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Abstract

The R package skpr provides a suite of functions to generate and evaluate experimental
designs. Package skpr generates D, I, Alias, A, E, T, and G-optimal designs, and supports
custom user-defined optimality criteria, N-level split-plot designs, mixture designs, and
design augmentation. Also included are a collection of analytic and Monte Carlo power
evaluation functions for normal, non-normal, random effects, and survival models, as well
as tools to plot fraction of design space plots and correlation maps. Additionally, skpr
includes a flexible framework for the user to perform custom power analyses with external
libraries and user-defined functions, as well as a graphical user interface that wraps most
of the functionality of the package in a point-and-click web application.

Keywords: design of experiments, optimal design, power, R.

1. Introduction
The science of design of experiments (DOE) includes many types of experimental designs,
including factorial, fractional factorial, screening, and optimal designs. Optimal designs max-
imize, for a given number of test runs, an objective criterion of the model to be estimated.
Whereas some design types constrain users to certain set numbers of runs for a given set of
factors, the optimal design approach to test planning allows for search for the “best” design
for any user-specified number of runs.
A design can be optimal for a given design criterion and specified number of runs but still be
inadequate for the actual experimental goal. The goal in running an experiment is to obtain
insight into how the response variable is affected by changes in the experimental factors, and
an experimenter should evaluate their designs to determine if the planned sample size is large
enough to detect these effects. A useful measure of design quality is the statistical power of
the design. Power is defined as 1− β, where β is the type-II error rate (false negative rate),
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which is a function of the model matrix and the statistical hypotheses (null and alternate)
being tested. By maximizing power, the experiment is more likely to detect an effect if one
actually exists. These power values can be calculated analytically for linear models, and
calculated via Monte Carlo simulation for generalized linear models and survival models.
Package skpr (Morgan-Wall and Khoury 2021) is an open-source R package available from the
Comprehensive R Archive Network at https://CRAN.R-project.org/package=skpr that
provides both optimal design generation and power evaluation tools. It improves upon existing
algorithmic design generation packages in R by providing a wider variety of design generation
options and improved search algorithms, power evaluation facilities, plotting options, and
an optional graphical user interface. In particular, skpr provides functions to perform the
following tasks:

1. Generate D, I, Alias, A, E, T, and G-optimal designs, as well as user-defined optimality
criteria.

2. Generate optimal split/split-split/N-level split-plot designs with no limit to the number
of split-plot strata.

3. Evaluate the statistical power of these designs, assuming a normal response.

4. Evaluate, with Monte Carlo simulation, the power of designs with non-normal response
variables, survival analyses, and user-provided fitting libraries.

5. Evaluate the power of split-plot designs with normal and non-normal response variables
with no limit to the number of sub-plot levels.

There are many R packages for design generation, but few for optimal design generation.
AlgDesign (Wheeler 2019) is the only R package that directly offers optimal design gen-
eration in an open-source package: other packages that offer this functionality implement
their routines by calling AlgDesign (e.g., DoE.base, Grömping 2018) or by calling external,
closed-source libraries to perform the optimization, as package OptimalDesign (Harman and
Filova 2019) does with the commercial Gurobi optimization software (Gurobi Optimization,
LLC 2019). Package DoE.base also offers tools to generate factorial designs with or without
blocking and orthogonal arrays for main effects experiments. For more traditional DOE non-
factorial designs when users have constrained resources and cannot run a full factorial design,
FrF2 (Grömping 2014b), FrF2.catlg128 (Grömping 2013), conf.design (Venables 2013), and
planor (Kobilinsky, Bouvier, and Monod 2020) offer tools for generating fractional factorial
designs. For response surface designs, package rsm (Lenth 2009) provides tools to generate
and evaluate designs for response surface models.
For design evaluation, there are many R packages that offer a variety of evaluation functions,
but few that offer power analysis tools for generic experimental designs. The pwr package
(Champely 2020) offers tools to calculate power for statistical tests, but no functions for full
experimental designs. Package simr (Green and MacLeod 2016) provides functions to perform
Monte Carlo power simulations for generalized linear models focusing on pilot studies and
fitted models. Outside of R, the standalone power analysis tool G*Power (Faul, Erdfelder,
Lang, and Buchner 2007) can calculate power for a wide variety of tests and effect sizes and
generate plots of power curves versus effect size and sample size, but it provides no Monte
Carlo support. Commercially, JMP (SAS Institute Inc. 2018) and Design-Expert (Stat-Ease,
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Inc. 2021) both provide excellent design generation and power evaluation tools, but limited
or no built-in support for Monte Carlo power simulation.
Package skpr is primarily made up of five user-accessible functions:

1. gen_design – Optimal design generation.

2. eval_design – Analytic (normal) power evaluation.

3. eval_design_mc – Generalized linear model Monte Carlo power.

4. eval_design_survival_mc – Survival Monte Carlo power.

5. eval_design_custom_mc – Custom library Monte Carlo power.

Additionally, skpr provides two plotting functions for evaluating designs:

6. plot_fds – Fraction of design space plot.

7. plot_correlation – Correlation map plot.

Also provided is a graphical user interface (GUI), skprGUI(), that provides a web interface
through the shiny package (Chang et al. 2021) for a subset of the above functionality. The
only existing DOE R package that offers a GUI is RcmdrPlugin.DoE (Grömping 2014a), a
plugin for the RCmdr (Fox 2005) GUI packages that provides access to a selection of the DOE
analysis tools offered in the DoE.base, FrF2, and DoE.wrapper (Grömping 2020) packages. In
particular, this package provides optimal design generation based on AlgDesign’s D-optimal
design search algorithm. There are no other packages in the R ecosystem that offer a similar
GUI to access the design generation and power evaluation features in skpr.
The typical workflow for the package is to generate an optimal design with gen_design()
and then evaluate it with the one of the evaluation functions. However, the user can also
import designs generated elsewhere and evaluate them within skpr; evaluating designs from
external sources is no different than evaluating designs produced by skpr, as a design is simply
a data.frame with the proper variable types for each column and, if applicable, a blocking
structure encoded somewhere in the data structure. The output of the evaluation functions
are tidy data frames (Wickham 2014) with the parameters listed with their powers and the
calculation type (e.g., parameter.power.mc indicates a parameter power is calculated via
Monte Carlo).

2. Generating designs
The function gen_design() generates optimal designs for a given set of factors, model, num-
ber of runs, and optimality criterion. It generates optimal designs using a point exchange
algorithm, which takes as input a data frame of the permissible test points, called the can-
didate set, and from that generates a design that optimizes the chosen optimality criterion
(giving a design that is “best” in some sense). The criteria involve maximizing (or minimizing)
functions of the model matrix X and the moments matrix M (Studden 1977):

M =
∫
x∈χ

f(x)f ′(x) dx,
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where χ = [−1,+1]k is the design region for k factors, and f(x) is a function that takes a
vector of factor settings and expands it to its corresponding model terms.
Package skpr supports eight design criteria:

1. D-optimal designs minimize |(X>X)−1|, or equivalently maximize |X>X|, the determi-
nant of the information matrix (Atkinson and Donev 1992).

2. I-optimal designs minimize the average prediction variance over the design space,
tr[(X>X)−1M ].

3. Alias-optimal designs minimize the trace of the sum of squares of the alias matrix A,
tr(A>A) (where A = (X>X)−1X>X2 and X2 is the model matrix representing the in-
teraction columns), while simultaneously ensuring the D-optimality does not drop below
a certain user-defined threshold. This function can generate designs with a favorable
aliasing structure, which enables the user to conduct screening experiments for active
effects (Jones and Nachtsheim 2011b).

4. A-optimal designs minimize tr[(X>X)−1], the trace of the inverse of the information
matrix. This criterion results in minimizing the average variance of the estimates of the
regression coefficients (Atkinson and Donev 1992).

5. G-optimal designs minimize the maximum entry in the diagonal of X(X>X)−1X>, the
hat matrix. This minimizes the maximum variance of the predicted values (Atkinson
and Donev 1992).

6. E-optimal designs maximize the minimal eigenvalue of the information matrix X>X,
which minimizes the worst-case variance of any linear combination of estimated coeffi-
cients (Atkinson and Donev 1992).

7. T-optimal designs maximize the trace of the information matrix, tr(X>X) (Atkinson
and Donev 1992).

8. Custom-optimal designs maximize a function of the design’s model matrix defined by
the user, f(X).

The design found by gen_design() will depend on the candidate set provided. For an uncon-
strained design, the user should provide a full factorial design for the test factors; for a design
with constraints, the user still generates a full factorial candidate set, but then removes the
design points that do not satisfy the constraints. Generating a candidate set in R is most
easily performed by calling the R base function expand.grid() with a list of factors and their
corresponding levels. This generates a data frame of all combinations of the input factors.
Continuous factors are type numeric and the user must specify which points in the interval
are included; categorical factors are either type character or factor.
To start the search process, gen_design() first generates an initial design by randomly sam-
pling from the candidate set. If there are fewer experimental runs than points in the candidate
set, skpr does this initial sampling without replacement; if there are more experimental runs
than points in the candidate set, the sampling is done with replacement. If the initial design
created is singular, this random generating process is repeated 10 × trials times. If that
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process also fails to generate an initial non-singular design, skpr switches to a nullification al-
gorithm to generate non-singular design. This algorithm (Wheeler 2019) finds a non-singular
design (if one exists) from the candidate set using the Gram-Schmidt orthogonalization pro-
cedure. Function gen_design() then runs modified Federov’s search algorithm (Cook and
Nachtrheim 1980) and exchanges rows from the design with rows in the candidate set (with re-
placement) until it can no longer improve the optimality criterion more than a user-adjustable
minimal level (default 10−5). To increase the probability that it has found a globally optimal
design gen_design() records the design and repeats the entire search repeats times (default
20, but can be specified by the user), randomizing the initial design each time. The algorithm
then returns the best design according to the optimality criterion chosen.
The following R code gives a simple example of using skpr to generate a D-optimal design.
For reproducibility, it is important to set the random seed. The example also shows the use
of get_attribute() and get_efficiency() to extract the information skpr stores in the
attributes of the design:

R> set.seed(1131993)
R> candidateset <- expand.grid(X1 = c(-1, 0, 1), X2 = c(-1, 0, 1),
+ X3 = c(-1, 0, 1))
R> design <- gen_design(candidateset = candidateset,
+ model = ~ X1 + X2 + X3, trials = 8)
R> get_attribute(design, "variance.matrix")

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 1 0 0 0 0 0 0
[3,] 0 0 1 0 0 0 0 0
[4,] 0 0 0 1 0 0 0 0
[5,] 0 0 0 0 1 0 0 0
[6,] 0 0 0 0 0 1 0 0
[7,] 0 0 0 0 0 0 1 0
[8,] 0 0 0 0 0 0 0 1

R> get_optimality(design)

D I A G T E Alias
1 100 0.25 100 Not Computed 32 8 3

If none of the built-in optimality criteria suffice, gen_design() also allows the user to specify
their own optimality criterion with the custom optimality option. With this option the user
is able to specify their own function of the model matrix f(X) = customOpt(X) in R, which is
used when optimizing the design. This is slower than any of the built-in options because the
underlying C++ code (using Rcpp and RcppEigen, Eddelbuettel 2013; Bates and Eddelbuettel
2013) has to call back to the R environment, but it provides additional flexibility to the user.
There are a few optimality-dependent changes to the search process: for G-optimal designs,
skpr first finds a D-optimal design and then uses that as the initial design for the G-optimal
search. This is because D and G-optimal designs are highly correlated across the exact



6 skpr: Optimal Experimental Designs in R

X1 X2 X3

−1 −1 −1
−1 −1 −1
−1 1 1
−1 1 1
1 −1 1
1 −1 1
1 1 −1
1 1 −1

(a)

X1 X2 X3

−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1
1 −1 −1
1 −1 1
1 1 −1
1 1 1

(b)

X
1

X
2

X
3

X
1:

X
2

X
1:

X
3

X
2:

X
3

X2:X3

X1:X3

X1:X2

X3

X2

X1 |r|

0

0.5

1.0

(c)

X
1

X
2

X
3

X
1:

X
2

X
1:

X
3

X
2:

X
3

X2:X3

X1:X3

X1:X2

X3

X2

X1 |r|

0

0.5

1.0

(d)

Figure 1: (a) 100% D-efficient design with tr(A>A) = 6. (b) 100% D-efficient design with
tr(A>A) = 3. This is a full-factorial design, and is the classical orthogonal design for this
combination of factors. (c) Correlation map for the design in part (a): While there is no
correlation between the main effects, there is perfect correlation in the interaction terms.
This did not degrade the design’s D-optimality, which only depends on the terms included in
the model when generating the design. (d) Correlation map for the design in part (b): This
design is superior due to having both an orthogonal correlation structure in its main effect
terms as well as the interaction terms. This difference is not captured in the optimality, but
is captured via the alias matrix.

design space, although not equivalent as they are when using approximate design theory
(Atkinson and Donev 1992). For T, G, and E-optimal designs, an additional singularity
check is performed at each exchange: if the design is singular, the exchange is not performed.
If there is a tie among the best designs found (e.g., two designs each with the same D-
optimality), gen_design() calculates the trace of the sum of squares of the alias matrix
and uses that value as a tie breaker. A lower value corresponds to less bias from terms not
included in the model but that are active in the experiment. This tie-breaker is used for
everything but Alias-optimal designs (where this metric is already being directly minimized).
As an example, both of the designs in Figure 1 are 100% D-efficient, but the second has a
better aliasing structure. To speed up computation, gen_design() supports multiple cores by
setting the argument parallel = TRUE. This seamless multicore capability is implemented
using the parallel (R Core Team 2021) and foreach (Microsoft and Weston 2020; Kane, Emer-
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son, and Weston 2013) packages, as well as the doRNG (Gaujoux 2020) package to ensure
reproducibility when calculating on multiple cores with a user-defined seed. The user can ei-
ther specify the number of cores manually by setting options(cores = #), or use the default
(which uses all the cores available). This can reduce the running time of the search up to a
factor of Ncores.

2.1. Mixture designs

A mixture experiment is an experiment where the important factors are the relative propor-
tions of the components and not the total quantity (Scheffé 1958). For example, this can be as
simple as a recipe with different proportions of ingredients, or an industrial experiment where
the response is the tensile strength of steel with different mixtures of iron, nickel, copper, and
chromium. The general purpose of mixture experimentation, in combination with response
surface methodology, is for practitioners to estimate what proportion of inputs from the entire
design space works “best” in some sense, with only a limited number of experimental runs
(Cornell 1973).
In skpr, searching for a mixture design is no different than searching for any other type
of constrained design, as the underlying point exchange algorithm is unchanged. The only
difference is the model must not include the intercept, as this term is perfectly correlated
with the sum of the component parts of the mixture, and each row of the candidate set must
satisfy the mixture constraint. In R, removing the intercept is done by adding -1 to the model
formula (e.g., ~. + -1). The mixture constraint where all components in each potential run
need to add to one is introduced as any other constraint is: by filtering the candidate set prior
to passing it into gen_design() so that each entry in the candidate set fulfills the constraint.
As an example, suppose a user wants to experiment on a cookie recipe by varying the pro-
portions of each ingredient. The initial candidate set features all possible combinations of the
various ingredient proportions, ignoring the mixture constraint that all of the components
must sum to one. The user would then filter the candidate set using the constraint, and
then pass the filtered candidate set to gen_design() to generate a mixture design. Here’s
an example of how a user might generate and filter a candidate set, and then generate an
experimental design with gen_design():

R> candset <- expand.grid(flour = seq(0.2, 0.8, 0.01),
+ sugar = seq(0.5, 0.8, 0.01), bakingsoda = seq(0.2, 0.8, 0.01))
R> mixtureset <- candset[with(candset, flour + sugar + bakingsoda == 1), ]
R> gen_design(mixtureset, ~ -1 + flour + sugar + bakingsoda, 8)

flour sugar bakingsoda
1 0.2 0.6 0.2
2 0.3 0.5 0.2
3 0.2 0.5 0.3
4 0.2 0.6 0.2
5 0.3 0.5 0.2
6 0.2 0.5 0.3
7 0.2 0.6 0.2
8 0.2 0.5 0.3
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2.2. Blocked and split-plot designs

A common constraint on an experimental design is that one of the factors is hard-to-change,
and thus must be varied less often than the other factors (Ju and Lucas 2002). In such a
design, this “hard-to-change” factor is kept constant for some number of runs while the “easy-
to-change” factors vary from run to run (Yates 1935; Jones and Nachtsheim 2009; Goos and
Vandebroek 2001; 2003; 2005). This is called a split-plot design, and a set of runs in which
the hard-to-change factor is held constant is called a whole-plot. These designs were originally
developed by Fisher (1925) for use in agricultural experiments (the “plot” in split-plot is in
reference to the plots of land into which these experiments were divided). A split-plot design
significantly changes the noise structure of the model, and consequently changes the power of
factors within the design as well. In certain cases, these types of designs can be more efficient
than the corresponding completely randomized design, both in terms of experimental cost
and statistical inference (Goos and Vandebroek 2004).
Additionally, there may also be additional nuisance parameters that increase variability in
the response, but are not of primary interest to the experimenter. When runs that share this
nuisance factor are grouped together, it can be worthwhile make the grouping explicit. These
groups are called blocks, and accounting for them during design generation (when it is known
that they will be present during the experiment) can lead to a more efficient design (Goos
and Jones 2011).
For these designs, the parameter estimate is no longer the ordinary least squares (OLS)
estimator,

β̂ = (X>X)−1X>Y,

but rather the generalized least squares (GLS) estimate (also named the feasible GLS esti-
mator) (Aitken 1936):

β̂ = (X>V −1X)−1X>V −1Y,

where V is the covariance matrix of the response vector, which skpr calculates automatically
from the blocking structure of a design. The D-optimal condition is no longer to maximize
the determinant of the information matrix X>X, but rather the determinant of X>V −1X.
This extends to other optimal conditions; the insertion of the V −1 in the optimality criteria
is as follows in skpr:

1. D-optimal: maximize |X>V −1X|.

2. I-optimal: minimize tr[(X>V −1X)−1M ].

3. A-optimal: minimize tr[(X>V −1X)−1].

4. G-optimal: minimize the maximum diagonal element of X(X>V −1X)−1X>V −1.

5. E-optimal: maximize the minimal eigenvalue of X>V −1X.

6. T-optimal: maximize tr(X>V −1X).

7. Custom-optimal: maximize a user-defined function f(X,V −1).

For other discussions of D and I split-plot optimality criteria, see Letsinger, Myers, and
Lentner (1996). The custom-optimal option leaves the specification of the optimality up to
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the user (as a function of X, the model matrix). For split-plot designs, the user can specify
a function of both X and V −1 as their optimality criterion.
V is both a function of the ratio ρ of the block-to-block variance σ2

b and the run-to-run variance
σ2 (Letsinger et al. 1996). The block-to-block variance is often substantially larger than the
run-to-run variance, but common practice is to set the ratio ρ to one (Goos 2002). This is
justified by empirical observations that the D-optimal design is not particularly sensitive to
the specific value used (Goos and Vandebroek 2001), and that a design that is D-optimal for
one ratio is D-optimal for a wide range of ratios, as long as the value of ρ is not too close to
zero (Goos and Vandebroek 2003).
Package skpr builds optimal split-plot designs using a step-wise method, starting by generat-
ing optimal designs for the factors that are hardest-to-change and ending with the factors that
are easiest-to-change. For the hardest-to-change factors, the algorithm generates an optimal
design for just those factors, ignoring all of the sub-plots. This is because the whole-plots
terms usually have fewer degrees of freedom than the easy-to-change terms, and thus gener-
ally have less statistical power. Thus, any exchange sacrificing the optimality of a whole-plot
for a sub-plot is likely a poor one. The sub-plots are generated with the harder-to-change
factor settings fixed, and thus the algorithm searches for the most optimal sub-plot factor
level settings given that constraint.
To generate an optimal split-plot design with gen_design(), the user needs to specify one
additional input:

1. The hard-to-change design (the argument splitplotdesign). This is a data frame
consisting of the design generated for the hard-to-change factors. It can either be an
ordinary design or one with existing sub-plots, as long as the nesting structure is stored
in the row names. One row of this design specifies the hard-to-change factor settings
for an entire whole plot in the overall design.

Also, optionally, the user can specify two additional arguments:

2. A number specifying the number of runs in each plot (the argument blocksizes). By
default, this is calculated automatically given the number of runs desired in the full
design (trials) and the number of rows in splitplotdesign. gen_design() creates a
design that is as balanced as possible. If the user wants to manually specify the size of
each block, they can pass in a vector of length nrow(splitplotdesign) that specifies
a size for each sub-plot. This vector must sum up to the total number of trials specified
in trials.

3. A scalar (the argument varianceratios) specifying the ratio of the block-to-block
variance for the blocks specified in splitplotdesign to the run-to-run variance. By
default, this is 1.

The variance-covariance matrix V is constructed at each step of the split-plot design creation
process, using the values provided by the user (or by default) in argument varianceratios.
As an example, for a 12-run design with four whole-plots and three runs per whole-plot:

R> candset <- expand.grid(X1 = c(1, -1), X2 = c(1, -1), X3 = c(1, -1))
R> htc_design <- gen_design(candset, ~ X1, 4)
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V =

5 4 4 0 0 0 0 0 0 0 0 0
4 5 4 0 0 0 0 0 0 0 0 0
4 4 5 0 0 0 0 0 0 0 0 0
0 0 0 5 4 4 0 0 0 0 0 0
0 0 0 4 5 4 0 0 0 0 0 0
0 0 0 4 4 5 0 0 0 0 0 0
0 0 0 0 0 0 5 4 4 0 0 0
0 0 0 0 0 0 4 5 4 0 0 0
0 0 0 0 0 0 4 4 5 0 0 0
0 0 0 0 0 0 0 0 0 5 4 4
0 0 0 0 0 0 0 0 0 4 5 4
0 0 0 0 0 0 0 0 0 4 4 5




Figure 2: The variance-covariance matrix for a 12-run split-plot design with four whole-plots
and three sub-plots in each whole-plot. The ratio of block-to-block and run-to-run variance
in this case is four.

R> fulldesign <- gen_design(candset, ~ X1 + X2 + X3, 12,
+ splitplotdesign = htc_design, varianceratio = 4)
R> fulldesign

X1 X2 X3
1.1 1 1 -1
1.2 1 1 1
1.3 1 -1 1
2.1 -1 1 -1
2.2 -1 1 1
2.3 -1 -1 -1
3.1 1 1 -1
3.2 1 -1 -1
3.3 1 -1 1
4.1 -1 1 1
4.2 -1 -1 1
4.3 -1 -1 -1

and the variance-covariance matrix is shown in Figure 2. The matrix in Figure 2 shows that
there is correlation between runs within a whole-plot, but not between whole-plots. For a
split-split-plot design, this process is repeated for the next layer, with this design as an input.
If this design is instead divided into three whole-plots, each with two sub-plots that each have
two sub-plots of their own (and each with a variance ratio of one), the resulting design is as
follows (note the additional layer separated by a period in the row names):

R> candset <- expand.grid(X1 = c(1, -1), X2 = c(1, -1), X3 = c(1, -1))
R> vhtc_design <- gen_design(candset, ~ X1, 3)
R> htc_design <- gen_design(candset, ~ X1 + X2, 6,
+ splitplotdesign = vhtc_design, varianceratio = 4)
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V =

7 6 4 4 0 0 0 0 0 0 0 0
6 7 4 4 0 0 0 0 0 0 0 0
4 4 7 6 0 0 0 0 0 0 0 0
4 4 6 7 0 0 0 0 0 0 0 0
0 0 0 0 7 6 4 4 0 0 0 0
0 0 0 0 6 7 4 4 0 0 0 0
0 0 0 0 4 4 7 6 0 0 0 0
0 0 0 0 4 4 6 7 0 0 0 0
0 0 0 0 0 0 0 0 7 6 4 4
0 0 0 0 0 0 0 0 6 7 4 4
0 0 0 0 0 0 0 0 4 4 7 6
0 0 0 0 0 0 0 0 4 4 6 7




Figure 3: The variance-covariance matrix for a 12-run split-split-plot design with three whole-
plots and two sub-plots in each whole-plot, and two additional sub-sub-plots in each sub-plot.
The block-to-block variance ratios (relative to the run-to-run variance) in this case are four
for the whole plots and two for the sub-plots.

R> fulldesign <- gen_design(candset, ~ X1 + X2 + X3, 12,
+ splitplotdesign = htc_design, varianceratio = 2)
R> fulldesign

X1 X2 X3
1.1.1 -1 -1 1
1.1.2 -1 -1 -1
1.2.1 -1 1 -1
1.2.2 -1 1 1
2.1.1 1 1 -1
2.1.2 1 1 1
2.2.1 1 -1 1
2.2.2 1 -1 -1
3.1.1 1 -1 -1
3.1.2 1 -1 1
3.2.1 1 1 1
3.2.2 1 1 -1

and the resulting variance-covariance matrix V is shown in Figure 3. In the generated designs,
the blocking information is encoded in the row name structure with periods: from left to right,
the row number indicates the whole-plot, sub-plot, sub-sub-plot, etc. Rather than designate
a special column for blocking information, storing the blocking structure in the row names
keeps it visible to the user but separate from the actual factor levels in the design. However,
if the user wants to specify their blocking information that way, skpr supports conversion of
columns titled Block#, where # indicates the blocking level in the design, as well as columns
labeled Whole Plot and Sub Plot, for compatibility with designs generated in JMP. Package
skpr converts these columns into the row name structure used internally, and removes them
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from the design to maintain the separation of blocking structure and the actual factor level
settings.
For split-plot designs with interactions between whole-plots and sub-plots, gen_design()
computes the interaction term of the model matrix programmatically during the search pro-
cess. gen_design() parses the model, determines if there are interactions between whole-
plots and sub-plots, and then passes those interaction terms to the point exchange algorithm.
Those columns in the model matrix are then computed on-the-fly during the search pro-
cess. gen_design() supports disallowed combinations both within a sub-plot and between
whole-plots and sub-plots.

2.3. Design augmentation

Sequential experimental design is an important tool when designing resource-constrained
experiments. Sequential design refers to running a much smaller (and thus, less resource-
intensive) screening design to test for the existence of effects before committing to a more
expensive experiment to characterize their size. After running a screening experiment and
detecting that some effects are active, a practitioner needs to design a follow-up experiment to
actually characterize the active effects. Generating an entire new optimal design ignores the
information already collected in the prior experiment, wasting testing resources that can be
targeted at the effects of interest. gen_design() supports design augmentation (Nachtsheim
and Jones 2018), which allows the user to set a pre-existing design and generate additional
optimal runs, given the fixed design. The user can simply pass the pre-existing design into
gen_design() with the argument augmentdesign, and gen_design() sets those runs in place
and attempts to find the best Ntotal −Naugment runs to add to the design.
As an example, suppose 12 experimental runs have already been executed given a screening
design with six continuous factors. The original screening experiment was performed and
the user wants to generate additional runs to investigate the entire model. The initial Alias-
optimal design is (reordering the rows to display the design’s structure):

R> set.seed(1)
R> candidateset <- expand.grid(X1 = c(1, 0, -1), X2 = c(1, 0, -1),
+ X3 = c(1, 0, -1), X4 = c(1, 0, -1),
+ X5 = c(1, 0, -1), X6 = c(1, 0, -1))
R> screening_design <- gen_design(candidateset, ~., 12, repeats = 100,
+ optimality = "Alias")
R> pair_zeros <- function(design) {
+ as.vector(apply(design, 2, (function(x) order(abs(x))))[1:2, ])
+ }
R> screening_design_ordered <- screening_design[pair_zeros(screening_design),]
R> screening_design_ordered

X1 X2 X3 X4 X5 X6
9 0 1 -1 -1 -1 1
11 0 -1 1 1 1 -1
1 1 0 1 -1 1 1
8 -1 0 -1 1 -1 -1
4 1 -1 0 1 -1 1
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6 -1 1 0 -1 1 -1
5 -1 -1 -1 0 1 1
7 1 1 1 0 -1 -1
10 1 -1 -1 -1 0 -1
12 -1 1 1 1 0 1
2 -1 -1 1 -1 -1 0
3 1 1 -1 1 1 0

Here, gen_design() algorithmically generated a design known as a definitive screening design
(Jones and Nachtsheim 2011a). To augment this design, we input this design as the argument
augmentdesign in gen_design() and generate a new D-optimal design with additional runs
and a full model with all interactions. Augmenting the design also includes a blocking column,
separating the original sets of runs into one block and the new set of runs into a second block.
We can compare this augmented design with one generated from scratch by comparing their
D-efficiencies (adding a blocking column manually to the hand-built design to account for the
added block structure):

R> aug_design <- gen_design(candidateset, ~.*., 34,
+ augmentdesign = screening_design_ordered, optimality = "D")
R> no_aug_design <- gen_design(candidateset, ~.*., 22, optimality = "D")
R> aug_design %>%
+ eval_design(model = ~.*., alpha = 0.2, blocking = TRUE) %>%
+ attr("D")

[1] 74.49612

R> rbind(screening_design_ordered, no_aug_design) %>%
+ cbind(data.frame(Block1 = c(rep(1,12),rep(2,22)))) %>%
+ eval_design(model = ~.*., alpha = 0.2, blocking = TRUE) %>%
+ attr("D")

[1] 71.66363

The augmented design has a higher D-efficiency than the design generated without taking the
original screening experiment into consideration. Additionally, design augmentation allows
users more flexibility in choosing a follow-up experiment: for the model with all two-factor
interactions, generating a design from scratch requires the new design to have at least 22 runs
to be non-singular, for a total of 34 runs. For augmenting the original 12-run design with the
new model, the follow-up experiment does not need to be non-singular on its own: only the
design as a whole needs to be non-singular. Thus, the user has the flexibility to add as few as
10 additional runs and still be able to fit the new model, fewer than half of what is required
when generating a standalone follow-up design.

2.4. Comparison with AlgDesign
Package AlgDesign, although not under active development, is the most prominent R pack-
age (as of 2021) that natively offers flexible optimal design generation and does not depend
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on commercial software. Like skpr, AlgDesign uses an exchange algorithm to search for
optimal designs, offering the ability to produce D, I, and A-optimal designs (with function
AlgDesign::optFederov()), as well as the ability to construct split-plot designs sequentially.
AlgDesign also provides approximate design generation, which is not included in skpr.
A key difference in the algorithms used by each package is the method of selecting points from
the candidate set. skpr searches for designs from the candidate set with replacement, while
AlgDesign searches without replacement. For a certain subset of optimal designs (D-optimal,
number of trials fewer than the full factorial design for the model) AlgDesign’s approach is
reasonable, as it is unlikely that a D-optimal design for a linear model has repeated design
points. However, there is a major problem with this algorithm as applied to many optimal
design searches: some designs require repeated points. Examples include I-optimal response
surface designs, which can have repeated center points, or designs with more trials than points
in the candidate set. A user can work around this issue by duplicating points in the candidate
set, but this requires the user to anticipate the need for duplication. For large candidate sets,
this workaround can also make the design search prohibitively slow.

3. Evaluating power for designs
Design generation is only the first step; once a design is created, the user must evaluate it
to determine if it is adequate for the hypothesis being tested. An optimal design is optimal
in the sense that it maximizes/minimizes a chosen function of the information matrix, but
that does not mean it is adequate for the experiment. This is because the quality of the
experiment depends on factors outside of the design: namely, the effect size and variability
of the response variable. We thus want to evaluate a design’s ability to detect an effect given
that one is present, otherwise known as statistical power. Maximizing power is the same as
minimizing type-II error, the rate of false negatives.
Power analysis starts with the linear model used to fit the experiment:

Y = Xβ + ε,

where Y is the vector of responses, X is the model matrix, β is the model parameter vector,
and ε is the run-to-run variability. skpr assumes that the variance of ε is one for all its
calculations, and the discussion that follows also sets σ2

ε = 1. We will test the hypothesis that
βi = 0 versus the alternative βi 6= 0, where β is the coefficient vector that contains one or
more coefficients for each factor or interaction effect, and i indicates the subset of coefficients
corresponding to the ith factor. Here, X has size N × p where N is the number of runs and
p is the number of parameters in the model, and β has size p× 1. The test statistic is

F0 = β̂i
2

σ̂2(X>X)−1
ii

.

This test statistic has an F -distribution with (gi, N − p − 1) degrees of freedom, where gi
is the number of levels in the factor minus one (for continuous factors, gi is 1). For the
null hypothesis, the anticipated coefficients are zero and the test statistic follows a central
F -distribution; in this case, we reject the null when F0 > ∆c = F−1(1 − α, gi, N − p).
Under the alternative hypothesis the test statistic follows a non-central F -distribution, F0 ∼
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F (gi, N − p, λi), and the power of the test is:

P (F0 > ∆c) = 1− F (F−1(1− α, gi, N − p), gi, N − p, λi),

where α is the allowable type-I error rate, and λi is the non-centrality parameter for the ith
factor. The non-centrality parameter is equal to the ratio of the between group variance to
the within group variance. The within group variance for the ith factor is defined as the
sub-matrix of (X>X)−1 that corresponds to the levels of the ith factor. By isolating this sub-
matrix with a hypothesis matrix Li and similarly isolating the components of the anticipated
coefficients corresponding to the ith factor, we can calculate this ratio.
The hypothesis matrix takes the form Li = [A B C]. A is a matrix of zeros of size gi × E,
where E is the number of parameters in the model preceding the i-th effect. B is the identity
matrix of size gi × gi, and C is a matrix of zeros of size gi × F , where F is the number of
parameters in the model following the i-th effect. In effect, Li extracts just the parameters
of interest from the coefficient vector or information matrix. As an example, suppose that
β = [1 β11 β12 β21 β22 β23]>, and we wish to construct L1 to extract just the β11 and β12
coefficients, then the hypothesis matrix would be

L1 =
[
0 1 0 0 0 0
0 0 1 0 0 0

]
,

such that L1β = [β11 β12]>.
In matrix form, the non-centrality parameter for the ith factor is

λi = (Liβ)>(Li(X>X)−1L>i )−1Liβ.

For parameter estimates, we replace the gi × p hypothesis matrix with a 1× p matrix, which
extracts one column corresponding to the parameter of interest from the model matrix.
The following code provides a simple example of design generation and evaluation with skpr.
By default, eval_design() assumes that the alternative hypothesis is βi = 1 for all i, but
this can be changed with the anticoef or effectsize arguments. Unless otherwise specified,
eval_design() defaults to the model used during design generation and alpha = 0.05.
Information about the evaluation is printed below the results.

R> candidate_set <- expand.grid(temp = c(80, 85, 90),
+ roast = c("Light", "Medium", "Dark"), brewtime = c(60, 120, 180))
R> design <- gen_design(candidate_set,
+ model = ~ temp + roast + brewtime + I(brewtime ^ 2), trials = 12)
R> eval_design(design)

parameter type power
1 (Intercept) effect.power 0.3774783
2 temp effect.power 0.8212779
3 roast effect.power 0.4605264
4 brewtime effect.power 0.6295236
5 I(brewtime^2) effect.power 0.2665443
6 (Intercept) parameter.power 0.3774783
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7 temp parameter.power 0.8212779
8 roast1 parameter.power 0.5118998
9 roast2 parameter.power 0.5118998
10 brewtime parameter.power 0.6295236
11 I(brewtime^2) parameter.power 0.2665443
=============Evaluation Info==============
• Alpha = 0.05 • Trials = 12 • Blocked = FALSE
• Evaluating Model = ~temp + roast + brewtime + I(brewtime ^ 2)
• Anticipated Coefficients = c(1, 1, 1, -1, 1, 1)

We can also do this over a range of inputs for both effect size and sample size to plot power
as a function of the various design parameters. In this way eval_design() can be used to
determine what is an adequate sample size for a user’s experiment, by repeatedly calculating
power until a design is obtained in which all of the parameters of interest fall below the
allowable type-II error rate. For example, if the user wanted to ensure that all parameters in
their model exceeded 80% power, they can iteratively generate optimal designs and evaluate
power in a for loop. Here, we take advantage of the detailedoutput = TRUE argument in
eval_design(), which includes additional information in the output that can be useful when
plotting (example shown in Figure 4).

R> counter <- 1
R> designpower <- list()
R> for(samplesize in 12:40) {
+ design <- gen_design(candidate_set,
+ model = ~ temp + roast + brewtime + I(brewtime ^ 2),
+ trials = samplesize)
+ designpower[[counter]] <- eval_design(design, detailedoutput = TRUE)
+ counter <- counter + 1
+ }
R> designpower[[length(designpower)]]

parameter type power anticoef alpha trials
1 (Intercept) effect.power 0.9522632 NA 0.05 40
2 temp effect.power 0.9999853 NA 0.05 40
3 roast effect.power 0.9946866 NA 0.05 40
4 brewtime effect.power 0.9985188 NA 0.05 40
5 I(brewtime^2) effect.power 0.8331067 NA 0.05 40
6 (Intercept) parameter.power 0.9522632 1 0.05 40
7 temp parameter.power 0.9999853 1 0.05 40
8 roast1 parameter.power 0.9879933 1 0.05 40
9 roast2 parameter.power 0.9924080 -1 0.05 40
10 brewtime parameter.power 0.9985188 1 0.05 40
11 I(brewtime^2) parameter.power 0.8331067 1 0.05 40
========================Evaluation Info=========================
• Alpha = 0.05 • Trials = 40 • Blocked = FALSE
• Evaluating Model = ~temp + roast + brewtime + I(brewtime ^ 2)
• Anticipated Coefficients = c(1, 1, 1, -1, 1, 1)
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Figure 4: Parameter power versus sample size for all of the parameters in a design. If the user
requires 80 percent power for their experiment, for anticipated coefficients of 1, it would take
approximately 40 experimental runs to reach that benchmark in all factors for this model.

gen_design() also has an additional argument, conservative, that automatically generates
anticipated coefficients for the most conservative estimate of effect power. For more informa-
tion on conservative anticipated coefficients and to see how these calculations are performed,
see Freeman, Johnson, and Simpson (2014) and Johnson, Medlin, Freeman, and Simpson
(2019).
When calculating power for designs with hard-to-change factors, the situation is slightly dif-
ferent: statistical tests that do not consider the correlation between runs are biased (Ganju
and Lucas 1997). OLS is no longer appropriate due to the introduction of run-to-run cor-
relation, as OLS assumes complete independence between runs. We instead calculate our
power using generalized least squares, which is a technique that allows estimating unknown
parameters given intra-run correlation. The only difference in calculation is the insertion of
the variance-covariance matrix V (which skpr calculates from a design’s blocking structure
and the varianceratios parameter) into the non-centrality parameter calculation, and a
modification of the number of degrees of freedom for each term (see Pinheiro and Bates 2000,
pp 91 for more details).

4. Evaluating power for designs with Monte Carlo methods
When designing an experiment with a non-normally distributed response variable, it can be
difficult to calculate power analytically. Often, power for these designs is estimated by relying
on a normal approximation to the underlying non-normal distribution (Johnson, Freeman,
Simpson, and Anderson 2018). The validity of the normal approximation can be hard to
quantify, and experiments with small sample sizes are where those approximations are likely
to fail, potentially leading to inaccurate power calculations. In these cases, the best way to
estimate the power is by simulating the experiment and calculating the power values via a
Monte Carlo simulation. skpr provides a function, eval_design_mc(), that takes a design as
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an input, performs a simulation of the experiment with user-defined simulation settings, and
returns a data frame of power values for each parameter.
Monte Carlo techniques are a broad class of computational algorithms that use repeated
random sampling to obtain numerical results. Calculating statistical power for a given design
is a problem particularly well-suited for this simulation approach. This is due to two major
benefits: first, the user can specify exactly how the data from the test is generated. This
means that for a complex experimental design, a user can exactly specify how each factor
influences the simulated response. Thus, the user has fine control over the effect size and
number of effects contributing to the simulated outcome. Secondly, the power estimate can
be generated using the same methods and techniques that are planned to be used when
analyzing the real data from the experiment. If the user wants to fit a generalized linear
model, they can calculate the power using the same libraries and methods they intend to use
during the data analysis. The exact equivalence between the method used to generate the
power and that used during the data analysis portion provides a strong analytic basis for the
generated power values.
The algorithm used in skpr for calculating power via a Monte Carlo simulation is as follows:

1. Input the run matrix for the design being tested, the anticipated coefficients β, the
model, the desired number of simulations N , and specify the function that generates
the simulated output.

2. Generate the model matrix X using the run matrix and the model.

3. Repeat the following process N times:

(a) Generate the simulated responses using f(X,β).
(b) Fit the design (using lm or glm).
(c) Extract the p values for each term in the model and compare each one to the

specified level set for α. If the p value for a term falls under that level, increment
a counter specific to that term. This counts the total number of times that the
term was significant in the N simulations.

4. For each term, divide the number of times the term was significant with the total number
of simulations, N . This number is the estimated power.

The user-supplied function that generates simulated responses (argument rfunction), com-
bines the anticipated coefficients and the model matrix to calculate the anticipated response.
The following function is an example appropriate for a normal response variable with a stan-
dard deviation of one:

R> response = function(X, b) {
+ return(rnorm(n = nrow(X), mean= X %*% b, sd = 1))
+ }

This function generates N simulated responses (one for each experimental run). These re-
sponses are then fit using a linear model (if the family is Gaussian, as shown above), general-
ized linear model (for all other GLM families), survival model (eval_design_survival_mc()),
or other user defined package (eval_design_custom_mc()).
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Distribution Blocking Simulating function (rfunction) Fit function

Gaussian No rnorm(mean = X %*% b, sd = 1) lm
Gaussian Yes rnorm(mean = X %*% b + d, sd = 1) lmer
Binomial No rbinom(prob = 1/(1+exp(-(X %*% b)))) glm(family = "binomial")
Binomial Yes rbinom(prob = 1/(1+exp(-(X %*% b + d)))) glmer(family = "binomial")
Poisson No rpois(lambda = exp((X %*% b))) glm(family = "poisson")
Poisson Yes rpois(lambda = exp((X %*% b + d))) glmer(family = "poisson")
Exponential No rexp(rate = exp(-(X %*% b))) glm(family = Gamma(link="log"))
Exponential Yes rexp(rate = exp(-(X %*% b + d))) glmer(family = Gamma(link="log"))

Table 1: A table of the distributions and random generating functions built-in to skpr. Each
random generating function depends on the model matrix X, the anticipated coefficients b,
and if there is a blocking term, an additional noise term d (for a random intercept term)
associated with each block. Each function has a corresponding fitting function that is used
to fit the model and generate p values for each term, which then are used to calculate power
in the Monte Carlo simulation.

Function eval_design_mc() includes four built-in response generating functions for four dis-
tributions: Gaussian, Poisson, binomial, and exponential. When the user inputs a distribution
into argument glmfamily (unless they specify their own simulation function), eval_design_mc()
automatically uses one of the built-in functions. These are shown in Table 1. If the input is
a split-plot design, the Monte Carlo method fits the non-blocking effects, treating the block-
ing factors as random intercepts. Modeling it in this manner improves the power for the
non-blocking factors and more accurately represents the effect of hard-to-change factors.
Function eval_design_mc() also supports the calculation of effect power. skpr uses the
Anova function from the car package (Fox and Weisberg 2011) to calculate the p values with
a type-III sum of squares (SS) and with a Wald test. The user is able to change both the
ANOVA SS type (II or III) and the default test from Wald to a likelihood-ratio, χ2-, or F -test
through the advancedoptions argument. If the user does not need these values, the effect
power calculation can be turned off to speed up the Monte Carlo simulation.
The algorithm for calculating power for a blocked/split-plot design via a Monte Carlo simu-
lation is as follows:

1. Input the run matrix for design being tested, the anticipated coefficients β, the model,
the desired number of simulations N , the variance ratio(s) between split-plot strata,
and specify the function f(X,β) that generates the simulated output.

2. Calculate the model matrix X using the run matrix and the model.

3. Convert the row name structure into columns of block indicators.

4. Update the formula to include random effects for each of the blocking columns.

5. Repeat the following process N times:

(a) If using a non-Gaussian generalized linear model, first run the steps (b)–(e) below
with β = 0 to generate an empirical distribution of p values for the null distribution.
This empirical distribution is then used to set the α cutoff for each parameter in the
actual power calculation, to remove or reduce any type-I error inflation associated
with the blocking.
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(b) Generate a vector of block noise d, where each run in a block receives the same
amount of noise.

(c) Generate the simulated responses using f(X,β, d).
(d) Fit the design using lmerTest (Kuznetsova, Brockhoff, and Christensen 2017) or

lme4 (Bates, Mächler, Bolker, and Walker 2015).
(e) Extract the p values for each term in the model matrix and compare them to the

specified level set for α (if a generalized linear model, this uses the empirical α for
each parameter calculated in step (a)). For linear mixed models, this is done with
the lmerTest package. If the p value for a term falls under that level, increment a
counter specific to that term. This counts the total number of times that the term
was significant in the N simulations.

6. For each term, divide the number of times the term was significant with the total number
of simulations, N . This number is the power.

As an example, here we generate a design manually and add our own blocking columns. We
evaluate the design with a Monte Carlo simulation both with and without blocking:

R> design <- data.frame(X1 = rep(c(1, -1), 6), X2 = c(rep(1, 6), rep(-1, 6)))
R> design[, "Block1"] <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)
R> design

X1 X2 Block1
1 1 1 1
2 -1 1 1
3 1 1 1
4 -1 1 2
5 1 1 2
6 -1 1 2
7 1 -1 3
8 -1 -1 3
9 1 -1 3
10 -1 -1 4
11 1 -1 4
12 -1 -1 4

R> eval_design_mc(design, ~ X1 + X2, 0.05, calceffect = FALSE, nsim = 10000,
+ blocking = FALSE, parallel = TRUE)

parameter type power
1 (Intercept) parameter.power.mc 0.8728
2 X1 parameter.power.mc 0.8637
3 X2 parameter.power.mc 0.8662
============Evaluation Info============
• Alpha = 0.05 • Trials = 12 • Blocked = FALSE
• Evaluating Model = ~ X1 + X2
• Anticipated Coefficients = c(1, 1, 1)
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R> eval_design_mc(design, ~ X1 + X2, 0.05, calceffect = FALSE, nsim = 10000,
+ blocking = TRUE, parallel = TRUE)

parameter type power
1 (Intercept) parameter.power.mc 0.1970
2 X1 parameter.power.mc 0.8384
3 X2 parameter.power.mc 0.1963
============Evaluation Info============
• Alpha = 0.05 • Trials = 12 • Blocked = TRUE
• Evaluating Model = ~ X1 + X2
• Anticipated Coefficients = c(1, 1, 1)
• Number of Blocks = Level 1: 4
• Variance Ratios = Level 1: 1, Level 2: 1

When analyzed without blocking, the blocked column is detected and removed. However,
when we turn on blocking, the blocking column is detected and a random effect is added
to the model internally: model = update(model, . + (1:Block1)). Each blocking column
adds an additional layer of nesting. For this design, the X1 term is relatively unchanged in
power since it is not correlated with the blocks. However, the X2 term is correlated with
the blocking term, and thus the power for that term is lower than in the unblocked case.
Compared to a completely randomized design, split-plot designs generally have less statistical
power for the hard-to-change factors (Ju and Lucas 2002).
For a binomial response, the user runs the additional risk of encountering partial sepa-
ration (Lesaffre and Albert 1989), where the model is not able to fully fit some terms.
eval_design_mc() does one final check at the end of the simulation process to check for
the distribution of p values–if a spike is detected around p = 1.00, it is likely that there
were repeated instances of partial separation occurring during the simulation. For well-
behaved designs, the distribution of p values is flat or decreasing for increasing p values.
eval_design_mc() splits the distribution of p values into bins of width 0.05, and compares
the 0.95 − 1.00 bin to the 0.80 − 0.85, 0.85 − 0.90, and 0.90 − 0.95 bins. If the final bin is
greater than the other three, eval_design_mc() displays a warning to the user that partial
separation possibly has been detected. The user can choose to increase the number of runs,
or implement their own evaluation routine with eval_design_custom_mc() that performs a
penalized regression to allow the model to fit even when separation is present (see Section 4.2
for an example).

4.1. Evaluating Monte Carlo power for survival designs

Package skpr provides an interface through eval_design_survival_mc() to perform power
analyses for experiments with left or right censored data using the survival package (Th-
erneau 2021; Therneau and Grambsch 2000) in R. The main difference in the API as com-
pared to eval_design_mc() is the random generation function rfunction needs to return
a survival::Surv object that includes information on whether a point in that data set is
censored. The point after (or before, for left censored data) which the data is censored in the
simulation is given by the user as the argument censorpoint.
The algorithm skpr uses for calculating survival power via a Monte Carlo simulation is as
follows:
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1. Input the run matrix for design being tested, the anticipated coefficients β, the model,
the desired number of simulations N , the censor type (left/right), the point before/after
which the data is censored, and specify the function f(X,β) that generates the simulated
output.

2. Calculate the model matrix X using the design and the model.

3. Repeat the following process N times:

(a) Generate the simulated responses using f(X,β).
(b) Censor the responses if they fall after (right censored) or before (left censored) the

censor point.
(c) Fit the design using the survreg function from the survival package.
(d) Extract the p values for each term in the model matrix using summary(model) and

compare them to the specified level set for α. If the p value for a term falls under
that level, increment a counter specific to that term. This counts the total number
of times that the term is significant in your N simulations.

4. For each term, divide the number of times each term was significant with the total
number of simulations, N . This number is the power.

Function eval_design_survival_mc() has built-in support for Gaussian, exponential, and
lognormal distributions, and users can supply their own random generating functions with
the rfunctionsurv argument.

4.2. Custom Monte Carlo evaluation of power

In addition to generalized linear models and survival analyses, skpr also provides an interface
for the user to supply their own libraries for power evaluation. The Monte Carlo algorithm
needs methods to simulate responses, fit them, and extract p values from the resulting fit
object. The algorithm is independent of the fitting object used, and needs a list of p values
to compare to the set value for α to calculate power. The user passes these functions to
eval_design_custom_mc() and the algorithm fits the data with the model provided and
extracts the p values accordingly.
As an example, suppose a user wants to evaluate power for a design with a binomial response,
and wishes to detect changes in probability from 0.5 to 0.8. There are two factors, each with
two levels, and the user is including the interaction term. The user first generates an optimal
design using the estimated budget of 40 runs, and then evaluates it in eval_design_mc(). We
can see the numerical values of the anticipated coefficients generated by specifying effectsize
= c(0.5, 0.8) for a binomial model in the evaluation information printed with the power
values:

R> options(width = 75)
R> cand_set = expand.grid(X1 = c(1, -1), X2 = c(1, -1))
R> design_sep = gen_design(cand_set, ~ X1 * X2, 48)
R> eval_design_mc(design_sep, 0.2, glmfamily = "binomial",
+ effectsize = c(0.5, 0.8), nsim = 10000, calceffect = FALSE)
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Warning in eval_design_mc(design_sep, 0.2, glmfamily = "binomial",
effectsize = c(0.5, : Partial or complete separation likely detected in the
binomial Monte Carlo simulation. Increase the number of runs in the design
or decrease the number of model parameters to improve power.

parameter type power
1 (Intercept) parameter.power.mc 0.3123
2 X1 parameter.power.mc 0.3142
3 X2 parameter.power.mc 0.3142
4 X1:X2 parameter.power.mc 0.3075
============Evaluation Info============
• Alpha = 0.2 • Trials = 48 • Blocked = FALSE
• Evaluating Model = ~ X1 + X2 + X1:X2
• Anticipated Coefficients = c(0.693, 0.693, 0.693, 0.693)

eval_design_mc() shows the user a warning: in this design, partial or complete separa-
tion is detected in fitting the design. This means that the model was not able to be fit in
at least some of the runs. The user can increase the number of runs to fix the issue, at
the cost of a more expensive experiment—or use a penalized logistic regression. The user
postulates that they do not need to add more runs if they instead change the method of
analysis. Instead of a standard generalized linear model, the user fits a generalized linear
model with a Firth correction (Firth 1992a; 1992b; 1993; Heinze and Schemper 2002). An R
package that implements this is the mbest package (Perry 2016), which provides the function
firthglm(). eval_design_custom_mc() has an argument fitfunction that allows us to
specify our method of fitting. This requires a function to extract p values from the resulting
fit object, as well as the random response generating function:

R> library("mbest")
R> fitfirth <- function(formula, X, contrastslist = NULL) {
+ return(glm(formula, data = X, family = "binomial",
+ method = "firthglm.fit"))
+ }
R> pvalfirth <- function(fit) {
+ return(coef(summary(fit))[, 4])
+ }
R> rfunctionfirth <- function(X, b) {
+ return(rbinom(n = nrow(X), size = 1, prob = 1/(1 + exp(-(X %*% b)))))
+ }

These three functions are passed into eval_design_custom_mc() to perform the simulation
and calculate power. With this function, the user only need specify the API to interact with
the package being used, and skpr takes care of the power simulation, model matrix initial-
ization, parallelization, as well as other programmatic scaffolding. Note that this function
accepts only a length-one effectsize argument.

R> eval_design_custom_mc(design_sep, alpha = 0.2, nsim = 10000,
+ fitfunction = fitfirth, pvalfunction = pvalfirth,
+ rfunction = rfunctionfirth, effectsize = 2 * 0.6931472)



24 skpr: Optimal Experimental Designs in R

parameter type power
1 (Intercept) custom.power.mc 0.6568
2 X1 custom.power.mc 0.6595
3 X2 custom.power.mc 0.6748
4 X1:X2 custom.power.mc 0.6521
==========Evaluation Info===========
• Alpha = 0.2 • Trials = 48 • Blocked = FALSE
• Evaluating Model = ~ X1 + X2 + X1:X2
• Anticipated Coefficients = c(0.693, 0.693, 0.693, 0.693)

The power is substantially improved due to fewer runs being penalized by the model not fitting
at all. We can also check the type-I error rate (by setting effectsize = 0) and confirm that
this is not the result of type-I error inflation, and that we do have a more powerful test.

R> eval_design_custom_mc(design_sep, alpha = 0.2, nsim = 10000,
+ fitfunction = fitfirth, pvalfunction = pvalfirth,
+ rfunction = rfunctionfirth, effectsize = 0)

parameter type power
1 (Intercept) custom.power.mc 0.1965
2 X1 custom.power.mc 0.1927
3 X2 custom.power.mc 0.1995
4 X1:X2 custom.power.mc 0.1917
==========Evaluation Info===========
• Alpha = 0.2 • Trials = 48 • Blocked = FALSE
• Evaluating Model = ~ X1 + X2 + X1:X2
• Anticipated Coefficients = c(0, 0, 0, 0)

The type-I error rates are all below the acceptable rate of 0.2, showing that applying the
Firth correction does result in a more powerful test. However, the power is still relatively low
even after changing the analysis method, so the user concludes that they will have to add
additional runs or remove terms from the model to increase it.

5. Graphical design evaluation
Power and optimality criteria are useful for design evaluation, but often practitioners have
several competing goals when generating designs. A design that is “best” according to an
optimality criterion might have poor prediction variance or unwanted correlations; to assess
this, skpr provides two methods to assess a design graphically: fraction of design space plots,
and correlation plots.

5.1. Fraction of design space plots

Function plot_fds() takes as an input a run matrix and a model, and plots a fraction
of design space (FDS) plot for that design (Zahran, Anderson-Cook, and Myers 2003). A
fraction of design space plot is a useful tool for assessing the scaled prediction variance across
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Figure 5: Fraction of design space plots in skpr, for two different 24-run designs with different
optimality criteria. The plots show that the I-optimal design has lower prediction variance
throughout most of the design space, but the D-optimal design has lower maximum prediction
variance. The horizontal red line represents the median prediction variance. This plot was
generated by passing a list of the two designs to the fraction of design space plotting function
in skpr.

the design space (Goldfarb, Anderson-Cook, Borror, and Montgomery 2004). The FDS plot
distills the design’s prediction variance across the entire space into a single curve, making it
a useful tool in assessing and comparing designs.
Other packages that generate FDS plots are vdg (Schoonees, le Roux, and Coetzer 2016),
VDgraph (Lawson and Vining 2014) and VdgRsm (Srisuradetchai and Borkowski 2015).
skpr provides its own implementation of FDS plots with plot_fds(). Unlike VdgRsm’s
fds.cube(), there are no limits to the number of factors used in creating the plot. Like vgd,
plot_fds() uses a Monte Carlo approach to generating fraction of design space plots. This
method involves sampling randomly throughout the design space, calculating the prediction
variance for each randomly chosen test point. The points are then ordered to generate a cumu-
lative distribution function for the prediction variance as a function of the percentage of the
design space. Rather than specifying the design itself, the user can pass into plot_fds() the
output of one of skpr’s main functions–gen_design(), eval_design(), eval_design_mc(),
or eval_design_survival_mc() and skpr automatically extracts the information needed to
construct the plot.
FDS plots are most useful for comparing competing designs. As an example, the code below
and Figure 5 show FDS plots for two 24-run response surface designs with identical candidate
sets and models, but with different optimality criteria. The plots show that the I-optimal
model yields substantially lower prediction variance throughout most of the design space, but
the D-optimal design has a lower maximum prediction variance. In the example, we use the
argument continuouslength = 50 to generate higher-resolution FDS plots.

R> candset <- expand.grid(X1 = c(-1, 0, 1), X2 = c(-1, 0, 1),
+ X3 = as.factor(c("A", "B", "C")))
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R> fds_design1 <- gen_design(candset, ~.*. + I(X1 ^ 2) + I(X2 ^ 2), 24,
+ optimality = "D")
R> fds_design2 <- gen_design(candset, ~.*. + I(X1 ^ 2) + I(X2 ^ 2), 24,
+ optimality = "I")
R> plot_fds(list(fds_design1,fds_design2), continuouslength = 50,
+ description = c("FDS Plot (D-optimal)","FDS Plot (I-optimal)"))

In general, we recommend only comparing FDS plots generated by skpr to other plots gener-
ated by skpr, because the curve will depend on the details of the sampling algorithm and the
definition of “design space.” For example, skpr assumes a hyper-cuboidal region for the de-
sign space, with continuous factors sampled uniformly between their maximum and minimum
values, but another package might use a spheroidal region or a different sampling method.

5.2. Correlation plots

For non-full-factorial designs, correlation can often exist between main effects and the inter-
action terms that are not included in the model. This will introduce bias if those terms are
actually active. Two designs can be equally optimal based on a criterion, but have different
correlation structures due to terms not included in the original model (see Figure 1 for an
example of this). Thus, it is good practice to examine the correlation structure of a design.
skpr provides the plot_correlations() function to display the absolute value of the corre-
lation between any two effects. By default, plot_correlations() includes all of the main
effects and all of the interactions, but the user can also input their own model or level of
interactions they want to include and plot_correlations() builds a custom correlation
map. The color scheme by default uses the viridis palette (Garnier 2021), but can also be
customized by passing in a vector of color values to the customcolors argument.
An illustrative example of the use of correlation plots involves comparing a 12-run Alias-
optimal design with six continuous factors to a D-optimal design of the same inputs. The
Alias-optimality criterion specifically minimizes correlation between main effect terms and
interaction terms–thus, an Alias-optimal design should show no correlation between those
pairs on the correlation plot. This comparison is shown in Figure 6. skpr by default chooses
an orthonormal basis for generating contrasts with the built-in contr.simplex() function to
make correlation plots display correctly. A full factorial design is an orthogonal design, but
un-normalized sum contrasts show correlation between levels within a categorical factor (for
categorical factors with more than two levels). Using an orthonormal basis correctly shows
an orthogonal design as having no correlation between factor levels.

6. skprGUI()

skpr provides a graphical user interface, written with the shiny package (Chang et al. 2021)
(and partly styled with the shinythemes package, Chang 2021), as a way of quickly generating
and assessing multiple aspects of a design. Integrated into this tool are several diagnostic plots
to help evaluate designs, as well as most of the major functionality included in the package.
The interface is meant to improve ease of use and access–this application can be deployed on a
web server and accessed and used either locally or over the internet. This allows users without
any knowledge of R to access the capabilities provided by skpr without having to learn how to
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(a) Correlation matrix for a D-optimal design.
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(b) Correlation matrix for an Alias-optimal design.

Parameter Power

(Intercept) 0.969
X1 0.969
X2 0.969
X3 0.969
X4 0.969
X5 0.969
X6 0.969

(c) Power values for D-optimal design.

Parameter Power

(Intercept) 0.945
X1 0.969
X2 0.945
X3 0.945
X4 0.945
X5 0.945
X6 0.945

(d) Power values for Alias-optimal design.

Figure 6: Correlation matrices and calculated power for two designs with the same input
parameters, but different optimality criteria. The Alias-optimal design does not have any
correlation between main effect terms and two-factor interactions. However, that nicer cor-
relation structure comes at the expense of statistical power (calculated with effectsize =
2 and alpha = 0.2). Depending on the type of the experiment, the practitioner might value
one property over the other. This type of trade-off is why the practitioner should use multiple
methods to analyze and evaluate a design.

install and use R. A walk through of the interface is built-in to the shiny application using the
rintrojs package (Ganz 2016) via the “Tutorial” button. The user interface of the application,
shown in Figure 7, has the following tabs:

1. Basic: The inputs required for design generation, such as factor level settings, the
number of runs, and the model. The user can also specify whether a factor is easy or
hard-to-change. If the user makes a factor hard-to-change, an additional input pane
appears that allows the user to specify the number of blocks. skpr will allocate the sub
plots as evenly as possible between the whole-plots, given the number of trials.

2. Advanced: Optional arguments for the user to customize design generation and eval-
uation. In this pane, the user can specify the optimality criterion, number of repeat
searches when generating a design, the variance ratio between whole-plots and sub-plots,
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set a seed for random number generation, toggle multicore search, and turn on advanced
evaluation options. This is also where the user can specify the minimum D-optimality
and degree of interactions used when generating Alias-optimal designs.

3. Power: This pane allows the user to select the type of power analysis they want to run
when they evaluate the design, as well as specify the effect size and their acceptable type-
I error rate α. The type option corresponds to the different evaluation functions provided
in skpr: “Linear Model” calculates power with eval_design(), “Generalized Linear
Model” calculates power using eval_design_mc(), and ‘’Survival Model” calculates
power using eval_design_survival_mc(). If the user chooses to evaluate using a
generalized linear model or a survival model, they can also pick the number of Monte
Carlo simulations as well as the distributional family of the response variable. The effect
size option also changes according to distribution: the binomial effect size selector is
given as a range of two probabilities, while the exponential and Poisson effect sizes
are expressed in terms of two different means/expected event numbers (respectively).
Finally, the survival optional also allows the user to specify at which point the data is
censored in the simulation, as well as the type of censoring (left or right).

The output panes display the following information:

1. Design: This is a color-coded matrix showing the generated design’s run matrix. By
default the design is randomized, but the user can order the design from left to right
by clicking the “Order Design” check box.

2. Design Evaluation: This pane displays all the design diagnostics computed by skpr:
the power calculation, correlation plot, fraction of design space plot, optimality criteria
values, and optimal search values (see Figure 8). If the user is running a Monte Carlo
simulation, it displays three additional figures: The simulated response estimates (which
are the actual estimated values of the response from the simulation), the parameter
estimates for each model term, and the simulated p values.

3. Generating Code: The GUI provides a code completion pane (see Figure 9) that eases
a user’s transition from the GUI to code by showing the exact lines of code used to
generate and evaluate a design. This code pane updates in real time as the user changes
the model, factors, number of runs, etc. The user can then use this code to either
save the work they performed in the GUI, or use that code as a base to springboard
into more complex analyses. In addition to helping transition users to scripting, this
code also shows the user how the power analysis they performed corresponds to the
methods used to analyze the experiment once it is completed. This helps bridge the
conceptual gap between the pre-experiment power calculation and the post-experiment
final analysis. While most of the functionality of skpr is built-in to the GUI, most of
the advanced customization options can only be accessed through the library functions
(e.g., eval_design_custom_mc()). An example of different designs (split-plot versus
non-split-plot) and their resulting different methods of analysis displayed in the code
pane is shown in Figure 9.

There are three versions of the shiny application provided, depending on how the user wants
to deploy the application. skprGUI() opens up a widget within the RStudio IDE (RStudio
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(a) Basic inputs pane along with the design pane.

(b) Advanced inputs pane. (c) Power inputs pane.

Figure 7: (a) Basic input pane in skprGUI() along with the design pane. The input pane al-
lows the users to customize their experimental factors, design generation settings, and power
evaluation options. In the design pane, the factor levels are colored in each column indepen-
dently by level. The design can be randomized or de-randomized with the “Order Design”
check box. (b) Advanced options: This is where the user can change optimality criterion and
customize advanced search options. (c) Power: This pane allows the user to select the type of
power analysis, as well as specify effect size and the allowable type-I error rate. For survival
analysis, this is also where the user can select the censoring type and censor point.
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Figure 8: Design evaluation pane in skprGUI(). The evaluation pane displays the power cal-
culation, correlation plot, fraction of design space plot, optimality criteria values, and optimal
search values by default. The optimal search values can be used to judge the breadth of the
search; an “optimal” design that is found only once during the search process is much more
likely to be locally optimal than globally optimal, compared to a design that is found multiple
times. If the user is running a Monte Carlo simulation to calculate power, skprGUI() dis-
plays additional diagnostic plots showing the simulated response estimates and the simulated
parameter estimates as well.

Team 2021), while skprGUIbrowser() opens up an external browser. skprGUIserver() is a
version of the GUI that is meant to be deployed on a server–it disables the multicore option
and integrates the future (Bengtsson 2020) and promises (Cheng 2021) packages to provide
asynchronous support to better support multiple users at the same time. Otherwise, there
are no differences between the three options.

7. Conclusions
skpr is an open-source R package that provides both optimal design generation and power
evaluation tools. It improves upon existing open-source algorithmic design generation pack-
ages in R by providing a wider variety of design generation options and improved search
algorithms, as well as power evaluation facilities, plotting options, and an optional GUI. The
package includes fast and efficient routines for design generation, allowing the user to quickly
create an experiment best-suited for their particular purpose. skpr provides a general optimal
design generation framework by providing the user a diverse set of built-in optimality criteria,
as well as the option to use user-supplied criteria. It can evaluate the power of designs both
analytically (for normal response variables) and via Monte-Carlo simulation.
The inclusion of the graphical user interface allows users to quickly prototype and generate
designs, and extends the capabilities provided by skpr to those who do not normally use the
R programming language. The ability to bookmark and save analyses done in the GUI ensure
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(a) Example code pane for non-split-plot design. (b) Example code pane for split-plot design.

Figure 9: skprGUI() provides the R code used to call skpr’s functions to recreate the actions
performed in the GUI in a script. Part a) shows the code pane for a design without any split-
plot structure, while part b) shows the same inputs, but with a hard-to-change factor included.
Note how the code changes to account for the blocking, and how the analysis section changes
from lm to lmer and the model includes a random effect. The displayed code updates in real
time with changes made to the inputs. It also shows the user with comments and example
code how their power analysis corresponds to the planned final analysis. This tool is meant
to ease users familiar with a GUI interface into writing code, improve reproducibility, and
provide a conceptual link between power and actual data analysis.

that these analyses are reproducible, and can be saved and shared. By providing a wide suite
of evaluation and diagnostic tools, the GUI allows the user to explore and evaluate the design
as a whole, rather than on a single criterion.
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