
van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266
https://doi.org/10.1186/s12911-021-01582-y

RESEARCH

Privacy‑preserving dataset combination
and Lasso regression for healthcare predictions
Marie Beth van Egmond1*, Gabriele Spini1, Onno van der Galien5, Arne IJpma6, Thijs Veugen1,3, Wessel Kraaij1,2,
Alex Sangers1, Thomas Rooijakkers1, Peter Langenkamp1, Bart Kamphorst1, Natasja van de L’Isle4 and
Milena Kooij‑Janic1 

Abstract 

Background:  Recent developments in machine learning have shown its potential impact for clinical use such as risk
prediction, prognosis, and treatment selection. However, relevant data are often scattered across different stakehold‑
ers and their use is regulated, e.g. by GDPR or HIPAA.

As a concrete use-case, hospital Erasmus MC and health insurance company Achmea have data on individuals in the
city of Rotterdam, which would in theory enable them to train a regression model in order to identify high-impact
lifestyle factors for heart failure. However, privacy and confidentiality concerns make it unfeasible to exchange these
data.

Methods:  This article describes a solution where vertically-partitioned synthetic data of Achmea and of Erasmus MC
are combined using Secure Multi-Party Computation. First, a secure inner join protocol takes place to securely deter‑
mine the identifiers of the patients that are represented in both datasets. Then, a secure Lasso Regression model is
trained on the securely combined data. The involved parties thus obtain the prediction model but no further informa‑
tion on the input data of the other parties.

Results:  We implement our secure solution and describe its performance and scalability: we can train a prediction
model on two datasets with 5000 records each and a total of 30 features in less than one hour, with a minimal differ‑
ence from the results of standard (non-secure) methods.

Conclusions:  This article shows that it is possible to combine datasets and train a Lasso regression model on this
combination in a secure way. Such a solution thus further expands the potential of privacy-preserving data analysis in
the medical domain.

Keywords:  Secure multi-party computation, Privacy, Machine learning, Lasso regression

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Modern machine-learning techniques require large-
scale and well-characterized datasets to achieve their
full potential. In the medical domain, this requirement
translates to a need to store medical patient data, and

to combine information from different institutions, the
Covid-19 outbreak being an example of a situation where
this is deemed crucial [1, 2].

However, the collection, processing and exchange of
personal data is a sensitive matter, and the risks coming
from privacy violations are especially high for medical
data. This has led to legal frameworks that regulate and
restrict usage of personal (medical) data, the General

Open Access

*Correspondence: marie_beth.vanegmond@tno.nl
1 Unit ICT, TNO (Dutch Organization for Applied Scientific Research), The
Hague, The Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01582-y&domain=pdf

Page 2 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

Data Protection Regulation1 (GDPR), and the Health
Insurance Portability and Accountability Act2 (HIPAA)
being two prominent examples. These regulations man-
date informed consent from patients in order to use the
corresponding medical data; however, asking for consent
for machine-learning purposes is often impractical, since
it is a time-consuming process, and since contact with
patients may have been lost since the moment of data
collection.

This conflict between, on the one hand, the need to
gather, combine and process large amounts of data for
better machine-learning techniques, and on the other
hand the need to minimize personal data usage for pri-
vacy protection, has lead to the development of several
solutions for privacy-preserving data analysis. In par-
ticular, a collection of cryptographic techniques known
as Secure Multi-Party Computation, or MPC for short,
is being applied more and more in the medical domain.
Intuitively, the goal of MPC is to allow several parties to
compute the output of a certain function or computation,
depending on private inputs of each party, without actu-
ally disclosing information on their inputs to each other.

In 2018, the Netherlands Organization for Applied Sci-
entific Research (TNO), together with academic medi-
cal center Erasmus MC and health insurance company
Achmea, started a project within the Horizon 2020 Pro-
gramme called BigMedilytics3 to develop a secure algo-
rithm to predict the number of hospitalization days for
heart failure patients. Although the project does not use
real patient data in its current phase, the MPC solution
presented in this article is based on the following real-life
use-case, which serves as a motivating example for the
solution described in this article. In Rotterdam, a group
of individuals took part in the “Rotterdam study” [3],
a program by the Epidemiology department of Eras-
mus MC. Erasmus MC has collected data on the lifestyle
of these patients, for example their exercising, smoking,
and drinking behavior. Achmea, on the other hand, has
claims data of its customers (including several partici-
pants of the Rotterdam study), which encompass differ-
ent aspects, such as hospitalization days and healthcare
usage outside of the hospital. Recent work has shown that
using machine-learning models on medical data has the
potential to predict survival of heart-failure patients [4].
The datasets of Achmea and Erasmus MC, once inter-
sected and combined, could be used to train a predic-
tion model that identifies high-impact lifestyle factors
for heart failure, and thus, in turn, to recognize high-risk
heart-failure patients.

However, privacy concerns mean that Erasmus MC
and Achmea cannot simply share their data with each
other to allow for a straightforward analysis. TNO has
therefore developed and implemented the MPC-based
Proof of Concept described in this article, which allows
Erasmus MC and Achmea to securely train a predic-
tion model without disclosing any personal medical
information.

Before we present the details of our solution, we give
an overview of the current landscape of privacy-pre-
serving data analysis techniques, focusing on the medi-
cal domain, and on solutions which bear resemblance to
ours. We will then discuss how our solution compares to
these existing techniques.

Previous and related work
Secure analysis of healthcare data
A straightforward approach for privacy-preserving
data analytics consists of data anonymization and pseu-
donymization. More precisely, in the case of horizon-
tally-partitioned data (i.e. when organizations hold the
same type of data on different individuals), organizations
may simply remove identifiers such as name, date of
birth, or social security numbers, and share the data fea-
tures with each other; in the case of vertically-partitioned
data (i.e. when parties hold the different data on the same
individuals), a similar result can be achieved by resorting
to an external third party that gets access to all identifi-
ers, replaces them with pseudonyms, and then ensures
that the data features from all involved organizations
are linked to each other. These methods thus ensure
that only feature data are revealed, instead of identifi-
ers. However, feature data can often uniquely identify
an individual, especially if other, related data is acquired
through public sources, as shown in several studies [5, 6].
Thus in practice, data anonymization and pseudonymiza-
tion offer little guaranteed on the protection of the iden-
tity of individuals involved in collaborative data analysis.

A more sophisticated and popular approach consists
of federated learning, where algorithms are trained on
decentralized devices or servers, each possessing its own
data, by only exchanging intermediate model coeffi-
cients with each other. Federated learning promises great
potential to facilitate big data for medical application, in
particular for international consortia [7].

An example of federated-learning architecture is pro-
vided by the Personal Health Train (PHT) [8], which core
idea is to keep data at the original sources and to let the
analytical tasks “visit” these data sources and perform
data analysis tasks locally.

Both federated learning and the PHT work fairly
straightforward for horizontally-partitioned data (where
institutions hold the same type of data on different 3  https://​www.​bigme​dilyt​ics.​eu/.

1  https://​gdpr-​info.​eu/.
2  https://​www.​govin​fo.​gov/​conte​nt/​pkg/​PLAW-​104pu​bl191/​pdf/​PLAW-​
104pu​bl191.​pdf.

https://www.bigmedilytics.eu/
https://gdpr-info.eu/
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf

Page 3 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

individuals), while vertically-partitioned data remains a
challenge to be tackled.

Cryptographic solutions such as MPC typically over-
come these limitations, but with an inherent overhead
in terms of computation time and communication vol-
ume compared to non-cryptographic solutions, and typi-
cally have a lower technology readiness level. Specific
applications in the medical domain cover a wide range,
including, for instance, disclosure of case counts, while
preserving confidentiality of healthcare providers [9],
sharing insights on the effectiveness of HIV treatments,
while preserving both privacy of involved patients and
confidentiality of practitioners’ treatment choices [10];
privacy-preserving analysis of hospital workflows [11];
secure genome study [12]; and secure distributed logis-
tic regression for medical data [13]. Compliance of MPC
techniques with the GDPR has been discussed in [14].

We present in more details MPC solutions with a simi-
lar scope as ours in the following sub-section.

Cryptographic techniques for dataset combination
and secure regression
A first challenge in secure distributed data analysis lies in
the combination of different datasets: namely, different
institutions hold, in general, data on different individuals,
and a first challenge lies in determining which individuals
lie both datasets, and retrieving their relevant features.
Various work has been done on “secure set intersection”
(also referred to as “private set intersection”) [15–18],
where the different involved parties learn which indi-
viduals lie in all datasets, but it is guaranteed that no
information on individuals outside the intersection will
be revealed. To the best of our knowledge, however, no
previous work has been published that describes a secure
inner join solution, where individuals in the intersection
are determined, but not revealed, and where the corre-
sponding feature values are associated to each individual.
Notice that a secure inner join is a fundamental step for
realistic deployment of a secure data analysis solution,
since the identity of individuals in the intersection of
datasets is, in general, personal (and thus protected) data.

Concerning securely training a linear regression model
on distributed data, a lot of work has been done on a vari-
ant of linear regression known as Ridge regression. In lin-
ear regression, one aims to find a “coefficient” vector, such
that the linear combination of feature values with the coef-
ficients yields roughly the value of another, “target” feature.
Such a linear combination cannot, in general, be exactly
equal to the target feature: Ridge regression is a relatively
straightforward method that aims to find a coefficient
vector that minimizes this gap, while also preventing the
obtained coefficient models from being biased towards the
training features values (and thus poorly predict the target

feature for new data). Ridge regression is typically solved in
either of two ways: by solving the normal equations, or by
minimizing the objective function in a more general fash-
ion, e.g. by application of the Gradient Descent algorithm.
The privacy-preserving implementations [19–26] all train
a Ridge regression model by solving the normal equations,
which is in turn performed through matrix inversion. Pri-
vacy is often preserved by using homomorphic encryption
techniques [20–23], yet there are also implementations
that make of use of secret sharing [19], or of garbled
circuits [24].

In contrast to the normal-equations approach, we
chose for the secure Gradient Descent approach. The
works of [27, 28] all present privacy-preserving Gra-
dient Descent solutions to train Ridge regression
models. In [28] and [27] the authors focus on vertically-
partitioned data. Finally, the authors of [27] train a linear
regression model via a variation of the standard Gradient
Descent method, namely conjugate Gradient Descent.

The solution that we present in this article focuses on
another linear regression method called Lasso; to the best
of our knowledge, no previous work has been published
on secure Lasso regression. Lasso is similar to Ridge in
that it tries to minimize the gap between the target fea-
ture and the linear combination of the other features
with the coefficient vector, but it also discards features
of little impact on the target feature by pushing the cor-
responding coefficient to zero. This means that once the
model has been (securely) trained, less data are needed
to evaluate the model. This is a very desirable property
for a healthcare-prediction scenario, and in particular for
the identification of high-impact factors for heart failure,
as described at the beginning of this section: gathering
and using only the data that is strictly necessary to apply
the model is important to comply with privacy regula-
tions and their data-minimization requirements. In [4] it
is even shown that for the prediction of the survival of
heart-failure patients, training a model on two features
alone can yield more accurate predictions than those
made using all available features.

Our contributions
We present a solution for (1) computing a secure inner
join of two datasets and, (2) securely training a Lasso
regression model on the obtained (encrypted) data. To the
best of our knowledge, both these contributions are novel.

Both components of our solution are essential: the
secure inner join ensures that individuals in the overlap
of the two datasets can be determined (but not revealed)
together with their feature values, and the Lasso regres-
sion allows for minimizing the number of features that
have an impact on the model, thus meeting the pro-
portionality and data-minimization requirements for

Page 4 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

subsequent non-encrypted application of the model to
identify high-risk patients.

In both components, we assume that a third, “helper”
party joins the computation. The helper party does not
supply any input and does not learn the input data of the
other parties nor the outcome of the model, but its inclu-
sion allows for a very efficient design. Namely, we are able
to use efficient techniques such as hashing for the secure
inner join, as opposed to the expensive polynomial-eval-
uation techniques typically required in a two-party set-
ting; for what concerns the secure Lasso regression, we
can make use of the MPyC framework, which requires at
least three parties to guarantee security.

Our solution is tailored to the heart-failure use-case
described above, and involves Achmea and Eramus MC
as data parties and healthcare information intermedia-
tion company ZorgTTP as helper party. We installed our
solution on a test infrastructure of the three involved par-
ties, generated artificial data, and tested the performance
in terms of quality of the obtained model and efficiency.
Both aspects are fully satisfactory, the secure solution
showing a difference in objectives of 0.004 with a stand-
ard, non-secure solution (in scikit-learn), and requiring
less than one hour to compute the inner join and Lasso
coefficients of two datasets, consisting of 5000 records
each, and 30 features in total.

Outline
The rest of the article is organized as follows. The "Meth-
ods" section is divided into two parts: the first one (sec-
tion "Description of the desired functionality") illustrates
the functionality that we aim to achieve (inner join and
Lasso regression), but without taking security and pri-
vacy considerations into account. These are discussed
in the following section "Description of the secure solu-
tion", which shows how our solution securely imple-
ments the functionality of section "Description of the
desired functionality". The "Results" section discusses
what our solution achieves in terms of security (sec-
tion "Security results"), efficiency (section "Running
time"), and quality of the obtained regression model (sec-
tion "Performance and accuracy results"). We discuss the
impact and possible improvements of our work in sec-
tion "Discussion", and we end with the conclusions in
section "Conclusions".

Methods
Description of the desired functionality
We first discuss the details of the functionality that
we aim to realize. Privacy and security aspects are not
considered here, and will instead be discussed in sec-
tion "Description of the desired functionality", following
the same structure as the current section.

Description of the setting and data formatting
We begin with the general set-up and a description of the
format of the input data. In our setting, two data-provid-
ing parties are involved: a healthcare insurance company,
Achmea (often shortened to AC), and a university hospi-
tal, Erasmus MC (which will often be shortened to EMC).
We assume that each party owns a dataset where several
features of various customers/patients are contained. Each
row in the dataset corresponds to a customer or patient,
and we refer to it as a record. Specifically, we denote the
dataset of Achmea, and its element, as in Table 1, and we
denote by A its set of identifiers {a1, a2, . . .}.

The dataset of Erasmus MC, on the other hand, is
depicted as in Table 2, and we denote by B the set of
identifiers {b1, b2, . . .}.

Before discussing the properties of identifiers and fea-
tures, we stress the fact that the research described in
this article did not use any actual identifiers or features
corresponding to existing individuals. For the running
time, accuracy and performance experiments, synthetic
data was created or existing public data sets were used.
More details can be foud in "Results" section.

It is assumed that identifiers in A and in B are of the same
type; for simplicity, one may think of them as the social
security number of a customer/patient. In particular, if ai
and bj refer to the same person, then ai = bj . Notice that
we are actually interested in the intersection of A and B , as
we want to train a regression algorithm on all features.

For what concerns the features, both α(i) and β(j) are
assumed to be numerical or Boolean. One of the features
serves as a target: intuitively, we aim to predict its value
as a function of the other feature values. We formalize
this intuitive goal in the following sub-sections.

Inner join of the data
In order to find a correlation among different features, a
first necessary step is to identify which features belong

Table 1  AC dataset

Identifier Feature α(1) ... Feature α(ℓ)

a1 α
(1)
1

... α
(ℓ)
1

a2 α
(1)
2

... α
(ℓ)
2

.

.

.
.
.
.

.

.

.
.
.
.

Table 2  EMC dataset

Identifier Feature β(1) ... Feature β(m)

b1 β
(1)
1

... β
(m)
1

b2 β
(1)
2

... β
(m)
2

.

.

.
.
.
.

.

.

.
.
.
.

Page 5 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

to the same customer/patient. Namely, not every per-
son of Achmea is necessarily present in the database of
Erasmus MC (as not all customers of AC took part in the
social and behavioral study of EMC), and vice versa. In
mathematical terms, and in the notation defined above,
A = B (in general).

Therefore, the two parties need to a) compute A ∩ B
(i.e. identify which persons are represented in both data-
bases), b) ensure that α(·)

i and β(·)
j are identified for all i

and j such that ai = bj ∈ A ∩ B (i.e. assign to each iden-
tifier in the intersection the corresponding features). In
Tables 3 and 4, an example of the aimed result of this
intersection is shown, inspired by the heart-failure use-
case presented in the background section.

More abstractly, Table 5 would therefore be obtained,
using the notation of Tables 1 and 2.

This type of operation is commonly referred to as Inner
Join in the field of database management [29].

The next step is to train a regression algorithm on the
data contained in Table 5. We remark that, at this point,
the identifier column is no longer necessary, and indeed
will play no role in the regression step.

Lasso regression algorithm
Given Table 5, we are now interested in finding a way of
expressing a given feature (the number of hospitalization
days) as a linear combination of the other features, or as an

approximation of such a linear combination. This is accom-
plished by training a linear regression model on Table 5. In
this subsection, we discuss the details of this process.

A linear regression problem can be informally
expressed by the following question: for a known matrix
X ∈ R

n×m , where n is the number of records and m is
the number of features, and target vector y ∈ R

n×1 , can
we find a weight vector w such that the equality Xw = y
is satisfied? In general the system is over-determined
and there exists no solution. Instead, one aims to find
w , such that some function of the approximation error
vector Xw − y (and possibly some other arguments) is
minimized.

The straightforward form of this problem focuses
on minimizing the ℓ2-norm �Xw − y�22 , where
�x�22 :=

∑

i x
2
i  ; this is known as (ordinary) least squares

linear regression (OLS) [30]. Typically, a so-called regu-
larization term is added to this target value; for instance,
Ridge regression [31, 32] uses the ℓ2-norm of the
weight vector, and therefore tries to minimize the value
�Xw − y�22 + ��w�22 , for a fixed constant � > 0 . The goal
of such a regularization term is to ensure that the weight
vector has small values, thereby making the overall model
more manageable and reducing the risk of overfitting
(i.e. reducing the risk that the model is too tailored to the
data X, y and poorly predicts values based on new data).

We choose instead for Lasso (Least Absolute Shrink-
age and Selection Operator) [33, 34], which automatically
discards features of little impact on the target vector. This
is a desirable feature for the use-case described in the
Background section, as it is important to focus on factors
that have the greatest impact on hospitalization days, in
order to minimize data collection for subsequent usage
of the obtained model. Furthermore, reducing the num-
ber of used features results in a more easily explainable
model, thereby increasing the acceptance by end-users.
Lasso tries to minimize the following objective function:

where �w�1 =
∑n

i=1 |wi| , and where � > 0 is a user-cho-
sen parameter known as regularization parameter. Note
that this method reduces to OLS, if � is set to zero. In our
set-up we use a proximal gradient descent algorithm to
minimize the objective.

(1)F(w) =
1

n
�Xw − y�22 + ��w�1,

Table 3  Achmea and Erasmus MC example datasets,
respectively

Identifier Hospitalization days Identifier Hours of exercise per
week

000000 10 000000 0

111111 5 111111 2

555555 8 777777 1

777777 9 999999 3

Table 4  Inner Join example

Identifier Hospitalization days Hours of exercise per week

000000 10 0

111111 5 2

777777 9 1

Table 5  Inner-join dataset

Identifier Feature α(1) ... Feature α(ℓ) Feature β(1) ... Feature β(m)

ai1 = bj1 α
(1)
i1

... α
(ℓ)
i1

β
(1)
j1

... β
(m)
j1

ai2 = bj2 α
(1)
i2

... α
(ℓ)
i2

β
(1)
j2

... β
(m)
j2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Page 6 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

Gradient descent approach
Gradient Descent (GD) is a general optimization algo-
rithm that finds a local minimum of an objective func-
tion. The algorithm takes repeated steps in the opposite
direction of the (approximate) gradient of the objective
function at the current point. In that way it moves to the
direction of steepest descent. GD is a building block for
many different models, including Ridge Regression and
Support Vector Machine. The GD algorithm is described
in Algorithm 1. We will now describe the parameters and
functions in this algorithm.

Algorithm 1: Gradient Descent Algorithm
input : X,y, maxIter, tolerance, λ
output: w

wold = 0, η0 = 0.1
max(XtX) ;

for epoch in 1 to maxIter do
η = η0

epoch+1 ;
g = CalcGradient (X,y,wold);
wnew = wold − θg;
w = Proxy(wnew, λ);
if UpdateDifference(wold,wnew) < tolerance then

break

return w

Stopping criteria. The algorithm can stop for two rea-
sons: either because it has reached the limit of iterations
set by maxIter , or when the model has been trained “suf-
ficiently”. The latter factor can be quantified by measuring
the relative or absolute change in the objective function
and comparing this change with a pre-set treshold. Since
the secure evaluation of an objective function is compu-
tationally intensive, we compare with a treshold the fol-
lowing value, known as update difference:

The model is then said to be sufficiently trained when this
value is smaller than a pre-set value known as tolerance.
CalcGradient and Proxy In the GD algorithm, we

repeatedly calculate the gradient CalcGradient . Because
of the ℓ1-norm in (1), the objective function for Lasso is
non-differentiable. We therefore use the technique of
proximal gradient descent, that can optimize a function
that is not entirely differentiable. We therefore first com-
pute a gradient function over the first part of the objec-
tive function in (1),

then approximate the gradient of the second part of (1) by
applying a proximal function Proxy on w . The ith compo-
nent of Proxy(w, �) is given by the following expression:

(2)

UpdateDifference(wnew,wold) =
||wnew − wold||

2
2

||wold||
2
2

.

(3)CalcGradient(w) :=
2

n
XT (Xw − y),

Step size η . An important parameter when using Gradient
Descent is the size of the steps. If the step size is too
small, the algorithm will need too many iterations, while
if it is too large, the algorithm will never converge. In
Algorithm 1, the step size decreases in every iteration,
such that the weight vector converges. The initial step-
size is typically a user-chosen parameter; however, if it
depends on the input data, then it needs to be calculated
securely. For example, one could choose η0 = 0.1

max(XtX)
 ,

of which we explain the secure calculation in sec-
tion "Secure lasso regression".

Goodness of fit. To test the performance of Lasso
Regression we can use different goodness of fit measures,
such as the mean squared error, the mean absolute error
or the coefficient of determination R2 . As an example for
the secure implementation, we focused on the last meas-
ure. R2 provides a measure of how well observed out-
comes are replicated by our prediction model, based on
the proportion of total variation of outcomes explained
by the model. The range of R2 is [−∞, 1] , where 1 indi-
cates the best fit. We calculate R2 as follows. First, we
define the value ȳ as the mean of the observed target data
yi , i.e. ȳ = 1

n

∑n
i=1 yi . We then denote by ypred the vector

of the values predicted by the model, and define

This coefficient is important for determining the right
regularization parameter � . In practice, one will have to
run the Lasso regression multiple times with different � ,
to find the optimal model with the highest R2.

Description of the secure solution
Aim and assumptions
The goal of this section is to show how the functional-
ity described in "Description of the desired functional-
ity" section can be realized in a secure way: this means
that while both parties will learn the output of the Lasso
regression (i.e. the model coefficients) trained on the
inner join of their datasets,4 no other information on the
datasets of each party will be disclosed to any other party.

Our secure solution involves a third party, which does
not supply any input, and does not receive any output
(except from the size of the intersection of the two data-
sets). For our Proof of Concept, this third-party role is
taken by ZorgTTP, a company that offers consultancy

(4)Proxy((w, �)i) :=







wi − �, if wi > �,
0, if |wi| ≤ �, and
wi + �, if wi < −�.

R2 = 1−

∑n
i=1(yi − y

pred
i)

∑n
i=1(yi − ȳ)

.

4  To be completely precise, we also reveal the size of the intersection of the
two datasets to the involved parties.

Page 7 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

and practical solutions on the topic of privacy-preserving
data analysis in the healthcare sector. The addition of
such a party has two benefits, relating to the two steps of
our solution: secure inner join and secure Lasso regres-
sion. For the first step, the presence of a third party
allows us to design a custom, highly efficient protocol; for
the second step, we are able to use the MPyC library [35],
that provides useful building blocks but requires at least
three parties to guarantee security.

Before discussing the details of our solution, we give a
brief introduction to Secure Multi-Party Computation.
Notice that we chose to present cryptographic concepts
with a focus on intuition, so as not to burden the reader
with an unnecessary level of formalism. The reader can
refer to [36, 37] for a more formal discussion of general
cryptographic concepts (including cryptographic hash
functions, homomorphic encryption, and secret sharing),
and to [38, 39] for an in-depth discussion of MPC and
Secret Sharing.

Introduction to secure multi‑party computation
Assume n parties P1, . . . ,Pn hold private inputs x1, . . . , xn .
An MPC protocol is an interactive protocol that allows
the parties to compute the value f (x1, . . . , xn) of a func-
tion f on their inputs, without revealing any other infor-
mation to each other on their inputs. Notice that the
private inputs are not necessarily just a single element,
but could actually consist of an entire dataset. Moreover,
not all parties need to supply an input, and not all parties
should receive an output; the addition of these “data-less”
parties (such as ZorgTTP in our case) allows protocols
to achieve better efficiency, or to use techniques which
would be insecure with a smaller number of parties.

Secure inner join
As outlined in section "Inner join of the data", in order
to realize a protocol that securely implements our desired
functionality, the first step to be performed is to compute
the so-called inner join of the datasets of Achmea and
Erasmus MC. Namely, we need to obtain a database with
the identifiers that are present in both the datasets of
Achmea (AC) and Erasmus MC (EMC), and with the cor-
responding features coming from both datasets. Notice
that we do not wish to reveal the dataset obtained in this
way to any party, as it would still contain highly sensitive
personal data (in case of application involving real data).
The inner-join database will thus remain secret — yet
computing the coefficients of a Lasso regression model
on this secret dataset will be possible.

We first give a brief overview of the cryptographic
building blocks that are used for this phase, and then pre-
sent our solution.

Cryptographic Building Blocks. Our solution makes use
of three core components: (keyed) cryptographic hash
functions, (additively) homomorphic encryption, and
2-out-of-2 secret sharing.

•	 Hash functions. A cryptographic hash function is a
deterministic function H : D → C , that maps any
alphanumeric string s ∈ D , to another alphanumeric
string H(s) = z ∈ C , called digest, of fixed length5
Such a function enjoys the property that, given a
digest z ∈ C , it is unfeasible to compute a string s
such that H(s) = z . In our protocol, we compute the
hash of values s that are concatenated with a random
bit-string b , thus obtaining H(b‖s) . This ensures that
a party with no knowledge of b is unable to recover
s from its hash with a brute-force attack; in crypto-
graphic terms, it is a simple form of keyed hashing.

•	 Homomorphic encryption. An (additively) homo-
morphic encryption scheme is a public-key encryp-
tion scheme, thus consisting of a key-generation
algorithm KeyGen , an encryption algorithm Enc
and a decryption algorithm Dec . For a keypair of
public and secret key (pk, sk) generated by KeyGen ,
we have that Encpk takes as input a message m
and some randomness r, and produces as output
a ciphertext c = Encpk(m, r) , with the property
that Decsk(c) = m , and that no information what-
soever can be extracted on m or sk from c and pk ;
in formal terms, the encryption scheme is IND-
CCA1 secure. In order to simplify notation, we
will often omit the key and randomness when dis-
cussing encryption, and write [m] := Encpk(m, r) ;
moreover, we implicitly assume messages to be
numeric values, so that addition and subtraction
of messages are well-defined. The scheme is sup-
posed to be additively-homomorphic, which means
that there exists special operations on ciphertexts
⊞ and ⊟ , such that [m1]⊞ [m2] = [m1 +m2] , and
[m1]⊟ [m2] = [m1 −m2] for all messages m1,m2.

•	 2-out-of-2 secret sharing. This building block can be
seen as a form of key-less encryption, distributed
among two parties, and works as follows: given a
secret (numerical) value s, two elements s1 and s2
called shares are randomly sampled, but subject to
the condition that s1 + s2 = s . Then s1 is assigned to
a party, and s2 to another party; in this way, each
party has individually no knowledge of s (since the
share si that they have is a random number), but the
original secret value s can be reconstructed, when
the two parties cooperate and communicate their
shares to each other.

5  Domain and codomain do not need, strictly speaking, to consist of alphanu-
meric strings, but we restrict to this situation for simplicity.

Page 8 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

The Secure Inner Join Solution. The presence of a third
party (ZorgTTP) allows us to design a novel, highly effi-
cient protocol for secure inner join, which we believe to
be of independent interest. ZorgTTP is taking care of
the communication between the two data holders, but
is not allowed to learn any data other than the cardi-
nality of the intersection. The goal is for AC and EMC
to obtain a secret-shared version of the features from
Table 5. Our secure inner join protocol between AC,
EMC, and ZorgTTP uses cryptographic hash functions,
and both AC and EMC have an (additively) homomor-
phic encryption key pair; we used SHA-256 [40] as hash
function and the Paillier homomorphic-encryption
scheme [41] in our implementation. Both public keys
are communicated to the other involved parties, so that
everyone can encrypt and perform homomorphic oper-
ations on ciphertexts; denote by [x]AC a value encrypted
under the public key of AC, and by [x]EMC a value
encrypted under the public key of EMC. The main idea
is as follows:

1	 AC and EMC randomly permute the rows of their
datasets.

2	 AC and EMC jointly generate a random bit string,
not known to ZorgTTP, for the cryptographic hash
function.

3	 Using the hash function and the random string,
both AC and EMC hide the identifiers from their
own databases, and send the obtained hashes to
ZorgTTP. AC and EMC then use their own public
key to homomorphically encrypt the feature values
of their records, and send the resulting ciphertexts
to ZorgTTP. For simplicity, we assume here that AC
and EMC have only one feature each. More features
can be processed by a simple repetition of the steps
below; the reader can refer to Table 6 below for a vis-
ual representation of the data sent to ZorgTTP, and
to “Appendix” section for the details.

4	 ZorgTTP computes how many hashed identifiers
from AC also appear among the hashed identifiers
of EMC; denote by k this value. Due to the proper-
ties of cryptographic hash functions, k is equal to the
number of records in the intersection of the data-

sets of AC and EMC, and ZorgTTP learns no other
information on the identifiers. For simplicity, we
assume k = 1 . In case k is larger, the steps below can
be repeated, ZorgTTP properly linking the attrib-
utes with overlapping hashed identifiers; once again
a more detailed description can be found in “Appen-
dix” section. Note that, at this point, ZorgTTP holds
the encrypted features of this record, which we
denote by [α]AC and [β]EMC.

5	 Both AC and EMC generate a random value, denoted
by s and z respectively.

6	 Both AC and EMC use the public key of the other
party to homomorphically encrypt their shares, thus
obtaining [s]EMC and [z]AC , and they then send these
ciphertexts to ZorgTTP.

7	 ZorgTTP computes [α]AC ⊟ [z]AC = [α − z]AC and
sends this to EMC. Similarly, ZorgTTP computes
and sends [β − s]EMC to AC. Table 7 below visualized
the data obtained and computed by ZorgTTP.

8	 AC and EMC decrypt the received values and obtain
β − s and α − s , respectively. Note that we have thus
obtained a 2-out-of-2 sharing of α and β among EMC
and AC, since AC still holds s and EMC still holds z.
This outcome can be seen in Table 8.

To ensure that the decrypted differences (in step 9) reveal
no information on the feature values, the randomly gen-
erated shares (in step 6) need to be sufficiently large.

Secure lasso regression
Once the steps of Paragraph "Secure inner join" section
have been performed, we obtain a “2-out-of-2 secret-
shared” version of Table 5: namely, Achmea and Eras-
mus MC each have a table filled with apparently random
numbers, but if they were to add up the corresponding
numbers, they would obtain exactly Table 5.

Recall that our purpose is to train a linear regression
model — specifically, Lasso — on this table. Now letting
Achmea and Erasmus MC communicate their datasets to

Table 6  Encrypted data sent to ZorgTTP by AC and EMC,
respectively

Hashed identifier Encrypted
feature α

Hashed identifier Encrypted
feature β

H(a1‖r) [α1]AC H(b1‖r)
[

β1
]

EMC

H(a2‖r) [α2]AC H(b2‖r)
[

β2
]

EMC
.
.
.

.

.

.
.
.
.

.

.

.

Table 7  Encrypted data obtained and intersected by ZorgTTP

Matching identifiers Feature α Feature β Value AC Value EMC

H(ai�r) = H(bj�r) [α]AC
[

β
]

EMC
[α − z]AC

[

β − s
]

EMC

Table 8  Final tables of secret-shares obtained by AC and EMC,
respectively

α-share β-share α-share β-share

α − z s z β − s

Page 9 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

each other in order to reconstruct Table 5, and then train
the regression model, is clearly not an option: the infor-
mation that they would obtain consists of personal data,
the exchange of which has to be prevented.

Instead, we present a solution that is able to compute
the regression coefficients from the two datasets, without
leaking information on their content.

The fundamental building block that allows us to design
and implement this solution is Shamir Secret Sharing.
We make use of the software platform MPyC [35], which
implements this form of secret-sharing, and other useful
communication and computation tools. We present the
relevant properties and features of MPyC and Shamir
Secret Sharing in the next section, and then discuss how
these are used in our solution.

Shamir Secret Sharing As mentioned above, the
core component of MPyC is Secret Sharing due to
Shamir [42]. Shamir Secret Sharing can still be seen as a
form of key-less distributed encryption, but the number
of involved parties and the privacy and reconstruction
guarantees are different. Instead of discussing Shamir
Secret Sharing in its full generality, we focus here on the
regime of parameters which is relevant for our purposes,
called (1, 3)-Secret Sharing.

Given three parties P1,P2,P3 , a (1, 3)-secret-sharing
scheme (denoted by SSS for short) consists of two algo-
rithms, namely a sharing Share and a reconstruction
algorithm Rec . Share is, in general, randomized, and
on input a given (secret) value s, it outputs three ele-
ments s1, s2, s3 called shares. Typically, any party can use
the sharing algorithm to obtain shares of a secret value
of their knowledge, and they will then distribute these
shares to the parties, with party Pi receiving share si . The
Rec algorithm tries to invert the process: on input three
elements s1, s2, s3 , it outputs a value s or an error message
⊥ , indicating that the reconstruction failed.

A (1, 3)-SSS enjoys 1-privacy: no information on
the secret value s can be extracted from an individual
share si . On the other hand, two or more shares allow
to unequivocally reconstruct s (2-reconstruction), i.e.
Rec(si1 , si2) = s.6 The “1′′ in (1, 3)-SSS thus refers to the
privacy threshold, while the “3′′ refers to the total number
of parties.

Such a secret-sharing scheme can be used to con-
struct MPC protocols: assume that the three involved
parties (Achmea, Erasmus MC, and ZorgTTP) have
access to a (1, 3)-SSS. Let us assume that parties wish
to perform some computation on a value α (held by
Achmea) and β (held by Erasmus MC). The three par-
ties can then proceed as follows: first, Achmea secret-
shares α , i.e. computes (α1,α2,α3) = Share(α) , such

that Achmea, Erasmus MC and ZorgTTP will receive
α1,α2,α3 , respectively. Notice that by 1-privacy, no infor-
mation on α is leaked at this point. Erasmus MC then
similarly secret-shares β , i.e. computes and distributes
(β1,β2,β3) = Share(β).

The key property now is that for any operation that the
parties wish to perform on the values α and β , there exists
a corresponding operation that can be performed on the
shares αi,βi , resulting in some other sharing s1, s2, s3 , in
such a way that no information at all is leaked on α , nor
β . It is important to remark that these operations typi-
cally involve all shares and may also require some form
of communication among the three parties. While opera-
tions such as sum can be straightforwardly be evaluated,
multiplications are typically more involved; MPyC makes
use of a relatively standard protocol where players locally
multiply shares, then re-share the obtained values and
apply a Lagrange interpolation function on the received
shares [43, 44].

It then becomes possible to evaluate a complex algo-
rithm such as Lasso regression on several features of
Achmea and Erasmus MC: parties can secret-share their
features, then decompose the Lasso regression into basic
operations, and perform the corresponding operations
on the shares. Eventually, they will obtain shares of the
regression coefficients; due to the 2-reconstruction prop-
erty, Achmea and Erasmus MC at this point simply need
to exchange their shares with each other and to evaluate
Rec in order to obtain the coefficients.

A final remark of notable importance is that while sums
and multiplications are, per se, sufficient to evaluate any
algorithm, MPyC also supports a number of custom sub-
protocols to evaluate special operations in a much more
efficient way. Notably, efficient systems are implemented
to compute the maximum of two values and to evaluate
the inner product of two vectors, and there is full support
for fixed-point arithmetic operations; we refer to the pro-
tocol specifications [35] for the details.

Casting from 2-out-of-2 to Shamir Secret Sharing. Recall
that once the steps in section "Secure inner join" have
been executed, parties obtain a 2-out-of-2 secret shar-
ing of the table which serves as input for the secure Lasso
solution, and not the (1,3) secret sharing that is required
for MPyC. The first step to be performed is thus to “cast”
this 2-out-of-2 secret sharing to a (1,3)-Shamir sharing.

This is actually a fairly simple step, where only sum
operations are required. Indeed, denote by x a 2-out-of-2
share of Achmea and by y the corresponding 2-out-of-2
share of Erasmus MC, which means that x + y = z , where
z is some feature value of an individual record occuring in
both datasets. Now Achmea can (1,3)-share x and Eras-
mus MC can (1,3)-share y, so that Achmea obtains x1 and
y1 , Erasmus MC obtains x2 and y2 , and ZorgTTP obtains

6  Formally, each share si should be supplied to Rec together with its index i,
but we omit this to simplify notation.

Page 10 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

x3 and y3 . All parties have now have to locally add their
shares, resulting in x1 + y1 , x2 + y2 , and x3 + y3 : these are
valid (1,3)-shares of z = x + y that can be used in MPyC.

The Secure Lasso Regression solution. In order to explain
our secure Lasso solution, we follow the blueprint of sec-
tion "Lasso regression algorithm" and show how each
step can be securely performed on secret shared data,
using the techniques of section "Secure lasso regression".

•	 Secure Gradient Descent. Apart from the stopping
criterion, CalcGradient , Proxy , step size η and good-
ness of fit R2 , all computations in Algorithm 1 are lin-
ear operations, and can thus be calculated on secret-
shared data as explained in section "Secure lasso
regression". We will now elaborate on these secure
calculations.

•	 Secure stopping criteria. As explained in the cor-
responding paragraph in section "Gradient descent
approach", there are two possible stopping criteria:
The first one is reaching the maximal number of
iterations, and since maxIter is a public value, this
criterion does not need to be implemented securely:
The second criterion demands computing the update
difference UpdateDifference , and compare this with
the tolerance (which is a public constant). For effi-
ciency purposes, we chose not to implement all these
steps securely. Instead, for every iteration we reveal
the value of the update difference, and compare it
with the tolerance in plaintext. To be more precise,
recall that the update difference is given by the ratio
between ||wnew − wold||

2
2 and ||wold||

2
2 : in order to

calculate the update difference, we securely com-
pute both enumerator and denominator and then
reveal their values. We believe the information leak
of this step to be acceptable, especially given the per-
formance gain that is derived from it by avoiding the
expensive secure division step.

•	 Secure CalcGradient and Proxy . In order to securely
calculate the gradient of w , linear operations are
used. We also make use of the custom sub-proto-
col for vector multiplication, as described in sec-
tion "Secure lasso regression". In order to compute
Proxy , we calculate two secret-shared bits, namely
a = (wi > �) , and b = (wi < −�) , where (x < y)
denotes the bit that is equal to 1, if x < y , and to 0,
otherwise. We can then securely compute the follow-
ing linear operation over the shares of wi :

 It is easy to see that this gives the same result as
Eq. (4).

•	 Secure initial step size. Although the operations that
we use for computing our choice of the initial step

(5)Proxy(wi) = a · (wi − �)+ b · (wi + �).

size η0 (inner product and maximum) are compu-
tationally expensive, we only need to perform them
once. Once again, we make use of the sub-proto-
cols for vector multiplications and maximum from
MPyC.

•	 Secure goodness of fit. Once we have computed the
weight vector of the prediction model, we aim to
securely compute goodness-of-fit measures. As an
example we implemented R2 . Recall that the defini-
tion of R2 is given by

 With the shares of X , and the publicly-known coef-
ficients of w , we can calculate the shares of ypred .
At this point, by using the secret-shared vector y ,
we can compute the numerator and denominator of
1− R2 , reveal these values, and thus obtain R2.

Results
In this section we first present the security results of our
solution. We then discuss the scalability results of our
Proof of Concept, which was not performed on real data
but did run on the actual infrastructure between Ach-
mea, Erasmus MC and ZorgTTP. Finally, we describe the
performance of our implementation of the Lasso regres-
sion and the accuracy of the secure model.

Security results
The security of our solution is guaranteed under the fol-
lowing assumptions. First of all, we assume that any two
parties are connected by secure channels; in practice this
is done by means of SSL/TLS connections. We assume
that parties do follow the instructions of the protocol; in
cryptographic lexicon, they are thus assumed to be semi-
honest. Privacy is guaranteed, even if parties try to infer
extra information from the data they sent and received as
part of the protocol, though we assume that no party will
collude with any other party and exchange information
with them. Finally, we adopt the standard assumption
that the involved parties are bounded by polynomial-time
computations, and that factoring large integers is feasible
under this constraint.

Under the above conditions, the solution we present is
provably secure, in the sense that we can mathematically
argue that the only information that will be revealed are
regression coefficients, and the size of the intersection
between the datasets of Achmea and Erasmus MC.

Running time
We implemented our solution in Python. In order to
test the efficiency of our implementation, we ran several

R2 = 1−

∑n
i=1(yi − y

pred
i)

∑n
i=1(yi − ȳ)

.

Page 11 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

experiments on three machines, under the control of
Achmea, Erasmus MC and ZorgTTP, respectively, and
geographically separated.

The experiments include the secure inner-join computa-
tion and the protocol to securely train a Lasso regression
algorithm as described in section "Description of the secure
solution". Notice that we have not evaluated the efficiency
of applying the Lasso model to new data, as it would be out-
of-scope for this article;7 For the same reason, no test data
is extracted from these data artificial datasets.

All three (virtual) machines run a Linux-based operat-
ing system, and are equipped with a commercial-grade
virtual processor (up to four cores at 2.4GHz) and with 8
to 16 GB of RAM.

The solution was installed as a Docker image on all
three machines. Connections within the machines were
realized via HTTPs over TCP (for the secure inner join)
and via the custom TCP protocol of MPyC. The connec-
tions were secured with TLS; certificates were created
and installed on the machines to this end.

In order to test the efficiency of our solution, we sampled
artificial datasets, using scikit-learn (with the datasets.
sample_generator.make_regression function-
ality, that creates a dataset of real numbers with a rougly
linear dependency of the target features). We sampled
datasets with an increasing number of records and fea-
tures, and ran several instances of our solution. The num-
ber of records (per dataset) was equal to 5, 100, 500, 1000,
5000 and 10000, while the (total) number of features was
equal to 1, 2, 5, 10, 30 and 40. We vertically split the data-
set into two datasets, with an (up to one difference) equal
number of features and with a complete overlap in record
IDs, i.e. the identifiers in the Achmea dataset were identi-
cal to those of the Erasmus MC dataset for each iteration.

For datasets with five records, we chose not to run
instances with more than two features, as this regime of
parameters would be highly unsuitable for a linear regres-
sion algorithm. Furthermore, the instance with 10.000
records and 40 features could not be run due to the RAM
limitations of the involved machines; we nevertheless
believe that the instances we considered are sufficient to
analyze the scalability of our solution.

Each instance was run 10 times; all figures presented
in this article refer to the median time over these 10
executions.

The total running time (thus encompassing both secure
inner join and secure Lasso regression) is showed in in
Figs. 1 and 2. Our solution thus takes roughly 3500 s,

slightly less than one hour, to process two datasets with
5000 records each and a total of 30 features. Moreover,
the running time of our solution scales linearly in the
number of records and features.

The running time of our solution is dominated by the
Secure Lasso regression, the scalability of which is shown
in Figs. 3 and 4. Just as for the total time, the running
time of this phase also has a linear dependency on the
number of records and of features.

Performance and accuracy results

Data
To test the performance and accuracy of our secure
model, we use the “Medical Costs” dataset by Brett
Lantz [45]. This public dataset contains 1338 records of
patients with 12 features each (including, among others,
age, bmi, children, gender, medical costs), of which four
are numerical, and eight are Boolean. We centered and
scaled the data in advance, such that the feature values
are comprised between 0 and 1. We also split into a train
and a test set (10% of the data, randomly selected).

0 0.2 0.4 0.6 0.8 1

·104

0

500

1000

1500

2000

2500

3000

3500

4000

Records

R
un

ni
ng

ti
m
e
(s
ec
on

ds
)

1 feature
2 features
5 features
10 features
20 features
30 features
40 features

Fig. 1  Total running time of the experiments as a function of the
number of records (median values)

Fig. 2  Total running time of the experiments as a function of the
number of features (median values)

7  In the healthcare-scenario that motivates this article, applying the model
could arguably be performed without advanced cryptographic techniques,
since the smaller amount of data needed would probably make direct data
usage feasible and proportional (under appropriate informed consent). For
this reason, we have decided not to focus on the application of the trained
Lasso model.

Page 12 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

Performance of lasso regression
To test the performance of our solution we compare
the results of our secure model with the non-secure
scikit-learn Lasso model [46]. Note that the secure
inner join has no influence on the performance of the
Lasso regression. Therefore, as input of our secure
model, the data is secret-shared between the three par-
ties. The influence of the calculation on secret-shared
values will be discussed in the next paragraph.

We train with our secure model on 11 features of the
train set for predicting the (numerical) target feature
of medical costs, by varying � and tolerance. We found
the optimal choice, leading to a good fit ( R2 , mean
squared error) and enough coefficients set to zero, to
be � = 0.001 and tolerance = 0.0001 . For this choice of
parameters, when training our secure model, we need
26 iterations. Applying the trained model on our test
set, we achieve an R2 of 0.70, a mean squared error of
0.0086, a mean absolute error of 0.062 and an objective
of 0.013. As a validation of the solving method that we
used, we compare these results with the (highly opti-
mized) Lasso model of scikit-learn [46], using the same

parameters. After the model was trained on the train
set, on the test set we find an R2 value of 0.66, a mean
squared error of 0.012, a mean absolute error of 0.082
and an objective of 0.0090. Although the goodness-
of-fit measures of our secure model are better than
the scikit-learn model, it has a larger objective value.
In Tables 9 and 10 one can see that in the scikit-learn
model, two more coefficients are set to zero, which
is one of the aims of Lasso. Therefore, we can con-
clude that our secure model has a good performance,
although the (highly optimized) scikit-learn model per-
forms slightly better.

Accuracy of the secure implementation
To compare the performance and accuracy of our
secure model, we implemented the Lasso algorithm
described in section "Gradient descent approach" in a
non-secure way. Although the steps in training both
models are the same, a slight difference in outcome is
to be expected, due to possible rounding errors of non-
integer, secret-shared values. This difference in objec-
tive values is less than 10−7 ; we consider this to be
negligible for our research purposes.

Discussion
In light of the results shown in section "Results", we
conclude that our solution does provide a viable way of
securely training a Lasso regression model on distributed
patient data in a privacy-preserving way. In particular,
the good quality of the obtained model, together with its
satisfying efficiency in a fairly realistic set-up, make our
solution a promising tool for privacy-preserving analysis
of distributed patient data.

As future work, we have identified two main direc-
tions, namely, improvements to the solution and working
towards a pilot on real heart-failure risk data.

Improvement to the secure solution
We identify several ways to further improve our solu-
tion. First of all, our solution was relatively efficient, the
secure solution took less than one hour for the setting
with 5000 records and 30 features. This should be fast
enough for research purposes. However, while we deem
our solution to be fast enough for research purposes, its

Fig. 3  Running time of Lasso regression (training phase) of the
experiments as a function of the number of records (median values)

Fig. 4  Running time of Lasso regression (training phase) of the
experiments as a function of the number of features (median values)

Table 9  Comparison plaintext model and Sklearn Lasso:
objective, R2 , mean squared error and mean absolute error

Model Obj R2 MSE MAE intercept

scikit-learn 0.0090 0.66 0.012 0.082 0.39

our secure model 0.013 0.74 0.008 0.062 0.18

Abs. diff. 0.004 0.08 0.004 0.020 0.21

Page 13 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

efficiency might need to be improved when working with
very large datasets. Several approaches are possible in
order to reduce running time, for instance implementing
the solution in another programming language such as C,
or making optimal use of parallelisation. Moreover, RAM
usage could be reduced by supporting access to advanced
database-management systems.

Also, we identified some opportunities to improve the
quality of the model. Within this article, we assumed
the data to be pre-processed, i.e. scaled and centered; a
solution with a higher technology readiness level would
need to securely implement this step. Moreover, next to
R2 , more goodness-of-fit measures such as mean squared
error and mean absolute error could be securely imple-
mented. This would enable parties to perform more
quality checks on the model, and to choose a good regu-
larization parameter �.

Finally, while we focused on a situation where exactly
two parties supply input data, and it would be interesting
to extend our solution to more than two data-parties. The
secure Lasso regression training poses no issue for such
an extension, since MPyC supports a virtually unlimited
number of parties, but the secure inner join would need
to be re-designed, since it is tailored to the two-party-
with-helper setting. A step-by-step approach for this part
could probably be realized, i.e. by first performing an
inner join of the datasets of two parties and then using
the outcome as input for another inner join with the third
data party, and so on, but a thorough analysis is required
to validate this approach and measure its performance.

Towards prediction of heart‑failure risk factors
Given the promising results obtained by our Proof of
Concept, a future pilot with real patient data should be
started, in order to establish the effectiveness of our
solution for prediction of heart-failure risk on com-
bined datasets from Erasmus MC and Achmea. The
data needed for such an experiment is already stored
at both parties. At Achmea, features express and quan-
tify, notably, the number of days a given customer
was admitted to a hospital, and various other aspects
such as comorbidities, marital status, and socio-eco-
nomic status. This information is stored as part of the
standard procedures of health insurance companies.

At Erasmus MC, on the other hand, features express
and quantify social and behavioral aspects such as age,
smoking, exercising, and alcohol consumption. This
type of data has been collected by the Epidemiology
department of Erasmus MC as part of a previous study
performed on volunteers in the city of Rotterdam [3],
of which a significant part are also ensured at Achmea.
In a future pilot, we would aim to predict the num-
ber of hospitalization days as a function of the other
feature values. Such a pilot would need to address
both the technical challenges highlighted above (for
instance, Achmea has data on more than five million
individuals). But it should also focus on non-technical
challenges, such as compliance and legal aspects, and
ensure that employees and management are properly
involved in the process and get acquainted with the
used techniques, which constitutes a time-consuming
process.

Conclusions
In this paper, we presented a secure and scalable solu-
tion for Lasso regression as a part of the European Big-
Medilytics project. The solution allows two parties, in
this case Erasmus MC and Achmea, to securely com-
pute the inner join of their respective datasets and to
train a Lasso regression algorithm on the obtained
dataset in a privacy-preserving way, assisted by health-
care information intermediation company ZorgTTP.
No party learns any patient data, other than the num-
ber of overlapping patients from both datasets, the
result of the regression, and some intermediate values
of the regression algorithm, which we believe to be fully
acceptable.

We implemented our solution on three computing
nodes, running at separate machines, and located at dif-
ferent sites, under control of Achmea, Erasmus MC,
and ZorgTTP, respectively. The experimental results
show that our implementation is reliable, accurate, and
fast enough for research purposes. We conclude that
our solution is a promising tool for privacy-preserv-
ing machine learning tasks on distributed patient data,
potentially leading to an improvement of the quality
of healthcare, while respecting the privacy of involved
patients.

Table 10  Comparison plaintext model and Sklearn Lasso: coefficients

Model c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

scikit-learn 0.08 0.01 0 0 0 − 0.30 0 0 0 0 0

our secure model 0.17 0.10 0.001 0 0 − 0.19 0.18 0 0 0 0

Abs. diff. 0.09 0.09 0.001 0 0 0.11 0.18 0 0 0 0

Page 14 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

Appendix: Secure inner join protocol
This is a detailed version of the secure inner join proto-
col, described in “Aim and assumptions” section. Both
AC and EMC get a key pair of an additively homomor-
phic crypto system, which keys are generated in the first
step. In the second step a random key r is generated
jointly between AC and EMC, without ZorgTTP learn-
ing it. This key is used for scrambling the identifiers and

encrypting the private data in step 3. They are sent to
ZorgTTP in step 4, together with the encrypted attribute
values. In step 5 ZorgTTP looks for the matching indi-
ces of the scrambled identifiers, and obtains the intersec-
tion cardinality. In steps 6 and 7, AC and EMC generate
their shares of the inner join table entries, and send them
encrypted to ZorgTTP. In step 8, ZorgTTP computes the
encrypted remaining shares, so AC and EMC can decrypt
them.

Page 15 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266 	

Data Science, Eindhoven, The Netherlands. 5 Achmea, Zeist, The Netherlands.
6 Erasmus MC, Rotterdam, The Netherlands.

Received: 5 March 2021 Accepted: 29 June 2021

References
	1.	 Dwivedi YK, Hughes DL, Coombs C, Constantiou I, Duan Y, Edwards JS,

Gupta B, Lal B, Misra S, Prashant P, et al. Impact of covid-19 pandemic on
information management research and practice: transforming education,
work and life. Int J Inf Manag. 2020;102211.

	2.	 ...Raisaro JL, Marino F, Troncoso-Pastoriza J, Beau-Lejdstrom R, Bellazzi R,
Murphy R, Bernstam EV, Wang H, Bucalo M, Chen Y, Gottlieb A, Harmanci
A, Kim M, Kim Y, Klann J, Klersy C, Malin BA, Méan M, Prasser F, Scudeller
L, Torkamani A, Vaucher J, Puppala M, Wong STC, Frenkel-Morgenstern
M, Xu H, Musa BM, Habib AG, Cohen T, Wilcox A, Salihu HM, Sofia H, Jiang
X, Hubaux JP. SCOR: a secure international informatics infrastructure to
investigate COVID-19. J Am Med Inf Assoc. 2020;27(11):1721–6. https://​
doi.​org/​10.​1093/​jamia/​ocaa1​72.

	3.	 Ikram MA, Brusselle GG, Murad SD, van Duijn CM, Franco OH, Goedege‑
bure A, Klaver CC, Nijsten TE, Peeters RP, Stricker BH, et al. The Rotterdam
study: 2018 update on objectives, design and main results. Eur J Epide‑
miol. 2017;32(9):807–50.

	4.	 Chicco D, Jurman G. Machine learning can predict survival of patients
with heart failure from serum creatinine and ejection fraction alone. BMC
Med Inform Decis Mak. 2020;20(1):16.

	5.	 Sweeney L. Weaving technology and policy together to maintain confi‑
dentiality. J Law Med Ethics. 1997;25(2–3):98–110.

	6.	 Narayanan A, Shmatikov V. Robust de-anonymization of large sparse
datasets. In: 2008 IEEE symposium on security and privacy (sp 2008),
2008;111–125 . IEEE.

	7.	 Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RT, Jochems A, Miraglio
B, Townend D, Lambin P. Systematic review of privacy-preserving distrib‑
uted machine learning from federated databases in health care. JCO Clin
Cancer Inf. 2020;4:184–200.

	8.	 Beyan O, Choudhury A, van Soest J, Kohlbacher O, Zimmermann L, Sten‑
zhorn H, Karim MR, Dumontier M, Decker S, da Silva Santos LOB, Dekker
A. Distributed analytics on sensitive medical data: the personal health
train. Data Intell. 2020 2(1–2):96–107.

	9.	 Emam KE, Hu J, Mercer J, Peyton L, Kantarcioglu M, Malin BA, Buckeridge
DL, Samet S, Earle C. A secure protocol for protecting the identity of pro‑
viders when disclosing data for disease surveillance. J Am Med Inf Assoc.
2011;18(3):212–7. https://​doi.​org/​10.​1136/​amiaj​nl-​2011-​000100.

	10.	 De Optimale Hiv Behandeling Vinden Met MPC. https://​www.​tno.​nl/​nl/​
tno-​insig​hts/​artik​elen/​de-​optim​ale-​hiv-​behan​deling-​vinden-​met-​mpc/.
Accessed: 2020-10-26.

	11.	 Spini G, van Heesch M, Veugen T, Chatterjea S. Private hospital workflow
optimization via secure k-means clustering. J Med Syst. 2020;44(1):8–
1812. https://​doi.​org/​10.​1007/​s10916-​019-​1473-4.

	12.	 Zhang Y, Dai W, Jiang X, Xiong H, Wang S. Foresee: fully outsourced secure
genome study based on homomorphic encryption. In: BMC medical
informatics and decision making. 2015;15, 5 . Springer.

	13.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, Wang S. Secure
multi-party computation grid logistic regression (SMAC-GLORE).
BMC Med Inf Decis Mak. 2016;16(S–3):89. https://​doi.​org/​10.​1186/​
s12911-​016-​0316-1.

	14.	 van Haaften W, Sangers A, van Engers T, Djafari S. Coping with the general
data protection regulation; anonymization through multi-party computa‑
tion technology. 2020.

	15.	 Freedman MJ, Nissim K, Pinkas B. Efficient private matching and set
intersection. Eurocrypt Lect Notes Comput Sci. 2004;3027:1–19.

	16.	 Cristofaro ED, Tsudik G. Practical private set intersection protocols with
linear complexity. In: Sion R (ed) Financial cryptography and data security,
14th international conference, FC 2010, Tenerife, Canary Islands, Spain,
January 25–28, 2010, Revised selected papers. lecture notes in computer
science, 2010; 6052, 143–159. Springer. https://​doi.​org/​10.​1007/​978-3-​
642-​14577-3_​13.

	17.	 Pinkas B, Rosulek M, Trieu N, Yanai A. SpOT-light: lightweight private set
intersection from sparse OT extension. Cryptology ePrint Archive 2019.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​021-​01582-y.

Additional file 1: Zip archive containing the log files of the scalability
experiments. The archive can be opened with any archive manager, and
the included log files (with .log extension) can be read with any text
editor.

Acknowledgements
The authors wish to thank Tim van der Broek for his useful comments and sug‑
gestions to improve this article.

Authors’ contributions
MBvE contributed to the privacy-preserving Lasso regression solution and to
the writing of this manuscript. GS contributed to the cryptographic design
and implementation of the solution and to the writing of this manuscript.
OvdG formulated requirements and draw conclusion from the perspective
of Achmea, and contributed to the writing of this manuscript. AIJ formulated
requirements and draw conclusion from the perspective of Erasmus MC, and
contributed to the writing of this manuscript. TV contributed to the design of
the secure inner join protocol, of the secure gradient descent technique, and
to the writing of this manuscript. WK contributed to the use-case definition
and to the writing of this manuscript. AS contributed to the design of the
secure inner join protocol, to the implementation of the solution, and pro‑
vided project coordination. TR contributed to the implementation and testing
of the solution. PL contributed to the implementation and testing of the solu‑
tion. BK contributed to the design and implementation of the secure Lasso
regression technique. NvdL contributed to the design and implementation
of the secure Lasso regression technique. MK-J contributed to the use-case
definition and provided project coordination. All authors read and approved
the final manuscript.

Funding
The BigMedilytics project has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant Agreement
No. 780495.

Availability of data and materials
The (artificial) datasets used for the scalability experi‑
ments are included in the supplementary material, in the
artificial_datasets_scalability.zip
file. The log files measuring the running time of the solu‑
tion for these inputs datasets are also included, to be found in
log_files_scalability.zip . Finally, the dataset used to
test the accuracy of our solution is a publicly-available dataset [45].

Declarations

 Ethics approval and consent to participate
Due to the fact that no personal or medical data was used for the research
described in this article (artificial data was instead sampled), approval from an
ethics committee was deemed not necessary. For the same reason, consent to
participate is not applicable.

Consent for publication
Due to the fact that no personal or medical data was used for the research
described in this article (artificial data was instead sampled), consent for
publication is not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Unit ICT, TNO (Dutch Organization for Applied Scientific Research), The
Hague, The Netherlands. 2 Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands. 3 Cryptology Research Group,
Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands. 4 TMC

https://doi.org/10.1093/jamia/ocaa172
https://doi.org/10.1093/jamia/ocaa172
https://doi.org/10.1136/amiajnl-2011-000100
https://www.tno.nl/nl/tno-insights/artikelen/de-optimale-hiv-behandeling-vinden-met-mpc/
https://www.tno.nl/nl/tno-insights/artikelen/de-optimale-hiv-behandeling-vinden-met-mpc/
https://doi.org/10.1007/s10916-019-1473-4
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1186/s12911-021-01582-y
https://doi.org/10.1186/s12911-021-01582-y

Page 16 of 16van Egmond et al. BMC Med Inform Decis Mak (2021) 21:266

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	18.	 Pinkas B, Schneider T, Tkachenko O, Yanai A. Efficient circuit-based
PSI with linear communication. In: Ishai Y, Rijmen V (eds) Advances in
cryptology—EUROCRYPT 2019—38th annual international conference
on the theory and applications of cryptographic techniques, Darmstadt,
Germany, May 19–23, 2019, proceedings, part III. Lecture notes in com‑
puter science. 2019; 11478, 122–153. Springer. https://​doi.​org/​10.​1007/​
978-3-​030-​17659-4_5.

	19.	 Bogdanov D, Kamm L, Laur S, Sokk V. Rmind: a tool for cryptographi‑
cally secure statistical analysis. IEEE Trans Dependable Secure Comput.
2018;15(3):481–95.

	20.	 Dankar FK, Brien R, Adams C, Matwin S. Secure multi-party linear regres‑
sion. In: EDBT/ICDT workshops. 2014; 406–414 . Citeseer.

	21.	 de Cock M, Dowsley R, Nascimento AC, Newman SC. Fast, privacy
preserving linear regression over distributed datasets based on pre-
distributed data. In: Proceedings of the 8th ACM workshop on artificial
intelligence and security. 2015;3–14 . ACM.

	22.	 Hall R, Fienberg SE, Nardi Y. Secure multiple linear regression based on
homomorphic encryption. J Off Stat. 2011;27(4):669.

	23.	 Hu S, Wang Q, Wang J, Chow SSM, Zou Q. Securing fast learning! ridge
regression over encrypted big data. In: 2016 IEEE Trustcom/BigDataSE/
ISPA. 2016; 19–26 . https://​doi.​org/​10.​1109/​Trust​Com.​2016.​0041.

	24.	 Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N. Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013
IEEE symposium on security and privacy. 2013;334–348. IEEE.

	25.	 Chen Y-R, Rezapour A, Tzeng W-G. Privacy-preserving ridge regression on
distributed data. Inf Sci. 2018;451–452:34–49. https://​doi.​org/​10.​1016/j.​
ins.​2018.​03.​061.

	26.	 Blom F, Bouman NJ, Schoenmakers B, de Vreede N. Efficient secure ridge
regression from randomized gaussian elimination. IACR Cryptol ePrint
Arch. 2019;2019:773.

	27.	 Gascón A, Schoppmann P, Balle B, Raykova M, Doerner J, Zahur S, Evans
D. Privacy-preserving distributed linear regression on high-dimensional
data. Proc Priv Enhanc Technol. 2017;2017(4):345–64.

	28.	 Giacomelli I, Jha S, Page CD, Yoon K. Privacy-preserving ridge regression
on distributed data. IACR Cryptol ePrint Arch. 2017;2017:707.

	29.	 Join Clause (SQL). https://​en.​wikip​edia.​org/​wiki/​Join_​(SQL)#​Inner_​join.
Accessed: 2020-10-06.

	30.	 Schmidt M. Least squares optimization with l1-norm regularization.
CS542B Project Report. 2005;504, 195–221.

	31.	 Hoerl AE, Kennard RW. Ridge regression: biased estimation for non‑
orthogonal problems. Technometrics. 1970;12(1):55–67.

	32.	 McDonald GC. Ridge regression. Wiley Interdiscip Rev Comput Stat.
2009;1(1):93–100.

	33.	 Santosa F, Symes WW. Linear inversion of band-limited reflection seismo‑
grams. SIAM J Sci Stat Comput. 1986;7(4):1307–30.

	34.	 Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B (Methodol). 1996;58(1):267–88.

	35.	 Schoenmakers B. MPyC—secure multiparty computation in Python.
https://​github.​com/​lschoe/​mpyc.

	36.	 Katz J, Lindell Y. Introduction to modern cryptography, 2nd edn. CRC
Press, 2014. https://​www.​crcpr​ess.​com/​Intro​ducti​on-​to-​Modern-​Crypt​
ograp​hy-​Second-​Editi​on/​Katz-​Linde​ll/p/​book/​97814​66570​269.

	37.	 Menezes A, van Oorschot PC, Vanstone SA. Handbook of applied cryptog‑
raphy. CRC Press; 1996. https://​doi.​org/​10.​1201/​97814​39821​916. http://​
cacr.​uwate​rloo.​ca/​hac/.

	38.	 Cramer R, Damgård I, Nielsen JB. Secure multiparty computation and
secret sharing. Cambridge University Press; 2015. http://​www.​cambr​
idge.​org/​de/​acade​mic/​subje​cts/​compu​ter-​scien​ce/​crypt​ograp​hy-​crypt​
ology-​and-​coding/​secure-​multi​party-​compu​tation-​and-​secret-​shari​ng?​
format=​HB&​isbn=​97811​07043​053.

	39.	 Lindell Y. Secure multiparty computation. Commun ACM. 2021;64(1):86–
96. https://​doi.​org/​10.​1145/​33871​08.

	40.	 FIPS P. 180-4. secure hash standard. National Institute of Standards and
Technology, 36, 2005.

	41.	 Paillier P. Public-key cryptosystems based on composite degree residuos‑
ity classes. In: Stern J, editor. Advances in cryptology—UROCRYPT ’99,
international conference on the theory and application of cryptographic
techniques, Prague, Czech Republic, May 2–6, 1999, proceeding. Lecture
notes in computer science, 1999;1592, 223–238. Springer. https://​doi.​org/​
10.​1007/3-​540-​48910-X_​16.

	42.	 Shamir A. How to share a secret. Commun ACM. 1979;22(11):612–3.
https://​doi.​org/​10.​1145/​359168.​359176.

	43.	 Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Simon J, editors. Proceedings of the 20th annual ACM sym‑
posium on theory of computing, May 2–4, 1988, Chicago, Illinois, USA,
1988;1–10. ACM . https://​doi.​org/​10.​1145/​62212.​62213.

	44.	 Gennaro R, Rabin MO, Rabin T. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan BA,
Afek Y, editors. Proceedings of the seventeenth Annual ACM symposium
on principles of distributed computing, PODC ’98, Puerto Vallarta, Mexico,
June 28–July 2, 1998, pp. 101–111. ACM, 1998. https://​doi.​org/​10.​1145/​
277697.​277716.

	45.	 Medical Costs Dataset, Brett Lantz. https://​www.​kaggle.​com/​miric​hoi02​
18/​insur​ance. Accessed: 2020-10-26.

	46.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine
learning in Python. J Mach Learn Res. 2011;12:2825–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1109/TrustCom.2016.0041
https://doi.org/10.1016/j.ins.2018.03.061
https://doi.org/10.1016/j.ins.2018.03.061
https://en.wikipedia.org/wiki/Join_%28SQL%29#Inner_join
https://github.com/lschoe/mpyc
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1201/9781439821916
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1145/3387108
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://www.kaggle.com/mirichoi0218/insurance
https://www.kaggle.com/mirichoi0218/insurance

	Privacy-preserving dataset combination and Lasso regression for healthcare predictions
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Previous and related work
	Secure analysis of healthcare data
	Cryptographic techniques for dataset combination and secure regression

	Our contributions
	Outline

	Methods
	Description of the desired functionality
	Description of the setting and data formatting
	Inner join of the data
	Lasso regression algorithm
	Gradient descent approach

	Description of the secure solution
	Aim and assumptions
	Introduction to secure multi-party computation
	Secure inner join
	Secure lasso regression

	Results
	Security results
	Running time
	Performance and accuracy results
	Data
	Performance of lasso regression
	Accuracy of the secure implementation

	Discussion
	Improvement to the secure solution
	Towards prediction of heart-failure risk factors

	Conclusions
	Acknowledgements
	References

