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ABSTRACT
Hardware architecture has long influenced software architecture,
and notably so in analytical database systems. Currently, we see
a new trend emerging: A "tectonic shift" away from X86-based
platforms. Little is (yet) known on how this shift affects database
system performance and, consequently, should influence the design
choices made. In this paper, we investigate the performance char-
acteristics of X86, POWER, ARM and RISC-V hardware on micro-
as well as macro-benchmarks on a variety of analytical database
engine designs. Our tool to do so is VOILA: a new database engine
generator framework that from a single specification can generate
hundreds of different database architecture engines (called "fla-
vors"), among which well-known design points such as vectorized
and data-centric execution.

We found that performance on different queries by different
flavors varies significantly, with no single best flavor overall, and
per query different flavors winning, depending on the hardware.We
think this "performance diversity" motivates a redesign of existing
– inflexible – engines towards hardware- and query-adaptive ones.
Additionally, we found that modern ARM platforms can beat X86
in terms of overall performance by up to 2×, provide up to 11.6×
lower cost per instance, and up to 4.4× lower cost per query run.
This is an early indication that the best days of X86 are over.

1 INTRODUCTION
For research as well as industry, query performance is an important
topic. To gain an edge (in performance), database engines have to
co-evolve with and adapt to the underlying hardware. That meant
optimizing for longer CPU pipelines [10, 11], exploiting SIMD [10,
13, 16, 26, 30, 31, 35–37], taking advantage of multiple cores [14,
27] as well as profiting from GPUs, FPGAs or other accelerator
devices [19–21, 28, 33, 34]. Besides these (current/past) trends, we
can observe a new trend emerging:

After dominating the market for (two - three) decades, mainstream
hardware is moving away from X86-based architectures.

The final destination of this shift is yet unclear. Companies like
Amazon and Apple push towards ARM architectures (Apple M1 [9],
Amazon Graviton [6]), whereas other entities, such as the European
Processor Initiative [1] or Alibaba [2], push towards RISC-V-based
architectures. ARM-based architectures are in a mature state, they
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are used in smartphones for years and in several lines of server
hardware. RISC-V-based architectures, however, are the somewhat
unproven newcomers, with no server-grade hardware being cur-
rently available. There are multiple reasons for this shift: at the
end of Moore’s law, the CISC complexity of X86 may after all these
years finally lose out to RISC in raw CPU performance, in a time
when X86 manufacturers no longer have a silicon process advan-
tage. Additionally, moving away from X86 offers more freedom
and the possibility to add differentiating features: with sufficient
funds, one can license an ARM or RISC-V chip design and integrate
specific hardware accelerators. The "dark silicon" trend means that
performance advances are increasingly going to depend on this.

This shift leaves current, and more so, future database engines, in
an uncomfortable spot. Should we continue optimizing for X86? Or
should we strive for portable performance, and how would such an
engine look like? Besides obvious engineering issues (portability,
technical debt, re-implementation effort), there is a chance that
performance characteristics will change too. Consequently, this can
render existing query execution paradigms, data-centric [29] and
vectorized [10], more/less well-suited for a particular hardware,
and can invalidate widely known rules of thumb (e.g. vectorized
execution outperforms data-centric compilation on data-access-
heavy queries). Therefore, the existence of significant performance
diversity would require an extensive redesign of current engines.

One possible approach, for such a redesign, is moving to a query
execution system that is able to synthesize very different execu-
tion strategies (query implementation "flavors"). In our research
group, we are building VOILA [17], in which relational operators
are implemented in a high-level Domain-Specific Language (DSL),
that specifies what operations an operator performs on specific
data structures (such as hash tables), eliciting dependencies, but
not in what order the operations would be executed. This DSL can
then automatically be compiled in different ways into executable
implementations (=flavors), for instance using the two opposite
approaches of vectorized execution ("x100", after MonetDB/X100
or VectorWise) and data-centric ("hyper"). But, we also integrated
ways to mix these two approaches by switching between them at
certain points in a query, and added additional variations incor-
porating SIMD-optimized processing and hardware prefetching.
All in all, VOILA can compile the same physical query plan into
thousands of different implementation flavors.

A big future research question is how to determine which flavor
to generate and execute, a question already difficult to answer in
the past decade due to the interaction between data distributions,
system state and machine characteristics1. These interactions can

1Given two flavors A and B, A could operate completely in cache, while B might
produce cache misses. A could be faster than B (faster memory access). But, for slow



be static (e.g. cache size) as well as dynamic (e.g. processors can
clock down to fit into the thermal design budget). While static
interactions could be predicted (e.g. using a cost model), dynamic
interactions are nearly impossible to predict2, therefore further
complicating the challenge.

Therefore, a solution might lie in micro-adaptive [32] execution
that adapts the strategy to the circumstances. In VOILA, we even-
tually aim to dynamically adapt physical implementations (plans,
operators, ...) to the currently prevalent (measured) conditions, e.g.
via recompilation in a virtual machine-based architecture [15].

But so far, it is unclear, if there is – currently – sufficient perfor-
mance diversity to justify increasing the flexibility, or even replace
existing engines with more flexible ones.

Contributions. We study performance characteristics by conduct-
ing micro- as well as macro-benchmarks. We investigate whether
there is performance diversity between different platforms and
implementations. We study the effects on holistic query perfor-
mance, hash joins and query execution primitives. We validate the
widely-known heuristics: (a) ARM-based platforms are slow and
(b) vectorized execution outperforms data-centric compilation on
memory-access-heavy workloads. For joins, we identify certain
hardware features that tend to favor data-centric compilation.

Structure. The remaining paper is structured as follows: first we
discuss the necessary background. Then, we shift the focus to micro-
benchmarks that highlight particular aspects of the underlying
hardware. Afterwards, we focus on the performance of well-known
TPC-H queries, provide insights into the best execution strategy
(optimal flavor) on the underlying hardware as well as investigate
cost/performance trade-offs. Afterwards, we conclude the paper.

2 BACKGROUND
In this section, we present and discuss the necessary background.
We start with a brief description of execution paradigms, then
discuss techniques for hiding latencies and, afterwards, related
studies.

Data-Centric. Data-centric execution [29] compiles a pipeline
into an efficient assembly loop, e.g., lowering the query plan e.g.
through an LLVM IR representation. The final code resembles a
tuple-at-a-time execution model where each operator is inlined into
the next one. Each attribute (of a tuple) is kept in CPU registers (or,
if these run out, is spilled to cache memory).

Vectorized Execution. The other well known execution style is
vectorized execution [10], which processes data small columnar
slices (vectors). The vector size is typically chosen such that execu-
tion remains in cache. Data inside a vector is processed in a tight

processors cache miss penalties might matter less, as long as the full main-memory
bandwidth can be utilized. Therefore, B could be faster than A.
2To predict the full and dynamic behaviour, we would have to assume perfect physical
environment (e.g. perfect cooling keeping the system at optimal temperature). Then,
we need to model the whole system including hardware quirks. For example the CPU
could clock down when using some specific instruction subset (e.g. AVX-512 [12]).
For real system, this is (nearly) impossible to "get right" for all supported hardware.
It might be possible to build a hardware-specific code model, e.g. by using machine
learning to train, or fit, the cost model. The training/fitting step would, however,
require extensive data generation, i.e. time-consuming benchmarking, where it is not
fully clear yet which features/properties affect performance and need to be measured.

loop. Besides facilitating easy SIMDization via auto-vectorization,
this also allows the CPU to speculate ahead.

Simultaneous Multi-Threading (SMT). Hiding the latencies can be
a powerful feature. Some modern processors can execute multiple
threads on one physical core, a feature called Simultaneous Multi-
Threading (SMT). This is effectively increasing instruction-level
parallelism, because different threads tend to have mostly inde-
pendent instruction streams. In theory, this allows hiding memory
access or branch misprediction latencies (flushing CPU pipeline
only for the affected thread). However, the precise behaviour de-
pends on the hardware at hand, and so does performance.

Prefetching. Besides SMT, it also also possible to hide mem-
ory access latencies via prefetching. Starting from the two well-
known paradigms (data-centric and vectorized) many variations,
with prefetching, have been proposed. Most notably, Asynchro-
nous Memory-Access Chaining (AMAC) [24] and Interleaved Multi-
Vectorizing (IMV) [13].

AMAC [24] essentially implements SMT by hand. To benefit
from AMAC, one has to implement, e.g. the data-centric pipeline as
an array of multiple Finite State Machines (FSMs). The basic idea is,
at the end of each state, to prefetch the next data item and switch to
a different FSM. Eventually, we reach the original FSM again, with
the prefetched data item being available. This allows overlapping
prefetching/memory latency with useful work.

IMV [13] improves upon AMAC by introducing efficient buffer-
ing. As IMV implements almost all operations via AVX-512, buffer-
ing helps keeping SIMD lanes sufficiently filled.

Data-centric vs. Vectorized. The precise advantages and weak-
points of data-centric and vectorized execution have been studied
by Kersten et al. [22]. They found that vectorization excels in paral-
lel memory access (e.g. hash joins) whereas data-centric shines at
computation-heavy workloads. Further, they found that vectorized
engine provides other advantages such as accurate profiling, adap-
tivity and a low compilation time, as primitives are pre-compiled.

3 METHODOLOGY
We conduct micro- to macro-level experiments with varying and,
rather, diverse hardware.

Hardware. For our experiments, we used 3 X86machines (Skylake-
X, 8275CL and Epyc), 3 ARM machines (Graviton 1, 2 and M1), 2
PowerPC machines (Power8 and Power9) and one RISC-V machine
(910). Specific details can be found in Table 1. Some of the machines
have noteworthy special features: The Graviton 2 has accelerated
access to always-encrypted memory, as well as acceleration for
fast compression and decompression [7]. The M1 features a het-
erogeneous design of 4 fast CPU cores (Firestorm), 4 slow CPU
cores (Icestorm), an integrated GPU and acceleration for Neural
Networks. The 910 appears to be an early prototype of a RISC-
V-based machine – rather a development board – and appears to
target functionality testing, rather than performance (e.g. seems to
lack proper cooling). Therefore, we only included the 910 into the
basic micro-benchmarks as its performance seems to be the worst
of our hardware bouquet. Furthermore, neither Graviton 1, nor M1,
nor 910 seem to have an L3 cache.
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Table 1: Hardware bouquet used in this paper.
Skylake-X 8275CL Epyc Graviton 1 Graviton 2 M1 Power8 Power9 910

Platform X86 X86 X86 ARMv8.0 ARMv8.2 ARMv8.4 PPC PPC RISC-V
Architecture Skylake-X Cascade Lake-SP Zen 2 Cortex-A72 Neoverse N1 Fire-/Icestorm POWER8 POWER9 C-910
Processor Model Xeon Gold Xeon Platinum Epyc 7552 Graviton 1 Graviton 2 POWER8 POWER9 C-910

6126 8275CL

Threads per Core 1 2 2 1 1 1 8 4 1
Cores per Socket 12 24 48 4 64 4+4 8 16 2
Sockets 2 2 1 4 1 1 2 2 1
NUMA Nodes 2 2 1 1 1 [7] 1 2 2 1

RAM (GiB) 192 192 192 32 128 [3] 16 256 128 4
L3 (MiB) 19.25 35.75 192 - 32 [3] - 64 120 -
L2 (kiB) 1024 1024 512 2048 [4] 1024 [3] 4096/2048 512 512 2048
L1d (kiB) 32 32 32 32 [4] 64 [3] 128/64 64 32 64
L1i (kiB) 32 32 32 48 [4] 64 [5] 192/128 32 32 64

Freq. max (Ghz) 3.7 3.6 3.5 2.3 [4] 2.5 [5] 3.2/2 3.0 3.8 1.2
Freq. min (Ghz) 1.0 1.2 1.8 2.3 [4] 2.5 [5] 0.6/0.6 2.0 2.1 1.2

AWS Instance - c5.metal c5a.24xlarge a1.metal r6gd.metal - - - -

Synthesizing Efficient Implementations. Rather than implement-
ing the required queries by hand, we synthesize them. VOILA [17]
allows synthesizing many implementations from one query de-
scription. It generates data-centric and vectorized flavors that per-
form on-par with handwritten implementations and, implicitly,
the systems Hyper [29] and Vectorwise [10]. VOILA also allows
generating mixes that facilitate prefetching and efficient overlap-
ping of prefetching with useful computation, similar to AMAC [24]
and IMV [13]. In this paper, we use the VOILA-based synthesis
framework to generate the implementations required for our exper-
iments on holistic query performance. To investigate such impacts,
we ported the VOILA [17] synthesis framework to non-X86 archi-
tectures.

4 MICRO-BENCHMARKS
We start with micro-benchmarks that stress specific aspects of the
underlying hardware: (a) memory access, (b) data-parallel compu-
tation and (c) control flow & data dependencies.

For each type, we implemented vectorized primitives, functions
that operate on columnar vectors in a tight loop. We ran the micro-
benchmarks multi-threaded using all available threads to the oper-
ating system (i.e. including SMT, if available). We report per-tuple
timings in nanoseconds, normalized by the number of SMT threads
(e.g. for 1 real core and 8 SMT threads, we divide the time by 8).

4.1 Memory Access
In modern database engines, memory access is a well-known bottle-
neck for certain queries [11, 18]. Therefore, we investigate memory
access performance. We differentiate between (1) cache-mostly ran-
dom reads, (2) bigger-than-cache random reads and (3) the SUM

aggregate as a read-update-write workload. Each experiment ac-
cesses an array of 64-bit integers at pseudo-random indices.

Cache-mostly random Reads. The runtimes for each random ac-
cess read from a small array are plotted in Fig. 1a. In general, we
see very little difference, but two extreme outlier: The Graviton 1
and the 910 feature very slow cache access, of which the 910 shows
the worst performance. Faster than Graviton 1, but slower than the
others (Skylake-X, 8275CL, Eypc, Power8) are Power9 and Graviton

2. Both provide relatively slow access to small-to-medium-small
arrays. The Graviton 2, however, can "catch up with the crowd", for
slightly bigger arrays

Main-Memory-mostly random Reads. We now move to large ar-
rays which likely do not fully reside in caches. That means that on
NUMAmachines, we might see NUMA overheads (data needs to be
shipped from one socket to another). As very large arrays do not fit
into one NUMA node, we decided to interleave the whole array over
all NUMA nodes (round-robin assignment of pages to NUMA nodes,
page i assigned to node i % num_nodes). Essentially, this resembles
the initial bucket lookup of the scalable non-partitioned hash join
described by Leis et al. [27] which also effectively interleaves the
array over all NUMA nodes.

For large arrays, the random reads are visualized in Fig. 1b. We
see a rather big divergence, especially with growing array size.

Skylake-X, 8275CL and Graviton 2 perform best, of which the
Graviton 2 outperforms the other two for arrays > 214 integers. It
has to be said that Graviton 2 offers direct non-NUMA memory
access whereas, both, the Skylake-X and the 8275CL, are NUMA
machines and might require transferring data from other sockets
over a shared bus. While this is a rather uncommon architectural
decision, this gives the Graviton 2 an advantage as it can avoid
costly data transfers over a shared bus and use fast local memory
instead. The other competitive non-NUMA machine is the Epyc
but it tends to feature rather slow memory access for L3-mostly
(until 27 MiB) and main-memory-mostly random reads.

SUM Aggregate. The SUM is a read-update-write workload and
will, therefore, for many core systems involve a cache invalidation
cost (invalidate, write back and possibly read from another core
or socket). However, due to the relatively large size of the array,
the chance of such false sharing (writing a cache line that is, later,
read and modified by another core or socket) is relatively low. Fig-
ure 1c shows our measurements. The measurements look similar to
random-read workload, but tend to be slower. We can observe that
the Skylake-X and 8275CL outperform for large arrays, followed
by the Graviton 2, which outperforms for arrays ≤ 27 MiB.
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(a) Cache-mostly random Reads
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(b) Main-memory-mostly random Reads
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(c) Main-memory-mostly random SUM

Figure 1: Memory-heavy workloads.

Conclusions. Both, the Graviton 1 and the 910, show slow mem-
ory access across the board. Power8 and Epyc are slower for larger
arrays. The Skylake-X and 8275CL are fast across the board. Gravi-
ton 2 is relatively slow (compared to Skylake-X, 8275CL) on smaller
arrays (≤ 213 kiB), but outperforms for large arrays (≥ 215 MiB).

4.2 Data-Parallel Computation
Besides memory access, the other important cornerstone for query
performance is computational power. As examples of computation-
heavy workloads, we performed a series of additions and multipli-
cations in a tight loop. We investigate the performance of relatively
cheap (addition) vs. relatively pricey (multiplication) operations,
and the impact of thin data types [16]. For vectorized kernels, there
are two alternative paths that influence performance: (a) the non-
selective path that only fetches data from input vectors, computes
the result and writes the output, and (b) the selective path which
introduces an additional indirection.

The non-selective path accesses plain arrays (vectors) in sequen-
tial order and is, thus, amenable to acceleration with SIMD. Thanks
to the trivial access pattern, the compiler will typically automati-
cally SIMDize this code path.

Selective execution intends to only process selected tuples (i.e.
efficiently ignore values that are filtered out). We implemented this
path, like described by the classic vectorized execution model [10],
using selection vectors that describe which indices in the vectors
are alive. Due to this indirection, the compiler will typically not
SIMDize this path. To reduce branch prediction overhead (in the
for loop), we unrolled this path 8 times.

Performance. Our results can be found in Fig. 2. At the first glance,
we see that selective computations (transparent) are significantly
more expensive than non-selective computations (opaque). This is
due to the extra indirection which is (a) expensive and (b) prevents
efficient SIMDization. To alleviate this overhead, in a vectorized
system one would, typically, ignore the selection vector, when the
vector more than, say, 30% full ("full computation" [32]).

Between machines, we also see significant differences. The 910
shows "off the charts" performance for 32-bit additions and multipli-
cations and is roughly 24× slower than the Skylake-X or the Epyc.
The Graviton 1 significantly faster than the 910, but is roughly 4×
slower than the Skylake-X or the Epyc. The fastest machines are
Skylake-X, 8275CL and Epyc which are roughly 2× faster than the
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Figure 2: Computation without selection vector, amendable
to SIMD acceleration (opaque). Computation with selection
vector introduces extra indirection (transparent).

other machines. For ARM platforms, the slowdown is likely caused
by the lack of compiler auto-vectorization. For non-selective work-
loads, thin data types provide significant benefit on most platforms.
However, this benefit disappears when the selection vector is used.
Notable exception is the M1 which not only lacks vectorization
benefits but also incurs additional overhead for loading and storing
8-bit integers. For the 8-bit addition the M1 even performs worse
than the 910.

Scalability. Typically, when using all available cores, processors
tend to significantly reduce computational throughput. This is typ-
ically due to heat emission. Each chip has a given thermal budget
(thermal design power, TDP): If the budget is reached, heat emission
needs to be curtailed. Therefore, cores clock down and, thus, scale
computational throughput down.

In this experiment, we run many SIMDizable (non-selective)
32-bit integer multiplications with varying degrees of parallelism
(DOP, or number of threads 𝑁 ). We scale the DOP from 1 (no
parallelism) to the level parallelism the hardware provides (𝑇 ). Note
that this experiment evaluates the best-case, as the scalability of
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(a) Branch-based creation
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(b) Dependency-based creation

Figure 3: Control-Flow & Data-Dependency-intensive workload: Creating a selection vector from an 8-bit boolean predicate.

Table 2: Graviton 1 & 2 provide consistent performance over
multiple degrees of parallelism (DOP,𝑁 ), whilemany others
show significant slowdowns. (32-bit integer multiplication
without selection vector, without adjustment for SMT, DOP
beyond real cores are marked in italics on gray)

Hardware Time/Item in ns (slowdown) on given DOP 𝑁

𝑇 N=1 𝑇 /8 𝑇 /4 𝑇 /2 𝑇

X86 Skylake-X 24 0.08 0.08 (1.0×) 0.09 (1.1×) 0.09 (1.2×) 0.12 (1.5×)
X86 8275CL 96 0.08 0.08 (1.0×) 0.10 (1.4×) 0.17 (2.3×) 0.18 (2.3×)
X86 Epyc 96 0.08 0.08 (1.0×) 0.08 (1.0×) 0.12 (1.5×) 0.17 (2.3×)
ARM Graviton 1 16 0.34 0.34 (1.0×) 0.36 (1.1×) 0.35 (1.0×) 0.38 (1.1×)
ARM Graviton 2 64 0.20 0.20 (1.0×) 0.20 (1.0×) 0.20 (1.0×) 0.20 (1.0×)
ARM M1 8 0.07 is 𝑁 = 1 0.08 (1.1×) 0.08 (1.1×) 0.12 (1.7×)
PPC Power8 128 0.26 0.38 (1.4×) 0.68 (2.6×) 1.27 (4.8×) 1.38 (5.2×)
PPC Power9 128 0.19 0.27 (1.4×) 0.52 (2.7×) 0.95 (5.0×) 1.04 (5.4×)

OLAP queries is typically limited by other factors, such as memory-
access. Table 2 shows our results.

With increasing DOP, we see a tendency to significant slow-
downs of 50% to 2.7× without using SMT cores and up to roughly
5× with SMT cores. However, with the exception of the Graviton-
based platforms which, evidently, do not clock down significantly.
M1 showed less throughput beyond 4 cores. This can be explained
by the design of the M1 that combines 4 fast and 4 slow cores, i.e.
workloads with >4 threads (> 𝑇 /2) will also use the slower cores.

4.3 Control Flow & Data Dependencies
Besides data-parallel computation, modern engines typically also
rely on fast control flow and data dependencies. Depending on the
hardware (e.g. pipeline length), branch misses can become quite
costly, and data dependencies reduce the CPU pipeline parallelism.

In vectorized engines, such operations appear when creating a
selection vector (e.g. in a filter or hash-based operators). Therefore,
we benchmark the performance of selection vector creation.

Selection vectors can be built in multiple ways: Most commonly,
they are created using (a) branches or (b) data dependencies. Alter-
natively, one can create selection vectors using using X86-specific
AVX-512 vpcompressstore [22].While thismethod is often faster [22],

int select_true(int* res , i8* a, int* sel , int n) {

int r = 0;

if (sel) {

for (int i=0; i<n; i++) {

if (a[sel[i]]) res[r++] = sel[i];

}

} else {

for (int i=0; i<n; i++) {

if (a[i]) res[r++] = i;

}

}

return r;

}

Listing 1: Vectorized kernel: Creating a selection vector us-
ing branches

creating selection vectors using AVX-512 is not portable to other
hardware architectures.

A branch-based implementation as in Listing 1, stresses the
branch predictor. For very high/low selectivities, the branch be-
comes predictable. The closer the selectivity comes to 50%, the more
unpredictable (or harder to predict) the branch becomes.

As an alternative to creating selection vectors using branches,
one can introduce a data dependency. In pseudo-code, in Listing 1,
this means replacing if (a[k]) res[r++] = k by res[r] = k; r+=

a[k]. Obviously, this avoids the overhead of mispredicting branches,
but might introduce additional costs for predictable branches.

Results. For the branch-based creation of selection vectors, our
results can be found in Fig. 3a. We refer to selectivity as the fraction
of tuples that pass the filter (100% = all pass). Typically, one would
expect lower timings (faster) for very low and high selectivities,
because the branch becomes predicable. Around 50% selectivity, one
would expect the worst performance as the branch is unpredictable.
We can observe this behaviour on the Epyc and Power9. The plot of
the Graviton 1 stands out due to very high cost, and edge behavior
at middle-low and -high selectivities, which are more expensive
than branches of 50%. Also interesting, is the plot of the M1, which
exhibits an asymmetrical shape where taking the branch (if(a[i]))
is more expensive than skipping it.
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Table 3: Best execution paradigm unclear for simple join
query. Best flavor as tuple (Computation Type, Prefetch,
#FSMs), data-centric in blue and prefetching in italics.

Best Flavor Well-known Flavors
Name best (ms) x100 (ms) hyper (ms)

X86 Skylake-X vec(1024),3,1 173 209 239
X86 8275CL vec(512),3,2 176 192 236
X86 Epyc scalar,4,16 134 139 157
ARM Graviton 1 scalar,0,1 412 440 412
ARM Graviton 2 vec(1024),0,1 101 101 115
ARM M1 vec(1024),4,1 228 273 297
PPC Power8 vec(512),2,1 488 498 507
PPC Power9 scalar,3,1 317 339 317

We now juxtapose the performance of branch-based (Fig. 3a)
with the dependency-based selection vector creation (Fig. 3b). In
general, dependency-based creation tends to outperform, with one
notable exception: The Epyc for which the branch-based created
is faster. For the 8275CL, both variants are roughly equal. Thus, it
can be said that the best way to create selection vector depends
on the hardware at hand. In a system, it is advisable to determine
the choice between branch- and dependency-based selection vector
building adaptively at runtime.

4.4 Case Study: Hash Join
As we gradually move towards macro-benchmarks, we now investi-
gate the performance of a hash join. In particular, we are interested
whether the heuristic vectorized execution excels in data-access-
heavy workloads is true on different hardware/platforms.

Therefore, we synthesized the following SQL query using the
VOILA-based synthesis framework [17]:
SELECT count (*) FROM lineitem , orders

WHERE o_orderdate < date '1996 -01 -01'

AND l_quantity < 50 AND l_orderkey = o_orderkey

We ran this query in multiple flavors on the TPC-H data set with
scale factor 10. Table 3 shows the best flavor as well as the runtimes
of the data-centric (hyper) and vectorized (x100) execution.3

We see that the majority of the best flavors are indeed vectorized.
To our surprise, data-centric flavors can beat vectorized flavors.
Typically, the winning data-centric flavors need elaborate prefetch-
ing to outperform, with one notable exception: On the Graviton
1, the plain data-centric flavor (without Finite State Machines and
without prefetching) outperforms the vectorized flavors.

Favorable Features for Data-Centric Execution. We believe that
on the Graviton 1 the 3 − 4× slower computation (slower cores,
Fig. 2) favors data-centric execution, because the more efficient
computation (data-centric, less issued instructions) outweighs the
less efficient memory-access.

The other machines feature faster cores. The very large L3 caches,
on the Epyc and Power9, tend to benefit data-centric flavors, as
huge L3 caches leads to effectively faster memory access (more
data in faster memory) and, thus, making more efficient memory
access (using vectorized execution) less important. This is further
exaggerated via SMT which can effectively hide memory access
latency by executing another thread. On the Epyc, both features
3We use x100 as short identifier for vectorized execution, in reference to MonetD-
B/X100 [10] – which later became Vectorwise and currently is called Vector.

Table 4: Graviton 2 beats all other machines in overall per-
formance. M1 leads in performance per core. Runtimes of
well-known query execution paradigms.

Q1 Q3 Q6 Q9
x100 hyper x100 hyper x100 hyper x100 hyper

Runtime (milliseconds)
X86 Skylake-X 79 54 261 282 28 35 228 291
X86 8275CL 93 84 480 397 70 112 232 261
X86 Epyc 81 65 241 238 51 52 193 180
ARM Graviton 1 188 107 447 447 55 45 720 715
ARM Graviton 2 42 29 162 158 20 22 95 109
ARM M1 216 86 313 440 138 404 432 590
PPC Power8 404 384 1094 1132 336 337 627 636
PPC Power9 239 225 645 631 190 192 406 393

Runtime * Number of real cores (seconds)
X86 Skylake-X 1.9 1.3 6.3 6.8 0.7 0.8 5.5 7.0
X86 8275CL 4.5 4.1 23.1 19.0 3.4 5.4 11.1 12.5
X86 Epyc 3.9 3.1 11.6 11.4 2.4 2.5 9.3 8.6
ARM Graviton 1 3.0 1.7 7.1 7.2 0.9 0.7 11.5 11.4
ARM Graviton 2 2.7 1.9 10.4 10.1 1.3 1.4 6.1 7.0
ARM M1 1.7 0.7 2.5 3.5 1.1 3.2 3.5 4.7
PPC Power8 6.5 6.1 17.5 18.1 5.4 5.4 10.0 10.2
PPC Power9 7.6 7.2 20.6 20.2 6.1 6.1 13.0 12.6

(SMT and large L3) are barely enough to allow a data-centric flavor
to win (134ms vs. 139ms, roughly on noise level). We notice similar
behaviour on the Power8/Power9, which feature a large L3 cache
and, compared to the Epyc, a higher degree of SMT (8 threads on
Power8, or 4 threads on Power9, vs. 2 threads per core).

In summary, we can say that, certain hardware properties (slow
cores, large L3 cache and SMT) have a tendency to favor data-centric
execution, for joins.

5 MACRO-BENCHMARKS
While micro-benchmarks provide useful insights into extreme cases,
it is hard to draw conclusions on holistic query performance. Queries
are more complex than simple operations and are, thus, rarely com-
pletely limited by either memory bandwidth, or computational
throughput. Using VOILA, we generated implementations for TPC-
H Q1, Q3, Q6 and Q9. For our benchmarks, we used the TPC-H
data set with scale factor 10. For each query, we sampled 50 differ-
ent execution flavors from the universe that VOILA can generate,
always including the two most well-known ones: pure data-centric
compilation [29] and pure vectorized execution [10].

5.1 Query Performance
Here, we compare the runtime of data-centric (hyper) and vector-
ized (x100) on varying hardware in terms of overall system per-
formance and per-core performance. The results are visualized in
Table 4.

Overall Performance. We notice a significant diversity in overall
runtimes of up to, roughly, 10× between the fastest and the slowest
machine. Common wisdom would suggest that X86 would perform
best, but surprisingly the ARMGraviton 2 significantly outperforms
all others. Compared to the runner-up (Skylake-X), it performs up
to 3× faster (Q9 hyper) and, often executes queries roughly 2×
faster (Q1, Q3, Q9).
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Table 5: Best query execution paradigm unclear, even for
specific queries (e.g. Q9). Best flavor as tuple (Computa-
tion Type, Prefetch, #FSMs). Data-centric (scalar) flavors are
marked in blue color, prefetching in italics.

Q1 Q3 Q6 Q9

X86 Skylake-X scalar,0,1 vec(2048),3,1 vec(1024),3,1 vec(1024),2,1
X86 8275CL scalar,2,1 scalar,3,8 vec(512),4,1 scalar,2,32
X86 Epyc scalar,2,1 vec(256),1,1 vec(1024),2,1 vec(512),0,1
ARM Graviton 1 scalar,0,1 vec(512),0,1 scalar,4,1 vec(256),0,1
ARM Graviton 2 scalar,2,1 scalar,0,1 vec(2048),2,1 vec(512),0,1
ARM M1 scalar,0,1 vec(2048),2,1 scalar,3,1 vec(1024),2,1
PPC Power8 scalar,0,1 vec(1024),2,1 vec(256),0,1 scalar,2,2
PPC Power9 scalar,3,1 vec(512),0,1 vec(256),2,1 scalar,2,8

On Q9, we see data-centric flavors outperforming vectorized
flavors, for the Epyc, Graviton 1 and Power9. This is due to the
hardware properties we identified in Section 4.4: very large L3
caches (Epyc, Power9), SMT (Epyc, Power9) as well as slow cores
(Graviton 1). These factors favor data-centric execution on join-
intensive workloads such as Q9 in particular.

Another important query is Q3, which is less join-heavy and
is, therefore, less suited to vectorized execution. We noticed that
data-centric outperforms on 8275CL, Epyc, Graviton 2, Power8
and Power9. This is partially caused by the hardware factors we
identified (L3 size, SMT, slow cores) and, partly, by the structure of
the query.

Per-Core Performance. We scale the multi-threaded performance
up to the number of real cores. This provides a per-core performance
metric that includes potential multicore scalability bottlenecks (e.g.
down clocking, memory bandwidth). Implicitly, this metric favors
systems with a lower number of cores (typically close to desktop
systems).

The machines with a lower number of cores (Graviton 1, M1
and Skylake-X) score best. This is partly an artifact of queries
not scaling perfectly sometimes, but it gives an indication of real
per-core performance (i.e., in a parallel workload). This per-core
performance is dominated by ARM platforms, except for Q6 x100.
But to our surprise, the Graviton 2, with 64 cores, comes close to
the best 3. This indicates that Graviton 2 scales quite well, up to
all 64 cores, on whole queries and not just in micro-benchmarks
(Section 4.1 and Section 4.2).

5.2 Optimal Flavor
Here, we investigate which execution paradigm (flavor) is the best
for each query. Using the VOILA-based synthesis framework, we
generated basic flavors i.e. one flavor per query (no mixes). Table 5
shows the flavors with the lowest average runtime.

Best Flavor. We can see that some configurations, most notably
Skylake-X and Epyc, exhibit the behaviour described by Kersten et
al. [22] that data-centric wins in Q1 and vectorized wins in Q3 and
Q9. However, surprisingly, we found data-centric flavors winning
on the join-heavy Q3 and Q9. Notably, these are augmented data-
centric flavors with prefetching and multiple finite state-machines
(FSMs) that allow overlapping prefetching with useful computation.
In particular, these augmented data-centric flavors perform well on
large machines with multiple threads per core (SMT), i.e. 8275CL,
Power8 and Power9.

Table 6: Best flavors outperform by up to 220%. Runtime im-
provement over plain vectorized (x100)/data-centric (hyper).

Best vs. x100 (%) Best vs. hyper (%)
Q1 Q3 Q6 Q9 Q1 Q3 Q6 Q9

X86 Skylake-X 47 3 5 13 is 12 29 44
X86 8275CL 14 54 12 16 4 27 79 31
X86 Epyc 29 8 3 19 3 6 7 11
ARM Graviton 1 77 1 22 12 is 1 0 11
ARM Graviton 2 62 3 15 2 12 is 23 17
ARM M1 150 7 10 9 is 51 220 49
PPC Power8 5 9 3 9 is 12 3 11
PPC Power9 7 3 3 10 1 1 5 7

Although, the winning flavor on Q1 is data-centric (scalar), we
can see the use of prefetching for a query that runs mostly in cache.
This is caused by the low overhead introduced by prefetching rather
than the actual benefit of prefetching (improvements between data-
centric and best flavor in Q1 are on noise level i.e. < 15%).

Are the "best Flavors" really better? Table 6 shows the improve-
ment of the best flavors over the well-known data-centric (hyper)
and vectorized (x100). In many cases, the best flavor outperformed
the well-known ones by 10-31%. In some cases the difference was on
noise level, but other cases the best flavor significantly outperforms
well-known ones by up to 220%. Therefore, we can conclude that
there is significant performance diversity, which – in some cases –
can be exploited. However, taking advantage of this diversity, in
practice, would require significantly more flexible engines.

5.3 Costs & "Bang for the Buck"
While the ARMGraviton 2 might outperform the other machines on
performance, it may not necessarily provide the best performance
on a price-adjusted basis. Therefore, we investigated the costs for
renting the hardware, used for our experiments, and discuss cost
performance trade-offs.

For pricing, we used the spot prices reported on AWS [8]. Un-
fortunately, PowerPC architectures and the M1 were not available.
Even though we did not use AWS for our Skylake-X machine, we
found a similar instance type (z1d.12xlarge) that we used for pricing.

Cost. We visualized the costs in Table 7. From that table it is evi-
dent that ARM-based instances are up to 12× cheaper per hour and
11× cheaper per core. The most expensive instance is the Skylake-X.
It is also the best performing X86 machine (Q1, Q3, Q6 and Q9) and
is only beaten on Q9 by the Epyc.

Cost per Q9 run. Typically, faster machines are more expensive.
Therefore, we calculated the cost for 1 million runs of vectorized
flavor of TPC-H Q9 with scale factor 10.

On this metric, the ARM instances outperform by > 2×. Com-
pared to the cheapest X86-instance (Epyc), the Graviton 1 is 3×
cheaper per run whereas the Graviton 2 is 2.5× cheaper.

6 CONCLUSIONS & FUTUREWORK
Performance diversity has become ubiquitous as hardware is getting
more heterogeneous; challenging system architects in the design
choices they make. For instance, Graviton 2 is comparatively slow
on smaller arrays while being better on large arrays, thin data
types [16] are heavily penalized on the M1 and there is no clear
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Table 7: ARM Gravitons are significantly cheaper and pro-
vide most "bang for the buck".

$
hour

Cents per real core
hour Q9 (ms) 1M × Q9 ($)

X86 Skylake-X (price est.) 1.3392 5.6 228 84
X86 8275CL 0.9122 1.9 232 59
X86 Epyc 0.9122 1.9 193 49
ARM Graviton 1 0.0788 0.5 720 16
ARM Graviton 2 0.7024 1.1 95 19

portable optimum for building selection vectors. Neither vector-
ization nor data-centric compilation are optimal in all cases, even
in data-access-heavy workloads, like hash joins or TPC-H Q9. The
heuristic vectorization outperforms data-centric in data-access-heavy
workloads is not generally true, as on some platforms data-centric
flavors outperform. Prefetching can be useful to further boost the
performance of data-centric flavors.

We identified several hardware features that, for joins, tend to
favor data-centric execution: Very large L3 caches, Simultaneous
Multi-Threading (SMT) and slow cores. On one hand, we have
features that improve data-centric execution’s less efficient memory
access by fitting more data in cache (very large L3) or effectively
hiding memory access latencies (SMT). On the other hand, some
machines only feature very slow cores (most notably the ARM
Graviton 1) which penalizes more efficient memory access (i.e.
vectorized execution) and, hence, "making data-centric look better".

We also confirm thatmodern ARMplatforms are now outclassing
X86 on these analytical database workloads. The ARM Graviton 2
is now up to 2× faster than the fastest X86 machine. Single-core
performance is better (ARM M1) or on par with X86 (Graviton 2).
When using all cores, the Gravitons provide constant computational
throughput, while X86 machines typically limit the throughput (to
stay within thermal budget). In the cloud, ARM architectures are
significantly cheaper (up to 11.6×) and provide up to 4.4× higher
performance per dollar. Modern ARM platforms are not only faster
(Graviton 2) but also cheaper (Graviton 1 and 2) to a larger degree.

Consequences & FutureWork. We have seen that (a) modern ARM
platforms can outperform X86, (b) the best execution flavors are
hardware-dependent and (c) best flavors can significantly improve
performance (by up to 220%). Consequently, our conclusion is that
database architecture needs to move to more flexible and adaptive
engines, not solely focused on X86 (like e.g. Umbra [23]) or even
one specific execution paradigm.

As a way forward on this path, we propose to investigate the
introduction of database virtual machines into query engines, that
automatically generate flavors and adaptively discover the best
one for the current hardware and workload. Such a virtual ma-
chine could use a domain-specific language (as used by our VOILA
framework [17]) to synthesize the best paradigm, either on a coarse-
grained pipeline level [25], or fine-grained per code fragment [15].
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