
Quantum Linearization Attacks

Xavier Bonnetain1,2, Gaëtan Leurent2, Maŕıa Naya-Plasencia2, and André
Schrottenloher3

1 Institute for Quantum Computing, Department of Combinatorics and
Optimization, University of Waterloo, Waterloo, ON, Canada

2 Inria, Paris, France
3 Cryptology Group, CWI, Amsterdam, The Netherlands

Abstract. Recent works have shown that quantum period-finding can
be used to break many popular constructions (some block ciphers such as
Even-Mansour, multiple MACs and AEs. . .) in the superposition query
model. So far, all the constructions broken exhibited a strong algebraic
structure, which enables to craft a periodic function of a single input
block. Recovering the secret period allows to recover a key, distinguish,
break the confidentiality or authenticity of these modes.
In this paper, we introduce the quantum linearization attack, a new way
of using Simon’s algorithm to target MACs in the superposition query
model. Specifically, we use inputs of multiple blocks as an interface to
a function hiding a linear structure. Recovering this structure allows to
perform forgeries.
We also present some variants of this attack that use other quantum
algorithms, which are much less common in quantum symmetric crypt-
analysis: Deutsch’s, Bernstein-Vazirani’s, and Shor’s. To the best of our
knowledge, this is the first time these algorithms have been used in quan-
tum forgery or key-recovery attacks.
Our attack breaks many parallelizable MACs such as LightMac, PMAC,
and numerous variants with (classical) beyond-birthday-bound security
(LightMAC+, PMAC+) or using tweakable block ciphers (ZMAC). More
generally, it shows that constructing parallelizable quantum-secure PRFs
might be a challenging task.

Keywords: Quantum cryptanalysis, MACs, superposition query model,
Deutsch’s algorithm, Bernstein-Vazirani algorithm, Simon’s algorithm,
Shor’s algorithm.

1 Introduction

The possible emergence of large-scale quantum computing devices in a near
future has prompted a wide move towards post-quantum security, which takes
into account the new security threats that they pose. In particular, the most

© IACR 2021. This article is the final version submitted by the authors to the
IACR and to Springer-Verlag in September 2021. The published version is available
at: https://doi.org/10.1007/978-3-030-92062-3_15

https://doi.org/10.1007/978-3-030-92062-3_15

popular asymmetric cryptosystems currently in use, such as RSA, can be broken
by an adversary capable of successfully implementing Shor’s algorithm [59]. An
ongoing standardization project led by the NIST [56] has structured the efforts
of the (asymmetric) cryptographic community on this question.

As symmetric primitives do not rely on a trapdoor, they seemed for a long
time to avoid the cases where quantum computers bring an exponential speedup
over the best classical algorithms. In fact, most problems in symmetric cryptog-
raphy, such as the search for the secret key of a black-box cipher, seem to admit
a quadratic speedup at best, given by Grover’s quantum search algorithm [29].
Although this speedup is significant, it could be countered by increasing the
parameters of symmetric cryptosystems, e.g., doubling the size of secret keys.

However, in the past few years, a series of works have shown the insecurity of
some symmetric cryptosystems against quantum adversaries entitled to super-
position queries. That is, some primitives become broken if they can be queried
inside a quantum algorithm. This started with the 3-round Feistel distinguisher
proposed by Kuwakado and Morii [44]. Later, they found a polynomial-time key-
recovery attack on the Even-Mansour cipher [45], which was the first quantum
key-recovery on a classically secure symmetric construction. These results rely
crucially on the fact that many popular designs in symmetric cryptography have
a strong algebraic structure, as they are built by combining smaller primitives
(such as permutations or block ciphers) using cheap operations such as XORs.
Kaplan et al. [39] showed that many other constructions exhibited a structure
exploitable by a quantum adversary, and designed the first forgery attacks on
MACs (notably CBC-MAC [11], OMAC [35], PMAC [12]) and authenticated en-
cryption schemes (e.g., OCB3 [43], GCM [49]).

In this paper, we will focus on idealized MAC constructions that authenticate
messages of arbitrary size using smaller primitives such as permutations, block
ciphers or tweakable block ciphers (TBCs) of block size n. These constructions
have classical proofs of security showing either that the MAC behaves as a
pseudo-random function, or that it is unforgeable, up to some exponential bound
in n. We will exhibit polynomial-time quantum attacks on constructions that
were not vulnerable to previous Simon’s attacks (like those of [39,58]).

Previous Attacks. Although there have been many of them, all the quantum
forgery attacks known so far follow the same paradigm. They query the MAC
with a constant number of blocks, using usually a single block of message x
in superposition. Inside the MAC, this block of message x is XORed to some
unknown value α depending on other blocks: thus, the result is MAC(x ⊕ α).
Having two different values α0, α1, we then have access to two functions f(x) =
MAC(x⊕ α0) and g(x) = MAC(x⊕ α1), such that f(x) = g(x⊕ α0 ⊕ α1). From
there, we can use Simon’s Boolean hidden shift algorithm [60] as a black box. It
recovers α0 ⊕ α1 in quantum polynomial time, whereas any classical algorithm
would require exponentially many queries to f and g (thus to the MAC). The
recovery of the internal shift α0 ⊕ α1 then enables the adversary to forge new
messages, and in some cases to recover secret-key material.

Let us point out the following important remark:

2

If the message blocks are not directly XORed to internal values (keys,
offsets, encryption of other blocks. . .), then the previous attacks based
on Simon’s algorithm do not apply.

Contributions. In this paper, we present the quantum linearization attack,
which is a new family of quantum attacks on classically unforgeable MACs when
superposition queries are allowed. Thanks to the novelty of our approach, we
are able to attack many MACs that resisted previous cryptanalysis, as they
do not not exhibit the property recalled above (a message block XORed to an
internal state value). In particular, our attack usually circumvents the use of
TBCs instead of block ciphers. It is also the first case of a quantum polynomial-
time attack on MACs with beyond-birthday security, where the internal state
has a bigger size. As an example, we break LightMAC with a linear number of
queries, and we can attack LightMAC+ with only twice as much.

Overview. Our attack starts with the following remark. Consider a function of `
blocks x1, . . . , x` of the form: G(x1, . . . , x`) = g1(x1)⊕ . . .⊕ g`(x`)⊕ C , where
C is an independent constant, and the gi are independent random functions to
which the adversary does not have access. Then classically, this function cannot
be distinguished from random with a single query, though as little as four would
be enough: we make x3, . . . , x` constant, we query for every x1 ∈ {0, 1} and
x2 ∈ {0, 1}: the XOR of the four results is zero.

Our key idea is to linearize the function G by restricting the block inputs
so that the output is an affine function. Similarly to the simple classical dis-
tinguisher, we make the blocks x1, . . . , x` take only one-bit values and emulate
a function of an `-bit input: F (x) = F (b1‖ . . . ‖b`) = G(0n−1‖b1, . . . , 0n−1‖b`).
Now, we will remark that F is an affine function of b1, . . . , b`. As the gi are
XORed; flipping a bit bi in the input XORs gi(0)⊕ gi(1) to the output.

It is well known that the Bernstein-Vazirani algorithm allows to distinguish
an affine function from a random one with a single quantum query. This shows
that, thanks to a multi-block input, we can access new vulnerabilities of crypto-
graphic constructions. But the power of our attack is clearly demonstrated when
we make G go through a new random function:

G′(x1, . . . , x`) = g(G(x)) = g (g1(x1)⊕ . . .⊕ g`(x`)⊕ C) . (1)

All the functions g1, . . . , g`, g are unknown to the adversary, so she cannot find
the affine structure of the internal G. In fact, this function would be classically
secure as a MAC. However, when linearizing, we obtain: G′(x) = g(F (x)) where
F is an affine function of x = b1‖ . . . ‖b`. Thus, G′ embeds a hidden Boolean
period, and Simon’s algorithm can recover it in polynomial time.

Applications. In Section 4 and Section 5, we detail the applications of our algo-
rithm. We obtain the first polynomial-time attacks against the following MACs:

ΘCB3 [57,43], LightMAC [47], LightMAC+ [54], Deoxys [38],
ZMAC [37], PMAC TBC3k [53], PolyMAC [36], GCM-SIV2 [36]

In addition, we provide attacks on the XOR-MACs of [4], on MACs based on
universal hashing (e.g., NMH∗ [31] and BRW Hashing [7]) and, in Section 5.5,

3

a new superposition forgery attack against Poly1305 [6]. A previous quantum
attack was given in [18], using a hidden shift structure. Using Shor’s algorithm
instead, we reduce the number of superposition queries from 238 to about 32.

On Parallelizable MACs. The quantum linearization attack leaves only little
space for quantum-secure parallelizable PRFs. Indeed, we are able to break any
PRF with extendable domain, where at least ≥ n independent input blocks of
≤ n bits are processed independently, then XORed. This works as well for any
operation that is linear on (F2)n. It is still possible to obtain an unforgeable IV-
or nonce-based MAC of this form, as shown in [9], but the security then relies
on the non-repetition of IVs. We do not know if an attack applies when we use
a modular addition instead of a XOR in (1). If this was the case, then it would
clearly mean that one has to rely on sequentiality or on nonlinear operations.

Organization. We start in Section 2 by reviewing some quantum computing no-
tions, the quantum algorithms used in this paper (Deutsch’s algorithm, Bernstein-
Vazirani, Simon’s algorithm, Shor’s algorithm), the Q1 / Q2 attack scenarios and
notions of quantum unforgeability. In Section 3, we detail our new algorithmic
ideas. In Section 4, we apply our attack to many parallelizable MAC construc-
tions. We dedicate Section 5 to MACs based on universal hashing. We discuss
the implications of our attacks in Section 6 and conclude the paper in Section 7.

2 Preliminaries

In this section, we give some preliminaries about quantum computing, quan-
tum attacker models and the well-known quantum algorithms that will be used
throughout this paper. We elaborate about the Q2 attacker model and the no-
tion of quantum unforgeability for MACs, with or without IVs. Note that some
details of quantum computing will appear in this section. They are intended for
the interested reader. In the rest of this paper (with the exception of Section 5.5),
we will use the algorithms of this section as black boxes.

2.1 Notation

We consider n-bit string values, sometimes as elements of F2n , sometimes as
elements of Fn2 . This shall be clear from context. We let ⊕ denote the XOR
(addition in Fn2), � denote multiplication in F2n , and + modular addition. We
let · denote the scalar product of bit-strings seen as n-bit vectors.

2.2 On Quantum Computing

Although we choose to present in detail the quantum algorithms that we will use
for our attacks, most of our results can be obtained by applying them as black
boxes. Thus we stress that our results, similarly as other structural attacks on
symmetric cryptosystems [45,39], can be understood from a high-level perspec-
tive, and our attacks do not require specific knowledge of quantum computing.
Further details are only required to prove the correctness of the algorithms.

4

A general presentation of the quantum circuit model can be found in [55].
The basic computation units are qubits, two-level quantum systems whose state
is represented by a superposition α |0〉 + β |1〉, with amplitudes α and β, which
is a normalized vector in C2 (of norm |α2| + |β2| = 1). The state of an n-qubit
system belongs to C2n , its 2n basis vectors (in the computational basis) are the
2n n-bit strings.

A quantum algorithm is a sequence of unitary operators of C2n , partial mea-
surements, and oracle calls. We say that a function f is queried in superposition
if the following unitary operator Of is made available: |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 .
Indeed, this operator allows to query f on any quantum state, thus on any super-
position of inputs x. This is the standard oracle, equivalent to the phase oracle
Of,± which computes |x〉 7→ (−1)f(x) |x〉.

One of the basic unitary operations of the quantum circuit model (quantum
gates), and actually the most important one in the algorithms of Section 2.3, is
the Hadamard gate H which maps a single qubit |b〉 to 1√

2

(
|0〉+ (−1)b |1〉

)
. By

applying Hadamard gates to each individual qubit of an n-bit input, we compute
the Hadamard transform, a particular example of Quantum Fourier Transform:

H⊗n : |x〉 7→ 1

2n/2

∑
y∈{0,1}n

(−1)x·y |y〉 .

An important property is that the Hadamard transform is involutive. For better
readability, we often omit global amplitude factors such as the 1

2n/2 above, as
quantum states are always normalized.

Given a quantum state of the form
∑
x αx |x〉, the measurement operation

destroys the state and yields an element x with probability |αx|2. Partially mea-
suring the state projects it on a smaller superposition of elements. For a quantum
state of the form:

∑
x,y αxy |x〉 |y〉, measuring the register |x〉 yields a value x0

with probability
∑
y |αx0y|2, and projects on the state 1√∑

y |αx0y|2
∑
y αx0y |y〉.

2.3 Quantum Algorithms

Our new attacks are based on well-known quantum algorithms: Deutsch’s al-
gorithm [26], which is a single-bit version of the Deutsch-Jozsa algorithm [27],
the Bernstein-Vazirani algorithm [8], Simon’s algorithm [60] and Shor’s algo-
rithm [59]. These algorithms have in common to be based on Fourier sampling,
a process in which a quantum Fourier transform is applied before and after a sin-
gle query to a superposition oracle. They are also amongst the earliest quantum
algorithms proven to beat any classical algorithm, and as such are often pre-
sented in textbooks (see e.g. [55]). However, except for Shor’s algorithm, their
practical interest remained unclear for a long time.

Deutsch’s Algorithm. Deutsch’s algorithm [26] solves Problem 1 with probability
1 using a single query to Of , whereas classically, two queries to f are needed for
the same success probability. This constant speedup might seem anecdotal, but
is crucial when the same function cannot be queried more than once.

5

Algorithm 1 Deutsch’s algorithm

1: Start from |0〉 . |0〉
2: Apply a Hadamard gate . |0〉+ |1〉
3: Apply Of,± . (−1)f(0) |0〉+ (−1)f(1) |1〉 = (−1)f(0)

(
|0〉+ (−1)f(0)⊕f(1) |1〉

)
4: Apply a Hadamard gate . (−1)f(0) |f(0)⊕ f(1)〉
5: Measure the state

Algorithm 2 Bernstein-Vazirani algorithm

1: Start from |0n〉 . |0n〉
2: Apply a Hadamard transform .

∑
i |i〉

3: Apply Of,± .
∑

i(−1)(a·i)⊕b |i〉
4: Apply a Hadamard transform
5: Measure the state . (−1)bH⊗n∑

i(−1)a·i |i〉 = (−1)bH⊗n
(
H⊗n |a〉

)
= (−1)b |a〉

Problem 1 (Deutsch’s problem). Given access to a quantum oracle Of for a func-
tion f : {0, 1} → {0, 1}, decide whether f is constant (f(0) = f(1)) or balanced
(f(0) 6= f(1)).

Deutsch’s algorithm (Algorithm 1) is best presented with a phase oracle
Of,± |b〉 = (−1)f(b) |b〉. It can be seen that upon measurement, the algorithm
actually yields the value f(0)⊕ f(1) (although a single query has been made to
f) whose knowledge solves Problem 1.

Bernstein-Vazirani Algorithm. The Bernstein-Vazirani algorithm [8] offers a
polynomial speedup for finding the slope of an affine function over Fn2 .

Problem 2 (Bernstein-Vazirani). Given access to an oracle Of for an affine func-
tion f : {0, 1}n → {0, 1}, that is, f(x) = a · x⊕ b for a, b unknown, find a.

Upon measurement in Algorithm 2, we obtain the unknown a with certainty,
using a single query to Of,±, while n queries would be needed classically.

Remark 1. This algorithm can be seen as a generalization of Deutsch’s algo-
rithm. Indeed, in the case n = 1, there are only two types of affine functions:
f(x) = x ⊕ b (a = 1) and f(x) = b (a = 0), and Bernstein-Vazirani allows to
distinguish them in one query.

Simon’s Algorithm. Simon’s algorithm [60] solves the problem of distinguishing
an injective function from a periodic one. Note that it was the first example of
an exponential quantum speedup relatively to an oracle.

Problem 3 (Simon). Given access to a function f : {0, 1}n → {0, 1}n for which
there exists s such that: ∀x, y, f(x) = f(y) ⇐⇒ y ∈ {x, x⊕ s}, find s.

In Algorithm 3, at Step 9 in the injective case, the value a obtained before
has a single preimage xa. Thus, the current state is

∑
y((−1)xa·y) |y〉 and we

sample a uniformly random y ∈ {0, 1}n. After n+ r such samples, the family Y

6

Algorithm 3 Simon’s algorithm

1: Y = ∅
2: Choose a number r depending on the required probability of error
3: Repeat n+ r times
4: Start from |0n0n〉
5: Apply a Hadamard transform to the first register .

∑
x |x〉 |0〉

6: Apply Of (standard) .
∑

x |x〉 |f(x)〉
7: Measure the second register, obtain a .

∑
x|f(x)=a |x〉

8: Apply a Hadamard transform .
∑

y(
∑

x|f(x)=a(−1)x·y) |y〉
9: Measure a y, Y ← Y ∪ {y}

10: EndRepeat
11: if Y is of full rank then
12: return “injective case”
13: else if Y is of rank n− 1 then
14: return “periodic case” and the s orthogonal to Y
15: else
16: return “failure”
17: end if

will grow to a full-rank family. In the periodic case, the value a has exactly two
preimages xa and xa ⊕ s which interfere with each other. The current state is∑

y

((−1)xa·y + (−1)(xa⊕s)·y) |y〉 =
∑
y

(−1)xa·y(1 + (−1)s·y) |y〉

and only the vectors y orthogonal to s have a non-zero amplitude. Thus, the
family Y grows to span the euclidean subspace orthogonal to s. Computing the
rank of Y allows to detect the period and solving the linear system Y s = 0n
allows to recover it.

Generalizations. Although the original Simon’s problem concerns functions with-
out random collisions (that is, we cannot have f(x) = f(y) if x⊕ y /∈ {0, s}), it
can be shown that the algorithm works as well for random functions having a
period, which models the cryptographic problems that we are interested in.

The following simple condition was given in [39]. For Simon’s algorithm to
run as expected (i.e., with O (n) queries), it is sufficient for the periodic function
f , of period s, to satisfy the following condition:

max
t/∈{0,s}

Prx [f(x⊕ t) = f(x)] ≤ 1

2
. (2)

That is, f should not admit another “unwanted partial period” t. In the
examples studied in this paper, the condition (2) will be easy to check.

Note that if we had f(x ⊕ t) = f(x) for all x, then t would simply turn
the set of periods of f into a vector space of dimension 2. In general, the space
of periods could be a vector space of any dimension. An extended version of
Simon’s algorithm by Brassard and Høyer [20] allows to recover this whole space
in polynomial time.

7

Finally, another important case is when the output set is smaller than the
input set. This was studied in [16] for Simon’s algorithm and [48] for period-
finding in general. The results in [16] show that as long as the functions behave as
random (but with the periodicity constraint), then for n input bits, the number
of output bits required to run correctly without any cost increase is of order
log2 n. The results in [48] show that the output can be hashed down to a single
bit, and the algorithms still work up to a constant increase in queries.

Shor’s Algorithm. We will use Shor’s algorithm [59] to solve the abelian hidden
period problem. It will appear in a “black-box” manner in Section 5.4, and in Sec-
tion 5.5. We will analyse in detail the behavior of the algorithm on Poly1305.

Problem 4 (Abelian hidden period). Let (G,+) be an abelian group, X a set.
Given access to a function f : G → X which is either injective, or periodic
(∃s ∈ G, f(s+ ·) = f(·)), then determine the case and / or find the period.

In particular, we consider G = ZM1
× . . .×ZMk

the product of multiple cyclic
groups of known order. For simplicity, and to prepare for Section 5.5, we present
the algorithm in the case of Z2

p for some prime p. Note that f is also periodic over
Zp in each of its parameters. This is the typical situation when Shor’s algorithm
is used to solve the Discrete Logarithm Problem. The periods of f form a two-
dimensional integer lattice, which is generated by (p, 0) and (−1, s) for some s. In
other words, the value of f(x, y) depends only on the value of xs+ y mod p. We
may assume for simplicity that the function xs+ y mod p 7→ f(x, y) is injective.

The algorithm only relies on an efficient implementation of the Quantum
Fourier Transform over Zp:

|x〉 7→
p−1∑
y=0

exp

(
2iπ

xy

p

)
|y〉 ,

which we assume exact. We represent the elements of X on m bits.
In Algorithm 4, at Step 4, we can only measure a vector |z, t〉 having a

nonzero amplitude. This means that we need:

p−1∑
x=0

exp

(
2iπ

(z − st)x
p

)
6= 0 ,

which happens only when (z − st) = 0. In that case, the sum simply gives p.
After renormalization, all vectors |z, t〉 with (z−st) = 0 have the same amplitude
1√
p , and we will measure one of them taken uniformly at random. If t 6= 0, we

compute s by s = zt−1 mod p. This occurs with probability 1− 1
p .

2.4 Attack Scenarios

We consider different attack scenarios throughout this paper.

8

Algorithm 4 Shor’s algorithm

1: Start from |0, 0, 0m〉 . |0, 0, 0m〉
2: Apply a Quantum Fourier Transform on both input registers

.
∑p−1

x,y=0 |x, y〉 |0m〉
3: Apply Of .

∑p−1
x,y=0 |x, y〉 |f(x, y)〉

4: Measure the second register. The state collapses on a uniform superposition of all
(x, y) such that xs+ y = a mod p for some unknown a, meaning y = a−xs mod p:

p−1∑
x=0

|x〉 |a− xs〉 .

5: Apply a Quantum Fourier Transform again. The state becomes:

p−1∑
z,t=0

(
p−1∑
x=0

exp

(
2iπ

zx+ (a− xs)t
p

))
|z, t〉

=

p−1∑
z,t=0

exp(2iπat/p)

(
p−1∑
x=0

exp

(
2iπ

(z − st)x
p

))
|z, t〉 .

6: Measure a |z, t〉 and return s = zt−1 mod p.

Q1 and Q2 setting. Following [40,33,17], we will adopt the Q1 / Q2 terminology
to classify quantum attacks on symmetric schemes. Note that these models have
alternative names, for example “quantum chosen-plaintext attack” (qCPA) is
used for “Q2” in [34,22]. In the Q1 setting, the adversary is given only classical
encryption or decryption query access to black-boxes. In the Q2 setting, the
adversary is given quantum or superposition access, in the sense that a black-
box EK becomes a quantum oracle OEK

. This is the case for all the attacks of
this paper.

The study of quantum attacks on symmetric schemes in the Q2 setting was
sparkled by seminal work of Kuwakado and Morii [44,45], who showed that
the 3-round Luby-Rackoff construction and the Even-Mansour cipher became
insecure if exposed to superposition queries. More precisely, they can use Simon’s
algorithm to respectively distinguish the construction and recover the key of the
cipher in polynomial time, while classical proofs of security exist.

Attacks based on period-finding. Since these earlier results, many works have ex-
tended the reach of Q2 attacks [39,15,46,19,28,30]. However, the attack strategy
has remained the same. A hidden structure is embedded in the construction to
be attacked, so that f(EK(x), x) for some choice of combination f , is a periodic
function of x; or that a shift exists between f(EK(x), x) and g(EK(x), x). The
recovery of this hidden period or shift, which is secret material, then leads to a
break. We can cite some examples:

9

Against the Even-Mansour construction [45]: EK(x) = K2 ⊕Π(x ⊕K1) for a
random public permutation Π and two keys K1,K2. One has:

EK(x)⊕Π(x) = EK(x⊕K1)⊕Π(x⊕K1)

which leads to a recovery of K1 in O (n) queries and O
(
n3
)

computations.

Against CBC-MAC with two blocks [39]: It can be defined as:

CBC-MAC(y, x) = EK′ ◦ EK
(
x⊕ EK(y)

)
,

where K and K ′ are two keys that will remain unknown to the adversary. Due to
the structure of CBC-MAC, one can take two arbitrary values α0, α1, and define
the function:

F :

{
{0, 1} × {0, 1}n 7→ {0, 1}n

(b, x) → CBC-MAC(αb, x)
(3)

We have then that F (b, x) = F (b ⊕ 1, x ⊕ EK(α0) ⊕ EK(α1)). Thus F has a
hidden boolean period 1‖EK(α0)⊕EK(α1). Having obtained the internal value
EK(α0)⊕EK(α1), we can query the tag of any message starting with block α0,
and then forge a message starting with α1 with the same tag.

Constructions based on IVs. We consider two types of constructions with quan-
tum access: some make use of an initialization value (IV, sometimes also named
a nonce) and some do not. In the IV case, we consider that the IV is a classical
value, chosen randomly before each oracle query, and not repeated. This model
follows from the idea that the IV is not controlled by the adversary, and it can
serve as an intermediate between the classical setting and a (much) stronger
model in which the adversary would completely (and quantumly) control the
IVs.

In fact, the latter case does not seem to have been studied so far in quantum
security. Well-known notions such as IND-qCPA [14] rely on classical random-
ness, and many modes of operation have been proven secure in this model [3,9].

In the classical setting, many MAC constructions have a security that relies
on the non-repetition of IVs, for example the MAC of OCB [43]. The same
happens in the quantum setting, since the MAC of QCB [9] has been proven
secure under quantum queries with classical non-repeated IVs.

Unforgeability. The first notion of quantum unforgeability for MACs was de-
fined by Boneh and Zhandry [13]. We will name it plus-one unforgeability (PO),
following [1]. The idea is that an adversary making q quantum queries to the
construction, where q is polynomial, should not be able to produce q + 1 valid
{message, tag} pairs. A more recent definition is blind-unforgeability (BU), pro-
posed in [1]. It is strictly stronger than PO-unforgeability. In this paper, we will
give several quantum forgery attacks that break the PO notion, thereby also
breaking BU.

Quantum PRFs. A quantum pseudorandom function (qPRF) is a family of func-
tions FK , indexed by a key space K, such that no quantum adversary making
queries to an oracle Of can distinguish efficiently between a function FK , with

10

K drawn uniformly at random, and a truly random function. It is shown re-
spectively in [13] and [1] that a qPRF is also a quantum-secure deterministic
MAC by the PO and BU definitions. Therefore, any function that is not PO-
unforgeable is also not a secure qPRF. To the best of our knowledge, the only
classical symmetric construction that has been proven quantum-secure as a de-
terministic MAC, the Cascade / NMAC / HMAC construction [61], is also a
qPRF.

2.5 A Quantum Attack on OCB3

We detail the Q2 attack on the MAC of OCB3 from [39]. As the other previous
works recalled above, this attack relies on a Boolean period-finding problem.

Specification. OCB3 is an IV-based mode of authenticated encryption with
associated data (AEAD), based on a block cipher [43]. As OCB stands for offset
codebook, the scheme relies on the definition of offsets that are dependent on the
key and change between each block. We will focus on the authentication tag of
OCB3 (see Figure 1). Our considerations are independent on the exact value of
the offsets, and apply to all versions of OCB, but we use OCB3 as a concrete
example.

A0

∆0

EK

A1

∆1

EK
. . .

. . .

Aj

∆j

EK

pad(A∗)

∆∗

EK

M0 ⊕ . . .⊕M` ⊕ pad(M∗)

∆IV

EK

T

Fig. 1. Computation of the tag in OCB3. Only the offset ∆IV depends on the IV .

Forgery Attack with Simon’s Algorithm. Kaplan et al. showed in [39] how
to forge authentication tags using Simon’s algorithm. The idea is to query the
tag of an empty message with two AD blocks A0, A1 = x:

x→ EK(∆IV)⊕ EK(∆0 ⊕ x)⊕ EK(∆1 ⊕ x) .

One can then remark that this function of x is periodic, of period ∆0 ⊕∆1,
independent of the IV, and only on the secret key K. Although the function
changes at each query (since the IV changes), the period is always the same and
Simon’s algorithm allows to recover it with O (n) superposition queries. (For the
same reason, we could use a non-empty message, and even different messages
between the queries.)

11

A0

ẼK,t0

A1

ẼK,t1
. . .

. . .

Aj

ẼK,tj

pad(A∗)

ẼK,t∗

M0 ⊕ . . .⊕M` ⊕ pad(M∗)

ẼK,t

T

Fig. 2. Computation of the tag in ΘCB3. Only the final tweak t depends on the IV.

Once ∆0 ⊕∆1 has been obtained, one can then query the tag of any pair of
AD blocks A0, A1 and forge the tag of A1, A0.

Remark 2. It is easy to check that Equation (2) is satisfied in practice. If it
wasn’t, then the existence of an unwanted partial period t:

Prx [f(x⊕ t) = f(x)] ≥ 1

2
,

would imply a higher-order differential of probability greater than 1
2 for EK ,

which is impossible if EK is a pseudorandom permutation (in other words, EK
would suffer from a classical break).

3 The Quantum Linearization Attack: Algorithmic Ideas

In this section, we present the algorithmic ideas underlying our new quantum
linearization attack. To that end, we keep the example of OCB3 [43] introduced
in Section 2.5. We explain a new way to forge with Q2 queries. The extensions
and applications of this new idea will be explored in the next sections.

Note that to the best of our knowledge, this is the first application of the
Deutsch and Bernstein-Vazirani algorithms for forgery attacks.

3.1 Attack on ΘCB with Deutsch’s Algorithm

The attack of Section 2.5 works only because of the offsets. In fact, the existence
of a controlled value (here x) XORed to a secret (here the offsets) has been so
far a prerequisite of all Q2 attacks.

Here we present a forgery attack against the mode ΘCB3 [57,43], which is a
more abstract version of OCB3 in which the block cipher EK is replaced by a
tweakable block cipher (a family of independent block ciphers ẼK,t indexed by
a tweak t). This is shown in Figure 2.

Here, the tweaks t0, . . . , tj , t∗ form an arbitrary sequence of distinct values,
that depend only on the block index; the tweak t is the only one dependent on
the IV. Again, we consider an empty message, but this time a single AD block

12

that is either 0 or 1. We define i functions which truncate the output of such a
call to the ith bit:

Fi :
{0, 1} → {0, 1}
b 7→ Trunci(ẼK,t0(b)⊕ ẼK,t(0))

.

The functions Fi change at each new superposition query (because the IV

intervenes in ẼK,t(0)). Thus we need the ability to compute a query to Fi using
a single query to the untruncated mode itself. This is fortunately easy to do so
using the truncation technique of [33].

With this single query, Deutsch’s algorithm allows to recover the value:

Trunci(ẼK,t0(0)⊕ ẼK,t(0))⊕ Trunci(ẼK,t0(1)⊕ ẼK,t(0))

= Trunci(ẼK,t0(0)⊕ ẼK,t0(1)) ,

and within n queries and uses of the algorithm, we can obtain the full value
ẼK,t0(0)⊕ ẼK,t0(1).

We can now forge valid messages as follows: we query a message with 0 as
the first block, we XOR ẼK,t0(0) ⊕ ẼK,t0(1) to the tag, and we have obtained
the tag of the same message with 1 replacing the first block. This works for any
block and for any pair of messages.

This attack shows that XORing with an IV-dependent value, although it
provides sufficient protection against forgeries in the classical setting (since ΘCB
has a security proof), does not in the quantum setting.

Interestingly, it is possible to protect against this attack by using the IV in
the TBC calls, as done by Bhaumik et al. in [9]. While this simple modification
has practically no incidence on the classical security of the mode, it is crucial to
obtain unforgeability in the quantum setting.

Another Example: XOR-MACs. In [4], two XOR-MAC constructions are de-
fined, which can be attacked with Deutsch’s algorithm. They are both based
on a pseudorandom function FK and an IV. The first one, XMACR (random-
ized XOR scheme), considers that the IV is drawn uniformly at random, and
the second one, XMACC (counter-based XOR scheme) that it is maintained as a
counter. Both compute:

MAC(m1, . . . ,m`; IV) = FK(0‖IV)⊕
⊕

1≤i≤`

FK(1‖i‖mi) .

Then, since the contribution of the IV is only XORed, forgeries can be made.

3.2 Using the Bernstein-Vazirani algorithm

We propose here a generalization of the previous attack, with longer queries. We
now consider functions of the form

g1(x1)⊕ g2(x2)⊕ · · · ⊕ g`(x`)⊕ C

13

with, as before, a C that is independent from all xi. Now, we can choose some
arbitrary α0

i and α1
i , and consider the function

Fj :

{0, 1}` → {0, 1}

(b1, . . . , b`) 7→ Truncj

(⊕̀
i=1

gi(α
bi
i)⊕ C

)
,

It is easy to see that this function is affine: indeed, if we change the value of bi,
then we add Truncj

(
gi(α

0
i)⊕ gi(α1

i)
)

to the output.
Hence, if we apply the Berstein-Vazirani algorithm, in one query, we recover

the values of the Truncj
(
gi(α

0
i)⊕ gi(α1

i)
)
, for all i. Next, it suffices to repeat the

algorithm for each bit of the output to obtain the value of all the gi(α
0
i)⊕gi(α1

i).
This technique can be applied to OCB3 / ΘCB3, as the tag is a function of

the form ⊕
i

gki (ADi)⊕ fk(IV,M)

Hence, we can attack multiple blocks of associated data at once.

3.3 Attacking any XOR of permutations

The main limitation of the previous attacks is that they need a direct access to
the linear combination of independent blocks. In this section, we overcome this
limitation with an attack that leverages linear combinations of permutations in
a more intrinsic way, using Simon’s algorithm in a novel fashion.

We consider a MAC construction that processes m > n message blocks
x1, . . . , xm by pushing the xi through independent TBC calls ẼK,i, XORing
the result and applying an IV-dependent function afterwards.

IV, (x1, . . . , xm) 7→ fK

(
IV,

(⊕
1≤i≤m

ẼK,i(xi)

))
.

Remark 3. We write the attack with a TBC, i.e., a family of independent block
ciphers ẼK,T indexed by a secret key K and a public tweak T . This is to empha-
size the application of our attack to parallelizable MACs; however, the attack
works in the same way if we replace the independent block ciphers by indepen-
dent functions.

In the case of ΘCB, the definition of fK is simple, since it only XORs the
IV- and the AD-dependent parts. But the attack of Section 3.2 does not apply
anymore if fK is a pseudorandom function. This will be the case of our new
attack, which is why it will apply to many MAC constructions.

Quantum Attack. First of all, it is easy to see that if the ẼK,i are independent
block ciphers, and if fK is a pseudorandom function family, then this construc-
tion is a classically unforgeable MAC: this is the security of ΘCB3.

Our attack in the quantum setting starts from the same idea as above (Sec-
tion 3.2): we query the MAC with arbitrary blocks taking two values: x1 =

14

b1||0n−1, . . . , xm = bm||0n−1, where x = b1 . . . bm forms an m-bit input (in
the remaining of this paper, we will write the n − 1 zeroes used for completion
as a single 0). We will put x in superposition, and so, there will be only “one
superposed bit” in each individual block input.

One then observes that ẼK,1(x1)⊕ . . .⊕ ẼK,m(xm) is an affine function of x:

F (x) := ẼK,1(x1)⊕ . . .⊕ ẼK,m(xm)

=
⊕
i

(
bi �

(
ẼK,i(0)⊕ ẼK,i(1)

)
⊕ ẼK,i(0)

)
.

More precisely, if we identify bit-strings with boolean column vectors, F (b1 . . . bm)
is equal to:

(
(ẼK,1(0)⊕ ẼK,1(1)) · · · (ẼK,m(0)⊕ ẼK,m(1))

)
︸ ︷︷ ︸

Mm

×

 b1
...
bm

⊕⊕
i

ẼK,i(0) .

The matrix Mm has n rows and m columns, so when m ≥ n + 1, its kernel is
nontrivial. This means there will exist a non-zero m-bit boolean vector α such
that:

(
(ẼK,1(0)⊕ ẼK,1(1)) · · · (ẼK,m(0)⊕ ẼK,m(1))

)
× α =

0
...
0

 ,

and for all such vectors α, seen as m-bit strings, we have:

F (x⊕ α) = Mm × (x⊕ α)⊕
⊕
i

ẼK,i(0) = F (x) .

In other words, this function F hides a subgroup of (F2)m generated by all
the vectors α satisfying the condition above (it is easy to see that they indeed
form a group). Thus, F satisfies the promise of Simon’s algorithm: by making a
single superposition query, we can find y such that y · α = 0 for such an α, and
furthermore, as Brassard and Høyer showed [20], we can even recover the full
subspace of periods with a polynomial number of quantum queries to F .

However, in our model, we cannot query F directly and we have instead
access to: fK(IV, F (x)), where IV changes at each query. The key remark is
that the hidden subgroup is unchanged, since F is independent of the IV . This
assumption is enough to allow Simon’s algorithm and its extensions to work.

Remark 4 (Smaller m). Some period might still arise if m ≤ n. Indeed, if m = n,
there will be a non-trivial period with probability around 1− 1/e. This quickly
decays for smaller m.

Remark 5 (Unwanted collisions). Since the “inner” function F is affine, it does
not contain any unwanted collisions. If F (x ⊕ α) = F (x) for some α and x,

15

then this holds as well for all x. However, unwanted collisions might occur in
fK(IV, ·).

Assuming that Mm is full rank, we can express the probability of unwanted
partial periods for fK(IV, F (·)) as the probability of such unwanted collisions
for fK(IV, ·):

p = max
t,Mm×t 6=0

Prx∈{0,1}` [fK(IV, F (x⊕ t)) = fK(IV, F (x))]

= max
t,Mm×t 6=0

Prx∈{0,1}` [fK(IV, F (x)⊕Mm × t) = fK(IV, F (x))]

= max
u 6=0

Prx∈{0,1}` [fK(IV, F (x)⊕ u) = fK(IV, F (x))]

= max
u 6=0

Pry∈{0,1}n [fK(IV, y ⊕ u) = fK(IV, y)] .

Even if the output is truncated to less than n bits, p ≤ 1
2 follows trivially from

the fact that fK(IV, ·) should not admit a differential of such high probability.
To conclude, it is precisely the fact that the termination function fK(IV, ·) is a
good PRF, and does not admit an interfering period, that allows to apply easily
Simon’s algorithm in our case.

Thus, by making a polynomial number of Q2 queries to the MAC construc-
tion, we can obtain such an α. This allows to create forgeries as follows.

Forgeries without IVs. We first make n queries to find a valid α with Simon’s
algorithm (with constant probability of success). Then, the knowledge of this α
allows us, for each tag x queried, to output a forged tag x ⊕ α. Thus we can
double the number of tags that we produce compared to the number of queries
we make. This breaks the PO notion as soon as, making r + n queries, we have
2r ≥ r+ 1 +n tags, thus with 2n+ 2 queries in total. Note that by breaking PO,
we are actually showing that the MAC construction is not a qPRF (if it were,
it would be PO-secure).

Forgeries with IVs. As long as the IV (or nonce) is used only in the keyed
post-processing, we can recover a value α and run the attack as above. We will
indeed output more triples {IV,message, tag} than the number of queries made,
although some IVs are repeated in the outputs.

Universal Forgeries. Instead of taking the arbitrary values bi||0 in message
blocks, we can take any pair of values for each of them. That way, we can
even start from any m-block message y1, . . . , ym, and then define a function of
x = b1 . . . bm that inputs yi in block i if bi = 1 and an arbitrary value 0 oth-
erwise. Using Simon’s algorithm, we will find a subset of the yi such that the
ẼK,i(yi) have the same XOR as the ẼK,i(0). Hence, we can produce a new mes-
sage having the same tag as y1, . . . , ym. This works as soon as m ≥ n (there just
needs to be enough message blocks for our attack).

4 Applications to Parallelizable MACs

In this section, we apply the quantum linearization attack to many parallelizable
MACs of the literature. In particular, we show that the attack can be extended to

16

parallelizable beyond birthday-bound (BBB) MACs, although they have a larger
internal state. Here is a summary of MACs attacked in this section (usually in
time quadratic in the internal state size n), whose previous best quantum attack
was exponential:

LightMAC [47], LightMAC+ [54], Deoxys [38], ZMAC [37],
PMAC TBC3k [53]

On the contrary, here are some MACs on which, to the best of our knowledge,
our attack does not apply: SUM-ECBC [62], 2K-ECBC-Plus [24], 3kf9 [63]. The

best Q2 attacks on these remain exponential-time (usually Õ
(
2n/2

)
or O

(
2k/2

)
where n is the internal block size, and k the key size).

4.1 First Examples

We will consider MAC designs with or without IVs or nonces. When there is
no IV, then the attack of Section 3.3 breaks them in the PO notion. This also
shows that even though they usually yield classical PRFs, these constructions
are not quantum-secure PRFs. When there is an IV, the MAC may be insecure
as a PRF but still secure as a MAC (since the IV is changed at each query, and
not repeated). Despite that, our attack may still yield a break, as we showed
in the example of ΘCB above. In that case, the period that is recovered with
Simon’s algorithm is independent of the IV, and can be reused to forge a new
valid (message, tag) pair under any previously queried IV.

LightMAC. LightMAC [47] is based on an n-bit block cipher and separates the
message in blocks of n− s bits, where s ≤ n/2 is some parameter that limits the
maximal message size. The function is the following:

LightMAC(m1, . . . ,m`) = Trunct

(
EK2

(
(m`10∗)⊕

`−1⊕
i=1

EK1(ismi)

))
,

where the is are s-bit constants. Calling LightMAC with single-bit blocks and
using Simon’s algorithm, we immediately obtain a sequence of indices j1, . . . , jv
such that EK1(ij11) ⊕ . . . ⊕ EK1(ijv1) = EK1(ij10) ⊕ . . . ⊕ EK1(ijv0) and thus,
we can produce existential forgeries, and universal forgeries of messages with a
linear number of blocks.

Deoxys. Due to the similarity of its MAC with ΘCB, our attack applies to all
versions of Deoxys-II [38], one of the finalists of the CAESAR competition (it
also applies to Deoxys-I).

Protected Counter Sums. In [5], Bernstein defined the protected counter sum
construction, which uses a pseudorandom function f : {0, 1}d+c → {0, 1}c to
build a pseudorandom function with message space of at most 2c − 1 blocks of
length d:

f ′(m1, . . . ,m`) = f (0‖f(1‖m1)⊕ . . .⊕ f(`‖m`)) .

The quantum linearization attack essentially shows that this construction, while
classically sound, does not yield a quantum-secure pseudorandom function (even
if f itself is a qPRF).

17

4.2 Attacks on BBB MACs

We consider here a variant of the previous construction typically used to design
Beyond Birthday MACs. We focus on deterministic MACs, but as before, the
same forgery attacks apply if IVs are used in the final processing of the tag.

In the most generic setting, the input x1, . . . , xm is processed with a TBC
ẼK,i, then combined in two different ways:

(x1, . . . , xm) 7→ fK

(⊕
i

ẼK,i(xi),
⊕
i

2iẼK,i(xi)

)
.

Here fK is a function whose details are insignificant for our attack.
A similar observation as above applies. By calling the MAC in superposition

with messages of the form x = b1||0, . . . , bm||0, we will obtain a periodic function.
Indeed, there are now two matrices Mm and M ′m with n rows and m columns,
and two column vectors C,C ′ such that:

F (x) = F (b1, . . . , bm) := fK

Mm ×

 b1
...
bm

⊕ C,M ′m ×
 b1

...
bm

⊕ C ′
 ,

where the columns of Mm correspond to ẼK,i(0) ⊕ ẼK,i(1) and the columns of

M ′m correspond to 2i(ẼK,i(0)⊕ẼK,i(1)). Then, as soon asm ≥ 2n+1, the matrix:(
Mm

M ′m

)
has 2n rows and at least 2n + 1 columns, and so, it has a non-trivial

kernel. There exists a non-zero vector α such that

Mmα = M ′mα =

0
...
0

 .

This α is a boolean period of F , for which MAC(x ⊕ α) = MAC(x). Again,
the further we increase m, the bigger the subspace of periods will become. This
whole space can be recovered using Brassard and Høyer’s extension of Simon’s
algorithm [20] in polynomial time.

Related works. In [30], Guo, Wang, Hu and Ye used combinations of Simon’s al-
gorithm and Grover’s algorithm to design forgery attacks on many BBB MACs,
in the Q2 setting. With this technique, they found two things. First, state-
recovery attacks of complexity Õ

(
2n/2

)
where n is the block size of the underly-

ing block cipher, and the internal state is 2n bits in total. This comes from the
fact that the same input blocks are processed in two branches separately. The
standard use of Simon’s algorithm, where a controlled message block x is XORed
to an uncontrolled value, allows only to recover this value in one of the branches.
The n bits on the other branch have to be guessed with a Grover search, and so,
the attack is a Grover-meets-Simon [46] instance. And next, partial key-recovery
attacks for parallelizable MACs, of complexity O

(
2k/2

)
, where k is the partial

18

1s‖m1

EK

2

2s‖m2

EK

2
. . .

. . .

. . .

`s‖m`

EK

EK1

EK2

T

Fig. 3. LightMAC+ with three keys K,K1,K2.

key size (the total key size ranges from 3k to 5k). They consist in guessing part
of the key and breaking the MAC by using a symmetry of the branches. To these
attacks correspond classical partial key-recoveries of complexity O

(
2k
)
.

Our attack has completely different requirements and offers different results.
We need longer messages (of roughly 2n blocks in this setting), but when it
applies, the complexity is always polynomial. Note that there are constructions
targeted by Guo et al., such as SUM-ECBC, that we cannot attack since the
blocks are processed sequentially and not linearly in parallel as we require.

LightMAC+. LightMAC+ [54], as its name suggests, is a BBB extension of
LightMAC.

As shown in Figure 3, it processes ` message blocks m1, . . . ,m` as follows:

LightMAC+(m1, . . . ,m`) = EK1
(EK(1s‖m1)⊕ . . .⊕ EK(`s‖m`))

⊕ EK2
(2`−1 � EK(1s‖m1)⊕ . . .⊕ 20 � EK(`s‖m`) ,

where the multiplications are done in the finite field F2n . This falls into our
framework and is thus forgeable in quadratic time (about 2n blocks are required
to embed a vector space in both branches, and this can then be recovered in a
linear number of queries).

PMAC+. It is a double-block hash-then-sum construction similar to LightMAC+,
which also falls into our framework. In full generality, there are three keys
K1,K2,K3. The message blocks m1, . . . ,m` are processed as follows: yi = mi ⊕
2i � EK1(0)⊕ 22i � EK1(1) and then:

PMAC+(m1, . . . ,m`) = EK2
(EK1

(y1)⊕ . . . EK1
(y`))

⊕ EK3

(
2� EK1

(y1)⊕ . . . 2` � EK1
(y`)

)
.

The masking by 2i�EK1(0)⊕22i�EK1(1) simply makes the processing of each
block different, but this is insignificant for our attack. By recovering a period,
we can create forgeries and break PMAC+ as a qPRF.

Note that both LightMAC+ and PMAC+ were classically proven secure up to
23n/4 queries [41]. Besides, increasing the number of parallel branches may have

19

consequences on the bound, but only increases the complexity of our attack by
a constant factor. We considered here three-key versions, but of course, the two-
and one-key versions [24,25] are similarly broken.

4.3 Other MACs

LAPMAC. LAPMAC was defined in [51]. The definition depends on some paral-
lelization parameter µ. Successive chunks of µ message blocks will be processed
in parallel through the block cipher EK (except the last one), then some tweak
function depending on their index in the chunk. The results are XORed and
encrypted again, before being XORed to the next chunk of µ message blocks,
etc. When µ ≥ n, LAPMAC applied to n message blocks becomes similar to
LightMAC or PMAC, and there is sufficient parallelization to perform our attack.
Whether a variant of the attack applies for smaller values of µ is an interesting
question.

ZMAC. ZMAC [37] is a MAC that uses a TBC. It is based on the ZHASH double-
block hash construction followed by a finalization function. We can simply focus
on the abstraction ZHASH (see Fig. 5 in [37]):

ZHASH(X1
` , X

1
r , . . . , X

l
`, X

l
r) =

⊕
i

2l+1−iẼ
i,Xi

r

K (Xi
`),
⊕
i

Xi
r ⊕

⊕
i

Ẽ
i,Xi

r

K (Xi
`) ,

where ẼtK is ẼK called with a tweak t. If we make the tweak inputs constant,
then the construction is similar to PMAC+ with a TBC, and different random
keyed permutations for each block. Our attack applies as well.

PMAC with a TBC. Naito [53] showed that PMAC+ used with a TBC could
achieve full PRF security (up to O (2n) queries). In this variant, the message
blocks are processed independently with different tweaks. This has no conse-
quence on our attack, which requires only O (n) queries of about 2n blocks each.

5 Attacks on MACs based on Universal Hashing

In this section, we focus on some attacks on MACs based on universal hashing.
In particular, we give polynomial-time attacks on PolyMAC [36], GCM-SIV2, and
we give a superposition attack on Poly1305 requiring about 32 queries.

5.1 Overview

Universal hash functions were introduced by Carter and Wegman in 1977 [21]
in order to build secure MACs, and are now used in many MAC constructions
and security proofs. The first proposal by Wegman and Carter was to hash the
message and to encrypt the result with a one-time-pad. This defines a MAC with
information-theoretic security, but the use of a one-time-pad is impractical, and
it was soon suggested to replace it with the output of a PRF, i.e., to replace the
one-time-pad by counter-mode encryption. This results in the Wegman-Carter

20

construction used in GCM and Poly1305-AES: M 7→ HK1
(M)⊕ FK2

(N) where
F is a secure pseudorandom function family, and H an almost-XOR-universal
hash function family.

5.2 Universal hash functions and MAC constructions

An almost-XOR-universal hash function family is a family of function H from
{0, 1}∗ to {0, 1}n indexed by a key K ∈ K such that:

∀m 6= m′, ∀d ∈ {0, 1}n, #{K ∈ K : HK(m)⊕HK(m′) = d} ≤ ε#K

The most widely used universal hash function construction is polynomial hash-
ing. The input message is interpreted as the coefficients of a polynomial in a
field F, and the polynomial is evaluated on the hash key:

PolyHashK : F` → F m1,m2, . . .m` 7→
∑̀
i=1

Ki �mi

Block cipher-based constructions such as the OCB3 MAC can also be analysed
as universal hashing-based, using

⊕
iEK(Ai⊕∆i) as a universal hash function.

There are many different ways to turn a universal hash function into a MAC:

One-time-MAC: HK(M). If the universal hash function satisfies extra prop-
erties (it must be strongly universal), it can be used directly as a MAC, if
a new key is used for each message. This construction is used in ChaCha20-
Poly1305, Grain128A and Grain128AEAD [32].

Wegman-Carter: HK1(M)⊕ FK2(N). The Wegman-Carter construction is
a nonce-based MAC using a universal hash function H and a PRF F . It
authenticates several messages using the same key, as long as the nonce N
is not repeated (the security is lost as soon as two different messages are
authenticated with the same key). This construction is used in GMAC.
More generally, the construction H(M) ? F (N) with ? a group operation
and F almost-?-universal is a secure MAC. This construction is used in
Poly1305-AES.

Hash-then-PRF: FK2(HK1(M)). The hash-then-PRF construction builds a
deterministic MAC from a universal hash function H and a PRF F .
The PolyMAC construction discussed below follows this design. More gener-
ally, security proofs for several block cipher-based MACs consider the MAC
as following the hash-then-PRF construction; in particular this is the case
of double-block hash-then-sum constructions [24].

WMAC: FK2(HK1(M)‖N). WMAC [10] is a generalization of the hash-
then-PRF construction using an additional nonce input N to the PRF. This
requires a PRF with a larger input, but provides higher security when nonces
are unique, without breaking down when they are repeated.

EWCDM: EK3 (EK2(N)⊕N ⊕HK1(M)). The Encrypted Wegman-Carter
with Davies-Meyer construction [23] is an alternative construction offering
high security with a nonce with graceful degradation when nonces are re-
peated. Instead of using a 2n-bit PRF as in WMAC, it uses two calls to an
n-bit block cipher.

21

5.3 Attacking Wegman-Carter MACs

All MACs following the Wegman-Carter construction are exposed to the attack
using Deutsch’s algorithm that we presented in Section 3.1. More precisely, an
IV-respecting quantum adversary can retrieve the value of HK1(M1)⊕HK1(M2)
for an arbitrary pair of messages M1,M2. He can then repeatedly query the tag
of M1 under new nonces, and produce corresponding valid tags for M2.

When using the generalization with a group operation ? instead of ⊕, this
simple attack does not apply. In particular, Poly1305-AES uses a modular addi-
tion and cannot be broken with Deutsch’s algorithm, but we will show a dedi-
cated attack in Section 5.5, using the fact that it is based on polynomial hashing.

5.4 Attacking Algebraic Universal Hash Functions

We can apply our linearization attack to MACs that reuse the same hash key for
several messages, whether deterministic (like hash-then-PRF), or nonce-based
(like Wegman-Carter, WMAC, and EWCDM). Indeed, it is enough for us to
linearize the function H, and the attack applies regardless of the security of the
operations that are computed afterwards, even if they involve a nonce.

Many Universal Hash Functions based on algebraic operations have a strong
linear structure. In particular, polynomial hashing is a linear function of the
message, making it a natural target for Simon’s algorithm (in characteristic 2)
or Shor’s algorithm (in general). We describe concrete attacks against a few
constructions.

PolyMAC. PolyMAC [24] is a double block hash-then-sum construction based
on polynomial hashing. The generic construction uses two hashing keys K1,K2

and two encryption keys K3,K4. For an `-block message m1, . . . ,m`, this gives:

PolyMAC(m1, . . . ,m`) = EK3

(
K1 �m` ⊕K2

1 �m`−1 ⊕ . . .⊕K`
1 �m1

)
⊕ EK4

(
K2 �m` ⊕K2

2 �m`−1 ⊕ . . .⊕K`
2 �m1

)
.

If a single branch is used, then this looks like the GMAC construction [50]
(but without a nonce), using polynomial hashing. GMAC was already attacked
in [39] due to its similarities with CBC-MAC, and the fact that the nonce did not
influence the embedded hidden shift. However, we can use our attack here. By
taking `-block message inputs with blocks 0 or 1, we will recover with Simon’s
algorithm a period b1 · · · b` such that:⊕

i

biK
i
1 = 0 and

⊕
i

biK
i
2 = 0 .

This immediately allows a forgery attack, but also, we can recover multiple
such periods and solve the corresponding equations to recover K1 and K2.

22

PolyMAC with Modular Additions. Interestingly, our attack applies as
well when the polynomial hashing does not use XORs, but modular additions
(modulo some value M). However, Simon’s algorithm has to be replaced by
Shor’s algorithm. Note that this is specific to polynomial hashing, and does not
apply to LightMAC or PMAC-style constructions in general.

We can define:

PolyMAC+(m1, . . . ,m`) = EK3

(
K1 �m` +K2

1 �m`−1 + . . .+K`
1 �m1 mod M

)
⊕ EK4

(
K2 �m` +K2

2 �m`−1 + . . .+K`
2 �m1 mod M

)
.

In that case, we can remark that there exists periods a1, . . . , a` such that:

K1a1 + . . .+K`
1a` mod M = 0 and K2a1 + . . .+K`

2a` mod M = 0 .

More precisely, these periods form a lattice in Z`M , and for all of them, we have:

∀m1, . . . ,m`,PolyMAC+(m1 + a1, . . . ,m` + a`) = PolyMAC+(m1, . . . ,m`) .

Thus, the generalization by Mosca and Ekert [52] of Shor’s algorithm allows
to retrieve the full lattice of these periods: we can not only forge, but also recover
the internal hashing keys.

GCM-SIV2. This is a double-block variant of GCM-SIV defined in [36]. The tag
generation combines two independent polynomial hashes (with two keys K1,K2)
with a keyed-dependent combination function FK , of which we shall not study
the details. This mode is nonce-based. With an empty associated data, the tag
is computed as follows:

GCM-SIV2−MAC(N,m1, . . . ,m`) =

FK (N ⊕HK1
(m1, . . . ,m`), N ⊕HK2

(m1, . . . ,m`)) ,

where HK1
and HK2

are polynomial hashes (this would be similar for the tag
of an empty message, replacing M by the associated data). Thus, although the
MAC is nonce-dependent, it falls into our framework since the periods of the
polynomial hashes remain independent of N .

Other algebraic hashing constructions. There are many alternatives to
polynomial hashing based on field operations. Several constructions are linear,
such as the dot product construction, and Toeplitz hashing [42].4

Some other constructions can be linearized using specially crafted messages.

NMH∗ [31]. The NMH∗ universal hash function is defined as:

NMH∗(M) =
∑

(m2i +K2i)(m2i+1 +K2i+1) mod p

If we consider messages with blocks with an even index set to arbitrary con-
stants, we obtain a linear function of the odd message blocks. Therefore, Shor’s
algorithm can break MACs based on this hash function that reuse the hash key.

4 Grain128A and Grain128AEAD [32] use Toeplitz hashing, but we can only attack
them in the nonce-misuse setting because they use the one-time-MAC construction.

23

BRW Hashing [7]. The BRW universal hash function is based on a class of
polynomials that can be evaluated with `/2 multiplications with ` inputs, using
a single key. The construction is defined recursively, depending on the input
length:

• BRWK() = 0
• BRWK(m1) = m1

• BRWK(m1,m2) = m1 �K +m2

• BRWK(m1,m2,m3) = (K +m1)� (K2 +m2) +m3

• BRWK(m1,m2, . . .m`) = BRWK(m1,m2, . . .mt−1)� (Kt +mt)+
BRWK(mt+1,mt+2, . . .m`) with t a power of 2, and 4 ≤ t ≤ n < 2t.

For instance, with 8 inputs, we obtain((
(K+m1)�(K2+m2)+m3

)
�(K4+m4)+(K+m5)�(K2+m6)+m7

)
�(K8+m8)

This construction can also be linearized by setting message blocks with an even
index set to arbitrary constants.

5.5 Period-Finding against Poly1305

Poly1305 [6] is a polynomial MAC with some specific constraints that force a
dedicated analysis. It has already been cryptanalysed in [18], where the authors
proposed an attack in 238 time and queries. The authors managed to overcome
the specific constraints by leveraging a hidden shift structure. The attack we
propose here is drastically more efficient, and uses a hidden period instead.

Poly1305 uses a hashing key r of 124 bits with at most 106 non-zero bits and
a 128-bit cipher key K. The MAC of a message m1, . . . ,m` with the nonce N is
computed as:

Poly1305(m1, . . . ,m`) = (c1r
` + c2r

`−1 + . . .+ c`r
1) mod 2130 − 5

+AESK(N) mod 2128 ,

where c1, . . . , c` are the padded message blocks obtained from the message blocks
m1, . . . ,m`. When message blocks are full 128-bit blocks, the ci are simply ob-
tained from the mi by adding 2128.

Let us assume that we query with two message blocks. We have:

Poly1305(m1,m2) =
((
m1 + 2128

)
· r2 +

(
m2 + 2128

)
· r
)

mod 2130 − 5

+AESK(N) mod 2128

=
(
((m1 · r +m2) · r + C1) mod 2130 − 5

)
+ C2 mod 2128 ,

where C1, C2 are constants of our query that depend on r,K,N . Since the com-
putation ends with a reduction modulo 2128, which is smaller than 2130 − 5, we
must actually use a compressed instance of Shor’s algorithm [48]. This increases
mildly the number of queries, by less than a factor 2.

24

Two inputs (m1,m2) and (m′1,m
′
2) lead to the same tag if

m1r +m2 = m′1r +m′2 mod 2130 − 5

⇔ (m1 −m′1)r + (m2 −m′2) = 0 mod 2130 − 5 .

Hence, the periods of the function Poly1305(m1,m2) are solutions of m1r+m2 =
0 mod 2130 − 5.

As the period is modulo 2130 − 5 but the input is 128-bit long, we cannot
do the query expected by Shor’s algorithm. Still, the fraction of inputs we can
actually query is large enough so that we can still apply Shor’s algorithm with
a partial query, and recover efficiently the period.

The initial query is:

1

2128

2128−1∑
m1,m2=0

|m1〉 |m2〉 |Poly1305(m1,m2)〉

=
1

2128

2128−1∑
m1,m2=0

|m1〉 |m2〉 |f(m1r +m2)〉 .

Here, f is a function that depends on r,K,N . The only relevant point is that it
does not depend on m1,m2 directly, but only on m1r + m2. For simplicity, in
the following we assume f is a permutation. We will now apply the QFT over
Z/(2130 − 5) on the input registers. We note p = 2130 − 5. We obtain

1

p

1

2128

2128−1∑
m1,m2=0

p−1∑
x,y=0

exp

(
2iπ

xm1 + ym2

p

)
|x〉 |y〉 |f(m1r +m2)〉 .

We can rewrite the state by regrouping components with identical m1r +m2:

1

p

1

2128

p−1∑
x,y=0

p−1∑
c=0

2128−1∑
m1,m2=0
m1r+m2=c

exp

(
2iπ

xm1 + ym2

p

)
|x〉 |y〉 |f(c)〉

=
1

p

1

2128

p−1∑
x,y=0

p−1∑
c=0

2128−1∑
m1,m2=0
m1r+m2=c

exp

(
2iπ

xm1 + y(c−m1r)

p

)
|x〉 |y〉 |f(c)〉

=
1

p

1

2128

p−1∑
x,y=0

p−1∑
c=0

exp

(
2iπ

yc

p

) 2128−1∑
m1,m2=0
m1r+m2=c

exp

(
2iπ

m1(x− yr)
p

)
|x〉 |y〉 |f(c)〉

Now, we can compute the probability to measure a nonzero tuple (x, y) with
x = yr.

25

As there are p− 1 such tuples, the overall probability is

(
1

p

1

2128

)2

(p− 1)

p−1∑
c=0

 2128−1∑
m1,m2=0
m1r+m2=c

1

2

=
p− 1

p22256

p−1∑
c=0

(
#{0 ≤ m1,m2 < 2128 : m1r +m2 = c}

)2
Now, as x 7→ x2 is a convex function, we can use Jensen’s inequality:

n∑
i=1

1

n
α2
i ≥

(
n∑
i=1

1

n
αi

)2

.

This allows us to lower bound the previous probability by

p− 1

p22256
p

(
p−1∑
c=0

1

p
#{0 ≤ m1,m2 < 2128 : m1r +m2 = c}

)2

=
p− 1

p2256

(
1

p
#{0 ≤ m1,m2 < 2128}

)2

=
p− 1

p2256

(
2256

p

)2

=
(p− 1)2256

p3
>

1

16
.

Thus, we measure a tuple (x, y) 6= (0, 0) with x = yr with probability at least
1/16. As 2130−5 is prime, one such tuple is enough to recover r. Hence, we need
at most 16 queries on average to recover r, assuming f is a permutation. Here,
as f is a function, we rely on [48] to bound the increase by a factor 2. Note that
as we are only a few bits of output short of having a permutation, this is a very
loose bound. Overall, the attack will require no more than 32 queries.

6 On Parallelizable Quantum PRFs

Let us take a broader point of view. The deterministic MACs that we attacked
in this paper all have common points. Besides allowing inputs of any length
(as should be expected of any MAC construction), they • process their input
blocks independently; • compute one or more linear functions, with XORs, of
these processed input blocks; • process the authentication tag from the outputs
of these linear functions.

These characteristics are to be expected from any MAC that is: • of average
rate one, meaning that there are as many primitive calls as there are blocks;
• parallelizable; • having an internal state of size O (n), independent of the
query length. Our attack is easily defeated if the blocks are processed sequentially
by calling a compression function, as in the NMAC construction. However, the
construction becomes unparallelizable.

It may be possible to obtain a quantum-secure parallelizable qPRF using a
tree hashing, where the blocks are placed at the leaves of a binary tree, and each

26

node is computed by calling a (keyed) compression function on its two children.
However, such a construction requires an internal state greater than O (n), and
that increases with the amount of data. Typically to traverse the binary tree,
we will need to remember O (logm) nodes, where m is the number of leaves.

Open Question. If we stand by the characteristics listed above (efficient, paral-
lelizable, constant internal state size), then it seems that the only solution is to
use modular additions in place of XORs in the constructions that we attacked.
In that case, our attack does not seem to work anymore, due to the fact that
modular additions, contrary to XORs, are not involutive. Thus changing one of
the blocks in our n-block queries does not modify involutively the result, which
breaks the periodicity property that we used with Simon’s algorithm.

This makes this option worth investigating, both from a provable security
and a cryptanalysis perspective. Note that the situation is different from most
attacks with Simon’s algorithm, where the replacement of XORs by + changes
the attack complexity from polynomial to subexponential (see [2,18]). In our
case, it is possible that using + allows an exponential security level.

7 Conclusion

In this paper, we introduced a novel way of using quantum period-finding to
break parallelizable MAC constructions in the superposition query model, break-
ing most of them in this setting. In full generality, our attack makes use of mul-
tiple blocks to embed a hidden period, a surprisingly simple idea that might
have other applications. We gave new polynomial-time forgery or partial key-
recovery attacks on LightMAC, LightMAC+, PolyMAC, Poly1305, GCM-SIV2, De-
oxys, ZMAC, PMAC TBC3k. Our attack is not mitigated by the use of multiple
parallel branches (as in double-block hash-then-sum MACs). It can be prevented
for IV-based MACs if the non-reused IV intervenes in the processing of all mes-
sage blocks (as done in [9]).

These results show that we cannot obtain a parallelizable quantum-secure
PRF by processing independently the message blocks, XORing the results, and
then hashing the output. If modular additions are used instead of XORs, our
attack does not apply anymore (except on polynomial hashing, which has a
simpler structure). Overcoming this limitation, or on the contrary, proving the
security of such a PRF, is an interesting open question.

Acknowledgments This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 714294 - acronym QUASYModo).
A.S. is supported by ERC-ADG-ALGSTRONGCRYPTO (project 740972).

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message au-
thentication via blind-unforgeability. In: EUROCRYPT (3). Lecture Notes in Com-
puter Science, vol. 12107, pp. 788–817. Springer (2020)

27

2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol.
10212, pp. 65–93 (2017)

3. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the
CBC, CFB, OFB, CTR, and XTS modes of operation. In: PQCrypto. Lecture
Notes in Computer Science, vol. 9606, pp. 44–63. Springer (2016)

4. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: CRYPTO. Lecture Notes
in Computer Science, vol. 963, pp. 15–28. Springer (1995)

5. Bernstein, D.J.: How to stretch random functions: The security of protected counter
sums. J. Cryptol. 12(3), 185–192 (1999)

6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: FSE. Lecture
Notes in Computer Science, vol. 3557, pp. 32–49. Springer (2005)

7. Bernstein, D.J.: Polynomial evaluation and message authentication (2007), http:
//cr.yp.to/papers.html#pema

8. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput.
26(5), 1411–1473 (1997)

9. Bhaumik, R., Bonnetain, X., Chailloux, A., Leurent, G., Naya-Plasencia, M.,
Schrottenloher, A., Seurin, Y.: QCB: efficient quantum-secure authenticated en-
cryption. IACR Cryptol. ePrint Arch. 2020, 1304 (2020)

10. Black, J., Cochran, M.: MAC reforgeability. In: FSE. Lecture Notes in Computer
Science, vol. 5665, pp. 345–362. Springer (2009)

11. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. In: CRYPTO. LNCS, vol. 1880, pp. 197–215. Springer (2000)

12. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT. LNCS, vol. 2332, pp. 384–
397. Springer (2002)

13. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 7881, pp. 592–608. Springer
(2013)

14. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: CRYPTO (2). Lecture Notes in Computer Science,
vol. 8043, pp. 361–379. Springer (2013)

15. Bonnetain, X.: Quantum key-recovery on full AEZ. In: SAC. Lecture Notes in
Computer Science, vol. 10719, pp. 394–406. Springer (2017)

16. Bonnetain, X.: Tight bounds for Simon’s algorithm. IACR Cryptol. ePrint Arch.
2020, 919 (2020)

17. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline Simon’s algorithm.
In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 11921, pp. 552–583.
Springer (2019)

18. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and im-
plications. In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 11272,
pp. 560–592. Springer (2018)

19. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: SAC. Lecture Notes in Computer Science, vol. 11959, pp. 492–519. Springer
(2019)

20. Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon’s
problem. In: ISTCS. pp. 12–23. IEEE Computer Society (1997)

21. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: STOC. pp. 106–112. ACM (1977)

28

http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema

22. Cid, C., Hosoyamada, A., Liu, Y., Sim, S.M.: Quantum cryptanalysis on contract-
ing feistel structures and observation on related-key settings. In: INDOCRYPT.
Lecture Notes in Computer Science, vol. 12578, pp. 373–394. Springer (2020)

23. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: CRYPTO (1). Lecture Notes in Computer Science, vol.
9814, pp. 121–149. Springer (2016)

24. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018)

25. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC Plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)

26. Deutsch, D.: Quantum theory, the church–turing principle and the universal quan-
tum computer. In: Proceedings of the Royal Society London A. vol. 400, pp. 97—
-117. Springer (1985)

27. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences 439(1907), 553–558 (1992)

28. Dong, X., Dong, B., Wang, X.: Quantum attacks on some feistel block ciphers.
Des. Codes Cryptogr. 88(6), 1179–1203 (2020)

29. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC.
pp. 212–219. ACM (1996)

30. Guo, T., Wang, P., Hu, L., Ye, D.: Attacks on beyond-birthday-bound macs in the
quantum setting. In: PQCrypto. Lecture Notes in Computer Science, vol. 12841,
pp. 421–441. Springer (2021)

31. Halevi, S., Krawczyk, H.: MMH: software message authentication in the
gbit/second rates. In: FSE. Lecture Notes in Computer Science, vol. 1267, pp.
172–189. Springer (1997)

32. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128 AEAD
a lightweight AEAD streamcipher. Submission to NIST-LWC (2nd Round) (2019)

33. Hosoyamada, A., Sasaki, Y.: Quantum demiric-selçuk meet-in-the-middle attacks:
Applications to 6-round generic feistel constructions. In: SCN. Lecture Notes in
Computer Science, vol. 11035, pp. 386–403. Springer (2018)

34. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-
ciphertext attacks against feistel ciphers. In: CT-RSA. Lecture Notes in Computer
Science, vol. 11405, pp. 391–411. Springer (2019)

35. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: FSE. LNCS, vol. 2887,
pp. 129–153. Springer (2003)

36. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

37. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A fast tweakable block
cipher mode for highly secure message authentication. In: CRYPTO (3). Lecture
Notes in Computer Science, vol. 10403, pp. 34–65. Springer (2017)

38. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. Submitted to CAESAR
(2016)

39. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO (2). Lecture Notes in
Computer Science, vol. 9815, pp. 207–237. Springer (2016)

40. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

29

41. Kim, S., Lee, B., Lee, J.: Tight security bounds for double-block hash-then-sum
MACs. In: EUROCRYPT (1). Lecture Notes in Computer Science, vol. 12105, pp.
435–465. Springer (2020)

42. Krawczyk, H.: New hash functions for message authentication. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 921, pp. 301–310. Springer (1995)

43. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FSE. Lecture Notes in Computer Science, vol. 6733, pp. 306–327.
Springer (2011)

44. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher
and the random permutation. In: ISIT. pp. 2682–2685. IEEE (2010)

45. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In:
ISITA. pp. 312–316. IEEE (2012)

46. Leander, G., May, A.: Grover meets Simon - quantumly attacking the FX-
construction. In: ASIACRYPT (2). Lecture Notes in Computer Science, vol. 10625,
pp. 161–178. Springer (2017)

47. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: FSE. Lecture Notes in Computer Science, vol. 9783, pp. 43–59.
Springer (2016)

48. May, A., Schlieper, L.: Quantum period finding is compression robust. CoRR
abs/1905.10074 (2019)

49. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: INDOCRYPT. LNCS, vol. 3348, pp. 343–355.
Springer (2004)

50. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: INDOCRYPT. Lecture Notes in Computer Science, vol.
3348, pp. 343–355. Springer (2004)

51. Minematsu, K.: A lightweight alternative to PMAC. In: SAC. Lecture Notes in
Computer Science, vol. 11959, pp. 393–417. Springer (2019)

52. Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on
a quantum computer. In: QCQC. Lecture Notes in Computer Science, vol. 1509,
pp. 174–188. Springer (1998)

53. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: ProvSec. Lecture Notes in Computer Science, vol. 9451, pp. 167–182.
Springer (2015)

54. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message
length. In: ASIACRYPT (3). Lecture Notes in Computer Science, vol. 10626, pp.
446–470. Springer (2017)

55. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
56. NIST: Submission requirements and evaluation criteria for the post-

quantum cryptography standardization process (2016), https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf
57. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: ASIACRYPT. Lecture Notes in Computer Science,
vol. 3329, pp. 16–31. Springer (2004)

58. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

59. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS. pp. 124–134. IEEE Computer Society (1994)

60. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

30

https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

61. Song, F., Yun, A.: Quantum security of NMAC and related constructions - PRF
domain extension against quantum attacks. In: CRYPTO (2). Lecture Notes in
Computer Science, vol. 10402, pp. 283–309. Springer (2017)

62. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: CT-RSA. Lecture Notes
in Computer Science, vol. 5985, pp. 366–381. Springer (2010)

63. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3GPP-MAC beyond the
birthday bound. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 7658,
pp. 296–312. Springer (2012)

31

	Quantum Linearization Attacks

