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Abstract 

Background:  Recent developments in machine learning have shown its potential impact for clinical use such as risk 
prediction, prognosis, and treatment selection. However, relevant data are often scattered across different stakehold‑
ers and their use is regulated, e.g. by GDPR or HIPAA.

As a concrete use-case, hospital Erasmus MC and health insurance company Achmea have data on individuals in the 
city of Rotterdam, which would in theory enable them to train a regression model in order to identify high-impact 
lifestyle factors for heart failure. However, privacy and confidentiality concerns make it unfeasible to exchange these 
data.

Methods:  This article describes a solution where vertically-partitioned synthetic data of Achmea and of Erasmus MC 
are combined using Secure Multi-Party Computation. First, a secure inner join protocol takes place to securely deter‑
mine the identifiers of the patients that are represented in both datasets. Then, a secure Lasso Regression model is 
trained on the securely combined data. The involved parties thus obtain the prediction model but no further informa‑
tion on the input data of the other parties.

Results:  We implement our secure solution and describe its performance and scalability: we can train a prediction 
model on two datasets with 5000 records each and a total of 30 features in less than one hour, with a minimal differ‑
ence from the results of standard (non-secure) methods.

Conclusions:  This article shows that it is possible to combine datasets and train a Lasso regression model on this 
combination in a secure way. Such a solution thus further expands the potential of privacy-preserving data analysis in 
the medical domain.
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Background
Modern machine-learning techniques require large-
scale and well-characterized datasets to achieve their 
full potential. In the medical domain, this requirement 
translates to a need to store medical patient data, and 

to combine information from different institutions, the 
Covid-19 outbreak being an example of a situation where 
this is deemed crucial [1, 2].

However, the collection, processing and exchange of 
personal data is a sensitive matter, and the risks coming 
from privacy violations are especially high for medical 
data. This has led to legal frameworks that regulate and 
restrict usage of personal (medical) data, the General 
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Data Protection Regulation1 (GDPR), and the Health 
Insurance Portability and Accountability Act2 (HIPAA) 
being two prominent examples. These regulations man-
date informed consent from patients in order to use the 
corresponding medical data; however, asking for consent 
for machine-learning purposes is often impractical, since 
it is a time-consuming process, and since contact with 
patients may have been lost since the moment of data 
collection.

This conflict between, on the one hand, the need to 
gather, combine and process large amounts of data for 
better machine-learning techniques, and on the other 
hand the need to minimize personal data usage for pri-
vacy protection, has lead to the development of several 
solutions for privacy-preserving data analysis. In par-
ticular, a collection of cryptographic techniques known 
as Secure Multi-Party Computation, or MPC for short, 
is being applied more and more in the medical domain. 
Intuitively, the goal of MPC is to allow several parties to 
compute the output of a certain function or computation, 
depending on private inputs of each party, without actu-
ally disclosing information on their inputs to each other.

In 2018, the Netherlands Organization for Applied Sci-
entific Research (TNO), together with academic medi-
cal center Erasmus  MC and health insurance company 
Achmea, started a project within the Horizon 2020 Pro-
gramme called BigMedilytics3 to develop a secure algo-
rithm to predict the number of hospitalization days for 
heart failure patients. Although the project does not use 
real patient data in its current phase, the MPC solution 
presented in this article is based on the following real-life 
use-case, which serves as a motivating example for the 
solution described in this article. In Rotterdam, a group 
of individuals took part in the “Rotterdam study”  [3], 
a program by the Epidemiology department of Eras-
mus MC. Erasmus MC has collected data on the lifestyle 
of these patients, for example their exercising, smoking, 
and drinking behavior. Achmea, on the other hand, has 
claims data of its customers (including several partici-
pants of the Rotterdam study), which encompass differ-
ent aspects, such as hospitalization days and healthcare 
usage outside of the hospital. Recent work has shown that 
using machine-learning models on medical data has the 
potential to predict survival of heart-failure patients [4]. 
The datasets of Achmea and Erasmus  MC, once inter-
sected and combined, could be used to train a predic-
tion model that identifies high-impact lifestyle factors 
for heart failure, and thus, in turn, to recognize high-risk 
heart-failure patients.

However, privacy concerns mean that Erasmus  MC 
and Achmea cannot simply share their data with each 
other to allow for a straightforward analysis. TNO has 
therefore developed and implemented the MPC-based 
Proof of Concept described in this article, which allows 
Erasmus  MC and Achmea to securely train a predic-
tion model without disclosing any personal medical 
information.

Before we present the details of our solution, we give 
an overview of the current landscape of privacy-pre-
serving data analysis techniques, focusing on the medi-
cal domain, and on solutions which bear resemblance to 
ours. We will then discuss how our solution compares to 
these existing techniques.

Previous and related work
Secure analysis of healthcare data
A straightforward approach for privacy-preserving 
data analytics consists of data anonymization and pseu-
donymization. More precisely, in the case of horizon-
tally-partitioned data (i.e. when organizations hold the 
same type of data on different individuals), organizations 
may simply remove identifiers such as name, date of 
birth, or social security numbers, and share the data fea-
tures with each other; in the case of vertically-partitioned 
data (i.e. when parties hold the different data on the same 
individuals), a similar result can be achieved by resorting 
to an external third party that gets access to all identifi-
ers, replaces them with pseudonyms, and then ensures 
that the data features from all involved organizations 
are linked to each other. These methods thus ensure 
that only feature data are revealed, instead of identifi-
ers. However, feature data can often uniquely identify 
an individual, especially if other, related data is acquired 
through public sources, as shown in several studies [5, 6]. 
Thus in practice, data anonymization and pseudonymiza-
tion offer little guaranteed on the protection of the iden-
tity of individuals involved in collaborative data analysis.

A more sophisticated and popular approach consists 
of federated learning, where algorithms are trained on 
decentralized devices or servers, each possessing its own 
data, by only exchanging intermediate model coeffi-
cients with each other. Federated learning promises great 
potential to facilitate big data for medical application, in 
particular for international consortia [7].

An example of federated-learning architecture is pro-
vided by the Personal Health Train (PHT) [8], which core 
idea is to keep data at the original sources and to let the 
analytical tasks “visit” these data sources and perform 
data analysis tasks locally.

Both federated learning and the PHT work fairly 
straightforward for horizontally-partitioned data (where 
institutions hold the same type of data on different 3  https://​www.​bigme​dilyt​ics.​eu/.

1  https://​gdpr-​info.​eu/.
2  https://​www.​govin​fo.​gov/​conte​nt/​pkg/​PLAW-​104pu​bl191/​pdf/​PLAW-​
104pu​bl191.​pdf.

https://www.bigmedilytics.eu/
https://gdpr-info.eu/
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
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individuals), while vertically-partitioned data remains a 
challenge to be tackled.

Cryptographic solutions such as MPC typically over-
come these limitations, but with an inherent overhead 
in terms of computation time and communication vol-
ume compared to non-cryptographic solutions, and typi-
cally have a lower technology readiness level. Specific 
applications in the medical domain cover a wide range, 
including, for instance, disclosure of case counts, while 
preserving confidentiality of healthcare providers  [9], 
sharing insights on the effectiveness of HIV treatments, 
while preserving both privacy of involved patients and 
confidentiality of practitioners’ treatment choices  [10]; 
privacy-preserving analysis of hospital workflows  [11]; 
secure genome study  [12]; and secure distributed logis-
tic regression for medical data [13]. Compliance of MPC 
techniques with the GDPR has been discussed in [14].

We present in more details MPC solutions with a simi-
lar scope as ours in the following sub-section.

Cryptographic techniques for dataset combination 
and secure regression
A first challenge in secure distributed data analysis lies in 
the combination of different datasets: namely, different 
institutions hold, in general, data on different individuals, 
and a first challenge lies in determining which individuals 
lie both datasets, and retrieving their relevant features. 
Various work has been done on “secure set intersection” 
(also referred to as “private set intersection”)  [15–18], 
where the different involved parties learn which indi-
viduals lie in all datasets, but it is guaranteed that no 
information on individuals outside the intersection will 
be revealed. To the best of our knowledge, however, no 
previous work has been published that describes a secure 
inner join solution, where individuals in the intersection 
are determined, but not revealed, and where the corre-
sponding feature values are associated to each individual. 
Notice that a secure inner join is a fundamental step for 
realistic deployment of a secure data analysis solution, 
since the identity of individuals in the intersection of 
datasets is, in general, personal (and thus protected) data.

Concerning securely training a linear regression model 
on distributed data, a lot of work has been done on a vari-
ant of linear regression known as Ridge regression. In lin-
ear regression, one aims to find a “coefficient” vector, such 
that the linear combination of feature values with the coef-
ficients yields roughly the value of another, “target” feature. 
Such a linear combination cannot, in general, be exactly 
equal to the target feature: Ridge regression is a relatively 
straightforward method that aims to find a coefficient 
vector that minimizes this gap, while also preventing the 
obtained coefficient models from being biased towards the 
training features values (and thus poorly predict the target 

feature for new data). Ridge regression is typically solved in 
either of two ways: by solving the normal equations, or by 
minimizing the objective function in a more general fash-
ion, e.g. by application of the Gradient Descent algorithm. 
The privacy-preserving implementations [19–26] all train 
a Ridge regression model by solving the normal equations, 
which is in turn performed through matrix inversion. Pri-
vacy is often preserved by using homomorphic encryption 
techniques  [20–23], yet there are also implementations 
that make of use of secret sharing  [19], or of garbled 
circuits [24].

In contrast to the normal-equations approach, we 
chose for the secure Gradient Descent approach. The 
works of  [27, 28] all present privacy-preserving Gra-
dient Descent solutions to train Ridge regression 
models. In [28] and [27] the authors focus on vertically-
partitioned data. Finally, the authors of [27] train a linear 
regression model via a variation of the standard Gradient 
Descent method, namely conjugate Gradient Descent.

The solution that we present in this article focuses on 
another linear regression method called Lasso; to the best 
of our knowledge, no previous work has been published 
on secure Lasso regression. Lasso is similar to Ridge in 
that it tries to minimize the gap between the target fea-
ture and the linear combination of the other features 
with the coefficient vector, but it also discards features 
of little impact on the target feature by pushing the cor-
responding coefficient to zero. This means that once the 
model has been (securely) trained, less data are needed 
to evaluate the model. This is a very desirable property 
for a healthcare-prediction scenario, and in particular for 
the identification of high-impact factors for heart failure, 
as described at the beginning of this section: gathering 
and using only the data that is strictly necessary to apply 
the model is important to comply with privacy regula-
tions and their data-minimization requirements. In [4] it 
is even shown that for the prediction of the survival of 
heart-failure patients, training a model on two features 
alone can yield more accurate predictions than those 
made using all available features.

Our contributions
We present a solution for (1) computing a secure inner 
join of two datasets and, (2) securely training a Lasso 
regression model on the obtained (encrypted) data. To the 
best of our knowledge, both these contributions are novel.

Both components of our solution are essential: the 
secure inner join ensures that individuals in the overlap 
of the two datasets can be determined (but not revealed) 
together with their feature values, and the Lasso regres-
sion allows for minimizing the number of features that 
have an impact on the model, thus meeting the pro-
portionality and data-minimization requirements for 



Page 4 of 16van Egmond et al. BMC Med Inform Decis Mak          (2021) 21:266 

subsequent non-encrypted application of the model to 
identify high-risk patients.

In both components, we assume that a third, “helper” 
party joins the computation. The helper party does not 
supply any input and does not learn the input data of the 
other parties nor the outcome of the model, but its inclu-
sion allows for a very efficient design. Namely, we are able 
to use efficient techniques such as hashing for the secure 
inner join, as opposed to the expensive polynomial-eval-
uation techniques typically required in a two-party set-
ting; for what concerns the secure Lasso regression, we 
can make use of the MPyC framework, which requires at 
least three parties to guarantee security.

Our solution is tailored to the heart-failure use-case 
described above, and involves Achmea and Eramus MC 
as data parties and healthcare information intermedia-
tion company ZorgTTP as helper party. We installed our 
solution on a test infrastructure of the three involved par-
ties, generated artificial data, and tested the performance 
in terms of quality of the obtained model and efficiency. 
Both aspects are fully satisfactory, the secure solution 
showing a difference in objectives of 0.004 with a stand-
ard, non-secure solution (in scikit-learn), and requiring 
less than one hour to compute the inner join and Lasso 
coefficients of two datasets, consisting of 5000 records 
each, and 30 features in total.

Outline
The rest of the article is organized as follows. The "Meth-
ods" section is divided into two parts: the first one (sec-
tion "Description of the desired functionality") illustrates 
the functionality that we aim to achieve (inner join and 
Lasso regression), but without taking security and pri-
vacy considerations into account. These are discussed 
in the following section "Description of the secure solu-
tion", which shows how our solution securely imple-
ments the functionality of section  "Description of the 
desired functionality". The  "Results" section discusses 
what our solution achieves in terms of security (sec-
tion  "Security results"), efficiency (section  "Running 
time"), and quality of the obtained regression model (sec-
tion "Performance and accuracy results"). We discuss the 
impact and possible improvements of our work in sec-
tion  "Discussion", and we end with the conclusions in 
section "Conclusions".

Methods
Description of the desired functionality
We first discuss the details of the functionality that 
we aim to realize. Privacy and security aspects are not 
considered here, and will instead be discussed in sec-
tion "Description of the desired functionality", following 
the same structure as the current section.

Description of the setting and data formatting
We begin with the general set-up and a description of the 
format of the input data. In our setting, two data-provid-
ing parties are involved: a healthcare insurance company, 
Achmea (often shortened to AC), and a university hospi-
tal, Erasmus MC (which will often be shortened to EMC). 
We assume that each party owns a dataset where several 
features of various customers/patients are contained. Each 
row in the dataset corresponds to a customer or patient, 
and we refer to it as a record. Specifically, we denote the 
dataset of Achmea, and its element, as in Table 1, and we 
denote by A its set of identifiers {a1, a2, . . .}.

The dataset of Erasmus  MC, on the other hand, is 
depicted as in Table  2, and we denote by B the set of 
identifiers {b1, b2, . . .}.

Before discussing the properties of identifiers and fea-
tures, we stress the fact that the research described in 
this article did not use any actual identifiers or features 
corresponding to existing individuals. For the running 
time, accuracy and performance experiments, synthetic 
data was created or existing public data sets were used. 
More details can be foud in "Results" section.

It is assumed that identifiers in A and in B are of the same 
type; for simplicity, one may think of them as the social 
security number of a customer/patient. In particular, if ai 
and bj refer to the same person, then ai = bj . Notice that 
we are actually interested in the intersection of A and B , as 
we want to train a regression algorithm on all features.

For what concerns the features, both α(i) and β(j) are 
assumed to be numerical or Boolean. One of the features 
serves as a target: intuitively, we aim to predict its value 
as a function of the other feature values. We formalize 
this intuitive goal in the following sub-sections.

Inner join of the data
In order to find a correlation among different features, a 
first necessary step is to identify which features belong 

Table 1  AC dataset

Identifier Feature α(1) ... Feature α(ℓ)

a1 α
(1)
1

... α
(ℓ)
1

a2 α
(1)
2

... α
(ℓ)
2

.

.

.
.
.
.

.

.

.
.
.
.

Table 2  EMC dataset

Identifier Feature β(1) ... Feature β(m)

b1 β
(1)
1

... β
(m)
1

b2 β
(1)
2

... β
(m)
2

.

.

.
.
.
.

.

.

.
.
.
.
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to the same customer/patient. Namely, not every per-
son of Achmea is necessarily present in the database of 
Erasmus MC (as not all customers of AC took part in the 
social and behavioral study of EMC), and vice versa. In 
mathematical terms, and in the notation defined above, 
A  = B (in general).

Therefore, the two parties need to a) compute A ∩ B 
(i.e. identify which persons are represented in both data-
bases), b) ensure that α(·)

i  and β(·)
j  are identified for all i 

and j such that ai = bj ∈ A ∩ B (i.e. assign to each iden-
tifier in the intersection the corresponding features). In 
Tables  3 and  4, an example of the aimed result of this 
intersection is shown, inspired by the heart-failure use-
case presented in the background section.

More abstractly, Table  5 would therefore be obtained, 
using the notation of Tables 1 and 2.

This type of operation is commonly referred to as Inner 
Join in the field of database management [29].

The next step is to train a regression algorithm on the 
data contained in Table 5. We remark that, at this point, 
the identifier column is no longer necessary, and indeed 
will play no role in the regression step.

Lasso regression algorithm
Given Table  5, we are now interested in finding a way of 
expressing a given feature (the number of hospitalization 
days) as a linear combination of the other features, or as an 

approximation of such a linear combination. This is accom-
plished by training a linear regression model on Table 5. In 
this subsection, we discuss the details of this process.

A linear regression problem can be informally 
expressed by the following question: for a known matrix 
X ∈ R

n×m , where n is the number of records and m is 
the number of features, and target vector y ∈ R

n×1 , can 
we find a weight vector w such that the equality Xw = y 
is satisfied? In general the system is over-determined 
and there exists no solution. Instead, one aims to find 
w , such that some function of the approximation error 
vector Xw − y (and possibly some other arguments) is 
minimized.

The straightforward form of this problem focuses 
on minimizing the ℓ2-norm �Xw − y�22 , where 
�x�22 :=

∑

i x
2
i  ; this is known as (ordinary) least squares 

linear regression (OLS)  [30]. Typically, a so-called regu-
larization term is added to this target value; for instance, 
Ridge regression  [31, 32] uses the ℓ2-norm of the 
weight vector, and therefore tries to minimize the value 
�Xw − y�22 + ��w�22 , for a fixed constant � > 0 . The goal 
of such a regularization term is to ensure that the weight 
vector has small values, thereby making the overall model 
more manageable and reducing the risk of overfitting 
(i.e. reducing the risk that the model is too tailored to the 
data X, y and poorly predicts values based on new data).

We choose instead for Lasso (Least Absolute Shrink-
age and Selection Operator) [33, 34], which automatically 
discards features of little impact on the target vector. This 
is a desirable feature for the use-case described in the 
Background section, as it is important to focus on factors 
that have the greatest impact on hospitalization days, in 
order to minimize data collection for subsequent usage 
of the obtained model. Furthermore, reducing the num-
ber of used features results in a more easily explainable 
model, thereby increasing the acceptance by end-users. 
Lasso tries to minimize the following objective function:

where �w�1 =
∑n

i=1 |wi| , and where � > 0 is a user-cho-
sen parameter known as regularization parameter. Note 
that this method reduces to OLS, if � is set to zero. In our 
set-up we use a proximal gradient descent algorithm to 
minimize the objective.

(1)F(w) =
1

n
�Xw − y�22 + ��w�1,

Table 3  Achmea and Erasmus  MC example datasets, 
respectively

Identifier Hospitalization days Identifier Hours of exercise per 
week

000000 10 000000 0

111111 5 111111 2

555555 8 777777 1

777777 9 999999 3

Table 4  Inner Join example

Identifier Hospitalization days Hours of exercise per week

000000 10 0

111111 5 2

777777 9 1

Table 5  Inner-join dataset

Identifier Feature α(1) ... Feature α(ℓ) Feature β(1) ... Feature β(m)

ai1 = bj1 α
(1)
i1

... α
(ℓ)
i1

β
(1)
j1

... β
(m)
j1

ai2 = bj2 α
(1)
i2

... α
(ℓ)
i2

β
(1)
j2

... β
(m)
j2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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Gradient descent approach
Gradient Descent (GD) is a general optimization algo-
rithm that finds a local minimum of an objective func-
tion. The algorithm takes repeated steps in the opposite 
direction of the (approximate) gradient of the objective 
function at the current point. In that way it moves to the 
direction of steepest descent. GD is a building block for 
many different models, including Ridge Regression and 
Support Vector Machine. The GD algorithm is described 
in Algorithm 1. We will now describe the parameters and 
functions in this algorithm.

Algorithm 1: Gradient Descent Algorithm
input : X,y, maxIter, tolerance, λ
output: w

wold = 0, η0 = 0.1
max(XtX) ;

for epoch in 1 to maxIter do
η = η0

epoch+1 ;
g = CalcGradient (X,y,wold);
wnew = wold − θg;
w = Proxy(wnew, λ);
if UpdateDifference(wold,wnew) < tolerance then

break

return w

Stopping criteria. The algorithm can stop for two rea-
sons: either because it has reached the limit of iterations 
set by maxIter , or when the model has been trained “suf-
ficiently”. The latter factor can be quantified by measuring 
the relative or absolute change in the objective function 
and comparing this change with a pre-set treshold. Since 
the secure evaluation of an objective function is compu-
tationally intensive, we compare with a treshold the fol-
lowing value, known as update difference:

The model is then said to be sufficiently trained when this 
value is smaller than a pre-set value known as tolerance.
CalcGradient and Proxy In the GD algorithm, we 

repeatedly calculate the gradient CalcGradient . Because 
of the ℓ1-norm in (1), the objective function for Lasso is 
non-differentiable. We therefore use the technique of 
proximal gradient descent, that can optimize a function 
that is not entirely differentiable. We therefore first com-
pute a gradient function over the first part of the objec-
tive function in (1),

then approximate the gradient of the second part of (1) by 
applying a proximal function Proxy on w . The ith compo-
nent of Proxy(w, �) is given by the following expression:

(2)

UpdateDifference(wnew,wold) =
||wnew − wold||

2
2

||wold||
2
2

.

(3)CalcGradient(w) :=
2

n
XT (Xw − y),

Step size η . An important parameter when using Gradient 
Descent is the size of the steps. If the step size is too 
small, the algorithm will need too many iterations, while 
if it is too large, the algorithm will never converge. In 
Algorithm  1, the step size decreases in every iteration, 
such that the weight vector converges. The initial step-
size is typically a user-chosen parameter; however, if it 
depends on the input data, then it needs to be calculated 
securely. For example, one could choose η0 = 0.1

max(XtX)
 , 

of which we explain the secure calculation in sec-
tion "Secure lasso regression".

Goodness of fit. To test the performance of Lasso 
Regression we can use different goodness of fit measures, 
such as the mean squared error, the mean absolute error 
or the coefficient of determination R2 . As an example for 
the secure implementation, we focused on the last meas-
ure. R2 provides a measure of how well observed out-
comes are replicated by our prediction model, based on 
the proportion of total variation of outcomes explained 
by the model. The range of R2 is [−∞, 1] , where 1 indi-
cates the best fit. We calculate R2 as follows. First, we 
define the value ȳ as the mean of the observed target data 
yi , i.e. ȳ = 1

n

∑n
i=1 yi . We then denote by ypred the vector 

of the values predicted by the model, and define

This coefficient is important for determining the right 
regularization parameter � . In practice, one will have to 
run the Lasso regression multiple times with different � , 
to find the optimal model with the highest R2.

Description of the secure solution
Aim and assumptions
The goal of this section is to show how the functional-
ity described in "Description of the desired functional-
ity" section   can be realized in a secure way: this means 
that while both parties will learn the output of the Lasso 
regression (i.e. the model coefficients) trained on the 
inner join of their datasets,4 no other information on the 
datasets of each party will be disclosed to any other party.

Our secure solution involves a third party, which does 
not supply any input, and does not receive any output 
(except from the size of the intersection of the two data-
sets). For our Proof of Concept, this third-party role is 
taken by ZorgTTP, a company that offers consultancy 

(4)Proxy((w, �)i) :=







wi − �, if wi > �,
0, if |wi| ≤ �, and
wi + �, if wi < −�.

R2 = 1−

∑n
i=1(yi − y

pred
i )

∑n
i=1(yi − ȳ)

.

4  To be completely precise, we also reveal the size of the intersection of the 
two datasets to the involved parties.
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and practical solutions on the topic of privacy-preserving 
data analysis in the healthcare sector. The addition of 
such a party has two benefits, relating to the two steps of 
our solution: secure inner join and secure Lasso regres-
sion. For the first step, the presence of a third party 
allows us to design a custom, highly efficient protocol; for 
the second step, we are able to use the MPyC library [35], 
that provides useful building blocks but requires at least 
three parties to guarantee security.

Before discussing the details of our solution, we give a 
brief introduction to Secure Multi-Party Computation. 
Notice that we chose to present cryptographic concepts 
with a focus on intuition, so as not to burden the reader 
with an unnecessary level of formalism. The reader can 
refer to  [36, 37] for a more formal discussion of general 
cryptographic concepts (including cryptographic hash 
functions, homomorphic encryption, and secret sharing), 
and to  [38, 39] for an in-depth discussion of MPC and 
Secret Sharing.

Introduction to secure multi‑party computation
Assume n parties P1, . . . ,Pn hold private inputs x1, . . . , xn . 
An MPC protocol is an interactive protocol that allows 
the parties to compute the value f (x1, . . . , xn) of a func-
tion f on their inputs, without revealing any other infor-
mation to each other on their inputs. Notice that the 
private inputs are not necessarily just a single element, 
but could actually consist of an entire dataset. Moreover, 
not all parties need to supply an input, and not all parties 
should receive an output; the addition of these “data-less” 
parties (such as ZorgTTP in our case) allows protocols 
to achieve better efficiency, or to use techniques which 
would be insecure with a smaller number of parties.

Secure inner join
As outlined in section  "Inner join of the data", in order 
to realize a protocol that securely implements our desired 
functionality, the first step to be performed is to compute 
the so-called inner join of the datasets of Achmea and 
Erasmus MC. Namely, we need to obtain a database with 
the identifiers that are present in both the datasets of 
Achmea (AC) and Erasmus MC (EMC), and with the cor-
responding features coming from both datasets. Notice 
that we do not wish to reveal the dataset obtained in this 
way to any party, as it would still contain highly sensitive 
personal data (in case of application involving real data). 
The inner-join database will thus remain secret  —  yet 
computing the coefficients of a Lasso regression model 
on this secret dataset will be possible.

We first give a brief overview of the cryptographic 
building blocks that are used for this phase, and then pre-
sent our solution.

Cryptographic Building Blocks. Our solution makes use 
of three core components: (keyed) cryptographic hash 
functions, (additively) homomorphic encryption, and 
2-out-of-2 secret sharing.

•	 Hash functions. A cryptographic hash function is a 
deterministic function H : D → C , that maps any 
alphanumeric string s ∈ D , to another alphanumeric 
string H(s) = z ∈ C , called digest, of fixed length5 
Such a function enjoys the property that, given a 
digest z ∈ C , it is unfeasible to compute a string s 
such that H(s) = z . In our protocol, we compute the 
hash of values s that are concatenated with a random 
bit-string b , thus obtaining H(b‖s) . This ensures that 
a party with no knowledge of b is unable to recover 
s from its hash with a brute-force attack; in crypto-
graphic terms, it is a simple form of keyed hashing.

•	 Homomorphic encryption. An (additively) homo-
morphic encryption scheme is a public-key encryp-
tion scheme, thus consisting of a key-generation 
algorithm KeyGen , an encryption algorithm Enc 
and a decryption algorithm Dec . For a keypair of 
public and secret key (pk, sk) generated by KeyGen , 
we have that Encpk takes as input a message m 
and some randomness r, and produces as output 
a ciphertext c = Encpk(m, r) , with the property 
that Decsk(c) = m , and that no information what-
soever can be extracted on m or sk from c and pk ; 
in formal terms, the encryption scheme is IND-
CCA1 secure. In order to simplify notation, we 
will often omit the key and randomness when dis-
cussing encryption, and write [m] := Encpk(m, r) ; 
moreover, we implicitly assume messages to be 
numeric values, so that addition and subtraction 
of messages are well-defined. The scheme is sup-
posed to be additively-homomorphic, which means 
that there exists special operations on ciphertexts 
⊞ and ⊟ , such that [m1]⊞ [m2] = [m1 +m2] , and 
[m1]⊟ [m2] = [m1 −m2] for all messages m1,m2.

•	 2-out-of-2 secret sharing. This building block can be 
seen as a form of key-less encryption, distributed 
among two parties, and works as follows: given a 
secret (numerical) value s, two elements s1 and s2 
called shares are randomly sampled, but subject to 
the condition that s1 + s2 = s . Then s1 is assigned to 
a party, and s2 to another party; in this way, each 
party has individually no knowledge of s (since the 
share si that they have is a random number), but the 
original secret value s can be reconstructed, when 
the two parties cooperate and communicate their 
shares to each other.

5  Domain and codomain do not need, strictly speaking, to consist of alphanu-
meric strings, but we restrict to this situation for simplicity.
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The Secure Inner Join Solution. The presence of a third 
party (ZorgTTP) allows us to design a novel, highly effi-
cient protocol for secure inner join, which we believe to 
be of independent interest. ZorgTTP is taking care of 
the communication between the two data holders, but 
is not allowed to learn any data other than the cardi-
nality of the intersection. The goal is for AC and EMC 
to obtain a secret-shared version of the features from 
Table  5. Our secure inner join protocol between AC, 
EMC, and ZorgTTP uses cryptographic hash functions, 
and both AC and EMC have an (additively) homomor-
phic encryption key pair; we used SHA-256 [40] as hash 
function and the Paillier homomorphic-encryption 
scheme  [41] in our implementation. Both public keys 
are communicated to the other involved parties, so that 
everyone can encrypt and perform homomorphic oper-
ations on ciphertexts; denote by [x]AC a value encrypted 
under the public key of AC, and by [x]EMC a value 
encrypted under the public key of EMC. The main idea 
is as follows: 

1	 AC and EMC randomly permute the rows of their 
datasets.

2	 AC and EMC jointly generate a random bit string, 
not known to ZorgTTP, for the cryptographic hash 
function.

3	 Using the hash function and the random string, 
both AC and EMC hide the identifiers from their 
own databases, and send the obtained hashes to 
ZorgTTP. AC and EMC then use their own public 
key to homomorphically encrypt the feature values 
of their records, and send the resulting ciphertexts 
to ZorgTTP. For simplicity, we assume here that AC 
and EMC have only one feature each. More features 
can be processed by a simple repetition of the steps 
below; the reader can refer to Table 6 below for a vis-
ual representation of the data sent to ZorgTTP, and 
to “Appendix” section for the details.

4	 ZorgTTP computes how many hashed identifiers 
from AC also appear among the hashed identifiers 
of EMC; denote by k this value. Due to the proper-
ties of cryptographic hash functions, k is equal to the 
number of records in the intersection of the data-

sets of AC and EMC, and ZorgTTP learns no other 
information on the identifiers. For simplicity, we 
assume k = 1 . In case k is larger, the steps below can 
be repeated, ZorgTTP properly linking the attrib-
utes with overlapping hashed identifiers; once again 
a more detailed description can be found in “Appen-
dix” section. Note that, at this point, ZorgTTP holds 
the encrypted features of this record, which we 
denote by [α]AC and [β]EMC.

5	 Both AC and EMC generate a random value, denoted 
by s and z respectively.

6	 Both AC and EMC use the public key of the other 
party to homomorphically encrypt their shares, thus 
obtaining [s]EMC and [z]AC , and they then send these 
ciphertexts to ZorgTTP.

7	 ZorgTTP computes [α]AC ⊟ [z]AC = [α − z]AC and 
sends this to EMC. Similarly, ZorgTTP computes 
and sends [β − s]EMC to AC. Table 7 below visualized 
the data obtained and computed by ZorgTTP.

8	 AC and EMC decrypt the received values and obtain 
β − s and α − s , respectively. Note that we have thus 
obtained a 2-out-of-2 sharing of α and β among EMC 
and AC, since AC still holds s and EMC still holds z. 
This outcome can be seen in Table 8.

To ensure that the decrypted differences (in step 9) reveal 
no information on the feature values, the randomly gen-
erated shares (in step 6) need to be sufficiently large.

Secure lasso regression
Once the steps of Paragraph  "Secure inner join" section 
have been performed, we obtain a “2-out-of-2 secret-
shared” version of Table  5: namely, Achmea and Eras-
mus MC each have a table filled with apparently random 
numbers, but if they were to add up the corresponding 
numbers, they would obtain exactly Table 5.

Recall that our purpose is to train a linear regression 
model — specifically, Lasso — on this table. Now letting 
Achmea and Erasmus MC communicate their datasets to 

Table 6  Encrypted data sent to ZorgTTP by AC and EMC, 
respectively

Hashed identifier Encrypted 
feature α

Hashed identifier Encrypted 
feature β

H(a1‖r) [α1]AC H(b1‖r)
[

β1
]

EMC

H(a2‖r) [α2]AC H(b2‖r)
[

β2
]

EMC
.
.
.

.

.

.
.
.
.

.

.

.

Table 7  Encrypted data obtained and intersected by ZorgTTP

Matching identifiers Feature α Feature β Value AC Value EMC

H(ai�r) = H(bj�r) [α]AC
[

β
]

EMC
[α − z]AC

[

β − s
]

EMC

Table 8  Final tables of secret-shares obtained by AC and EMC, 
respectively

α-share β-share α-share β-share

α − z s z β − s
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each other in order to reconstruct Table 5, and then train 
the regression model, is clearly not an option: the infor-
mation that they would obtain consists of personal data, 
the exchange of which has to be prevented.

Instead, we present a solution that is able to compute 
the regression coefficients from the two datasets, without 
leaking information on their content.

The fundamental building block that allows us to design 
and implement this solution is Shamir Secret Sharing. 
We make use of the software platform MPyC [35], which 
implements this form of secret-sharing, and other useful 
communication and computation tools. We present the 
relevant properties and features of MPyC and Shamir 
Secret Sharing in the next section, and then discuss how 
these are used in our solution.

Shamir Secret Sharing As mentioned above, the 
core component of MPyC is Secret Sharing due to 
Shamir [42]. Shamir Secret Sharing can still be seen as a 
form of key-less distributed encryption, but the number 
of involved parties and the privacy and reconstruction 
guarantees are different. Instead of discussing Shamir 
Secret Sharing in its full generality, we focus here on the 
regime of parameters which is relevant for our purposes, 
called (1, 3)-Secret Sharing.

Given three parties P1,P2,P3 , a (1,  3)-secret-sharing 
scheme (denoted by SSS for short) consists of two algo-
rithms, namely a sharing Share and a reconstruction 
algorithm Rec . Share is, in general, randomized, and 
on input a given (secret) value s, it outputs three ele-
ments s1, s2, s3 called shares. Typically, any party can use 
the sharing algorithm to obtain shares of a secret value 
of their knowledge, and they will then distribute these 
shares to the parties, with party Pi receiving share si . The 
Rec algorithm tries to invert the process: on input three 
elements s1, s2, s3 , it outputs a value s or an error message 
⊥ , indicating that the reconstruction failed.

A (1,  3)-SSS enjoys 1-privacy: no information on 
the secret value s can be extracted from an individual 
share si . On the other hand, two or more shares allow 
to unequivocally reconstruct s (2-reconstruction), i.e. 
Rec(si1 , si2) = s.6 The “1′′ in (1, 3)-SSS thus refers to the 
privacy threshold, while the “3′′ refers to the total number 
of parties.

Such a secret-sharing scheme can be used to con-
struct MPC protocols: assume that the three involved 
parties (Achmea, Erasmus  MC, and ZorgTTP) have 
access to a (1,  3)-SSS. Let us assume that parties wish 
to perform some computation on a value α (held by 
Achmea) and β (held by Erasmus  MC). The three par-
ties can then proceed as follows: first, Achmea secret-
shares α , i.e. computes (α1,α2,α3) = Share(α) , such 

that Achmea, Erasmus  MC and ZorgTTP will receive 
α1,α2,α3 , respectively. Notice that by 1-privacy, no infor-
mation on α is leaked at this point. Erasmus  MC then 
similarly secret-shares β , i.e. computes and distributes 
(β1,β2,β3) = Share(β).

The key property now is that for any operation that the 
parties wish to perform on the values α and β , there exists 
a corresponding operation that can be performed on the 
shares αi,βi , resulting in some other sharing s1, s2, s3 , in 
such a way that no information at all is leaked on α , nor 
β . It is important to remark that these operations typi-
cally involve all shares and may also require some form 
of communication among the three parties. While opera-
tions such as sum can be straightforwardly be evaluated, 
multiplications are typically more involved; MPyC makes 
use of a relatively standard protocol where players locally 
multiply shares, then re-share the obtained values and 
apply a Lagrange interpolation function on the received 
shares [43, 44].

It then becomes possible to evaluate a complex algo-
rithm such as Lasso regression on several features of 
Achmea and Erasmus MC: parties can secret-share their 
features, then decompose the Lasso regression into basic 
operations, and perform the corresponding operations 
on the shares. Eventually, they will obtain shares of the 
regression coefficients; due to the 2-reconstruction prop-
erty, Achmea and Erasmus MC at this point simply need 
to exchange their shares with each other and to evaluate 
Rec in order to obtain the coefficients.

A final remark of notable importance is that while sums 
and multiplications are, per se, sufficient to evaluate any 
algorithm, MPyC also supports a number of custom sub-
protocols to evaluate special operations in a much more 
efficient way. Notably, efficient systems are implemented 
to compute the maximum of two values and to evaluate 
the inner product of two vectors, and there is full support 
for fixed-point arithmetic operations; we refer to the pro-
tocol specifications [35] for the details.

Casting from 2-out-of-2 to Shamir Secret Sharing. Recall 
that once the steps in section  "Secure inner join" have 
been executed, parties obtain a 2-out-of-2 secret shar-
ing of the table which serves as input for the secure Lasso 
solution, and not the (1,3) secret sharing that is required 
for MPyC. The first step to be performed is thus to “cast” 
this 2-out-of-2 secret sharing to a (1,3)-Shamir sharing.

This is actually a fairly simple step, where only sum 
operations are required. Indeed, denote by x a 2-out-of-2 
share of Achmea and by y the corresponding 2-out-of-2 
share of Erasmus MC, which means that x + y = z , where 
z is some feature value of an individual record occuring in 
both datasets. Now Achmea can (1,3)-share x and Eras-
mus MC can (1,3)-share y, so that Achmea obtains x1 and 
y1 , Erasmus MC obtains x2 and y2 , and ZorgTTP obtains 

6  Formally, each share si should be supplied to Rec together with its index i, 
but we omit this to simplify notation.
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x3 and y3 . All parties have now have to locally add their 
shares, resulting in x1 + y1 , x2 + y2 , and x3 + y3 : these are 
valid (1,3)-shares of z = x + y that can be used in MPyC.

The Secure Lasso Regression solution. In order to explain 
our secure Lasso solution, we follow the blueprint of sec-
tion  "Lasso regression algorithm" and show how each 
step can be securely performed on secret shared data, 
using the techniques of section "Secure lasso regression".

•	 Secure Gradient Descent. Apart from the stopping 
criterion, CalcGradient , Proxy , step size η and good-
ness of fit R2 , all computations in Algorithm 1 are lin-
ear operations, and can thus be calculated on secret-
shared data as explained in section  "Secure lasso 
regression". We will now elaborate on these secure 
calculations.

•	 Secure stopping criteria. As explained in the cor-
responding paragraph in section  "Gradient descent 
approach", there are two possible stopping criteria: 
The first one is reaching the maximal number of 
iterations, and since maxIter is a public value, this 
criterion does not need to be implemented securely: 
The second criterion demands computing the update 
difference UpdateDifference , and compare this with 
the tolerance (which is a public constant). For effi-
ciency purposes, we chose not to implement all these 
steps securely. Instead, for every iteration we reveal 
the value of the update difference, and compare it 
with the tolerance in plaintext. To be more precise, 
recall that the update difference is given by the ratio 
between ||wnew − wold||

2
2 and ||wold||

2
2 : in order to 

calculate the update difference, we securely com-
pute both enumerator and denominator and then 
reveal their values. We believe the information leak 
of this step to be acceptable, especially given the per-
formance gain that is derived from it by avoiding the 
expensive secure division step.

•	 Secure CalcGradient and Proxy . In order to securely 
calculate the gradient of w , linear operations are 
used. We also make use of the custom sub-proto-
col for vector multiplication, as described in sec-
tion  "Secure lasso regression". In order to compute 
Proxy , we calculate two secret-shared bits, namely 
a = (wi > �) , and b = (wi < −�) , where (x < y) 
denotes the bit that is equal to 1, if x < y , and to 0, 
otherwise. We can then securely compute the follow-
ing linear operation over the shares of wi : 

 It is easy to see that this gives the same result as 
Eq. (4).

•	 Secure initial step size. Although the operations that 
we use for computing our choice of the initial step 

(5)Proxy(wi) = a · (wi − �)+ b · (wi + �).

size η0 (inner product and maximum) are compu-
tationally expensive, we only need to perform them 
once. Once again, we make use of the sub-proto-
cols for vector multiplications and maximum from 
MPyC.

•	 Secure goodness of fit. Once we have computed the 
weight vector of the prediction model, we aim to 
securely compute goodness-of-fit measures. As an 
example we implemented R2 . Recall that the defini-
tion of R2 is given by 

 With the shares of X , and the publicly-known coef-
ficients of w , we can calculate the shares of ypred . 
At this point, by using the secret-shared vector y , 
we can compute the numerator and denominator of 
1− R2 , reveal these values, and thus obtain R2.

Results
In this section we first present the security results of our 
solution. We then discuss the scalability results of our 
Proof of Concept, which was not performed on real data 
but did run on the actual infrastructure between Ach-
mea, Erasmus MC and ZorgTTP. Finally, we describe the 
performance of our implementation of the Lasso regres-
sion and the accuracy of the secure model.

Security results
The security of our solution is guaranteed under the fol-
lowing assumptions. First of all, we assume that any two 
parties are connected by secure channels; in practice this 
is done by means of SSL/TLS connections. We assume 
that parties do follow the instructions of the protocol; in 
cryptographic lexicon, they are thus assumed to be semi-
honest. Privacy is guaranteed, even if parties try to infer 
extra information from the data they sent and received as 
part of the protocol, though we assume that no party will 
collude with any other party and exchange information 
with them. Finally, we adopt the standard assumption 
that the involved parties are bounded by polynomial-time 
computations, and that factoring large integers is feasible 
under this constraint.

Under the above conditions, the solution we present is 
provably secure, in the sense that we can mathematically 
argue that the only information that will be revealed are 
regression coefficients, and the size of the intersection 
between the datasets of Achmea and Erasmus MC.

Running time
We implemented our solution in Python. In order to 
test the efficiency of our implementation, we ran several 

R2 = 1−

∑n
i=1(yi − y

pred
i )

∑n
i=1(yi − ȳ)

.
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experiments on three machines, under the control of 
Achmea, Erasmus  MC and ZorgTTP, respectively, and 
geographically separated.

The experiments include the secure inner-join computa-
tion and the protocol to securely train a Lasso regression 
algorithm as described in section "Description of the secure 
solution". Notice that we have not evaluated the efficiency 
of applying the Lasso model to new data, as it would be out-
of-scope for this article;7 For the same reason, no test data 
is extracted from these data artificial datasets.

All three (virtual) machines run a Linux-based operat-
ing system, and are equipped with a commercial-grade 
virtual processor (up to four cores at 2.4GHz) and with 8 
to 16 GB of RAM.

The solution was installed as a Docker image on all 
three machines. Connections within the machines were 
realized via HTTPs over TCP (for the secure inner join) 
and via the custom TCP protocol of MPyC. The connec-
tions were secured with TLS; certificates were created 
and installed on the machines to this end.

In order to test the efficiency of our solution, we sampled 
artificial datasets, using scikit-learn (with the datasets.
sample_generator.make_regression function-
ality, that creates a dataset of real numbers with a rougly 
linear dependency of the target features). We sampled 
datasets with an increasing number of records and fea-
tures, and ran several instances of our solution. The num-
ber of records (per dataset) was equal to 5, 100, 500, 1000, 
5000 and 10000, while the (total) number of features was 
equal to 1, 2, 5, 10, 30 and 40. We vertically split the data-
set into two datasets, with an (up to one difference) equal 
number of features and with a complete overlap in record 
IDs, i.e. the identifiers in the Achmea dataset were identi-
cal to those of the Erasmus MC dataset for each iteration.

For datasets with five records, we chose not to run 
instances with more than two features, as this regime of 
parameters would be highly unsuitable for a linear regres-
sion algorithm. Furthermore, the instance with 10.000 
records and 40 features could not be run due to the RAM 
limitations of the involved machines; we nevertheless 
believe that the instances we considered are sufficient to 
analyze the scalability of our solution.

Each instance was run 10 times; all figures presented 
in this article refer to the median time over these 10 
executions.

The total running time (thus encompassing both secure 
inner join and secure Lasso regression) is showed in in 
Figs.  1 and  2. Our solution thus takes roughly 3500 s, 

slightly less than one hour, to process two datasets with 
5000 records each and a total of 30 features. Moreover, 
the running time of our solution scales linearly in the 
number of records and features.

The running time of our solution is dominated by the 
Secure Lasso regression, the scalability of which is shown 
in Figs.  3 and  4. Just as for the total time, the running 
time of this phase also has a linear dependency on the 
number of records and of features.

Performance and accuracy results

Data
To test the performance and accuracy of our secure 
model, we use the “Medical Costs” dataset by Brett 
Lantz  [45]. This public dataset contains 1338 records of 
patients with 12 features each (including, among others, 
age, bmi, children, gender, medical costs), of which four 
are numerical, and eight are Boolean. We centered and 
scaled the data in advance, such that the feature values 
are comprised between 0 and 1. We also split into a train 
and a test set (10% of the data, randomly selected).
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Fig. 1  Total running time of the experiments as a function of the 
number of records (median values)

Fig. 2  Total running time of the experiments as a function of the 
number of features (median values)

7  In the healthcare-scenario that motivates this article, applying the model 
could arguably be performed without advanced cryptographic techniques, 
since the smaller amount of data needed would probably make direct data 
usage feasible and proportional (under appropriate informed consent). For 
this reason, we have decided not to focus on the application of the trained 
Lasso model.
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Performance of lasso regression
To test the performance of our solution we compare 
the results of our secure model with the non-secure 
scikit-learn Lasso model  [46]. Note that the secure 
inner join has no influence on the performance of the 
Lasso regression. Therefore, as input of our secure 
model, the data is secret-shared between the three par-
ties. The influence of the calculation on secret-shared 
values will be discussed in the next paragraph.

We train with our secure model on 11 features of the 
train set for predicting the (numerical) target feature 
of medical costs, by varying � and tolerance. We found 
the optimal choice, leading to a good fit ( R2 , mean 
squared error) and enough coefficients set to zero, to 
be � = 0.001 and tolerance = 0.0001 . For this choice of 
parameters, when training our secure model, we need 
26 iterations. Applying the trained model on our test 
set, we achieve an R2 of 0.70, a mean squared error of 
0.0086, a mean absolute error of 0.062 and an objective 
of 0.013. As a validation of the solving method that we 
used, we compare these results with the (highly opti-
mized) Lasso model of scikit-learn [46], using the same 

parameters. After the model was trained on the train 
set, on the test set we find an R2 value of 0.66, a mean 
squared error of 0.012, a mean absolute error of 0.082 
and an objective of 0.0090. Although the goodness-
of-fit measures of our secure model are better than 
the scikit-learn model, it has a larger objective value. 
In Tables 9 and 10 one can see that in the scikit-learn 
model, two more coefficients are set to zero, which 
is one of the aims of Lasso. Therefore, we can con-
clude that our secure model has a good performance, 
although the (highly optimized) scikit-learn model per-
forms slightly better.

Accuracy of the secure implementation
To compare the performance and accuracy of our 
secure model, we implemented the Lasso algorithm 
described in section  "Gradient descent approach" in a 
non-secure way. Although the steps in training both 
models are the same, a slight difference in outcome is 
to be expected, due to possible rounding errors of non-
integer, secret-shared values. This difference in objec-
tive values is less than 10−7 ; we consider this to be 
negligible for our research purposes.

Discussion
In light of the results shown in section  "Results", we 
conclude that our solution does provide a viable way of 
securely training a Lasso regression model on distributed 
patient data in a privacy-preserving way. In particular, 
the good quality of the obtained model, together with its 
satisfying efficiency in a fairly realistic set-up, make our 
solution a promising tool for privacy-preserving analysis 
of distributed patient data.

As future work, we have identified two main direc-
tions, namely, improvements to the solution and working 
towards a pilot on real heart-failure risk data.

Improvement to the secure solution
We identify several ways to further improve our solu-
tion. First of all, our solution was relatively efficient, the 
secure solution took less than one hour for the setting 
with 5000 records and 30 features. This should be fast 
enough for research purposes. However, while we deem 
our solution to be fast enough for research purposes, its 

Fig. 3  Running time of Lasso regression (training phase) of the 
experiments as a function of the number of records (median values)

Fig. 4  Running time of Lasso regression (training phase) of the 
experiments as a function of the number of features (median values)

Table 9  Comparison plaintext model and Sklearn Lasso: 
objective, R2 , mean squared error and mean absolute error

Model Obj R2 MSE MAE intercept

scikit-learn 0.0090 0.66 0.012 0.082 0.39

our secure model 0.013 0.74 0.008 0.062 0.18

Abs. diff. 0.004 0.08 0.004 0.020 0.21
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efficiency might need to be improved when working with 
very large datasets. Several approaches are possible in 
order to reduce running time, for instance implementing 
the solution in another programming language such as C, 
or making optimal use of parallelisation. Moreover, RAM 
usage could be reduced by supporting access to advanced 
database-management systems.

Also, we identified some opportunities to improve the 
quality of the model. Within this article, we assumed 
the data to be pre-processed, i.e. scaled and centered; a 
solution with a higher technology readiness level would 
need to securely implement this step. Moreover, next to 
R2 , more goodness-of-fit measures such as mean squared 
error and mean absolute error could be securely imple-
mented. This would enable parties to perform more 
quality checks on the model, and to choose a good regu-
larization parameter �.

Finally, while we focused on a situation where exactly 
two parties supply input data, and it would be interesting 
to extend our solution to more than two data-parties. The 
secure Lasso regression training poses no issue for such 
an extension, since MPyC supports a virtually unlimited 
number of parties, but the secure inner join would need 
to be re-designed, since it is tailored to the two-party-
with-helper setting. A step-by-step approach for this part 
could probably be realized, i.e. by first performing an 
inner join of the datasets of two parties and then using 
the outcome as input for another inner join with the third 
data party, and so on, but a thorough analysis is required 
to validate this approach and measure its performance.

Towards prediction of heart‑failure risk factors
Given the promising results obtained by our Proof of 
Concept, a future pilot with real patient data should be 
started, in order to establish the effectiveness of our 
solution for prediction of heart-failure risk on com-
bined datasets from Erasmus  MC and Achmea. The 
data needed for such an experiment is already stored 
at both parties. At Achmea, features express and quan-
tify, notably, the number of days a given customer 
was admitted to a hospital, and various other aspects 
such as comorbidities, marital status, and socio-eco-
nomic status. This information is stored as part of the 
standard procedures of health insurance companies. 

At Erasmus MC, on the other hand, features express 
and quantify social and behavioral aspects such as age, 
smoking, exercising, and alcohol consumption. This 
type of data has been collected by the Epidemiology 
department of Erasmus MC as part of a previous study 
performed on volunteers in the city of Rotterdam [3], 
of which a significant part are also ensured at Achmea. 
In a future pilot, we would aim to predict the num-
ber of hospitalization days as a function of the other 
feature values. Such a pilot would need to address 
both the technical challenges highlighted above (for 
instance, Achmea has data on more than five million 
individuals). But it should also focus on non-technical 
challenges, such as compliance and legal aspects, and 
ensure that employees and management are properly 
involved in the process and get acquainted with the 
used techniques, which constitutes a time-consuming 
process.

Conclusions
In this paper, we presented a secure and scalable solu-
tion for Lasso regression as a part of the European Big-
Medilytics project. The solution allows two parties, in 
this case Erasmus  MC and Achmea, to securely com-
pute the inner join of their respective datasets and to 
train a Lasso regression algorithm on the obtained 
dataset in a privacy-preserving way, assisted by health-
care information intermediation company ZorgTTP. 
No party learns any patient data, other than the num-
ber of overlapping patients from both datasets, the 
result of the regression, and some intermediate values 
of the regression algorithm, which we believe to be fully 
acceptable.

We implemented our solution on three computing 
nodes, running at separate machines, and located at dif-
ferent sites, under control of Achmea, Erasmus  MC, 
and ZorgTTP, respectively. The experimental results 
show that our implementation is reliable, accurate, and 
fast enough for research purposes. We conclude that 
our solution is a promising tool for privacy-preserv-
ing machine learning tasks on distributed patient data, 
potentially leading to an improvement of the quality 
of healthcare, while respecting the privacy of involved 
patients.

Table 10  Comparison plaintext model and Sklearn Lasso: coefficients

Model c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

scikit-learn 0.08 0.01 0 0 0 − 0.30 0 0 0 0 0

our secure model 0.17 0.10 0.001 0 0 − 0.19 0.18 0 0 0 0

Abs. diff. 0.09 0.09 0.001 0 0 0.11 0.18 0 0 0 0
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Appendix: Secure inner join protocol
This is a detailed version of the secure inner join proto-
col, described in “Aim and assumptions” section. Both 
AC and EMC get a key pair of an additively homomor-
phic crypto system, which keys are generated in the first 
step. In the second step a random key r is generated 
jointly between AC and EMC, without ZorgTTP learn-
ing it. This key is used for scrambling the identifiers and 

encrypting the private data in step 3. They are sent to 
ZorgTTP in step 4, together with the encrypted attribute 
values. In step 5 ZorgTTP looks for the matching indi-
ces of the scrambled identifiers, and obtains the intersec-
tion cardinality. In steps 6 and 7, AC and EMC generate 
their shares of the inner join table entries, and send them 
encrypted to ZorgTTP. In step 8, ZorgTTP computes the 
encrypted remaining shares, so AC and EMC can decrypt 
them.
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