Journal of Statistical Software

November 2021, Volume 100, Issue 20. doi: 10.18687/jss.v100.i20

JointAl: Joint Analysis and Imputation of
Incomplete Data in R

Nicole S. Erler Dimitris Rizopoulos
Erasmus Medical Center Erasmus Medical Center

Emmanuel M. E. H. Lesaffre
KU Leuven

Abstract

Missing data occur in many types of studies and typically complicate the analysis.
Multiple imputation, either using joint modeling or the more flexible fully conditional
specification approach, are popular and work well in standard settings. In settings in-
volving nonlinear associations or interactions, however, incompatibility of the imputation
model with the analysis model is an issue often resulting in bias. Similarly, complex out-
comes such as longitudinal or survival outcomes cannot be adequately handled by standard
implementations. In this paper, we introduce the R package JointAI, which utilizes the
Bayesian framework to perform simultaneous analysis and imputation in regression models
with incomplete covariates. Using a fully Bayesian joint modeling approach it overcomes
the issue of uncongeniality while retaining the attractive flexibility of fully conditional
specification multiple imputation by specifying the joint distribution of analysis and im-
putation models as a sequence of univariate models that can be adapted to the type of
variable. JointAI provides functions for Bayesian inference with generalized linear and
generalized linear mixed models and extensions thereof as well as survival models and
joint models for longitudinal and survival data, that take arguments analogous to the
corresponding well known functions for the analysis of complete data from base R and
other packages. Usage and features of JointAI are described and illustrated using various
examples and the theoretical background is outlined.

Keywords: imputation, Bayesian, missing covariate, nonlinear, interaction, multi-level, sur-
vival, joint model, R, JAGS.

https://doi.org/10.18637/jss.v100.i20
https://orcid.org/0000-0002-9370-6832
https://orcid.org/0000-0001-9397-0900
https://orcid.org/0000-0002-3747-6905

2 JointAI: Joint Analysis and Imputation in R

1. Introduction

Missing data are a challenge common to the analysis of data from virtually all kinds of studies.
Especially when many variables are measured, as in large cohort studies, or when data are
obtained retrospectively, e.g., from registries, large proportions of missing values in some
variables are not uncommon.

Multiple imputation, which appears to be the gold standard to handle incomplete data, as
indicated by its widespread use, has its origin in the 1970s and was primarily developed for
survey data (Deng, Chang, Ido, and Long 2016; Treiman 2009; Rubin 1987, 2004). One of its
first implementations in R (R Core Team 2021) is the package norm (Novo and Schafer 2013),
which performs multiple imputation under the joint modeling framework using a multivariate
normal distribution (Schafer 1997). Nowadays multiple imputation using a fully conditional
specification (FCS) is more frequently used, also known as multiple imputation using chained
equations (MICE) with its seminal implementation in the R package mice (Van Buuren and
Groothuis-Oudshoorn 2011; Van Buuren 2012).

Since the introduction of multiple imputation, datasets have gotten more complex. Therefore,
more sophisticated methods that can adequately handle the features of modern data and
do not rely on assumptions that are likely violated by such data are required. Modern
studies do not only record univariate outcomes, measured in a cross-sectional setting, but
also outcomes that consist of two or more measurements, for instance, repeated measures or
survival outcomes. Furthermore, nonlinear effects, introduced by functions of covariates, such
as transformations, polynomials or splines, or interactions between variables are considered
in the analysis and, hence, need to be taken into account during imputation.

Standard multiple imputation, either using FCS or a joint modeling approach, e.g., under
a multivariate normal distribution, assumes linear associations between all variables. It is
possible to include nonlinear associations using transformations of variables and passive im-
putation (Van Buuren 2012); however, this does not generally solve the issue of uncongenial
and/or incompatible imputation models. Moreover, FCS requires the outcome to be explic-
itly specified in each of the linear predictors of the full conditional distributions. In settings
where the outcome is more complex than just univariate (for instance, for a survival outcome
that typically is represented by the observed event or censoring time and a censoring indi-
cator, or a longitudinal outcome consisting of multiple, correlated measurements) this is not
straightforward and not generally possible without information loss, leading to misspecified
imputation models and, likely, to bias.

Some extensions of standard multiple imputation have been developed and are implemented
in R packages and other software, e.g., Stata (StataCorp 2021), but the greater part of the
software for imputation is restricted to standard settings such as cross-sectional survey data.
The Comprehensive R Archive Network (CRAN) task view on missing data (Josse, Tierney,
and Vialaneix 2021) gives an overview of available R packages that deal with missing data in
different contexts, using various approaches.

The R packages reported here below are relevant in our context, i.e., in settings where po-
tentially complex models (such as models with nonlinear associations, survival outcomes or
multi-level structure) are estimated on data with missing values in covariates.

The R package mice itself provides limited options to perform multi-level imputation, re-
stricted to conditionally normal and binary level-1 covariates (e.g., repeated measurements)
and the use of a linear model or predictive mean matching for level-2 covariates (e.g., patient-

Journal of Statistical Software 3

specific characteristics). The packages micemd (Audigier and Resche-Rigon 2021) and
miceadds (Robitzsch, Grund, and Henke 2021) provide extensions to Poisson models and
predictive mean matching for level-1 covariates.

The R package smcfcs (Bartlett and Keogh 2021), short for “substantive model compatible
fully conditional specification”, uses Bayesian methodology to extend standard multiple im-
putation using FCS to ensure compatibility between analysis model and imputation models.
It can handle linear, logistic and Poisson models, as well as parametric (Weibull) and Cox
proportional hazards survival models, and competing risk models. Additionally, it provides
functionality for case cohort and nested case control studies. The model specification is similar
to the mice package, however less automated.

The R package jomo (Quartagno and Carpenter 2020) performs joint model multiple impu-
tation in the Bayesian framework using a multivariate normal distribution and includes an
extension to the standard approach to assure compatibility between analysis model and impu-
tation models. It can handle generalized linear (mixed) models, cumulative link mixed models,
proportional odds probit regression and Cox proportional hazards models. Unfortunately, no
functions are available to facilitate the evaluation of convergence of the Markov chain Monte
Carlo (MCMC) algorithm. The R package mitml (Grund, Robitzsch, and Luedtke 2021) pro-
vides an interface to the R packages pan (imputation of continuous level-1 covariates only)
and jomo and includes functions that make the analysis and evaluation of the imputed data
more convenient.

hmi (hierarchical multi-level imputation, Speidel, Drechsler, and Jolani 2020) combines func-
tionality of the packages mice and MCMCglmm (Hadfield 2010) to perform multiple imputa-
tion in single- and multi-level models, but it assumes all incomplete covariates in multi-level
models to be level-1 covariates. Similarly, mlmmm (Yucel 2010), which uses the EM algorithm
to perform multi-level imputation, does not consider incomplete level-2 variables.

mdmb (Robitzsch and Luedtke 2021) implements model-based treatment of missing data using
likelihood or Bayesian methods in linear and logistic regression and linear and ordinal multi-
level models. Under the Bayesian framework, substantive model compatible imputation is
available. A drawback is that the specification does not follow the specification of well-known
R functions, which complicates usage especially for new users and makes the specification of
more complex models more challenging.

Depending on the type of model outcome (survival, multi-level or single-level), whether nonlin-
ear effects are involved (which need substantive model compatible imputation), the measure-
ment level of incomplete covariates and whether missingness occurs in level-1 (e.g., repeated
measurements) as well as in level-2 covariates (e.g., baseline covariates), the user has to work
with different software and packages. This requires users to be familiar with the usage and
underlying statistical methodology of a number of packages and approaches. Since for sev-
eral packages the documentation is rather inscrutable and vague, it is unclear what precisely
these packages can and cannot do and what the underlying assumptions are. Choosing an
appropriate software package and applying it correctly may, thus, become quite a daunting
challenge.

The R package JointAlI (Erler 2021), which is presented in this paper, aims to facilitate the
correct analysis of incomplete data by providing a unified framework for both simple and
more complex models, using a consistent specification that most users will be familiar with
from commonly used (base) R functions.

4 JointAI: Joint Analysis and Imputation in R

Most of the packages named above perform multiple imputation, i.e., create multiple imputed
datasets, which are then analyzed in a second step, followed by pooling of the results. While
the separation of imputation and analysis is often considered an advantage, especially when
large databases are analyzed by multiple researchers, this separation permits the use of anal-
ysis models that are incompatible with the imputation models. JointAl follows a different,
fully Bayesian approach (used in mdmb as well). By modeling the analysis model of interest
jointly with the incomplete covariates, analysis and imputation can be performed simultane-
ously while assuring compatibility between all sub-models (Erler, Rizopoulos, Van Rosmalen,
Jaddoe, Franco, and Lesaffre 2016; Erler, Rizopoulos, Jaddoe, Franco, and Lesaffre 2019). In
this joint modeling approach, the added uncertainty due to the missing values is automatically
taken into account in the posterior distribution of the parameters of interest, and no pooling
of results from repeated analyses is necessary. The joint distribution is specified conveniently,
using a sequence of conditional distributions that can be specified flexibly according to each
type of variable. Since the analysis model of interest defines the first distribution in the se-
quence, the outcome is included in the joint distribution without the need for it to enter the
linear predictor of any of the other models. Moreover, nonlinear associations that are part of
the analysis model are automatically taken into account for the imputation of missing values.
This directly enables our approach to handle complicated models, with complex outcomes and
flexible linear predictors. Another feature that distinguishes JointAI from the other packages
named above is that it can handle hierarchical settings with more than two levels.

In this paper, we introduce the R package JointAl, which performs joint analysis and impu-
tation of regression models with incomplete covariates under the missing at random (MAR)
assumption (Rubin 1976), and explain how data with incomplete covariate information can
be analyses and imputed with it. The package is available for download from CRAN at
https://CRAN.R-project.org/package=JointAI. Section 2 briefly describes the theoret-
ical background of the method. An outline of the general structure of JointAlI is given in
Section 3, followed by an introduction of the example datasets that are used throughout
the paper in Section 4. Details about model specification, settings controlling the MCMC
sampling, and summary, plotting and other functions that can be applied after fitting the
model are given in Sections 5 through 7. We conclude the paper with an outlook of planned
extensions and discuss the limitations that are introduced by the assumptions made in the
fully Bayesian approach.

2. Theoretical background

Consider the general setting of a regression model where interest lies in a set of parameters
0 that describe the association between a univariate outcome y and a set of covariates X =
(x1,...,%Xp). In the Bayesian framework, inference over 6 is obtained by estimation of the
posterior distribution of @, which is proportional to the product of the likelihood of the data
(y,X) and the prior distribution of 6,

p(0 |y, X) xp(y,X | 6)p(0).

When some of the covariates are incomplete, X consists of two parts, the completely observed
variables X5 and those variables that are incomplete, X,,;s. If y had missing values (and
this missingness was ignorable), the only necessary change in the formulas below would be
to write y;s instead of y, however the model itself would not change, since the conditional

https://CRAN.R-project.org/package=JointAI

Journal of Statistical Software 5

distribution for y is already part of the model specification. Here, we will, therefore, consider
y to be completely observed. In the implementation in the R package JointAI, however,
missing values in the outcome are allowed and are imputed automatically.

The likelihood of the complete data, i.e., observed and unobserved data, can be factorized in
the following convenient way:

p(Y7X0b57Xmis ’ 9) = p(y ‘ Xobss Xmiss 9y|:c)p(Xmis ’ Xobss Oz)a

where the first factor constitutes the analysis model of interest, described by a vector of

parameters 6 and the second factor is the joint distribution of the incomplete variables,
T OT)T

yle> T)

Explicitly specifying the joint distribution of all data is one of the major advantages of the

Bayesian approach, since this facilitates the use of all available information of the outcome

in the imputation of the incomplete covariates (Erler et al. 2016), which becomes especially

relevant for more complex outcomes like repeatedly measured variables (see Section 2.2.1).

ylz»
i.e., the imputation part of the model, described by parameters 8,, and 6 = (6

In complex models the posterior distribution cannot usually be derived analytically but
MCMC methods are used to obtain samples from the posterior distribution. The MCMC
sampling in JointAl is done using the Gibbs method, which iteratively samples from the full
conditional distributions of the unknown parameters and missing values.

In the following sections we describe in detail each of the three parts of the model: the analysis
model, the imputation part and the prior distributions.

2.1. Analysis model

The analysis model of interest is described by the probability density function p(y | X, 0y|1,).
The R package JointAlI can currently handle analysis models that are generalized linear
regression models (GLMs) or generalized linear mixed models (GLMMs) or extensions thereof
(using either a log-normal or a beta distribution), cumulative and multinomial logit (mixed)
models, parametric (Weibull) or proportional hazards survival models. Moreover, it is possible
to fit joint models for longitudinal and survival data.

In a multi-level setting, we use level-1 to refer to the lowest level of the hierarchy (for instance,
repeated measurements of a biomarker), level-2 to the next higher level (e.g., patient-specific
information), and so on. JointAI allows for models with more than two levels, but, to facilitate
notation, we focus here on settings with two levels.

Generalized linear (mized) models

For a GLM the probability density function is chosen from the exponential family and has
the linear predictor

T
g{E(yz ’ X, 0y|:r)} =X B,

where ¢(-) is a link function, y; the value of the outcome variable for subject i, and x; is a

column vector containing the row of X that contains the covariate information for .

For a GLMM the linear predictor is of the form
A E(yij | X, b3, 0,1,)} = x58 + z;b,

where y;; is the j-th outcome of subject 7, x;; is the corresponding vector of covariate values,
b; a vector of random effects pertaining to subject 4, and z;; a column vector containing the

6 JointAI: Joint Analysis and Imputation in R

row of the design matrix of the random effects, Z, that corresponds to the j-th measurement
of subject 7. Z typically contains a subset of the variables in X, and b; follows a normal
distribution with mean zero and covariance matrix D.

In both cases the parameter vector 8, contains the regression coefficients 3, and potentially
additional variance parameters (e.g., for linear (mixed) models), for which prior distributions
will be specified in Section 2.3.

As mentioned, the package allows for extensions of the GLMM using a log-normal and beta
distribution, according to the data at hand. In the log-normal model, a log-normal distribution
is assumed for the outcome y. This distribution is parametrized in terms of the log scale, i.e.,
E(log(y;)) = xiTjﬁ or, in case of a log-normal mixed model E(log(y;;)) = X;;,@ + ziijZ-.

The beta distribution is parametrized as follows:

yij ~ Beta(aij,bij),

Qij = HigT,
bij = (1= pig)T,
logit(ui;) = x38+ z;bi,

where ;5 is the expected value of subject i at measurement occasion j, logit(z) = log (%),
and 7 follows a Gamma distribution.

Cumulative logit (mized) models

Cumulative logit mixed models are of the form

Yiz ~ MUIt(ﬂ'i]’,l, . ,7'1'1']‘71()7
K
T = 1= T
k=2
mijk = Plyy>k—1)—Ply; > k), ke{2...,K—1},
T = Py >k—1),
logit(P(yi; > k)) = w+my, ke{l,....,K},
mij = XB+zb,
iid

717517"',51(71 ~ N(,U"yao-'%/)a
Ye ~ Yk—1 + eXp((Sk_l), k= 2) ey K7

where m;; 1, = P(y;; = k). A cumulative logit regression model for a univariate outcome y; can
be obtained by dropping the index j and omitting z;-;bi. In cumulative logit (mixed) models,
the design matrix X does not contain an intercept, since outcome category specific intercepts
Y1, -- -7k are specified. Here, the parameter vector 6, includes the regression coefficients
B, the first intercept 1 and increments d1,...,0K_1.

Note that this implementation assumes proportional odds, i.e., that the linear predictors for
the different categories of the outcome only differ in the intercepts, but that covariates have
the same effect on the probability to be in the respective next category. This assumption can

Journal of Statistical Software

be relaxed for some or all of the regression coefficients by extending the linear predictor to
Ve + Mgk With ni5 . = X158, + z;b;.

Multinomial logit (mized) models

Multinomial logit mixed models are implemented as

yij ~ Mult(mi, ..., mi5k),

K
Tijk = Gin/ Y. g k€L ... K},

q=1
log(¢ij1) = 0,
log(dije) = xiBr+zibi, ke{2,... K}

where 7;; , = P(y;; = k) is the probability to observe category k for subject ¢ at measurement
occasion j.

Survival models

Survival data are typically characterized by the observed event or censoring times, T;, and
the event indicator, D;, which is one if the event was observed and zero otherwise. JointAl
provides two types of models to analyze right censored survival data: a parametric model
which assumes a Weibull distribution for the true (but partially unobserved) survival times
T*, and a semi-parametric proportional hazards model.

The parametric survival model is implemented as,

TF ~ Weibull(1,7;,s),
D; ~ L(I7 = Cy),
log(ri) = —x/B
s ~ Exp(0.01),

where 1(T; > C;) is the indicator function which is one if T;* > C}, and zero otherwise.

The proportional hazards model can be written as
hi(t) = ho(t) exp (x; B),

where hg(t) is the baseline hazard function, which, in JointAI, is modeled using a B-spline
approach with @ degrees of freedom, i.e., log hy(t) = 23:1 vBqBq(t), where B, denotes the
g-th basis function and ~yp, the corresponding regression coefficient.

The survival function of the proportional hazards model with time-constant covariates is

S(t]0)=exp {— /Ot ho(s) exp (X;I—ﬂ) ds} = exp {—exp (X:,@) /Ot ho(s)ds} ,

where 6 includes the regression coefficients 8 (which do not include an intercept) and the
coefficients v used in the specification of the baseline hazard. Since the integral over the
baseline hazard does not have a closed-form solution, in JointAl it is approximated using
Gauss-Kronrod quadrature with 15 evaluation points.

8 JointAI: Joint Analysis and Imputation in R

Joint models

Joint models for longitudinal and survival data are implemented using a semi-parametric pro-
portional hazards model for the time-to-event outcome and mixed models for the longitudinal
outcomes. The linear predictor of the proportional hazards model is then

exp (x] B+ f(5:(1))Bs) .

where f(s;(t)) denotes a function that describes the association the hazard has with the
longitudinal variable and B is the regression coefficient associated with it. In the simplest
case, this could be the observed or imputed value, i.e., f(s;(t)) = §;, or the expected value
(i.e., the value of the linear predictor), f(s;(t)) = E(s; | t,X,b;, 0).

To take into account potential correlation between multiple time-varying covariates, an as-
sociation structure between them can be specified explicitly by including the time-varying
covariates in each other’s linear predictors in a sequential manner, or their random effects can
be modeled jointly.

2.2. Imputation part

A convenient way to specify the joint distribution of the incomplete covariates X, =
(Xmisy s -« - » Xmis q) is to use a sequence of conditional univariate distributions (Ibrahim, Chen,
and Lipsitz 2002; Erler et al. 2016):

p(xmisla cee 7sz'5q ‘ Xobs; 090) = p(sz‘51 ’ Xob57 9961)
q
H p(sz'sg | X0b87 Xmisyy - - aXmisz,1) exg)a (1)
(=2
with 8, = (9;, e ,OIq)T. Each of the conditional distributions is a member of the exponen-

tial family, extended with distributions for categorical variables, beta and log-normal models,
and chosen according to the type of the respective variable. Its linear predictor is

-
ge {E ($i,mi3g | Xi,0bss Xi,misg» exg)} = (Xz‘,oby Timisys- - >xi,mi3g,1)aﬂa (= 17 <o g,
where X; mis_, = (Ti,mis s - - - ,fEi,misé,l)T and x; 455 is the vector of values for subject 7 of those

covariates that are observed for all subjects.

Factorization of the joint distribution of the covariates in such a sequence yields a straight-
forward specification of the joint distribution, even when the covariates are of mixed type.
Missing values in the covariates are sampled from their full conditional distribution that can
be derived from the full joint distribution of outcome and covariates. When, for instance, the
analysis model is a GLM, the full conditional distribution of an incomplete covariate x; ms,
can be written as

p(xi,mise | Yi, Xi,0bsy Xi,mis_g» 0) X p(yi ’ Xi,0bsy Xi,mis» 0y|:c)p(xi,mis ‘ Xi,0bs5 Oz)p(ay\x)p(gz)
X p(yi | Xi,obsvxi,mi8)0y|ac)

X p(l‘i,misz | Xi,0bsy Xi,mis<y» Oxe)

q
X H p(mi,misk | Xi,ob57xi,mis<k70a:k)
k=0+1
p
Xp(eyw)p(ew) H p(exk)a (2)

k=041

Journal of Statistical Software

where 6, is the vector of parameters describing the model for the /-th covariate, and contains
the vector of regression coefficients ay and potentially additional (e.g., variance) parameters.
The product of distributions enclosed by curly brackets represents the distributions of those
covariates that have x,,;, as a predictive variable in the specification of the sequence in (1).

Note that the imputed values for x; ms, are sampled from (2), which is the actual imputation
model, and that the conditional distributions of z; s, from (1) are the models that are
explicitly specified in the product that forms the joint distribution.

Imputation in multi-level settings

Factorizing the joint distribution into analysis model and imputation part also facilitates
extensions to settings with more complex outcomes, such as repeatedly measured outcomes.
In the case where the analysis model is a mixed model with two levels, the conditional

distribution of the outcome in (2), p (yi | Xi obss Xi,mis, 0) , has to be replaced by

ylz

ni
H b (yij ’ Xi,0bsy Xi,mis» b;, ey\w) . (3)
j=1

Since y does not appear in any of the other terms in (2) and (3), it can be chosen to be a
model that is appropriate for the outcome at hand. The thereby specified full conditional
distribution of x; s, allows us to draw valid imputations that use all available information
on the outcome.

This is an important difference to standard FCS, where the full conditional distributions
used to impute missing values are specified directly, usually as regression models, and require
the outcome to be explicitly included into the linear predictor of the imputation model. In
settings with complex outcomes it is not clear how this should be done and simplifications
may lead to biased results (Erler et al. 2016). The joint model specification utilized in Joint AT
overcomes this difficulty.

When some covariates are repeatedly measured, it is convenient to specify models for these
variables at the beginning of the sequence of covariate models, so that models for lower level
variables (e.g., level-1) have variables of the same or higher levels (e.g., level-1, level-2, level-
3, ...) in their linear predictor, but lower level covariates do not enter the predictors of
higher level covariates. Note that, whenever there are incomplete higher level covariates it
is necessary to specify models for all lower level variables, even completely observed ones,
while models for completely observed covariates on the highest level of the hierarchy can be
omitted. This becomes clear when we explicitly extend the factorized joint distribution from
above with completely and incompletely observed level-1 covariates s,ps and S;y;s:

p (yija Sij,0bs» Sij,miss Xi,0bss Xi,mis; By\a;a esmisy asabsa 0177”‘57 Ozabs) —
p (yij ’ Sij,0bsy Sij,misy Xi,0bsy Xi,mis, 0y|:t:)
X p(sij,mis ‘ Sij,obs; Xi,obs; Xi,miss esmis) p(sij,obs ‘ Xi,ob57 Xi,mis; osobs)

X P(Xi,mis ‘ Xi,0bs) emmis)p(xi,obs ’ ezobs)p(emx)p(esmis)p(esobs)pwwmis)p(eaﬁobs)-

Given that the parameter vectors 6, , , 0 0, and 0 are a priori independent, and
P(Xi,0bs | Oz,,,) is independent of both X, and sy, it can be omitted.

Tmis? Smis

10 JointAI: Joint Analysis and Imputation in R

Since p(Sij obs | Xi,obs» Xi,mis, 0s,,,), however, has X; m;s in its linear predictor and will, hence,
be part of the full conditional distribution of x; s, it cannot be omitted from the model,
unless it is reasonable to assume that x; ;s and s;;5 ops are independent.

Nonlinear associations and interactions

Other settings in which the fully Bayesian approach employed in JointAlI has an advantage
over standard FCS is when we have interaction terms that involve incomplete covariates or
when the association of the outcome with an incomplete covariate is nonlinear. In standard
FCS such settings lead to incompatible imputation models (White, Royston, and Wood 2011;
Bartlett, Seaman, White, and Carpenter 2015). This becomes clear when considering the
following simple example where the analysis model of interest is the linear regression y; =
Bo + Pix; + ,32.%'? + &; and x; is imputed using x; = ag + a1y; + &. While the analysis
model assumes a quadratic relationship, the imputation model assumes a linear association
between x and y and there cannot be a joint distribution that has the imputation and analysis
model as its full conditional distributions. Because, in JointAl, the conditional distribution
of the response is a factor in the specification of the full conditional distribution that is used
to impute z;, the nonlinear association is taken into account. Furthermore, since it is the
joint distribution that is specified, and the full conditional then derived from it, the joint
distribution is ensured to exist.

2.3. Prior distributions

Prior distributions have to be specified for all (hyper)parameters. A common prior choice for
the regression coefficients is the normal distribution with mean zero and large variance. In
Joint Al variance parameters are specified as, by default vague, inverse-gamma distributions.
The covariance matrix of the random effects in a mixed model, D, is assumed to follow an
inverse Wishart distribution where the degrees of freedom are, by default, chosen to be the di-
mension of the random effects plus one, and the scale matrix is diagonal. Since the magnitude
of the diagonal elements relates to the variance of the random effects, the choice of suitable
values depends on the scale of the variable the random effect is associated with. Therefore,
Joint Al uses independent gamma hyper-priors for each of the diagonal elements. More de-
tails about the default hyper-parameters and how to change them are given in Section 5.8
and Appendix A.

3. Package structure

The package JointAI has several main functions, 1m_imp(), glm_imp(), clm_impQ), ...,
generally abbreviated as *_imp(), that perform regression of continuous and categorical,
univariate or multi-level data as well as right-censored survival data. The model specification
is similar to the specification of standard regression models in R and described in detail in
Section 5.

Based on the specified model formula and other function arguments, JointAI does some
pre-processing of the data. It checks which variables are incomplete and identifies their
measurement level and level in the hierarchical structure in order to specify appropriate
(imputation) models. Interactions and functional forms of variables are detected in the model
formula, and the design matrices for the various parts of the model are created.

Journal of Statistical Software

MCMC sampling is performed by the program JAGS (Plummer 2003). The JAGS model,
data list (containing all necessary parts of the data) and user-specified settings for the MCMC
sampling (see Section 6) are passed to JAGS via the R package rjags (Plummer 2021).

All the main functions *_imp() return an object of class ‘JointAI’ Summary and plotting
methods for JointAT objects, as well as functions to evaluate convergence and precision of the
MCMC samples, to predict from JointAI objects and to export imputed values are discussed
in Section 7.

Currently, the package works under the assumption of a missing at random (MAR) miss-
ingness process (Rubin 1976, 1987). When this assumption holds, observations with missing
outcome may be excluded from the analysis in the Bayesian framework. Hence, missing values
in the outcome do not require special treatment in this setting, and, therefore, our focus here
is on missing values in covariates. Nevertheless, JointAI can handle missing values in the
outcome; they are automatically imputed using the specified analysis model.

4. Example data

To illustrate the functionality of JointAl, we use three datasets that are part of this package.
The NHANES data contain measurements from a cross-sectional cohort study, whereas the
simLong data is a simulated dataset based on a longitudinal cohort study in toddlers. The
third dataset (PBC) is the well known data on primary biliary cirrhosis from the Mayo clinic.

4.1. The NHANES data

The NHANES dataset is a subset of observations from the 2011 — 2012 wave of the National
Health and Nutrition Examination Survey (National Center for Health Statistics (NCHS)
2011-2012) and contains information on 186 men and women between 20 and 80 years of age.
The variables contained in this dataset are:

SBP: Systolic blood pressure in mmHg; complete.

o gender: male vs female; complete.

o age: In years; complete.

e race: 5 unordered categories; complete.

e WC: Waist circumference in cm; 1.1% missing.

e alc: Weekly alcohol consumption; binary; 18.3% missing.

e educ: Educational level; binary; complete.

o creat: Creatinine concentration in mg/dL; 4.5% missing.

o albu: Albumin concentration in g/dL; 4.3% missing.

e uricacid: Uric acid concentration in mg/dL; 4.3% missing.

e bili: Bilirubin concentration in mg/dL; 4.3% missing.

12 JointAI: Joint Analysis and Imputation in R

SBP gender age race WC (1.1% NA)
o o
g o 3 @ [3 o 3 v
c c c c n c
g . i g g o
g s g~ g - g e |:| |:| g "
o o o o _ o
80 120 160 male female 20 40 60 80 Mexican American other 60 80 120
alc (18.3% NA) educ creat (4.3% NA) albu (4.3% NA) uricacid (4.3% NA)
o _ _ -
7 8] 2 o z 4 ks %7 - 38
= — c @ < c =
g o |:| g g g S o g
o < o Q o o N o o
g I:I o ¥ @ o ¢«
: : £ 1dlllh, ¢ : =
- e T T 1 °T T 1 eI T T 1
<1 >=1 NA low high 04 08 12 35 40 45 50 2 4 6 8
bili (4.3% NA) occup (15.1% NA) smoke (3.8% NA)
] o
2 e g* 28
[= [} [
Z o] z Q z 2
e : * 1U0O0O
o- o [] |:| o —
04 08 12 working NA never current

Figure 1: Distribution of the variables in the NHANES data (with percentage of missing values
given for incomplete variables).

e occup: Occupational status; 3 unordered categories; 15.1% missing.

e smoke: Smoking status; 3 ordered categories; 3.8% missing.

Figure 1 shows histograms and bar plots of all continuous and categorical variables, respec-
tively, together with the proportion of missing values for incomplete variables. Such a plot
can be obtained with the function plot_all(). Arguments £ill and border allow the user to
change colors, while the number of rows and columns can be adapted using nrow and/or ncol,
and additional arguments can be passed to hist() and barplot() via "...". The pattern
of missing values in the NHANES data is shown in Figure 2. This plot can be obtained using
the function md_pattern(). Again, arguments color and border allow the user to change
colors, while arguments such as legend.position, print_xaxis and print_yaxis permit
further customization. Each row represents a pattern of observed/missing values, where ob-
served (missing) values are depicted with dark (light) color. The frequency with which each
of the patterns is observed is given on the right margin, the number of missing values in each
variable is given underneath the plot. Rows and columns are ordered by number of cases per
pattern (decreasing) and number of missing values (increasing). The first row, for instance,
shows that there are 116 complete cases, the second row that there are 29 cases for which only
alc is missing. Furthermore, it is apparent that creat, albu, uricacid and bili are always
missing together. Since these variables are all measured in serum, this is not surprising.

The function md_pattern() returns also the missing data pattern in matrix representation
(pattern = TRUE), where missing and observed values are represented with a 0 and 1, re-
spectively.

Missing data visualization and exploration

There are several R packages that provide functionality for a more in-depth exploration of

Journal of Statistical Software

c
Q . c
[} > Q
%) S = (9} 3 Q ® 0 o =
] Q Q. o = o
w 2 & 3B = o o T 2 o
) @ ® ® & O & =, g o = ° o %
o
116('D
29 —

24 =

RPRRrRRRERRNODAO

0 0 0 0 0 2 7 8 8 8 8 28 34
Number of missing values

. observed D missing

uJaned Jad suoleAIasqo Jo

Figure 2: Missing data pattern of the NHANES data.

incomplete data, see for example the ones listed in the CRAN task view on missing data
(Josse et al. 2021). Particularly useful may be the packages naniar (Tierney and Cook 2020)
and VIM (Kowarik and Templ 2016).

4.2. The simLong data

The simLong dataset is a simulated dataset mimicking a longitudinal cohort study of 200
mother-child pairs. It contains the following baseline (i.e., not time-varying) covariates

e GESTBIR: Gestational age at birth in weeks; complete.

o ETHN: Ethnicity; binary; 2.8% missing.

e AGE_M: Age of the mother at intake; complete.

e HEIGHT_M: Height of the mother in cm; 2.0% missing.

e PARITY: Number of times the mother has given birth; binary; 2.4% missing.

e SMOKE: Smoking status of the mother during pregnancy; 3 ordered categories; 12.2%
missing.

o EDUC: Educational level of the mother; 3 ordered categories; 7.8% missing.
e MARITAL: Marital status; 3 unordered categories; 7.0% missing.

e ID: Subject identifier.

and seven longitudinal variables:

14 JointAI: Joint Analysis and Imputation in R

0O 10 20 30 40 650 0O 10 20 30 40 50 0O 10 20 30 40 50 0 10 20 30 40 650

age in months

Figure 3: Trajectories of the continuous time-varying variables in the simLong data.

time: Measurement occasion/visit (by design, children should have been measured
at/around 1, 2, 3, 4, 7, 11, 15, 20, 26, 32, 40 and 50 months of age).

e age: Child’s age at measurement time in months.

e hgt: Child’s height in cm; 20% missing.

o wgt: Child’s weight in gram; 8.8% missing.

e bmi: Child’s BMI (body mass index) in kg/m?; 21.6% missing.
e hc: Child’s head circumference in cm; 23.6% missing.

o sleep: Child’s sleeping behavior; 3 ordered categories; 24.7% missing.

Figure 3 shows the longitudinal profiles of hgt, wgt, bmi and hc over age. All four variables
clearly have a nonlinear pattern over time. Histograms and bar plots of all the variables
in the simLong data are displayed in Figure 4. Here, the argument idvar of the function
plot_all() is used to display baseline (level-2) covariates on the subject level instead of the
observation level:

R> plot_all(simLong, use_level = TRUE, idvar = "ID", ncol = 5)

The missing data pattern of the simLong data is shown in Figure 5. For readability, the pat-
tern is given separately for the level-1 (left) and level-2 (right) variables. It is non-monotone
and does not have any distinctive features.

4.3. The PBC data

For demonstration of the use of JointAl for the analysis of survival data we use the dataset
PBC which is a re-coded version of the PBC data in the survival package. It contains baseline
and follow-up data of 312 patients with primary biliary cirrhosis and includes the following
variables:

Baseline covariates:

e 1id: Patient identifier; complete.

e futime: Time until death, transplantation or censoring in days; complete.

GESTBIR
(ID)
5 8)
c c
[[}
g g
&= o =
38 40 42 44
SMOKE (11.5% NA)
(ID)
g3 g
g g
T o o
g < 2
T o =Ll *
r smoked during pregnancy
bmi (21.6% NA)
(Ivlone)
o
58 5
g o 5]
=] o =]
g " g
= =
10 14 18
ID
(ID)
ID

is coded as character
and cannot be plotted.

Figure 4: Distribution of the variables in

abe
auwin
16M
16y

Journal of Statistical Software

ETHN (3% NA)
(ID)

m_

European NA

EDUC (8% NA)
(ID)

.

high low NA

hc (23.6% NA)
(Ivlone)

40 0 40 100

0 100 250

30 40 50

wq
oy
das|s

0
Number of missing values

. observed D missing

Figure 5: Missing data pattern

variables).

210 479 519 567 592

1126

frequency frequency

frequency

ulaned Jad suonealasqo Jo JaquinN

40

0

40 80

0

250

0 100

AGE_M
(ID)

15 25 35 45

MARITAL (8% NA)
(D)

e

married NA

hgt (20% NA)
(Ivlone)

60 80 100

N 3oV

4191839

al

0
Number of missing values

frequency frequency

frequency
0 200

HEIGHT M (2% NA)

20 40

0

400 800

0

the simLong data.

N LHOIFH

48

(ID)

150 170 190

time
(lvione)

0 10 30 50

wgt (8.8% NA)
(Ivlone)

5000 15000

NHL3
ALldvd
ona3

frequency
0 40 80

frequency

frequency

PARITY (3% NA)
(ID)

0 >=1 NA
age
(Ivione)

400 800

0

0 10 30 50
sleep (24.7% NA)

Ivione)
|:| |:I|:|
no problem NA

400 800

0

IVLIIVIN
INONS

1884
132
60
48
48
36
36
24
24
12
12
12
12
12
12
12

ulanred Jad suoneAIaSqo JO JaquInN

12

72 72 192

. observed D missing

of the simLong data (left: level-1 variables, right: level-2

12

192 276

15

16 JointAI: Joint Analysis and Imputation in R

Q
= o o & 2 , 8 8% 3 3 %
s £ 2 2 £ % 5 3 » 5 & 83 8 5 % % 8 =z %
5 3 5 = ® ¢ & 3 = 53 o 3 @ 2 5 B 8§ 53 @ & o

1013
645
102 Z
965
50 o
7 9@
6 g
5
VR
3B
2 2
2 8
1 o
1 @
1 -
1 @
1 -
1 2
1 @
1 3
1
1

o 0 0 0 0 0O O O O O O O O 8 58 60 60 61 73 206 821
Number of missing values

. observed D missing

Figure 6: Missing data pattern of the PBC data.

o status: Event indicator (censored, transplant or dead); complete.
o trt: Treatment (D-penicillamine or placebo); complete.
e age: Patient’s age in years; complete.
e sex: Patient’s sex; complete.
o copper: Urine copper (ug/day); 0.6% missing.
o trig: Triglyceride (mg/dl); 9.6% missing.
Time-varying covariates:

e day: Number of days between enrollment and this visit date (time variable for the
laboratory measurements); complete.

o albumin: Serum albumin (mg/dl); complete.

o alk.phos: Alkaline phosphatase (U/litre); 3.1% missing.
o ascites: Presence of ascites; 3.1% missing.

o ast: Aspartate aminotransferase (U/ml); complete.

e bili: Serum bilirubin (mg/dl); complete.

Journal of Statistical Software

id futime

(id) (id)
1

frequency
20

frequency
0 10 20
L1111

T T T
0 100 200 300 0

2000 4000
sex day
(id) (lvione)
))
c o c
g L
£ o ,_l £ o
male female 0 2000 4000
edema bili
8 (Ivlone) (Ivlone)
g = g
g g g 3
g © g
= o |:||:| = o
no edema 0 10 20 30 40
ast platelet (3.8% NA)
(Ivlone) (Ivlone)
Iy oy
= c
g g $ S
g~ g
Y o T * o [e m a]
0 400 800 0 400 800
trig (9.6% NA)
(id)

frequency
0 40 100
j’

0 200 400 600

Figure 7: Distribution of the variables in the PBC data (with percentage of missing values

given for incomplete variables).

o chol: Serum cholesterol (mg/dl); 42.2% missing.

e edema: no: no edema, (un)treated: untreated or successfully treated 1 edema, edema:

M.

frequency frequency frequency

frequency

status

(id)

: [

dead

140

0

censored

ascites (3.1% NA)
(Ivione)

o§|:||:|=.
no yes NA

chol (42.2% NA)

(Ivlone)

1000

0 500 1500

protime
(Ivlone)

0 600
LLLitinl

10 20 30

edema despite diuretic therapy; complete.

frequency frequency frequency

frequency

trt
(id)

100

D-pen

hepato (3.1% NA)
(lvione)

Oi|:| |:|

o

<

o —
no yes NA

albumin
(Ivlone)

placebo

0 300 700
Liitiiig

stage
(Ivlone)

j??gg

400

o hepato: Presence of hepatomegaly (enlarged liver); 3.1% missing.

e platelet: Platelet count; 3.8% missing.

e protime: Standardized blood clotting time; complete.

e spiders: Blood vessel malformations in the skin; 3.0% missing.

stage: Histologic stage of disease (4 levels); complete.

frequency frequency frequency

frequency

age

(id)

30 50 70

spiders (3% NA)
(Ivione)

O§|:|

o

©o

i |
no yes NA

alk.phos (3.1% NA)

(Ivlone)
oj
o
<
o
0 4000 10000

copper (0.6% NA)

C

0 200 400 600

17

The missing data pattern and distribution of the observed values of the PBC data is shown in

Figures 6 and 7.

18 JointAI: Joint Analysis and Imputation in R

5. Model specification

The main analysis functions in JointAI are 1m_imp(), glm_imp(), lognorm_imp(),
betareg_imp(), clm_imp(), mlogit_imp(), lme_imp(), glme_imp(), lognormmm_imp(),
betamm_imp(), clmm_imp (), mlogitmm_imp(), survreg_imp(), coxph_imp() and JM_imp().
The main arguments of these functions, i.e., formula, data, family, fixed, and random, are
used analogously to the specification in the standard complete data functions 1m() and glm()
from package stats, lme () from package nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core
Team 2021) and survreg() and coxph() from package survival (Therneau and Grambsch
2000; Therneau 2021). For example, the usage of these functions with their most relevant
arguments is:

1m_imp(formula, data,
n.chains = 3, n.adapt = 100, n.iter = 0, thin =1, ...)

glm_imp(formula, family, data,
n.chains = 3, n.adapt = 100, n.iter = 0, thin =1, ...)

lme_imp(fixed, data, random,
n.chains = 3, n.adapt = 100, n.iter = 0, thin =1, ...)

glme_imp(fixed, data, random, family,
n.chains = 3, n.adapt = 100, n.iter = 0, thin =1, ...)

survreg_imp(formula, data,
n.chains = 3, n.adapt = 100, n.iter = 0, thin =1, ...)

The specification for lognorm_imp (), betareg_imp(), and mlogit_imp() is the same as for
Im_imp Q).

The functions 1me_imp() and glme_imp() have aliases lmer_imp() and glmer_imp(), and
all mixed model functions accept specification of a combined fixed and random effects formula
(like in the package lme4; Bates, Méachler, Bolker, and Walker 2015) using fixed and random.

The arguments formula and fixed take a standard two-sided formula object, where an
intercept is added automatically (except in ordinal and proportional hazards models). For
the specification of random effects formulas, see Section 5.2.

The functions clm_imp() and clmm_imp() have additional optional arguments nonprop and
rev. The input nonprop expects a one-sided formula containing those terms of formula or
fixed that should have non-proportional effects; rev can be set to TRUE to indicate that the

odds should be reversed, i.e., to model ﬁ&g:; instead of ?8;]13

Survival models expect the left hand side of formula to be a survival object (created with
the function Surv() from package survival, see Section 5.3).

The argument family enables the choice of a distribution and link function from a range of
options when using glm_imp () or glme_imp (). The implemented options are given in Table 1.
For the description of the remaining arguments see below and Section 6.

Journal of Statistical Software

Distribution Link function

gaussian identity, log, inverse
binomial logit, probit, log, cloglog
gamma inverse, identity, log
poisson log, identity

Table 1: Possible choices for the family (distribution) and link (link function) arguments in
glm_imp() and glme_imp().

5.1. Specification of the model formula

Interactions

In JointAI interactions between any type of variables (observed, incomplete, variables from
different hierarchical levels) can be handled. When an incomplete variable is involved, the
interaction term is re-calculated within each iteration of the MCMC sampling, using the
imputed values from the current iteration. Interaction terms involving incomplete variables
should, hence, not be pre-calculated as an additional variable since this would lead to incon-
sistent imputed values of main effect and interaction term.

Interactions between multiple variables can be specified using parentheses; for higher lever
interactions the = operator can be used:

R> modla <- glm_imp(educ ~ gender * (age + smoke + creat),
+ data = NHANES, family = binomial())

R> modlb <- glm_imp(educ ~ gender + (age + smoke + creat)~3,
+ data NHANES, family = binomial())

In modla the interaction between gender and each category of age, smoke and creat is
included, while model mod1b includes all pairwise interactions between age, smoke and creat
as well as the 3-way interaction between these variables.

Nonlinear functional forms

In practice, associations between outcome and covariates do not always meet the standard
assumption of linearity. Often, assuming a logarithmic, quadratic or other nonlinear effect is
more appropriate.

For completely observed covariates, JointAl can handle any common type of function im-
plemented in R, including splines, e.g., using ns() or bs() from the package splines. Since
functions involving variables that have missing values need to be re-calculated in each iter-
ation of the MCMC sampling, currently, only functions that are available in JAGS can be
used for incomplete variables. Those functions include:

e log(), expQ).
e sqrt(), polynomials (using I()).

e abs().

19

20 JointAI: Joint Analysis and Imputation in R

e sin(), cosQ).

o Algebraic operations (wrapped in I()) involving one or multiple (in)complete variables,
as long as the formula can be interpreted by JAGS.

The list of functions implemented in JAGS can be found in the JAGS user manual (Plummer
2017). Some examples (that do not necessarily have a meaningful interpretation or good
model fit) are:

R

R> mod2a <- 1m_imp(SBP ~ age + gender + abs(bili - creat), data = NHANES)
R> mod2b <- 1m_imp(SBP ~ ns(age, df = 2) + gender + I(bili~2) + I(bili~3),
+ data = NHANES)

R> mod2c <- 1m_imp(SBP ~ age + gender + I(creat/albu~2), data = NHANES,

+ trunc = list(albu = c(le-5, NA)))

R> mod2d <- 1m_imp(SBP ~ bili + sin(creat) + cos(albu), data = NHANES)

R

R

It is also possible to nest a function in another function:

R> mod2e <- 1m_imp(SBP ~ age + gender + sqrt(exp(creat)/2), data = NHANES)

Functions with restricted support

When a function of an incomplete variable has restricted support (e.g., log(z) is only defined
for z > 0, in mod2c defined above I(creat/albu”2) can not be calculated for albu = 0) the
model specified for that incomplete variable needs to comply with these restrictions. This can
either be achieved by truncating the distribution, using the argument trunc, or by selecting
a distribution that meets the restrictions.

Note that truncation should be used with care. Its intended use here is to prevent issues when
a variable takes a value that would result in an invalid mathematical expression. Truncation
should not be used to use symmetric distributions, like the normal distribution, to fit skewed
data (Von Hippel 2013; Rodwell, Lee, Romaniuk, and Carlin 2014; Geraci and McLain 2018).

Example: When using a log transformation for the covariate uricacid, we can use the
default imputation method "norm" (a normal distribution) and truncate it by specifying
trunc = list(uricacid = c(<lower>, <upper>)), where <lower> and <upper> are the
smallest and largest values allowed:

R> mod3a <- 1m_imp(SBP ~ age + gender + log(uricacid) + exp(creat),
+ trunc = list(uricacid = c(le-5, NA)), data = NHANES)

One-sided truncation is possible by setting the limit that is not needed to NA.

Alternatively, we may choose a model for the incomplete variable (using the argument models;
for more details see Section 5.5) that only imputes positive values such as a log-normal
distribution or a gamma distribution:

R> mod3b <- 1m_imp(SBP ~ age + gender + log(uricacid) + exp(creat),
+ models = c(uricacid = "lognorm"), data = NHANES)

R> mod3c <- 1m_imp(SBP ~ age + gender + log(uricacid) + exp(creat),
+ models = c(uricacid = "glm_gamma_inverse"), data = NHANES)

Journal of Statistical Software

Functions that are not available in R

It is possible to use functions that have different names in R and JAGS, or that do exist in
JAGS, but not in R, by defining a new function in R that has the name of the function in
JAGS.

Example: In JAGS the inverse logit transformation is defined in the function ilogit ().
In base R, there is no function ilogit, but the inverse logit is available as the distribution
function of the logistic distribution plogis(). Thus, we can define the function ilogit () as

R> ilogit <- plogis
and use it in the model formula

R> mod4a <- 1lm_imp(SBP ~ age + gender + ilogit(creat), data = NHANES)

A note on what happens inside JointAl

When a function of a complete or incomplete variable is used in the model formula, the
main effect of that variable is automatically added as an auxiliary variable (more on auxiliary
variables in Section 5.6), and only the main effects are used as predictors in the imputation
models.

In mod2b defined previously, for example, the spline of age is used as predictor for SBP,
but in the imputation model for bili, age enters with a linear effect. This can be checked
using the function list_models (), which prints a list of all sub-models used in a JointAl
model. Here, we are only interested in the predictor variables, and, hence, suppress printing
of information on prior distributions, regression coefficients and other parameters by setting
priors, regcoef and otherpars to FALSE:

R> list_models(mod2b, priors = FALSE, regcoef = FALSE, otherpars = FALSE)

Linear model for "SBP"
family: gaussian
link: identity
* Predictor variables:
(Intercept), ns(age, df = 2)1, ns(age, df = 2)2, genderfemale,
I(bili~2), I(bili~3)

Linear model for "bili"
family: gaussian
link: identity

* Predictor variables:
(Intercept), age, genderfemale

When a function of a variable is specified as auxiliary variable, this function is used in the
imputation models. For example, in the following mod4b waist circumference (WC) is not part
of the model for SBP, and the quadratic term I(WC~2) is used in the linear predictor of the
imputation model for bili:

21

22 JointAI: Joint Analysis and Imputation in R

R> mod4b <- 1m_imp(SBP ~ age + gender + bili, auxvars = ~ I(WC"2),
+ data = NHANES)
R> list_models(mod4b, priors = FALSE, regcoef = FALSE, otherpars = FALSE)

Linear model for "SBP"
family: gaussian
link: identity
* Predictor variables:
(Intercept), age, genderfemale, bili

Linear model for "bili"
family: gaussian
link: identity
* Predictor variables:
(Intercept), age, genderfemale, I(WC~2)

Linear model for "WC"
family: gaussian
link: identity

* Predictor variables:
(Intercept), age, genderfemale

Incomplete variables are always imputed on their original scale, i.e., in mod2b the variable
bili is imputed and the quadratic and cubic versions are then calculated from the imputed
values. Likewise, creat and albu in mod2c are imputed separately, and I(creat/albu~2)
calculated from the imputed (and observed) values. To ensure consistency between variables,
functions involving incomplete variables should be specified as part of the model formula and
not be pre-calculated as separate variables.

5.2. Multi-level structure and longitudinal covariates

In multi-level models, in addition to the fixed effects structure specified by the argument
fixed, a random effects structure needs to be provided, either via the argument random (as
in the package nlme) or in round brackets (as in the package lme4).

The argument random takes a one-sided formula starting with a ~, and the grouping variable
is separated by |. A random intercept is added automatically and only needs to be specified
in a random intercept only model.

A few examples:

o Random intercept only, with id as grouping variable:
random = ~ 1 | id or formula = <...> + (1 | id).

¢ Random intercept and slope for variable time:
random = ~ time | id or formula = <...> + (time | id).

¢ Random intercept, slope and quadratic random effect for time:
random = ~ time + I(time”2) | id or
formula = <...> + (time + I(time~2) | id).

Journal of Statistical Software

¢ Random intercept, random slope for time and random effect for variable x:
random = ~ time + x | id or formula = <...> + (time + x | id).

It is possible to use splines in the random effects structure if there are no missing values in
the variables involved, e.g.:

R> mod5 <- Ilme_imp(bmi ~ GESTBIR + ETHN + HEIGHT_M + ns(age, df = 2),
+ random = ~ ns(age, df = 2) | ID, data = simLong)

To specify multiple levels of grouping, i.e., a hierarchical model with more than two levels,
the specification via the argument formula should be used. Note that in JointAI there
is no difference between (1 | id) + (1 | center) and (1 | center/id). The distinction
between nested and crossed random effects needs to be done via the coding of the two grouping
variables: if id should be nested in center then all cases with the same id have to have the
same value for center.

5.3. Survival models

JointAI provides two functions to analyze survival data with incomplete covariates:
survreg_imp() and coxph_imp(). Analogously to the complete data versions of these func-
tions from the package survival, the left hand side of the model formula has to be a survival
object specified using the function Surv().

Example: To analyze the PBC data (see Section 4.3), we can either use a parametric Weibull
model (considering only time-constant covariates) or a proportional hazards model. Since the
PBC data contains time-varying covariates, we use the subset of rows where day == 0 to have
only one observation per patient.

R> mod6a <- survreg_imp(Surv(futime, status != "alive") ~ age + sex +
+ copper + trig, models = c(copper = "lognorm", trig = "lognorm"),
+ data = subset(PBC, day == 0), n.iter = 250)

R> mod6b <- coxph_imp(Surv(futime, status != "alive") ~ age + sex +
+ copper + trig, models = c(copper = "lognorm", trig = "lognorm"),

+ data = subset(PBC, day == 0), n.iter = 250)

Currently only right-censored survival data can be handled and it is not yet possible to
take into account strata (i.e., strata specific baseline hazards). To model clustered data, the
model formula can be extended with a random effect specification of the form formula =
<...> + (1 | center). The specification of subject-specific random effects also allows the
user to include time-varying covariates in proportional hazards models. This requires the
specification of the name of the variable containing the timing of the repeated measurements
via the additional argument timevar:

R> mod6¢c <- coxph_imp(Surv(futime, status != "alive") ~ age + sex + copper +
+ trig + platelet + (1 | id),
+ models = c(copper = "lognorm", trig = "lognorm"),

+ timevar = "day", data = PBC)

23

24 JointAI: Joint Analysis and Imputation in R

Time-varying covariates are modeled (and imputed) using the last-observation-carried-forward
principle. The data should include a baseline measurement (where timevar = 0) of the time-
varying covariates. If a value needs to be filled in and no previous measurement is available,
the subsequent observation is “carried-backward”.

5.4. Joint models

Joint models for longitudinal and survival data can be fitted using the function JM_imp().
The specification is analogue to the specification of a proportional hazards model with time-
dependent covariates, but the longitudinal trajectories are assumed to follow a smooth tra-
jectory over time (as modeled by a mixed model) and not a step-function.

If the models for time-varying covariates are not explicitly specified, random intercept mod-
els with the default fixed effects structure are used (including linear effects for all baseline
variables and time-varying variables that are complete or imputed earlier in the sequence).

To specify models for time-dependent covariates, a list of models can be supplied to the
argument formula:

R> PBC$logbili <- log(PBC$bili)
R> mod6d <- JM_imp(

+ list(Surv(futime, status != "alive") ~ age + sex + platelet + logbili +
+ (1 | id),

+ platelet ~ age + sex + day + logbili + (day [id),

+ logbili ~ age + sex + day + (day | id)

+)5

+ timevar = "day", data = PBC, n.adapt = 10)

The use of a list of model formulas is not restricted to JM_imp() but possible in any of the
main analysis functions *_imp (). This allows the user to fit multiple analyses simultaneously,
or to explicitly specify the structure of a covariate model.

When there are multiple sub-models with random effects, the structure of the joint variance-
covariance matrix of these random effects can be specified as independent ("indep"), block-
diagonal ("blockdiag") or unstructured ("full") using the argument rd_vcov.

Joint analysis of multiple substantive models may be particularly desirable if they share
incomplete covariates.

5.5. Covariate model types

Joint AT automatically selects an (imputation) model type for each of the incomplete covariates
(and sometimes also complete covariates, as detailed in Section 2.2.1) based on the class of
the variable.

The automatically selected types for covariates on the highest level are:

o 1lm: Linear model (for continuous variables).
e glm_binomial_logit: Binary logistic model (for factors with two levels).

o mlogit: Multinomial logit model (for unordered factors with > 2 levels).

Journal of Statistical Software 25

o clm: Cumulative logit model (for ordered factors with > 2 levels).
The default methods for covariates on lower levels are:

e 1mm: Linear mixed model.

glmm_binomial_logit: Logistic mixed model.

mlogitmm: Multinomial logit mixed model.

clmm: Cumulative logit mixed model.

When a continuous variable has only two different values, it is automatically converted to a
factor and modeled using a logistic model, unless a different model type is specified by the
user. Variables of type logical are also converted to binary factors.

The (imputation) models that are chosen by default may not necessarily be appropriate for
the data at hand, especially for continuous variables, which often do not comply with the
assumptions of (conditional) normality.

Therefore, the following alternative (imputation) model types are available:

o Gamma (mixed) models for right-skewed variables > 0:
glm_gamma_<link> and glmm_gamma_<link>, where <1ink> should be one of inverse,
identity or log.

o Poisson (mixed) models for count data:
glm_poisson_<link>and glmm_poisson_<link>, where <1ink> should be logor identity/

o Beta (mixed) models for for continuous variables with values in (0,1):
beta and glmm_beta.

o Log-normal (mixed) model for right-skewed variables > 0:
lognorm and glmm_lognorm.

All model types are implemented as described in Section 2.1.

Specification of covariate model types

In models mod3b and mod3c introduced in Section 5.1.3, we have already seen two examples
in which the imputation model type was changed using the argument models. This argument
takes a named vector of (imputation) model types, where the names are given by the names
of covariates. When the vector supplied to models only contains specifications for a subset of
the covariates for which a model is needed, default models are used for the remaining ones. As
explained in Section 2.2.1, models for completely observed covariates may need to be specified
in multi-level settings.

R> mod7a <- 1m_imp(SBP ~ age + gender + WC + alc + bili + occup + smoke,

+ models = c(WC = "glm_gamma_inverse", bili = "lognorm"), data = NHANES,
+ n.adapt = 0)

R> mod7a$models

26 JointAI: Joint Analysis and Imputation in R

SBP alc occup
"glm_gaussian_identity" "glm_binomial_logit" "mlogit"
bili smoke WC

"lognorm" "clm" "glm_gamma_inverse"

When there is a “time” variable in the model, such as age in our example (which is the age
of the child at the time of the measurement), it may not be meaningful to specify a model
for that variable. Especially when the “time” variable is pre-specified by the design of the
study it can usually be assumed to be independent of the covariates and a model for it has
no useful interpretation. The argument no_model allows the user to avoid specifying models
for such variables (as long as they are completely observed):

R> mod7b <- lme_imp(bmi ~ GESTBIR + ETHN + HEIGHT_M + SMOKE + hc +
+ MARITAL + ns(age, df = 2), random = ~ ns(age, df = 2) | ID,

+ data = simLong, no_model = "age", n.adapt = 0)

R> mod7b$models

bmi hc SMOKE
"glmm_gaussian_identity" "1mm" "clm"
MARITAL ETHN HEIGHT_M

"mlogit" "glm_binomial_logit" "Im"

Note that by excluding the model for age we implicitly assume that incomplete baseline
variables are independent of age.

Order of the sequence of imputation models

In multi-level models, the sequence of models for covariates is sorted by the variables level, so
that variables of a higher level enter the linear predictor of variables of lower levels, but not vice
versa. Within each level, models are ordered by the number of missing values (decreasing),
so that the model for the variable with the largest amount of missing values has most of the
variables in its linear predictor.

5.6. Auxiliary variables

Auxiliary variables are variables that are not part of the analysis model but should be consid-
ered as predictor variables in the imputation models because they can inform the imputation
of unobserved values. Good auxiliary variables are (Van Buuren 2012):

« associated with an incomplete variable of interest, or are associated with the missingness
of that variable,

¢ do not have too many missing values themselves. Importantly, they should be observed
for a large proportion of the cases that have a missing value in the variable to be
imputed.

In the main functions *_imp (), auxiliary variables can be specified with the argument auxvars,
which takes a one-sided formula.

Journal of Statistical Software 27

Example: We might consider the variables educ and smoke as predictors for the imputation
of occup:

R> mod8a <- 1lm_imp(SBP ~ gender + age + occup, auxvars = ~ educ + smoke,
+ data = NHANES, n.iter = 100)

The variables educ and smoke are not included in the analysis model. They are, however,
used as predictors in the imputation for occup and imputed themselves if they have missing
values:

R> list_models(mod8a, priors = FALSE, regcoef = FALSE, otherpars = FALSE,
+ refcat = FALSE)

Linear model for "SBP"
family: gaussian
link: identity
* Predictor variables:
(Intercept), genderfemale, age, occuplooking for work, occupnot
working

Multinomial logit model for "occup"

* Predictor variables:
(Intercept), genderfemale, age, educhigh, smokeformer,
smokecurrent

Cumulative logit model for "smoke"
* Predictor variables:
genderfemale, age, educhigh

Functions of variables as auxiliary variables

As shown above in mod4b, it is possible to specify functions of auxiliary variables. In that
case, the auxiliary variable is not considered as a linear effect but as specified by the function.

Note that omitting auxiliary variables from the analysis model implies that the outcome is
independent of these variables, conditional on the other variables in the model. If this is
not true, the model is misspecified which may lead to biased results (similar to leaving a
confounding variable out of a model).

5.7. Reference values for categorical covariates

In JointAl, contrasts for incomplete categorical variables need to be derived from the imputed
values in each iteration of the MCMC sampling. Currently, this is only implemented for
dummy and effect coding, i.e., contr.treatment and contr.sum. If a model contains an
incomplete ordered factor as covariate, and R’s default contr.poly (orthogonal polynomials)
for ordered factors is set in the global options(), a warning is printed and dummy coding is
used instead.

28 JointAI: Joint Analysis and Imputation in R

By default, the first category of a categorical variable (ordered or unordered) is used as
reference, however, this may not always allow the desired interpretation of the regression
coefficients. Moreover, when categories are unbalanced, setting the largest group as reference
may result in better mixing of the MCMC chains. Therefore, Joint AI allows the user to specify
the reference category separately for each variable, via the argument refcats. Changes in
refcats will not impact the imputation of the respective variable, but the definition of the
contrasts, which affects the linear predictor of the analysis model or other covariate models.

Setting reference categories for all variables

To specify globally the choice of the reference category for all the variables in the model,
refcats can be set as

e refcats = "first"
e refcats = "last"
e refcats = "largest"

For example:

R> mod9a <- I1m_imp(SBP ~ gender + age + race + educ + occup + smoke,
+ refcats = "largest", data = NHANES)

Setting reference categories for individual variables

Alternatively, refcats can take a named vector, in which the reference category for each
variable can be specified either by its number or its name, or one of the three global types:
"first", "last" or "largest". For variables for which no reference category is specified in
the list the default is used.

R> mod9b <- 1m_imp(SBP ~ gender + age + race + educ + occup + smoke,
+ refcats = list(occup = "not working", race = 3, educ = "largest"),
+ data = NHANES)

To facilitate specification of the reference categories, the function set_refcat () can be used.
It prints the names of the categorical variables that are selected by:

o a specified model formula (using the argument formula) and/or
o a one-sided formula specifying auxiliary variables (using the argument auxvars), or

e a vector naming covariates (using the argument covars)

or all categorical variables in the data if only the argument data is provided. In the latter
case some questions are asked to which the user needs to reply to via input of a number:

R> refs_mod9 <- set_refcat (NHANES, formula = formula(mod9b))

Journal of Statistical Software 29

The categorical variables are:
- "gender"

- "race"

- n educll

- "occup"

- "smoke"

How do you want to specify the reference categories?

: Use the first category for each variable.

: Use the last category for each variable.

: Use the largest category for each variable.
Specify the reference categories individually.

SN -

When option 4 is chosen, a question for each categorical variable is asked, for example:
The reference category for "race" should be

Mexican American
Other Hispanic
Non-Hispanic White
Non-Hispanic Black
other

g W N -

After specification of the reference categories for all the categorical variables, the determined
specification for the argument refcats is printed

In the JointAI model specify:
refcats = c(gender = "female", race = "Non-Hispanic White",

educ = "low", occup = "not working", smoke = "never")
or use the output of this function.

set_refcat () also returns a named vector that can be passed to the argument refcats:

R> mod9c <- 1m_imp(SBP ~ gender + age + race + educ + occup + smoke,
+ refcats = refs_mod9, data = NHANES)

5.8. Hyper-parameters

In a Bayesian framework, parameters are random variables for which a distribution needs to
be specified. These distributions depend on parameters themselves, i.e., on hyper-parameters.

The function default_hyperpars() returns a list containing the default hyper-parameters
used in a JointAI model (see Appendix A).

mu_reg_* and tau_reg_* refer to the mean and precision of the prior distribution for re-
gression coefficients. shape_tau_* and rate_tau_x are the shape and rate parameters of a
gamma distribution that is used as prior for precision parameters. RinvD is the scale matrix in

30 JointAI: Joint Analysis and Imputation in R

the Wishart prior for the inverse of the random effects covariance matrix D, and KinvD is the
number of degrees of freedom in that distribution. shape_diag_RinvD and rate_diag_RinvD
are the shape and rate parameters of the gamma prior of the diagonal elements of RinvD.
In random effects models with only one random effect, a gamma prior is used instead of the
Wishart distribution for the inverse of D.

The hyper-parameters mu_reg_surv and tau_reg_surv are used in survreg_imp (), coxph_imp ()
and JM_imp().

To change hyper-parameters in a JointAI model, the default values can be obtained from
default_hyperpars(), and then be adjusted and passed to the argument hyperpars:

R> hyp <- default_hyperpars()

R> hyp$norm["shape_tau_norm"] <- 0.5

R> mod9d <- 1m_imp(SBP ~ gender + age + race + educ + occup + smoke,
+ data = NHANES, hyperpars = hyp)

5.9. Scaling

When variables are measured on very different scales this can result in slow convergence and
bad mixing. Therefore, JointAl automatically scales continuous variables to approximately
have mean zero and standard deviation one when they enter a linear predictor. Results
are transformed back to the original scale. To prevent scaling, the argument scale_vars
in *_imp() can be set to FALSE. When a vector of the names of model terms is supplied
to scale_vars, only those terms are scaled. By default, only the MCMC samples that are
scaled back to the scale of the data are stored in a JointAI object. When the argument
keep_scaled_mcmc = TRUE, the scaled sample is also kept.

5.10. Shrinkage priors

Using the argument shrinkage it is possible to impose a penalty on the regression coeffi-
cients of all or some sub-models. If shrinkage = "ridge", a ridge penalty is imposed on
the regression coefficients of all sub-models by specifying a Gamma(0.01,0.01) prior for the
precision of the regression coefficients instead of setting it to a fixed (small) value. It is also
possible to provide a named vector to shrinkage, where the names should be the names of
the response variables of models on which the penalty should be imposed, together with the
type of shrinkage (e.g., shrinkage = c(SBP = "ridge")).

5.11. JAGS model file

Using the user-specified or default settings described above, Joint Al writes the JAGS model.
By default, the model is written to a temporary file and deleted when the MCMC sampling
has finished. When the argument keep_model is set to TRUE the model file will be kept. In
any case, the JAGS model is stored in the JointAI object as a character string. Arguments
modelname and modeldir allow the user to specify the name of the file (including the ending,
e.g., .Ror .txt) and the file location. When a file with that same name already exists in the
given location, a question is prompted giving the user the option to use the existing file or to
overwrite it. To prevent the question, the argument overwrite can be set to TRUE or FALSE.

Journal of Statistical Software 31

The functionality of using an existing JAGS model file enables the user to make changes to
the JAGS model that is created automatically by JointAl, for example to change the type of
prior distribution used for a particular parameter.

6. MCMUC settings

The main functions *_imp () have a number of arguments that specify settings for the MCMC
sampling:

e n.chains: Number of MCMC chains.

e n.adapt: Number of iterations in the adaptive phase.
e n.iter: Number of iterations in the sampling phase.
e thin: Thinning degree.

o monitor_params: Parameters/nodes to be monitored.
e seed: Optional seed value for reproducibility.

e inits: Initial values.

e quiet: Should printing of information be suppressed?

o progress.bar: Type of progress bar ("text", "gui" or "none").

The first four and last two arguments are passed directly to functions from the R package
rjags, monitor_params and seed refer to additional functionality provided by JointAl.

In the following sections, the arguments listed above are explained in more detail and examples
are given.

6.1. Number of chains, iterations and samples

Number of chains

To evaluate convergence of MCMC chains it is helpful to create multiple chains that have dif-
ferent starting values. More information on how to evaluate convergence and the specification
of initial values can be found in Sections 6.3 and , respectively.

The argument n.chains selects the number of chains (by default n.chains = 3). For calcu-
lating the model summary, multiple chains are merged.

Adaptive phase

JAGS has an adaptive mode, in which samplers are optimized (for example the step size is
adjusted). Samples obtained during the adaptive mode do not form a Markov chain and are
discarded. The argument n.adapt controls the length of this adaptive phase.

The default value for n.adapt is 100, which works well in many of the examples considered
here. Complex models may require longer adaptive phases. If the adaptive phase is not

32 JointAI: Joint Analysis and Imputation in R

sufficient for JAGS to optimize the samplers, a warning message will be printed (see example
below).

Sampling iterations

n.iter specifies the number of iterations in the sampling phase, i.e., the length of the MCMC
chain. How many samples are required to reach convergence and to have sufficient precision
(see also Section 7.3.2) depends on the complexity of data and model, and may range from
as few as 100 to several million.

Thinning

In settings with high autocorrelation, it may take many iterations before a sample is created
that sufficiently represents the whole range of the posterior distribution. Processing of such
long chains can be slow and may cause memory issues. The parameter thin allows the user
to specify if and how much the MCMC chains should be thinned before storing them. By
default thin = 1 is used, which corresponds to keeping all values. A value thin = 10 would
result in keeping every 10th value and discarding all other values.

Example: default settings Using the default settings n.adapt = 100 and thin = 1, and
100 sampling iterations, a simple model would be specified as follows:

R> mod10a <- 1m_imp(SBP ~ alc, data = NHANES, n.iter = 100)

The relevant part of the model summary (obtained with summary ()) shows that the first 100
iterations (adaptive phase) were discarded, the 100 iterations that follow form the posterior
sample, thinning was set to 1, and that there are three chains.

[...]

MCMC settings:

Iterations = 101:200

Sample size per chain = 100
Thinning interval = 1
Number of chains = 3

Example: insufficient adaptation phase
R> mod10b <- 1m_imp(SBP ~ alc, data = NHANES, n.adapt = 10, n.iter = 100)

Warning in rjags::jags.model(file = modelfile, data = data_list, inits =
inits, : Adaptation incomplete

NOTE: Stopping adaptation

Specifying n.adapt = 10 results in a warning message. The relevant part of the model
summary from the resulting model is:

Journal of Statistical Software

[...]

MCMC settings:

Iterations = 11:110

Sample size per chain = 100
Thinning interval = 1
Number of chains = 3

Example: thinning
R> mod10c <- 1m_imp(SBP ~ alc, data = NHANES, n.iter = 500, thin = 10)

Here, iterations 110 until 600 are used in the output, but due to a thinning interval of ten,
the resulting MCMC chains contain only 50 samples instead of 500, that is, the samples from
iteration 110, 120, 130, ...

[...]

MCMC settings:

Iterations = 110:600
Sample size per chain = 50
Thinning interval = 10
Number of chains = 3

6.2. Parameters to follow

Since JointAI uses JAGS (Plummer 2003) for performing the MCMC sampling, and JAGS
only saves the values of MCMC chains for those nodes for which the user has specified that
they should be monitored, this is also the case in JointAl.

For this purpose, the main functions *_imp() have an argument monitor_params, which
takes a named list (or a named vector) with possible entries given in Table 6.2. This ta-
ble contains a number of keywords that refer to (groups of) nodes. Each of the keywords
works as a switch and can be specified as TRUE or FALSE (with the exception of other). The
default setting is monitor_params = c(analysis_main = TRUE), i.e., only the main param-
eters of the analysis model are monitored, and monitoring is switched off for all the other
parameters. To additionally monitor the parameters of covariate models and imputed values
monitor_params = c(other_models = TRUE, imps = TRUE) would have to be specified.

It is possible to switch off sub-sets of the selected groups of nodes, for example, to monitor
all random effects parameters of the main model(s), but not the random effects themselves:
monitor_params = c(analysis_random = TRUE, ranef_main = FALSE).

The element other in monitor_params allows the specification of one or multiple additional
nodes to be monitored. When other is used with more than one element, monitor_params
has to be a list. Here, as an example, we monitor the probability of being in the alc>=1
group for subjects one through three and the expected value of the distribution of creat for
the first subject.

R> modlla <- 1m_imp(SBP ~ gender + WC + alc + creat, data = NHANES,
+ monitor_params = list(other = c("p_alc[1:3]", "mu_creat[1]")))

34

JointAI: Joint Analysis and Imputation in R

Name/keyword

What is monitored

analysis_main

betas
tau_main
sigma_main

analysis_random
ranef_main
D _main
invD_main
RinvD_main

other_models
alphas
tau_other
gamma_other
delta_other

imps

ranef_other
D_other
invD_other
RinvD_other

other

betas and sigma_main (for models with a variance parameter), tau_main
(for beta models), gamma_main (for cumulative logit models), shape_main
(for parametric survival models), D_main (for multi-level models), basehaz
(for proportional hazards models)

regression coefficients of the main model(s)

precision of the residuals from the main model(s)

standard deviation of the residuals from the main model(s)

ranef_main, D_main, invD_main, RinvD_main

random effects of the main model(s)

covariance matrix of the random effects from the main model(s)
inverse of D_main

scale matrix in Wishart prior(s) for invD_main

alphas, tau_other, sigma_other, gamma_other, delta_other
regression coefficients in the covariate model(s)

precision parameters of the residuals from covariate model(s)
intercepts in ordinal imputation models

increments of ordinal intercepts

imputed values

random effects of the covariate model(s)

covariance matrix of the random effects from the covariate model(s)
inverse of D_other

scale matrix in Wishart prior(s) for invD_other

additional nodes

Table 2: Keywords and names of (groups of) nodes that can be specified to be monitored
using the argument monitor_params.

Even though this example may not be particularly meaningful, in cases of convergence issues
it can be helpful to be able to monitor any node of the model, not just the ones that are
typically of interest.

More examples are given in the package vignette (https://nerler.github.io/JointAI/
articles/SelectingParameters.html).

6.3. Initial values

Initial values are the starting point for the MCMC sampler. Setting good initial values, i.e.,
values that are likely under the posterior distribution, can speed up convergence. By default
inits = NULL, which means that initial values are generated automatically by JAGS. It is
also possible to supply initial values directly as a list or as a function.

Initial values can be specified for every unobserved node, that is, parameters and missing
values, and it is possible to specify initial values for only a subset of nodes.

When the initial values provided by the user do not have elements named " .RNG.name" or

https://nerler.github.io/JointAI/articles/SelectingParameters.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html

Journal of Statistical Software 35

".RNG.seed", JointAlI will add those elements, which specify the name and seed value of the
random number generator used for each chain. The argument seed allows the specification
of a seed value with which the starting values of the random number generator, and, hence,
the values of the MCMC sample, can be reproduced.

Initial values in a list of lists

A list of initial values should have the same length as the number of chains, where each
element is a named list of initial values and initial values should differ between chains.

For example, to create initial values for three chains for the parameter vector beta and the
precision parameter tau_SBP in modl1ia the following syntax could be used:

R> init_list <- lapply(1:3, function(i) {

+ list(beta = rnorm(5), tau_SBP = rgamma(1l, 1, 1))

+ P

R> mod12a <- 1m_imp(SBP ~ gender + WC + alc + creat, data = NHANES,
+ inits = init_list)

The user provided lists of initial values (and starting values for the random number generator)
are stored in the JointAI object and can be accessed via modlla$mcmc_settings$inits.

Initial values as a function

Initial values can be specified as a function. The function should either take no arguments or
a single argument called chain, and return a named list that supplies values for one chain.

For example, to create initial values for the parameter vectors beta and alpha in modl1la:

R> inits_fun <- function() {

+ list(beta = rnorm(5), alpha = rnorm(9))

+ }

R> mod12b <- 1m_imp(SBP ~ gender + WC + alc + creat, data = NHANES,
+ inits = inits_fun)

When a function is supplied, the function is evaluated by JointAI and the resulting list is
stored in the JointATI object.

For which nodes can initial values be specified?

Initial values can be specified for all unobserved stochastic nodes, i.e., parameters or unob-
served data for which a distribution is specified in the JAGS model. They have to be supplied
in the format of the parameter or unobserved value in the JAGS model. To find out which
nodes there are in a model and in which form they have to be specified, the function coef ()
from package rjags can be used to obtain a list with the current values of the MCMC chains
(by default the first chain) from a JAGS model object. This object is contained in a JointAI
object under the name model (this requires at least one iteration in the adaptive phase).
Elements of the initial values should have the same structure as the elements in this list of
current values. For more details, see the package vignettes.

36 JointAI: Joint Analysis and Imputation in R

6.4. Parallel sampling

To reduce the computational time it is possible to perform sampling of multiple MCMC chains
in parallel. The packages future (Bengtsson 2021b) and doFuture (Bengtsson 2021a) can be
used to specify how parallel processes are handled. To specify that a model should be run as
four different processes, the following specification can be used before fitting the model:

R> library("doFuture")
R> doFuture: :registerDoFuture ()
R> plan(multiprocess(workers = 4))

This setting will remain for the entire R session, unless it is explicitly re-set to sequential
computation, for instance using the following syntax:

R> plan(sequential)

7. After fitting

Each of the main functions *_imp() will return an object of class ‘JointAI’ It contains
the original data (data), information on the type of model (call, analysis_type, models,
fixed, random, hyperpars) and MCMC sampling (mcmc_settings), the JAGS model (as
object of class ‘jags’ in the element model and as string in the element jagsmodel) and
MCMC sample (MCMC; if a sample was generated), information on the setting the model was
run with (comp_info containing the start time, computational time, JointAI version number;
future containing information on the setting for parallel computation), and some additional
elements that are used by methods for objects of class ‘JointAI’ but are typically not of
interest for the user.

In this section, we describe how the results from a JointAI model can be visualized, sum-
marized and evaluated. The functions described here use, by default, the full MCMC sample
and show only the parameters of the analysis model. Arguments start, end, thin and
exclude_chains are available to select a subset of the iterations of the MCMC sample that
is used to calculate the summary. The argument subset allows the user to control for which
nodes the summary or visualization is returned and follows the same logic as the argument
monitor_params in *_imp(). For JointAI objects that include multiple main models (i.e,
when a list of formulas was supplied), the argument outcome can be used to provide a vector
of integers to select for which of the analysis models the output should be shown. The use of
these arguments is further explained in Section 7.4.

7.1. Visualizing the posterior sample

The posterior sample can be visualized by two commonly used plots: a trace plot, showing
samples across iterations, and a plot of the empirical density of the posterior sample.

Trace plot

A trace plot shows the sampled values per chain and node across iterations. It allows the
visual evaluation of convergence and mixing of the chains and can be obtained with the
function traceplot().

Journal of Statistical Software 37

(Intercept) genderfemale
4
= 1
o 0 — el H H
&+ BIFR Mg '
it 'h'!l?a‘f 1 4R
o o kR IhiLg
o A . B
Q 0 L A 1 f
@ i ! ! !
T T T T T T T T T T T T
100 200 300 400 500 600 100 200 300 400 500 600
Iterations Iterations
wcC alc>=1
v : 0
o N . '
dol 1 : . 1y S
- £ N (EEPRRT |10 B e 1 HT e
ey [1F il A Wl
™ LR EVRL ML it R
) _| B i i b 1 K Hyvl i
2 MRV R o
(| | ! R
. L AL AL v L P !
- : 1 \ : o
s
T T T T T T T T T T T T
100 200 300 400 500 600 100 200 300 400 500 600
Iterations Iterations
creat sigma_SBP
o | | S .
™ H
: TR IS N YRR T
n I¥ TR N WK ol
N uf i ‘ o ':fl,‘:,‘“' ::;n Ll | ;a l.-t!v g i | ‘I‘
7 R I 1 TR 1R LRIR A B PR
1§ w"‘ Mg S 1 R ik Ku‘l“a‘ fii AR
o LE ! - i i R p B o A
S a4 IR A N
T T T T T T T T T T T T
100 200 300 400 500 600 100 200 300 400 500 600
Iterations Iterations
Figure 8: Traceplot for the output of mod13a.
(Intercept) genderfemale WC alc>=1
120~

100+ 'WHW"W"U i w 2_ o M‘“HHWW{H”&‘ 04"~"1'lh|l”n‘l'uM‘|!'W‘ 10'!’,1 ml”"HIWI M

s 5wwwmw AW 5 PR N

value

creat sigma_SBP

- mm‘drw uat = i il
o il “lr"l 1‘3‘3 uﬂ‘M“PMW

]
0 100 200 300 400 500 "0 100 200 300 400 500
iteration

chain — 1 — 2

0 100 200 300 400 500 0 100 200 300 400 500 O lOO 200 300 400 500 O 100 200 300 400 500

Figure 9: ggplot2 version of the traceplot for model mod13a.

38 JointAI: Joint Analysis and Imputation in R

R> mod13a <- 1m_imp(SBP ~ gender + WC + alc + creat, data = NHANES,
+ n.iter = 500, seed = 2020)
R> traceplot(mod13a)

When the sampler has converged the chains show one horizontal band, as in Figure 8. Con-
sequently, when traces show a trend, convergence has not been reached and more iterations
are necessary (e.g., using add_samples()).

Graphical aspects of the trace plot can be controlled by specifying standard graphical argu-
ments via the dots argument "...", which are passed to matplot() (which is part of base
R). This allows the user to change color, line type and width, limits, and so on. Arguments
nrow and/or ncol can be supplied to set specific numbers of rows and columns for the layout
of the grid of plots.

With the argument use_ggplot it is possible to get a ggplot2 (Wickham 2016) version of the
trace plot. It can be extended using standard ggplot2 syntax. The output of the following
syntax is shown in Figure 9.

R> library("ggplot2")

R> traceplot(modl3a, ncol = 4, use_ggplot = TRUE) +
+ theme (legend.position = "bottom") +

+ scale_color_viridis_d(end = 0.9)

Density plot

The posterior distributions can also be visualized using the function densplot (), which plots
the empirical density per node per chain, or combining chains (when joined = TRUE).

R> densplot(mod13a, ncol = 4,
+ vlines = list(list(v = coef(mod13a)$SBP, lwd = 2),

+ list(v = confint (mod13a)$SBP[, "2.57"], lty = 2),
+ list(v = confint (mod13a)$SBP[, "97.5%"], lty = 2))
+)

The argument vlines takes a list of lists, containing specifications passed to the function
abline() (part of base R), and allows the addition of (vertical) lines to the plot, e.g., marking
zero, or marking the posterior mean and 2.5% and 97.5% quantiles (Figure 10).

As with traceplot(), it is possible to use the ggplot2 version of densplot() when setting
use_ggplot = TRUE. Here, vertical lines can be added as additional layers. Figure 11 shows,
as an example, the posterior density from mod13a to which vertical lines, representing the
95% credible interval and a 95% confidence interval from a complete case analysis, are added.
The corresponding syntax is given in Appendix B.

7.2. Model Summary
A summary of the posterior distribution estimated in a JointAI model can be obtained using
the function summary ().

The posterior summary consists of the mean, standard deviation and quantiles (by default
the 2.5% and 97.5% quantiles) of the MCMC samples from all chains combined, as well as

Journal of Statistical Software 39

(Intercept) genderfemale wcC alc>=1
©
< 1 1 — 1 1 1 1 1 1
g— 1 1 | 7\ | - 1 \ 1 - 1 \ 1
1 1 1 1 1 1 1 1
2 [[2 \9!_ [[2 ¥ [[2 9 | [[
g 8- | | g | | g | | g o | |
T © 1) | ° -)|/ ' T N / ' ° . ' |
= W —
s] A | N 5| A i I A N N
o T T I T o T 1 T T T 1 T T 1 o T T T T T
40 60 80 100 120 -10 -5 0 5 10 0.0 0.2 0.4 0.6 -5 0 5 10 15
creat sigma_SBP
a]]]]
< 1 1 < 1 1
o 1 1 s =1 1 1
2 o ' / ' 2 e ' '
g o Ny : g o : :
3 =i /.// | 3 5] | N\
s] A/ ! o] S N
c T T T T T T 1 ° UL T 1
-20 0 10 30 12 13 14 15 16 17

Figure 10: Empirical posterior densities for model mod13a.

(Intercept) alc>=1 creat
0.04- X 015- 1 ! 008
0.034 0.10- 0.03-
0.02- 0.05- 0.02 -
0.01- : 0.01-
5, 0.00- , , | — 0.00- r , , 0.00-
5 60 80 100 120 0 5 10
c
g genderfemale sigma_SBP
0.15- . 0.5-) 1
0.4- 1 1
010 = 03 - 1 1
4 1 1
0.05- 0.2 | |
0.1-
0.00- 0.0~ ! ' ' ! ' 0- . ' ' ')
12 13 14 15 16 17 01 02 03 04 05
value
Cl from model: | JointAl | compl.case

Figure 11: Density plots for model mod13a.

the tail probability (see below), Gelman-Rubin criterion (see Section 7.3.1) and Monte Carlo
error to posterior standard deviation ratio (see Section 7.3.2).

Additionally, some important characteristics of the MCMC samples on which the summary
is based, are given. This includes the range and number of iterations (Sample size per
chain), thinning interval and number of chains. Furthermore, the number of observations
(number of rows in the data) is printed.

R> summary (mod13a)

Bayesian linear model fitted with JointAI

Call:
Im_imp(formula = SBP ~ gender + WC + alc + creat, data = NHANES,
n.iter = 500, seed = 2020)

40

Posterior summary:

Mean
(Intercept) 81.077
genderfemale 0.368
WwC 0.306
ale>=1 6.365
creat 7.747

JointAI: Joint Analysis and Imputation in R

2.4692

SD 2.5%
9.6921 61.66
2.6138 -4.74
0.0736 0.16

1.38

7.5949 -7.19

97.5%, tail-prob. GR-crit
99.602 0.000 1.011
5.594 0.871 0.999
0.448 0.000 1.012
10.897 0.016 1.006
22.496 0.299 1.003

Posterior summary of residual std. deviation:
Mean SD 2.5% 97.5)% GR-crit MCE/SD

sigma_SBP 14.4 0.779

MCMC settings:

Iterations = 101:600
Sample size per chai
Thinning interval =
Number of chains = 3

Number of observatio

Depending on the type of model, the output shows additional sections with posterior sum-
maries for model specific parameters, for example, the random effects variance-covariance ma-
trix for multi-level models or the shape parameter of the Weibull distribution in a parametric
survival model. Using the argument missinfo information on the number and proportion of
complete cases and missing values per variable can be added:

13
n = 500
1
ns: 186

16

1.02 0.0278

MCE/SD
0.0258
0.0258
0.0259
0.0291
0.0264

R> mod13b <- 1me_imp(bmi ~ GESTBIR + ETHN + HEIGHT M + ns(age, df = 3),

+ random

+ n.iter

R> summary(mod13b, missinfo

= TRUE)

~ ns(age, df = 3) | ID, data
250, seed = 2020)

= subset (simLong, !is.na(bmi)),

Bayesian linear mixed model fitted with JointAI

Call:

1me_imp(fixed = bmi ~ GESTBIR + ETHN + HEIGHT_M + ns(age, df = 3)
data = subset(simLong, 'is.na(bmi)), random =
250, seed = 2020)

ID, n.iter =

Posterior summary:

(Intercept) 16.
GESTBIR -0
ETHNother -0.
HEIGHT_M 0.
ns(age, df = 3)1 -0.
ns(age, df = 3)2 1.

ns(age, df = 3)3 -1.

Mean
7480

.0338

0358
0030
2917
6008
3292

O O O O O OoON

SD

.40355
.04718
.14465
.00923
.07383
.15233
.05014

2.5Y%

.9615
.1249
.3058
.0141
.4603
.1891
.4198

21.
0.

o

~ns(age, df = 3

b

)

97.5% tail-prob. GR-crit

0763
0565
.2289
.0230
L1771
.87TT
.2334

0.
.488
.813
.789
.000
.000
.000

O O O O O O

000

1.

1
1
1
2.
3
1

04

.08
.01
.03

62

.22
.30

MCE/SD
.1031
.0876
.1263
.1240
.2736
.2673
.2829

O O O O O O O

Journal of Statistical Software

Posterior summary of random effects covariance matrix:

Mean SD 2.5} 97.5% tail-prob. GR-crit MCE/SD
D_bmi_ID[1,1] 1.438 0.1743 1.125 1.809 1.00 0.0485
D_bmi_ID[1,2] -0.756 0.1153 -1.017 -0.564 0 1.28 0.0727
D_bmi_ID[2,2] 0.716 0.1375 0.476 0.989 2.39 0.1567
D_bmi_ID[1,3] -2.554 0.3603 -3.380 -1.914 0 1.01 0.0494
D_bmi_ID[2,3] 2.389 0.3122 1.861 3.046 0 1.47 0.0782
D_bmi_ID[3,3] 8.240 0.9494 6.552 10.356 1.06 0.0453
D_bmi_ID[1,4] -0.719 0.1041 -0.951 -0.524 0 1.39 0.0761
D_bmi_ID[2,4] 0.593 0.0775 0.456 0.753 0 1.14 0.0766
D_bmi_ID[3,4] 2.023 0.2597 1.555 2.554 0 1.44 0.0723
D_bmi_ID[4,4] 0.526 0.0810 0.377 0.696 1.76 0.1109

Posterior summary of residual std. deviation:
Mean SD 2.5% 97.5% GR-crit MCE/SD
sigma_bmi 0.458 0.00852 0.442 0.475 1.03 0.0445

MCMC settings:

Iterations = 101:350

Sample size per chain = 250
Thinning interval = 1
Number of chains = 3

Number of observations: 1881
Number of groups:
- ID: 200

Number and proportion of complete cases:
level I A

ID ID 190 95

lvlone lvlone 1881 100

Number and proportion of missing values:
level # NA 7 NA

bmi lvlone 0 0

age lvlone 0 0

level # NA % NA

GESTBIR ID 0 0
ID ID 0 0
HEIGHT_M ID 4 2
ETHN ID 6 3
Tail probability

The tail probability which is provided in the output is calculated as 2 x min {Pr(f > 0),
Pr(6 < 0)}, where 6 is the parameter of interest. It is a measure of how likely the value 0 is

42 JointAI: Joint Analysis and Imputation in R

tail prob. = 0.484 tail prob. = 0.134 tail prob. = 0.012

Figure 12: Visualization of the tail probability.

under the estimated posterior distribution. Figure 12 visualizes three examples of posterior
distributions and the corresponding minimum between Pr(f# > 0) and Pr(f < 0) (shaded
area).

7.3. Evaluation criteria

Convergence of the MCMC chains and precision of the posterior sample can also be evaluated
in a more formal manner. The Gelman-Rubin criterion for convergence (Gelman and Rubin
1992; Brooks and Gelman 1998) is implemented in JointAI together with a comparison of the
Monte Carlo error with the posterior standard deviation.

Gelman-Rubin criterion for convergence

The Gelman-Rubin criterion (Gelman and Rubin 1992; Brooks and Gelman 1998), also re-
ferred to as “potential scale reduction factor”, evaluates convergence by comparing within and
between chain variability and, thus, requires at least two MCMC chains to be calculated. It is
implemented for JointAT objects in the function GR_crit (), which is based on the function
gelman.diag() from the package coda (Plummer, Best, Cowles, and Vines 2006). The upper
limit of the confidence interval should not be much larger than 1.

R> GR_crit(mod13a)
Potential scale reduction factors:

Point est. Upper C.I.

(Intercept) 1.01 1.02
genderfemale 1.00 1.01
WC 1.00 1.01
ale>=1 1.00 1.01
creat 1.00 1.00
sigma_SBP 1.02 1.05

Multivariate psrf

1.01

Besides the arguments start, end, thin, exclude_chains and subset (explained in Sec-

Journal of Statistical Software 43

tion 7.4) GR_crit() also takes the arguments confidence, transform and autoburnin in-
herited from gelman.diag().

Monte Carlo Error

Precision of the MCMC sample can be checked with the function MC_error) (). It uses the
function mcse () from the package memese (Flegal, Hughes, Vats, and Dai 2021) to calculate
the Monte Carlo error (the error that is made since the sample is finite) and compares it to
the standard deviation of the posterior sample. A rule of thumb is that the Monte Carlo error
should not be more than 5% of the standard deviation (Lesaffre and Lawson 2012). Besides
the arguments explained in Section 7.4, MC_error () takes the arguments of mcse ().

R> MC_error (mod13a)

est MCSE SD MCSE/SD

(Intercept) 81.08 0.2502 9.692 0.026
genderfemale 0.37 0.0675 2.614 0.026
WC 0.31 0.0019 0.074 0.026
ale>=1 6.37 0.0718 2.469 0.029
creat 7.75 0.2007 7.595 0.026
sigma_SBP 14.40 0.0217 0.779 0.028

MC_error () returns an object of class ‘MCElist’, which is a list containing matrices with the
posterior mean, estimated Monte Carlo error, posterior standard deviation and the ratio of
the Monte Carlo error and posterior standard deviation, for the scaled (if this MCMC sample
was included in the JointAI object) and unscaled (transformed back to the scale of the data)
posterior samples. The associated print method prints only the latter.

To facilitate quick evaluation of the Monte Carlo error to posterior standard deviation ratio,
plotting of an object of class ‘MCElist’ using plot () shows this ratio for each (selected) node
and automatically adds a vertical line at the desired cut-off (by default 5%; see Figure 13):

R> plot (MC_error(modi3a))
R> plot (MC_error(mod13a, end = 250))

7.4. Subset of the MCMC sample

By default, the functions traceplot (), densplot (), summary (), predict(), GR_crit() and
MC_error () use all iterations of the MCMC sample and consider only the parameters of the
analysis model (if they were monitored). In this section we describe how the set of iterations
and parameters to display can be changed using the arguments subset, start, end, thin
and exclude_chains.

Subset of parameters

When the main parameters of the main/analysis model(s) have been monitored in a JointAI
object only these parameters are returned in the model summary, plots and criteria shown
above. If the main parameters of the analysis model(s) were not monitored and the argument
subset is not specified, all parameters that were monitored are displayed.

44 JointAI: Joint Analysis and Imputation in R

(Intercept)— o (Intercept)— o
genderfemale— o genderfemale—| o
WC— [¢] WC—H o

alc>=1— (¢] alc>=1- (¢]
creat— o creat—| o

sigma_SBP—| [¢] sigma_SBP—| q
I I I I I I I I I I I I
0.000 0.010 0.020 0.030 0.00 0.01 0.02 0.03 0.04 0.05
MCE/SD MCE/SD

Figure 13: Plot of the ‘MCElist’ object from mod13a. Left: including all iterations, right:
using only the first 250 iterations of the MCMC sample.

To display output for nodes other than the main parameters of the analysis model or for a
subset of nodes, the argument subset needs to be specified. It follows the same logic as the
argument monitor_params of *_imp() explained in Section 6.2.

Example: To display only the parameters of the covariate models, we re-estimate the model
with the monitoring for these parameters switched on and set subset = c(analysis_main
= FALSE, other_models = TRUE):

R> mod13c <- update(modl3a, monitor_params = c(other_models = TRUE))
R> summary(mod13c, subset = c(analysis_main = FALSE, other_models = TRUE))

Bayesian joint model fitted with JointAIl
Call:

Im_imp(formula = SBP ~ gender + WC + alc + creat, data = NHANES,
n.iter = 500, monitor_params = c(other_models = TRUE), seed = 2020)

Posterior summary:

Mean SD 2.5% 97.5% tail-prob. GR-crit MCE/SD
(Intercept) 0.51390 1.5325 -2.6068 3.4078 0.7080 1.01 0.0535
genderfemale -0.88236 0.3995 -1.6322 -0.0498 0.0373 1.04 0.0762
WwC 0.00632 0.0115 -0.0169 0.0298 0.5627 1.01 0.0375
creat -1.48151 1.2238 -3.9056 0.9785 0.2213 1.00 0.0603

Journal of Statistical Software

Bayesian linear model for "creat"

Posterior summary:

Mean SD 2.5% 97.5% tail-prob. GR-crit MCE/SD
(Intercept) 0.844704 0.076409 0.694938 0.99127 0.000 1 0.0258
genderfemale -0.178815 0.022122 -0.223627 -0.13699 0.000 1 0.0258
WC 0.000877 0.000772 -0.000612 0.00243 0.256 1 0.0258

Posterior summary of residual std. deviation:
Mean SD 2.5% 97.5% GR-crit MCE/SD
sigma_creat 0.145 0.00769 0.132 0.161 1.01 0.0277

Posterior summary:

Mean SD 2.5% 97.5% tail-prob. GR-crit MCE/SD
(Intercept) 97.41 1.52 94.48 100.469 0.0000 1.00 0.0258
genderfemale -5.16 2.21 -9.38 -0.971 0.0147 1.01 0.0258

Posterior summary of residual std. deviation:
Mean SD 2.5% 97.5% GR-crit MCE/SD
sigma_WC 14.5 0.785 13.2 16.3 1 0.0258

MCMC settings:

Iterations = 101:600

Sample size per chain = 500
Thinning interval = 1
Number of chains = 3

Number of observations: 186

Example: To select only some of the parameters, they can be specified directly by name
via the other element of subset (output not shown).

R> densplot(mod13a, nrow = 1,
+ subset = list(analysis_main = FALSE, other = c("beta[2]", "betal[4]")))

Example: This also works when a subset of the imputed values should be displayed. For
example, re-fit the model and monitor the imputed values and select all imputed values for
WC (4-th column of M_1vlone, the data matrix containing all level-1 variables):

46 JointAI: Joint Analysis and Imputation in R

R> mod13d <- update(mod13a, monitor_params = c(imps = TRUE))

R> sub3 <- grep("M_lvlone\\[[[:digit:]]+,4\\]", parameters(mod13d)$coef,
+ value = TRUE)

R> sub3

[1] "M_1vlone[33,4]" "M 1lvlone[150,4]"

The function parameters() returns a data.frame containing the names of all nodes mon-
itored in a JointAI object and can help to identify the correct names of the nodes to be
plotted.

Pass sub3 to subset via "other", for example in a traceplot():

R> traceplot(mod13d, subset = list(other = sub3))

Example: When the number of imputed values is large or in order to check convergence
of random effects, it may not be feasible to plot and inspect all trace plots. In that case, a
random subset of, for instance, the random effects, can be selected.

Here below for example we re-fit the model monitoring the random effects, then obtain a
vector with the names of all random effects and obtain the trace plots for a random subset
(output not shown):

R> mod13e <- update(mod13b, monitor_params = c(ranef_main = TRUE))

R> rde <- grep(""b_bmi_ID\\[", colnames(mod13e$MCMC[[1]]), value = TRUE)
R> traceplot(modi3e, subset = list(analysis_main = FALSE,

+ other = sample(rde, size = 12)), ncol = 4)

Subset of MCMC' samples

With the arguments start, end and thin it is possible to select which iterations from the
MCMC sample are included in the summary. In particular, start and end specify the first
and last iterations to be used, thin the thinning interval. Specification of start thus allows
the user to discard a “burn-in”, i.e., the iterations before the MCMC chain had converged.
If a particular chain has not converged it can be excluded from the result summary or plot
using the argument exclude_chains which takes a numeric vector identifying chains to be
excluded, e.g., exclude_chains = c(1, 3).

7.5. Predicted values

Often the aim of an analysis is not only to estimate the association between outcome and
covariates but to predict future outcomes or outcomes for new subjects.

The function predict() allows us to obtain predicted values and corresponding credible
intervals from JointAI objects. Note that for mixed models, currently only prediction for an
“average” subject is implemented, not prediction conditional on the random effects. A dataset
containing data for which the prediction should be performed is specified via the argument
newdata. If no newdata is given, the original data are used. The argument quantiles
allows the specification of the quantiles of the posterior sample that are used to obtain the

Journal of Statistical Software 47

credible interval (by default the 2.5% and 97.5% quantile). Arguments start, end, thin and
exclude_chains control the subset of MCMC samples that is used.

R> predict(modi3a, newdata = NHANES[27,])

$newdata
SBP gender age race WC alc educ creat albu uricacid
392 126.6667 male 32 Mexican American 94.1 <1 1low 0.83 4.2 8.7
bili occup smoke fit 2.5% 97.5%

392 1 <NA> former 116.3273 112.4343 120.1817

$fitted
fit 2.5Y% 97.5Y%
1 116.3273 112.4343 120.1817

predict () returns a list with elements newdata (the provided data with the predicted values
and quantiles appended) and fit, a matrix or array of the predicted values and the quantiles
that form the credible interval.

Via the argument type the user can specify the scale of the predicted values. For generalized
linear (mixed) models predicted values can be calculated on the scale of the linear predictor
(type = "link" or type = "1lp") or the scale of the response (type = "response"). For
ordinal and multinomial (mixed) models it is possible to return the posterior probability of
each of the outcome categories (type = "prob"), the class with the highest mean posterior
probability (type = "class", or type = "response") or the linear predictor (type = "1p").

For parametric survival models type = "1p" is synonymous for type = "link" and type =
"linear", and type = "response" corresponds to exp(1lp). The options for proportional
hazards models are type = "1p", type = "risk" (for exp(lp)), type = "survival" and
type = "expected" (for —log(survival)).

Prediction to visualize nonlinear effects

Another reason to obtain predicted values is the visualization of nonlinear effects (see Fig-
ure 14). To facilitate the generation of a dataset for such a prediction, the function predDF ()
can be used. It generates a data.frame that contains a sequence of values through the range
of observed values for the covariate specified by the argument vars which takes a one-sided
formula. Median or reference values are used for all the other continuous and categorical
variables, respectively.

The following code creates the dataset for prediction and obtain the predicted values

R> newDF <- predDF(mod13b, vars = ~ age)
R> pred <- predict(mod13b, newdata = newDF)

and then plot the predicted values and credible interval (see Figure 14):
R> matplot (pred$newdata$age, pred$newdatal, c("fit", "2.5]", "97.5%")1,

+ 1ty = c¢(1,2,2), type = "1", col = 1, xlab = "age in months",
+ ylab = "predicted value")

48 JointAI: Joint Analysis and Imputation in R

predicted value
165 17.0 175
l l l

16.0
|

15.5
|

I I I I I I
0 10 20 30 40 50

age in months

Figure 14: Predicted values of BMI and corresponding 95% credible interval from mod13b.

The optional "..." argument of predDF () allows the user to explicitly specify which values
to be used for the variables given in vars, for example:

R> newDF2 <- predDF(mod13b, vars = ~ age + HEIGHT_M, HEIGHT_M = c(160, 175))

7.6. Export of imputed values

Imputed datasets can be extracted from a JointAI object (in which a monitor for the
imputed values has been set, i.e., monitor_params = c(imps = TRUE)) with the function
get_MIdat(). It creates completed datasets by taking the imputed values from randomly
chosen iterations of the MCMC sample and filling them into copies of the original incomplete
data.

R> impDF <- get_MIdat(mod13d, m = 10, seed = 2019)

The argument m specifies the number of imputed datasets to be created, include controls
whether the original data are included in the long format data.frame (default is include
= TRUE), start specifies the first iteration that may be used, and minspace is the mini-
mum number of iterations between iterations eligible for selection. To make the selection of
iterations reproducible, a seed value can be specified via the argument seed.

When export_to_SPSS = TRUE the imputed data are exported to SPSS (IBM Corporation
2017), i.e., a .txt file containing the data and a .sps file containing SPSS syntax to convert
the data into an SPSS data file (with extension .sav) are written. Arguments filename and
resdir allow specification of the name of the .txt and .sps file and the directory they are
written to.

get_MIdat() returns a long-format data.frame containing the imputed datasets (and by
default the original data) stacked on top of each other. The imputation number is given in
the variable Imputation_, while column .id contains a newly created id variable for each
observation in cross-sectional data (multi-level data should already contain an id variable)
and the column .rownr identifies rows of the original data (relevant in multi-level data).

Journal of Statistical Software 49

wC

alc

proportion
=
B o]

o
N
1

L

80 100 120

o
o
1

. imputed - observed

Figure 15: Distribution of observed and imputed values for model mod13d.

The function plot_imp_distr () allows visual comparison of the distributions of the observed
and imputed values. The distribution of the observed values is shown in dark blue, the
distribution of the imputed values per dataset in light blue (Figure 15):

R> plot_imp_distr (impDF, nrow = 1)

8. Assumptions and extensions

Like any statistical model, the approach followed in JointAI relies on assumptions that need
to be satisfied in order to obtain valid results.

A commonly made assumption that is also required for JointAlI is that the missing data
mechanism is ignorable, i.e., that data are missing at random (MAR) or missing completely
at random (MCAR) (Rubin 1976) and that parameters in the model of the missingness
mechanism are independent of the parameters in the data model (Schafer 1997). It is the
task of the researcher to critically evaluate whether this assumption is satisfied for a given
dataset and model.

Furthermore, all models involved in the imputation and analysis need to be correctly spec-
ified. In current implementations of imputation procedures in software (e.g., the package
mice in R or proc mi in SAS (SAS Institute Inc. 2013), imputation models are typically au-
tomatically specified, using standard assumptions like linear associations and default model
types. In JointAl the arguments models and auxvar permit tailoring of the automatically
chosen models to some extent, by allowing the user to choose non-normal imputation models
for continuous variables and to include variables or functional forms of variables that are not
used in the analysis model in the linear predictor of the imputation models. Moreover, it is
possible to explicitly specify the linear predictor of covariate models by providing a list of
model formulas instead of just the formula for the main analysis model.

When using auxiliary variables in Joint Al it should be noted that, due to the default ordering
of the conditional distributions in the sequence of models, it is implied that the auxiliary
variable is independent of the outcome, since neither the model for the auxiliary variable has
the outcome in its linear predictor nor vice versa. In some settings it may be possible to avoid

50 JointAI: Joint Analysis and Imputation in R

this assumption by providing a list of model formulas in which the model for the auxiliary
variable is specified explicitly to include the outcome in its linear predictor.

Moreover, in order to make any statistical software usable, default values have to be chosen
for various parameters. These default values are chosen to work well in certain settings, but
can not be guaranteed to be appropriate in general and it is the task of the user to make the
appropriate changes. In JointAlI this concerns, for example, the choice of hyper-parameters
and automatically chosen types of imputation models.

To expand the range of settings in which JointAI provides a valid and user-friendly way to
simultaneously analyze and impute data, several extensions are planned. These include:

o Implementation of (penalized) splines for incompletely observed covariates.

o Evaluation of model fit by providing functionality to perform posterior predictive checks.
o Implementation of subject-specific prediction from mixed models.

o Implementation of additional choices of shrinkage priors (such as lasso and elastic net).

e Implementation of additional model types, for example, using zero-inflated or over-
dispersed distributions.

o Extensions of joint models for longitudinal and survival data to other association struc-
tures such as slopes and cumulative effects.

o Extensions of survival models to other types of censoring, competing risks and stratified
baseline hazards.

Computational details

The results in this paper have been obtained with R 4.1.1, JointAI 1.0.3, rjags 4.12 and JAGS
4.3.0 on a Windows 10 system. The full replication code including random seeds is provided
in the supplementary materials. Note, however, that for replicating the results exactly, the
same operating system and R version 3.6.0 or newer would be required. In other setups the
results will be very similar, however.

References

Audigier V, Resche-Rigon M (2021). micemd: Multiple Imputation by Chained Equations with
Multilevel Data. R package version 1.8.0, URL https://CRAN.R-project.org/package=
micemd.

Bartlett J, Keogh R (2021). smcfes: Multiple Imputation of Covariates by Substantive Model
Compatible Fully Conditional Specification. R package version 1.6.0, URL https://CRAN.
R-project.org/package=smcfcs.

Bartlett JW, Seaman SR, White IR, Carpenter JR (2015). “Multiple Imputation of Covariates
by Fully Conditional Specification: Accommodating the Substantive Model.” Statistical
Methods in Medical Research, 24(4), 462-487. doi:10.1177/0962280214521348.

https://CRAN.R-project.org/package=micemd
https://CRAN.R-project.org/package=micemd
https://CRAN.R-project.org/package=smcfcs
https://CRAN.R-project.org/package=smcfcs
https://doi.org/10.1177/0962280214521348

Journal of Statistical Software 51

Bates D, Méchler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
Imed.” Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101.

Bengtsson H (2021a). doFuture: A Universal Foreach Parallel Adapter Using the Future API
of the future Package. R package version 0.12.0, URL https://CRAN.R-project.org/
package=doFuture.

Bengtsson H (2021b). “A Unifying Framework for Parallel and Distributed Processing in R
using Futures.” The R Journal. doi:10.32614/RJ-2021-048. Forthcoming.

Brooks SP, Gelman A (1998). “General Methods for Monitoring Convergence of Iterative
Simulations.” Journal of Computational and Graphical Statistics, 7(4), 434-455. doi:
10.1080/10618600.1998.10474787.

Deng Y, Chang C, Ido MS, Long Q (2016). “Multiple Imputation for General Missing Data
Patterns in the Presence of High-dimensional Data.” Scientific reports, 6(1), 1-10. doi:
10.1038/srep21689.

Erler NS (2021). JointAI: Joint Analysis and Imputation of Incomplete Data. R package
version 1.0.3, URL https://CRAN.R-project.org/package=JointAl.

Erler NS, Rizopoulos D, Jaddoe VW, Franco OH, Lesaffre EMEH (2019). “Bayesian Imputa-
tion of Time-Varying Covariates in Linear Mixed Models” Statistical Methods in Medical
Research, 28(2), 555-568. doi:10.1177/0962280217730851.

Erler NS, Rizopoulos D, Van Rosmalen J, Jaddoe VWV, Franco OH, Lesaffre EMEH (2016).

“Dealing with Missing Covariates in Epidemiologic Studies: A Comparison between Multi-
ple Imputation and a Full Bayesian Approach.” Statistics in Medicine, 35(17), 2955-2974.
doi:10.1002/sim.6944.

Flegal JM, Hughes J, Vats D, Dai N (2021). mcmcse: Monte Carlo Standard Errors for
MCMC. R package version 1.5-0, URL https://CRAN.R-project.org/package=mcmcse.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, T(4), 457-472. doi:10.1214/ss/1177011136.

Geraci M, McLain A (2018). “Multiple Imputation for Bounded Variables.” Psychometrika,
83(4), 919-940. doi:10.1007/s11336-018-9616-7y.

Grund S, Robitzsch A, Luedtke O (2021). mitml: Tools for Multiple Imputation in Multilevel
Modeling. R package version 0.4-3, URL https://CRAN.R-project.org/package=mitml.

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1-22. doi:10.18637/
jss.v033.102.

IBM Corporation (2017). IBM SPSS Statistics 25. IBM Corporation, Armonk. URL https:
//www.ibm.com/software/analytics/spss/.

Ibrahim JG, Chen MH, Lipsitz SR (2002). “Bayesian Methods for Generalized Linear Models
with Covariates Missing At Random.” Canadian Journal of Statistics, 30(1), 55-78. doi:
10.2307/3315865.

https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=doFuture
https://CRAN.R-project.org/package=doFuture
https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1038/srep21689
https://doi.org/10.1038/srep21689
https://CRAN.R-project.org/package=JointAI
https://doi.org/10.1177/0962280217730851
https://doi.org/10.1002/sim.6944
https://CRAN.R-project.org/package=mcmcse
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1007/s11336-018-9616-y
https://CRAN.R-project.org/package=mitml
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.18637/jss.v033.i02
https://www.ibm.com/software/analytics/spss/
https://www.ibm.com/software/analytics/spss/
https://doi.org/10.2307/3315865
https://doi.org/10.2307/3315865

52 JointAI: Joint Analysis and Imputation in R

Josse J, Tierney NJ, Vialaneix N (2021). CRAN Task View: Missing Data. Version 2021-11-
09, URL https://CRAN.R-project.org/view=MissingData.

Kowarik A, Templ M (2016). “Imputation with the R Package VIM.” Journal of Statistical
Software, 74(7), 1-16. doi:10.18637/jss.v074.107.

Lesaffre EMEH, Lawson AB (2012). Bayesian Biostatistics. John Wiley & Sons. doi:
10.1002/9781119942412.

National Center for Health Statistics (NCHS) (2011-2012). “National Health and Nutrition
Examination Survey Data.” URL https://www.cdc.gov/nchs/nhanes/.

Novo AA, Schafer JL (2013). norm: Analysis of Multivariate Normal Datasets with Missing
Values. R package version 1.0-9.5, URL https://CRAN.R-project.org/package=norm.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). nlme: Linear and Nonlinear
Mized Effects Models. R package version 3.1-153, URL https://CRAN.R-project.org/
package=nlme.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Technische
Universitdit Wien, Vienna, Austria. URL https://www.R-project.org/conferences/
DSC-2003/Proceedings/Plummer . pdf.

Plummer M (2017). JAGS Version 4.3.0 User Manual. URL https://sourceforge.net/
projects/mcmc-jags/files/Manuals/4.x/jags_user_manual.pdf/download.

Plummer M (2021). rjags: Bayesian Graphical Models Using MCMC. R package version 4-12,
URL https://CRAN.R-project.org/package=rjags.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7-11. URL https://CRAN.R-project.org/doc/
Rnews/.

Quartagno M, Carpenter J (2020). jomo: A Package for Multilevel Joint Modelling Multiple
Imputation. R package version 2.7-2, URL https://CRAN.R-project.org/package=jomo.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robitzsch A, Grund S, Henke T (2021). miceadds: Some Additional Multiple Imputation
Functions, Especially for mice. R package version 3.11-6, URL https://CRAN.R-project.
org/package=miceadds.

Robitzsch A, Luedtke O (2021). mdmb: Model Based Treatment of Missing Data. R package
version 1.5-8, URL https://CRAN.R-project.org/package=mdmb.

Rodwell L, Lee KJ, Romaniuk H, Carlin JB (2014). “Comparison of Methods for Imputing
Limited-range Variables: A Simulation Study.” BMC Medical Research Methodology, 14(1),
57. doi:10.1186/1471-2288-14-57.

https://CRAN.R-project.org/view=MissingData
https://doi.org/10.18637/jss.v074.i07
https://doi.org/10.1002/9781119942412
https://doi.org/10.1002/9781119942412
https://www.cdc.gov/nchs/nhanes/
https://CRAN.R-project.org/package=norm
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/jags_user_manual.pdf/download
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/jags_user_manual.pdf/download
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=jomo
https://www.R-project.org/
https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=mdmb
https://doi.org/10.1186/1471-2288-14-57

Journal of Statistical Software 53

Rubin DB (1976). “Inference and Missing Data.” Biometrika, 63(3), 581-592. doi:10.2307/
2335739.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.

Rubin DB (2004). “The Design of a General and Flexible System for Handling Nonresponse in
Sample Surveys.” The American Statistician, 58, 298-302. doi:10.1198/000313004X6355.

SAS Institute Inc (2013). SAS/STAT Software, Version 9.4. Cary. URL https://www.sas.
com/.

Schafer JL (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC, New
York.

Speidel M, Drechsler J, Jolani S (2020). hmi: Hierarchical Multiple Imputation. R package
version 1.0.0, URL https://CRAN.R-project.org/package=hmi.

StataCorp (2021). Stata Statistical Software: Release 17. StataCorp LLC, College Station.
URL https://www.stata.com/.

Therneau TM (2021). survival: Survival Analysis. R package version 3.2-13, URL https:
//CRAN.R-project.org/package=survival.

Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model.
Springer-Verlag, New York.

Tierney NJ, Cook DH (2020). “Expanding Tidy Data Principles to Facilitate Missing Data
Exploration, Visualization and Assessment of Imputations.” arXiv 1809.02264, arXiv.org
E-Print Archive. URL https://arxiv.org/abs/1809.02264.

Treiman D (2009). Quantitative Data Analysis: Doing Social Research to Test Ideas. Research
Methods for the Social Sciences. John Wiley & Sons.

Van Buuren S (2012). Flexible Imputation of Missing Data. Taylor & Francis.

Van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained
Equations in R” Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.
i03.

Von Hippel PT (2013). “Should a Normal Imputation Model be Modified to Impute
Skewed Variables?” Sociological Methods € Research, 42(1), 105-138. doi:10.1177/
0049124112464866.

White IR, Royston P, Wood AM (2011). “Multiple Imputation Using Chained Equations:
Issues and Guidance for Practice.” Statistics in Medicine, 30(4), 377-399. doi:10.1002/
sim.4067.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
URL https://ggplot2.tidyverse.org/.

Yucel R (2010). mlmmm: ML Estimation under Multivariate Linear Mized Models with
Missing Values. R package version 0.3-1.2, URL https://CRAN.R-project.org/package=
mlmmm.

https://doi.org/10.2307/2335739
https://doi.org/10.2307/2335739
https://doi.org/10.1198/000313004X6355
https://www.sas.com/
https://www.sas.com/
https://CRAN.R-project.org/package=hmi
https://www.stata.com/
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://arxiv.org/abs/1809.02264
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1177/0049124112464866
https://doi.org/10.1177/0049124112464866
https://doi.org/10.1002/sim.4067
https://doi.org/10.1002/sim.4067
https://ggplot2.tidyverse.org/
https://CRAN.R-project.org/package=mlmmm
https://CRAN.R-project.org/package=mlmmm

54 JointAI: Joint Analysis and Imputation in R

A. Default hyper-parameters

R> default_hyperpars()

1e-02

le-02

le-02

le-04

$norm
mu_reg_norm tau_reg_norm shape_tau_norm rate_tau_norm
0e+00 le-04 1e-02
$gamma
mu_reg_gamma tau_reg_gamma shape_tau_gamma rate_tau_gamma
0e+00 le-04 1e-02
$beta
mu_reg_beta tau_reg_beta shape_tau_beta rate_tau_beta
0e+00 1le-04 1e-02
$binom
mu_reg_binom tau_reg_binom
0e+00 le-04
$poisson
mu_reg_poisson tau_reg_poisson
0e+00 le-04
$multinomial
mu_reg_multinomial tau_reg_multinomial
0e+00 le-04
$ordinal
mu_reg_ordinal tau_reg_ordinal mu_delta_ordinal tau_delta_ordinal
0e+00 le-04
$ranef
shape_diag_RinvD rate_diag_RinvD KinvD_expr
"0.01" "0.001" "nranef + 1.0"
$surv

mu_reg_surv tau_reg_surv
0.000 0.001

Journal of Statistical Software

B. Density plot using ggplot2

This appendix shows the syntax to create the density plot for model mod13a shown in Figure 11
in Section 7.1.2. Analogously to what was shown previously for traceplot(), we can obtain
a density plot using ggplot2 by setting the argument use_ggplot = TRUE:

R> p13a <- densplot(modi3a, ncol = 3, use_ggplot = TRUE, joined = TRUE) +
+ theme (legend.position = "bottom")

It is also straightforward to add vertical lines for credible intervals and, for the purpose of
comparison, also confidence intervals of from a complete case analysis.

To do this, we first fit the complete-case version of the model:
R> modi13a_cc <- 1lm(formula(modi3a), data = NHANES)

It is convenient to create a dataset containing the quantiles of the posterior sample and
confidence intervals from the complete case analysis:

R> quantDF <- rbind(

data.frame(variable = names (coef (modi3a)$SBP),
type = "2.5]",
model = "JointAI",
value = confint (mod13a)$SBP[, c("2.5")]1),

data.frame (variable = names (coef (mod13a)$SBP),

type = "97.5%",

model = "JointAI",

value = confint (mod13a)$SBP[, c("97.5/")1),
data.frame(variable = names (coef(modi3a_cc)),

type = "2.5%",

model = "cc",

value = confint(modi13a_cc)[, "2.5 7"1),
data.frame(variable = names (coef(modi3a_cc)),

type = "97.5}",

model = "cc",

value = confint(modi3a_cc)[, "97.5 ;"])

+ + + + + + + + 4+ +F++++ o+ + o+

The vertical lines can then be added to the previously created plot p13a using the function
geom_vline() from the package ggplot2:

R> pi13a +

+ geom_vline(data = quantDF, aes(xintercept = value, color = model),

+ 1ty = 2) +

+ scale_color_manual (name = "CI from model: ", values = c("blue", "red"),
+ limits = c("JointAI", "cc"),

+ labels = c("JointAI", "compl.case"))

55

56 JointAI: Joint Analysis and Imputation in R

Affiliation:

Nicole S. Erler

Erasmus Medical Center

Department of Biostatistics

Doctor Molewaterplein 40

3015 GD Rotterdam, The Netherlands
E-mail: n.erler@erasmusmc.nl

URL: https://www.nerler.com/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
November 2021, Volume 100, Issue 20 Submitted: 2019-06-24

doi:10.18637/jss.v100.120 Accepted: 2020-11-18

mailto:n.erler@erasmusmc.nl
https://www.nerler.com/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v100.i20

	Introduction
	Theoretical background
	Analysis model
	Generalized linear (mixed) models
	Cumulative logit (mixed) models
	Multinomial logit (mixed) models
	Survival models
	Joint models

	Imputation part
	Imputation in multi-level settings
	Nonlinear associations and interactions

	Prior distributions

	Package structure
	Example data
	The NHANES data
	Missing data visualization and exploration

	The simLong data
	The PBC data

	Model specification
	Specification of the model formula
	Interactions
	Nonlinear functional forms
	Functions with restricted support
	Functions that are not available in R
	A note on what happens inside JointAI

	Multi-level structure and longitudinal covariates
	Survival models
	Joint models
	Covariate model types
	Specification of covariate model types
	Order of the sequence of imputation models

	Auxiliary variables
	Functions of variables as auxiliary variables

	Reference values for categorical covariates
	Setting reference categories for all variables
	Setting reference categories for individual variables

	Hyper-parameters
	Scaling
	Shrinkage priors
	JAGS model file

	MCMC settings
	Number of chains, iterations and samples
	Number of chains
	Adaptive phase
	Sampling iterations
	Thinning

	Parameters to follow
	Initial values
	Initial values in a list of lists
	Initial values as a function
	For which nodes can initial values be specified?

	Parallel sampling

	After fitting
	Visualizing the posterior sample
	Trace plot
	Density plot

	Model Summary
	Tail probability

	Evaluation criteria
	Gelman-Rubin criterion for convergence
	Monte Carlo Error

	Subset of the MCMC sample
	Subset of parameters
	Subset of MCMC samples

	Predicted values
	Prediction to visualize nonlinear effects

	Export of imputed values

	Assumptions and extensions
	Default hyper-parameters
	Density plot using ggplot2

