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1 | INTRODUCTION

| Quentin F. Gronau!
| Alexander Ly'#

| Bram Timmers!® |

| Eric-Jan Wagenmakers!

We outline a Bayesian model-averaged (BMA) meta-analysis for standardized
mean differences in order to quantify evidence for both treatment effective-
ness 6 and across-study heterogeneity z. We construct four competing models
by orthogonally combining two present-absent assumptions, one for the treat-
ment effect and one for across-study heterogeneity. To inform the choice of
prior distributions for the model parameters, we used 50% of the Cochrane
Database of Systematic Reviews to specify rival prior distributions for § and z.
The relative predictive performance of the competing models and rival prior
distributions was assessed using the remaining 50% of the Cochrane Database.
On average, H;—the model that assumes the presence of a treatment effect as
well as across-study heterogeneity—outpredicted the other models, but not by
a large margin. Within H], predictive adequacy was relatively constant across
the rival prior distributions. We propose specific empirical prior distributions,
both for the field in general and for each of 46 specific medical subdisciplines.
An example from oral health demonstrates how the proposed prior distributions
can be used to conduct a BMA meta-analysis in the open-source software R and
JASP. The preregistered analysis plan is available at https://osf.io/zs3df/.
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Following Karl Pearson’s first quantitative synthesis of clinical trials in 1904, meta-analysis gradually established itself as
an irreplaceable method for statistics in medicine.! However, over a century later meta-analysis still presents formidable
statistical challenges to medical practitioners, especially when the number of primary studies is low. In this case, the
estimation of across-study heterogeneity (i.e., across-study standard deviation) 7 is problematic;** moreover, these prob-
lematic = estimates may subsequently distort the estimates of the overall treatment effect size 5. The practical relevance
of the small sample challenge is underscored by the fact that the median number of studies in a meta-analysis from the
Cochrane Database of Systematic Reviews (CDSR) is only 3, with an interquartile range from 2 to 6.

One statistical method that has been proposed to address the small sample challenge is Bayesian estimation, either
with weakly informative prior distributions,” predictive prior distributions based on pseudo-data,'? or prior distributions

Abbreviations: BF, Bayes factor; BMA, Bayesian model-averaging; CDSR, Cochrane Database of Systematic Reviews, SMD, standardized mean
difference.
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informed by earlier studies.!! These Bayesian techniques are well suited to estimate the model parameters when the data
are scarce; however, by assigning continuous prior distributions to § and z, these estimation techniques implicitly assume
that the treatment is effective and the studies are not homogeneous.” In order to validate these strong assumptions, we may
adopt the framework of Bayesian testing. Developed in the second half of the 1930s by Sir Harold Jeffreys,'>!3 the Bayesian
testing framework seeks to grade the evidence that the data provide for or against a specific value of interest such as 6 = 0
and v = 0 which corresponds to the null model of no effect and the fixed-effect model, respectively. Jeffreys argued that
the testing question logically precedes the estimation question, and that more complex models (e.g., the models used for
estimation, where § and 7 are free parameters) ought to be adopted only after the data provide positive evidence in their
favor: “Until such evidence is actually produced the simpler hypothesis holds the field; the onus of proof is always on the
advocate of the more complicated hypothesis.”4(P-252)

In the context of meta-analysis, Jeffreys’s statistical philosophy demands that we acknowledge not only the uncertainty
in the parameter values given a specific model, but also the uncertainty in the underlying models to which the parame-
ters belong. Both types of uncertainty can be assessed and updated using a procedure known as Bayesian model-averaged
(BMA) meta-analysis.” The BMA procedure applies different meta-analytic models to the data simultaneously, and draws
inferences by taking into account all models, with their impact determined by their predictive performance for the
observed data.'%!

As in other applications of Bayesian statistics, BMA requires that all parameters are assigned prior distributions. How-
ever, in contrast to Bayesian estimation, Bayesian testing does not permit the specification of vague or “uninformative”
prior distributions on the parameters of interest. Vague prior distributions assign most prior mass to implausibly large
values, resulting in poor predictive performance.!32122 In BMA, the relative impact of the models is determined by their
predictive performance, and predictive performance in turn is determined partly by the prior distribution on the model
parameters. In objective Bayesian statistics,?? so-called default prior distributions have been proposed; these default dis-
tributions meet a list of desiderata?* and are intended for general use in testing. In contrast to this work, here we seek
to construct and compare different prior distributions based on existing medical knowledge.?>? Specifically, we propose
empirical prior distributions for § and  as applied to meta-analyses of continuous outcomes in medicine. To this aim, we
first used 50% of CDSR to develop candidate prior distributions and then used the remaining 50% of CDSR to evaluate
their predictive accuracy and that of the associated models.

Below we first outline the BMA approach to meta-analyses and then present the results of a preregistered analysis
procedure to obtain and assess empirical prior distributions for 6 and r for the medical field as a whole. Next we propose
empirical prior distributions for the 46 specific medical subdisciplines defined by CDSR. Finally, we demonstrate with a
concrete example how our results can be applied in practice using the open-source statistical programs R* and JASP.?°

2 | BMA META-ANALYSIS

The standard Bayesian random-effects meta-analysis assumes that a latent individual study effect 6; is drawn from a
Gaussian group-level distribution with mean treatment effect 6 and between-study heterogeneity 7.3 Inference then
concerns the posterior distributions for § and z. This estimation approach allows researchers to answer important ques-
tions such as “given that the treatment effect is nonzero, how large is it?”* and “given that there is between-study
heterogeneity, how large is it?” Because the standard model assumes that the effect is nonzero, it cannot address the
arguably more fundamental questions that involve a hypothesis test,3>33 such as “how strong is the evidence in favor of
the presence or absence of a treatment effect?” and “how strong is the evidence in favor of between-study heterogene-
ity (between-study standard deviation) vs homogeneity?”3*®- 274 Here we outline a BMA approach that allows for both
hypothesis testing and parameter estimation in a single statistical framework.?

Our generic meta-analysis setup!®?%3¢37 (for the conceptual basis see Jeffreys)!3(®-276-277andp.296) congists of the
following four qualitatively different candidate hypotheses$:

"Under a continuous prior distribution, the prior probability of any particular value (such as § = 0, which represent the proposition that the treatment
is ineffective) is zero.

A different approach is Bayesian model selection based on posterior (out-of-sample) predictive performance such as DIC/WAIC/LOO.!5'® However,
these approaches are unable to provide compelling support in favor of simple models.!”!8

*More specific versions of this generic question are “given that the treatment effect is nonzero, is it positive or negative?” and “given that the

treatment effect is nonzero, what is the posterior probability that it falls in the interval from a to b?”
$The terms “hypothesis” and “model” are used interchangeably.
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the fixed-effect null hypothesis Hg :6=0,7=0;

the fixed-effect alternative hypothesis H{ 16 ~g(),7=0;

the random-effects null hypothesis 1 : 6 =0, 7 ~ h(-);

the random-effects alternative hypothesis H] : 6 ~ g(-), = ~ h(-),

Ll

where § represents the group-level mean treatment effect, = represents the between-study standard deviation (i.e., the
treatment heterogeneity), and g(-) and h(-) represent prior distributions that quantify the uncertainty about 6 and =,
respectively. The four prior probabilities of the rival hypotheses are denoted by p(H{;), p(H{ ), p(H{), and p(H7); these may
or may not be set to 1/4, reflecting a position of prior equipoise. The main advantage of this framework is that it does not
fully commit to any single model on purely a priori grounds. Although in many situations the random-effects alternative
hypothesis H] is an attractive option, it may be less appropriate when the number of studies is small; in addition, as
mentioned above, H assumes the effect to be present, whereas assessing the degree to which the data undercut or support
this assumption may often be one of the primary inferential goals.

In our framework, after specifying the requisite prior distributions g(-) and h(-), the data drive an update from prior to
posterior model probabilities, and pertinent conclusions are then drawn using BMA.33° Specifically, the posterior odds
of an effect being present, based on observed data y, is the ratio of the sum of posterior model probabilities for H’; and HY

over the sum of posterior model probabilities for Hg and H(:

p(H!1y) + p(H!1y)

Posterior odds for treatment effect = r .
P(H,|y) + p(Hly)

In model-averaging terms, this quantity is referred to as the posterior inclusion odds, as it refers to the post-data odds
of “including” the effect size parameter 6. As a measure of evidence, one may consider the change, brought about by the
data, from prior inclusion odds to posterior inclusion odds. This change is known as the Bayes factor:?23340

. p(H. 1Y) + p(H;1y) / p(HY) + p(H}) W
10 = - - -
—— p(HS 1Y) + p(H1y) p(HY) + p(H})
Inclusion Bayes factor « “ _ N J
for treatment effect Posterior inclusion odds Prior inclusion odds
for treatment effect for treatment effect

One may similarly assess the posterior odds for the presence of heterogeneity by contrasting | and H] vs Hf; and H{ :

P(H;|y) + p(H{ly)
p(H1y) + p(H 1y)

Posterior odds for treatment heterogeneity =

or one may quantify evidence by the change from prior to posterior inclusion odds:

BF P(H;ly) + p(H{ly) / p(H() + p(HY) @)
rf — —_—
—— pOH)Y) + p(H] Iy p(HY) + p(H))
Inclusion Bayes factor_ . ~ _ N J
for treatment heterogeneity Posterior inclusion odds Prior inclusion odds
for treatment heterogeneity for treatment heterogeneity

An attractive feature of this framework is that it allows a graceful data-driven transition from an emphasis on
fixed-effect models to random-effects models; with only few studies available, the fixed-effect models likely outpredict the
random-effects models and therefore receive more weight. But as studies accumulate, and it becomes increasingly appar-
ent that the treatment effect is indeed random, the influence of the random-effects models will wax and of the fixed-effect
models will wane, until inference is dominated by the random-effects models. In addition, the Bayesian framework allows
researchers to monitor the evidence as studies accumulate, without the need or want of corrections for optional stopping.!
This is particularly relevant as the accumulation of studies is usually not under the control of a central agency, and the
stopping rule is ill-defined.*?

Although theoretically promising, the practical challenge for our BMA meta-analysis is to determine appropriate prior
distributions for 6 and z. Prior distributions that are too wide will waste prior mass on highly implausible parameter
values, thus incurring a penalty for complexity that could have been circumvented by applying a more reasonably peaked
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prior distribution. On the other hand, prior distributions that are too narrow represent a highly risky bet; if the effect is
not exactly where the peaked prior distribution guesses it to be, the model will incur a hefty penalty for predicting the data
poorly, a penalty that could have been circumvented by reasonably widening the prior distribution. There is no principled
way around this dilemma: Bayes’ rule dictates that evidence is quantified by predictive success, and predictions follow
from the prior predictive distributions.*> Thus, when the goal is to quantify evidence, the prior distributions warrant
careful consideration.*+48

Fortunately, the framework presented here contains only two key parameters, § and z; moreover, a large clinical
literature is available to help guide the specification of reasonable prior distributions. Our goal in this work is to use
meta-analyses from the CDSR to create a series of informed prior distributions for both the effect size parameter 6
and between-study variance parameter 7.8227 We will then assess the predictive adequacy of the various models in
conjunction with the prior distributions on a hold-out validation set.

3 | CANDIDATE PRIOR DISTRIBUTIONS

We developed and assessed prior distributions for the § and r parameters suitable for BMA of continuous outcomes using
data from CDSR.T In the remainder of this work, we adopt the terminology of Higgins et al*’: individual meta-analyses
included in each Cochrane review are referred to as “comparisons” and individual studies included in a comparison
are referred to as “studies.” All of the results were conducted using Cohen’s d standardized mean differences (SMD).
The analyses presented in this section were executed in accordance with a preregistration protocol (https://osf.io/zs3df/)
unless explicitly mentioned otherwise.

In order to assess the predictive adequacy of the various prior distributions and models, we first randomly partitioned
the data of the Cochrane reviews in a training and test set. The training set consisted of 3,092 comparisons with a total
number of 23,333 individual studies, and the test set consisted of 3,091 comparisons with a total number of 22,117 individ-
ual studies. We used the training set to develop prior distributions for the § and = parameters and then assessed predictive
accuracy using the test set.

3.1 | Developing prior distributions based on the training set

Left panel of Figure 1 outlines the data processing steps performed on the training set (further details are provided in
the preregistration protocol, https://osf.io/zs3df/). First, in order to ensure that the training set yields estimates of = that
form a reliable basis for the construction of a prior distribution, we excluded comparisons with fewer than 10 studies.
Second, we excluded comparisons for which at least one individual study was reported by the authors of the review to be
“non-estimable” (i.e., the effect size of the original study could not be retrieved). Third, we transformed the reported raw
mean differences to the SMD using the metafor R package.® Fourth, to ensure high consistency of the meta-analytic
estimates, we re-estimated all comparisons using a frequentist random-effects meta-analytic model with restricted max-
imum likelihood estimator using the metafor R package.’® These steps resulted in a final training set featuring 423
comparisons containing a total of 8,044 individual studies. The histograms and tick marks in Figure 2 display the 6 and
7 estimates from each comparison in the training set.”

To develop candidate prior distributions for parameters § and =, we used the maximum likelihood estimator imple-
mented in the fitdistrplus R package® to fit several distributions to the frequentist meta-analytic estimates from the
training set. For the 6 parameter, we considered normal and Student’s ¢ distributions fitted to the training set and com-
pared them to an uninformed Cauchy distribution with scale 1/ \/5 (a default choice in the field of psychology).>? For the
7 parameter, we considered half-normal, inverse-gamma, and gamma distributions fitted to the training set and compared

1We identified systematic reviews in the CDSR through PubMed, limiting the period to January 2000 to May 2020. For that we used the NCBI’s EUtils
API with the following query: “Cochrane Database Syst Rev”’[journal] AND (“2000/01/01”[PDAT]: “2020/05/31”[PDAT]). For each review, we
downloaded the XML meta-analysis table file (rm5-format) associated with the review’s latest version. We extracted the tables with continuous
outcomes (i.e., MD and SMD) from these rm5-files with a custom PHP script. We labeled the tables with the Cochrane Review Group’s taxonomy list
for subfield analysis.

#As specified in the preregistration protocol, we assumed that = estimates lower than 0.01 are representative of H o= 0, and therefore these
estimates were not used to determine candidate prior distributions for 7.
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{Im'tial test data set: 3,091 comparisons (22,117 studies)]

[Initjal training data set: 3,092 comparisons (23,333 studies)}

. . . . Removing comparisons with fewer than 3 studies (590
Removing comparisons with fewer than 10 studies (2,649

comparisons).

comparisons)

[2,501 comparisons (19,361 studies)]

[443 comparisons (8,405 sludies)J

Removing comparisons with at least one not estimable

Removing comparisons with at least one not estimable . o .
study (156 not estimable studies in 85 comparisons).

study (33 not estimable studies in 20 comparisons).

{2,416 comparisons (18,479 studies)]

{423 comparisons (8,044 sludies)]

Transforming the reported raw mean differences to the

Transforming the reported raw mean differences to the
standardized mean differences.

standardized mean differences.

{423 comparisons (8,044 sludies)] [2,416 comparisons (18,479 studies)J

Estimating the comparisons using Bayesian model-

Re—esllmatn?g the com]_aarlsnns. using a rfmdom—.eﬁfe_cls averaged meta-analysis with different prior distribution
meta-analytic model with restricted maximum likelihood. . . .
configurations (10 comparisons were not estimable).
{Final training data set: 423 comparisons (8,044 studies)} {Final test data set: 2,406 comparisons (18,434 studies)}

FIGURE 1 Flowchart of the study selection procedure and data processing steps for the training data set (left) and the test data set
(right) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Frequentist effect sizes estimates and candidate prior distributions from the training data set. Histogram and tick marks
display the estimated effect size estimates (left) and between-study standard deviation estimates (right), whereas lines represent three
associated candidate prior distributions for the population effect size parameter 6 (left) and four candidate prior distributions for the
population between-study standard deviation = (right; see Table 1). Twelve effect sizes outside of the +1.5 range are not shown and
twenty-four z estimates larger than 1 and sixty-eight r estimates lower than 0.01 are not shown

them to an uninformed uniform distribution on the range from 0 to 1. The resulting distributions are summarized in
Table 1 and their fit to the training set is visualized in Figure 2.

3.2 | Assessing prior distributions based on the test set
Right panel of Figure 1 outlines the data processing steps performed on the test set. Similarly to the training set, we

removed non-estimable comparisons and transformed all effect sizes to SMD. However, in contrast to the training set, we
retained all comparisons that feature at least 3 studies: there is no reason to limit the assessment of predictive performance
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TABLE 1 Candidate prior distributions for the  and =
parameters as obtained from the training set

Parameter 6 Parameter 7

& ~ Cauchy(0,1/4/2) ~U(0,1)

6 ~ N(0,0.56%) 7 ~ N4 (0,0.57%)

8 ~7(0,0.33,3) 7 ~ Inv-Gamma(1.26, 0.24)

7 ~ Gamma(1.59, 0.26)

Note: The inverse-gamma and gamma distributions follow the shape
and scale parameterization and the Studen-¢ distributions follow the
location, scale, and degrees of freedom parametrization. See Figure 2.

TABLE 2 Ranking totals for each prior configuration based on the 2,406 comparisons in the test set

Rank

Prior 6 Prior 7 1 2 3 4 5 6 7 8 9 10 11 12

1. ~ Cauchy(0,1/4/2) 7 ~1(0,1) 67 74 35 92 51 56 128 89 91 111 128 1484
2.8 ~ Cauchy(0,1/+/2) 7 ~ N4(0,0.57%) 7 54 39 38 62 8 103 170 134 327 1390 0
3.5 ~ Cauchy(0,1/1/2) 7 ~ Inv-Gamma(1.26,0.24) 54 17 46 64 35 55 109 455 706 163 133 569
4.8 ~ Cauchy(0,1/+/2) 7 ~ Gamma(1.59, 0.26) 9 23 41 51 73 55 62 84 493 1249 261 5
5.8 ~ N'(0,0.56%) 7~ U(0,1) 282 180 50 139 75 101 155 853 443 59 39 30
6.8 ~ N'(0,0.56%) 7 ~ N4(0,0.57%) 8 110 350 217 253 470 933 38 13 9 5 0
7.8 ~ N'(0,0.56%) 7 ~ Inv-Gamma(1.26,0.24) 247 226 221 724 143 120 106 229 139 191 66 4
8.6 ~ N(0,0.56%) 7 ~ Gamma(1.59, 0.26) 123 189 128 230 677 808 196 22 15 6 8 4
9.6 ~T(u=0,6=033,v=3) 7~10,1) 227 162 79 283 549 303 304 166 72 55 94 112
10.6 ~T(u=0,06 =0.33,v=3) 7~ N,(0,0.577) 30 197 1051 257 233 199 111 93 99 83 53 0

11.6 ~T(u=0,0 =0.33,v=3) 7~ Inv-Gamma(1.26,0.24) 1122 207 111 137 60 47 101 140 92 52 155 182
12.6 ~T(u=0,0 =0.33,v=3) 7~ Gamma(l.59,0.26) 230 967 265 174 195 110 98 67 109 101 74 16

Note: The numbers indicate how many times a specific prior configuration attained a specific posterior probability rank amongst the 12 possible prior
configurations. Rank “1” represents the best performance. Note that these rankings are conditional on assuming the meta-analytic model 7] (i.e., the posterior
probabilities of the other meta-analytic models are not considered).

to comparisons with at least 10 studies. These data processing steps resulted in a final test set consisting of 2,416 com-
parisons containing a total of 18,479 individual studies. The median number of studies in a comparison was 5 with an
interquartile range from 3 to 9.

For each possible pair of candidate prior distributions depicted in Table 1,/ we computed posterior model probabil-
ities and model-averaged Bayes factors with the metaBMA R package,>® which uses numerical integration and bridge
sampling.>436

3.2.1 | Performance of prior distribution configurations under H7

In the first analysis, we evaluate the predictive performance associated with the different prior distribution configura-
tions as implemented in H/, that is the random-effects model that allows both § and 7 to be estimated from the data.
Specifically, under H] there are 3 X 4 = 12 prior configurations and each is viewed as a model yielding predictions. The
prior probability of each prior configuration is 1/12 ~ 0.083 and the predictive accuracy of each prior configuration is
assessed with the 2,406 comparisons from the test set. Table 2 lists the 12 different prior configurations and summarizes
the number of times their posterior probability was ranked 1,2, ... ,12. The results show that informed configurations

II'We failed to estimate all BMA meta-analytic models for 10 comparisons due to large outliers.
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7(0.10
8 (0.09
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11 (0.11
12 (0.10

Prior configurations (Av. PoPM)

RN N N N N

Comparisons

FIGURE 3 Average posterior probabilities (AV. POMP) for each of the 12 prior configurations under #; for all 2,406 test-set
comparisons individually. For each comparison, the color gradient ranges from white (low posterior probability) to dark red (high posterior
probability). The numbers in parentheses are the averaged posterior probabilities across all 2,406 comparisons (conditional on 741). The prior
probability for each configuration is 1/12 ~ 0.083. See also Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

generally outperformed the uninformed configurations (i.e., the Cauchy(0, 1/ \/5) distribution on 6 and the U°(0, 1) dis-
tribution on 7). The worst ranking performance was obtained with prior configuration 1 (i.e., uniformed distributions
for both 6 and 7). Prior configurations 2, 3, 4, 5, and 9 feature an uninformed prior distribution on either é or z, and
also did not perform well in terms of posterior rankings. The same holds for prior distribution configurations with the
half-normal prior distribution for the r parameter (i.e., prior configurations 2, 6, and 10). The best performing prior distri-
bution configurations (i.e., numbers 7, 11, and 12) used more data-driven prior distributions for both § (i.e., fitted normal
or t-distributions) and 7 (i.e., fitted inverse-gamma or gamma).

Figure 3 displays the posterior probability for each of the 12 prior distribution configurations across the 2,406 com-
parisons. The color gradient ranges from white (representing low posterior probability) to dark red (representing high
posterior probability). Figure 3 shows that, on average, the different prior distribution configurations perform similarly.
As suggested by the posterior rankings from Table 2, configuration 1 predicted the data relatively poorly, resulting in an
average posterior probability of 0.06; in contrast, configuration 11 predicted the data relatively well, resulting in an aver-
age posterior probability of 0.11. However, these posterior probabilities differ only modestly from the prior probability of
1/12 ~ 0.083, and the Bayes factor associated with the comparison of posterior probabilities of 0.11 and 0.06 is less than 2.

In sum, among the 12 prior configurations under | the best predictive performance was consistently obtained by
data-driven priors, and the worst predictive performance was obtained by uninformed priors (cf. the posterior rankings
from Table 2). However, the extent of this predictive advantage is relatively modest: starting from a prior probability of
1/12 ~ 0.083, the worst prior configuration has an average posterior probability of 0.06, and the best prior configuration
has average posterior probability of 0.11 (cf. Figure 3).”

3.2.2 | Posterior probability of the four model types

In the second analysis, we evaluate the predictive performance of the four meta-analytic model types (i.e., H{;, H{ » H,
and H]) by model-averaging across all prior distribution configurations, separately for each of the 2,406 comparisons.
Table 3 shows the prior model probabilities obtained by first assigning probability 1/4 to each of the four model types,
and then spreading that probability out evenly across the constituent prior distribution configurations.?3® 47

For any particular comparison, a model type’s model-averaged posterior probability is obtained by summing the
posterior probabilities of the constituent prior distribution configurations. For example, the model-averaged posterior

“This modest change in plausibility is consistent with the fact that for overlapping prior distributions, there is an asymptotic limit to the evidence that
is given by the ratio of prior ordinates evaluated at the maximum likelihood estimate.>’
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TABLE 3 Overview of the prior probability assignment to the different models and prior distribution configurations

Prior
Prior model configuration
Model probability Effect size 6 Heterogeneity 7 probability
M 1/4 §=0 =0 1/4
7! 1/4 & ~ Cauchy(0,1/v/2) =0 1/12
& ~ N(0,0.56%) =0 1/12
6 ~ 7(0,0.33,3) =0 1/12
H} 1/4 5=0 7~ 1'(0,1) 1/16
5§=0 7 ~ N4(0,0.57%) 1/16
6=0 7 ~ Inv-Gamma(1.26, 0.24) 1/16
6=0 7 ~ Gamma(1.59, 0.26) 1/16
HI 1/4 & ~ Cauchy(0,1/1/2) T~ V(0,1) 1/48
& ~ Cauchy(0,1/1/2) r ~ N4(0,0.57) 1/48
8 ~ Cauchy(0,1/4/2) 7 ~ Inv-Gamma(1.26, 0.24) 1/48
& ~ Cauchy(0,1/v/2)  ~ Gamma(1.59, 0.26) 1/48
& ~ N(0,0.56%) 7~ 1U(0,1) 1/48
& ~ N(0,0.56%) 7 ~ N,(0,0.57%) 1/48
& ~ N(0,0.56%) 7 ~ Inv-Gamma(1.26, 0.24) 1/48
& ~ N(0,0.56%) 7 ~ Gamma(1.59, 0.26) 1/48
6 ~ 7(0,0.33,3) 7~ 1'(0,1) 1/48
8 ~ 7(0,0.33,3) 7 ~ N4(0,0.57%) 1/48
6 ~ 7(0,0.33,3) 7 ~ Inv-Gamma(1.26, 0.24) 1/48
& ~ 7(0,0.33,3) 7 ~ Gamma(1.59, 0.26) 1/48

probability for H] is obtained by summing the posterior probabilities for the 12 possible prior configurations, each of
them associated with prior probability 1/48 (cf. Table 3).

Table 4 lists the four model types and summarizes the number of times their model-averaged posterior probability
was ranked 1,2, ... ,4. The results show that, across all comparisons, complex models generally received more support
than simple models. The model that predicted the data best was H7, the random-effects model that assumes the presence
of an effect; the model that predicted the data worst was H , the fixed-effect model that assumes the absence of an effect.
However, even Hg outpredicted the other three model types in 662/2406 ~ 28% of comparisons. Table 4 also shows the
model-averaged posterior model probability across all comparisons. In line with the ranking results, the average proba-
bility for Hg decreased from 0.25 to 0.19, whereas that for H{ increased from 0.25 to 0.36. Nevertheless, the support for
H; across all comparisons is not overwhelming and does not appear to provide an empirical license to ignore Hg (or any
of the other three model types) from the outset.

Left panel of Figure 4 displays the model-averaged posterior probability for each model type across the 2,406 compar-
isons. It is apparent that the posterior probability is highest for ]. However, for a substantial number of comparisons
(i.e., (662 + 573 + 406) /2406 ~ 68%, cf. Table 4) a different model type performs better. For instance—and in contrast to
popular belief—the fixed-effect models H{ and H{; together show the best predictive performance in a slight majority of
comparisons (i.e., (662 + 573)/2406 ~ 51%).

3.2.3 | Inclusion Bayes factors

In the third analysis, we assess the inclusion Bayes factors for a treatment effect (cf. Equation 1) and for heterogeneity (cf.
Equation 2); that is, we model-average across all prior distribution configurations and across two model types, separately
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TABLE 4 Ranking totals for each model type based on the 2,406 comparisons in the

test set
Rank
Model 1 2 3 4 PrMP* AV. POMP**
M 662 177 183 1382 0.25 0.19
M 573 334 1235 262 0.25 0.22
M. 406 1158 790 52 0.25 0.24
M, 765 737 196 708 0.25 0.36

Note: The numbers indicate how many times a specific model type attained a specific posterior
probability rank. Rank “1” represents the best performance. The rankings reflect predictive adequacy
that is model-averaged across the possible prior distribution configurations (cf. Table 3).

“Prior model probability.

" Average posterior model probability.
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FIGURE 4 Model-averaged posterior probabilities (Av. POMP) for each of the four model types for all 2,406 test-set comparisons
individually (left) and each prior distribution for all 2,406 test-set comparisons individually (right). For each comparison, the color gradient
ranges from white (low posterior probability) to dark red (high posterior probability). The numbers in parentheses are the averaged posterior
probabilities across all 2,406 comparisons. In the left panel, the prior probability for each model type is 1/4, see also Table 4. In the right
panel, the prior probability is 1/3 for each prior distribution on &, and 1/4 for each prior distribution on 7, see also Table 5 [Colour figure can
be viewed at wileyonlinelibrary.com]

for each of the 2,406 comparisons. First, the inclusion BFj, for a treatment effect quantifies the evidence that the data
provide for the presence vs the absence of a group-level effect, taking into account the model uncertainty associated with
whether the effect is fixed or random. The left panel of Figure 5 displays a histogram of the log of the model-averaged
BF for the test set featuring 2,406 comparisons. The histogram is noticeably right-skewed, which affirms the regularity
that it is easier to obtain compelling evidence for the presence rather than the absence of an effect.!3(®- 19190 Eyidence
for the presence of an effect was obtained in a small majority of the comparisons (i.e., 1336/2406 ~ 55.5%).

Second, the inclusion BF;¢ for heterogeneity quantifies the evidence that the data provide for the presence vs absence
of between-study variability, taking into account the model uncertainty associated with whether the group-level effect is
present or absent. The right panel of Figure 5 displays a histogram of the log of the model-averaged BF,; for the test set
featuring 2,406 comparisons. The right-skew again confirms the regularity: it is easier to find compelling evidence for
heterogeneity than for homogeneity. Nevertheless, the data provide evidence for heterogeneity only in a slight majority
of 1227 /2406 ~ 51.0% of the comparisons.

In sum, the inclusion Bayes factors revealed that in nearly half of the comparisons from the test set, the data provide
evidence in favor of the absence of a treatment effect (i.e., 44.5%) and provide evidence in favor of the absence of hetero-
geneity (i.e., 49.0%). The distribution of the log Bayes factors is asymmetric, indicating that it is easier to obtain compelling

TTThis is the case because most prior distributions assign considerable mass to values near the test-relevant one; it is not a universal property of Bayes
factors.>®
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FIGURE 5 Inclusion Bayes factors in favor of the presence of a treatment effect (left) and in favor of the presence of across-study
heterogeneity (right) for the 2,406 comparisons in the test set. Not shown are log Bayes factors that exceed 21: twelve log Bayes factors for the
presence of a treatment effect and 255 log Bayes factors for the presence of heterogeneity, or are lower than -3: one log Bayes factors for the
presence of a treatment effect and four log Bayes factors for the presence of heterogeneity

TABLE 5 Ranking totals for each prior distribution in 7] based on the 2,406 comparisons in the test set

Rank

Prior distribution 1 2 3 4 PrMP* AV. POMP**
Parameter 6

Cauchy(0,1/1/2) 142 199 2065 - 33 0.25
N(0,0.56%) 655 1727 24 - 33 0.35
7(0,0.33,3) 1609 480 317 - 33 0.39
Parameter ¢

U(0,1) 576 83 116 1631 25 0.23
N(0,0.57%) 47 772 1587 0 .25 0.25
Inv-Gamma(1.26, 0.24) 1418 172 67 749 25 0.27
Gamma(1.59,0.26) 365 1379 636 26 25 0.25

Note: The numbers indicate how many times a specific prior distribution attained a specific posterior probability rank.
Rank “1” represents the best performance. The rankings reflect predictive adequacy that is model-averaged across the
possible prior distribution configurations of the other parameter.

“Prior model probability.

* Average posterior model probability.

evidence for the presence of a treatment effect (rather than for its absence) and for the presence of heterogeneity (rather
than for homogeneity).

3.3 | Exploratory analysis: Model-averaging across prior distributions under H;

To further investigate the predictive performance of the prior distributions, we performed one additional analysis that
was not preregistered in the original analysis plan. We focused on H] and evaluated the prior distributions for each
parameter by model-averaging across the possible prior distributions for the other parameter. For instance, to obtain the
model-averaged posterior probability for the Cauchy prior distribution on the § parameter (i.e., § ~ Cauchy(0,1/ \/5)),
we consider the posterior probability for all 12 possible prior configurations and then sum across the four possible prior
distributions on the r parameter—the four top models listed in the H] row of Table 3. This way we obtain an assess-
ment of the relative predictive performance of a particular prior distribution, averaging over the uncertainty on the prior
distribution for the other parameter.

Table 5 lists the prior distributions and gives the number of times their model-averaged posterior probability attained a
particular ranking. Consistent with the results reported earlier, the more data-driven prior distributions generally received
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more support than the prior distributions that are less informed. For the § parameter, the best performing prior distri-
bution was 6 ~ 7 (0, 0.33, 3); for the = parameter, the best performing prior distribution was 7 ~ Inv-Gamma(1.26, 0.24).
Although the preference for the data-driven prior distributions is relatively consistent, it is not particularly pronounced,
echoing the earlier results. Specifically, Table 5 also shows the model-averaged posterior model probability across all
comparisons. For the § parameter, the t-prior has a model-averaged posterior probability of 0.39 (up from 1/3), but
the Cauchy prior retains a non-negligible probability of 0.25. For the r parameter, the different prior distributions
perform even more similarly; on average, the worst prior distribution is = ~ 1°(0, 1), and yet its model-averaged poste-
rior model probability equals 0.23, down from 1/4 but only a little. Likewise, the on-average best prior distribution is
7 ~ Inv-Gamma(1.26, 0.24), with a model-averaged posterior model probability of 0.27, which is only modestly larger
than 1/4.

Right panel of Figure 4 displays the model-averaged posterior probability for each prior distribution across the 2,406
comparisons. The figure confirms that the data-driven prior distributions perform somewhat better than the relatively
uninformed prior distributions. The color band is darker red, on average, for the prior distributions with the highest
posterior model probabilities, that is, § ~ 7(0,0.33, 3) and t ~ Inv-Gamma(1.26, 0.24).

4 | EXPLORATORY ANALYSIS: SUBFIELD-SPECIFIC PRIOR
DISTRIBUTIONS

Medical subfields may differ both in the typical size of the effects and in their degree of heterogeneity. In recognition
of this fact, we sought to develop empirical prior distributions for 6 and = that are subfield-specific. We differentiated
between 47 medical subfields according to the taxonomy of the Cochrane Review Group. Based on their relatively good
predictive performance detailed in the previous sections, we selected a ¢-distribution for the § parameter (i.e., for subfield
i, 6; ~ T(0,03,v;)) and an inverse-gamma distribution for the = parameter (i.e., for subfield i, 7; ~ Inverse-gamma(a;, f;)).

To estimate the parameters of these distributions separately for each subfield, we used the complete data set and
proceeded analogously to the training set preparation: we removed comparisons with non-estimable studies, only used
comparisons with at least ten studies, re-estimated the comparisons with a restricted maximum likelihood estimator,
and removed comparisons with 7 < 0.01 estimates. These frequentist estimates were used as input for constructing the
data-driven subfield-specific prior distributions. However, since many subfields contain only a limited number of compar-
isons, we used Bayesian hierarchical estimation with weakly informative priors on the hyperparameters. The hierarchical
aspect of the estimation procedure shrinks the estimated parameter values toward the grand mean, a tendency that is more
pronounced if the estimated field-specific value is both extreme and based on relatively little information.>*! Specifically,
we assumed that all field-specific parameters (i.e., 6y, v;, a;, and f;) are governed by positive-only normal distributions. For
the t-distribution, we assigned positive-only Cauchy(0, k) prior distributions both to the across-field normal mean and to
the across-field normal standard deviation, with k = 1 for parameter ¢ and k = 10 for parameter v. For the inverse-gamma
distribution, we assigned positive-only Cauchy(0, 1) prior distributions both to the across-field normal mean and to the
across-field normal standard deviation for shape parameter a and scale parameter f. The hierarchical models were esti-
mated using the rstan R package®? that interfaces with the Stan probabilistic modeling language.®* The Stan code is
available alongside the supplementary materials at https://osf.io/zs3df/.

Table 6 lists the 46 different subfields (the 47th subfield “Multiple Sclerosis and Rare Diseases of the CNS” featured
two comparisons, both of which were excluded based on the = < 0.01 criterion), the associated number of comparisons
and studies, and the estimated distributions for both 6 and z. The scale estimates for the § parameter show considerable
variation, ranging from 0.18 (“Developmental, Psychosocial and Learning Problems™) to 0.60 (“Hepato-Biliary”).* A
similar variation is present in the estimated distributions for the r parameter. Figure 6 visualizes the prior distributions
for each subfield.

5 | EXAMPLE: DENTINE HYPERSENSITIVITY

We demonstrate BMA meta-analysis with an example from oral health. Poulsen et al®* considered the effect of
potassium-containing toothpaste on dentine hypersensitivity. Five studies with a tactile outcome assessment were

*Notice that the most extreme estimates come from fields with relatively large number of comparisons, as these estimates are less subject to shrinkage.
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TABLE 6 Subfield-specific prior distributions for 46 individual topics from the Cochrane Database of Systematic Reviews estimated by
hierarchical regression based on the complete data set

Topic Comparisons Studies Prior 6 Prior ¢

Acute Respiratory Infections 6 104 7(0,0.38,5) Inv-Gamma(1.73, 0.46)
Airways 46 815 7(0,0.38,6) Inv-Gamma(2.02, 0.28)
Anaesthesia 44 661 7(0,0.55,4) Inv-Gamma(1.62, 0.64)
Back and Neck 13 278 7(0,0.37,5) Inv-Gamma(1.75, 0.57)
Bone, Joint and Muscle Trauma 32 1221 7(0,0.40,5) Inv-Gamma(1.52,0.28)
Colorectal 13 372 7(0,0.51,5) Inv-Gamma(1.64, 0.56)
Common Mental Disorders 17 264 7(0,0.55,5) Inv-Gamma(1.62, 0.45)
Consumers and Communication 6 72 7(0,0.40, 5) Inv-Gamma(1.56,0.14)
Cystic Fibrosis and Genetic Disorders 1 12 7(0,0.47,5) Inv-Gamma(1.70, 0.45)
Dementia and Cognitive Improvement 9 197 7(0,0.45,5) Inv-Gamma(1.71, 0.44)
Developmental, Psychosocial and Learning Problems 20 407 7(0,0.18,5) Inv-Gamma(1.43,0.12)
Drugs and Alcohol 8 170 7(0,0.33,5) Inv-Gamma(1.89, 0.28)
Effective Practice and Organisation of Care 10 204 7(0,0.39,5) Inv-Gamma(1.71, 0.35)
Emergency and Critical Care 9 214 7(0,0.39,5) Inv-Gamma(1.62, 0.29)
ENT 17 273 7(0,0.43,5) Inv-Gamma(1.85, 0.48)
Eyes and Vision 14 347 7(0,0.40,6) Inv-Gamma(1.86, 0.41)
Gynaecological, Neuro-oncology and Orphan Cancer 1 10 7(0,0.45,5) Inv-Gamma(1.67, 0.46)
Gynaecology and Fertility 14 253 7(0,0.38,5) Inv-Gamma(1.78, 0.46)
Heart 88 2112 7(0,0.42,5) Inv-Gamma(1.83,0.47)
Hepato-Biliary 34 1103 7(0,0.60,4) Inv-Gamma(1.56, 0.58)
HIV/AIDS 2 23 7(0,0.43,5) Inv-Gamma(1.73,0.44)
Hypertension 27 524 7(0,0.48, 3) Inv-Gamma(2.01, 0.38)
Incontinence 17 219 7(0,0.33,6) Inv-Gamma(1.64, 0.36)
Infectious Diseases 8 150 7(0,0.59,2) Inv-Gamma(1.28, 0.44)
Inflammatory Bowel Disease 1 12 7(0,0.40,5) Inv-Gamma(1.76, 0.39)
Injuries 3 54 7(0,0.35,5) Inv-Gamma(1.80, 0.34)
Kidney and Transplant 39 767 7(0,0.54,5) Inv-Gamma(1.72, 0.53)
Metabolic and Endocrine Disorders 25 503 7(0,0.43,5) Inv-Gamma(1.71, 0.37)
Methodology 5 106 7(0,0.49,5) Inv-Gamma(1.72,0.51)
Movement Disorders 5 70 7(0,0.42,5) Inv-Gamma(1.88, 0.33)
Musculoskeletal 32 778 7(0,0.45,6) Inv-Gamma(1.87,0.38)
Neonatal 11 259 7(0,0.42,5) Inv-Gamma(1.68, 0.38)
Oral Health 10 236 7(0,0.51,5) Inv-Gamma(1.79, 0.28)
Pain, Palliative and Supportive Care 16 283 7(0,0.43,5) Inv-Gamma(1.69, 0.42)
Pregnancy and Childbirth 32 539 7(0,0.33,5) Inv-Gamma(1.86,0.32)
Public Health 2 22 7(0,0.33,5) Inv-Gamma(1.76, 0.23)
Schizophrenia 21 436 7(0,0.29,4) Inv-Gamma(1.60, 0.27)
Sexually Transmitted Infections 9 113 7(0,0.42,5) Inv-Gamma(1.70, 0.59)

Skin 6 85 7(0,0.48,5) Inv-Gamma(1.64, 0.51)



BARTOS ET AL. Statistics “WIL EY—I—B

TABLE 6 (Continued)

Topic Comparisons Studies Prior 6 Prior 7

Stroke 21 357 7(0,0.48,5) Inv-Gamma(1.71, 0.40)
Tobacco Addiction 4 44 7(0,0.44,4) Inv-Gamma(1.73, 0.42)
Upper GI and Pancreatic Diseases 1 12 7(0,0.45,5) Inv-Gamma(1.76, 0.38)
Urology 2 33 7(0,0.44, 5) Inv-Gamma(1.73, 0.45)
Vascular 3 35 7(0,0.46,5) Inv-Gamma(1.66, 0.50)
‘Work 2 24 7(0,0.42, 5) Inv-Gamma(1.76, 0.39)
‘Wounds 7 103 7(0,0.56,5) Inv-Gamma(1.54,0.41)
Pooled estimate 713 14876 7(0,0.43,5) Inv-Gamma(1.71, 0.40)

Note: The t-distribution follows a location, scale, and degrees of freedom parameterization and the inverse-gamma distribution follows a
shape and scale parameterization. See also Figure 6.
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FIGURE 6 Subfield-specific prior distributions for parameter  (left panel) and parameter = (right panel) for 46 individual topics from
the Cochrane Database of Systematic Reviews estimated by hierarchical regression based on the complete data set. See also Table 6

subjected to a meta-analysis. In their review, Poulsen et al® reported a meta-analytic effect size estimate § = 1.19, 95%
CI [0.79,1.59], z = 5.86, p < 0.00001 of potassium-containing toothpastes on reducing tactile sensitivity (“Analysis 1.1.
Comparison 1 Potassium containing toothpaste (update), Outcome 1 Tactile.”).

We reanalyze the Poulsen et al®* comparison using the BMA meta-analysis implementation in the open-source statis-
tical software package JASP (jasp-stats.org).?®6>68 The Appendix provides the same analysis in R?® using the metaBMA
package.? Figure 7 shows the JASP graphical user interface with the left panel specifying the analysis setting and the right
panel displaying the default output. After loading the data into JASP, the BMA meta-analysis can be performed by activat-
ing the “Meta-Analysis” module after clicking the blue “+” button in the top right corner, choosing “Meta-Analysis” from
the ribbon at the top, and then selecting “Bayesian Meta-Analysis” from the drop-down menu. In the left input panel, we
move the study effect sizes and standard errors into the appropriate boxes and adjust the prior distributions under the
“Prior” tab to match the subfield-specific distributions given in Table 6. Specifically, for the “Oral Health” subfield the
prior distributions are 6 ~ 7(0,0.51, 5) and 7 ~ Inv-Gamma(1.79, 0.28).

The JASP output panel displays the corresponding BMA meta-analysis results. The “Posterior Estimates per Mod-
el” table summarizes the estimates and evidence from the fixed-effect models, random-effects models, and finally the
model-averaged results. The final row of the table shows an effect size estimate § = 1.082, 95 % CI [0.686, 1.412] which
is slightly lower and more conservative than the one provided by the frequentist random-effects meta-analysis, further
quantified with extreme evidence for the presence of an effect, BF;o = 218.53, and moderate evidence for the pres-
ence of heterogeneity, BF, = 3.52. The JASP output panel also presents a forest plot that visualizes the observed effects
size estimates from the individual studies, the overall fixed-effect and random-effects meta-analytic estimates and the
corresponding model-averaged effect size estimate.
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FIGURE 7 JASP screenshot of a Bayesian model-averaged meta-analysis of the Poulsen et al* comparison concerning the effect of
potassium-containing toothpaste on dentine tactile hypersensitivity. The left input panel shows the specification of the “Oral Health” CDSR
subfield-specific prior distributions for effect size 6 and heterogeneity z. The right output panel shows the corresponding results [Colour
figure can be viewed at wileyonlinelibrary.com]|

The JASP interface provides additional options not discussed here, such as (a) visualizing the prior and posterior
distributions; (b) visualizing the estimated effect sizes from individual studies; (c) performing one-sided hypothesis tests;
(d) updating evidence sequentially, study-by-study; (e) adding ordinal constraints;*® and (f) adjustments for publication
bias.”0"t

6 | CONCLUDING COMMENTS

In this article, we introduced BMA meta-analysis for continuous outcomes in medicine. The proposed methodology
provides a principled way to integrate, quantify, and update uncertainty regarding both parameters and models. Specif-
ically, the methodology allows researchers to simultaneously test for and estimate effect size and heterogeneity without
committing to a particular model in an all-or-none fashion. In BMA meta-analysis, multiple models are considered simul-
taneously, and inference is proportioned to the support that each model receives from the data. This eliminates the
need for stage-wise, multi-step inference procedures that first identify a single preferred model (e.g., a fixed-effect model
or a random-effects model) and then interpret the model parameters without acknowledging the uncertainty inherent
in the model selection stage. The multi-model approach advocated here also decreases the potential impact of model
misspecification.

BMA meta-analysis comes with the usual advantages of Bayesian statistics—the ability to quantify evidence in
favor or against any hypothesis (including the null hypothesis), the ability to discriminate between absence of evidence
and evidence of absence,””® the ability to monitor evidence as individual studies accumulate,*? the straightforward
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interpretation of the results (i.e., probability statements that refer directly to parameters and hypotheses),’* and the oppor-
tunity to incorporate historical information.”>’¢ In this article, our goal was to take advantage of the existing medical
knowledge base in order to propose and assess prior distributions that allow for more efficient inference.

Following a preregistered analysis plan, we fitted and assessed different prior distributions for both effect size 6 and
heterogeneity = using comparisons of continuous outcomes from the CDSR. We fitted prior distributions based on a train-
ing set of randomly selected comparisons, and then evaluated predictive performance based on a test set. The results
showed that predictive performance on the test set was relatively similar for the different data-driven prior distribu-
tions. Moreover, and in contrast to popular belief and recommendations,®*77-78 we did not find that the random-effects
meta-analytic model provided a superior account of the data: the random-effects meta-analytic models outpredicted their
fixed-effect counterparts in only 51.0% of comparisons. Although the random-effects alternative hypothesis 7] showed
the best predictive performance on average, the data increased its model-averaged posterior probability from 0.25 to only
0.36, leaving 0.64 for the three competing model types (i.e., a model with no heterogeneity, a model without an effect, and
a model without both).

Based on the outcome of our preregistered analysis, we used the data from CDSR to develop empirical prior dis-
tributions for continuous outcomes in 46 different medical subfields. Finally, we applied BMA meta-analysis with
subfield-specific prior distributions to an example from oral health, using the free statistical software packages R and
JASP. We believe that the proposed Bayesian methodology provides an alternative perspective on meta-analysis that is
informed, efficient, and insightful.
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APPENDIX.R CODE FOR THE ORAL HEALTH EXAMPLE

The result for the example analysis can also be obtained with the statistical programming language R.? After initializing
the R session, the metaBMA R package’® needs to be installed with the following command (this command needs to be
executed only if the package is not already present):

install.packages ("metaBMA")
After the metaBMA has been installed, it must then be loaded into the session, and the data set (containing the effect

sizes and standard errors from the individual studies) from the “Tactile Sensitivity.csv” file can be made available, as
follows:

library ("metaBMA")

data <- read.csv("Tactile Sensitivity.csv")

In order to perform the BMA meta-analysis with the subfield-specific prior distributions, we first assign the col-
umn containing the effect sizes study effect_ size to the y argument, and the column containing standard errors


https://cran.r-project.org/package=metaBMA
https://cran.r-project.org/package=metaBMA
http://mc-stan.org/
https://mc-stan.org

ls_l_wl LEY_StatiStiCS BARTOS ET AL.

study effect sizetothe SEargument(thedata = dataargumentsspecifies that both of the columns are located
in the already loaded data set called data). Then, we specify the prior distributions for the effect size, the d argument,
and the heterogeneity, the tau argument, accordingly to the “Oral Health” row in Table 6. Finally, the control argu-
ment specifies an additional control argument for the Markov chain Monte Carlo (MCMC) sampler, increasing the target
acceptance probability from the default value of 0.80, often required in cases with a small number of studies (see https://
mc-stan.org/misc/warnings.html for more information about Stan’s warnings and possible solutions):

fit example <- meta bma(y = study effect size, SE = study se, data = data,

d = prior("t", c(location = 0, scale = 0.51, nu = 5)),
tau = prior ("invgamma", c(shape = 1.79, scale = 0.28)),
control = list (adapt delta = .90))

To obtain the numerical summaries of the estimated model, we just execute the name of the object containing the
fitted model:

fit example

The resulting output corresponds to that given by JASP output (up to MCMC error):

> fit example

### Meta-Analysis with Bayesian Model Averaging ###

Fixed HO: d =20

Fixed H1l: d ~ 't’ (location=0, scale=0.51, nu=5) with support on the interval
[-Inf,Inf].

Random HO: d = O,

tau ~ ’invgamma’ (shape=1.79, scale=0.28) with support on the interval

[0,Inf].

Random Hl1: d ~ 't’ (location=0, scale=0.51, nu=5) with support on the interval
[-Inf,Inf].
tau ~ ‘invgamma’ (shape=1.79, scale=0.28) with support on the interval
[0,Inf].

# Bayes factors:

(denominator)
(numerator) fixed HO fixed H1 random HO random H1
fixed HO 1.00e+00 8.83e-20 4.29e-18 2.52e-20
fixed H1 1.13e+4+19 1.00e+00 4.85e+01 2.85e-01
random HO 2.33e+17 2.06e-02 1.00e+00 5.88e-03
random H1 3.97e+19 3.50e+00 1.70e+02 1.00e+00

# Bayesian Model Averaging
Comparison: (fixed H1 & random H1l) vs. (fixed HO & random HO)
Inclusion Bayes factor: 218.526
Inclusion posterior probability: 0.995

# Model posterior probabilities:
prior posterior logml
fixed HO 0.25 1.95e-20 -51.22
fixed H1 0.25 2.21le-01 -7.34
random_ HO 0.25 4.56e-03 -11.23
random H1 0.25 7.74e-01 -6.09
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# Posterior summary statistics of average effect size:

mean sd 2.5% 50% 97.5% hpd95 lower hpd95 upper n_eff Rhat
averaged 1.085 0.183 0.686 1.091 1.432 0.705 1.446 NA NA
fixed 1.092 0.118 0.860 1.093 1.325 0.853 1.317 3645.6 1.001
random 1.083 0.200 0.649 1.090 1.451 0.673 1.466 3863.5 1.000

The inclusion Bayes factor quantifying the evidence in favor of heterogeneity can be obtained using Equation (2) and
output from the “Model posterior probabilities” table.



