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Abstrak 

Epilepsi adalah gangguan otak neurologis akibat aktivitas sel saraf yang terganggu 

yang ditandai dengan kejang berulang yang dapat disembuhkan dengan beberapa perawatan 

seperti obat-obatan, pembedahan, dan diet. Pemrosesan sinyal Electroencephalographic (EEG) 

mendeteksi dan mengklasifikasikan kejang ini sebagai salah satu jenis kelainan di otak dalam 

konten temporal dan spektral. Metode yang diusulkan dalam makalah ini menggunakan 

kombinasi proses dekomposisi dan ekstraksi fitur, yaitu coarse-grained dan dimensi fraktal. Hal 

ini dilakukan untuk  menjawab tantangan mendapatkan prosedur yang sangat akurat untuk 

mengevaluasi dan memprediksi sinyal EEG epilepsy menjadi kelas normal, interiktal, dan 

kejang. Hasil akurasi klasifikasi  tertinggi didapatkan dengan menggunakan variance fractal 

dimension (VFD) dan quadratic support machine vector (SVM) dengan skala 10 yaitu 99%, 

yang merupakan kinerja model prediksi yang sangat baik dalam hal tingkat kesalahan. Hasil ini 

menunjukkan bahwa mengkombinasikan procedure coarse-grained dan dimensi fraktal sesuai 

untuk mengklasifikasikan epilepsy dan sinyal EEG.  

 

Kata kunci—epilepsy, klasifikasi EEG, coarse-grained, dimensi fraktal, support vector machine 

 

 

Abstract 
  Epilepsy is cured by some offered treatments such as medication, surgery, and dietary 

plan. Epilepsy is a neurological brain disorder due to disturbed nerve cell activity 

characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects 

and classifies these seizures as one of the abnormality types in the brain within temporal and 

spectral content. The proposed method in this paper employed a combination decomposition 

process and feature extraction, namely coarse-grained and  fractal dimension. This 

method addresses the challenge of obtaining a highly accurate procedure to evaluate and 

predict the epileptic EEG signal of normal, interictal, and seizure classes.  The result of 

classification accuracy using variance fractal dimension (VFD) and quadratic support machine 

vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the 

predictive model in terms of the error rate. These results indicate that combining of coarse-

grained procedure and fractal dimensions is suitable for classifying epileptic in EEG signals. 

 

Keywords— epilepsy, EEG classification, coarse-grained, fractal dimension, support vector 

machine 
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1. INTRODUCTION 

 

Several types of brain disorders can be experienced by humans, such as dementia, 

stroke, epilepsy, Alzheimer's, and brain cancer. However, the most common brain disorder that 

most people suffer from is epilepsy. According to WHO, as many as 50 million people 

worldwide have epilepsy, so it is not wrong to say it is the most common brain disorder [1]. 

Epilepsy can affect anyone, from any background, and at any age. One of the characteristics of 

epilepsy is the presence of seizures that repeatedly occur in certain parts of the body or the 

whole body, which can also cause fainting and not being able to control bladder function. 

Several previous studies have classified EEG signals from epilepsy using various 

feature extraction methods. The studies including the multilevel wavelet-based entropy 

(MWPE) method with the highest accuracy of 94.3% [2], Katz Fractal with the highest accuracy 

of 98.7% [3], Higuchi Fractal Dimension (HFD) with the highest accuracy of 97.3% [4], 

Multidistance Signal Level Difference with the highest accuracy of 97.7% [5]. However, with 

the complexity of EEG signals from epilepsy, researchers continue to look for the best method 

for classifying EEG signals from epilepsy, including those carried out in this study. 

In addition to feature extraction methods, the classifiers used by previous researchers 

also vary, including support vector machine (SVM) [3], convolutional neural network [6], and 

deep learning [7]. Support Vector Machine is a classifier often used to detect and predict 

epilepsy [8][9]. Studies [8][9] show that SVM can have a sensitivity of more than 90% for 

predicting epilepsy. 

In this paper, we present a method to classify epilepsy. The technique combines the 

decomposition process and feature extraction, namely the coarse-grained procedure and the 

fractal dimension. The coarse-grained procedure is performed to divide the EEG signal into 

several scales. This procedure has been routinely employed in multiscale signals[10]. After 

being divided into several scales, the next step is extracting the feature of the decomposed signal 

using the fractal dimension. The fractal dimension is crucial because we need a measure for 

fractal complexity in the discussion of fractals. By using the fractal dimension, it is expected 

that the size of the self-similarity level of the EEG signal is assumed to be different for each 

type of EEG signal. Combining coarse-grained procedures and fractal dimension is expected to 

make signal differences at different scales more prominent. This research is expected to provide 

a new method to provide high accuracy for evaluating and predicting epilepsy on EEG signals. 

 

2. METHODS 
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Figure 1 shows the method used in this study. The EEG signal is entered in a coarse-

grained procedure to obtain several new signals with different scales. There are three scales 

used in this study, namely 10, 15, and 20. The purpose of using these different scales is to 

obtain optimal classification accuracy results. The decomposition signal's feature will be 

extracted using fractal dimension. The fractal dimension method used in this research is Box-

counting, Higuchi, Katz, Sevcik, and Variance fractal dimension. This fractal dimension step 

becomes essential in classifying EEG signal data because the calculation of the characteristics 

of the signal data will affect the accuracy of the classification method used. Furthermore, the 

value of this fractal dimension will be classified by Support Vector Machine (SVM) to be 

assessed as a normal, interictal, or seizure EEG signal. The SVM classification methods used in 

this study are Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian 

SVM. Each of these SVM methods has different parameter selection characteristics in 

classifying EEG signal data. The following subsections will explain the details of each process. 

At this time, many datasets can be accessed by anyone, one of which is the EEG Dataset 

from the University of Bonn[11]. Many previous studies[2], [3], [5] have used the EEG dataset. 

Likewise, in this study, we also used the EEG Dataset from the University of Bonn. The 

selection of the EEG Dataset includes a large number of data, namely 300 data with a total of 3 

classes, namely normal, epilepsy with seizures, and epilepsy without seizures. In addition, the 

data is free from artifacts noise because it was recorded using a sampling frequency of 173.61 

Hz and then filtered using a 40 Hz Low Pass Filter. Epilepsy 

data were derived from pharmaco-

resistant focal-onset epilepsy patients 

undergoing 

preoperative evaluation. 

The recorded EEG data from this 

epilepsy patient was recorded by the Department of Neurology 

at the University of Bern. Examples of signal data from normal, interictal, and seizure 

classes are shown in Figure 2. 
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Figure 1 Proposed method 

  
(a) (b) 

 
(c) 

Figure 2 (a) Normal EEG (b) interictal EEG (c) seizure EEG. 
 

 

 

 

2.1 Coarse-grained Procedure 

Physiological signals such as EEG signals have multiple time scales. However, conventional 

algorithms cannot be used for various time scales. Costa et al. [10] have developed a new 

algorithm that can calculate multiscale entropy (MSE) for complex time series, which is called 

the coarse-grained procedure. In general, the concept of the coarse-grained procedure is to use 

down sampling and smoothing [12]. Equation coarse-grained procedure as in Eq. 1 [13]: 

                                             (1) 

Where  is a 1-dimensional time series,  is a consecutive coarse-grained 

time series, τ is the scale factor, and N is the length of the original time series. The scale used in 

this study is 1 to 20. Please note that for a scale factor of 1, it is the same as the raw signal. If τ = 

2, then , meanwhile if τ = 3, then and so 

on. Thus, the coarse-grained procedure is a process of decomposing signals at different scales or 

levels. Graphically the coarse-grained procedure is as in Figure 3 .  
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Figure 3 Coarse-grained procedure 

2.2 Fractal Dimension 

Fractal dimension is a parameter used to define signal complexity. The value represents 

the level of self-similarity, which is a repeating pattern that occurs in several different signals 

[14]. The value of the fractal dimension will increase if the emergence of self-similarity signal 

patterns is increasing. In addition, the higher the fractal dimension value, the more complex the 

signal being tested [15]. The ability of fractal dimensions to define signal complexity makes it a 

great tool for modeling biological signals, such as EEG and ECG, which tend to have high 

complexity and irregularity. In addition, fractal dimensions are very well used to analyze 

nonlinear behavior and state in chaotic systems such as EEG [16]. There are several kinds of 

fractal dimensions used in this study, including Box Counting[14], Higuchi Method[17], Katz 

Method[18], Sevcik Method[15], Variance Method[19].  

2.2.1 Box-Counting Method 

The box-counting method is one of the methods used to analyze fractals [20]. The 

technique used by the box-counting way is to use the box as a measure. The box used will cover 

the figures or curves for which the fractal dimension will be searched. The value of r determines 

the box size. Meanwhile, the number of boxes that cover figures or curves is represented by N. 

With the representation of r and N, the total number of boxes used to cover curves is affected by 

the size of the box. Mathematically, the box-counting method can be written as in Eq. 2. 

                                 (2) 

From Equation 2, it can be concluded that the box-counting dimension is obtained from 

the ratio of  to , where r approaches 0. With this statement, it can be said that 

when the box size comes to 0, then the overall figures or curves will be covered by a box. In 

simple terms, the number of boxes with different sizes to cover the curves is done by the box-

counting method. Calculations with various sizes of this box, of course, require a long 

calculation time. However, even so, the box-counting method has the advantage that it can be 

implemented for complex or simple fractals on natural and artificial fractals [21]. 

2.2.2 Higuchi Method 

 Higuchi method is one of the variance of fractal dimension that has high accuracy and 

efficiency in measuring fractal dimensions[22]. Higuchi dimension calculation equation 

using Higuchi method for signal  of length of curve for each interval  is defined as 

in Eq. 3.  

   
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Where, the length of the curve 
 ,m

k mX l k
 is defined in Eq. 4.  
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  (4) 

several lines along the k can be formed, with different resolutions as in Eq. 5 
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       (5)  

Where, m represents the initial time indication from 1 to k.  The Higuchi fractal dimensions are 

obtained from the slope between plots 
  ln L k

to  
 ln 1 k

. Where D is Higuchi fractal (HFD) 

and the relation is  
  DL k k

. 

 

2.2.3 Katz Method 

Katz method is a fractal dimension calculation method using curve length and planar 

extent of waveforms [23]. Fractal dimension calculation equation using Katz method for a 

signal  of length N is defined as in Eq. 6  [18]. 

                                                     (6)                      

where  is total curve length, and  is the maximum distance of two sequential points between 

the initial point  to the maximum distance or the curve diameter. The value of  can be 

defined using Eq. 7. 

                                                         (7) 

where  is a distance of two sequential points. The value of  can be expressed in 

Eq. 8. 

                                            (8) 

2.2.4 Sevcik Method.  

Sevcik Method (SFD) is a method to get the fractal dimension value by using a set of N 

sample values from a waveform [24], [25]. This method is derived from the Hausdorff 

Dimension derivative ( )[25]. The equation for calculating fractal dimensions using the 

Sevcik Method is shown in Eq. 9[15]. 

                                                          (9) 

On Eq. 6,  is the total length as expressed in Eq. 4. Then,  is the sample value. There is 

another variation of the Sevcik Method, namely normalization in the x and y-axis before 
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implementing  and SFD calculation. Normalization of the x and y-axis causes the topology of 

the metric space to not change under linear transformation so that all axes are the same[25]. Eq. 

10 displays the normalization equation on the x-axis. 

                                                    (10) 

where xi is the initial value in x-axis and xmax= . Eq. 11 displays the normalization 

equation on the y-axis. 

                                                (11)                                

where  is the initial value in x axis,  = , and  = .  

2.2.5 Variance Method 

The variance fractal dimension method (VFD)  is a method that calculated s(t) using 

Hurst Exponent (H), whose derived from the properties of fractions Brownian motion ( ) as 

expressed in Eq. 12. 

                                                  (12)                                       

where H is signal smoothness,  =  and ∆t = t2 - t1. The VFD can be 

determined as Eq. 13. 

                                                    (13)                                                      

where E is Euclidean dimension. Because of the Euclidean one-dimensional signal values is 1, 

then VFD equation can be simplified as Eq. 14.  

                                                        (14) 

The value of  on the VFD can be different depending on the purpose. If VFD used to separate 

signal and noise, then the value of  is 1. Then, if it is used to separate several data 

components, then the value of  is more than 1. 

 

2.3 Support Vector Machine 

Support Vector Machine is one of the supervised learning methods in machine learning. The 

Support Vector Machine works by creating an input-output mapping based on a set of labeled 

training data. Support Vector Machine can be used for classification and regression. Basically, 

the Support Vector Machine can separate data by finding the best hyperplane by finding the 

maximum margin (Error! Reference source not found.).  This method can be used for high 

dimension space. There are several types of classifiers in the Support Vector Machine, including 

Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian. 



          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. x, No. x,  July 201x :  first_page – end_page 

8 

 
Figure 4 Illustration of class separation using the Support Vector Machine  

2.4 K-Fold Cross-Validation  

One way to validate machine learning is to use K-Fold Cross-Validation. K-Fold Cross-

Validation is a method for validation by dividing the data set into several parts or folds, 

depending on the K value. Furthermore, each fold is used as a test set at several points [26]. In 

this study using K = 5, the data set used in this study will be divided into five parts. After being 

divided into five parts, the first iteration is carried out where the first part is used to test the 

model, and the remaining four parts are used to train the model. Then, in the second iteration, 

we use the second part as a test set and parts 1, 3, 4, and 5 as a training set. These processes are 

repeated until all parts are used as a test set. 

 

3. RESULTS AND DISCUSSION 

 

Epilepsy EEG signals in this study were divided into three classes, namely normal (O), 

interictal (N), and seizure (S). The result of the coarse-grained process is changing the signal 

variance, not changing the signal's shape. This change is caused by differences in the scale of 

the coarse-grained process. The relationship between signal variance and scale (τ) is inversely 

related, i.e., the larger the scale (τ), the smaller the signal variance. Vice versa, the smaller the 

scale (τ), the greater the signal variance. After the coarse-grained procedure is performed, the 

fractal dimension calculation process is then carried out. Figure 1-7 shows a graph of the fractal 

dimension values of 5 kinds of fractal dimensions with a scale of τ = 1-20. The fractal 

dimension values in the BCFD and HFD methods range from 1-2, but it is more than that for 

KFD, SVD, and VFD. This is partly due to the lack of KFD, SVD, and VFD ability in 

calculating the fractal dimension. However, these results were not a problem in this study. Due 

to the calculation of the fractal dimension in this study, it is used for features only. 

Based on the fractal dimension calculation using HFD, KFD, SFD, VFD, the graph of 

the fractal dimension value to the scale has a similar pattern. Namely, the fractal dimension 

value will increase to a specific scale then the fractal dimension value will stagnate. However, 

in contrast to the fractal dimension calculation using BCFD, the fractal dimension value tends to 

be high when the scale is small. Still, the value decreases in comparison to the increasing scale. 

As the results of BCFD calculations, these results are used to classify lung sounds [27]. 

The fractal dimension value of the epilepsy class with seizures (S) tends to always be 

higher than normal class (O) and interictal (N). Meanwhile, the normal class (O) in several 

fractal dimensions, namely BCFD and KFD, has the lowest value. However, initially, at SVD 

and VFD, the normal class (O) had the lowest score, but after passing the scale of 10, it began to 

rise and became higher than the interictal (N). These results show that although seizure (S), 

normal (O), and interictal (N) have similar patterns, they have different features of fractal 

dimensions. This is what can be used to separate the three classes using a classifier, namely 

SVM. 
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Figure 5 Box-counting Fractal Dimension 

values with scale τ = 1-20 

Figure 6  Higuchi Fractal Dimension value 

with scale τ = 1-20 

 

  
Figure 7  Katz Fractal Dimension value with 

scale τ = 1-20 

Figure 8 Sevcik Fractal Dimension value with 

scale τ = 1-20 

 

 
Figure 9 Variance Fractal Dimension value with scale τ = 1-20 

Accuracy using five kinds of fractal dimensions, namely VFD, SFD, BCFD, KFD, and 

HFD with six kinds of SVM classifier namely Linear, Quadratic, Cubic, Fine Gaussian, 

Medium Gaussian, and Coarse Gaussian SVM, shown in Table 1 and Table 2 The highest 

accuracy is 99% by using a VFD with a scale of 10 and a quadratic SVM classifier. In contrast, 

the lowest accuracy is 60.7% on fractal dimensions BCFD with a scale of 20 and the Fine 

Gaussian SVM classifier type. When viewed from various classifiers and their scales, the best 

accuracy is using fractal dimension VFD because almost all accuracy is more than 98%. Only 

when using the Medium Gaussian SVM and Coarse Gaussian SVM classifiers with a scale of 10 

have accuracy below 98%, namely each -94.7% and 87.7%, respectively. Meanwhile, the worst 

accuracy is using BCFD, and the accuracy is between 60.7% to 74.3%.  

When examined for each fractal dimension method, one method with another method 

does not always have the same accuracy at the same scale and classifier. In BCFD, the best 

accuracy occurs on a scale of 10 with the Fine Gaussian SVM classifier, with a percentage of 
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74.30%. Then, on HFD, the best accuracy is on a scale of 10 with the Quadratic SVM and Cubic 

SVM classifiers, with a percentage of 95.70%. Then, on KFD, the best accuracy is on a scale of 

20 with the Medium Gaussian SVM classifier, with a percentage of 88.30%. In SFD, the best 

accuracy is 98.30%, on a scale of 20, and the Classifier Linear SVM. Finally, on the VFD, the 

best accuracy is 99.00%, obtained on a scale of 10, and the Quadratic SVM classifier. 

From the calculation of epilepsy EEG accuracy using a combination of coarse-grained and 

fractal dimensions, it can be seen that the higher the scale size does not always represent high 

accuracy. It is proven that the highest accuracy is on a scale of 10 (using VFD and Quadratic 

SVM), not on a scale of 20. 

Table 1 Accuracy of BCFD, HFD, KFD 

Classifier  
BCFD HFD KFD 

10 15 20 10 15 20 10 15 20 

Linear SVM  68.70 72.30 70.70 92.70 93.30 92.30 81.30 86.70 87.30 

Quadratic SVM  72.70 70.30 66.70 95.70 95.00 93.70 81.70 84.30 84.30 

Cubic SVM 62.30 65.30 67.70 95.70 95.30 91.70 79.70 80.30 83.00 

Fine Gaussian SVM 74.30 71.00 60.70 92.00 92.30 91.70 75.00 82.00 81.70 

Medium Gaussian SVM 73.00 72.30 70.70 91.30 92.30 91.70 79.00 85.70 88.30 

Coarse Gaussian SVM  65.30 68.30 67.30 90.70 91.30 91.30 76.70 83.30 84.00 

 

Table 2 Accuracy of SFD, VFD 

Classifier  
SFD VFD 

10 15 20 10 15 20 

Linear SVM  97.70 98.00 98.30 98.70 98.70 98.00 

Quadratic SVM  98.30 98.00 98.00 99.00 98.70 98.70 

Cubic SVM 97.70 98.00 97.70 98.70 98.30 98.00 

Fine Gaussian SVM 97.30 97.30 98.00 98.00 98.30 98.30 

Medium Gaussian SVM 96.70 98.00 98.00 94.70 98.30 98.30 

Coarse Gaussian SVM  86.30 96.70 97.00 87.70 98.00 98.00 

 

Table 3 Comparison with other studies using fractal dimensions and SVM 

Reference Data classes Method 
Number of 

features 

Accuracy 

(max) 

[3] 
Normal, interictal, seizure 

(3 classes) 

The Katz fractal 

dimension (KFD) on 

EEG sub band 

5 98.7% 

[4] 
Normal, interictal, seizure 

(3 classes) 
Multi time-interval HFD 7 98% 

[28] Normal, epileptic (2 classes) HFD, KFD, SFD 25 100% 

[29] 
Normal, interictal, seizure 

(3 classes) 

Multidistance signal 

level difference (MSLD) 

and fractal dimension 

10 99% 

Proposed 

method 

Normal, interictal, seizure 

(3 classes) 

Coarse-grained 

procedure and FD 
10 99% 

 

Table 3 shows a comparison of previous studies that used fractal dimensions and SVM 

as a classifier. KFD calculated on the Alpha, Betha, Delta, Theta, and Gamma sub bands of 

EEG signals yielded the highest accuracy of 98.7% [3]. Meanwhile, the calculated HFD at 

various time-interval resolutions produces an accuracy of 98% [4]. In the study by Silalahi et al., 

MSLD was used to split the ECG and FD signals as a feature resulting in 99% accuracy. The 

difference with this research is in the signal splitting process using MSLD with the same FD 
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calculation. The accuracy of both is the same, which is achieved with the same number of 

features. The proposed method produces accuracy that is proven to have high accuracy 

compared to previous studies. 

The weakness of the proposed method is the determination of the scale on the coarse-

grained procedure is done by trial and error. However, this can be overcome by looking at the 

resulting characteristics, as shown in Figure 6 - Figure 9. Seen at a scale > 10, the differences 

between data classes become smaller. The advantages of this method are simple computation 

and the possibility to perform feature selection to increase accuracy. The use of feature subset 

selection to select features at a specific scale gives the possibility of increasing accuracy. The 

use of this method on other biomedical signals is interesting for further research. 

 

4. CONCLUSIONS 

 

In this study, classifying epileptic EEG signals is proposed using a coarse-grained 

procedure and fractal dimensions. The coarse-grained procedure process will produce several 

signals with different scales, then calculate the fractal dimensions. A coarse-grained approach 

helps break signals in various scales to see the change of signal from its coarse form to a more 

acceptable form than the process of averaging several signal scales. Meanwhile, the fractal 

dimension helps calculate the complexity of the EEG signal. Classification using SVM produces 

the highest accuracy of 99% using VFD. A larger scale that reflects a more significant number 

of traits does not result in higher accuracy. The proof is the highest accuracy is achieved when 

using ten scales, not when using 20 scales. The proposed method produces a reasonably high 

accuracy compared to other methods that use fractal dimensions and SVM. The proposed 

method has the potential for use in other biomedical signals. 
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