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Summary 
 
In this work, we present a proof of concept for Bayesian full-waveform inversion (FWI) in 2-D. This 

is based on approximate Langevin Monte Carlo sampling with a gradient-based adaptation of the 
posterior distribution. We apply our method to the Marmousi model, and it reliably recovers important 

aspects of the posterior, including the statistical moments, and 1-D and 2-D marginals. Depending on 

the variations of seismic velocities, the posterior can be significantly non-Gaussian, which directly 
suggest that using a Hessian approximation for uncertainty quantification in FWI may not be 

sufficient. 
 

 



Approximate Langevin Monte Carlo with Adaptation for Bayesian Full-waveform Inversion

Introduction

Seismic full-waveform inversion (FWI) addresses the geophysical inverse problem of estimating subsur-
face model parameters from observed seismic data. The common approach to quantify and to analyse
the uncertainties is through Bayesian inference framework (e.g., Fichtner and Zunino, 2019; Fichtner
et al., 2019; Gebraad et al., 2020; Izzatullah et al., 2020). In this work, we focus on a scalable and com-
putationally sophisticated MCMC algorithm based on the Langevin diffusion process for a large-scale
Bayesian inference such as FWI. Inspired by the work of Kingma and Ba (2015) and Nemeth and Fearn-
head (2020), we aim to bridge the fields of optimization and Bayesian inference through approximate
Langevin Monte Carlo algorithm. This algorithm has advantageous computational costs in large-scale
problems because of its fast sampling, due to the absence of the Metropolis-Hastings acceptance crite-
rion.

We present a proof of concept for Bayesian full-waveform inversion in 2-D. This is based on approximate
Langevin Monte Carlo sampling with a gradient-based adaptation of the posterior distribution. We apply
our method to the Marmousi model, and it reliably recovers important aspects of the posterior, including
the statistical moments, and 1-D and 2-D marginals. Depending on the variations of seismic velocities,
the posterior can be significantly non-Gaussian, which suggests that using a Hessian approximation for
uncertainty quantification in FWI may not be sufficient.

Bayesian Inference Framework

To quantify uncertainties in FWI, we reformulate it within Bayesian inference framework. In Bayesian
framework, we introduce the notion of the prior probability density and the likelihood function. The
prior probability density πprior(m) encodes the confidence we have in the prior information on the un-
known subsurface model parameters m, and the likelihood function πlike(D|m) describes the conditional
probability density that the subsurface model parameters give rise to the actual seismic data D. Based
on Bayes’ theorem, we obtain the posterior probability density πpost(m|D) by combining the prior prob-
ability density and the likelihood function

πpost(m|D) ∝ πlike(D|m)πprior(m), (1)

where the posterior probability density πpost(m|D) can be evaluated up to its normalizing constant. Note
that to evaluate the equation above, particularly in high dimensions, maybe intractable to compute and
impossible to interpret. Thus, we refer to the MCMC algorithms for its evaluation.

Approximate Langevin Monte Carlo

At the basis of our proposed algorithm is a class of MCMC algorithms known as Langevin Monte Carlo
(LMC). LMC is originally derived from the Langevin diffusion process, which can be described by

dm(t) = Σ∇ logπ(m(t))dt +
√

2Σ
1
2 dW (t). (2)

where Wt for t ≥ 0 is a standard d-dimensional Brownian motion, and given Σ is a symmetric positive
definite preconditioning matrix. The evolution of m(t) is controlled by a deterministic drift term pro-
portional to the gradient of log-density π(m(t)). The Langevin diffusion in equation (2) is ergodic with
unique invariant distribution π , and if one could solve equation (2) analytically in the limit as time t goes
to infinity, then it would be possible to generate samples from a distribution π . However, in practice, to
simulate the Langevin diffusion, it is necessary to use a discrete approximation, such as Euler-Maruyama
discretization. This produces the Unadjusted Langevin algorithm (ULA) MCMC proposal

mt+1 = mt +λΣ∇ logπ(mt)+
√

2λΣ
1
2 ξ , (3)

where ξt ∼N (0,In×n) is d-dimensional vector of standard Gaussian random variable, and λ > 0 is a
temporal step size. ULA resembles the gradient descent algorithm but with injected Gaussian noise. It
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also belongs to the approximate MCMC family as it has no Metropolis-Hastings acceptance criterion in
its procedure. In addition, ULA with the acceptance criterion is known as Metropolis-adjusted Langevin
algorithm (MALA). ULA and MALA shares O(d) computational cost due to the gradient evaluation.
However, this computational cost will be a bottleneck for MALA as sample rejections rate increase,
especially in large-scale inference problems. This will give ULA an advantage as all the samples will be
accepted with probability one. In this work, we focus on ULA and introduce an adaption using a diago-
nal adaptive preconditioning matrix and an adaptive drift vector by exploiting the previously-computed
gradients in an online fashion to improve algorithm’s performance and efficiency. To emphasize the
understanding of the proposed algorithm, we use the following notation: �, �, and ◦

1
2 are element-wise

multiplication, division, and square root, respectively. Consider a set of samples m1, . . . ,mt and its
gradient g1, . . . ,gt produced by ULA. We may first forms an accumulation vector as:

γt =
t

∑
τ=1

β
τ−1 +(1−β )gτ �gτ (4)

The constant β ∈ [0,1] results in accumulation with exponentially decaying weights. Next, we use γt to
approximate the preconditioning matrix at mt as:

Σt = diag
(

1�
(

10−6 +(γt)
◦ 1

2

))
(5)

We observe that the computation of the preconditioning matrix Σt only uses previously computed gradi-
ents, and both computation and factorization only using simple scalar operations which save computa-
tional budgets. In addition to the preconditioning matrix, we introduce an adaptive drift vector in ULA
which can be computed as:

µt =
t

∑
τ=1

α
τ−1 +(1−α)gτ (6)

where α ∈ [0,1] controls the exponential decay of older gradients. Implementing the diagonal precon-
ditioning matrix and adaptive drift vector into ULA gives us an approximate Langevin Monte Carlo
algorithm with gradient-based adaptation. We present the pseudocode in Algorithm 1 below.

Algorithm 1 Approximate Langevin Monte Carlo with gradient-based adaptation
Input: Initial model m0, step size λ > 0, exponential decay rates α,β ∈ [0,1]
Output: N number of samples

Initialize γt = 0 and µt = 0
for t = 0 to N−1 do

Compute gradient: gt = ∇ logπ(mt)
Compute accumulation vector: γt+1 = βγt +(1−β )gt �gt

Compute preconditioning matrix: Σt+1 = diag
(

1�
(

10−6 +(γt+1)
◦ 1

2

))
Compute adaptive drift vector: µt+1 = αµt +(1−α)gt
Draw diffusion vector: ξt ∼N (0,In×n)

Sample: mt+1 = mt +λΣt+1�µt+1 +
√

2λ (Σt+1)
◦ 1

2 �ξt
end for

Numerical Example

We consider the Marmousi model with a domain size 3,000×11,000 m as in Figure 1(a). We discretize
the model with a grid spacing of 50 m, yielding 13,420 unknown parameters. At the surface, we place
55 sources and 110 receivers with a horizontal sampling interval of 100 m and 50 m, respectively. The
signal-to-noise ratio in the data is 0.059 dB, and the relative standard deviation of the observation noise
is 5%. We use a frequency content from 1 Hz to 4 Hz with uniform frequency sampling of 1 Hz. All
frequencies are used simultaneously in sampling procedure, no multi-scale strategy is applied.

For this problem, we set the data error covariance matrix CD = σ2
DID with σD = 0.003 and ID the identity

matrix. For the model prior, we use uniform distributions within certain bounds. The width of the prior
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reflects the minimum and maximum velocity values of the Marmousi model. We started sampling with
an initial model obtained by smoothing the true model with Gaussian kernel. In this numerical example,
we set α = 0.9, β = 0.999, and we consider a fixed step size λ = 0.0001. We perform the proposed
algorithm with 50,000 iterations. The number of iterations is set to be very large to guarantee we can
sample the target distribution neighbourhood.

The results of the proposed method are statistical assessments. We plot the statistical moments in Fig-
ure 1 below. The first statistical moment model is similar and very close to the true model. The variance
model quantifies the variations for the Bayesian inference. We observe small variation for the shallow
part of the model. This is because we have good data coverage and model illumination. However, as we
go deeper and towards the corners, we observe large variations. Those regions are poorly illuminated,
and the inferred velocities spread out over a wider range of values. The third statistical moment model
measures asymmetric or "non-Gaussianness" of a distribution. Nonzero values indicate a non-Gaussian
behaviour in the posterior. We observe that for many parameters, especially at the shallow region, in-
dicating a strong non-Gaussian posterior. In addition to the statistical moments, sampling also allows
us to visualize marginal and conditional distributions. We also plot the 1-D and 2-D marginal plots
in Figure 2. As a consequence of the nonlinearity of FWI, the marginal is significantly non-Gaussian.
This suggests that the use of a Hessian approximation for uncertainty quantification in FWI may not be
sufficient.

(a) True model
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(b) First Moment Model
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(c) Second Moment Model
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(d) Third Moment Model
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Figure 1 Statistical moments obtained from Bayesian FWI. (a) True model with the black crosses repre-
sent the chosen elements for selected posterior distributions, the 9709-th, 9729-th, and 9749-th elements,
respectively. (b) First statistical moment model (mean), (c) second statistical moment model (variance),
and (d) third statistical moment model (skewness).

Conclusions

We have introduced a scalable and computationally sophisticated MCMC algorithm for a large-scale
Bayesian inference such as FWI. We demonstrated the proposed algorithm for a Bayesian FWI in 2-D
Marmousi model. Our key ingredients are (1) diagonal preconditioning and (2) adaptive drift vector,
computed using only past gradients in an online fashion to improve the algorithm’s performance and ef-
ficiency. The proposed algorithm recovers important aspects of the posterior, which can be significantly
non-Gaussian. Consequently, this suggests that using a Hessian approximation for uncertainty quantifi-
cation in FWI may not be sufficient. In general, approximate LMC is still a relatively new class of Monte
Carlo algorithms compared to the traditional MCMC methods. There remain many open problems and
opportunities for further research in this area.
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Figure 2 Selected posterior distributions. Diagonal: 1-D distribution. Off-diagonal: 2-D bivariate
joint distributions. These 2-D marginals are extreme cases of non-Gaussian behavior in the obtained
posteriors. This suggests that using a Hessian approximation for uncertainty quantification in FWI may
not be sufficient.
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