Bfl in Cn and continuous on the closure, such that
[¢(z)| exp M(Ixl/t) > 0 as z > = while Iyl < 1/k, with the norm Iyl get
= sup ]w(z)l exp M(Ixl /t). Then real-carried analytic functionals in 2!

bylsy/k (M)
(in { }U can be extended to elements of A', where

A det ind lim proj lim At(k)
(2.33) Ewm poo

(A ot ind lim Ak(k))

k > =

THEOREM 2.20. The following four statements are equivalent:

(1) u € A', where A is given by (2.33), and g = Fu, i.e., the ultradistribu-
tion g of class M is the Fourier transform of a real-carried analytic
functional y in z&.

(2) g is an ultradistribution of class (M) (of class {M}), which for every
€ > 0 can be represented as g = Pe(D)Gs' where PE(D) is an ultradiffer-
ential operator of class (M) (of class {M}) and where the continuous
function Gs on n‘l satisfies

le &) < x[eja o

(3) u is the sum of boundary values in A' of functions f holomorphic in
32 + 1CJ, such that for every C' cc CJ and every & > 0 there are
K= K(C;,E) >0 and t = t(Cé,e) > 0 (for every t > 0 there is a
K = K(Cé,e,t) >0) with

|fj(z)| < Kexp M(thzll), y ect, Iyl > ¢
J
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for j=1,...,k, where {C,}];=1 are open, convex cones 1in nf’ such that
the closure of their duali cover Hﬂr

(4) g is the sum of boundiry val:es of functions hj holomorphic in nﬁ1+ ic;'
such that for every C.' cc C, and every ¢ > 0 there are positive numbers

*
t = t(C;',e) and K = K(C;',e) (for every t > 0 there is a K = K(Cj',s,t)>0)

with
*
(2.34) |hj(;)| < K exp(M(thnl) + elgl}, ne cy'
for j=1,...,p, where the open, convex cones C; in nﬂ] are such that

*
the closure of the duals cover r" and where M 1is determined by M

according to (2.28).

PROOF. (1) = (2). On any e-nieghborhood Q(eg) of R” in ¢” there exists a

measure u8 which represents u on proj+lém At(l/s) and which satisfies
€

(2.35.1) J exp-—M(m(e)“x“)|du€(z)| < K(g)
Q(e)

for some positive numbers K(e) and m(e) depending on €.

(Let u satisfy for all ¢ > 0 and t = 1,2,...

|<u,w>| < K (t) sup |w(z)| exp M(Ixll/t), ¥ € ind 1lim At(l/e)
€ ||y||$s t > »

for some Ks(t) > 0 depending on € and t with Ke(t-+1) > Ke(t) for every € >0
and t = 1,2,... . For each ¢ > 0 we define a subordinate function ne (cf.
definition 2.15) by
def
M(n_(p)) = inf{M(p/t) +log(K€(t)/ )}

N Ke(l)

that ns(p)/p + 0 as p > » follows as in [42, after lemma 9.5]. Then for each

€ > 0 p satisfies

|<u,v>| <k (1) sup |¥(z)| exp M(n_(Ixl)), ¥ € ind lim A_(1/€).
€ ol < -] - t
yl<e t >

Hence for every € > O U can be expressed as a measure ue on Q(e) which

satisfies

(2.35.ii) J exp-M(nE(llxll))]due(Z)[SK(E)
(

Q(e)



50

for some K(e) > O depending on €.)
Now for any € > 0, let PE =

by lemma 2.16 (let PE

P
m(e)
P"e' where n, is determined by (2.35.ii)

and Pm(e)

and P, by lemma 2.16). Then PE(D) is an ultradifferentiable operator of
€

class (M) (of class {M}). For every ¢ € DM and for every € > 0, we get with

b = Fo

q,8> = <u, J 524 (pyae> =

du_(z)
€

ag} P (iz)
€

i<g,z>

[ {¢(€)P€(Dg)e
Q(e)

= J {Pe(—D)¢(£)} f
Q(e)

i€ ,z>

';;7;;7— dUE(Z)dE.

Hence for every € > 0 g = Fu = PE(D)GE, where

i<€,Z>
def e
By = f Pe(iz) due(Z)

Q(e)

is a continuous function on ﬂﬁ] which according to (2.26.i) and (2.26.ii)

satisfies

le_®)] = K(ede® o,

(2) = (3). Let U be the closure of an open set in Dﬁl and let € > 0. If

[ D(M) (¢ € D{M})' for every t (for some t) the following norm is finite

el |p®
(2.36) ol def up 5 - l? $<s)l ’
e eelU t o M
& lal

where the supremum is taken over all nonnegative n-dimensional multiindices
o and where Mlal is determined by the function M according to (2.24). Let

Ee t(U) denote the completion in this norm of the set of such functions ¢

and let

E () get ind lim proj lim E (U)

e+0 t+vo °©t
a
Eco B8 ind 1w ind Lin E, ().
e+ 0 t > o ’

, where m(e) is determined by (2.35.i)
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k
The restriction map from E(Hﬁg into jgl E(Uj) is injective and open, when

k
ng Uj = Bﬁ}. So, as in the proof of theorem 2.7; its transposed is surjective.

If g satisfies condition (2) of the theorem it belongs to E(ﬂﬁg Y,
Indeed, for every € > O there are t = t(e) > 0 and K = K(e) > 0 (for each t
there is a K = K(g,t) >0) with

n+1

(1 +1xl) |P1/3€(iz)| < K exp M("z"/O;t).

Hence for ¢ € DM' using (2.24) and the fact that for each z ¢ ¢n and multi-

index o there is another multiindex 8 with |B] = |ao| and ("z"//;)lal < ]zBI,
we get
2/3el gl
|<g,0>| < kv sup &*/31E o) 5 (D20 | <
£ >
| £l -4 R :
< K' sup e2/3€|€ { inf -—l——— J |Pl/3€(iz)e l<€’Z>¢(z)|dx} <

£ Iyl<2/3¢ (2m™

< K" sup{ inf exp[%e"5||+<£,y>+M("z|'//—nt)1l$(z) |} =

£ lyl<2/3¢
A - T I | I YR
v (/Ht)la'M! | . o th"MI |
Iyl <2/3¢ ¢ Iyl <2/3¢ ¢
< MOK" sup ——ﬂ;ﬁ———_ | J ei<g'z>Da¢(€)d€| <
a & | I
Iyl<2/3¢ ¢

N el gl 'DGQ(E)’ 1 ' ' m
< MOK sup e exp—3 elgrlagr < Kk "¢"IRn,E,t

9 t'mlml

Eenﬂl al

Conversely, the restriction to E(Hﬁﬁ of an element g € E(U)' satisfies
-1
condition (2) of the theorem. For F maps A continuously into E(Bﬂg , be-
cause for Y € A, by (2.24), we have

=1 1 el gl 1
I I —_— i
F oy E%,e,t' . supf e inf

T &0 2mn® t"a'M'u] Iyll<e

J ﬂzﬂlalle_i<g'2>w(z)]dx} <
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I
———%;-— sup{ inf &= E"+<£'y>} sup f |v(z) |exp M(Hzﬂ/é,)dx <
(2m)M, & Iyl <e Iyl <e

IA

IA

K J (1 +ﬂx|)_(n+1)dx sup ]w(z)|exp M(“xﬂ/é),
ﬂyn <e
xeIRP

where, according to (2.31) with m = n+l, t' determines t (t determines t').
Hence F-l g belongs to A' and in the proof of (1) = (2) it has been shown
already that then g satisfies (2). ”

Now chogse open, convex cones Cj c D@’, j=1,...,k such that j316§==n%

1 gj with gj € E(—E?)'. In lemma 2.23 it will be shown that for

Y € A and y € Cj

and let g = jg

1
i~ <F(gj)_5,w> = J fj(z)w(z)dx,

where fj is the function

: -i<g,z>
it <(g.)_g,el<E'Z>> def <lg,) g v
(2m) 4 J (2m)

£.(2)
J

which is holomorphic in R + iC,. For each € > 0 and C! cc C, there is a

§ = G(E,Cﬁ) > 0 such that <&,y> < -8lgl if £ € -C; and y € Cé with Iyl > .
Then for every € > 0 and for every C3 there are K = K(g,C') > 0 and

t = t(e,CS) > 0 (for every t > O there is a K = K(e,C%,t) >0) such that for

y € C; with Iyl > ¢

i lal
A5 e slel+<g,y> (tlhzl)
|f(Z)l SK"e & u—* < K su e ’ <
-c%,8,1/t -E;_ M
: ] / ge-C* lal
éi J

IA

Izl
K/ﬁo exp M(tlzl)

according to (2.24). Thus g satisfies condition (3) of the theorem.
(3) = (1). It is obvious that a sum of boundary values as in (3) determines

an analytic functional in A': for ¥y € A'

k : "
) j £ o(x+iy)¥(x+iy))dx| <
j=1 n J

k 3 -
< % z j exp{M(t'lz-ll) + (n+1)log (1+0xl)} ]W(zj)ldx 2
=1 =

(140 )7



53

<K sup_[v(z) |exp m(elxl),
xeIR
"y"Sg

which holds for each € > 0 by choosing v’ I = ¢ and for t',

€ Cé with Iy
hence t by (2.31), and K depending on € (for each t > 0, by choosing t'
according to (2.31) and for K depending on € and t).

(1) = (4). According to theorem 2.7 p € A' can be written as u = j£1 U, with
uj € A(Ej)', where the closures of the open, convex cones Cj c R cover nﬁﬁ
The same proof of theorem 2.7 applies if we had taken the closed neighborhoods
Qj(e) o {z|xsEj,"y"Ss} instead of the open e-neighborhoods of Ej in c".
(Then a space of analytic functions in Q is defined by functions holomorphic
in the interior and continuous on the closure of {.) Thus assume that uj is
an analytic functional with respect to these neighborhoods. In lemma 2.26
(which actually deals with the map (2.15) instead of the map (2.14) we have
here) it will be shown that the Fourier transform of such an analytic func-
tional is the boundary value of the function

i<
n (z) %€ <y, et 5%
3 J 2z

*
which is holomorphic in nﬂ]+ iCj. For every € > 0 there is a K = K(g) > 0
* * *
and for every Cj‘ cc Cj there is moreover a positive t = t(e,Cj') (for every

t > 0 there is a K = K(e,Cj',t) >0) with

|n.(z)| < kx sup exp{-<g,y>-<n,x>+M(t'lxl)} <
J xeC
Iyl <2
(2.37)

*
< K exp{el&l +sup[M(t'p) - Splnll ]} < K exp{M (thnl) +el&l}, n e c*r,
p=0 J
for t' depending on € (for every t'), & depending on C;' and with t = §/t',
where for the last inequality (2.28) has been used.
(4) = (7). This in fact will be shown in chapters III and VI. There the

function h, holomorphic in H§1+iAC*, satisfies
* *
[h(z)| < K expM” (thnl) +elzl), nec'
which is more general than (2.34) and its boundary value is the Fourier

transform of an analytic functional p carried by C with respect to neigh-

borhoods larger than e-neighborhoods, namely with respect to the neighborhoods
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Q(Elc*l) ge::f {Z['<§,Y> - <nIX><€u gu InEC*l ’EE]RH}-

Such an analytic functional p certainly belongs to A'. O

Note that in condition (4) of theorem 2.9 m(e) depends on € only,
whereas in (2.34) in the Beurling type case t depends on both C;' and e. This
is due to the different behaviour of the function M in case of distributions,
where M(tp) has to be replaced by t log(l +p) and where for M*(o) the func-
tion logc_l, o0 £ 1, can be choosen. Then M* satisfies M*(Gc) £ M*(o) + K

where K depends on § (cf. the use of M" in (2.37)).

REMARK. In [60] in the proof of theorem 2.9 the implication (4) = (2) instead
of (4) = (1) is shown, which is performed by integration of the functions h.
Then we get no information about the carrier of F-lh and in the above theorem
no such information is needed. A direct proof of the implication (4) = (2)

in theorem 2.20, is quite complicated and might be performed along the lines

of [42, proof of th. 11.5].
II.2.v. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS.

In the proof of theorem 2.20 a certain correspondence turned up between
the boundary value of an analytic function of exponential type and the sup-
port or carrier of its Fourier transform. We shall make this correspondence
more explicit. Let C be an open, convex cone in R and let a be a convex
function on C, homogeneous of degree one. The pair (a,C) determines uniquely
a closed convex set U(a,C), not containing a straight line, in 331 by

def {g]-<€,y> <aly),y € c}.

(2.38) U(a,C)
Conversely, each closed, convex set U in nxl, which does not contain a
straight line, determines uniquely an open, convex cone C in IR! and a
homogeneous, convex function a on C such that U = U(a,C) according to (2.38),
see [60].

The following theorems (th. 2.21 and th. 2.24) give the above mentioned
correspondence explicitly. They are more general than the corresponding
theorems for tempered distributions in [68, th. 26.2], but as soon as the
occurring concepts are introduced, the proofs are very similar. They may

be considered as a version of the real Paley-Wiener theorem for ultradis-
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tributions, whereas in chapter III complex Paley-Wiener theorems will be
discussed which, actually, may be considered as versions of the Ehrenpreis-
Martineau theorem.

First we state the theorem for distributions in D', whose proof can be

found in [60, th. 4.1], and then we prove the theorem for ultradistributions.

THEOREM 2.21.i. Let C be an open, convex cone in B{R let a be a convex
function on C, homogeneous of degree one, let U(a,C) be the convex set in
Bﬂ] given by (2.38) and let moreover f be a holomorphic function in D¥]+-ic
which satisfies: for every € > 0 and C' cc C there is a m = m(g,C') > 0 and

for every € > 0 there is moreover a positive number K = K(e,C',0) such that
l£(z)| < k(1 +1z21)™ expla(y) +olyl}, y e c, Iyl > e.

=< >
Then f(z) = Fle Ly gE](x) for some distribution g € D' with support in
U(a,C) satisfying condition (2) of theorem 2.9 and the boundary value of f

in Z' equals Fg.

THEOREM 2.21.ii. Let C, a, U(a,C) and £ be as in theorem 2.21.i, but let £
now satisfy: for every € > 0 and C' cc C there is a t = t(g,C'") > 0 and for
every ¢ > 0 there is moreover a positive number K = K(e,C',0) (for every

e >0, 0 >0, C' cc C and t > O there is a K = K(g,0,C't) >0) such that
(2.39) |f(z)] < K exp{M(thzl) +a(y) +olyl}, yect, Iyl > ¢,

—<E,y>
Then f(z) = Fle Ery gg](x) for some ultradistribution g of class (M) (of
class {M}) with support in U(a,C) satisfying condition (2) of theorem 2.20

and the boundary value of f equals Fg.

PROOF. In the proof of (3) = (1) of theorem 2.20 the behaviour of f only for
Iyl small has been used. Hence it follows from this and from (1) = (2) that
the inverse Fourier transform g of the boundary value of f satisfies condition
(2) of theorem 2.20. For ¢ € DM g is defined by <g,¢> = Jf(z)y(z)dx where
w:=F_1¢, and the integral is independent of y € C. The function & - exp-<§,y>

is analytic and therefore a multiplier in any space of ultradistributions.

So, for y € C we get

<g,e Y 45 = <g,e ¥ = f £(2) ¥ (x) dx,
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hence f(z) = F[e_<£'y>

ggj(x) and it remains to prove the support property
of g.
Let 50 be a point in nﬂ]\U(a,C), hence there is an Yq € C with "yoﬂ = 1

and with -<€0,y0> > a(yo). Furthermore, let n > 0 be so small that
-< > 2
Eo'yo a(yo) + 2n

and let ¢0 eDM has its support in {glﬂg—goﬂsn}. Then ¢O has its support in

ngl\ U(a,C), because for £ in the support of ¢0 we have
(2.40) <€i¥y> = <Ehi¥y> +<E-E .y > <-alyy) -2n+n =-aly,) -n<-alyg).

Let C' cc C be such that yo € C' and let 0 = % n. Then according to lemma
2.16 there is an ultradifferentiable operator P (D) of class (M) (of class
{M}, where the construction is performed after the definition of a suitable
subordinate function as in the proof of (1) = (2) of theorem 2.20 using the

constants K(g¢,0,C',t) in (2.39) for e = 1, 0 = l~n and C' fixed), such that

4
(2.41) J | f—li’(‘—’i*’i(-}’-’— lax < K exp{M(thyl) + a(y) + olyl}

for some K and t and for all y € C' with lyl > 1. Then we have

(2.42) 5,45 = | EEHY o | SECunr Ry 57 B gay
0 P(ix) 0 2 )n
b1y R U

Furthermore there are t' and-K' depending on P (depending on ¢O) with

lp(me‘g'y%o(s)l x| 2R Je'“i'”“

¢ (x)ax| <
(2w)n 0

2 e<£,y> J I P(-iz)

= @O(x)|dx < e<€'y>K' J [@O(x)]exp M(t'lzl)ax <
(2m)

v xl
M(t'lx )dx

IA

iyl
o<Eny>, Mt iyl J |

]Rn

¢0(x) e

Now we take y = Ayo, A > 1 in (2.42) and taking into account (2.40) and
(2.41) we find

l<g,0,>] < K6 )expM(tN) +aly) +% oA EHIEA) —aly) =nil.
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% n/t', successively, and taking
the limit for A - « we finally get <g,¢o> = 0. 0

1
Using (2.32) two times with € = Z—n/t and € =

In [60] and [68] it is shown that a distribution g (occurring in [68,
th. 26.2] and [60, th. 4.1]) with convex (or more general, regular) support
is a sum of derivatives of measures on its support. This is proved with the
aid of Whitney's extension theorem, which says that the restriction map from
C®”(L) into C%(K) is surjective if K is closed, convex (or regular) and con-
tained in the interior of L. For ultradifferentiable function spaces there
is no such theorem, except in the one-dimensional case, see [9], but "it is
quite plausible that this result can be extended to the higher dimensional

2)). Then we would be able to prove

case", see [42] (indeed, cf. foot note
a sharper theorem than just the converse to theorem 2.21, so that the esti-
mate (2.39) would be improved, see corollary 2.25 (cf. [60] for distributions
in D').

The above mentioned results on distributions with bounded regular
support have already been mentioned in [62] and for tempered distributions
with unbounded regular support in [67]. However, at some places, mostly
oriented to physics (see for example [12] and [58]) a particular . case of
this result is used which has been proved later [5]. It is called the lemma
of Bros - Epstein - Glaser and it says that tempered distributions with support
in a convex cone can be written as a higher order derivative of a continuous
function with support in the cone. Fortunately, it is this result that can
be generalized here, so that we are able to derive a converse to theorem
2.21 which is similar to the one for distributions, cf. [60]. Therefore, we
state the following lemma, which is a generalization of the Bros - Epstein -

Glaser lemma.?2)

1)

Indeed, if the support is a convex cone it is easy to see that the fact,
that a distribution is the sum of derivatives of measures on the cone, implies
that it is also the derivative of a continuous function with support in the
cone. The particularity lies in the fact that it only applies to some part-
icular, unbounded sets and not to general, regular sets.

2) On the other hand, with the aid of this lemma it can be shown that indeed

the restriction map from C;(L) into C;(K) is surjective in both cases (M)
and {M}, if K cint L is closed and satisfies some conditions, not as general

as regular, but more general than convex.
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LEMMA 2.22. Let U be the closure of an open set in nﬂ] such that there is a
fixed, convex, open cone C* with the property that for each £ ¢ U the set
{E—C*} N U is empty and let g be an ultradistribution of class (M) (of class
{M}) which satisfies condition (2) of theorem 2.20 and which has its support
in U. Then condition (2) of theorem 2.20 is satisfied for continuous functions

Ge which have their supports in U.

PROOF. Let C be the dual cone of C*, then it is possible to choose a base
{el,...,e } in R® such that C ¢, where I is the open, convex cone
{yly Zl yJ eJ,yJ >0}. Then we have : c C*. Every z € Cn can be written
uniquely as z = x+1iy = jé xj ej +1i jél y. e, and we use these (xl,...,xn)
as coordinates for R~ and {zj = xj +iyj}i=1 as coordinates for C.

According to theorem 2.20 g is the Fourier transform of a real-carried
analytic functional p. As in the proof of (1) = (2) of theorem 2.20, let p
be represented by measures ue satisfying (2.35.i) for some m(e) > O depending

on € and p ((2.35.ii) for some subordinate function n depending on € and u).

Let

n

d
P (2) B 1 (z,+1)%n (22, +2),
€ g J e 3
j=1
d
where h =§£ h (h gg£ hp ) is determined in the proof of lemma 2.16.
€ m(e) € €

Then P (D) is an ultradifferentiable operator of class (M) (of class {M}),
1
Il <l =
exp M(m(e) x )/é (- (exp M(n (le))/p (-ix)) 1S an L -function and l/ée( iz)
is holomorphic in any a-neighborhood of IR" in c? with o < 1 and in R + ifl,
where by (2.27.i) (by (2.27.ii)) it satisfies an even stronger estimate than

(2.39) with a = 0. According to [42, lemma 3.3] the function

[oN

£

def -1 1
AE(E) = F [

TR
€

is ultradifferentiable on nﬁ] and according to theorem 2.21 AE has its
support in T *. We will see that Ae is "sufficiently ultradifferentiable"
such that g can be applied to it. Another property of Ae is that PE(D))\E =6,
where § is the Dirac-8-function.

Now let

6 (&) & gxr_(5) £ <g A (E-m>



59
which exists because l/PE(iz) is holomorphic in Q(eg) so that we have

e

i€ ,;2> ei<g,z>
S oo w| =
P _(iz) | | j

€

W due(z)] =

le €| = |<n o
€ Z
Q(e)

ket &l J e—M(m(E)"x")ldue(z)[ £ Rlghes B

X
(Keeﬂgl! Je_M(ne(“x"))lduE(z)l . K(E)egngll)

by (2.35.i) (by (2.35.ii)). Furthermore Ge' as the Fourier transform of a

bounded measure, is a continuous function on Bﬂl which has its support in
*

U, because if £ ¢ U the set {£-T *} n U is empty since I * © C . Finally

we have
PE(D)G€=g*P€(D)AE=g*6=g. |

The condition on the set U is satisfied by the set U(a,C) given by
(2.38) if C is an open, convex cone not containing a straight line, or equi-
valently, if C* # #. In case we have a cone E with E* = @, for example if
E = n{ﬂ and hence U(a,E) is a bounded, convex set, we must think of U(a,E)
to be contained in a larger set U(a,C), where C is an open, convex subcone
of E containing no straight lines.

Let g be an ultradistribution of class M with support in the set U(a,C),
which satisfies condition (2) of theorem 2.20. It is shown in the proof of
(2) = (3) of that theorem that g belongs to E(nﬂﬁ' and the last lemma shows
that g can be considered as an element of E(u(a,C))'. Furthermore the func-
tion & - ei<£'z> belongs to E(U(a,C)) if y € C. Keeping these remarks in

mind we can interprete the following lemma which characterizes the Fourier

transform of g.

LEMMA 2.23. Let C, a and U(a,C) be as in theorem 2.21 and let g be as in
lemma 2.22 with U = U(a,C). Then

F[e—<£'y>g€](x) = <g,ei<€'2>>

P ; S n
and this is a function holomorphic in IR + i C whose boundary value equals Fg.
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*
PROOF. Let Yy €¢ 2 , y € C and if C = @ instead of C we take a subcone, also

M
denoted by C, containing y and no straight lines. Then using lemma 2.22 we

have

- i >
<Fe <g,y> el<grz

g, 4> = <q, J Y(x)ax> =
n

R

1]
]

f GE(S)PE(-D
U(a,C)

3

y | e8Py (x) axae
n
R

J I Ge(E)PE(-DE)ei<E’Z>d€¢(x)dx

R U(a,C)

J <g,el<E'Z>>w(x)dx
n
R

where € > 0 is choosen depending on y such that the integrals exist. It is

clear that

i< >
f(z) é_—e.f <g,el iz >

is holomorphic in Bf}+ i C and furthermore, a similar procedure to above,

shows that for y € C

<Fg,y> = <g, J el<g'2>w(z)dx> = J f(z)y(z)dx.
= =
Hence Fg is the boundary value of f in Zy 0

Now we are able to prove a stronger theorem than just the converse
to theorem 2.21.ii. Again, first we mention the theorem for distributions
in D' given in [60, th. 4.2] and then we prove the theorem for ultradistri-

butions.

THEOREM 2.24.i. Let C, a and U(a,C) be as in theorem 2.21 and let g be a

distribution in D' with support in U(a,C) satisfying condition (2) of theorem

2.9. Then the function f(z) def F[e'<£'y>

ggj(x), whose boundary value equals
Fg, satisfies: for every € > 0 and C' cc C there are N = N(g,C') > 0 and
K = K(g,C') > O such that

a(y)

[£(z)] < k(1 +1zhNe yec, Iyl > e.



61

THEOREM 2.24.ii. Let C, a and g be as in lemma 2.23. Then the function

-< > R
f(z) def Fle iy ga](x), whose boundary value equals Fg, satisfies: for every
€ > 0 and C' cc C there are t = t(g,C') > 0 and XK = K(g,C') > O (for every

€ >0, C' cc C and t > 0 there is K = K(g,C',t) >0) such that

(2.43) |[£(z)] < K exp{m(thzl) +a(y)}, yec', Iyl > e.
PROOF. According to lemma 2.23 we have to estimate the "'"U(a C).e.t norms
. o ’ ! ’
of the function el< 'Z>, defined in (2.36). For t > 0 we get
o i<E,z> ap —<€,y> _ 1 Mla] -<,y> (£l z1) Pug
|D e ] g |z |e < Mo o) e sup BT =
0t =051 56 56 5}
1 Ya
< = exp { M(tlzl) -<g,y>}.
My ol

Let C' cc C and in case C* is empty let Cj' j=1,...,£ be subcones of C
*

with C, # @ covering C and such that there are C,' cc C, which cover C',

and leg C.® € ) € Cj. Then there is a § = S(C;') > ijith —-<g,y> <

=Slyllgl if y e Cj' and & € Cj"*. For each n > 0 there are t' = t'(n) and

K' = K'(n) (for every t' > 0O there is a K' = K'(n,t')) with for ¢ € DM

|<g,¢>| < K'H¢HU( ; 3 = T aspeibs

a,C,),n,t'
J
. . N . def
It is possible that a(y) < O for some y, so in the following a ==
=min{a(y) |y € c', Iyl = 1} might be negative. Now in the above we choose
1 *
= % 8¢ and t' = o If £ ranges in Cj" while gl > -2 %-we estimate for

y € Cj' with lyl > ¢

selgl - % selel - % Slellyl < allyl < a(y).

N =

nlegl - <g,y> <
The remaining of U(a,Cj) is compact and there by (2.38) we have
exp{nlgl - <g,y>} < K" exp aly),

where K" > 1. Hence, for y € C' with Iyl > ¢

3 ]
1<£,z>>l K'K

0

- explutelzl) +aly)}. a

IA

<g,e
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COROLLARY 2.25. A holomorphic function £, which satisfies (2.39), satisfies

already (2.43), i.e., in (2.39) K is independent of ¢ and we may take 0 = 0.

Whether the ultradistributions g of theorem 2.24 are defined on certain
ultradifferentiable testfunctions in ]%1 or in real e-neighborhoods of U =
U(a,C) makes no difference due to the existence of ultradifferentiable func-
tions A which are identically one on U and zero outside an e-neighborhood
of U. So we can say that the Fourier transform F is a bijective map from the
dual of a certain space, say S(U), of ultradifferentiable functions defined
on real e-neighborhoods of the convex, real set U(a,C) onto a certain space
H of functions holomorphic in R + iC and of exponential type a in Im z.

Thus shortly
Fs(u)' = H.

In the next section we will discuss the case where U is replaced by a complex,
convex set § in ¢n and then g becomes an analytic functional p defined on

a space of functions holomorphic in complex neighborhoods of Q.
II.2.vi. THE CASE OF COMPLEX DOMAINS

We consider the following question. Let [ be an open, convex cone in
n
€ and let a be a convex function on [T, homogeneous of degree one, let

Q2 = Q(a,[) be the closed, convex set in ¢n given by
(2.44) Q) = {gI -Im <Z,z> < a(z), z e [},

and finally, let A(Q) be a space of analytic functions defined on certain
neighborhoods of Q in Qn whose growth at infinity is determined by the weight-
functions exp M(tlzll), and let H(T) be a space of analytic functions in ™

of exponential type a for Izl large whose behaviour at the vertex of I (i.e.,
for Izl small) is determined by the function M. Then one may ask whether it

is possible to find such conditions that the Fourier transformation F is a
bijective map from A(Q)' onto H(T), or shortly, whether

~

Fa()' £ (M)

In chapters III and IV this question is solved affirmative. In case



63

there exist testfunctions with compact support the injectivity and the sur-
jectivity of F present no problems (cf. the proof of theorem 2.21). In A(Q),
however, no such testfunctions exist and the proofs are very complicated.
Actually, using a generalization of Ehrenpreis' fundamental priciple (see
chapter IV) we will return to a situation where we do have C % functions on
real domains. For that purpose we have to identify ¢ with R x IRn = ]R2n
z = x+1iy © (x,y) and Qn with IRn X IRn = len by ¢ = £+in & (n,£) .Then we
will deal with distributions defined on a C % testfunction space in a neigh-
borhood of the, now real, domain Q Cimzn and with functions holomorphic in
]R2n+-ir'c C2n. In the following section we will give a lemma concerning this
situation, similarly to theorems 2.21 and 2.24.

Of particular interest is the case where [ is a tubular radial domain,
i.e., a domain of the form TC = D{1+ iC with C an open convex cone in B{H
and where f e H([") has ultradistributional boundary values on H{{ Then, if
we interchange the variables z and ¢ in theorem 2.20 (1) and (4) the surject-
ivity of F yields the proof of (4) = (1) of that theorem. If a, defined on

(o . 2 . n . i .
T , can be continued to a continuous function on R +iC', with C' cc C, i.e.,

if lim a(x,y) = a(x,0) exists as y > 0 while y € C', then
C
Qa,T) = {g|-<n,x> - <g,y> < alx,y), x € R", y e C},
given by (2.44), is bounded in the imaginary directions, namely

c
Q(a,T) < {z|lnl < max a(x,0)}.
Il xll=1
Also, it may happen that @ is not bounded in the imaginary directions and
then we give A(Q) the topology induced by ZM' so that the functions Y € A(Q)

have to satisfy

(2.45) [w(2)| < K exp{-Mm(thel) +LInl}

<g,z> —
! satisfies

on a neighborhood of 2, for some £ > 0 depending on {. Since el
: o C : :

this condition for each z € T , we can characterize the Fourier transform

of an element p € A(Q)', considered as an analytic functional in Zé carried

by 2, as in lemma 2.23.

LEMMA 2.26. Let C, a, Q = Q(a,TC) and A() be as above and let u € A(Q)'.

Then the Fourier transform of W is the boundary value in Dé asy >0, while
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y € C' cc C, of the function

(2.46) filz) 985 o W10

’

which is holomorphic in r+ic.
PROOF. For ¢ € DM and y € C let

b (o) gas J eI % %% (x) ax.

The limit of Riemann sums converges in the topology of the space A(Q) and
furthermore wn > wo in A(Q) as y + 0 while y € C' cc C, because -<§,y> <

<a(0,y) for all ¢ € Q. Therefore, we may write

<FU/¢> = <u, J el<c'x>¢(x)dx> =

= Pl o, J TR By s = i J <uC,el<§’Z>>¢(x)dx. 0
y>0 y>0
yeC! yeC'

In view of this lemma in chapter III we will define the Fourier trans-
form of u by formula (2.46) also in the general case where [ is not a tubular
radial domain. There we will treat F as a topological isomorphism and there-
fore, it is more convenient to consider L2—norms instead of sup-norms, be-
cause the strong dual of a projective (inductive) limit of Hilbert spaces
can be written as the inductive (projective) limit of the duals, see [40].
Using Sobolev embedding theorems, see [73], one can pass from the one norm

to the other.
II.2.vii. A PALEY-WIENER TYPE THEOREM.

In chapter III we will need the lemma given in this section. It is a
Paley-Wiener type theorem treating various, rather technical, cases which
will become clear in chapter III. We will prove only the case exposing the
most typical features. This section has little connection with the other
sections of this chapter and we place it here because the proof of the
lemma proceeds along the lines of theorem 2.21 and 2.24.

First we introduce some notations and definitions whose meaning will

be made clear in chapter III. If a is a convex function on the convex, open
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n ;
cone Il in € which is homogeneous of degree one, we mean by a + € the function

on [ given by

(a+€)(2) ge a(z) +elzl.

{rk}:-l denotes a sequence of open, relatively compact subcones of [T such
e fecl

that rk cc Fk+ cc [T and kgl Fk =[, and

1

(2.47) ro 2 ()2 € I E %}.

Then the neighborhoods (cf. formula (2.44))

(2.48.1) Qt gss Q(a-fiyr)

are the %H-neighborhoods in ¢n of @ = Q(a,l ), k =1,2,..., whereas the

neighborhoods

joR

ef 1

(2.48.ii) Q == Q(a+E,rk)

k
o
are larger neighborhoods. The subscript € expresses that we deal with e-

neighborhoods and the subscript c denotes the case of conic neighborhoods.
If not a particular case is meant we will denote these two cases by a sub-

script a. For the case a = € we will need the following set

(2.49)

1
z +I == z|z=E zO+z', z' e}

where z, € pr rl is fixed.

In particular we can choose [[ = TC where C is an open, convex cone
in H{R This is of interest because then one might consider holomorphic
functions in TC having boundary values on Bgl in some sense. We will now
introduce the above given concepts for this case. For rk we will choose

(2.50) @), L (zly e Cpr Ml < xiyl)

(o]
where {Ck}k=1 is a sequence exhausting C, and

(2.51) @ ) L 2]z e ), Iy > 23
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Furthermore, let yo € pr C1 be fixed and then let

(2.52.1) (Tc)]: Gef R TGC | o]l <%, ¥ & c,}
and
(2.52.41) (TC): def nr (TC)k u {z|lxl <x, ye ck}]

n 7
where ch means the convex hull. For a domain B ¢ € we define the tube domain

c2n by

n

T(B) c ¢ x ¢
(2.53) r@) £ ((6',6%) |1m 6! +i 1m 6% € B).

i C
Moreover, if a is a homogeneous, convex function on T such that a(x,0)
" . . ~ C
becomes unbounded, we change the function a into functions ak on T such that
for each k 5k is a convex function satisfying

~ def ~ €
ak(x,y) == ak(z) = a(z), zeT , Iyl > 1/2x

and for k = 1,2,...

gk(z) < Kk' y € Ck' Iyl < 1/x, Ixl < x
where Kk is a positive constant depending on k and a. For then the growth
* ~
of a function f satisfying |f(z)] < Kk exp{M (t"yﬂ)-+ak(z)} for Iyl small
*
and Ixl < kx is determined completely by the factor exp M (tlyl), while we
need the growth exp a(z) of f only on rays {Az|A >0} for A large and z € pr °.

If 1lim a(x,y) exists as y > 0, t € C, then a will not be changed and, for

k
convenience, in that case we denote

= def
k

We now define the functions

. k def 1 1
2.54. == o
( 1) ae(z) a(x,y ok yo), Yy € y.+C

k -
where ae should be continued as a convex function on TC,just.asak'onTCk, and



67

Fh

g k def ~
(2.54.i1) a(z2) EL 3 (2), ze (K.
(o) k e
Finally, if Q is the closure of a domain in nfl and M a continuous
function on @, let W?(Q;M(u)) denote the space of measurable functions f

i 5 2 5 (63 3
in @ for which the weak derivatives D f exist for |a| < m as measurable

functions such that the norm

) J {|p%€ (w) |exp M(u)}zdu]12
|a|<m 2
is finite. If Q is a domain in ¢n and M a continuous function on §, let
HW(Q;M(Z)) denote the space of holomorphic functions f in § such that the

norm

(2.55) sup |£(z)]| exp-M(z)
zeQ
is finite.
Besides the cases a = € and a = c, in chapter III we will consider four
other cases, namely ultradistributional boundary values of class (M) and {M},
distributional boundary values and boundary values in the sense of Fourier
hyperfunctions. Depending on these various cases we introduce the following

spaces: If [ = TC in the definition (2.47) and (2.48) of Qt, let

s mk,6) 22 W@ mlel /e) +kInl -m log(1+121))
(2.56) {

H (m,k,t) det H (T((Tc)k);M*(t"Im ezll) +ak(Im 0) +l lIm ol +

o © a [¢3 k
+m log(1+lel))

and let

S (k,m) aet wm(szk; -m log(1+lzl) +xlnl)

f a 2 o
def

1 Ha(k,m) Hm(T((TC)Z);log(1+"Im ezﬂ—m)-+a§(1m 6)-+% lzm ol +

+m log(1+lel))

) . .n
for a € {e,c}. If [ is an open, convex cone in € , let
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ef m, k 1
=== -——II— 1“'
S (m,k) w2(9 Ptk zl-m log(1+izl))

o]

ef 1 11 2 1
===} — . - 0" - —
Hs(m,k) HW(T(k zoﬂ )ia(Im 6" -5 Xy Im X Yo) +

(2.57) 1
+ E—HIm ol +m log(1+lel))

H (m,k) def H (T((k));a(Im 6) +i~IIm ol +m log(1+lel)).
c o

In the above defined S-spaces the set QZ has to be considered as a closed
set in 1R2n. .
If we take the projective limit of the S-spaces for m > », we get FS -
spaces (cf. [40], weakly compact, projective sequences) which have nice
properties, for example they are reflexive. If we would have S-spaces defined
with sup-norms instead of L2—norms, due to the fact that QZ is convex these
projective limits would even be FS-spaces (compact, projective sequences)
which, of course, have nicer properties. But the properties of FS*—spaces
are all we need and so we don't have to show that in the sup-norm case we get
FS-spaces. As a matter of fact it doesn't change much whatever norm we have,
L2—norm or sup-norm. This follows from certain Sobolev embedding theorems:
let wz,O(Q;M(u)) denote the space of c"-functions f on the closed set Q (in

the sense of Whitney) with the finite sup-norm

sup lDaf(u)lexp-M(u)

uefd

|al<m
such that moreover lDaf(u)lexp-M(u)-*O as u > @ in Q for Ia] < m; (by Riesz'
theorem the dual of such a space consists of weak derivatives of measures
on Q); let Q' be a closed convex set such that an e-neighborhood of Q' is

contained in , then according to [73, p.11 condition HS, and p.14 condition

1
H82] the embedding maps

Wm+n+1(Q;M(u) - (m+n+1) log (1+lull)) - w;(Q;M(u) -m log(1+lul))

oa'o

WO (@i a) - (mnt1) log (1+1ul)) > Wl (27:M(w) ~m log(1+hul))
'
are continuous.
Now similarly to theorems 2.21 and 2.24 we will obtain the following

Paley-Wiener type theorem.
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* *
LEMMA 2.27. Let the functions M and M satisfy (2.31), where M and M are
related to each other by (2.28) and (2.29). For every m and k, and for each
t there is a t' = t'(m,k,t) 2 t and for each t' there is a positive

-1
t = t(m,k,t"') < t', such that F and F ~ are continuous maps

F: Sa(m,k+1,t')' - Ha(m+n+1,k,t)

-1
F " H (mk+l,t') > S (m+2n+2,k,t') ",
Moreover, the maps

F: S (k+1,m)' > H (k,m+n+1)
o [0}

gL H (ctl,m) > S_(k,m+2n+2) "

are continuous and for each k there is a p > k such that

F: s (m,p)' > H (m+n+1,k)
o o

1, H (m,k+1) > S_(m+2n+2,k)"

are continuous maps for a € {e,c}. In all these cases F can be represented

as in lemma 2.23.

PROOF. We only prove the first pair, the other cases are similar. We embed
+n+1  _k+1

the space Sa(m,k+1,t')' into the dual of the space W: g (Qa -M(hell/en) +
’

Hk+1)Inl = (m+n+1)log(1+lzl)). Then as in the proof of theorem 2.24 we have

to estimate

(2.58) sup -<n,x> -<g,y>+M(lgl/er) - (x+1) Inl + (m+n+1) log (1+l ll)
Tefd o
o
C. k ; . .
for z € (T )a' where z = (x,y) has to be considered as the imaginary part

of 6. Let t" < t' be such that according to (2.31)
M(p/t') + (m+n+1)log(l+p) <M(p/t") +K'(m,t")

1 L} C < T i
and let Ck be such that Ck cc Ck cc K41 hen there is a 6k > 0 such that

for y € Ck and & € CL*

-~ < =& Iyllel
<ty> < =8 My ell.



70

We first estimate (2.58) if y € Cpr Iyl <1 and Ixl < k. If ¢ varies only
in Ci* we estimate (2.58) by

-<g,y> + M(lgl/£") - <n,x> - klinl - Inl + (m+n+1)log(i+lnl) + k' <

*
< sup {—th"ﬂyup + M)} + K <M (thyl) + K(m,t")
p>0

k+1
where t = th". If ¢ varies in the remaining part of Qa then lEIl is bounded

by a constant dk depending on k and also Inl is bounded, namely

V2
I < ni N N
nl sup a(x,yo) k= i dk
Il xll =1

Hence then (2.58) can be estimated by a constant depending on m,t'(or t")
according to (2.31) and on k, while t depends on k and on t" and t" on m and
on t' (or t' depends on m and on t" and t" on k and t).

Now let z be a point in the remaining of (TC)Z; hence for o = ¢

1 +
z €T /K yO e and for a = ¢ there is a p > k depending on k with y € Ck'
Iyl > 1 and Ixl < plyl. Then in both cases for sufficiently small e, and

0<e, <ce

k

(x,y-e, yy) €U,
where

Ut def . 1/2k yo+C

k def, C

Uc ———r )p+1'
In the a = € case we take 52 = 1/2k and for z ¢ Tl/k Yot we estimate (2.58)
by

TNex> - <E,y-e,y> - E,<E,¥,> + mgh/e™) + X" (m,t',k) <

< a(x,y-e.y.) + lzll/x+1 - ¢ 8 lel + m(lel/e™) + k" <

; 2°0 2k

(2.59.1)

IA

alx,y-1/2k yo) + lzl/k + M (1/2k 8,E" + X' <

IA

a(x,y-1/2k yo) + Izl /x + K,

where K depends on t', t" (or only t'), m and k.

If o = c we proceed as follows: since a is uniformly continuous on
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U: n {zlﬂzﬂ=1}, for each § > 0 there is an €, with 0 < €, < €y depending

on § and on k, such that

a(x,y-€ ) < a(z) +6

2¥0

where z denotes z/lzl. Hence for all z e (TC)p n {z|"yﬂ21}

- < a(z)l - - I <
a(x,y-¢€ ) a(z)l (x,y ezyo)ﬂ + 8l (x,y ezyo) <

2%0
< a(z) + &zl + 626 + € max |a(;)| < a(z) + szl + k" (k).
ze(TC)p

(2.60)

Let § = 1/k -1/k+1 then we estimate (2.58) by

3 a(x,y—ezyo) + Izl /k+1 - ezdkﬂgﬂ + Mgl /e") + k' <
(2:59.11) "
< a(z) + 8zl + k" + lzl/k+1 + M (ezdkt") + K' < a(z) + lzl/k + K

where again K depends on t', t" (or only t"), m and k.

For the proof of the continuity of F_l we proceed as in the proof of
theorem 2.21. Each f € H (m,k+1,t') is a tempered distribution in the variable
Re 6 for every Im 6 € (T )2+1; denoting the inverse Fourier transform of

this tempered distribution by F;%[f(Re 6 +1i Dne)]n we get

23

(F-lf)n = exp{<(n,&), Im e>}F;}[f(Re 6 +iIm e)]n

IE Ig

and this is a distribution in D' _. For a C 2 function ¢ with compact support

n,&
in Hﬂl x nxl and for o = € we have

i yo

1 1.2 f
£(67,07 + =— )1 J J $(n,E)
R R
n n

(2m) n LG

<F_1f,¢> =
(2.61.1)

y
2+-—9—ﬂmmg}dnee

i 1
exp[-i<(n,&),Re 6> + <n,Im 6 > + <&,Im O %432

whereas for a = ¢ we have

(2.61.11) <F lg,¢> =-——315; J f(e){
(2m) 2n

=

f ¢(n,&)exp[-i<(n,&) ,Re 6> +
R

n " n
+ <(n,&),Im 6>]dndg }d Re 6.
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The integrals exist and are independent of Im 0 € (Tc)z+1 because F—1[¢](6)
is an entire function which is rapidly decreasing in Re 6 for each Im 6 in
a compact set in IRzn. As in the proof of theorem 2.21 we use the growth of
|£(6) |, either for lIm 6l large in the set {(x,y)[y-—yo/k+1 ec, x e R'} if
o = € in which case ]f(61,62-+iy0/2k+2)| is O(exp a(Im 8)) for Im 6 - « on
e+l Iyl > 1/2k+2,
Ixl < (x+1)lyl} if a = ¢, to show that F_lf has its support in Q§+1.

any ray in TC, or for lim 6l large in the set {(X,y)|y e C

In order to find the growth at infinity of the C <= functions ¢ on which

F-lf can be defined, we write (2.61) in a different way. Let y = y(k) be so

large that
2n
[y + ) 62| 2 1 + lge ol°
j=1 J
for
def
= Iyl < Ixl < :
Im 0 € Bk {(x,y)ly € Ck+1' y 1, Ix k+1}

Then for such Im 6 we can write (2.61) as

<F_1f,¢> = J { [ £()exp —i<(n,E) ,6> d Re 6}
2n

; J
2n (y +26 22
tam R R R J
n n

£
(y - An,E) $(n,g)andg,

where we have set £ = [ (m+n)/2]+ 1. The third integral is independent of

-1
Im6 € Bk. Hence F "f, which is itself independent of k, is a sum (depending
on k) of derivatives up to order 2£ of a continuous function G ( depending

on k) which for each (x,y) € Bk satisfies

|G(n,€)| < K(f)K exp{M*(t'Hyﬂ) +<n,x> + <E,y>} <

K(£)K exp(M (t'lyl) + IylIEl + <n, x>},

IA

where K(f) denotes

k(£) ¥E  sup |£(6) |expl-m log(1+lol) —M* (t'l1m 621 )],

B
Imbe "

By (2.29) we can choose (x,y) € B, suitably with x = -(k+1)70, so that for

k
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lel sufficiently large
[cn,&)| < K(E)K exp{M(IEN/t") - (k+1)Inl}.

Thus if we consider the space of all ¢ with ¢ defined in the e-neighborhood

of Q§+1 where € = 1/k - 1/k+1 and with
IDa¢(;)| < K exp{-M(I&l/t*) + (k+1)Inl - (n+1)log(1+lzl)},|al <22

-1
for some K 2 0, then F "f is defined and continuous on this space. Embedding
into this space the space w2+2n+2(92;-M(ﬂ€u/t') + klinl - (m+2n+2)1og(1+lzl))
-1
we find that F is continuous from Ha(m,k+1,t') into Sa(m+2n+2,k,t')' for

a e {e,cl}. O
II.3. THE EDGE OF THE WEDGE THEOREM

In this section we shall give a short proof of the edge of the wedge
theorem for distributions and we shall extend it so that it applies to ultra-
distributions, too. We will be concerned with the general situation, cf, [17],
where the two cones need not be opposite each other. Our proof also applies
to the case of the Malgrange-Zerner theorem, cf. [49], where the functions
are holomorphic only in lower dimensional regions. Usually, the known proofs
of the edge of the wedge theorem are more complicated and use some functional
analysis (Schwartz' kernel theorem), see for example [64] or [8], whereas

our proof is based on Fourier transformation.
II.3.i. THE EDGE OF THE WEDGE THEOREM FOR DISTRIBUTIONS.

We shall derive the local version from a global one by a transformation
as performed by Borchers in the proof of [4, lemma 8]. In fact, [4, lemma 8]
contains already the edge of the wedge theorem for functions with continuous
boundary values, cf. for example [64, th. 2.14], which is usually needed in
the proof of the general case, cf. [64, th. 2.16]. Moreover, [4, lemma 8]
is of the type of the Malgrange-Zerner theorem, cf. [44, th. 3] or [49,
p. 286-287], i.e., it gives the analytic continuation of a separately holo-

morphic function defined, if n = 2, on
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{(21'22) | l21[<1ly1>01 ]X21<1,Y2=0} U

U {(Zl,zz) I lxl l<1,Y1=0, 'Z2|<1Iy2>0}’

where this function has equal continuous boundary values for Yy ¥+ 0 and for
Y, ¥ 0. We shall extend the method of [4] so that we get the result for
distributional boundary values and even for ultradistributional boundary
values.

It should be remarked that [4, lemma 8], as a particular case, yields
the Cameron-Storvick theorem, cf. [44, th. 4], i.e., the analytic continua-

tion into the domain
((21,22)]|21I<K,|221<K}

of a function which is separately holomorphic, if n = 2, in
{(zl,zz)||zlt<1,lx2|<1,y2=0} u {(zl,zz)llxll<1,y1=0,!22l<1},

where k = V2 - 1. This is a better constant than k = 1 —1//? of [4, th. 4]
which on its turn is better than the original k = 2/(5+2/§) of Cameron-
Storvick, cf. [44].

For our proof of the edge of the wedge theorem we need lemma's usually
preceding it, cf. [64]. In particular, we mention the following lemma's

whose proofs can be obtained from those in [64], cf. also the next section.

LEMMA 2.28. ([64, th. 2.6 & 2.10]). Let C be a convex cone in r" (not
necessarily open) and let Cr=gg£ {yly € ¢, Iyl < r}. Let £ be a holomorphic

function in an open neighborhood in c” of B+ icr satisfying
(2.62) [£z) ] < M) A+lxD)™Igl™, 3 € €,
*
where M(r') may depend on r' for O < r' < r, and let £ be the boundary
P *
value in S' of f as y > 0, y e C. Then £ € S' is such that for each

y eC_u {0}

_<Ely> =4 * '
(2.63) e F [f ]E € SE .
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LEMMA 2.29. ([64, th. 2.6 & 2.10]). Let f* € S' be a tempered distribution
satisfying (2.63) for y € (C) where C is an open convex cone. Then
Flo~<Er¥y>p-1p > ; : . . .on .

[e F "[£ 1_1(x) is a holomorphic function of z = x+iy in R + ic.,
which tends to Fle ife o 1[f*]E]x in S; on (BC)r and to £ in S' as y »> 0,

y € C.

LEMMA 2.30. ([64, th. 2.5]). Let £_ € D' be a distribution such that
—<t,y> R n <€, y>
e ! fE eSé for y € B, where B is some set in IR . Then also e fE eSé

for each y in the convex hull ch B of B.

THEOREM 2.31. (Edge of the wedge theorem for distributions).Let U be a domain
: 1 2 .
in n¥ﬂ let C and C be two open, connected cones in n¥’ and let r1 > 0 and

r, > 0. If two functions £, and f holomorphic in U + iCi and U + iCi '

respectively, have the samé distributional boundary value %* in D(u)', %hen
f* is the boundary value in D(U)' of a function holomorphic in Qanr+
+ich(cl U C2), which coincides with f1 and f2 on their common domains of
definition, where Q is a certain open neighborhood of U in @ not depending

on f1 and f2.

E%QQE. Let y0 € ch(C1 UC2) and first assume that y0 # 0. Let yl,...,yn €

eC UC2 be linear independent vectors such that ¥y € ch{yl,...,yn}. Since
analytic continuation is unique, it is sufficient to show that f1 and f2 can
be continued analytically into  n R+ ilint ch{O,yl,...,yn}]- We choose
yl,...,yn as the new coordinate directions of IJ& so that by a change of

coordinates (cf. [64, th. 2.15]) we may assume that

»

f = lim f_(xl,...,x_-+iy,,...,x )

y.+0 373 4
J

in distributional sense in {xllxll <1,...,lxnl <1}, where the n functions
fj are holomorphic in a neighborhood in cn of
(2.64) {z| Ix, | < 1,y1=0,...,lzj| < l,yj >0,...,|xn| < 1,yn=0]',
and that for some M > 0 and m > O there

Ifj(xll---lxj +iyj:---:Xn)] s Mlyjl_m

for j =1,...,n, cf. [49]. Let
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u, wj un
i def _jf e -1 e °-1 e -1
](ul,...,wj,...,u ) == fJ( = reeer T reeer g ) .

e 1+1 e “+1 e +1

] n
Then £ is holomorphic in a neighborhood in € of

{ﬂw=u+iv,usmﬂ,v1=0“.”0<vj<wﬂ,”.ﬂn=m

and it satisfies there for some K > 0 and k > 0

kil
e
k

|Ej(u g w g W e g W )l
1 j n lv.|

3

Every EJ has the same boundary value in D& and the functions

. 2 ..
h](w) ges Tk fj(w)

*
satisfy (2.62). Hence they have the same boundary value h in SG, cf. (2.19).
By lemma 2.28

-< g
e 5 "V3iTFT [ ]E € Sé, 0 < vj <7/2, j=1,...,n
and by lemma 2.30

<E'V>[F h ] E v e B gt {v|vj 209 = L e e il

Vite. v <m/2}.

According to lemma 2.29 h* is the boundary value of a holomorphic function
in I{]+ iint B which coincides with the functions hj on the parts of the
boundary of R+ i B where these are defined, because hJ(u o e g W pre v ) =
Fle <E 'Yy >F [h ] J(u). Since fJ(w) =% 2hJ(w) and since e% 1sjent1re,
it follows that the functions fJ can be continued analytically to the same
holomorphic function in IR +1iint B. By transforming back, we find that f
is the boundary value of a holomorphic function in Qnmr"+ i{yly, >0,j3=1,...,n}
coinciding with fj on the boundary, where Q is determined by thejtransforma—
tion of the domain IR" + i int B.

Finally, if2y0 = 0, we choose n vectors yl,...,yn € chC1 such that
-yl,...,—yn € chC and we perform the same steps as above such that now B

becomes {vllv1|+...+|vnl <m/2}. Then f1 and f2 can be continued analytically
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*
into a neighborhood of U in ¢” and £ is a holomorphic function there. 0

REMARK. It follows from the proof that the domain into which a function,
which is separately holomorphic in the regions (2.64) for j = 1,...,n and
which has the same boundary value for every yj + 0, can be continued contains

(cf£. [4])

V] {zlz, eCf(Al,...,X )}
Aj>0 J J n
Ato..+A =1

1 n

+
where Cj(A .,Xn) is the intersection of the upper half-plane with the open

1o
/ y d -1
circle with center -ip and with radius 1+p2 where p ge (tg 1/2Ajn) . This

yields the constant k = Y2 - 1 in the Cameron-Storvick theorem, cf. [44, th.4].
II.3.ii. THE EDGE OF THE WEDGE THEOREM FOR ULTRADISTRIBUTIONS.

The proof of th. 2.31 relies on the fact that we can suppress the growth
at inf%nity of the functions EJ by a function holomorphic in a tube, namely
- * =
by e w . Now, if f is an ultradistribution in DM(U)', the functions fJ have

boundary values in Dﬁ, because the growth of f1 and f2 for Iyl small is the

same as the growth of EJ for v, small, but fJ(ul,...,uj-+ivj,...,un) grows
faster than exponentially for lul > «. Then we do not have a function like

e v , holomorphic in a tube, which suppresses this growth. Therefore, we
have to generalize the lemma's 2.28, 2.29 and 2.30 such that they hold for
ultradistributions f* in Dﬁ and analytic functionals F-l[f*] in Zﬁ. The
proof of the generalization, lemma 2.32, of lemma 2.28 requires some inven-
tion, while the proofs of lemma's 2.33 and 2.34 are similar to those of

lemma's 2.29 and 2.30.

-< >
If p € Zﬁ we mean by e 2 () u

€ Z' that uC can be applied to entire
=

M
= > < >
functions of the form e Y0 Y(g) with ¢ € ZM and that |<uc,e C,YO w(C)>| <
SK"w"a for some K > 0 where “."a is one of the half norms defining the top-

ology of ZM'

LEMMA 2.32. Let C and Cr be as in lemma 2.28. Let f be a holomorphic func-

5 i 5 g o *
tion in an open neighborhood in c” of R+ iCr with a boundary value f 1in

d -1_ %
Dﬁ as y >0, y e C. Then u 28 ¢ [£] e Z, is such that

-<
o Cly>u

Zl
z € “m
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for every y € C U {0}.

oo
PROOF. Let {Kk}k_1 be an increasing sequence of convex, compact sets with

union IR + icr' Let H_ be the space of analytic functionals carried by Kk

provided with the FS-:pace topology defined by duals of sup-norms and
finally, let H gsg iﬁd lim Hk' where the injection maps are obtained as
transposed of restrict:o: maps. Then f is an element of the dual H' of H.
Now the Ehrenpreis —Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3],
describes the space A of Fourier transforms of elements of H very well: A

consists of entire functions h with the order of growth at infinity

exp(elgl +klnl + sup - <g,y>)
yeSk

for all € > 0 and for some k depending on h, where {Sk}:=1 is an increasing
sequence of compact subsets of Cr with union Cr' We give A the topology
which turns the Fourier transformation into a topological isomorphism. Then
there is an element p in the dual A' of A with

i< >
<“C'el Ce2s - £(2). z e RO+ icr.

—<
C'yO)tb(C) belongs to A and,

If Yq € Cr and ¥ € ZM the function 7 -+ e
in fact, it is the Fourier transform of the analytic functional defined by
@xs(yo)y where | € DM is the inverse Fourier transform of Y and where G(yo)

is the Dirac-delta function concentrated in the point Yq- Hence
-< > =
<use BY0%y (g)> = J £(x+1y )y (x)ax.

Furthermore, p is also a continuous linear functional on ZM by means

of the following definition

<y, P> def lim <uc,e_<c'y>W(C)> = lim J f(x-+iy)@(x)dx, Y e ZM.

y>0 y>0
yeC yeC

That the limit exists and indeed defines an element in ZQ follows from the

last equality and the data of the lemma. Thus we have u = F_i[f*] and since

for y, € C_ the space e %107z
0 ¥ M

—-<
$(z) =e C'y0>w(§) with ¢ € Zy provided with the half norms I ¢l

(i.e., the space of all entire functions
def

< >
At ¥o ¢Ha where "."a are the half norms defining the topology of ZM) can
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_<Cry>u

be continuously embedded into A, it follows that e c

'
€ ZM for y € Cr.
0

-<z,y>
LEMMA 2.33. Let u € Z' be such that e Sy u_ € Z' for each in the closure
S M Y

S
of an open, convex cone C with lyl < r. Then Fle “Sa¥n

u_1(x) is a holomorphic
—-< >
function of z in R + iCr, which tends to Fle Ly uC] in Dﬁ on the boundary

of C and to F[u] in D& asy >0, y e C.

PROOF. The space ZM is defined as the space of all entire functions with
certain finite, weighted, sup-norms. Let C(ZM) be the space of all continuous
functions with the same finite, weighted, sup-norms. Let u be an extension

of U to C(ZM)'. Then by Riesz' theorem for each testfunction Y can be repre-
sented as a measure §(Z) on Cn. Furthermore, let y0 € Cr. Then as in [64,
proof of th. 2.6, formula 2.70] it is shown that there is an € > 0 such that
/1+lel 2 e-<Cry>'ﬁ'

€ E )
e = o
[ =1 C

for y in a neighborhood U(yo) of Y contained in Cr and for some elements

1 e C(ZM)' depending on y. Then for y € U(yo)

: k 3
f(z) 4 J el<C'Z>dﬁ(C) = z J exp(i<f,x> -¢ 1+"£"2)dﬁj(g)

=1 &
n

exists and is holomorphic in " + iU(yO). By analytic continuation we get a
function £ which is holomorphic in r” + iCr. Now Fubini's theorem shows
that F[e_<€'y>uC](x) = f(z). Furthermore, let Y, € (BC)r, let 0 and
let y2,...,yn € Cr such that the convex hull B of {yo,...,yn} has a non-

empty interior. Then as in [64, proof of th. 2.6, formula 2.68] we can write

n
-< >~ . =< >~ =i< >
e Toe¥ e = ] aly,8e £.v5 He e
5=0
for y € B, where a(y,£) is a continuous function, bounded uniformly for all
e Do
£ € IR and y € B, cf. the proof of the next lemma. Therefore, e oy uC
-< >0 -
tends to e o'¥1 M in C(ZM)' as 'y >y, ¥y € Bor to M, in C(ZM)' as y > 0,
y € B. Hence the statements of the lemma follow. a
-< >
LEMMA 2.34. Let u € Z' be such that e 24 “; € Zé for y in some set B in
-<
R". Then also e °'¥ uC € Zé for all y € chB.
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PROOF. It is sufficient to show that for Y0¥, € Band y = ty, + (1 —t)yzl

=< > ~ s
0<t=<1, e Ery uC € 2'. Let U € C(ZM)' be an extension of u, then also
<g

e-<€'y1>ﬁ and e 'y2>ﬁc belong to C(ZM)'. The continuous function & —
“<§ly>
def e
a(ly,g) ==

e'<€rY1>,+e<§:Y2>

is bounded in nﬂx (see [64, proof of th. 2.5]). Accordingly

-< > -< S -< Dirns
e iy i = aly,8e 141 uc+a(y.£=e ¢ € C(ZM)',
-< >
so that also e Ly u_ € C(ZM)'. Therefore, its restriction to ZM, which
- >
equals e Loy Moo belongs to Zy. 0O

Now the proof of the edge of the wedge theorem for ultradistributions
is obtained similarly to that of theorem 2.31 using the above given lemma's
instead of the lemma's of the .last section. So we have got the following

theorem.

THEOREM 2.35. (Edge of the wedge theorem for ultradistributions). Let Cl,

C., £, and £, U, r, and ¥, be as in theorem 2.31, where now £, and f2 have

2 i ¢ 2 1 2 1
*
have the same ultradistributional boundary value f in DM(U)'. Then the

conclusion of theorem 2.31 holds in DM(U)' instead of D(u)"'.

REMARK. More general edge of the wedge theorems exist, where f* is a sum of
boundary values of more than two functions, see for example [31] and [43,

p. 40-81]. If distributional boundary values are concerned, this theorem
has been shown by Martineau in [49] and an easy proof by induction has been
given by Bros & Iagolnitzer in [6, section 7], where first the notion of
essential support is introduced by means of a generalized Fourier transform-
ation. This method might be extendable to ultradistributions, but a forth-
coming paper on this subject, announced in [6] and in [31], has not yet

appeared.
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CHAPTER i

FOURIER TRANSFORMS OF ANALYTIC FUNCTIONALS
WITH COMPLEX, UNBOUNDED, CONVEX CARRIERS

The theorems of this chapter describe the Fourier transformation F as
a topological isomorphism between spaces of analytic functionals u carried
by closed, convex sets © €, and spaces of holomorphic functions £ of exponent-
ial type in open, convex cones I c Cn. The functionals u are carried with
respect to some class of open neighborhoods of Q@ and to some class of weight
functions on these neighborhoods. This determines the behaviour of f near
the vertex of [T and conversely. The convex set Q itself determines the cone
[T and the type a(z) of f, and conversely. These theorems generalize the
Ehrenpreis-Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], where §
is bounded and N = Cn, and the one dimensional version due to Polya, [3,
ch. 51.

In [65, th. 2.22 & 2.23] the Ehrenpreis-Martineau theorem is given
for polydiscs @ and in [73] F is treated as a topological isomorphism for
this case. Then the proof can be given directly, but for general, bounded,
convex sets Q the proof is more complicated. The proof given by Ehrenpreis
in [16] is based on the case of polydiscs, which by the Oka embedding can
be extended to convex polyhedrons, using the fact that a bounded, convex set
can be approximated arbitrarily close from the inside by convex polyhedrons.
This is no longer true for general, unbounded, convex sets. HOrmander's method
which uses an existence theorem for the 3-operator, see [30, ch. 47, applies
directly to general, unbounded, convex sets §i. Therefore, in case Q is un-
bounded we will follow the method of [30, ch. 4] for proving our theorems,
but since we deal with non-entire functions f we have to pay attention to
the growth of f near the boundary of .

Unlike in the case where  is bounded the proof of the injectivity of
F is not trivial if Q is unbounded. In this chapter we shall reduce the
proof of the bijectivity of F to two problems, which will be solved in chap-
ter VI by a generalization of Hérmander's method of [30, ch. 7]. On the
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other hand, this is, in fact, just a version of Ehrenpreis' fundamental
principle with non-entire functions and looking at it in this way, our proof
follows Ehrenpreis' method. The generalization of Ehrenpreis fundamental
principle to non-entire functions will be treated in chapter IV, where also
the two problems of this chapter will be reformulated in a more general form.
In particular, it is interesting if [ is the open cone TC g§£ Hgl+ iC
where C is an open, convex cone in B¥t Then functions f, holomorphic in TC,
may have ultradistributional boundary values on r" (or in the limiting
cases, on the one side distributional boundary values and on the other side
boundary values in the sense of Fourier hyperfunctions). They are the Fourier
transforms of analytic functionals in Zﬁ carried by certain, convex sets §
which may be unbounded in the imaginary directions. Then a more complicated
aspect of the topology of ZM arises and the testfunctions Y on which the
analytic functionals act satisfy (2.45) on a neighborhood of Q. This actually
expresses the fact that we deal with ultradistributions defined on ultra-
differentiable testfunctions with compact support, which is so if M satisfies
(2.20). However, in this chapter we shall not need this property and our
theorems remain valid for ultradistributions defined on quasi-analytic test-
functions. Then, if Q is unbounded in the imaginary directions, there is
perhaps no other reason for requiring the analytic testfunctions to satisfy
(2.45) on neighborhoods of § than that the theorems are true as they are
stated here. Anyhow, we shall not deal with the ultradistributions as bound-
ary values themselves, but we shall define the Fourier transformation F mere-
ly by formula (2.46), which in case M satisfies (2.20) is justified by

lemma 2.26.

III.1. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS;

FOURIER TRANSFORMATION AS A SURJECTION.

In this section we consider functions f, holomorphic in a cone [ in
¢”, of exponential type a(z) for lzl large, which do not satisfy growth
conditions near the vertex of . Such functions turn out to be Fourier trans-
forms of analytic functionals with unbounded carrier Q(a,[ ), cf. (2.44). We
shall discuss two cases: one, denoted by the index €, corresponds to analy-

tic functionals with carriers with respect to e-neighborhoods, i.e., with
o

k=1’
denoted by the index c¢, corresponds to conic neighborhoods, i.e., neighbor-

hoods of Q(a,l) of the form Q(a-fl/k,rk), ¢fs (2.48.11). TET = TC the case

respect to the neighborhoods {Q(a + 1/k,M)} cf. (2.48.i), and the other,
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of conic neighborhoods is perhaps more suitable for describing quantum field
theory, cf. [53].

Let [ ¢ c” be an open, convex cone, a a convex function on [T which is
homogeneous of degree one, {[—k}:=1 an increasing sequence of open, convex cones

exhausting " and let zy € rl be fixed with "zoﬂ = 1. Then the collection
L=

{1/x zo+r}k_1 given by (2.49) exhausts [[. In the case denoted by €, let the

convex function ai on 1/k zo-+r be defined by

(3.1.1) a]i(z) get maxe a(z +w)
Ilwll <
wi dk
€
i r r
where 6k > 0 is so small that z+w € 1/k+1 zO +[" for z € 1/k zO-+ and

lwl < Gi. Then after a detailed inspection one can see that for each k there

are q 2 p 2 k and a constant Kk > 0 such that for z € 1/k z, +I

a(z —1/2q zo) < a;(z) < al(z -1/2k zo) + (1/k —l/p)"zﬂ<+Kk.

Hence we have the following equality of spaces

(3+2:1) Exp€ gef proj lim H_(1/k z

+Ma(z) +1/xlzl) =
k > ® k

0

= proj lim H_(1/k zo-+r;a(z —1/2k zo) +1/klzl),
k - o«
where the space H_(2;M(z)) has been defined in section II.2.vii by means of

the norm (2.55). According to [73, cond. HS, and H82] Expe is a nuclear FS-

1
space (it can also be written as projective limit of Hilbert spaces). If a

is a bounded function on pr [, the space ExPe may also be written as

(3.3) Exp = proj lim H_(1/k z, +Ma(z) +1/xlzly,
€ %
cf. (2.60).
In the case denoted by c we exhaust [ by the sequence {r(k)}:=1 given
by (2.47). For each k let GE > 0 be so small that for z € [ (k) and for
lwl < &€ I (k+1 < =
w 6k we have z+w € [ (k+1) and a(z +w) a(z) + (1/k 1/k+1)“zﬂ-+Kk for

some Kk > 0, cf. (2.60). Then we define for z € [ (k)

(3.1,ii) ai(z)ﬁ max a(z +w)
“w"SGﬁ
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and we have the following equality of spaces

(3.2.4ii) EXp def proj lim H_("(k);a(z) +1/klzl) =
c k > =

proj lim H (M (k);a’ (z) +1/klzl).

k » @

Furthermore, let for a = € or c

(3.4) K
a

fol)
H

e

H, (2% - 1/klgh)

where ﬂ: is given by (2.48) and let

ol
H

e

ind 1lim Ak.
kK > @ %

(3.5) A
a

According to [73, cond. HS, & Hsz] Aa is a nuclear DFS-space (it can also

1
be written as inductive limit of Hilbert spaces), hence the strong dual A&

is a nuclear FS-space. In particular A& is bornologic.

For both a = € and a = c¢ the set
i< >
i B8 (et LoE |z e T}

is a subset of Aa and it follows from an easy estimate (as in the proof of

lemma 2.27, formula (2.59)) that the map
(3.6) F: a' > Exp
o o

is bounded, hence continuous, where F is defined by

(3.7) Fu) () 985 <uc,ei<C'Z>>

' M eA'.

F is sometimes called the Fourier-Laplace or Fourier-Borel transform if the
factor i isomitted, but we merely call F Fourier transform and we shall see
later that there is an analogue with the Paley-Wiener theorem if we maintain
the factor i in (3.7) as we do here. In the next section we shall pay atten-
tion to the injectivity of F and here we shall show that F is surjective.
Then it follows from the open mapping theorem that the inverse F-l of F is

continuous.
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*
If for each p = 1,2,... 8 > 0 is such that for z e [ _and ¢ e[’
p p p+l

Im<g,z> = 6p||l_:|“|z||, then for k 2= max(p+2,p/60) we have
e

(3.8.1) e 1% At, z e (p).

Similarly, for each p there is a k > p such that

(3.8.11) & %% ¢ A]:, zel/pzg+l
Denote
88 a2 o, T 2B ran.
£ (o] )

Now in view of (3.8) for every f € Expa we have to find for each k a contin-
k k
uous linear functional u, on Aa with

(3.9) f(z) = <(uk) . el<c'2>>, z e P,
a't a

Indeed, let Xk be the closed subspace of At defined by completion of the

i< > k
set (e %’Z |z e ri} in A , where p is determined by k according to
(3.8), then the closed subspace Za of Aa' defined by completion of the set

L in Aa’ can be written as

A = ind Lim X
a
k > =

cf. [20, §25.13] or [40, th. 7']. By (3.9) we have

so that (uZ}:=1 determines an element N € X& with F(Q) = £. Finally, accord-
ing to the Hahn-Banach theorem and to definition (3.7) there is a u € A&
with F(u) = £.

As in the proof of the theorem with entire functions in [30] we try
to extend f as a holomorphic function F in 2n complex variables 6 satisfying
a certain growth condition and we apply the Paley-Wiener theorem of lemma
2.27. If we identify cn withimzn, we will write [T for both, cones in cn or

: 2n k
in IR . Now assume that for each k we have found a function Fa of the complex
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2 k+2 .
variables 6 = (91,62) ec’ x ¢ = C2n holomorphic in R+ ira , which sat-

isfies for some M, > 0 and mk >0

k
(3.10) lpa(e 09| < M (1+lel) “expla o) (Ime) + 1/, NIn@ Y.
2n

Im B el":'zc R

and
(3.11) Ff(iz,2) = £(z), z e P c ”
where we take a?k+2) different from a only if a = € and a is not bounded on
def
i i = - g o 2ud . d
pr [, in which case a(k+2)(z) al(z 1/k+2 zo), cf. (3.2.i), (3.3) an

(3.2.ii). Then Fa belongs to the space Ha(m,k+2) defined by (2.57). From
lemma 2.27 it follows that FZ can be written as

ei<n,91> +i<£,92>

k k P
= 1
(3.12) Fa(e) <(ua)n, >, Imb6 € o

E'

for some u]; € Sa(m+2n+2,k+1)', cf. (2.57). From (3.11) formula (3.9)
follows and using [73, cond. Hsl] for ¢ € Az we get

"“Z'¢>| S K¢ ! I J 5% (0) | Xexp 2o}
|£|Smk+2n+2 k+1
a
+ (1 +H;H)2mk+4n+4dndE]5 <

IA

sup ]De¢(c)|exp 1/klzll <
1£] <m, +2n+2 gen§+1

IA

K, supk|¢(c)|exp 1/x Izl
geﬂa

k+1
because an e-neighborhood of Qa is contained in Q: and for any m
(3.13) A% c s (mk+1).
a a* !
k . " : ; : k -
Hence uu determines a conintuous linear functional in (Aa)' and (3.9) is

valid, whenever we can find functions Fz satisfying (3.10) and (3.11) for

fe Expa. Then the map (3.6) would be surjective.
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Since Expa can also be written as projective limit of Hilbert spaces

and since the function a(Zk) may be changed into az given by (3.1.i) and

(3.1.41), cf. (3.2.1) and (3.2.ii); it is sufficient if (3.10) is satisfied
2 €
with an L -norm instead of a sup-norm and with weight functions exp —ak(z)

instead of e:-{p-—a8 (z) . Precisely, this means that (3.10) may be replaced

(k)
by

]Fk (91 . 62) Izexp-2{ai (Im6) +1/kl Imoll }
J & ar(e) <
k

lell)™k
®*%ich Ty DN

for some (other) positive numbers Mk and m depending on k, where A(8)

. 2 = k
denotes the Lebesgue measure in € n. Then the extensions Fu of £ follow

2 2
exactly from the following theorem, if we choose there § = IR n+ i €« n’

_ .2n k _ 2n . k+1 B . _
Q =R +1chf_a,€2 = R +1chl_ol ,sl—18n+1,...,sn—162n and ¢(8) =

1 2
2a(Im 6) + 2/klIm 6l or in the o = € case where moreover a is not bounded on
2
prl, ¢(8) = 2a(Im 61— NXge Im 6 -nyo) + 2/klIm 6l with n < 6;, cf. (3.1.4),
so that these functions ¢ are convex, hence certainly plurisubharmonic.

THEOREM 3.1. Let a n-k dimensional hyperplane in Cn be given by the linear

functions

By = B0 gr=rarly)

k= Sk Opprro--00p)

or shortly w = s(z) with w € de, z € ¢n—k. Let Ql c Q. < Q be pseudoconvex

2
domains in d:n such that an e-neighborhood of Ql, with respect to closed
polydiscs in the first k coordinates, is contained in Q2, 1485

0 0
(3.14) {0|]0.=0.] <€ for J = 1,...,k30,. =0,
l i 3 J RS j

for j = k+1,...,n;e° € 91} c 92.

Furthermore, let ¢ be a plurisubharmonic function on Q and for 6 € Ql let

def
¢€(9) == max{q&(e1 +w1,...,6k+w ,0

<
. k+1,...,en)llel < e,

j=1,...,k}.



88

def

Finally let Q' == {z](s(z),z) € Q} c Cn_k and 93 def

{z|(s(2),2) € Qj},

£
j =1,2, and let ¢' be the function in Q' given by ¢'(z) gaf ¢(s(z),2z). Then
for a given function f, holomorphic in Q', there exists a function F, holo-

morphic in Q,, which satisfies

1

(3.15) F(s(z),z) = f(z), 1z € Qi

and for some K > 0, depending only on k and sj, 3 = 1,0 enoky

IF(6)|2exp-¢€(9)

(1 +|6|2)3k

1 92

(3.16) are <k e ¥ J |£(2) | 2exp-¢" (z)aA (2)

2

(where ) (0) and )(z) denote the Lebesgue measures in c” or Cn:kvrespectivelg),
if f is such that the right hand side is finite. F depends besides on f also

on Ql' € and ¢.

PROOF. Let ¥ be a C2—function in € with values between 0 and 1, which is
equal to 1 in the disc with radius 1/2 e, which vanishes outside the disc

with radius € and which satisfies

() |[<=, pec

i

X
€

for some K > 0. Define the (0,1) - form V' (p) def 3y/dp (p)dp and let for

3 = 1 eesk

p. = p.(6.;2) def ej —sj(z), zeC

Hh

n-k

def lf li x
F(6) == Y(p.(6.:86 PR—Y T 5> o — {1
j=1 j 3 k+l n k+1 n 421 meyed

w(pm(em;ek+1""'en))}pj(ej;ek+1""’en)Uj(el""'ej;ek+1""’en)
for certain functions Uj of n-k+J complex variables, where an empty pro-
duct is defined as 1. For 6 € Ql F(8) is defined, because then

k .
jgl (Pj(ej:Z)) =0 for z ¢ {zlaw e C ,ij —sj(z)l <efor j=1,...,k,
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(w,z) € Ql} cQl. ITf 6, = s,(8

5 j 5 k+1""'en)' i85, 0F pj = Oy for J = lijesssKy

we get (3.15).
Now we will choose the functions Uj with a suitable bound such that F
is holomorphic in Ql, that is such that oF = O there. First we write F in a

different form, namely denote

def j+n-k
6l5] ges (61,...,6j;z) € CJ n

for z € ¢n—k' let

- def
GO(G[O]) = Go(z) = f(z)

and let
def
G, (6[3j]) == Y(p.(6,;2))G, ,(6[j-11) -p_. (6 ;2)U_(8[3])
R U‘PJ B =S s st B Blade i

for j = 1,...,k successively, then

Gj is defined in

Q3] gat {6[j]]3w € Ck-J, wm-sm(z)l < e form = j+1,...,k

j+n-k
and (8, ,.+ /8 W, ysennsWyi2) € Q) < ™

i+ k

iE Gj-l is defined in Q[j -1].

The sets Q[j] are in general not pseudoconvex, so we will define
pseudoconvex, open sets a[j] containing Q[jJ], such that Gj is defined in
Ql3] if Gj—l is defined in a[j—l]. For that purpose we first note that

it . A (3+L, os s, k)
Q3] = {GEJ]I(91,...,6j,sj+1(z),...,sk(z),z) €q }

(3+1,...,k)

where QI denotes the e-neighborhood of Q, with respect to open

1

polydiscs in the (ej ,...,Ok)-space, 1.6, ,

+1

oI+, 0. 0k) daf

g {elem=ef’n for m=1,...,j,k+1,...,n and

0 5 : 0
|6m-6m| < e for m=3j+1,...,k with 6 € Ql}.
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(3+1,...,k) (3+1,...,k)

In general 91 )

is not pseudoconvex and we denote by H(Q

the smallest, open, pseudoconvex set containing it. Then we define

def (F#1,; oo e gk)

Qry) == {6[j]|(81,...,6j,sj (2),...,8, (2)i2) € H(@Q, )},

which according to [30, th. 2.5.14] is pseudoconvex. If we show that under

the projection ﬂj: o[3] » 6[j-1]
(3.17) nj<§[j] n {e[j]||8j—sj(z)| <el) cQlj-1]

the stated conjecture follows.

Now
. (@37 n {03116, -s_(z)l<eh) = {e[3-11|(6,,...,6, ,
J j 3 1 j-1
5,(2) .5 (2)i2) ¢ I P
where Q(J) denotes the open e€-neighborhood of a domain @ with respect to

discs in the Bj—plane. Let Q(j) denote the open e-shrinking of Q with respect

to discs in the ej-plane, i.e.,

o . def

) {z € Ql(zl,...,zj~+wj,...,zn) € Q if ijl < el

If Q is pseudoconvex Q(J), in general, is not, but Q(j) is pseudoconvex (a
similar proof to that of [57, p.97, Satz 7] shows that Q is pseudoconvex

(3)
in every direction and according to [57, p.111-112 Korollar 14.1] Q is

k) (3)

pseudoconvex) . Thus (H(Q(J"' )) 5) is pseudoconvex and clearly
(3008w k)

Q{I*le k) (Q(J:---'k)) (§) € (H(Q

(j+1,...,k)) & (H(Q(J’.”'k ))( and hence

)) (5) - Accordingly
H(Q

(3.18) (H(Q(J+1,...,k)))(j & ((H(Q(J""'k))) . )(j) (3ye0.,k)

3) c H(Q

),

which implies (3.17). Therefore, Gj is defined in a[j] if Gj-l is defined
in Q[3-11.
By (3.14) we have Q[0] c Q! and since Q! is pseudoconvex, we get

N 2 2
Q[o] Qé. Therefore, G, is holomorphic in Q[0]. Thus Gj is holomorphic in
aryl if Gj

0

-1 is holomorphic in 5[j-1] and if Uj satisfies
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= def <
3 = 3 == -1y’ (0. 52)) (0. 52)
(3.19) BUj(G[J]) gj(SEJ]) Gj 1(8[] 1) (PJ( j /PJ 3

in ﬁ[j]. Then F is holomorphic in a[k] = Q[k] = Ql' Since by assumption Gj—l
is holomorphic in a[j-l], 1/p is holomorphic outside any neighborhood of zero,

Y'(p) = 0 in a neighborhood of zero and since EW‘(pj(Bj;z)) = 55¢(pj(6j;z)) =0

(because ¥ is a C2—function), we get ag, = 0 in a[j]. Furthermore, let uj be
the analytic map of ¢J+n—k into cn given by
.4, def i
uj(e[j]) == (61-+w1,...,9j-+wj,sj+1(z),...,sk(z),z)

for some w ¢ € with Iwml <eg m=1,...,5. Then by (3.18) uj(afj]) =

P PI.

1 and therefore a function ¢j can be defined on Q[j] by

2

$,(003) def max{6 (u (6031 [lw | < e m = 1,...,5).

For each w € ¢j with lwml < e form=1,...,j the function ¢(uj(9[j])) is

plurisubharmonic in a[j], cf. [30, th. 2.6.4] and if we show that ¢j is upper

semicontinuous, it follows from [30, th. 1.6.2] that ¢j is plurisubharmonic

in Q[j]. Assuming this for the moment we continue the proof of theorem 3.1.
All the conditions of [30, th. 4.4.2] are satisfied now and this

theorem gives a solution Uj of (3.19) in afj] with

exp-¢j(9[j])
2,331

IUj(e[jJ)|2
a3l

arel3) <
(1+le[5]I

= e |
exp fj( (3D
2,3G-D

< f |gj(6[j])|2 ar(eljl.

% 1+lel51
S051 ( [3]
. ; . 2 2 2 2
Next we estimate Gj in terms of Gj—l' using (a+b) < 2a +2b, |pj(6j;z)| o/
A1+ﬂ6[j]"2) < M depending on S5 and ¢j(6[j]) > ¢j_1(6[j—1]) for every ej

with |6, —s_(z)] < e:
J ]

exp -¢_(6[3])

12 .
|Gj(e[31)| 773 areril <

SC53 (1+hef510
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exp-¢j_1(9[j—1])

736G D) ar(eli-11 +

IA

2me? J ch 1(e[j—1])l2
. ey

80511 (1+lef5-11
exp—¢j(9[j])

736D ar(el3l <

+

M f Igj(e[j])|2

Efjl (1+leC30

exp —¢j_1(6[j—1])

e 8MﬂK2+2ﬂe4
2)3(j-1)

< 2
ali-11

ar(efi-11.

le,_, 6r3-11) |2
J (1+le[5-111

Since G, = F, Q[k] = Q[k] = Q,, G, = £ and Qo7 < 23, (3.16) follows. 0

We still have to show the following lemma.

. ; " . . n
LEMMA 3.2. Let ¢ be an upper semicontinuous function in a domain Q < IR .

Let S be a compact neighborhood of the origin in R" and let Ql c Q be a

domain such that {x|x==x1+w,x1 te,w €S} © Q. Then the function ¢1 on Ql
given by
def
(3.20) ¢, (x) Z= max ¢ (x +w)
weS

is upper semicontinuous.

PROOF. First we show that an upper semicontinuous function f in a domain U

def
attains a maximum on a compact set K ¢ U. Let M 2 su f(x) and let {Mk}:_1
b3S EP =
be an increasing sequence with Mk + M. The sets Uk = {erIf(x) <Mk}
are open and if there is no X € K with f(xo) = M we have K < kﬁl Uk. Since

m
K is compact, there is a number m with K ¢ kgl Uk. This implies f(x) <Mm <M

for x € K, contrarily to the definition of M. Thus there is x. € K with

0
f(xo) = M. Hence definition (3.20) (and also the definiiton of ¢€ in theorem

3.1) is a good definition.
Now let x, € {x]¢1(x) <cln 91,
is upper semicontinuous, there is an open neighborhood U of S with ¢(x0+x) <e

then ¢(x0-+x) < c for x € S. Since ¢

for x € U. In particular, since S is compact, there is € > 0 such that
¢(x0+x+w) < c for w e S and Ixl < €. since an upper semicontinuous function
attains a maximum on a compact set, it follows from (3.20) that the set

0

{x € 91]¢1(x) < c} is open and thus ¢1 is upper semicontinuous in 91.
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Applying theorem 3.1 for obtaining (3.10) and (3.11) we get the fol-

lowing result.

THEOREM 3.3. Let for a = € and a = c the space Aa of holomorphic functions
in the unbounded convex neighborhoods Qz of Q(a,l’) be defined by (3.5) and
let Expa be defined by (3.2.1i) and (3.2.ii). Then the map (3.6) F:A& - Expa,

given by (3.7), is surjective for o € {e,c}.

III.2. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS;
FOURIER TRANSFORMATION AS AN INJECTION.

In this section we state the problem whose solution implies the inject-
ivity of the map (3.6).
k
In formula (3.13) we have embedded AOL into the space

(3.21) gl B8k oond Lim 8 G, ke1)
o i =5 B a

cf. (2.57), which is a weakly compact projective sequence. Another possibi-
~ k
lity is to take instead of At, defined by (3.4), the subspace AZ of Sa cons-

k - o
isting of those elements ¢ € Sa with 9¢ = 0, where 9 is the Cauchy-Riemann
k k k =t
operator. Then any element p € (Sa)' that satisfies y = atck for some
-] -k
ck € ((S);)')n vanishes on A . Therefore we define equivalent classes of

k

sequences {uk} with uk € (S_)' where two sequences {uk} and {uz} are equiv-
> k k =t 2k

alent if for every k there is ok € ((Sa)')n with ul —u2 :Bt 0 . Since also

(3.22) A = ind lim ak

k>

where Aa is defined by (3.5), the elements of A& can be identified with

the equivalent classes of such sequences {uk} that for any k and p there is

>k k p _ =t 2k,p

ao'P e ((Sz)')n with y - p =293 0 in (S:)' where m = min(k,p).

The space (3.22) is defined by a weakly compact, injective sequence

1.

~k+1
because an open set in A; is bounded in Aa and hence relatively weakly
compact, for the space (3.21) is reflexive, cf. [65, th. 36.3]. Therefore,
cf. [40, th. 12] the strong dual of (3.22) equals

(3.23) B w prod Tim R°1*.
o % b 19 a
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By [40, th. 13] we have
ko, _ ok, , 2k 0
(Aa) = (Sa) /(Aa)

~ ~ -k
where (A};)O denotes the annihilator of Az. Furthermore, Aa is the kernel of

the continuous map Sk qe (8/321,...,3/82n)

= k k. n
-
ak a (Sa) s
i 2k, 0 . *
so that according to [65, prop. 35.4] (Aa) is the weak closure (cf. foot-
=t 5 :
note on pagel85) in (SZ)' of the range of the transposed map Bk of Bk. Since
*
SZ is reflexive the weak closure of this range equals the closure in the
k
strong topology, cf. [65, prop. 35.2]. We denote the closure in (Sa)' of
the range of the map
def -t

—_— . k A n k '
T, === gy 1) > (8]

by R(Tk). Hence we have
~k Ky, ==
(3.24) (a)' =1(s) /R(Tk)

According to lemma 2.27 for every k there is a p > k such that the

following maps are continuous

. (5P k
IF. (Sa) —)HG

1F—1 k+1

(3..25)
: H =+ (Sk)',
a a

where

Hk 225 ind 1im H (m,k)
a o

m-> @

with Ha(m,k) defined by (2.57), and where F is defined by a formula like

def ¢
(3.12). Let P (61 —16n+1,...,9n

: 2k

—162n) and let P-Ha be the subspace of
k

Ha consisting of functions F which can be written as

n
F(0) = (6. -i6_ .)G. (8
( 321 4 1n+3)3()

: k
with Gj € Ha' j=1,...,n. Then



95

(3.26) F: R(Tp) > P*E:, iy p-§§+1 > R(T).

Now by (3.23), (3.24), (3.25) and (3.26) themaps (3.25) induce an isomorphism

F between

(3.27) F: &' > proj lim (B /p-RY).
a o a
k »

Furthermore, for each k there is a p > k such that

is a continuous injection, for let F_ € P'ﬁz be a Cauchy net converging to

P r.d : > p.n "
F € Ha' Then F_, = P*G_ with G, € (Ha) , so that F_, and hence F, vanishes

B B B B

on the set

VP SeL (w4 1Py g telo -16 =0, 3 = 1,...,n}.

The inclusion follows if we have solved the following problem.

PROBLEM 3.1. For each k there is a p > k such that a function F € HE vanishing

on Vg can be written as

F(8) = P-3(8), 6 ¢ R + il_];

with & e (HZ)“.

Assuming that this problem has been solved we have the following com-

mutative diagram of continuous maps

> >
e /p-BP , B/pBF
a o a a

~

5
Hk/P'Hk
a a

here the upper spaces are Hausdorff spaces, but in the lower space we do not

have to bother about the closure. Anyhow, this implies that
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def P -k 3 k >k
(3.28) H = proj lim (Hk/P-H ) = proj lim (H_/P*H )
o o o o o
k > « k - o
and this is always a Hausdorff space. Its elements can be described as follows,
k k
cf. [20, §6.2]: define equivalence classes of sequences {F } with F € H ,

where {Fk} ~ {Hk} if Fk(e) - Hk(e) = p(e)-'ék(e) for 6 € mzn
+k
G

+ il_k and for
>k &
€ Ha; then the elements of Ha are the equivalence classes of such sequences

)
{F*} that for every k and p there is a gkep ¢ Ez with

m

2“+ira, m = min(k,p).

(3.29) F8) - F°(8) = P(8)-G'P(8), 6 ¢ R

We have to solve problem 3.1 anyway, so we don't pay attention to the
> Ik
closure of P'Hz in HZ and (3.28) is valid. Since P'HOl vanishes on Vt we can
define continuous restriction maps Ik
k 2>k k
I: Hk/P'H +> H |Vk.
o o a' a
k Uk y - : : k Vk ;
Here Hal o IS the space of restrictions of functions in Ha to: Vo with the

k
topology induced by HZ. Then I is surjective. Furthermore, there is a natural

continuous injection J

o

k. k k
3% H |VJ; > H Cpiag

1 Izl
(z) /k-l zll)
. k def .
defined by (J F) (z) == F(iz,z). Hence we can complete (3.27) as

(3.30) A tap ~Eeprod Tim EE]F e
a a k + o a o a

so that JoIoF is the map F defined by (3.7). Indeed, by (3.29) if {Fk} € aa
then for p 2 k and for 6 € Uk we have Fp(e) = Fk(e). Hence the elements of

— k i .
p€?J+lém (Ha|Vz) are just those functions f on
vEeE y X - (m®4irtnfele, -6 . =0, §=1,...,n)
k o J n+J
< k k .
such that for any k there is a F € Ha with

(3.31) Fel,0%) = £06%), (6',0%) ¢ VX

Thus J is defined similarly to Jk and J is injective.
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k
Theorem 3.1 shows that the map J is surjective. However, the by {I"}
k s :
induced map I is a priori not surjective, although each I is surjective.

We have the following commutative diagram

p

BP/p-EP | : __, . HP|P
o o ol a

a B

p.k .k

-]
Hk/P-Hk ; 5 Hklvk
a (¢} Ik a'! o
where o and B denote the restriction maps. Hence the range of I in

p/k p,k K k
proj lim (H |V7) consists of those f on V which, besides (3.31) for F € H_,
k > = a'l o o
moreover satisfy (3.29). The solution of problem 3.1 implies that I is injec-

1
tive and surjective (actually it says that Ker 1P c Ker ap k) ).
I is defined as the simultaneous zero-set of the polynomials
d
pj = ej —ien+j' j=1,...,n. These polynomials generate a prime ideal in
2

any point of a pseudoconvex, open set < C n_ Therefore, according to Hil-
bert‘s Nullstellensatz, see [27, ch.III. A], every holomorphic function f in Q
vanishing on V can locally, that is in a neighborhood w of any point in @,

be written as

> -> n
(3.32) £ = P-gw, 9, € A(w) -,

where A(w) is the set of holomorphic functions in ®W. With the aid of Cartan's

theorem B it can be shown, see for example [27] or [30, th. 7.2.9 & th. 7.4.31,

1 I1f we do not assume that problem 3.1 has been solved, it still might hap-

pen that I is surjective without its injectivity being established and this
is actually the case here. Indeed, in section III.1 we have shown that for
any f € proj lim (HZ VZ) there is a u € A& with F(u) = Jf, where F is given
by (3.7). Bu: :f we apply the maps F and I in (3.30) successively, we get
f = IeF p € R(I). Hence I is surjective. This means that for any sequence
{;k} with ;k € HZ and ;p - ;k = 0 on VZ for all k and p 2 k, there exists
another sequence {Fk} with Fk € Hz satisfying (3.29) and with Fk - ;k =0
on Vz. However, here we are not interested in the surjectivity of I, i.e.,

in the above solved statement, but in the injectivity of I, i.e., in problem

3.1.
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that £ € A(Q) satisfying (3.32) can be written globally as
e - n
f = Peg, g € A(Q) .

Problem 3.1 asks for a function E which satisfies almost the same growth
conditions as F, so it is the analogue with estimates of the above mentioned
problem. If Q = c” this problem is solved in [30, th. 7.6.11] and in chapter
VI we will perform the same method of proof, but there we have to take care
of the estimates near the boundary of Q. For the general case, as in theorem
3.1, all conditions, besides the one that ¢ is plurisubharmonic in the density
exp - ¢, will be discussed precisely in the next chapter.

Since problem 3.1 implies the injectivitv of F, its definition (3.7)

implies the following corollary.

1<;,z>l

COROLLARY 3.4. The set {e z e} is dense in the spaces A, given by

(3.5) for a« = € or a = c.

t . . t .
REMARK. Since F is surjective, F : Exp& > A is injective, where F~ is
given by

(Fto)(c) _ <oz,el<c'z>>, 5 & Exp& ,

because for u € A&

i< > ] i<g,z>
.,z - [ S5

<u,Fo> = <o,Fu> = <o_,<u_,e > = <yu_,<0_,e
z' 'z

by Fubini's theorem. Hence also the set {e zeQ(a,l )} is dense in

i<C,Z>l
Expa for both @ = € and a = c.

So finally, we have obtained the following theorem.
THEOREM 3.5. The map F of theorem 3.3 is also injective.

REMARK. Theorems 3.3 and 3.5 state that the map (3.6) is bijective. This
fact can be considered as a generalization of the Ehrenpreis-Martineau
theorem, which gives the isomorphism (3.6) for o = ¢ if Q is compact and

™ = Cn, just as the Paley-Wiener theorems of chapter II, cf. also [68, §26.4,
th. 2], can be considered as a generalization of the original Paley-Wiener-

Schwartz theorem for distributions with compact support.
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III.3. PALEY-WIENER THEOREMS FOR FOURIER HYPERFUNCTIONS.

In this section we treat the particular case of theorems 3.3 and 3.5
where [ = TC with C an open, convex cone in R". Again as a particular case
of this situation we may consider functions a(z) which are only functions
of y = Im z. Then Q(a,TC) is a subset of ngl and a function in Expe determines
a Fourier hyperfunction.

Let (TC)k and (Tc)(k) be given by (2.50) and (2.51), respectively. If
in (3.2.4), (3.2.1i) and (3.5) F = TC, we get the spaces

Expe[a(z),TC] gat proj lim Hw(Tl/ky0+C;a(x,y-—1/2ky0)4>1/kuzu)
(3.33) a3 sk % e B
A (a,T") == ind lim H_(Q(a+1/k,T); - 1/klzl)
& k > »

where YO € pr C1 is fixed, and

Expc[a(z),TC] def broj lim H_((T) (k);a(z) + 1/khzl)
k >

(3.34)
Ac(a,TC) g ind lim H_(Q(a + l/k,(TC)k ;= 1/klzh)y .

k > =«

By theorems 3.3 and 3.5, in both pairs of spaces Fourier transformation is
an isomorphism from the strong dual of the second space onto the first space.
Similarly, the same statement can be derived for the following pair of spaces,
where we have a mixture of the two foregoing cases, namely analytic function-
als carried by Q(a,TC) with respect to e-neighborhoods in the imaginary
directions and to conic neighborhoods in the real directions:

EXPE c[a(z),TC] def proj lim Hm(Tl/ky0.+Ck;a(x,y"1/2kY0)+

U ©
(3.35) { & ek g ® . + 1/xlzl)
a_ _(a,T7) == ind lim H_(2(a+ 1/k,T K);-1/klcl).

€y k &> o

Thus we obtain the following theorem.

THEOREM 3.6. In the pairs of spaces (3.33), (3.34) and (3.35) the strong dual
of the second space is topologically isomorphic to the first space by means

of the map F defined by (3.7).

The pair (3.33) will be used in chapter V to derive the Newton inter-

polation series for functions in Exps[a(z),TC], if lim a(x,y) as y > 0, y € Ck
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C . . . : .
exists for-every -k, i.e., if Q(a,T ) is bounded in the imaginary directions.
If the convex, homogeneous function a is only a function of y € C, i.e.,

if a(z) = a(y) then
C "
Q(a,T) < {¢|]z=&+in,n=0}.

C . C
In that case for each k every function f in Expe[a(y),T ] or in ExpE c[a(y),T ]
’

satisfies

|£(z)] < K, exp 1/kllxl, v e . k= Iyl < x

for some positive constants K depending on k and f. Hence it determines a

Fourier hyperfunction, see [32]. Then theorem 3.6 is the Paley-Wiener theorem

for Fourier hyperfunctions:

14 The elements of Expelc[a(y),TC] are just the Fourier hyperfunctions
which are the Fourier transforms of the Fourier hyperfunctions with
support in Q(a,TC), where the support is defined as the smallest carrier
with respect to conic neighborhoods Q(a-+1/k,Tck) in the real directions,
which is done in [38].

ii. The elements of Expefa(y),TC] may be considered as the Fourier transforms
of the Fourier hyperfunctions with support in Q(a,TC), where this kind
of support with respect to e-neighborhoods is defined by means of de-
finition 2.6.

iii. In [53] analytic functionals carried by real sets with respect to conic
neighborhoods in Cn are mentioned. They are called Fourier hyperfunctions
of the second kind and they seem to be more useful for describing
quantum field theory. In this view the elements of Expc[a(y),TC] are
the Fourier hyperfunctions of the second kind which are the Fourier
transforms of the Fourier hyperfunctions of the second kind with support
in the set Q(a,TC), where this kind of support is defined with the aid

of conic neighborhoods.

III.4. ANALYTIC FUNCTIONALS IN ZEM}; FOURIER TRANSFORMATION AS A BIJECTION;
PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF ROUMIEU TYPE.

In this section we shall mention the problems which have to be solved
in order that the Ehrenpreis-Martineau theorem can be extended to analytic

functionals in Zi carried by unbounded, convex sets with respect to various

M}
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classes of neighborhoods. Now we no longer exhaust an open, pseudoconvex set

" by sets {rZ}:=1 such that an e-neighborhood of rz is contained in F§+1 as

in problem 3.1. In this section we shall get problems similar to theorem 3.1

and problem 3.1, but with estimates extending to the boundary of the domain.
As in section II.2.iii we require that M is a continuous, increasing,

piecewise differentiable function on [0,®) with M(0) = 0, M(») = ®, such

that M' is strictly decreasing. Furthermore, in this and the following section

we only require that (2.31) is valid. Then M*, defined by (2.28), is a con-

vex function on (0,®) with M*(O) = ® and M*(m) = 0, satisfying (2.29) and

(2.31). Briefly, the following formula's hold:

(3.36) M*(O) = max {M(p) ~op}
p>0
*
(2.37) M(p) = min {M (0) +po};
o>0

Vt >0, ¥m >0, 3t' 2 t, 3K > 0 and Vt' > 0, Vm > 0, 3t with
0O<ts<t',3>0

1/

such that for p 2 1 and 0 < o £ 1

M(p/t') +mlog p < M(p/t) +K
(3.38) {

*
M*(’,.'c) +mlogl/o <M (to) +K.

We shall fi st describe the analogue of sections III.1 and III.2, but
now with M = TC. '’his will yield the most general setting of the problems
to be solved. Next we shall state the Paley-Wiener type theorems and, for
arbitrary cones [, the Ehrenpreis-Martineau theorem. Let C be an open, convex
cone in H{% let for a = € and a = c (TC)E be given by (2.52.i) and (2.52.ii),

Qt by (2.48.i) with ' replaced by r°©
k
(¢}
respectively. Then we define the following pair of spaces

and by (2.48.ii) with rk replaced by

C . ’ N
er )k, defined in (2.50), and let a_ be given by (2.54.i) and (2.54.ii),

C * £
Exp [a,7%m"] 925 proj 1im m_((09)%;a5 (2) + 17kl 2l +M" (hyl))

J k >
(22331 i c .. def . . k
Aa(a,T ;M) == ind lim Hw(Qa; -M(lel/x) +xlinll).
k »

C x
By lemma 2.17 each f ¢ Expa[a,T ;M ] determines an ultradistribution of

Roumieu type.
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As in section III.2 formula (3.21), here too we introduce an S-space

k
of CZ functions. In this section for a € {e,c} we denote by Sa the space

g B8 ooy 1w S, (m X, k)
a o o @

whexe Sa(m,k,k) is defined by (2.56) and again we write the strong dual of

&
Aa(a,T ;M) as

A (a,TC;M) ' = proj lim (s5)'/R(T)
o a k
k - x

where Tk is the transposed of the Cauchy-Riemann operator. Let us now denote

by Ha the space

H gg£ proj lim (Hk/P°Hk)
a % o o o a

where HZ g§= igd+1£m Hu(m,k,k), cf. (2.56). Then by lemma 2.27 the Fourier

Hh

transformation F is an isomorphism
c
F: Aa(a,T iM)' > Ha.

As before, the maps I and J are introduced

H —I—>proj lim (Hz Vt) —g—*Expa[a,Tc;M*].
k > »

We shall investigate which problems have to be solved in order that I is
bijective and J surjective.

The bijectivity of I will follow from a problem similar to problem
3.1. It asks for a function g € A(Q)™ with P+g = £ if (3.32) is satisfied,
where now ; is holomorphic in the same pseudoconvex domain Q as f and satis-
fies some estimates. This is only possible if some conditions are imposed
on the densities in the estimates. Therefore, we have to introduce the fol-
lowing concepts. Let Q be a pseudoconvex domain and let ¢ be a function in
2 such that for each N there exists a plurisubharmonic function $N in @
which satisfies

-N

(3.40) K-faN(z) > ¢N(z) gdef max{¢(z') +N log(1 +Hz'H2).+1og(1+d(z',Qc) )|

[Iz - z'l < min[N, (e"-1)d(z,0%), (e -1)a(z',%) 1}
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for some K > 0 depending on ¢ and N, where d(z,Qc) denotes the distance from

z to the complement of Q. Furthermore, we define the plurisubharmonic function
¢ by

N

5 2L 3 (2) +N log(l +120%) +1og(1 +a(z,05™).

(3.41) $lz) == $N

Then $ satisfies the following inequalities

¢ < ¢Ns$N+Ks b +X.

Let
wk'm(e) def M" (kI Im ezl) + a];(Im 8) + 1/klIm 6l + mlog (1 +I|el|2)
if a =c¢ for 0 € T((T ) ) or if a = € for 6 € T((T ) ), in which case we

complete w R arbltrarlly to the remaining of T(T Yi cf (2.53) for the
definition of T(B). Then in virtue of (3.38) for each q and N there are p > q
and Kq > 0 such that for o« = € or @ = ¢

q,m+N

p,m C.a
(P )N(e) <y + Kq, 8 € T((T )d).

For a fixed £, € px‘C* there is § > 0 such that Sllyl < <Eyry> < Iyl for

y € C and therefore, for each k there is a q > k with
* *
M (q<€0,y>) <M (klyl), y € C.

* 2
But now M (q<£0,Im 67>) is convex, hence plurisubharmonic, in T(TC). Hence

for each k there is a p > k such that by a suitable choice of (¢p' )., we

N
get
AN\
(3.42) ¢p'm 2 wk,m+2N
. c .k
in T((T )a)'

In the o = € case an extra complication arises by the fact that the
domain T((TC):) is not pseudoconvex, because by Bochners theorem its pseudo-
convex hull H(T((Tc)k)) equals T(T ). Hence every F € Ht is holomorphic in
T(T ) and if F vanishes on V it vanishes on V. Each F ¢ HE satisfies for

some m and K
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[Fo)] < x exp ¥P"™(0), 6 e T(TOHE)
[F(O)[ < exp(log|F(6)|), 8 € T(Tc).

Then with ¥(8) 25 max{1log|F(6)],¥P"™(8)} for 6 € T(T*) F satisfies

(3.43) |F(8)] < K exp ¥(6).

Furthermore, we make the restriction that wp,m on T((TC)E) has been extended
to T(TC) in such a way that (3.40) can be satisfied for the function ¥ of
formula (3.43). If a = c and F ¢ Hi, we set Y = wp,m for some m depending
on F and (3.43) is satisfied for 6 € T((Tc)i), which is a pseudoconvex
domain.

Now assume that for o = € and o = c every F € Hz vanishing on V if
o = € or on Vg if o = ¢ and satisfying (3.43) can be written as F = P+G for
holomorphic functions G, in T(TC) if o = € or in T((Tc)i) if o = c which
satisfy there Gj(e) < K exp @(9), j=1,...,n, where @ is obtained from Y
as in (3.41) for some N. Then if p is sufficiently large there is a k such
that in view of (3.42) Gj would belong to HZ. If this can be done for every
k, the bijectivity of the map I would be implied. Taking into account (3.32)
and the embedding maps between spaces with Lz—norms and sup-norms (cf. [73]),

we really get the foregoing if the following problem is solved.

PROBLEM 3.2. Let Q be a pseudoconvex domain, let ¢ be a function in  such
that (3.40) can be satisfied for every N and let P be a vector of polynomials.
If a holomorphic function f in @ can locally, i.e., in a neighborhood W of

> >
each point in @, be written as f = P-gw with 9, € K(w), then
>
f(z) = P(z)+g(z), z € Q
> >
for some g € A(Q) satisfying for some K independent of £

> 2 = 2
Ig(z) 1 exp-¢(z)dr(z) < K | |£(z)]|° exp-¢(z)dr(z)
Q Q
> 2 2 = .
where lg(z)I° = Zlgj(z)| and where ¢ is given by (3.41) for some N indepen-
dent of £, provided that f is such that the right hand side is finite.
Since in problem 3.1 an e-neighborhood of T(rz) is contained in T(rz)

and since the equalities (3.2.i) and (3.2.ii) hold, problem 3.1 follows from



problem 3.2. Furthermore, problem 3.2 implies that (cf. (3.28) where the

k
spaces Ha are different from the H: of this section)

H dal proj lim (H /P H ) = proj lim (H /P H ),
kK > o kK > »
hence we don't need to pay attention to the closure of P-gt in HE.

We will now state the problem whose solution implies the surjectivity
of the map J. Theorem 3.1 yields local extensions {lew cc Q} of £ with
Fw(iz,z) = f(z) and problem 3.3 will state that the functions F _ can be changed
and glued together to one global function F in @ with F(iz,z) = £(z) and
with good bounds. The conditions on the bounds will be the same as those of
problem 3.2.

Let w be a pseudoconvex open set with w cc T((Tc)g) if a = ¢ or
w cc T(TC) if o = € and let

o £ (gl -0 < min(1, - ae',2%1,2=7(1,6" cw}.

Then for some q > p and for w < T((Tc)g)
o < T(rHY,

c ¥ '
Let f € Expu[a,T ;M ] and let the convex function ¢q be defined by

¢ (z) S8k M (q<£ y>) +a2(z) +1/qlzl, z € (Tc)g,

. " . C
where in case o = € ¢q is extended to a convex function on T such that for

some K > 0
|£(z)| < K exp 8 (2)

for z < ¢, If o = ¢ this formula holds for z € (T )q. Let H(T((T )q))

-T(T ) and H(T ((T )q)) = T((T )q), which in both cases is a pseudoconvex
domain in ¢2n. The function 6 - ¢ (Im8) is a convex, hence plurisubharmonic,
function on H(T ((T )q)) Hence we can apply theorem 3.1 and for each w we
obtain a holomorphic function Fw in W with Fw(iz,z) = f(z) for
zZ € {z](iz,z) € w} which, in view of (3.40) and (3.42), for some m and K

satisfies
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exp - 2¢ (z)
J lpm(e)l2 exp - 2¢P'™(8)ar(8) < K J l£(2) |2 ——3i - a@

(140 z1%)

@ {z| (iz,2z) ew'}

(& C .
where £ = [n/2]+1 and where the extension of wp,m on T((T )g) to T(T ) is
determined by ¢q. We select a collection U of sets w with the property that
each point in H(T((TC)E)) is contained in at least one set w € U and each

point in H(T((T )q)) in not more than L. sets w' for a fixed L. In section

VI.1 it will be shown that such a covering exists. Then with w wp'
get
2
TR def J |Fw‘e’|2 exp - ¥(8)dA(8) < KL f |£(2) |
wel] B (D)
exp - 2¢ (z)
5 dx(z) < o=,
(1+0zl %)
It is sufficient if we can find a holomorphic function F in H(T ((T )p))
with F_Fm =0onwn V and with
2 -
|F(8)|° exp -y(erarce) < xl{r }
H(T(TS)P))
o
for some K, where {f) is obtained from Yy according to (2.41) for some N. For
by (2.42) if p is sufficiently large we would have F € HZ.
For two+sets wl and mz in U le‘: sz vanishes on V n (ol n w2, hence
le —sz = P'G12 in ml n w2 for some G12 holomorphic in ml n wz. Now if the

following problem is solved, we can find a function F as above and the map

J would be surjective.

PROBLEM 3.3. Let 2, P, ¢ and $ be as in problem 3.2 and let U be the covering
of Q specified in section VI.l1. Furthermore, let {f, |(.oj e U} be a collection
of holomorphic functions fj in wj such that for each wj and (nk in U fj —fk =

> ->
P'gj k for some g, holomorphic in m n mk Then there is a holomorphlc
’

ik
function £ in Q@ with for each (.oj e U f fj = P gJ for some gj holomorphic

in wj such that

Jlf(z)l2 exp - §(z)dr(z) < K z J ]fj(z)|2 exp - ¢ (z)dA(z)

Q wjeuwj
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for some K and N independent of {fjlee U}, provided that the collection {fj}

is such that the right hand side is finite.

REMARK. If a = €, T(TC) = U i e )p) and the densities on T ((T )p) had first
to be extended to all of T(T ) before applying problems 3.2 and 3.3. These
extensions depended on the particular holomorphic function F or £ one was
dealing with. Therefore in the a = € case we may get estimates with K depend-
ing on F or £, although in problems 3.2 and 3.3 K is independent of f or

{fj}' respectively. However, the open mapping theorem helps us to overcome

the difficulty of not getting uniform bounds. In the next chapter we will
treat the case of holomorphic functions f in Q = ﬁ Qk which are bounded
with respect to some density on each Q P unlformly in f. But the condltlon,

cf. (4. 22), which must be satisfied then, is not valid for Q= T(T ) =
(=]
-kgl T((T )e) of this chapter.

In chapter IV problems 3.2 and 3.3 will be reformulated and in chapter
VI they will be solved. Therefore, the Fourier transformation F is a topo-
logical isomorphism from Aa(a,TC;M)' onto Expa[a,TC;M*] for a = € or a = ¢,
where the spaces are determined by (3.39). Similarly, the same can be derived

for the following pair of spaces, which is a mixture of e- and conic neigh-

borhoods,
Exp [a, TC,M ] def proj lim H_ (Tl/kyo+Ck u {z]|Ixl <k,yeC Y
€,C
I k > »
(3.44) 1 ae(z) + 1/kl zll +M (xliyl))
A c(a,TC;M) def ind lim Hw(Q(a+1/k,TCk); -m(lgl/k) +klnl)
£ k >

and if o = € or o = ¢ for the pair

Exp, [a,M M ] gst proj lim H_ (r ,a (z) +1/k“z"-+M (xlzl))

(3.45) >
def
A (a,[;M) == ind lim H_ m i -mdlizl/x)),
k >
where [ is an open, convex cone in C° with F def rk u {1/k zo+r} and
k d !
re gag rk' where a (z) e a(z - / ) for z € 1/k zy + [ and at must be

continued as a convex function on F, where ak 22£ a and where Q is given
by (2.48.i) and (2.48.ii). The last pair ylelds the Ehrenprels—Martineau
theorem for analytic functionals carried by arbitrary unbounded, convex

; n . ; :
sets in € with respect to €- or conic neighborhoods and to the class of



108

weightfunctions {exp M(ICI/k)}:=1'

Summarizing we get the following theorem.

THEOREM 3.7. If (3.38) is satisfied, in the pairs (3.39), (3.44) and (3.45)
the strong dual of the second space is topologically isomorphic to the first

space by means of the map F defined by (3.7).

If lim a(x,y) exists as y > 0, y € Ck the set R(a,TC) is bounded in
the imaginary directions in cn. Then in (3.39) for o = € and in (3.44) the
restriction lxl < k in the definition of the first space and the term klnl
in the definition of the second space can be omitted. In both cases functions
in Expe[a,Tc;M*] and in Expe'c[a,Tc;M*] determine ultradistributions of

Roumeiu type of "finite order", cf. definition 2.19.ii. Hence we obtain

COROLLARY 3.8. Fourier transforms of "infinite order" ultradistributions of
Roumieu type can never have a carrier with respect to neighborhoods which

are bounded in the imaginary directions.

If a(x,0) exists, as in (3.3) Expe & becomes
’

*
Exp [a,TC;M*] = proj lim H (Tck;a(z) +1/klzl +mM (klyl))
€€ k > x *
and if a(z) = 0 for all z we get the particular case which yields the proof

of (4) = (1) of theorem 2.20.
III.5. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF BEURLING TYPE.

As in section III.4 it can be derived that the Fourier transformation
F is an isomorphism between a space of analytic functionals with a fixed
carrier onto a space of functions, holomorphic in a certain tubular cone
and of certain exponential type, which have ultradistributional boundary
values of Beurling type. However, the topologies of the occurring spaces
become more complex, especially we don't get a space of analytic functionals
which has the topology of the strong dual of a certain space of analytic
functions. Therefore, we only state the Fourier transformation F as a bijec-
tion. Spaces of a more simple topological structure arise if we consider
Fourier transforms of analytic functionals such that sufficiently small
conic neighborhoods of their carriers are contained in a given, open, convex

set. In this form we shall give extensions of the Ehrenpreis-Martineau theo-
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rem and of the Paley-Wiener theorem for ultradistributions of Beurling type.
Let now a = 1,2,3 denote the cases of analytic functionals carried
with respect to e-neighborhoods, conic neighborhoods or a mixture of these

neighborhoods, respectively. So here we denote

(TC)T def _1/k yqo+C
C.k def , C
(’I‘)2— (T )k
(TC)§ def Tl/k Yo+Ck
k def ~ k ef k def
and furthermore, cf. (2.54) az(z) ak(z) and al(z) = a3(Z) = a(z—l/'zk yo)

k C 3 :

in (TC)1 or (T )g, respectively and these functions must be continued as
C . . . C :

convex functions on T . Let f be a holomorphic function in T , which for

every k and for some positive Kk and mk depending on k satisfies

(3.46) |£2)] < K exptu” (Iyl/m) + a];(z) + 1/klzl,

z e {z|lxl <x,y ec tu (Tc)t

for o = 1,2, or 3. According to lemma 2.17 f uniquely determines an ultra-
distribution of Beurling type. Now we begin with a formula like (3.23) and
we don't have to show that it is the dual of some space of holomorphic func-
tions as the space (3.23) is of the space (3.22). Then by the same procedure
as before lemma 2.27, problem 3.2 and 3.3 show that f can be written as

(3.47) £(z) = <uc,el<c'2>>

where Y is an anlytic functional in ZEM) uniquely determined by f which is

carried by Q(a,TC) with respect to neighborhoods of the form

def Q(a~+1/k,Tc),

def

(3.48) Q Q(a+1/k,(Tc)k)

def

wWxE NF R

Q(a-+1/k,Tck)

for a = 1,2 or 3, respectively. Thus U can be uniquely extended such that
it acts on functions ¢ which are holomorphic in these neighborhoods and

satisfy there
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lo(2)| < k_ exp{-M@lgl) +kinl}

for some k depending on ¢, for every m > O and for Km > 0 depending on m.
So (3.47) is defined. Furthermore, there are positive Kk and mk depending

on k and u such that for such ¢ u satisfies

(3.49) |<u,¢>| < K _ sup l¢(;)|exp{M(mkllgll) -klnl}
;ent

for a = 1,2 or 3, respectively. Thus the following Paley-Wiener theorem for

ultradistributions of Beurling type holds.

THEOREM 3.9. If M satisfies (3.8) and £ (3.46), then (3.47) holds for a unique

analytic functional y € Z;M) which satisfies (3.49).

If a(x,0) exists, Q(a,TC) is bounded in the imaginary directions and
for o = 1 and 3 the condition Ixl < k in (3.46) and the term -klnl in (3.49)
can be omitted. Then f determines an ultradistribution of Beurling type of

"finite order", cf. definition 2.19.ii.

COROLLARY 3.10. Fourier transforms of "infinite order" ultradistributions
of Beurling type can never have a carrier with respect to neighborhoods

which are -bounded .in the imaginary directions.

If o = 3 and a(z) = 0 for all z, we get the particular case which yields

the proof of (4) = (1) of theorem 2.20 for ultradistributions of Beurling

type.
We will now define topological spaces of holomorphic functions and
we will treat F as a topological isomorphism from the strong dual of an A-

space onto an Exp-space. Let {Fm}:_ and {Cm}:_1 be a decreasing sequence

1
n no_. ; . :
of convex cones in € or IR with intersection [ or C, respectively, and

" I_m m © .
with [ cc , C cc C and let {am}m=1 be an increasing sequence of convex
m
functions, homogeneous of degree one, each a_ defined on r or TC with
m+1 +
z) + < r oC® :
am( ) n am+1(z), z € pr or pr for some €n > 0, converging

; : C
in any point of [ or T  to the convex, homogeneous function a. Define

Exp_(a, M) S ina 1im B " (2l /m) +a(2))

(3.50) T, < %

Ac[a,r;M] dgt proj lim Hm(Q(am,rm); -M(mizl)).
m >



In virtue of (3.38) and [73, conditions HS, and Hsz] the first space is a
nuclear DFS-space and the second a nuclear FS-space. The generalization of
the Ehrepreis-Martineau theorem states in this case that the dual of the
second space is topologically isomorphic to the first space by means of
Fourier transformation. We shall also give a Paley-Wiener version for ultra-
distributions of Beurling type. For 51mpllclty we assume that for each m

a, (x,0) exists, so that each Q(a T ) is bounded in the imaginary directions.

Deflne
Exp (a,TC;M*) ek ind 1lim Hm(TCF;Mﬁ"y"/m) +a (z))
f c o m
(3.51) 1 cm
A [a, ° M] pro] lim H_ (Q(a LT ) -M(@mlgl)).
m >

Again Expc(a,Tc;M*) is a nuclear DFS-space and Ac[a,TC;M] a nuclear FS-space.
It follows from an estimate as we have already met several times that for
each m and £ > m the collection {ei<C'Z>|z € o or z € Tcz} of functions of
¢ i's a subset of Hm(Q(am,rm); -M(mlzll)) or Hm(Q(am,TCm); -M(ml&l)), respec-
tively. Therefore, the Fourier transformation can be defined by (3.7) and
it follows from the injectivity of F that these subsets are dense. Hence
the projective limits in (3.50) and (3.51) are strict, cf. [20, §26.1] so
that there strong duals can be represented as inductive limits of strong
dual spaces. In the same way as the other theorems of this chapter are de-
rived and by the fact that the open mapping theorem also holds for duals of
reflexive Frechet spaces, cf. [61, IV, §8.3, cor. 1 and ex. 2, p. 162], the

following theorem is derived

THEOREM 3.11. If M satisfies (3.38), in the pairs (3.50) and (3.51) the
strong dual of the second space is topologically isomorphic to the first

space by means of the map F defined by (3.7).

(] c _*
Note that the strong dual of Ac[a,T ;M], and hence Expc(a,T iM ), car-

ries a finer topology than the one induced by Z'

) °F DZM)’ respectively.

III.6. PALEY-WIENER THEOREMS FOR DISTRIBUTIONS IN D',

The same ramarks made for ultradistributions of Beurling type can be

made for distributions in D'. Instead of (3.36) and (3.37) here we have

-1 d
W o1 SEE yogrrwd™hy, mtp) 2L 1egts +p).
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Let f be a holomorphic function in T which for every k satisfies

(3.52) |£(z)| < K (1 + 1yl mk)exp{at(z) +1/xlzl},

k
z e {z]|lxl <k,yeC.} v (Tc)a,

where(Tc)z and az for o = 1,2 or 3 are as in section III.5. Then f determines
uniquely a distribution in D'. Lemma 2.27 and problems 3.2 and 3.3 show that

f can be written as (3.47) for some unique, analytic functional p € Z' carried
by Q(a,TC) with respect to the neighborhoods Qz defined by (3.48). Thus u

can be uniquely extended to an analytic functional acting on functions ¢

which are holomorphic in these neighborhoods and which satisfy there

Inl
le@)] s x_ ﬂPk_nm
(1+hgh)

for some k depending on ¢ and for every positive m and socme positive Km
depending on m and ¢. Furthermore, for such a ¢ p satisfies
nﬁ( ~klnll
(3.53) [<uro>| <k sup [o(x)]|(1+0el) © e
k
Ceﬂa

for o = 1,2 or 3, where the positive numbers Kk and mk depend on k and u.

Now the following Paley-Wiener theorem for distributions in D' is valid.

THEOREM 3.12. Let f satisfy (3.52), then f is the Fourier transform of a

unique analytic functional y € Z*'carried by Q(a,Tc), i.e., (3.53) holds.

If Q(a,Tc) is bounded in the imaginary directions, the condition
Ixl < kx in (3.52) and the factor exp -klInl in (3.53) can be omitted if a = 1

or 3. Then f determines a distribution of finite order.

COROLLARY 3.13. The Fourier transform of a distribution of infinite order
can never have a carrier with respect to neighborhoods which are bounded in

the imaginary directions.

REMARK. The Fourier transform of any distribution can always be represented
as a sum of analytic functionals which are carried by the 3" sets of the

form



(3.54) {Clij =0 or Cj eﬂ(a,ct),j = 155 w5 gk

where ci are the upper and lower halfplane and where a is a convex, homo-
geneous function on ¢+ which is unbounded on pr ¢+, or the convex, homo-
geneous function on a given by a(z) = a(z), so that Q(a,ct) c Cl is not
bounded in the imaginary direction. The analytic functionals are carried
with respect to any class of neighborhoods and, a fortiori, they can be re-
presented as measures on the sets (3.54), see [16, th. 5.24, where these sets

are shown to be sufficient for D'].

A theorem similar to theorem 3.12 can be derived for functions f which
are holomorphic in a cone [ ¢ Cn, but we merely state the theorem with analy-
tic functionals such that sufficiently small, conic neighborhoods of their
carriers are contained in a fixed, open, convex set. Let the notations be

as in (3.50) and (3.51) and let

Exp (a,ln) 285 40 Linm ® ™ log(1+0zl™) + a (2))
€ m > o« “ .
(3.55) def -
A [a,l] == proj lim H_(2(a_,/ ); -m log(1l+lzl)),
c b s e m
and
m -
Exp (a,Tc) . ind lim H (TC ;log (1 + 1yl ™+ a (2)
e m > «© « m
(3.56)

C, def
A [a,T"] == proj lim H_(2(a ,Tcm); -mlog (1 +1lgl)).
c o 66 m
The first space in each pair is a nuclear DFS-space and the second a nuclear,
strict FS-space. For these pairs the Ehrenpreis-Martineau theorem can be
generalized, where in the second pair it might be considered as an extension

of the Paley-Wiener theorem:

THEOREM 3.14. In the pairs (3.55) and (3.56) the strong dual of the second
space 1is topologically isomorphic to the first space by means of the Fourier

transformation F given by (3.7).

We conclude this chapter with the remark that in (3.56) the isomorphism

F acts between spaces with a finer topology than the ones induced by Z' and

Pey
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CHAPTER IV

THE FUNDAMENTAL PRINCIPLE

In [16] Ehrenpreis and in [56] Palamodov proved, independently, a
fundamental principle in the theory of systems of linear partial differential
equations with constant coefficients. This principle completes the theory
of those systems in a very natural way, but the proof is very hard. Let W'
be a locally convex topological vector space such that the space H of Four-
ier transforms of elements of W' consists of entire functions whose growth
conditions at infinity satisfy certain properties, and let W be the dual of
W'. Briefly, the fundamental principle says that all weak solutions in W of
the homogeneous system can be represented as Fourier transforms of finite
sums of weak derivatives of measures concentrated in the zero set of the
Fourier transform of the transposed differential operator. If there is only
one ordinary linear differential equation with constant coefficients this
is just the usual representation of Euler. In [16] a space W for which the
fundamental principle is valid is called localizable. In the last chapter
we have studied spaces W (namely the Exp- and A-spaces) with H = FW', or

1 < X i
) such that the elements of H are non-entire functions.

equivalently W = FH'
In this chapter the fundamental principle will be generalized so that it

applies to spaces W which are the Fourier transforms of the duals of spaces

1)

As in the foregoing sections the following definition is used: when F is
a topological isomorphism between the spaces B and FB = A, then the Fourier
transform of an element f in the dual A' of A is the element Ff of B' defined
by

<Ff,¢>B = <f,Fw>A, Y € B.
By use of this definition the ambiguity mentioned in [16, p.140] is avoided.
Of course, as in [16], this definition corresponds to the following action

of a function f, regarded as a distribution in D', to testfunctions ¢ ¢ D

<f,$> = J f(x) ¢ (x)dx.
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H consisting of functions holomorphic in pseudoconvex domains {, not neces-
sarily ¢n.

For a vector P of complex polynomials, in [16] Ehrenpreis has defined
a multiplicity variety W in the set where all the components of P vanish.
Let H(W) be the space of restrictions to W of all entire functions satisfy-
ing on W the same growth conditions as the entire functions of H. Then for
deriving the fundamental principle Ehrenpreis showed that H modulo P-ﬁ is
isomorphic to H(W). In order to prove this isomorphism he first constructed
a local and a semilocal (i.e., in an a priori given covering of ¢” consist-
ing of bounded sets) theory and then the extended the semilocal results to
global results. The same canbe done if Pis amatrix of polynomials and if W is
an associated vector multiplicity variety. For our purpose the local and
semilocal theory remains unchanged (except for the a priori given covering
of Q), but we will use a different method for getting global results. If
then in particular Q = ¢ we will obtain a weaker form of the isomorphism
than in [16]. The difference is that in [16] one globally defined function,
whose restriction to W has been given, is obtained that satisfies all the
bounds required in H, while in this chapter for every bound a different
global function will be constructed. As to this the fundamental principle
obtained by Palamodov in [56] is similar. On the other hand, here often less
restrictive conditions on the bounds are required then in [16], so that for
example the space of C 2 functions in an open, convex set is localizable
here as well as in [56], where in [16] it is in general not.

Compared with [56] our conditions are simpler, ~although if Q = c”
the method of H&rmander in [30] we will use cannot be applied to the space
Z because the function lo¢_:{(1+||z||2)_1 is not plurisubharmonic in €°, while Z
satisfies the conditions of both [16] and [56]. If Q is a convex tube domain
(# c”) this objection is disposed of (cf. lemma 5.2) and our treatment of
this case is much more general than in [56]. Moreover, we will derive the
isomorphism. H mod P'E e H(W n Q) for general pseudoconvex domains §, where
in [56] it is essential that Q is a convex tube domain.

Sections 1 and 2 of this chapter will give an introduction along the
lines of [16] to the problems without growth conditions. In section 3 Ehren-
preis' and Palamodov's formulations of the fundamental principle will be
discussed. The remaining part of this chapter will be devoted to derive the
weak form of the above mentioned isomorphism for spaces of non-entire func-
tions. In chapter V we will show that this implies the representation of

solutions of homogeneous systems of partial differential equations with
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constant coefficients and in chapter VII we will make some remarks concerning
the strong form of the isomorphism for certain spaces of non-entire func-

tions.
IV.1. LOCAL THEORY

In this section we will discuss Ehrenpreis' generalization of Hilbert's
Nullstellensatz.

Let z € <’ and let Az be the ring of germs at z of holomorphic func-
tions in a neighborhood of z. Consider an ideal Jz in Az generated by the

germs (hl)z""'(hq)z at z of functions h .,hq in a neighborhood w of z.

170"
We define the analytic variety

(4.1) v ges {w|h1(w) = 0,...,hq(w) =0, w € W}

and let Vz be the equivalent class of V under the equivalence relation
V ~ W if there is a neighborhood of z in which they are equal. Vz is called

the germ at z of V. It is clear that the ideal Jz is not trivial only if

]

hl(Z) = ...

function in a neighborhood of z such that fz is the germ of £ at z. Then

hq(z) = 0. When fz € Az we will denote by f a holomorphic
for any fZ € Jz, z € V, there is a neighborhood w of z with
(4.2) f(w) =0, wel no.

Conversily, consider the ideal Iz in Az of all the germs at z of holomor-
phic functions vanishing on Vz, p

(4.3) p 225
Z

{fz | there is a neighborhood ) of z such that f]VnQ)=O}'
It is clear that Iz is an ideal and by (4.2) Jz c Iz.

Hilbert's Nullstellensatz says that for fz € Iz there is a positive
integer m with (fz)m e Jz, or

def

I = rad J (£ | (£ )™ ¢ J for some m depending on f },
z z z' Tz z z

see [27, II.E. th. 20]. Obviously, when Jz is a prime ideal this yields
[27, 11I.A. 7]
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(4.4) J = I ’
z
i.e., any fz can be written as, cf. (3.32),
i
£f(w) = g, (wh (w)
k=1 k k

for w in a neighborhood w of z and for some gk € Alw, k=1,...,q9.
Ehrenpreis generalized this result in such a way that (4.4) always
holds if in (4.3) Vz is replaced by the germ wz of a certain local
multiplicity variety W depending on the functions hl""'hq and z. In gen-
eral a local analytic multiplicity variety W in a point z € c” is defined
as a finite collection W = {V1,31;...;Vr,8r} of pairs (Vj,aj), where the
V's are analytic varieties in a neighborhood of z (i.e., V. is defined by
(4.1) in a neighborhood w of z for certaln holomorphic functlons hk in @
depending on z and j for k = 1,...,q , where the number q of functions
also may depend on j and z) and where Bj is a differential operator with
coefficients holomorphic in a neighborhood of z for j=1,...,r. If for each
Z € C all the defining functions hi k = 1,...,q , jJ=1,...,r are the same
polynomials for every z and if the coefficients of the differential opera-
tors 9. are the same polynomials, W is called a polynomial multiplicity var-
iety in c”. In this case for @ c ¢®, W n w is the restriction of W to the
points of w. Let f be the germ of a holomorphic function at z, then £ zlw
the restriction of f to w , is defined as the collection of functxons

{f }

-1 where each fj is deflned on Vj in a neighborhood w of z, by

def
(4.5) fj aj flv.nm

1
neighborhood of z is called a holomorphic function on wz if there exists a

Conversely, a collection of functions {fj}§— with fj defined on Vj in a

holomorphic function £ in a neighborhood w of z with f] = {3
Wne j j=1"

LEMMA 4.1 [16, th. II.2.4]. Let {hk}z 1 be a g-tuple of holomorphic functions
in w. Then it is possible for each z € W to define the germ Wz at z of a
local analytic multiplicity variety, such that for each z € W the germ at z
of every function £, holomorphic in a neighborhood of z in w, vanishes on

wz'if and only if it can be written as

f(w) =

h (w)g, (w)
" k k

Il ~1Q

1
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for w in a neighborhood of z in w and for functions gk holomorphic there,

k=1,06,9

>

Thus for any vector hZ € A: there exists the germ wz of a multiplicity
variety such that the subset Iz of Az of germs of functions vanishing on wz
is always an ideal which satisfies (4.4). It should be remarked that W is not

uniquely determined by the functions h ..,hq. Instead of proving lemma

1"
4.1 we shall give some examples of polynomial multiplicity varieties.

(1) For n = 2, g = 1 and h(z) = zT(z1 —zz)z both the multiplicity varieties

wr ez {z, = 0, identity;...;z, = 0, 3m-1/azm—1;z =2z, ,id;...;z, = z_,
i ¥ 1 1 1~ % 1 2
VAL

and

weE -, = 0,ids...iz, =z =0, 3™ g s

1 2 1 2 1 1
=0, VPl e iy = a, § el
Z1 ’ 1 i 1 2( 7 eear 1 2’ 1

are such that, if they replace V in (4.3), then (4.4) is satisfied
for each z € cn, cf. [16, ch II, §2, ex. 3].

(ii) Let n =2, q = 2, hl(z) = z; -z, and h2(z) = zf. Then we may take
cf. [16, ch. II, §2, ex. 4]

w 9e£ {z, =2,=0,id.12, =2,=0, ¥/dziz =2 =o,3/n1+%a?mz;

1 2 2.1 2
I 2 1 .3 3
z, =z, =0, d /leaz2 +Z Bn/azz},
because obviously for every z € € and fz € Az hlfIWDw = 0 and
h2f Wnw = 0 for some neighborhood W of z, and if flwnm = 0, we first

expand f in a power series

= i3
f(zl'ZZ) z £f .2 z2.

ij 1
Since £(0,0) = 0 we have f = 0, since 9f/9z_(0,0) = O we have £, =0,
1 2 002 2 01
since 90f/9z, (0,0) + — 3°f/3z, (0,0) = 0 we have f + £ = 0 and
1 5 2 1 1 3 3 10 02
finally since 9 f/azlazz(0,0) + z 3 f/azz(0,0) we have f11 + f03 = 0.
Next writing
2 z i-=2 j z 3j IJ
£f(z,,2.) = z L . 2 z. + z £,.. 22 + X . Z
1772 1 ip 13 1 2 1 320 1j "2 20 0j "2

320

and using
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3 2 _ > 7

&y, = 22(22—21) +zlz2 =2z, mod h Az

4 _ .2 2..,2 2 4 >7

z, = (22+zl)(z2 zl)+z1 shAZ
by the above we get =

3

= + . =

£lzy02)) =102 * £11%1%2 ¥ Eo0 * F01%p * F02%y * fo3%1%p ™9 B Ay

= 0 mod h-Az.
(iii) Finally we give an example which shows that the differential operators

do not necessarily have constant coefficients. Let n = 3, hl(Z) =

=z and hZ(Z) = zz, cf. [16, II exercise 2.2]. Then as in example

27 %1%
(ii) one can check that the polynomial multiplicity variety
def . _ = . = = { 5

3—0,:|.d,z2—z3 0,218/322+8/Bz3,z z 0,id. ;

z =z2=0,3/321 + 233/322}

1
satisfies the required properties. To see how the multiplicity variety

W could be obtained one ‘first determines a multiplicity variety w1 be-
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