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ABSTRACT: Classical molecular dynamics is a computer simulation technique that
is in widespread use across many areas of science, from physics and chemistry to
materials, biology, and medicine. The method continues to attract criticism due its
oft-reported lack of reproducibility which is in part due to a failure to submit it to
reliable uncertainty quantification (UQ). Here we show that the uncertainty arises
from a combination of (i) the input parameters and (ii) the intrinsic stochasticity of
the method controlled by the random seeds. To illustrate the situation, we make a
systematic UQ analysis of a widely used molecular dynamics code (NAMD), applied
to estimate binding free energy of a ligand-bound to a protein. In particular, we
replace the usually fixed input parameters with random variables, systematically
distributed about their mean values, and study the resulting distribution of the
simulation output. We also perform a sensitivity analysis, which reveals that, out of a
total of 175 parameters, just six dominate the variance in the code output.
Furthermore, we show that binding energy calculations dampen the input
uncertainty, in the sense that the variation around the mean output free energy is less than the variation around the mean of
the assumed input distributions, if the output is ensemble-averaged over the random seeds. Without such ensemble averaging, the
predicted free energy is five times more uncertain. The distribution of the predicted properties is thus strongly dependent upon the
random seed. Owing to this substantial uncertainty, robust statistical measures of uncertainty in molecular dynamics simulation
require the use of ensembles in all contexts.

■ INTRODUCTION
The classical molecular dynamics computer simulation
technique, which solves Newton’s equations of motion for
assemblies of molecules, is a very widely used method across all
areas of scientific research, from physics and chemistry to
materials, biology, and medicine. Today it is commonplace to
read reports of such simulations being performed on models
containing many tens of thousands of atoms, and in the largest
cases as many as some hundreds of millions of atoms as in the
2020 Gordon Bell award in the COVID-19 category for
simulation of the Spike protein.1 What is clear, however, is
that despite such studies abounding in the academic research
literature, their impact in contexts where decision-making is
required are few and far between. That is to say, the method is
rarely used to make actionable decisionsones which are taken
as a matter of urgency based on the predictions of a computer
simulation. While this is done routinely in many engineering
contexts in which macroscopic simulations are performed, it
remains uncommon at the molecular and lower length and time
scales. In general, molecular dynamics is regularly used as a kind
of post hoc rationalization method to explain experimental
observations after they have occurred.
A well-known application of molecular dynamics involves the

prediction of the binding affinity of a lead compound or drug
candidate with a protein target, which is of central importance in

drug discovery and personalized medicine. The binding affinity,
also known as the free energy of binding, is the single most
important initial indicator of drug potency, and the most
challenging to predict.2,3 There are various approaches to
estimate the magnitude of the binding free energy (a measure of
how strong the interaction is between a ligand and its target
protein), based on different theories and approximations.4

Molecular mechanics Poisson−Boltzmann surface area
(MMPBSA) and molecular mechanics generalized Born surface
area (MMGBSA) methods5 are among the most popular
methods for free energy calculations, which are based on
invoking a continuum approximation for the aqueous solvent to
approximate electrostatic interactions following all-atom mo-
lecular dynamics simulations. There are other approaches with
different approximations, domains of application, and computa-
tional requirements. The choice of which computational
method to use is influenced by the desired accuracy, precision,
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time to solution, computational resources available, and so on.
Even today, all these methods remain prone to sizable errors and
are deemed unreliable for decision-making.
To make progress toward actionable molecular dynamics

simulations, several things are required. The first is to ensure that
the methods being used are reproducible, an essential
requirement for any scientific method.6−8 Beyond that, the
methods need to be validated against experiment, and verified in
the sense that the codes used are indeed implementing the
correct mathematics. Finally, codes should be subjected to an
uncertainty quantification (UQ) study, in order to report the
magnitude and distribution of the uncertainty which is
inherently present.
There are two sources of uncertainty accruing in MD

simulations, due to systematic and random sources.7 In order
to get a full grip on uncertainty in MD simulations, one needs to
be able to identify and quantify both. Epistemic uncertainty is
introduced by inaccuracies inherent to the system investigated
and within the measurement method performed. On the one
hand, they come from the assumptions and approximations
made when a theory is applied, a model is constructed, or a
process is mimicked by the simulation of a real-world problem.
In principle, a higher level of resolution should produce more
accurate predictions than a lower level one, although in practice
it is not always the case because of the quality of the theory
employed.9−11 On the other hand, systematic errors can arise

from the calibration of the MD engine. The thermodynamic
conditions, such as constant volume or pressure in a closed
system, must be accurately specified. Multiple factors need to be
carefully considered in the preparation of the molecular models,
such as choice of force field, protonation and tautomeric states,
buffer conditions, use of physical restraints and constraints,
thermostat, and barostat.
Epistemic uncertainty can be tied to imperfectly known input

parameters, and/or approximate mathematical models. This
uncertainty can in principle be reduced via improved
mathematical models, or by calibrating the parameters to data.
However, random variation, also called system noise, aleatoric or
stochastic uncertainty, is caused by the intrinsically chaotic
nature of classical molecular dynamics. While this uncertainty
cannot be reduced, it can be quantified via ensemble methods.
Given the extreme sensitivity of Newtonian dynamics to initial
conditions, two independent MD simulations will sample the
microscopic states with different probabilities no matter how
close the initial conditions used.12 The impact of the chaotic
nature of MD has not been widely recognized in the MD field.
Leimkuhler and Matthews’ book (2015)13 is a notable
exception, although it does not address the issue of uncertainty
quantification.
The parameters used in MD simulations are usually calibrated

to reproduce one or more available measurements from
experiments, calculations from quantum mechanics, or both.

Figure 1. Sources of uncertainty and quality of predictions in molecular simulations for ensemble-based binding affinity calculations. (a) The types of
uncertainties in the simulation (i) and the settings of parametric configurations (ii) are responsible for the uncertainty in predicted binding affinities
(iii). Sensitivity analysis determines input parameters that most substantially impact predicted binding energy variability (iv). (b) The random errors
are dealt with by ensemble approaches, in which multiple replicas (i) are simulated from initially close conformations. Neighboring trajectories in the
“underlying” phase space diverge exponentially fast (ii), generating different distributions for a quantity of interest (iii). The number of replicas used to
perform ensemble averaging (iv) varies, depending on the required accuracy and the power of the available computational resources.
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In almost all cases, only a single value is used for the parameters,
while the uncertainty in the parameters is simply ignored. For a
realistic model of a biomolecular system, the number of
parameters is very large. There are ∼16 000 energy terms in
the systemwe are studying here, excluding the terms for all of the
water molecules. These energy terms contain ∼40 000
parameters. Only limited studies have been performed to
quantify uncertainties from force field parameters, using
relatively simple models such as TIP4P water molecules14

and/or focusing on a small subset of parameters such as those for
the Lennard−Jones potential15 or the atomic radius and charge
parameters.16 While a quantification of the uncertainties from all
the force field parameters is beyond the scope of this work, we
note that the above studies show that the prediction uncertainty
arising from parameters may be larger than statistical simulation
uncertainty.
In this paper, we perform such an uncertainty quantification

study applied to a binding affinity calculation. Calculations are
performed using Enhanced Sampling of Molecular dynamics
with Approximation of Continuum Solvent (ESMACS)17 on a
molecular complex of the bromodomain-containing protein 4
(BRD4-BD1) and the tetrahydroquinoline (I-BET72618) ligand
(see Figure 1). In particular we perform a parametric UQ
analysis, in which we replace deterministic scalar input
parameters with random variables, and we also quantify the
uncertainty arising from the seeds. Our overall goal is then to
perform a forward propagation step, meaning we propagate the
joint probability distribution of the inputs through NAMD via a
suitable sampling method, in order to obtain the corresponding
distribution of the simulation outcome. While NAMD has a
large number of inputs (175) the majority of them are not
relevant for forward UQ, as they do not directly influence the
solution. Using expert knowledge, we selected a subset of 14
parameters which are known to have an impact on simulation
behavior, to which we assigned uniform input distributions. It
makes sense to reduce the number of input distributions a priori,
since many forward UQ techniques (e.g., stochastic collocation
(SC)19 or polynomial chaos expansions20) suffer from the curse
of dimensionality. This essentially means that the required
number of NAMD evaluations grows exponentially with the
number of uncertain inputs, which leads to a computational
bottleneck due to the compute-intensive nature of the code.
This is further exacerbated due to the random seeds, which we
also incorporate in our epistemic (parametric) uncertainty
analysis. For each sample of the joint input distribution, we run
25 replica simulations in which we only vary the random seeds.
One of our goals is to contrast the variation in the simulation
outcome due to the parameters with the variation arising from
the random seeds. We also examine the “robustness” of NAMD
to epistemic uncertainty, by which we mean the extent to which
the binding affinity calculation either damps or amplifies
uncertainties from the input data to the output free energy
predictions. Although we have a priori restricted the number of
uncertain inputs, a 14-dimensional space is still too large to
sample with standard SC or polynomial chaos expansions, while
simple Monte Carlo is known to have a slow convergence rate.
For this reason we employ a dimension-adaptive variant of the
SC sampler.21,22 Briefly, this method banks on the existence of a
low effective dimension, where only a subset of all parameters
contribute significantly to the variance in the simulation output.
The dimension-adaptive algorithm starts with a single sample,
and iteratively refines the sampling plan along the directions
which are found to be important, based on a suitable error

metric. Details are given in the Theory and Methods section.
Here we note that such methods have found application in a
wide variety of domains, e.g. finance,23 natural convection,24 and
epidemiology,25 to name just a few.
A final point of interest we wish to study here concerns the

assumption of normality. From our investigations,7 we observe
that the statistical properties one computes from molecular
dynamics trajectories may be approximately described by a
Gaussian random process. However, a normal distribution may
not be automatically assumed. In fact, there are frequently
significant deviations from such statistics in nonlinear dynamical
systems of which molecular dynamics is an excellent
example.26,27 The simulations should then proceed from a
statistical-mechanical ensemble corresponding to the exper-
imental conditions, and properties calculated from expected
values may then be compared with their corresponding
experimental counterparts. Following our recent findings, non-
normality of binding free energies has been confirmed
experimentally (Ian Wall and Alan Graves, private communica-
tion, 2020). Quantifying systematic errors requires first bringing
the random components contributing to the errors under full
control.

■ THEORY AND METHODS
We describe the ESMACS protocol, the dimension-adaptive
sampling method, as well the methods to compute the Sobol
index and uncertainty amplification factor. The last three
methods are more extensively described in one of our previous
studies of the CovidSim epidemiological code.25

ESMACS Protocol and Ensemble Simulations. The
protein target of our investigation is the bromodomain-
containing protein 4,17 which is currently a major and rapidly
evolving focus for the pharmaceutical industry. Preclinical and
early stage clinical studies have shown that inhibitors targeting
the protein exhibit promising efficacy in pathologies ranging
from cancer to inflammation. BRD4 has recently become
something of a benchmark system for free energy calculations,
which we have investigated extensively using our binding affinity
calculator for diverse compound data sets.17,28 Here we use one
of the compounds studied previously,17 and investigate the
sources of uncertainty along with the quality of binding free
energy predictions.
The preparation and setup of the simulations are

implemented using ESMACS. More details can be found in
our previous publications.17,29 We use the same force field as
described previously: the AMBER ff99SB-ILDN force field for
the protein, TIP3P for water molecules, and the general AMBER
force field (GAFF) for the ligand with partial charges calculated
using restrained electrostatic potential (RESP) module in the
AMBER package. The molecular system is solvated in
orthorhombic water boxes. The minimal distance between the
protein atoms and the box edges is set to be 14 Å as in our
previous publications. It is treated here as one of the parameters
included in the UQ study.
In the standard ESMACS protocol, an ensemble of 25 replicas

is used for each of the parametric configurations. The starting
phase spaces are close to each other for the replicas, differing
only in their initial velocities which are generated independently
from aMaxwell−Boltzmann distribution at 50K. Eachmolecular
system is then virtually heated to a desired temperature, and
subsequently maintained at this temperature and a defined
pressure (with temperature and pressure coupling constants).
After a total of 2 ns equilibration, a 4 ns production phase is
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initiated, of which the trajectory is analyzed to extract binding
free energies. Full simulation details can be found in our
previous publications.17,29

Dimension-Adaptive Uncertainty Propagation. Our
chosen method of propagating input uncertainty through
NAMD is based on Stochastic Collocation (SC).30 Each input
parameter ξ ∈ i is assigned an independent probability density
function p(ξi), and the goal is to propagate these though NAMD
to examine the corresponding distribution of the output. In
particular, let ξ ξe( , ..., )j jd1

be the ensemble-averaged binding

energy code output, computed at some parametric configuration
ξ ξ ξ= ∈ ( , ..., )j j

d
d1

in the stochastic domain, as indexed by a

multi-index (j1, ..., jd). Traditionally, the SC method involves an
expansion over a tensor-product of such points, i.e.:

∑ ∑ξ ξ ξ ξ ξ ξ≈ ̃ = ··· ⊗ ··· ⊗
= =

e e e a a( ) ( ) ( , ..., ) ( ) ( )
j

m

j

m

j j j j d
1 1

1

d

d

d d
1

1

1 1
(1)

Here, ̃e denotes the polynomial approximation of e, as each a ji
is a 1D Lagrange interpolation polynomial given by the
following:

ξ
ξ ξ
ξ ξ

= Π
−
−≤ ≤

≠

a ( )j i k m

k j

i k

j k1i i

i

i
(2)

A well-known property of the Lagrange polynomial associated
with the ji-th collocation point (in a given dimension 1 ≤ i ≤ d),
is that ξ =a ( ) 1j ji i

at this point, and ξ =a ( ) 0j ji k
at all other

collocation points x jk
(for i ≠ k). The 1D collocation points are

generated from the points of a quadrature rule, used to
approximate integrals weighted by the chosen input distribution
p(ξi). The order of this quadrature rule for the i-th input
determines the number of points mi along that dimension, and
due to the tensor-product construction the total number of code
evaluations for d inputs equals M = m1 · m2···md, or M = md if all

inputs receive the same quadrature order (see Figure 2a for an
example). Note that, in the standard SC method, the order of
each quadrature rule must be specified by the user. The
exponential increase with the number of inputs d is known as the
curse of dimensionality, and it limits practical applications of the
standard SC method to less that about 10 uncertainty
parameters. Since we have a 14 dimensional input space, we
employed a dimension-adaptive version of the SC method,
based on the original work of refs 19 and 21. This method does
not remove the curse of dimensionality, although it does
postpone its effect to higher dimensions. The general idea is to
forego the standard single tensor product based on user-
specified quadrature orders, and instead iteratively build the
sampling plan using a linear combination of tensor products of
different orders. Often, one starts from a single sample placed in
the middle of the stochastic domain, which corresponds to
assuming a 0-th order rule for all inputs. The sampling plan is
then refined in an anisotropic fashion, sequentially increasing
the order of (combinations of) inputs parameters which are
deemed important by a suitable error metric. This method thus
aims to find a lower effective dimension, which explains most of
the variability of the output. While there is no guarantee of the
existence of an effective dimension K with K < d, it is often
observed in practice that only a small number of parameters are
responsible for themajority of observed output variance, see e.g.,
ref 25. It should be noted that there are methods besides
dimension-adaptive SC which also seek a lower effective
dimension. Notable examples include High-Dimensional
Model Representations,31 Active Subspaces,32 and more recent
ideas involving machine learning.33

To adaptively refine the sampling plan, a “look-ahead step”34

is executed, where the computational model is evaluated at the
new unique “candidate” locations which are admissible.21 The
admissibility criteria is explained in detail by Gerstner et al.
(2003);21 here we only provide a general outline. Let Λ be the
set containing all quadrature-order multi indices l = (l1, ..., ld)
which have been selected (the gray squares of Figure 2b), which,

Figure 2. Two-dimensional examples of building sampling plans with one-dimensional quadrature rules of (different) orders. The horizontal axis
displays the 1D quadrature points of order li, and the corresponding sampling plan in (ξ1, ξ2) space is shown on the right. (a) A standard SC example,
where the user specified a second-order rule for both inputs (l = (2, 2)), leading to a dense sampling plan of 25 points. (b) Possible iterations of a
dimension-adaptive example. The first iteration contains the 0-th order rule for all inputs, i.e.,Λ = {(0, 0)}. For this initial sampling plan there are two
admissible candidate multi-indices, i.e., (1, 0) and (0, 1) (see× symbols). In this example, (0, 1) generated a larger error, and therefore gets accepted in
Λ, leading to a more refined sampling plan in the ξ2 direction. This opens up new candidate directions, and the process repeats, leading to an
anisotropic sampling plan. This plan is thus built from a linear combination of tensor products, using the quadrature orders in Λ.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00526
J. Chem. Theory Comput. 2021, 17, 5187−5197

5190

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00526?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00526?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00526?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00526?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


as stated, is initialized asΛ≔{(0, ..., 0)}. Now define the forward
neighbors of anymulti index l by the set {l + ei|1≤ i≤ d}, where ei
is the elementary basis vector in the i-th direction, e.g., e3 = (0, 0,
1, ..., 0). The forward neighbors of the setΛ are then the forward
neighbors for all l ∈Λ, which are not already in Λ. Similarly, the
backward neighbors of l are given by {l − ei|li > 0, 1 ≤ i ≤ d}. An
index setΛ is said to be admissible if all backward neighbors ofΛ
are in Λ. In short, the aforementioned candidate directions are
generated by those forward neighbors lwhereΛ∪{l} remains an
admissible set, corresponding to the× symbols of Figure 2b. For
each admissible forward neighbor l, a local error measure is
computed. There are multiple possibilities for creating such a
measure, either based on the interpolation error between
subsequent levels of refinement,22 Sobol sensitivity indices34 or
the observed error in quadrature metrics.21 For this study we
adopt an error metric in the latter category where, similar to ref
35 we look for candidate directions defined by admissible multi
indices, in which the change in variance is maximized. Hence, for
every admissible multi-index l we compute a corresponding
error measure ϵl, defined as follows:

ϵ ≔ [ |Λ ∪ { }] − [ |Λ]ξ ξ e elar arl (3)

Here, [ | Λ]ξ ear is the variance in the ensemble-averaged
binding energy due to the uncertain inputs ξ, when evaluated
using the points generated by the currently accepted multi
indices inΛ. Likewise, [ | Λ ∪ { }]ξ e lar is the variance obtained
if candidate multi-index l were to be accepted. Note that every
index l = (l1, ..., ld) ∈Λ constitutes a separate tensor product of
1D quadrature rules with orders given by l. As noted, the SC
expansion in the adaptive case is therefore constructed as a linear
combination of tensor products over the accepted multi-indices
in Λ, i.e.,

∑ ∑ ∑ξ ξ ξ ξ ξ≈ ̃ = ··· ⊗ ··· ⊗
∈Λ = =

q q c q a a( ) ( ) ( ) ( ) ( )
j

m

j

m

j
l

j
l

d
l

l j
l

1 1

( ) ( )
1

( )
l

d

ld

d
d

1

1

1
1

(4)

where ξ ξ ξ=q q( ) ( , ..., )j
l

j
l

j
l( ) ( ) ( )

d

d

1

1 , andmli
is the number of points

generated by a one-dimensional rule of order li. The coefficients
cl are computed as

∑ ∑ χ χ= ··· − · + =
∈ Λ

= =

| |c l k l
l

( 1) ( ), where ( )
1

0 otherwisek k
l

k l

0

1

0

1

d1

1
l
moo
noo

(5)

see ref 19 for details. What remains is the specification of the
type of 1D quadrature rule. In the case of (anisotropic) sparse
grid methods as described here, it is common practice to select a
nested rule, which has the property that a rule of a given order
contains all points generated by that same rule at lower orders.
When taking linear combinations of tensor products built from
nested 1D rules of different order, as in (4), many points will
overlap. This leads to a more efficient sampling plan in higher
dimensions. For our calculations we employ the well-known
Clenshaw-Curtis quadrature rule; see e.g., ref 22. Finally, we
note that to generate the 1D rules, EasyVVUQ makes use of the
Chaospy library.36

Sobol Index Calculation. Briefly, the Sobol indices of ξe( )
are global, variance-based measures of sensitivity of the
ensemble-averaged binding energy e with respect to the inputs
ξ ∈ d.37,38 It allows us to to identify important input
parameters, and the indices have an intuitive interpretation.
Let [ ] ear u be a so-called partial variance, where the multi-index
u can be any subset of ≔ { }d1, 2, ..., . Each partial variance

represents the fraction of the total output variance that can be
attributed to the input parameter combination indexed by u.
When we normalize a partial variance with the total variance we
obtain the corresponding Sobol index Su:

≔
[ ]
[ ]




S

e
e

ar
aru

u

(6)

where [ ] = ∑ [ ]⊆ e eu u is the is the total variance of e.38

Since all partial variances are positive, the sum of all possible Su
equals 1.
The number of all possible subsets u (the power set of ),

rises exponentially with d. In practice, however, often only the
first-order Sobol indices are computed, i.e., Si with i ∈{1, ..., d}.
These measure the variance fraction that can be attributed to
each individual input, and more often than not, are already
responsible for the majority of the output variance, such that the
higher-order effects of varying multiple inputs simultaneously is
relatively minor. This is also reflected in our results, see Section
S4 of the Supporting Information (SI).
To compute the Sobol sensitivity indices, we employ the

method described in ref 39. The general idea is to transform the
adaptive SC expansion into a polynomial chaos expansion
(PCE), which facilitates an easy computation of the Sobol
indices. As this is already well documented, and not critical for
our discussion, we refer to refs 25 and 39 for more details.

Uncertainty Amplification Factor. In,25 we developed a
“robustness score” for computational models, under uncertainty
in the input parameters. Here, we modify it slightly to deal with
negative in- and outputs. We base our robustness score on the
coefficient of variation, a simple (dimensionless) measure for
variability in some random variable X, defined as the standard
deviation over the mean, i.e., CV(X) ≔ σX/μX. Any forward
uncertainty propagation method approximates the first two
moments of the output, and so the output CV is available.
Assuming we can (analytically) compute the first two moments
of each input ξi ∈ξ, i = 1, ..., d, ξ σ μ≔ ∈ξ ξ CV( ) /i i i

is also

easily computed. As d > 1, we will compute the average
variability at the input. Note that ξ may contain inputs defined
on vastly different scales. Likewise, the order of magnitude
between the input and output can also differ significantly.
However, since the CV is a dimensionless quantity, this will not
pose a problem. Here, we propose to use the ratio of the
(absolute) CVs, denoted as CVR, as a relative measure of
variability between the input and the output, which in the case of
the scalar binding-energy becomes the following:

∑σ
μ

σ

μ
≔ ξ

ξ=d
CVR /

1e

e i

d

1

i

i

i

k

jjjjjjj
y

{

zzzzzzz
(7)

The absolute value is taken to avoid cancellation of variability.
While technically not necessary in the case of NAMD, since all
our inputs are positive and the output e is consistently negative,
the current form of (eq 7) is more generally applicable in this
fashion. Note that we do not include the random seed in the
computation of the average input CV, since e here is the
ensemble average over the replicas. In any case it would not
make sense to compute the CV of the seeds, as the mean and
variance of the random seeds are meaningless. Therefore, to still
incorporate the effect of aleatoric uncertainty, we compute the
output CV of each replica (CV(ei)) separately. and average these
values afterward. In this case the CVR becomes
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where S is the number of random seeds considered, 25 in our
case. The basic idea of eqs 7 and 8 is to say something about the
robustness of the code to input uncertainty, given a user-
specified input distribution. Note that Sobol indices are not
suited for this goal. They attribute a fraction of the total output
variance to subsets of parameters, and do not compare the
variability observed at the output to the amount of variability
assumed at the inputs. Thus, eqs 7 and 8 tell us to what extent the
code amplifies the assumed input uncertainty, where we define
amplification as having a CVR larger than 1. Relative damping
occurs when CVR < 1, which is the case for our NAMD results.

■ RESULTS AND DISCUSSION
Binding affinity calculations performed by means of molecular
dynamics simulations (using NAMD) depend on an extensive
set of parameters. Exhaustively listing all possible parameters, we
gathered 175 variables. However, not all these parameters
should be included in the UQ procedure, and we use expert
opinion to reduce this set.
Dimension Reduction.A large number of parameters in the

listing are configurational parameters; they control aspects such
as I/O data flow but do not influence the behavior of the model
simulation. Some parameters are also redundant between
different equilibration and simulation phases of the affinity
calculation. After eliminating these inputs, the listing was
reduced down to 25 parameters. These remaining parameters
can be classified into two groups:

• Group 1: “Physical parameters” which control the
thermodynamics of the equilibration and binding
processes; these essentially refer to the duration, the
temperature and the pressure of the simulations (e.g.,
setTemperature, BerendsenPressureTarget, time_sim1).

• Group 2: “Solver parameters” which affect the algorithm
used to compute the solution of the molecular dynamics
equations; they modify the actual physics solved as well as
the accuracy of the resolution (e.g., initTemperature_eq1,
time step, cutof f).

From the physical parameters we selected a total of 4
parameters based on our experience with MD: temperature,
pressure, equilibration duration, and sampling duration. Solver
parameters were more numerous; there are 21 in total. However,
11 of these parameters are discrete variables which may not be
suited for adaptive sampling methods, depending on themethod
used. Moreover, adding these parameters would drastically
increase the cost of the UQ campaign. The 11 excluded
parameters include: reassignFreq (frequency to reassign
velocities of atoms to fit set temperature), nonbondedFreq
(frequency to reevaluate nonbonded interactions), and full-
ElectFrequency (frequency to reevaluate electrostatics). Because
of their influence on the solver behavior, we do not expect these
parameters to have a strong impact on the binding affinity.
For the 14 remaining inputs, we choose uninformative

uniform distributions to reflect our lack of knowledge in the
most-likely values of these inputs, with bounds at ±15% from
their nominal values. Only the temperature is also varied in a
reduced range ([280 K, 320 K]) for physical reasons. These
parameters and their uncertain ranges can be found in the SI (see
Table S1).

Uncertainty Quantification of Free Energy. The para-
metric configurations of the simulations, hence not the random
seeds, are iteratively refined in directions where a variance-based
error metric is largest (see the Theory and Methods section).
Each iteration creates an ensemble of model evaluations, which
we executed in parallel on the SuperMUC-NG supercomputer at
the Leibniz-Rechenzentrum in Germany. We limited our study
to the consumption of a budget of 2 000 000CPUhs, which were
allocated for this work. The computations were orchestrated
using the VECMA Toolkit (VECMAtk),40 and specifically the
EasyVVUQ library.41,42 Ensembles are chosen to contain a
(large) number N of replicas such that adding one more replica
does not change the statistical properties of the ensemble. The
embarassingly parallel computations of ensembles is particularly
suited for modern supercomputers. As NAMD is compute
intensive, our strategy consisted of repeated refinement of the
sampling plan until our computational budget was depleted.
This occurred at 63 samples from the joint input probability
distribution function in the reduced temperature range (123
samples in the full temperature range, see SI). For each sample,
25 replicas are simulated (using the same 25 seed values every
time), each replica constituting an individual microstate. Their
ensemble average corresponds to the thermodynamic macro-
state. As a result, 1575 (3075 in the full temperature range)
ESMACS workflow executions are completed for the purpose of
this analysis. The use of an ensemble of replicas is standard in the
field of UQ, in which a sufficiently large number of replicas are
run concurrently from which reliable statistics can be extracted.
Indeed, because molecular dynamics is intrinsically chaotic, the
need to use ensemble methods is fundamental and holds
regardless of the duration of the simulations performed. The
number of replicas necessary in the ensemble varies from one
system to the other and must be determined by direct
investigation. Our previous studies show that, starting from
reliable initial structures such as those obtained from high
resolution crystallography experiments with extensive equilibra-
tion (each replica was separately equilibrated for 2 ns in the case
of small proteins of approximately 150 amino acids), accurate
and reproducible results can be achieved from ensemble
simulations consisting of 25 replicas with 4 ns production runs.4

The binding free energy is the quantity of interest of our UQ,
the distribution of which follows a slightly asymmetric
distribution peaking at −34.85 kcal/mol (based on the kernel
density estimator of the distribution) with a longer tail for less
negative binding energies (see Figure 3a). The standard
deviation of the distribution is 1.63 kcal/mol. We also generate
samples of averaged binding energies using bootstrapping, either
averaged over replicas or parametric configurations, to analyze
the respective contribution of epistemic and aleatoric
uncertainty. However, the distribution of averaged binding
energies over replicas (see Figure 3b)that is for each
parametric configuration the average of computed binding
energies over 25 replicasaccounts solely for epistemic
uncertainty. The non-normal distribution of ensemble-averaged
energies reveals one peak around−34.36 kcal/mol with a thicker
tail for less negative binding energy parametric configurations.
The standard deviation is 0.45 kcal/mol. However, the
distribution of averaged binding energies over parametric
configurations (see Figure 3c)that is the average of the
computed binding energies over the 63 parametric config-
urationsaccounts purely for aleatoric uncertainty. This
distribution manifests a rather symmetric distribution centered
around a peak at −34.35 kcal/mol as well. The distribution of
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parametric-averaged binding energies appears to be somewhat
sharper than the ensemble-averaged ones, with a standard
deviation of 0.31 kcal/mol. Nonetheless, the aleatoric
uncertainty induces significant variations of the predicted
binding energies. The standard deviation associated with the
aleatoric uncertainty amounts to two-thirds of that associated
with epistemic uncertainty. It should be noted however that the
amount of epistemic uncertainty is directly linked to the
assumed variance of the input distributions, such that the ratio of
aleatoric to epistemic uncertainty changes with the input
distribution of the parameters.

To provide further insights into the influence of aleatoric
uncertainty, we investigate the distribution of binding energies
within individual ensembles of replicas for a given parametric
configuration. In particular, in Figure 4a we show a probability
box (p-box) → [ ]D e( ): 0, 1 , where e denotes the binding
energy. Let ≔ ≤F e E e( ) ( )i i be the cumulative distribution
function (cdf) of the predicted binding energy when the random
seed η is fixed to a given value ηi, i = 1···25. The p-box is in this
case then defined as the envelope formed by all 25 cdfs:

≔ { ∈ [ ]| ̲ ≤ ≤ ̅ }

̲ ≔

̅ ≔

∈{ }

∈{ }

D e p F e p F e

F e F e

F e F e
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( ) min ( )

( ) max ( )

i
i

i
i

1,...,25

1,...,25 (9)

A p-box is commonly used to visualize possible outcomes due
to a combination of epistemic and aleatoric uncertainty.43 Figure
4a shows the p-box obtained from 25 empirical cdfs (ecdfs),
each one estimated from 63 binding energy samples at a given
random seed. The slant of each individual ecdf represents the
epistemic uncertainty due to the different parameter values,
whereas as the width of the p-box is governed by aleatoric
uncertainty, caused by nonoverlapping ecdfs for different seeds.
To extract 95% confidence intervals from the p-box we can
simply form the interval [ ̲ ̅ ]e e, , corresponding to ̲ ̲ =F e( ) 0.025
and ̅ ̅ =F e( ) 0.975, which gives us the displayed value of 6.72
kcal/mol. The width of the p-box already indicates the influence
of aleatoric uncertainty. To further illustrate what could happen
if we ignore the aleatoric uncertainty, we highlight two
additional ecdfs in Figure 4a. These correspond to the maximum
and minimum 95% confidence interval (CI) found in all 25
individual ecdfs. Thus, if we had fixed the seed to one of the 25
values we considered, and therefore executed the parametric UQ
analysis without replicas, we could have obtained an estimated
95%CI of 4.54 kcal/mol, but a value of 6.51 kcal/mol would also
have been possible, which is roughly a 30% difference. The p-box
CI is more conservative as it combines both aleatoric and
epistemic uncertainty.

Figure 3.Non-normal distributions of computed binding free energies.
(a) Distribution of the binding energies computed for each replica of
each parametric configuration, resulting in 1575 samples in total. (b)
Distribution of the binding energies averaged over the 63 parametric
configurations for each of the 25 replicas. The distribution shows the
influence of aleatoric uncertainty on the computed binding energies.
(c) Distribution of the binding energies averaged over 25 replicas for
each of the 63 parametric configurations. The distribution shows the
influence of epistemic uncertainty on the computed binding energies.
The continuous blue line corresponds to the kernel density estimator
for each distribution.

Figure 4. Effect of aleatoric uncertainty on the computed binding energy. (a) The probability box formed by the envelope of 25 ecdfs with fixed seed,
with associated 95% confidence interval (CI, 6.72). In addition, the ecdfs with the largest/smallest (6.51/4.54) individual CIs are highlighted. (b)
Cumulative distribution function of the ensemble-averaged binding energy of the 63 parametric configurations ensembles of 25 replicas (solid line);
the individual dots on a given horizontal line show the individual binding energies of the replicas contributing to a given parametric configuration
ensemble.
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To better visualize the spread of the predictions due to the
seeds, consider Figure 4b. Each horizontal line of dots
corresponds to one ensemble of replicas, ordered from bottom
to top with increasing values of the mean binding energy of the
ensemble. The solid line which links the mean binding energy of
each of these ensembles corresponds to the ecdf of the
ensemble-averaged energy of the 63 parametric configurations
simulated. The aleatoric distribution of binding energies for a
given parametric configuration is not constant. The shape of the
distribution evolves with the mean binding energy of the
parametric configuration.
This can be better shown via a more quantitative insight,

provided by the analysis of the shape measures skewness and
kurtosis, related to the third and fourth statistical moments,
respectively. Skewness characterizes the symmetry of a
distribution where, in the case of unimodal distributions,
positive values indicate a distribution where the right tail is
longer than the left. Kurtosis is related to the tails, where higher
values indicate the presence of outliers in the distribution. Often,
the so-called “excess kurtosis” is reported rather than the
kurtosis itself, which is defined as kurtosis-3. Here, 3 is the value
of kurtosis for a standard Gaussian distribution, such that the

excess kurtosis measures a deviation with respect to this
distribution. Our results are reported in Figure 5, where we
display the skewness and excess kurtosis, with bootstrap
confidence intervals, as a function of the value of the binding
energy averaged over the replicas. For the skewness we make use
of a common rule thumb44 to help with the interpretation of the
numbers. Skewness values with an absolute magnitude smaller
than 0.5 are said to be approximately symmetric, denoted by
region A in Figure 5. Moderately skewed distributions
correspond to absolute values in [0.5, 1.0] (region B), whereas
absolute values which are >1 are said to indicate highly skewed
distributions (region C). Despite large bootstrap confidence
intervals, we can still observe a consistent trend, of (mostly)
moderately (positively) skewed distributions for low averaged
binding energy, that moves toward approximately symmetric
distributions for higher averaged binding energies. In addition,
we display the probability density function (pdf) of all bootstrap
samples on the right of the figure. The average kurtosis value of
this distribution is roughly 0.44, still within the approximately
symmetric region. However, it is also clear that there is a
significant nonzero probability of observing moderately
(positively) skewed distributions. The excess kurtosis is

Figure 5. In-depth analysis of statistics: a loss of normality. (a) The skewness shape measure with 90% bootstrap confidence intervals, computed using
the 25 replicas, for each of the 63 values of the ensemble-averaged binding energy. Region A corresponds to approximately symmetric distributions,
region B to moderately skewed, and region C to significantly skewed distributions. The pdf of all samples is shown on the right. (b) An identical figure
for the excess kurtosis shape measure. The horizontal line denotes the value of a standard normal distribution. (c) Mean binding energy for all
parameters set to default except the box size (standard deviation as error bars). Skewness and kurtosis shape measures of the binding energy
distributions (25 samples): (d) for all parameters set to default except the box size; (e) for all parameters set to default except the temperature.
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consistently negative, meaning that compared to a normal
distribution, the tails are shorter and thinner. Overall, these
results imply the presence of non-normal distributions. Finally,
we note that skewness and kurtosis appear uncorrelated with the
box size (see Figure 5d), while they are linearly correlated with
the temperature (see Figure 5e).
Our study shows that binding free energy is very sensitive to

the temperature. This is not surprising as free energy is a
temperature-dependent quantity according to the van’t Hoff
equation. Reducing the size of molecular dynamics simulation
cells is one of the most frequently used devices to reduce the
expense of MD calculations. The effect of box size on the
predicted thermodynamic and kinetic properties is currently the
subject of an ongoing debate. In a recent study, a systematic
change was reported for various predicted thermodynamic
properties (averaged over 10 replicas) when the MD simulation
box size was increased.45,46 Another study, however, found that
the reported box size dependence was not reproducible when
twice as many ensembles were used.47,48 Although box size is the
second most sensitive parameter that our study reveals (see
Figure S2), the calculated binding free energies do not change
significantly (within error) when the box size varies (see Figure
5c). The SI contains more details on the influence of the other
parameters when the contributions to uncertainty arising from
the temperature parameter are removed (see Figure S3).
Finally, we compute the output variation relative to the mean,

compared to the relative variation assumed at the input (see
Table 1). This can be seen as a measure of the amount that the

binding affinity calculation either amplifies or damps the
assumed uncertainty from the input to the output. We base
this on a measure which involves the ratio of the binding-energy
coefficient of variation (CV(e)), with respect to the average

input coefficient of variation ξ ξ̅ ≔ ∑ | |=dCV( ) 1/ CV( )i
d

i1 ; see
the Theory and Methods section. Briefly, a coefficient of
variation (CV) is a dimensionless measure of variability, defined
as the standard deviation over the mean. We can compute this
for the binding energy e, and each of the d = 14 input parameters
ξi, taking the absolute value to avoid cancellation of variability.
When ξ≔ | | ̅ >eCVR CV( ) /CV( ) 1 we say that the code
amplifies input uncertainty, as the relative output variability
exceeds that of the input. Conversely, damping occurs when
CVR < 1.
In our UQ campaign, the mean coefficient of input variation is

about 8.5%. When considering ensemble-averaged binding
energy estimations (over 25 replicas), the mean coefficient of
variation of the binding affinity is less than 1%, leading to a CVR
of 0.11. Such significant damping of uncertainty occurs when
using the ensemble average binding energy as our quantity of
interest.We can also consider the CVRwewould obtain were we

not to use ensemble averaging, by computing the mean of the
individual binding-energy CVs over the 25 replicas, i.e., by using

= × ∑ | |=e eCV( ) 1/25 CV( )i i1
25 . As expected, the observed

variability at the output is larger in this case, with a CV(e) of
approximately 5%, leading to a CVR of 0.54. While we still
consider this as a damping of uncertainty, it is roughly five times
larger compared to the case where the binding energy is
averaged over the 25 replicas. The use of ensembles of
simulations therefore drastically reduces aleatoric uncertainty
within binding affinity calculations, enabling a 5-fold decrease in
the overall uncertainty within the model simulation in this case.
We conclude that the current practice of running one or only a

small number of replicas of a molecular dynamics simulation is
far from sufficient to control uncertainty, as already indicated in
our previous studies.4,49 It does not enable one to control the
error in the quantities of interest, as is achieved in a statistically
robust manner by ensembles. We have previously drawn similar
conclusions about the role of stochasticity in alchemical free
energy methods including thermodynamic integration and free
energy perturbation.50 Our findings apply to classical molecular
dynamics simulation in general, including to all forms of free
energy estimationmade using it.7 The distributions of properties
predicted using classical molecular dynamics cannot be assumed
to be Gaussian but need to be assessed in each case, particularly
when long-range interactions are involved.4,7 In general, means
and standard deviations reported from a small number of
repeated simulations will not be reliable. In conclusion, if we
wish to produce actionable results from molecular dynamics
simulations, whatever the predicted quantity of interest, wemust
invoke ensembles for which the use of modern supercomputers
is essential.
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