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1 , Introduction

The importance of the Hahn-3anach Theorem for the second

fundamental theorem of welfare economics on the decentralization of

Pareto optimal allocations as price equilibria is, by now, well

understood. In the setting of economies with a finite dimensional

commodity space, the essential hypothesis on preferences and

production sets is that of convexity, as in Arrow [2] and Debreu [5].

However, in the infinite dimensional case, this needs to be

supplemented by an interiority condition on the set to be supported.

If the commodity space is equipped with an order structure and is one

whose positive cone has a nonempty interior, the interiority condition

follows from economically innocuous assumptions such as "free

disposal" or "desirability"; see Debreu [6] and Bewley [3]. If the

positive cone does not have a nonempty interior, as in L (y), °° > p >

1, or in the space of regular measures on a compact Hausdorff space,

additional assumptions have to be made on preferences and production

sets if one is to avoid assuming the interiority condition at the

outset. For economies with production, as is our concern here, a

variety of such assumptions have been made on production sets; see

the work of Aliprantis-Brown-Burkinshaw [1], Mas-Colell [12],

Khan-Vohra [9] and Zame [14], These assumptions have been seen as

formalizations of "bounded marginal rates of substitution" in

production and in the case of [1], [12] and [14], have been directly

inspired by Mas-Colell 's [11] concept of "properness ."

In this note, we focus on the condition proposed in [9]. This is

an obvious formalization of bounded marginal rates of substitution and
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simply requires that the set of supporting functionals to a production

set be bounded below, in terms of the induced order, by a nonzero

positive functional. Note that the condition does not require the

production set to have any support points and it is vacuously

fulfilled for sets without any such points. Under this condition on a

single production set, Khan-Vohra [9] present an infinite dimensional

version of the Arrow-Debreu second fundamental theorem. However,

Khan-Vohra do not present any example of a production set with "free

disposal," which satisfies their condition but does not possess an

empty interior. Our first result is that in an ordered Banach space

such sets do not exist. Our result is a consequence of the

Bishop-Phelps Theorem and can be restated to say that in an ordered

Banach space, order boundedness from below of supporting functionals

forces closed, convex sets containing the negative orthant to have a

nonempty interior. We also present an extension of our result to weak

* closed convex sets in a dual Banach space. This extension prompted

us to ask whether our result itself generalizes to locally convex

spaces. We present three examples in spaces of interest in

mathematical economics for which this conjecture is false. These

three counterexamples are the second contribution of this note.

It is worth stating that, in terms of the economics, our result

can be more constructively viewed as providing a sufficient condition

for the validity of Debreu's [6] theorem in ordered Banach spaces whose

positive orthant has an empty interior. Furthermore, our examples

bring out that the second welfare theorem presented in [9] has to be

evaluated in the context of ordered locally convex spaces which are
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not Banach spaces. Finally, it is of some interest that our result

allows us to make the observation that the technology in Zame ' s [14]

fourth example has a nonempty interior.

The next section presents the result, Section 3 the examples and

Section 4 concludes the paper by relating our work to the examples

presented in Zame [14],

2. The Result

Let X be a Banach space over the reals and with X its dual. The

norm in X and in X* will be denoted by II II. We shall assume that X is

ordered by • and denote the positive cone by X . X will denote the

•k k
positive cone of X with the order on X induced by _>. For any x £ X

and any f e X*, we shall denote the value by f (x) .

We shall denote the weak topology on X by a(X,X ) and the weak *

k k k
topology on X by a(X ,X). For any nonempty subset C of X (or of X )

and for any f e X* (or of X), let

a(f,C) = Sup f(x).

xeC

For any C C X, C will denote the norm-interior of C.

We can now present

Theorem 1 . Let X be an ordered Banach space with X its positive

cone . Let C be a closed convex subset of X such that

(i) -X+
CC,

(ii) 3§ e x+> S* ° such that f e X*, f supports C, II f II = 1 and

a(f ,C) < °° implies f > g.
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Then C ± $ .

Proof . By the Bishop-Phelps Theorem [4, Corollary 2]

C =
I I H , where

f e S

S - {f e X*: a(f,C) < «, II f II - 1 and f supports C}

H = (x £ X: f(x) < a(f ,C)}.

Since g * 0, there exists x„ £ X such that g(x
n ) > 0. Let £ =

g(x
Q
)/2. We shall show that {y £ X: II

- x -y I! < z } C C. It

suffices to show that y £ H for any f £ S. Thus pick any f £ S.

Then f(-y) = f(x ) + f(-y-x
Q

) > g(x
Q

) + f(-y-x
Q
). Since |f (-y-x ) | <

II f II II -y-x„ II < £ , certainly f(-y-xn ) > -e. Hence f(-y) > e. By
u — J — —

linearity f(y) _< -e . Since £ C, a(f,C) 2 °« Hence f(y) < ct(f,C)

or y £ H . We are done. II

Remark. Note that f £ S => f >_ 0. (Suppose there exists x
n

£ X sucl

that f(x
n

) < 0. Then f(-x ) > 0. Since -X C C, we can contradict

a(f,C) < °°.) However, we do not use this fact in the proof.

Theorem 1 admits of the following extension.

JL

Theorem 2 . Theorem 1 is true with X and X interchanged with X and

*
X and weak * closed substituted for closed .

Proof . Simply use Phelps' Theorem [13, Corollary 2] instead of the

Bishop-Phelps Theorem. II
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Theorem 2 leads us Co the following conjecture.

JL

Conjecture . Let X' be a dual Banach space with X its predual and with

X and X their respective positive cones. Let C be a weak * closed,

JL

convex set in X such that

(i) -X* C C

(ii) J g e X
, g * such that f e X, il f II = 1 _and a(f,C) < =° => f

• g. Then weak * interior C * <p.

In the next section we shall exhibit three examples for which this

is false. Note that unlike the theorem, the conjecture does not even

require that f support C.

3. Three Examples

We now present examples of three production sets for each of which

the conjecture is false. Furthermore, the sets also satisfy the

economic assumption of "irreversibility," i.e., Y I {~Y} = {O}.

Counterexample 1

For our first counterexample we work in the dual pair [I ,c
n J.

Let

Y. = {y e t
1

: f
x

+ y. < 0} 1 = 2, 3, ...,

Y
1

= {y e E
1

: y
L

< 0},

Y - ' ' Y.
i e N i

(For any y e 1
f y denotes the i coordinate).
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Claitn 1 . Y has an empty a (2 ,c
n
)-interior

.

Proof . Suppose to the contrary that e is such an interior point.

Then there exists a weak * open set containing e and contained in Y.

a
Hence there exist a postive integer k, positive numbers e and f e c n

a

(ct=l,..,,k) such that

1 ex

{ye £ : |f (y-e)
| <_ e , a = 1, ... k) CY.

1

Certainly, e. < 0. Indeed, if e =0 pick y e I such that

y = e/2M

y. = e. (i * 1)J l l

where

e = Mi n e , M = Max II f II .

a
a a

Then II y -e II
= e/2M . Hence for any a, |f

a
(y-e)

|
_< II f

a
II e/2M

j

e/2. But y i Y , and hence y 4 Y.

Now pick n e N such that for any a, |f^| < (-e/4e.). Since

f. converge to zero and since there are only a finite number of f
,

such an n can be found.

Since e e I, , E le, I < °°. Hence we can find n e N such that le <
1 ' i ' TT'

(-2 ei ).

Let n = Max (n,n) and

y. = e. (i t n)
i l
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y = -2e.

.

Since e £ £
, y e I . Also y i X and therefore y i X since y +

*

'n
y = -e, > 0.

For any a

,

f (y ~e) = f (-2e -e )
n In

|f
a
(-2e.)| + |f

a
(e )— n 1 n n

< e/2 + e/2 < e .— — a

We have a contradiction.

Next we have

Claim 2 . Y is a o(l , c )-closed, convex set such that (-£ ) C Y and YH

(-Y) = {0}.

Proof . Since the intersection of convex sets is convex, convexity is

obvious. Each Y.(i * 1) is o(l
> c n

)~closed since it is a closed

half-space defined by an element of c„. Again, as intersection of

weak * closed sets, Y is weak * closed. The fact that (-£.) C Y is

obvious. Finally, pick y e Y. Then y e Y. for all i. Hence y. +

y. <_ 0. If y e(-Y), then -(y.+y.) _< 0. Hence y. _< -y and y. 2l "Y,

and therefore y. = y. for all i. But y e Y and y e (-Y) implies y, =

0. Hence y = 0.

Claim 3 . f e c
Q

, II f II = 1, a(f,Y) < - implies f > (1, 0, 0, ... 0)

.
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Proof. Suppose f = 0. Then there exists j e N such that f >
1 j

where N denotes the set of positive integers. Let

y* - o (i # j, l)

y = -n and y. = n for ne N.

A n "n
Certainly y e Y for all n £ N. f(y ) = nf . . By choosing n large

~n
enough we can show f(y ) > a(f,Y).

Now suppose f, < 1. Pick e > such that f < 1-e. Then there

exists j e N such that f > 1-e. Now let
J

" f
i 1-e

y, =-r1 ' y-
=
r~> y-

=
° (i * L

« j } -

1 r
l

J r
l

x

Since y + y .
= — (1-e-f.) < 0, y £ Y.. Since y e Y , and also y e

J
1

J J
(l-e)f- f -

Y.(i * 1, j), y e Y. Now f(y) = -f . + — 1 = -i- (l-e-f ) > 0.
1 J

1 1

Since Y is a cone, a(f ,Y) = «, a contradiction. II

Counterexample 2

oo i
We shall work in the dual pair [i >l ]. Bewley [3] was the first

oo i
to work with the pair [L (u),L (u)]. Let Y be as defined in

oo

Counterexample 1 but regarded as a subset of I ,

oo i
Claim 1

.

Y has an empty a(£ ,£ )-interior.

Proof . Suppose to the contrary that e is an interior point of Y.

a
Then there exist a positive integer k, positive numbers £ and f £

I (a=l,...,k) such that
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,°°
i .a

{y £ I : |f (y-e) | < e
a

, a = 1, ... k} C Y.

~ CO *

Certainly e, <_ 0. If e = 0, pick y £ I such that y = e/2M and

a
y. = e.(i * 1) where e = Min £ and M = Max II f II. Then for anv a.^11 a *

a a

|f
a
(y-e)| =— |f<H < £/2 < £ . But y, > and hence y a Y,

.

2M 1 a 1 ' 1
oo

ft
i Ct i

Since f £ I , there exists n £ N such that Z f . < £/3 H e il

1 r °°

n

for all a. Hence, for all a, certainly If I < £/3 II e II .

Now let y. = e. (i * n) and y = -2e. . Since y. + y = e. -2e, =11 n 1 1 n 1 1

-e > 0, y i Y and hence y i Y. For any a,

|f
a
(y-e)| = |f

a
(-2 ei -e )|n in

< f (-2e. ) + f e— n 1 1' n 1

' n

< £ < £ .— — a

We are done.

Claim 2 . Y is weak * closed, convex and contains (-£ ) and Y (\ (-Y) = 0,

Proof . As easy as the proof of Claim 2 of Counterexample 1.

Claim 3 . f £ I , II f II = 1 , Sup f(x) - o < « implies f _>

x£Y
(1/2,0 0).

Proof. Pick an f as in Claim 3. Suppose f, = 0. Follow the argument

as in Counterexample 1.
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Suppose < f < 1/2. Since II f II = 1 , E |f
. |

= 1 - |f |
= 1 - f

1 . =2
i 1 1

00 * *

Since -I C Y, certainly f > 0. Now define y = 1/f (i * 1) and y =
+ i

—
i 1 1

— . Certainly y e Jl^ and y e Y.

1

00 oo 1 —2 f

f(y) = -1 + E f /f = -^ (Ef -f ) = — > 0.

2 12 1

Since y e Y => Xy e Y for all X >_ 0, f(Xy) = Xf(y) and hence a(f ,Y) <

00 can be contradicted. II

Counterexample 3

Let ri\ denote the space of signed regular Borel measures on [0,1]

and C the space of (bounded) continuous real-valued functions on

[0,1]. We shall work in the dual pair [>\ V
, (^ J • For any f e c and

t e [0,1], we shall denote the value of f at t by f(t) and use the

notation f[y], y e /'l for the canonical pairing. 6. i will denote the

Dirac measure at { x} . It is worth pointing out that Mas-Colell [10]

was the first to work with a commodity space modelled on the space of

signed regular Borel measures on a compact Hausdorff space and endowed

with the weak * topology.

We consider the following set:

Y » {]} zfA, : f[u] _< whenever II f B = 1, f > 0, f(l) = l}.

Claim 1 . Y has an empty a (ZH > C- )-interior.

Proof . Suppose to the contrary that e is a weak * interior point of

Y. Then there exist a positive integer k, positive numbers e and f

L. (a=l,...,k) such that
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P e W s {u e n ' f [y] < e
a , a = 1 k}

implies (p+e) e Y. As above, we shall denote Min e by e and M = Max
a a

II f
a

II. Certainly M > 0. If H = 0, then f
a
(t) = for all t z [0,1]

and for all a. But in this case (n6r <.) e W for all positive integers

n. Since (n6r.i+e) e Y, we obtain e([0,l]) + n < for all n which is

an absurdity.

Observe that e([0,l]) < 0. Since e e Y, J, Q
. , de <_ 0. Hence

e([0,l]) _< 0. Suppose e([0,l]) = 0. Let a = (e/M)5r^ Then |f
a
[a]

|

= |(e/M)f
a
(l)| <£<£

a
. But / [0 L]

d(a+e) = e[0,l] + (e/M) = (e/M) >

0, which is a contradiction to Che fact that (e+a) e Y.

Now pick any te [0,1], t * 0, 1 and let

3=1+ e~(t) + e~(l)

+
where e and e are respectively the positive and negative parts of e,

+ a
i.e., e = e - e . Since f is a continuous function, we can find an

ct ex ex ex

open set V in [0,1] which contains t and is such that f (V ) C f (t)

+ B /o (0). (B (0) is the open e-ball around 0.) Let V = Pi V
a

.

Certainly V is open and contains t. Pick s e V, s * t and let p =

B(6r i-6| i). Certainly p e "v . Furthermore, for any a,

|f
a
[p] !

= |f
a
[e(6r r6

;
,)]| = |3| |f

a
(t) - f

a
(s)| < e < e

{t} [s\ a

which shows that p e W. Let T = B, . (t) \J (B, . (1) C\ [0,1]).
n 1/n 1/n

Certainly there exists a positive integer n such that s i T for all n

_> n. Henceforth, n will refer to integers greater than n. For any A

C [0,1], let A
C

denote the complement of A in [0,1]. Then T =
n
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(B, . (t))
L

.
[0,l-(l/n)]. Certainly T is a closed set disjoint from

1/n n

the closed set {t} '_ { l} . We can construct the following "broken-line"

continuous non-negative function f such that llf II = 1 and f (1) = 1.
n n n

f (x) = x £ T
c

n n

= nx + (1-n) (l-(l/n)) < x <_ 1

= nx + (1-nt) (t-(l/n)) < x < t

= -nx + (1+nt) t < x < (t+(l/n))

We can now show that for large enough n the set Y does not contain

(p+e). Towards this end, note to begin with, T "~_T_: T —"•

n n+1

C { t } U{l}) and hence e~(T ) * e~({t} U {l}) = e~(t) + e~(l). Now,

f [p+e] = f [p] + f [e]
n n n

= f [66,,] - f [66, ,] + f [e]
n { t} n [s\ n

= 8 + /_ f (x)de
1 T n

n

= 1 + e"(t) + e"(l) + /_ f (x)de
+

- /_ f (x)de"
' i n 'in

n n

1 + /_ f (x)de
+

+ e"(t) + e"(l) - e'(T ).— ' T n n
n

For large enough n, we obtain f [p+e] > and hence a contradiction to

the fact that (p+e) e Y.

Next we have

Claim 2 . Y is a a( M ,jC )-closed, convex set such that (- n\.) C Y

and Y r\(-Y) =
{ 0}

.
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Proof . We only prove the third assertion. Suppose y and (-y) are in

Y. Then for all f such that il f II = 1 , f 2 0, f ( 1 ) = 1 , f [y ] [ and

f[-y] ! which implies f[y] =0.

1
We first claim that y({l}) = 0. Indeed, let f e - , < f < 1,

n n

f(l) = 1, and f converges pointwise to the characteristic function of
n

{1}. Then for each n, f [y ] =0; on passage to the limit, y{l} = 0.
n

Now let A be any closed subset of [0,1] not containing 1. Using

Urysohn's Lemma [8, p. 146], construct a sequenc (f ) in w, < f <
n — n —

1, f e 1 on A ' {!}, and f converges pointwise to the characteristic
n n

function of A \ {1}. Then for each n, f [y] = 0; on passage to the

limit, y(A) = (using that y{l} = 0). This proves that y = 0.

Finally we have

Claim 3 . f £ ^ , II f II = 1, ct(f ,Y) < °° implies f(l) = 1.

Proof . Suppose there exists f e d such that II f II
= 1, a(f,Y) < °°

and f(l) < 1. As in the Remark in Section 2, certainly f
J>

0. Since

II f II = 1, there exists t in [0,1] such that f(t) = 1. Let y =

-6, i + 6, ,. Certainly y e Y. But f[y] = (f(t) - f(l)) = 3 > 0.

Since y e Y implies k y e Y for all k > 0, f[ky] = k3 . This contra-

dicts the fact that a(f ,Y) < °° and completes the proof of the claim.

II

4 . The Examples of Zame

In [14], Zame has presented a theorem on the existence of

competitive equilibrium under a condition on each of the production

sets that can be seen as an alternative formalization of "bounded
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marginal rates of substitution." Zame also presents four examples,

the first three of which do not satisfy his condition and in which

there does not exist any equilibrium. It is of some interest that the

production sets in these examples also do not satisfy the condition

studied in this paper. The fourth example of Zame, in which an

equilibrium does exist, has a production set that also satisfies our

condition and has a nonempty interior by virtue of our Theorem 1. We

devote this section to the establishment of these assertions.

Let N denote the set of positive integers.

I 00 J

Example 1 . This is set in the dual pair [I ,1 ]. Let e e I be such

that

e
1

= 2
l + l

e* = (j * i, i + 1)

Let

, I I
2n-l , . , U

Z = ( U e ) U ("A + >

neN

Y = coZ

Y = {Ay: y e Y, O 0[.

Claim . For any j e N, there exists f e i , f _> II f II = 1, a(f ,Y) <

00 and f. =0.
J
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Proof . In the first case, pick, j e N not a power of 2. Pick, f e

00

£ such that

f. -
J

J+2

£
±

- (i # j, j + 2).

We shall show that a(f,Y) = 0.

Since e Y, certainly a(f ,Y) 2 °- Suppose a(f ,Y) > 0. Then

certainly there exists y e Y such that y. > 0. There exists z z coZ

such that z > y, i.e., for any £ > 0, there exists v such that v _> v

implies 1 |z. - y. | < e. This implies that for large enough v,

ieN x 1

z. > 0. But then this implies the existence of an element in Z with

t" Vi

its j coordinate positive. Since j is not a power of 2, this is

impossible

.

oo

Now suppose that j is a power of 2. Pick f e I such that

f =
j

j+1

f
±

= (i * j, j + 2).

We can show that a(f,Y) = exactly as above. II

1 °°,

Example 2 . In this example there are two production sets in [Z y l J.

The first is identical to that in the first example. The second is a

slight variant. Let e e I be such that
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I

6
i+l = +1

e
1

= (j * i, i + 1).

Now substitute

Z = ( 'J e
2n

) U (-*!)
neN

in the definition of Y and Y. We can again claim

Claim . For any j z N, there exists £ e I , II f il = 1, a(f,Y) < °° and f. =

Proof. Define f e I by

f. -
J

~ 1 if j is not a power of 2

J if j is a power of 2

~ if j is not a power of 2

1 if j is a power of 2

fj_ » (i * j, j + 1, j + 2)

The argument is now identical to Example 1.

1 °°

Example 3. The example is set in [l ,1 ]. Let

e . = 2
l

i
9
-i

e
i+l "

"2

e! = (j * 1, 1 + 1)
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Z - ( U e
n

) U(-iJ)
neN

Y = coZ.

Claim . For any j e N, there exists f e £ such that II f II
= 1, f > 0,

a(f ,Y) < oo and f. = 0.

Proof. Choose any f e I such that f... = 1 and f. = (i * j + 1).
i + l l

—i

Pick any y e Y. Then
j
w z coZ such that w * y . But each

v v

w = I X. z. with X . > 0, E X. = 1, and z (i) z Z. Now f w =.,11 l— .,i
1=1 i=l

. v

E X.f(z (i)). But only the (j + l) ctl coordinate of f is positive and

i = l
X

hence f (w ) = w.
,

. = E X. z.,, (l) < —r since w ->-y,f(w)->-f(y)
J + 1

i = 1
i J+ 1 -

2
J

Hence f(y ) _< —r. Since y was arbitrary, a(f,Y) _< —r. II

2
J

2
J

1 °°

Example 4 . This example is also set in [I ,1 ]. Here

T
Y = {y e I : y

T+1
<_ Z y(t) Y

T-t
for all T, < y < 1.}

t=l

Claim . Let f e l", f > 0, I f I 1 and a(f,Y) < ». Then f = 1.

Proof. Suppose < f, < 1. Then there exist f = 1 (i * 1). Let ~y e— 1 l

I
y

~y. = 1, y. = (j * i). Certainly y z Y and f(y) = 1. Since Y is

a cone, a(f ,Y) < °° is contradicted. II

Remark. By Theorem 1, Y has a nonempty norm interior.
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