
JSS Journal of Statistical Software
November 2021, Volume 100, Issue 9. doi: 10.18637/jss.v100.i09

qgam: Bayesian Nonparametric Quantile Regression
Modeling in R

Matteo Fasiolo
University of Bristol

Simon N. Wood
University of Bristol

Margaux Zaffran
ENSTA Paris

Raphaël Nedellec
Électricité de France R&D

Yannig Goude
Électricité de France R&D

Abstract

Generalized additive models (GAMs) are flexible non-linear regression models, which
can be fitted efficiently using the approximate Bayesian methods provided by the mgcv R
package. While the GAM methods provided by mgcv are based on the assumption that
the response distribution is modeled parametrically, here we discuss more flexible methods
that do not entail any parametric assumption. In particular, this article introduces the
qgam package, which is an extension of mgcv providing fast calibrated Bayesian methods
for fitting quantile GAMs (QGAMs) in R. QGAMs are based on a smooth version of the
pinball loss of Koenker (2005), rather than on a likelihood function, hence jointly achieving
satisfactory accuracy of the quantile point estimates and coverage of the corresponding
credible intervals requires adopting the specialized Bayesian fitting framework of Fasiolo,
Wood, Zaffran, Nedellec, and Goude (2021b). Here we detail how this framework is
implemented in qgam and we provide examples illustrating how the package should be
used in practice.

Keywords: Bayesian quantile regression, generalized additive models, regression splines, cali-
brated Bayes, fast Bayesian inference, R.

1. Introduction: Additive quantile modeling in R
Generalized additive models (GAMs, Hastie and Tibshirani 1986) are flexible regression mod-
els, where the relation between the response distribution and several covariates is modeled
nonparametrically, typically via spline bases expansions. In standard GAMs only one pa-
rameter of the response distribution (typically the location) is modeled additively, but Rigby

https://doi.org/10.18637/jss.v100.i09
https://orcid.org/0000-0003-2335-5536
https://orcid.org/0000-0002-2034-7453
https://orcid.org/0000-0001-7560-8916
https://orcid.org/0000-0001-7714-5177
https://orcid.org/0000-0003-2028-5536

2 qgam: Nonparametric Regression Modeling in R

and Stasinopoulos (2005) developed methods for handling more flexible generalized additive
models for location, scale and shape (GAMLSS), where potentially all the parameters of the
response distribution are allowed to depend on the covariates. The quantile GAMs (QGAMs)
described in this work provide even more flexibility by modeling the quantiles of the con-
ditional response distribution individually, thus avoiding any parametric assumption on the
distribution of the response variable.

The purpose of this article is to discuss methods and software for QGAM modeling in R (R
Core Team 2021). In particular, we focus on the qgam R package (Fasiolo, Wood, Zaffran,
Goude, and Nedellec 2021a), which implements the fast calibrated Bayesian fitting methods
proposed by Fasiolo et al. (2021b) and which is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=qgam. The qgam package is
an extension of the recommended mgcv package (Wood 2017, 2021), which provides tools for
building, fitting and visualizing GAMs and GAMLSS models. A new package is required,
because QGAMs can not be handled using the standard GAM methods implemented by
mgcv. In particular, QGAMs are based on the pinball loss function (Koenker and Bassett
1978), rather than on a probabilistic model of the response distribution, and the absence of a
likelihood function impedes direct application of the Bayes’ rule when updating the prior dis-
tribution on the regression coefficients given the observed responses. While this problem can
be overcome by adopting the coherent Bayesian belief updating framework of Bissiri, Holmes,
and Walker (2016), which effectively leads to the application of Bayes’ rule using a loss-based
pseudo-likelihood, naïvely plugging such a pseudo-likelihood into standard Bayesian fitting
methods can lead to inaccurate quantile estimates and inadequate coverage of the correspond-
ing credible intervals as discussed, for instance, in Yang, Wang, and He (2016) and Sriram
(2015). To avoid such issues, qgam implements the calibrated Bayesian methods of Fasiolo
et al. (2021b), which explicitly aim at selecting the “learning rate” tuning parameter of the loss
so as to achieve near-nominal frequentist coverage of the quantile credible intervals. Further-
more, qgam bases quantile regression on a smoothed version of the pinball loss, which enables
the adoption of fast maximum a posteriori (MAP) and empirical Bayes methods to estimate
the regression coefficients and select their prior variance hyper-parameters, respectively. The
smoothness of the new loss is determined by minimizing the asymptotic mean squared error
(MSE) of the estimated regression coefficients, approximated using a location-scale GAM.

To our best knowledge and at the time of writing, the QGAM fitting framework proposed
by Fasiolo et al. (2021b) is the only one able to estimate all the regression coefficients and
prior hyper-parameters using fast direct optimization methods and to provide, at no extra
computational cost, credible intervals which achieve adequate coverage for tail quantiles. It
should be clarified that, when we describe qgam as “fast”, we mean that it is the fastest
additive quantile regression method we know of, which has the properties just described.
Hence, for example, the rqss function provided by the quantreg package (Koenker 2021)
might be faster, if the smoothing parameters are known or if the model of interest contains
at most one or two such parameters, which could be selected by minimizing a model selec-
tion criterion numerically, as discussed in Koenker (2011, Section 3). Another alternative to
the calibrated Bayesian estimation methods provided by qgam is additive quantile regression
via gradient boosting, available in R via the mboost package (Hothorn, Bühlmann, Kneib,
Schmid, and Hofner 2021). Fasiolo et al. (2021b) show that boosting can provide accurate
point estimates, but selecting the optimal number of boosting steps requires running a com-
putationally intensive cross-validation routine. Furthermore, the uncertainty of the estimated

https://CRAN.R-project.org/package=qgam

Journal of Statistical Software 3

quantiles must be obtained by bootstrapping. Waldmann, Kneib, Yue, Lang, and Flexeder
(2013) propose Bayesian methods for estimating QGAMs via the BayesX stand-alone software
(Brezger, Kneib, and Lang 2005), with a specific quantile regression family being accessible
from R using the bamlss package (Umlauf, Klein, Simon, and Zeileis 2021). However, their
proposal is based on Markov chain Monte Carlo (MCMC) methods, which are slower than
the direct optimization methods adopted here, and the resulting credible intervals struggle
to achieve nominal frequentist coverage for tail quantiles, as detailed in Waldmann et al.
(2013). Another alternative is the VGAM (Yee 2010) R package but, as for quantreg, the
prior smoothing hyper-parameters have to be selected manually. Lin, Bondell, Zhang, and
Zou (2013) focus on variable selection, not smoothing, hence the corresponding software can
not be considered an alternative to qgam.
The rest of the paper is structured as follows. In Section 2 we first present the basic structure
of QGAMs, then we show how such models can be fitted using the fast calibrated Bayesian
methods of Fasiolo et al. (2021b) and we explain how the fitting framework is implemented
in the qgam package. In Section 3 we illustrate how the package can be used for quantile
GAM modeling. In particular, the first example introduces the basic features of the package,
while the second example considers a more realistic application, focused on electricity demand
forecasting using functional effects. In Section 4 we outline a promising direction for future
work on additive quantile modeling with qgam.

2. Models, methods and software

2.1. General structure of additive quantile regression models

Let y be a continuous random variable with conditional distribution p(y|x), where x is a
p-dimensional vector of covariates. Define also the conditional quantiles of p(y|x) by µτ (x) =
F−1(τ |x), where τ ∈ (0, 1) and F−1 is the inverse conditional cumulative distribution function
(CDF) of y. In quantile regression (Koenker and Bassett 1978) the conditional quantiles are
modeled individually, without specifying a model for p(y|x). Direct quantile estimation is
generally achieved by exploiting the following alternative definition of a quantile

µτ (x) = argmin
µ

E{ρτ (y − µ)|x}, (1)

where

ρτ (z) = (τ − 1) z
σ
1(z < 0) + τ

z

σ
1(z ≥ 0)

is the scaled version of the so-called “pinball” or “check” loss. σ > 0 is a scale parameter,
which can potentially depend on the covariates x. Its role will be clarified in Section 2.2. In
qgam the pinball loss, which is piecewise linear and has discontinuous derivatives, is replaced
by the extended log-f (ELF) loss (Fasiolo et al. 2021b), that is

ρ̃τ (z) = (τ − 1) z
σ

+ λ log(1 + e
z
λσ),

where λ > 0, and the pinball loss is recovered as λ → 0+. The ELF loss is a smoothed
version of the pinball loss which, as will be explained later, has the advantages of leading to

4 qgam: Nonparametric Regression Modeling in R

more accurate quantile estimates (if λ is tuned adequately) and of enabling the use of efficient
computational methods for model fitting.
In this work we assume that the conditional quantiles have an additive structure, that is

µ(x) =
J∑
j=1

fj(x),

where the fj ’s are parametric, random or smooth effects. The latter are built using spline
bases expansions, so the jth effect can be written

fj(x) =
Kj∑
k=1

bjk(x)βjk,

where bj1, . . . , b
j
Kj

are the spline basis functions used to built the jth effect and βj1, . . . , β
j
Kj

are the corresponding regression coefficients. The basis functions are known and fixed, while
the regression coefficients must be estimated. Note that the quantile µ depends both on x
and β, but in the following we will refer to it using µ(x) or µ(β), depending on the context.
In a Bayesian framework, the complexity of the smooth and random effects is controlled using
a prior distribution on the regression coefficients, which we indicate with p(β). In this work
we assume that the prior is an improper multivariate Gaussian distribution, centered at 0 and
with positive semi-definite precision matrix Sγ = ∑m

l=1 γlSl. Here the Sl’s are positive semi-
definite matrices, scaled by the positive parameters γ = {γ1, . . . , γm}. We assume that the
Sl’s are given, while the vector γ needs to be selected. The Sl’s related to random effects are
often simple diagonal matrices, while the Sl’s related to smooth effects have more complex
structures, aimed at penalizing departures from (some definition of) smoothness. Hence,
increasing γ leads to a prior where the random effects coefficients are more concentrated
around zero and the smooth effects less wiggly. In the following we refer to γ as the vector
of smoothing parameters, with the understanding that some of its elements could instead
be controlling the prior precision of the random effects. In general, there needs not to be
a one-to-one correspondence between the smoothing parameters and the effects because, for
example, a smoothing parameter might be determining the prior precision of several effects
or the complexity of a single effect might be controlled using multiple smoothing parameters.
See Wood (2017) for a detailed account on smooth and random effects model structures, in
an additive modeling context.
This section outlined the basic QGAM modeling framework, the next two will detail how such
models can be estimated within a fast calibrated Bayesian framework.

2.2. Performing the Bayesian update under the ELF loss

Let us indicate with p(y|β) the true conditional distribution of the response, where the de-
pendency on x has been temporarily suppressed to simplify the notation, and indicate with
p(β) the prior distribution, which is implicitly a function of the smoothing parameters γ.
Assume for the moment that the latter have been fixed to some value, so that the prior is
given. Recall that we are basing additive quantile regression on the ELF loss, rather than
on a probabilistic model for p(y|β). This is an impediment to performing Bayesian inference
for QGAMs, as the lack of a likelihood function prevents us from applying Bayes’ rule to

Journal of Statistical Software 5

update p(β) to the corresponding posterior, p(β|y). We address the issue by adopting the
belief updating (BU) framework of Bissiri et al. (2016), which allows to perform the Bayesian
update using a general loss function, rather than a likelihood. In particular, as detailed in
Fasiolo et al. (2021b), applying the BU framework to the ELF loss leads to the following
update formula

p(β|y) ∝ p̃τ{y − µ(β)}p(β), (2)

where

p̃τ (y − µ) = e−ρ̃τ{y−µ}∫
e−ρ̃τ{y−µ}dy

= e(1−τ) y−µ
σ (1 + e

y−µ
λσ)−λ

λσBeta
[
λ(1− τ), λτ

] , (3)

is the probability density function (PDF) of the ELF distribution, which is an extension of
the log-f distribution of Jones (2008). Here λ determines the smoothness of the loss, while 1/σ
plays the role of a “learning rate”, determining the relative weights of the loss-based pseudo-
likelihood and the prior. In fact, letting λ → 0+ leads to p(β|y) ∝ exp{−ρτ{y − µ}/σ}p(β)
and, as 1/σ increases, the loss-based likelihood progressively dominates the prior, thus leading
to faster learning and a higher risk of overfitting. Decreasing 1/σ has the opposite effect. In
contexts where the variance of y varies strongly with x, it can be advantageous to let σ depend
on x via the decomposition σ(x) = σ0σ̃(x), where σ0 is the baseline or average learning rate
and σ̃(x) is its x-dependent component.
Having defined (2) which, following Syring and Martin (2015), we refer to as the Gibbs
posterior, the next section outlines how the fast calibrated Bayesian methods proposed by
Fasiolo et al. (2021b), and implemented by qgam, can be used to fit ELF-based QGAMs.

2.3. Fast calibrated Bayesian model fitting methods

We fit quantile GAMs using three nested optimization routines, in particular:

1. in the outer iteration, the baseline learning rate 1/σ0 is selected by minimizing a cali-
bration loss function numerically;

2. for fixed σ0, the loss smoothness λ and the x-dependent component of the learning-rate
σ̃(x) are determined using closed-form expressions, while the smoothing parameters γ
are selected by numerically optimizing an intermediate criterion;

3. for fixed σ(x) = σ0σ̃(x), λ and γ, the regression coefficients β are estimated by numer-
ically optimizing an inner criterion.

Of course parameter τ ∈ (0, 1), which indicates the quantile of interest, is kept fixed through-
out. The fact that the three iterations are nested, not sequential, means that evaluating the
outer objective function requires solving the intermediate optimization problem and, in turn,
each step of the latter entails running the inner optimization to convergence. In the following
we provide a methodological outline of the three iterations, going from the inner to the outer
one, and in Section 2.4 we describe how the whole procedure is implemented in qgam.

Inner iteration: MAP estimation of the regression coefficients

The inner iteration estimates the regression coefficients using efficient MAP methods, for fixed
γ, σ(x) and λ. In particular, let y = {y1, . . . , yn} be the vector of observed responses and

6 qgam: Nonparametric Regression Modeling in R

note that the conditional quantile is modeled by µ(xi) = x>i β, where xi is the ith row of the
n × d design matrix X, containing the spline basis functions evaluated at xi. It is easy to
show that maximizing the logarithm of the ELF-based Gibbs posterior (2) is equivalent to
minimizing the criterion

ṼD{β,γ, σ(x), λ} =
n∑
i=1

Devi {β, σ(xi), λ}+
m∑
l=1

γlβ
>Slβ, (4)

where Devi {β, σ(xi), λ} is the ith deviance component, based on the ELF density (3). Crite-
rion (4) is smooth and can be minimized efficiently with respect to (w.r.t.) β using a penalized
iteratively re-weighted least squares (PIRLS) algorithm, as detailed in Fasiolo et al. (2021b).

Intermediate iteration: Selecting the smoothing parameters and ELF loss smoothness

The intermediate iteration selects the smoothing parameters by maximizing a Laplace ap-
proximation to the ELF-based marginal likelihood. The latter is

log p{y|γ, σ(x), λ} =
∫
p̃τ (yi − x>i β)p(β|γ)dβ, (5)

where we have made explicit the dependence of the prior on the smoothing parameters.
Applying a Laplace approximation to the intractable integral (5) leads to the following Laplace
approximate marginal likelihood (LAML) criterion

G{γ, σ(x), λ} = −1
2 ṼD{β̂,γ, σ(x), λ}+ l̃l{σ(x), λ}

−1
2
[

log |X>WX + Sγ | − log |Sγ |+
]

+ Mp

2 log(2π), (6)

where β̂ is the minimizer of (4), estimated using the inner iteration, l̃l{σ(x), λ} is the saturated
log-likelihood corresponding to the ELF density (3), W is a diagonal matrix such that Wii =
1/2∂2Devi/∂µ

2
i and Mp is the dimension of the null-space of Sγ and |Sγ |+ is the product

of its non-zero eigenvalues. Fasiolo et al. (2021b) focus on a marginal loss criterion, which
is equal to the negative of (5) up to a normalization constant, to stress that σ0 should not
be selected by jointly maximizing (6) w.r.t. γ and σ0. In fact, σ0 is not the scale parameter
of a standard GAM, but a learning rate that should be selected using an outer calibration
procedure. Here we prefer to adopt a likelihood-based terminology to emphasize that (6)
can be maximized w.r.t. γ using the numerically stable methods of Wood, Pya, and Sëfken
(2016), which are aimed at standard probabilistic GAMs.
Before describing the outer iteration, we need to specify how σ̃(x) and λ, which are held
constant throughout the intermediate and inner iterations, are determined for fixed σ0. Recall
that σ(x) = σ0σ̃(x) and define the scaled loss bandwidth h(x) = σ(x)λ. Assume that the
responses follow the location-scale model yi|xi ∼ α(xi) +κ(xi)zi, where the zi’s are i.i.d with
E(z|x) = 0 and var(z|x) = 1. Fasiolo et al. (2021b) show that, under the above location-
scale model and further assumptions specified therein, the asymptotic MSE of the regression
coefficients is minimized by

h̃∗(x) =
[
d

n

9fz{F−1
z (τ)}

π4f ′z{F−1
z (τ)}2

] 1
3

κ(x), (7)

Journal of Statistical Software 7

where fz, f ′z and Fz are the PDF of z, its first derivative and its CDF, F−1
z (τ) is the τth

quantile of z and d the dimension of β. Having determined h̃∗(x), we impose n−1∑
i σ̃(xi) = 1

so that λ = n−1∑
i h̃
∗(xi)/σ0. The idea is to use σ̃(x) to modulate the baseline scaled loss

smoothness, λσ0, and learning rate, 1/σ0, to make them respectively directly and inversely
proportional to the conditional variance of y. Note that (7) implies that the asymptotic MSE
is not minimized by imposing h(x) = 0 or, equivalently, λ = 0. That is, under the assumptions
detailed in Fasiolo et al. (2021b), adopting the original pinball loss leads to asymptotically
less accurate quantile estimates, relative to those based on the ELF loss with smoothness
determined via (7).
For fixed σ0, we obtain σ̃(x) and λ using the formulas just mentioned. This, of course,
requires estimates of α(x) and κ(x) in the location-scale model, as well as of fz and Fz. Such
estimates need to be obtained only once, before initiating the nested QGAM fitting procedure
described here, hence we will discuss the specific approach we follow in Section 2.4, where we
also describe its software implementation.

Outer iteration: Selection of the learning rate by calibrated Bayes

Recall that 1/σ0 is the baseline learning rate, which determines the relative weight of the
loss and the prior in the Gibbs posterior (2). Increasing 1/σ0 leads to faster learning, that is
wigglier fitted quantile curves and narrower posterior credible intervals. Fasiolo et al. (2021b)
selects σ0 using a calibration procedure aimed at guaranteeing that the credible intervals for
µ(x) approximately achieve the correct frequentist coverage. This is achieved by minimizing

ÎKL(σ0) = n−1
n∑
i=1

[
v̂s(xi)
v(xi)

+ log v(xi)
v̂s(xi)

]ζ
, (8)

which is an estimate of the integrated Kullback-Leibler (IKL) divergence

IKL(σ0) =
∫

KL
[
N{µ(x), vs(x)},N{µ(x), v(x)}

]ζ
p(x)dx ∝

∫ {
vs(x)
v(x) + log v(x)

vs(x)

}ζ
p(x)dx.

Here KL(·, ·) and N(·, ·) indicate respectively the KL divergence and the univariate Gaussian
distribution, ζ is a positive parameter which we fix to 1/2, v(x) = x>Vx and vs(x) = x>Vsx
are the posterior variance of µ(x) under two alternative posterior covariance matrices for β.
In particular V = (I + Sγ)−1 and Vs = (IΣ−1

∇ I + Sγ)−1, where I is the negative Hessian
of the ELF-based log-likelihood and Σ∇ = cov[∇βρ̃{y − µ(β)}|β=β̂] is the covariance matrix
of the gradient of the ELF loss, under the data generating process. v̂s(xi) is an estimate
of vs(xi), based on the regularized estimator of Vs described in Fasiolo et al. (2021b), who
use a different notation and indicate vs(xi) and Vs by ṽ(xi) and Ṽ, respectively. The IKL
objective function is generally smooth and convex, hence we minimize it efficiently using
Brent’s method (Brent 2013).
Fasiolo et al. (2021b) propose also an alternative calibration procedure, based on another
version of the IKL loss where v̂s(x) is substituted by the sample pointwise variance of the
estimated quantile µ̂(x), estimated by bootstrapping. Such a procedure requires re-fitting
the model to several bootstrap samples, hence it is computationally more expensive than
minimization of the IKL loss defined above, but it can lead to better coverage in small
samples. We refer to Fasiolo et al. (2021b) for explanations regarding how minimizing either

8 qgam: Nonparametric Regression Modeling in R

Function name Description
qgam Fits a QGAM for a single quantile τ . It is analogous to the gam

function in mgcv, hence any smooth effect type available in gam is also
available in qgam.

mqgam Fits the same QGAM to a vector of k quantiles τ1, . . . , τk more
efficiently than by calling qgam repeatedly.

tuneLearnFast Selects the learning rate by minimizing (8) using Brent’s method.
tuneLearn Evaluates (8) on a grid of values of σ0.
check Given a model fitted using qgam, produces some diagnostics plots.
qdo A wrapper for using standard generics (e.g., summary) on the output of

mqgam. Needed because mqgam does not output an object of class ‘gam’.

Table 1: Main functions provided by qgam.

version of the IKL loss w.r.t. σ0 leads to better frequentist coverage of the posterior credible
intervals, relative to joint maximization of LAML (6) w.r.t. σ0 and γ. Note, however, that the
methods of Fasiolo et al. (2021b) do not propagate forward the uncertainty in the estimation of
σ(x), h̃∗(x) and γ and when computing V and Vs. The effect of overlooking such additional
sources of uncertainty on the coverage of the resulting posterior credible intervals has not
been studied in the context of QGAMs and might be non-negligible when dealing with small
samples.
This section outlined the Bayesian QGAM fitting framework of Fasiolo et al. (2021b) from
a methodological point of view. The next section explains how the fitting framework just
described is implemented in the qgam package.

2.4. Software implementation of the fitting framework

The qgam package is an extension of mgcv providing additional tools for handling QGAMs.
Here we focus mainly on how the package implements the fitting framework of Fasiolo et al.
(2021b), while in Section 3 we provide usage examples.
Table 1 lists the main functions provided by qgam. The most commonly used one is itself
called qgam and has the following arguments

qgam(form, data, qu, lsig = NULL, err = NULL,
multicore = !is.null(cluster), cluster = NULL, ncores = detectCores() - 1,
paropts = list(), control = list(), argGam = NULL)

Arguments form and data have the same meaning as in mgcv::gam (henceforth just gam),
qu is the quantile of interest τ , lsig is log σ0 and err is a positive parameter allowing to
set the ELF loss smoothness manually. By default qgam determines the loss smoothness
automatically, using the methods described in Section 2.3, hence most users will not need to
use argument err. However, Appendix A provides some guidelines for users who decide to
select the loss smoothness manually. In qgam version 1.3.4, arguments multicore, cluster,
ncores and paropts are relevant only when the learning rate is calibrated by bootstrapping,
and can be used to perform bootstrap re-fitting in parallel. control is a list of control
parameters useful, for instance, to choose the type of calibration used and to suppress the
text output printed by qgam, while argGam is a list of arguments to be passed to gam.

Journal of Statistical Software 9

To describe how qgam implements the fitting framework of Fasiolo et al. (2021b), assume
that we want to fit a QGAM for quantile τ = 0.5, with model formula myForm = list(y
~ s(x1) + s(x2), ~ s(x3)) and using data from a ‘data.frame’ called myDat. Here y ~
s(x1) + s(x2) is the model used for the median, that is µτ (x) = f1(x1) + f2(x2), where
f1 and f2 are two smooth effects constructed, by default, using ten thin plate splines basis
functions. The second element of the formula, ~ s(x3), is the model used for the variance
κ(x) in the preliminary location-scale GAM fit. The first thing to point out is that, if σ0
and the bandwidth h(x) were known, QGAMs could be fitted using gam directly. In fact, we
could fit a median quantile model using

gam(myForm[[1]], data = myDat,
family = elf(theta = 1, qu = 0.5, co = rep(1, nrow(myDat))))

where qgam::elf is a family providing the ELF log-likelihood function and its derivatives.
Its arguments theta and co correspond respectively to log σ0 and h(x), which have been
arbitrarily fixed to 1 here. Hence, given σ0 and h(x), the intermediate and inner iterations
for selecting γ and estimating β take place inside gam. But these parameters are generally
unknown, so qgam determines σ0 using the outer iteration and h(x) via the preliminary
location-scale GAM fit. In particular, upon calling

qgam(myForm, data = myDat, qu = 0.5)

the qgam function executes the following pseudo-code:

1. Estimate α(x) and κ(x) by fitting a Gaussian location-scale GAM

gam(myForm, data = myDat, family = gaulss)

where mgcv::gaulss is a Gaussian location-scale family.

2. Numerically fit the sinh-arch density of Jones and Pewsey (2009) to the standardized
Gaussian GAM residuals, to provide estimates of fz, f ′z and F−1

z (τ).

3. Estimate h̃∗(x) by plugging the estimates obtained in the previous two steps into (7),
where d is set to the number of effective degrees of freedom used to model α(x) in step
1.

4. Call the tuneLearnFast function, which minimizes the IKL loss w.r.t. log σ0 using an
outer Brent algorithm. For each trial value of log σ0:

(a) Call gam with arguments formula = myForm[[1]] and family = elf, the latter
having parameter theta fixed to the current value of log σ0 and co fixed to h̃∗(x).
ELF parameters λ and σ(x) are obtained within elf by λ = n−1∑

i h̃
∗(xi)/σ0

and then σ(xi) = h̃∗(xi)/λ. The gam call performs the intermediate iteration for
selecting γ and the inner iteration for estimating β.

(b) Estimate the IKL loss using (8), where v(x) is easily obtained from the gam output,
while vs(x) is estimated using the regularized estimator of Fasiolo et al. (2021b).

Upon convergence, return the value of log σ0 minimizing the IKL loss.

10 qgam: Nonparametric Regression Modeling in R

5. Call gam as in step 4(a), with elf parameter theta fixed to the value of log σ0 returned
by tuneLearnFast, and co set to h̃∗(x).

6. Return the output of the last gam call, with the output of tuneLearnFast call stored
in its $calibr component.

Note that a variety of different density estimators could be used in step 2 above. We use
the sinh-arch distribution because it provides a good balance between flexibility and stability.
However, future versions of qgam might allow users to provide their own density estimator.
Similar considerations hold for the Gaussian GAM used in step 1. The tuneLearnFast
function of step 4 has exactly the same arguments as qgam, and it returns a list containing
diagnostic information regarding the outer iteration and the value of σ0 which minimizes the
IKL loss. The output of qgam is an object of class ‘qgam’ which inherits from class ‘gam’ which
in turn inherits from classes ‘glm’ and ‘lm’ and which can be manipulated using any of the
S3 methods available for objects of class ‘gam’. Version 1.3.4 of the qgam package does not
provide any S4 method or class.

3. Examples

3.1. A basic example: The motorcycle data set

Here we consider the classic motorcycle accident data set of Silverman (1985), available in
the MASS package (Venables and Ripley 2002; Ripley 2021). We start by loading the data
and fitting a QGAM for quantile τ = 0.9 as follows

R> data("mcycle", package = "MASS")
R> library("qgam")
R> fitCycle1 <- qgam(list(form = accel ~ s(times, k = 20, bs = "ad"),
+ ~ s(times)), data = mcycle, qu = 0.9)

We are using the model µτ (time) = f(time), where f(·) is an adaptive smooth effect built
using 20 P-splines basis functions (Eilers and Marx 1996). We use an adaptive smooth
because, as shown in Figure 1, the shape of the conditional quantile varies sharply between
roughly 10 and 40 milliseconds, but it is otherwise quite flat. Recall that the second part
of the formula, ~ s(times), is not used to model the quantile, but the variance κ(x) of the
response within the location-scale GAM.
Given that fitCycle1 inherits from class ‘gam’, generic function calls such as

R> head(predict(fitCycle1), 5)

1 2 3 4 5
0.460372275 0.421737850 0.271621363 0.146774904 0.005606131

dispatch to the relevant method (here the predict method for ‘gam’ objects). Similarly, the
fitted effects in the quantile model can be plotted using

R> plot(fitCycle1)

Journal of Statistical Software 11

10 20 30 40 50
−

10
0

0
50

times

s(
tim

es
,1

1.
05

)

Figure 1: Fitted smooth effect of time on quantile 0.9 of the mcycle data set, with 95%
credible intervals obtained using a Gaussian approximation to the posterior.

which dispatches to the plot method for ‘gam’ objects, and produces the plot shown in
Figure 1. To save memory, no component of the Gaussian location-scale fit is stored in the
output of qgam, but the selected values of the parameters log σ0 and h(x) can be extracted
by

R> fitCycle1$family$getTheta()

0.9
1.237221

R> head(fitCycle1$family$getCo(), 5)

[1] 0.2791352 0.2728345 0.2549963 0.2442300 0.2346063

Above we fitted a single quantile, but multiple quantiles can be estimated at once using the
following function call

R> fitCycleM <- mqgam(form = list(accel ~ s(times, k = 20, bs = "ad"),
+ ~ s(times)), data = mcycle, qu = c(0.1, 0.25, 0.5, 0.75, 0.9))

where the mqgam function fits a QGAM to each of the five quantiles. The main advantage
of using mqgam, rather than several calls to qgam, is that it saves memory by storing a single
version of potentially large objects, such as the model matrix, for all the fitted QGAMs.
The five fitted QGAMs can be found in the list fitCycleM$fit, but calling functions such as
plot(fitCycleM$fit[[1]]) would trigger an error because some object elements are missing.
The output of mqgam should instead be manipulated using the qdo function, for example

R> qdo(fitCycleM, qu = 0.25, fun = summary)

Family: elf
Link function: identity

Formula:

12 qgam: Nonparametric Regression Modeling in R

accel ~ s(times, k = 20, bs = "ad")

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -42.739 2.016 -21.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(times) 10.55 11.83 837.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.735 Deviance explained = 89.2%
-REML = 570.51 Scale est. = 1 n = 133

shows the output of the summary method for ‘gam’ objects for the QGAM fitted to quantile
τ = 0.25. Similarly, the fitted effect for τ = 0.1 can be plotted by qdo(fitCycleM, qu =
0.1, fun = plot).
More convenient methods for plotting multiple QGAMs jointly are provided by the mgcViz
package (Fasiolo and Nedellec 2020). In the following we will only use the mgcViz tools that
are specific to quantile GAMs, and we refer to Fasiolo, Nedellec, Goude, and Wood (2020)
and to the relevant package documentation for more details. To exploit the visualizations
offered by mgcViz, it is necessary to transform the output of mqgam as follows

R> library("mgcViz")
R> fitCycleM <- getViz(fitCycleM)

which produces an object of class c("mqgamViz", "mgamViz"). This is simply a list of objects
of class ‘gamViz’, which inherits from the ‘qgam’ class. Given that the elements of fitCycleM
are full objects, without any missing component, they can be manipulated directly rather
than via qdo. For example, we can use plot(fitCycleM[[1]]) to plot the fitted effect for
quantile τ = 0.1. Of course, transforming fitCycleM using getViz has some memory cost,
because fitCycleM now stores a copy of the model matrix for each quantile.
Having transformed fitCycleM, the effect of time on all quantiles can now be visualized
jointly by

R> plot(fitCycleM)

which produces the plot shown in Figure 2, by dispatching to plot methods for ‘mgamViz’ ob-
jects in package mgcViz. The latter produces an object of class c("plotGam", "gg"), which
is a wrapper around one or several objects of class ‘ggplot’, defined in the ggplot2 package
(Wickham 2016; Wickham et al. 2021). Note that Figure 2 shows the fitted effects for each τ
which, in this case, are equal to the fitted quantiles up to some vertical shifts (the intercepts).
The effects cross each other because they are all centered (see Wood 2017 for details on iden-
tifiability constraints in GAMs), hence this does not imply that the corresponding quantile

Journal of Statistical Software 13

−100

−50

0

50

0 20 40 60
times

s(
tim

es
)

id

0.90

0.75

0.50

0.25

0.10

Figure 2: Plot showing the fitted additive effects of time on all five quantiles, obtained using
the mgcViz package.

10 20 30 40 50

−
15

0
−

10
0

−
50

0
50

times

ac
ce

l

Figure 3: Plot showing the five conditional quantiles fitted using qgam.

estimates (which are not centered) cross within the range of the data, time ∈ (0, 60). In fact,
if we plot the estimated quantiles using

R> xseq <- with(mcycle, seq(min(times), max(times), length.out = 100))
R> preds <- sapply(fitCycleM, predict, newdata = data.frame(times = xseq))
R> plot(mcycle, ylim = range(preds))
R> for(ii in 1:5) lines(xseq, preds[, ii], col = 2)

we do not see any clear crossing in Figure 3. Indeed, the minimal distance between consecutive
quantiles is

R> min(apply(preds, 1, diff))

[1] 0.1524413

hence there is no crossing within the range of the data. However, quantiles fitted with qgam
often cross somewhere (outside the data range in this example), because they are fitted
independently and without any non-crossing constraint. This issue is not specific to qgam,

14 qgam: Nonparametric Regression Modeling in R

−
15

0
−

10
0

−
50

0
50

10
0

A
cc

el
er

at
io

n

σ(x)

10 20 30 40 50

−
15

0
−

10
0

−
50

0
50

10
0

Times

A
cc

el
er

at
io

n

σ = const

Figure 4: Fitted quantile τ = 0.9 (solid black), with 95% credible intervals (solid red), when
the learning rate and the loss smoothness are allowed to vary with the independent variable
(top) or not (bottom). The dashed lines correspond to the fitted quantile and credible intervals
obtained by using 100 bootstrap samples to estimate vs(x) during IKL-based calibration of
σ0 (see Section 2.3 for details). Bootstrap-based calibration is selected by setting the control
argument of qgam to list(loss = "cal", K = 100).

but is a well known drawback of distribution-free quantile regression (Koenker 2005). For
solutions to the quantile crossing problem see, for example, Bondell, Reich, and Wang (2010)
or, in a Bayesian framework, Rodrigues and Fan (2017).
In the mcycle data set, the variance of the response (accel) varies strongly with the indepen-
dent variable (times), hence it is natural to let the learning rate and the ELF loss smoothness
vary along the latter. This is achieved by providing a model formula which is a list with two
elements, where the second, ~ s(times), is used by qgam to model the conditional variance
κ(x) in the location-scale GAM. However, it is possible to avoid modeling the variance and
to assume that it is constant along the covariates. For example, in the following code

R> fitCycleConst <- qgam(accel ~ s(times, k = 20, bs = "ad"), data = mcycle,
+ qu = 0.9)

we are providing only the model for the quantile τ = 0.9, rather than a list of two formulas,
so qgam uses a constant learning rate 1/σ(x) = 1/σ0 and loss bandwidth h̃∗(x) = h̃∗. For the
mcycle data set, ignoring the heteroscedasticity leads to the poor results shown in Figure 4.

Journal of Statistical Software 15

One problem with the quantile fit shown on the right is that it lies far above all the responses,
for time < 10ms. But we are fitting quantile 0.9, hence we should expect around 10% of the
responses to lie above the fit. The issue is that the bias of the ELF loss used by qgam is
inversely proportional to the conditional variance of the response (see Fasiolo et al. 2021b
for details), hence not modeling the response variance leads to high bias for time < 10ms.
Ignoring heteroscedasticity can also lead to credible intervals that have non-constant coverage.
In fact, the width of the intervals should be proportional to the variance of the response, but
on the right plot in Figure 4 they have nearly constant width, thus providing an incorrect
representation of the uncertainty of the fit. Of course, in most data sets, heteroscedasticity
is not as dramatic as in mcycle and using a location-only model often leads to satisfactory
results. However, it is important to be aware of the issues highlighted by this example.

3.2. Functional QGAM modeling of electricity demand data

In this example we consider smart meter data from nc = 247 anonymized residential customers
from Sydney, Australia, covering the period between the 3rd of July 2010 and the 30th of June
2011. The data has been downloaded from https://www.ausgrid.com.au/, and it originally
contained electricity demand from 300 customers, at 30min resolution. We discarded 53
customers because their demand was too irregular (e.g., they were absent from home for over
30 consecutive days), and we integrated the demand data with temperature data from the
National Climatic Data Center (https://www.ncdc.noaa.gov/), covering the same period.
The aim of this example is to illustrate how to use quantile GAMs in qgam, in the context of
an electricity demand forecasting application. We start by loading the following data set:

R> data("AUDem", package = "qgam")
R> meanDem <- AUDem$meanDem
R> head(meanDem, 3)

doy tod dem dow temp date dem48
1 184 18.0 0.8248777 Sat 3.357407 2010-07-03 17:30:00 0.8978636
2 184 18.5 0.8686110 Sat 2.517073 2010-07-03 18:00:00 0.9417633
3 184 19.0 0.8519471 Sat 1.898399 2010-07-03 18:30:00 0.9148921

which contains the variables:

• doy: the day of the year, from 1 to 365;

• tod: the time of day, ranging from 18 to 22, where 18 indicates the period from 17:00
to 17:30, 18.5 the period from 17:30 to 18:00 and so on;

• dem: the demand (in kWh) during a 30min period, averaged over the nc households;

• dow: factor variable indicating the day of the week;

• temp: the external temperature at Sydney airport, in degrees Celsius;

• date: local date and time;

• dem48: the lagged mean demand, that is the average demand (dem) during the same
30min period of the previous day.

https://www.ausgrid.com.au/
https://www.ncdc.noaa.gov/

16 qgam: Nonparametric Regression Modeling in R

0.
6

0.
7

0.
8

0.
9

1.
0

Date

D
em

an
d

(K
W

)

2010−07−23 2010−10−14 2011−01−21 2011−05−01

training
testing

Figure 5: Electricity demand between 19:30 and 20:00, averaged across the nc customers.

Assume that we aim at producing a probabilistic forecast of the average demand one day
ahead, using additive quantile regression. We start by dividing the data into a learning and
a testing set:

R> cutDate <- as.Date("2011-04-01 00:00:00")
R> meanDemLearn <- subset(meanDem, as.Date(date) < cutDate)
R> meanDemTest <- subset(meanDem, as.Date(date) >= cutDate)

which leaves the last three months for testing. Figure 5 shows the average demand between
19:30 and 20:00, over the whole period. We focus only on the period between 17:30 and
21:30, because the demand dynamics change considerably before and after this time slot,
hence modeling demand across the whole day would require a much more sophisticated and
computationally expensive model than any of those considered below. We start by modeling
the τth quantile of the average demand using the quantile model

µτ (xt) =
7∑
j=1

βjI(dowt = j) + β8demt−48 + f1(todt) + f2(tempt) + f3(doyt), (9)

where I(dowt = j) = 1 when dowt is the jth day of the week and zero otherwise, f1 and
f2 are smooth effects built using thin plate splines, while f3 is a cyclical effect constructed
using cubic regression splines. We use a cyclic effect for doy to ensure that the seasonal effect
has the same value on the 31st of December and on the 1st of January. Given that demand
variability seems to spike during the austral summer (see Figure 5), we model the variance
κ(x) using a cyclic effect for doy in the location-scale Gaussian GAM.
We fit the model just described to quantiles τ = {0.1, 0.3, 0.5, 0.7, 0.9} using the following
code

R> library("qgam")
R> qusObj <- seq(0.1, 0.9, length.out = 5)
R> fitQ <- mqgam(list(dem ~ dow + dem48 +
+ s(tod, k = 6) + s(temp) + s(doy, bs = "cc"), ~ s(doy, bs = "cc")),
+ qu = qusObj, data = meanDemLearn)

We then plot the estimated smooth effects and the linear coefficients of lagged demand using

Journal of Statistical Software 17

−0.03

−0.02

−0.01

0.00

0.01

18 19 20 21 22
tod

s(
to

d)

0.0

0.1

0.2

0.3

0 10 20 30
temp

s(
te

m
p)

0.00

0.05

0 100 200 300
doy

s(
do

y)

id 0.9 0.7 0.5 0.3 0.1

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9
id

co
ef

f d
em

48

Figure 6: Estimated effects of time of day (tod), temperature (temp), day of year (doy) and
lagged demand (dem48) from model (9), for the quantiles labelled using the id variable.

R> library("mgcViz")
R> fitQ <- getViz(fitQ)
R> print(plot(fitQ, allTerms = TRUE, select = c(1:3, 5)), pages = 1)

The output, up to some aesthetic manipulation, is shown in Figure 6. Note that we used the
plotting tools provided by mgcViz, which required us to convert the output of mqgam using
getViz. Then we used plot to plot all model terms (allTerms = TRUE is used to plot the
parametric terms in addition to the smooth effects), we selected a subset of the effects using
the select argument and we used print to arrange all the plots on a single page.
The shapes of the estimated effects seem quite reasonable: the tod effect increases as people
get home and decreases later in the evening, the temperature plot shows a strong cooling
effect and a negligible heating effect, and the effect of doy shows a main mode during the
austral winter and a lower, narrower, mode during the summer. The discrepancy between
the effects estimated on different quantiles can be interpreted in terms of the corresponding
effect on the shape of the demand distribution. For example, at tod = 18 the effects f1 are
more spread out than at tod = 19 implying that, all else being equal, the variance of the
demand is higher at tod = 18. Similarly, at doy ≈ 25 the effect f3 is more positive for quantile
τ = 0.9 than for τ = 0.1, while the positions are reversed at doy ≈ 120. Hence, the demand
distribution is more skewed to the right in the first case. The linear coefficient of the lagged
demand increases with τ ; hence, all else being equal, the demand variance one day ahead
increases with the lagged demand.
So far we considered only the mean demand over the portfolio of customers, however the
original data set contains demand for each of the nc households. Average demand is typically

18 qgam: Nonparametric Regression Modeling in R

much easier to forecast than individual demand, because the highly irregular consumption
of individual customers is averaged out. However, the by-customer data should carry more
information, hence it is interesting to verify whether it can be used to improve the quantile
forecasts for the average demand. We capture part of the information contained in the by-
customer demand data by considering a model which, for storage reasons, uses a functional
summary of the full demand data, as explained in the following.
We consider the functional quantile model

µτ (xt) =
7∑
j=1

βjI(dowt = j) + f1(todt) + f2(tempt) + f3(doyt) +
∫ 1

0
f4(p)G−1

t−48(p)dp, (10)

where µτ (xt) is, as in (9), the τth quantile of the average demand, while we indicate with
Gt the CDF of the individual demand across customers at time t and with G−1

t−48(p) the
corresponding pth quantile, at the same instant of the previous day. Function f4 is a smooth
effect along p ∈ [0, 1], constructed using a thin plate spline basis. Hence, the last term in (10)
is a functional effect which takes as input the whole quantile function of the across-customers
demand distribution at time t− 48, and integrates it over p using the weight function f4(p).
The aim is to verify whether the shape of the distribution of the individual demand at time
t − 48 can be used to improve the forecast of the average demand at time t. The regression
coefficients of f4(p) are unknown, but they can be estimated using the methods presented in
Section 2.3. In particular, we have that

∫ 1

0
f4(p)G−1

t−48(p)dp =
∫ 1

0

K4∑
k=1

b4
k(p)β4

kG
−1
t−48(p)dp =

K4∑
k=1

{∫ 1

0
b4
k(p)G−1

t−48(p)dp
}
β4
k =

K4∑
k=1

b̃4
kβ

4
k,

where the transformed basis b̃4
1, . . . , b̃

4
K4

implicitly depends on time t. Hence, once the trans-
formed basis is obtained, the functional effect is linear in the regression coefficients and
estimating them presents no extra difficulty, relative to standard smooth effects. The across-
customers demand CDF Gt−48 is unknown, but we have a sample of size nc from it, consisting
of the by-customer demand data. Hence, we can approximate the transformed basis using

b̃4
k =

∫ 1

0
b4
k(p)G−1

t−48(p)dp ≈ 1
nq

nq∑
l=1

b4
k (pl) Ĝ−1

t−48(pl), (11)

where Ĝ−1
t−48(p1), . . . , Ĝ−1

t−48(pnq) is a set of empirical quantiles of the nc by-customer demand
observations at time t− 48, corresponding to probability level 0 < p1 < p2 < · · · < pnq < 1.
To reduce the amount of data stored in the qgam package, we use nq = 20 < nc quantiles
equally spaced between p1 = 0.01 and pnq = 0.99. The quantiles are stored in

R> qDem48 <- AUDem$qDem48
R> head(qDem48[, c(1, 2, 5, 15, 19, 20)], 3)

1% 6.157895% 21.63158% 73.21053% 93.84211% 99%
[1,] 0.1995373 0.3128564 0.5125927 1.127776 1.655850 2.089360
[2,] 0.1595543 0.3368127 0.5569682 1.206294 1.587732 2.084527
[3,] 0.2091480 0.3571971 0.5652339 1.141480 1.632144 2.044097

Journal of Statistical Software 19

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

Probability level (p)

E
le

ct
ric

ity
 d

em
an

d
(K

W
)

Figure 7: Estimates of the individual demand quantile function G−1
t−48, for five values of t.

where each row contains Ĝ−1
t−48(p1), . . . , Ĝ−1

t−48(pnq), for some t. Figure 7 shows five selected
rows of qDem48, each line being an estimate of the quantile function G−1

t−48, for a different t.
To fit model (10) with qgam, we need also a matrix where each row of probLev contains the
probability levels p1, p2, . . . , pnq . This is computed as follows

R> probLev <- matrix(seq(0.01, 0.99, length.out = 20), nrow = nrow(meanDem),
+ ncol = 20, byrow = TRUE)
R> head(probLev[, c(1, 2, 5, 15, 19, 20)], 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.01 0.06157895 0.2163158 0.7321053 0.9384211 0.99
[2,] 0.01 0.06157895 0.2163158 0.7321053 0.9384211 0.99
[3,] 0.01 0.06157895 0.2163158 0.7321053 0.9384211 0.99

We add the matrices just defined to the learning and testing sets by

R> ntrain <- nrow(meanDemLearn)
R> ntest <- nrow(meanDemTest)
R> meanDemLearn$qDem48 <- head(qDem48, ntrain)
R> meanDemTest$qDem48 <- tail(qDem48, ntest)
R> meanDemLearn$probLev <- head(probLev, ntrain)
R> meanDemTest$probLev <- tail(probLev, ntest)

We are now ready to fit model (10) using

R> fitFunQ <- mqgamV(list(dem ~ dow + s(temp) + s(doy, bs = "cc") +
+ s(tod, k = 6) + s(probLev, by = qDem48), ~ s(doy, bs = "cc")),
+ qu = qusObj, data = meanDemLearn)

where we are using the mgcViz::mqgamV function, which is simply a shortcut for fitting the
model using mqgam and then transforming it using getViz. Here the functional effect is

20 qgam: Nonparametric Regression Modeling in R

−0.01

0.00

0.01

0.02

0.03

0.04

0.00 0.25 0.50 0.75 1.00
probLev

s(
pr

ob
Le

v)
:q

D
em

τ

0.9

0.7

0.5

0.3

0.1

Figure 8: Estimated effect f4(p) from model (10), for each quantile.

constructed using s(probLev, by = orDem48), which is the constructor typically used for
by-variable or varying-coefficient effects in mgcv. The corresponding transformed spline basis
is constructed by gam, which performs the summation in (11) using the rows of the probLev
and orDem48 matrices.
We can have a look at the fitted functional smooth effects f4(p) using

R> plot(fitFunQ, select = 4) + labs(color = expression(tau))

which produces the plot shown in Figure 8. It is interesting to note that the effects corre-
sponding to low and high probabilities diverge as p → 0 and p → 1, suggesting that the
extremes of the quantile function G−1

t−48(p) have a stronger linear effect on the high quantiles
of the average demand (e.g., µτ (x) with τ = 0.9) than on the low ones. However, the plot
method for ‘mgamViz’ objects does not include credible intervals when plotting the same effect
for multiple quantiles, to avoid cluttering the plot. In Figure 9 we compare the effects for
τ = 0.1 and 0.9, and we include 95% credible intervals. The plot shows that the discrepancy
between the effects is statistically stronger for p ≈ 1, than for p ≈ 0. Hence, low quantiles of
the average demand are less sensitive than high quantiles to changes in the right tail of the
distribution of the individual demand. This asymmetric behavior highlights the usefulness
of modeling the effect of the changes in the individual demand distribution via functional
effects, which take into account the entire shape of the distribution, rather than via a set of
manually built summary statistics (e.g., mean and standard deviation) which will inevitably
miss some of its features. To check whether model (10) leads to a better fit than model (9),
we can compare the values of the Bayesian information criterion (BIC) corresponding to each
quantile by

R> round(rbind(QGAM = sapply(fitQ, BIC), FuncQGAM = sapply(fitFunQ, BIC)))

0.1 0.3 0.5 0.7 0.9
QGAM -8255 -9513 -9700 -9137 -6651
FuncQGAM -8458 -9617 -9698 -9152 -6680

Journal of Statistical Software 21

0.000

0.025

0.050

0.00 0.25 0.50 0.75 1.00
probLev

s(
pr

ob
Le

v)
:o

rD
em

Figure 9: Estimated effect f4(p) from model (10) with 95% credible intervals, for quantile
τ = 0.1 (black solid) and 0.9 (blue dashed).

BIC favors slightly model (10), but the simpler model is preferred for one of the quantiles. In-
stead the Akaike information criterion (AIC), which penalizes model complexity less strongly
than BIC, favors model (10) for all quantiles

R> round(rbind(QGAM = sapply(fitQ, AIC), FuncQGAM = sapply(fitFunQ, AIC)))

0.1 0.3 0.5 0.7 0.9
QGAM -8416 -9679 -9867 -9303 -6813
FuncQGAM -8637 -9800 -9881 -9325 -6858

We can also compare the predictive performance of the two models on the testing set, which
comprises the last three months of the data set (1st of April to 30th of June, see Figure 5).
For example, we can calculate the pinball loss for each model and quantile on such data as
follows

R> predQ <- sapply(fitQ, predict, newdata = meanDemTest)
R> predFunQ <- sapply(fitFunQ, predict, newdata = meanDemTest)
R> round(rbind(QGAM = pinLoss(meanDemTest$dem, predQ, qusObj),
+ FuncQGAM = pinLoss(meanDemTest$dem, predFunQ, qusObj)), 1)

0.1 0.3 0.5 0.7 0.9
QGAM 4.7 8.8 10.4 10.6 10.7
FuncQGAM 4.6 8.6 10.3 10.2 10.2

where qgam::pinLoss evaluates the pinball loss. The functional model does better on the
testing set, but it is important to point out that the size of the testing set is rather limited,
especially for the purpose of evaluating the performance of the extreme quantiles estimates.
Of course, model (10) could be improved further. For example, a call to

22 qgam: Nonparametric Regression Modeling in R

R> check(fitFunQ[[3]])

Theor. proportion of neg. resid.: 0.5 Actual proportion: 0.5155229
Integrated absolute bias |F(mu) - F(mu0)| = 0.02719397
Method: REML Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-3.420505e-08,4.411812e-07]
(score -4857.326 & scale 1).
Hessian positive definite, eigenvalue range [0.5027064,3.678087].
Model rank = 39 / 39

Basis dimension (k) check: if edf is close to k' (maximum possible edf)
it might be worth increasing k.

k' edf
s(temp) 9 8.21
s(doy) 8 7.65
s(tod) 5 4.69
s(probLev):qDem48 10 3.15

shows that, for τ = 0.5, the effective degrees of freedom (edf) are quite close to their maximum
possible value (k’) for the temperature effect. This means that the fit is using all the degrees
of freedom available for that effect, hence we might want to consider increasing the number
of basis functions by using s(temp, k = 20) in the model formula. However, one might be
reluctant to increase the number of basis functions used to fit more extreme quantiles (e.g.,
τ = 0.9), where the data is sparser. This highlights a disadvantage of using mqgam, rather
than repeated calls to qgam, when fitting several QGAMs: the same model formula is used
for all the quantiles. The model could also be improved by, for example, including the effect
of lagged temperatures, often useful for capturing thermal inertia in buildings.

4. Conclusions
The qgam R package provides tools for building, fitting and checking quantile additive models.
The main advantage of such models, relative to standard probabilistic GAMs, is that they
do not make any parametric assumption on the distribution of the response variable. This is
achieved by modeling and estimating the conditional quantiles directly, using the pinball loss.
Model fitting is based on the fast calibrated Bayesian framework of Fasiolo et al. (2021b),
which provides calibrated credible intervals, via IKL selection of the learning rate, and com-
putational efficiency, by smoothing the pinball loss and by exploiting the marginal likelihood
methods of Wood et al. (2016). Model building is handled by mgcv, hence the quantile GAMs
built using qgam can include any of the effect types made available by mgcv, among others:
cyclic, adaptive and multivariate tensor-product smooths, as well as functional and random
effects.
At the time of writing, qgam version 1.3.4 can handle data sets and models of moderate size.
In particular, the current fitting methods require explicit formation of the n×d model matrix
X, which leads to high memory usage for large n. Wood, Goude, and Shaw (2015) proposed a

Journal of Statistical Software 23

GAM fitting framework where explicit formation of X is avoided by adopting block-oriented
iterations for smoothing parameters selection and regression coefficients estimation. The bam
function in mgcv implements such methods, as well as the marginal discretization approach of
Wood, Li, Shaddick, and Augustin (2017), which allows it to fit models with up to 104 coeffi-
cients and 108 data points. Future work will aim at improving the scalability of the Bayesian
QGAM fitting framework currently implemented in qgam, by exploiting the block-oriented
discretized fitting methods provided by mgcv for the inner and intermediate iterations, and
developing a similarly scalable version of the IKL minimization routine currently used for
learning rate selection.

Acknowledgments
The development of the qgam package was funded by EPSRC grants EP/K005251/1, EP/N509
619/1 and by Électricité de France. M. Zaffran gratefully acknowledges support from the
Erasmus+ programme and the Université Paris-Saclay.

References

Bissiri PG, Holmes CC, Walker SG (2016). “A General Framework for Updating Belief
Distributions.” Journal of the Royal Statistical Society B, 78(5), 1103–1130. doi:10.
1111/rssb.12158.

Bondell HD, Reich BJ, Wang H (2010). “Noncrossing Quantile Regression Curve Estimation.”
Biometrika, 97(4), 825–838. doi:10.1093/biomet/asq048.

Brent RP (2013). Algorithms for Minimization without Derivatives. Courier Corporation.

Brezger A, Kneib T, Lang S (2005). “BayesX: Analyzing Bayesian Structured Additive Regres-
sion Models.” Journal of Statistical Software, 14(11), 1–22. doi:10.18637/jss.v014.i11.

Eilers PHC, Marx BD (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical
Science, 11(2), 89–102. doi:10.1214/ss/1038425655.

Fasiolo M, Nedellec R (2020). mgcViz: Visualisations for Generalized Additive Models.
R package version 0.1.6, URL https://CRAN.R-project.org/package=mgcViz.

Fasiolo M, Nedellec R, Goude Y, Wood SN (2020). “Scalable Visualization Methods for
Modern Generalized Additive Models.” Journal of Computational and Graphical Statistics,
29(1), 78–86. doi:10.1080/10618600.2019.1629942.

Fasiolo M, Wood SN, Zaffran M, Goude Y, Nedellec R (2021a). qgam: Smooth Additive
Quantile Regression Models. R package version 1.3.4, URL https://CRAN.R-project.
org/package=qgam.

Fasiolo M, Wood SN, Zaffran M, Nedellec R, Goude Y (2021b). “Fast Calibrated Additive
Quantile Regression.” Journal of the Americal Statistical Association, 116(535), 1402–1412.
doi:10.1080/01621459.2020.1725521.

https://doi.org/10.1111/rssb.12158
https://doi.org/10.1111/rssb.12158
https://doi.org/10.1093/biomet/asq048
https://doi.org/10.18637/jss.v014.i11
https://doi.org/10.1214/ss/1038425655
https://CRAN.R-project.org/package=mgcViz
https://doi.org/10.1080/10618600.2019.1629942
https://CRAN.R-project.org/package=qgam
https://CRAN.R-project.org/package=qgam
https://doi.org/10.1080/01621459.2020.1725521

24 qgam: Nonparametric Regression Modeling in R

Hastie T, Tibshirani R (1986). “Generalized Additive Models.” Statistical Science, 1(3),
297–318. doi:10.1214/ss/1177013604.

Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B (2021). mboost: Model-Based
Boosting. R package version 2.9-5, URL https://CRAN.R-project.org/package=mboost.

Jones MC (2008). “On a Class of Distributions with Simple Exponential Tails.” Statistica
Sinica, 18(3), 1101–1110.

Jones MC, Pewsey A (2009). “Sinh-Arcsinh Distributions.” Biometrika, 96(4), 761–780.
doi:10.1093/biomet/asp053.

Koenker R (2005). Quantile Regression. Cambridge University Press, Cambridge.

Koenker R (2011). “Additive Models for Quantile Regression: Model Selection and Confidence
Bandaids.” Brazilian Journal of Probability and Statistics, 25(3), 239–262. doi:10.1214/
10-bjps131.

Koenker R (2021). quantreg: Quantile Regression. R package version 5.85, URL https:
//CRAN.R-project.org/package=quantreg.

Koenker R, Bassett G (1978). “Regression Quantiles.” Econometrica, 46(1), 33–50. doi:
10.2307/1913643.

Lin CY, Bondell H, Zhang HH, Zou H (2013). “Variable Selection for Non-Parametric Quantile
Regression via Smoothing Spline Analysis of Variance.” Stat, 2(1), 255–268. doi:10.1002/
sta4.33.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale
and Shape.” Journal of the Royal Statistical Society C, 54(3), 507–554. doi:10.1111/j.
1467-9876.2005.00510.x.

Ripley B (2021). MASS: Support Functions and Datasets for Venables and Ripley’s MASS.
R package version 7.3-54, URL https://CRAN.R-project.org/package=MASS.

Rodrigues T, Fan Y (2017). “Regression Adjustment for Noncrossing Bayesian Quantile
Regression.” Journal of Computational and Graphical Statistics, 26(2), 275–284. doi:
10.1080/10618600.2016.1172016.

Silverman BW (1985). “Some Aspects of the Spline Smoothing Approach to Non-Parametric
Regression Curve Fitting.” Journal of the Royal Statistical Society B, 47(1), 1–52. doi:
10.1111/j.2517-6161.1985.tb01327.x.

Sriram K (2015). “A Sandwich Likelihood Correction for Bayesian Quantile Regression Based
on the Misspecified Asymmetric Laplace Density.” Statistics & Probability Letters, 107, 18–
26. doi:10.1016/j.spl.2015.07.035.

Syring N, Martin R (2015). “Scaling the Gibbs Posterior Credible Regions.” arXiv:1509.00922
[stat.ME], URL https://arxiv.org/abs/1509.00922.

https://doi.org/10.1214/ss/1177013604
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1093/biomet/asp053
https://doi.org/10.1214/10-bjps131
https://doi.org/10.1214/10-bjps131
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1002/sta4.33
https://doi.org/10.1002/sta4.33
https://www.R-project.org/
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://CRAN.R-project.org/package=MASS
https://doi.org/10.1080/10618600.2016.1172016
https://doi.org/10.1080/10618600.2016.1172016
https://doi.org/10.1111/j.2517-6161.1985.tb01327.x
https://doi.org/10.1111/j.2517-6161.1985.tb01327.x
https://doi.org/10.1016/j.spl.2015.07.035
https://arxiv.org/abs/1509.00922

Journal of Statistical Software 25

Umlauf N, Klein N, Simon T, Zeileis A (2021). “bamlss: A Lego Toolbox for Flexible Bayesian
Regression (and Beyond).” Journal of Statistical Software, 100(4). doi:10.18637/jss.
v100.i04. 1–53.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. doi:10.1007/978-0-387-21706-2. URL https://www.stats.ox.ac.
uk/pub/MASS4/.

Waldmann E, Kneib T, Yue YR, Lang S, Flexeder C (2013). “Bayesian Semiparamet-
ric Additive Quantile Regression.” Statistical Modelling, 13(3), 223–252. doi:10.1177/
1471082x13480650.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-3-319-24277-4. URL https://ggplot2.tidyverse.org/.

Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani
H, Dunnington D (2021). ggplot2: Create Elegant Data Visualisations Using the Gram-
mar of Graphics. R package version 3.3.5, URL https://CRAN.R-project.org/package=
ggplot2.

Wood SN (2017). Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC, Boca Raton.

Wood SN (2021). mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness
Estimation. R package version 1.8-36, URL https://CRAN.R-project.org/package=mgcv.

Wood SN, Goude Y, Shaw S (2015). “Generalized Additive Models for Large Data Sets.”
Journal of the Royal Statistical Society C, 64(1), 139–155. doi:10.1111/rssc.12068.

Wood SN, Li Z, Shaddick G, Augustin NH (2017). “Generalized Additive Models for Gigadata:
Modeling the UK Black Smoke Network Daily Data.” Journal of the American Statistical
Association, 112(519), 1199–1210. doi:10.1080/01621459.2016.1195744.

Wood SN, Pya N, Sëfken B (2016). “Smoothing Parameter and Model Selection for General
Smooth Models.” Journal of the American Statistical Association, 111(516), 1548–1575.
doi:10.1080/01621459.2016.1180986.

Yang Y, Wang HJ, He X (2016). “Posterior Inference in Bayesian Quantile Regression with
Asymmetric Laplace Likelihood.” International Statistical Review, 84(3), 327–344. doi:
10.1111/insr.12114.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

https://doi.org/10.18637/jss.v100.i04
https://doi.org/10.18637/jss.v100.i04
https://doi.org/10.1007/978-0-387-21706-2
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1177/1471082x13480650
https://doi.org/10.1177/1471082x13480650
https://doi.org/10.1007/978-3-319-24277-4
https://ggplot2.tidyverse.org/
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=mgcv
https://doi.org/10.1111/rssc.12068
https://doi.org/10.1080/01621459.2016.1195744
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1111/insr.12114
https://doi.org/10.1111/insr.12114
https://doi.org/10.18637/jss.v032.i10

26 qgam: Nonparametric Regression Modeling in R

A. Choosing the loss bandwidth manually
The qgam function determines the ELF loss bandwidth h(x) automatically, but this parameter
can be chosen manually by specifying the err argument, which is set to NULL by default.
Here we provide some guidelines for users who wish to choose this parameter manually. In
particular, the examples in Section A.1 illustrate how parameter err affects the statistical
and computational performance of the fitting methods provided by qgam.

A.1. Illustrating the effect of the loss bandwidth and some diagnostics

To clarify the interpretation of parameter err, let us consider a univariate context where
we want to estimate the τth quantile of response y and there are no covariates. Define
ε = |F (µ∗) − F (µ0)|, where F is the CDF of y, µ0 is the true quantile at probability level
τ and µ∗ is the minimizer of E{ρ̃τ (y − µ)}. Given that µ0 is the minimizer of the expected
pinball loss (see (1)), ε is the asymptotic absolute bias induced by the use of the smooth ELF
loss, with bandwidth h = λσ. In Appendix A.2 we prove that

ε = |F (µ∗)− F (µ0)| ≤ 2 log 2h sup
y
f(y) = 2 log 2√

2πκ
h,

where f is the PDF of y and the last equality holds if y is Gaussian with variance κ. Via
argument err, the qgam function allows users to set the maximum tolerable bias ε, which is
then used to determine the loss bandwidth by

h = ε

√
2πκ

2 log 2 . (12)

Here κ is estimated via the location-scale GAM, and can vary with x as usual. Parameter
h = h(x), obtained via (12), is then used to determine λ and σ(x) as in Section 2.3. Of
course ε (err in the software) is an approximate bound, because the response is not normally
distributed in practice.
In qgam we let users choose ε, rather than λ, because it does not depend on the scale of the
response y. Indeed, considering the interpretation of ε, reasonable values of this parameter
fall in (0, 1) (but qgam checks only that err is positive). To illustrate how err influences the
accuracy of the quantile estimates and the computational performance of qgam, we consider
a simple data set simulated as follows

R> set.seed(5523)
R> x <- seq(-3, 3, length.out = 1e3)
R> X <- data.frame("x" = x, "y" = x + x^2 + rgamma(1e3, 4, 1))

Hence yi = xi + x2
i + zi, where zi ∼ Gamma(4, 1). Assuming that we want to estimate

quantiles 0.05, 0.5 and 0.95, the following code estimates them using different values of err

R> fitGrid <- lapply(c(0.01, 0.05, 0.1, 0.3, 0.5),
+ function(.errVal) {
+ mqgam(y ~ s(x), data = X, qu = c(0.05, 0.5, 0.95), err = .errVal)
+ })

Journal of Statistical Software 27

0

5

10

15

20

−2 0 2
x

y

err

0.01

0.05

0.1

0.3

0.5

Figure 10: Quantile fits for τ = 0.05, 0.5 and 0.95 for different values of err. The dashed
lines are the true quantiles.

The resulting quantile fits are shown in Figure 10. It is clear that the bias is positive for
τ = 0.95, negative for τ = 0.05 and that its absolute value increases with err, becoming
clearly visible for err > 0.1. However, increasing err affects the median estimate only
slightly. Heuristically, this is because the bias induced by the smoothed loss is greater when
the response distribution is more asymmetric around the quantile of interest.
One might conclude that the loss smoothness should be kept as small as possible, but this
leads to computational and numerical stability issues. In fact, decreasing err tends to slow
down computation, and in this example using a very small tolerance increases the computing
time dramatically.

R> system.time(fitBigErr <- qgam(y ~ s(x), data = X, qu = 0.95,
+ err = 0.05))[[3]]

Estimating learning rate. Each dot corresponds to a loss evaluation.
qu = 0.95.............done
[1] 0.48

R> system.time(fitSmallErr <- qgam(y ~ s(x), data = X, qu = 0.95,
+ err = 0.001))[[3]]

Estimating learning rate. Each dot corresponds to a loss evaluation.
qu = 0.95....................done
[1] 41.455

More importantly, using a very low value of err can lead to numerical problems. In fact, the
following code

R> check(fitSmallErr$calibr, sel = 2)

produces the plot in Figure 11, which shows how the estimated IKL loss minimized by the
outer iteration looks like. The dots indicate the points at which the loss has been evaluated

28 qgam: Nonparametric Regression Modeling in R

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

1.
06

1.
08

1.
10

Quantile = 0.95

log(σ)

lo
ss

Figure 11: Plot produced by the check method for ‘learnFast’ objects, showing the esti-
mated IKL loss at several values of log σ0, when err = 0.001. The vertical jump in the loss
indicates numerical problems.

during the outer Brent optimization, and the vertical red line indicates the value of log σ0
which minimizes the loss. Here the loss seems to be discontinuous, which is due to numerical
instabilities. In fact, the analogous plot for fitBigErr (not shown) looks smooth and convex.
To produce the diagnostic plot in Figure 11 we used the generic qgam::check function, which
dispatched to the check method for ‘learnFast’ objects. This is because the output of qgam
contains the results of a call to tuneLearnFast in the $calibr component. The call to check
generates two plots and here we are showing only the second one by choosing sel = 2.
We can use check to have also an estimate of the bias attributable to the smoothed loss and
information regarding the convergence of the smoothing parameter estimation routine. This
is achieved by

R> check(fitBigErr)

Theor. proportion of neg. resid.: 0.95 Actual proportion: 0.952
Integrated absolute bias |F(mu) - F(mu0)| = 0.004319735
Method: REML Optimizer: outer newton
full convergence after 5 iterations.
Gradient range [2.628193e-05,2.628193e-05]
(score 3187.909 & scale 1).
Hessian positive definite, eigenvalue range [1.874667,1.874667].
Model rank = 10 / 10

Basis dimension (k) check: if edf is close to k' (maximum possible edf)
it might be worth increasing k.

k' edf
s(x) 9 5.27

which produces the preceding text output and the diagnostic plots shown in Figure 12. The

Journal of Statistical Software 29

8 12 16

0.
86

0.
92

0.
98

Proportion of neg. resid.

Fitted values

P̂
(y

<
µ̂)

Bias due to smoothed loss

F(µ̂) − F(µ0)

F
re

qu
en

cy

−0.005 0.005

0
50

10
0

15
0

Figure 12: Diagnostic plots produced by the check method for ‘qgam’ objects. Left: observed
proportion of negative residuals in ten bins, with 95% reference intervals. Right: histogram
of estimated bias attributable to using a smooth loss.

text states that the intermediate optimization for selecting γ achieved full convergence in few
iterations. It reports the range of the entries of the LAML (6) gradient w.r.t. γ at convergence,
which we expect to be small, and confirms that the Hessian is positive definite, so that LAML
is (at least locally) convex. The text also states that the model has full rank, hence all the
regression coefficients β are identifiable. The first two lines of the printed text are concerned
with the bias due to the use of the smooth ELF loss. The first line says that nearly 95% of
the observations fall below the fitted quantile, which is the percentage we expect for τ = 0.95.
The second line reports an estimate of the absolute bias |F{µ∗(xi)} − F{µ0(xi)}|, averaged
over the observed xi’s. This is much lower than the bound err = 0.05 used to fit this model.
Figure 12 gives more details, with the left plot showing the proportion of negative residuals
in a sequence of bins, ordered according to increasing value of µτ (x). The crosses define 95%
reference intervals for the proportions, obtained using binomial quantiles. The plot on the
right is a histogram of all the estimated values of the bias |F{µ∗(xi)} − F (xi)|, and it shows
that the bias is low for all observations. Hence, the text and visual output of the check
method for ‘qgam’ objects confirm that the LAML optimization achieved full convergence and
that we should not be too concerned about the bias. The last few lines of the text output
indicate that the effective degrees of freedom (edf) used to model the effect of x are well
below the degrees of freedom available for this smooth effect (k’). This suggests that the
number of basis functions used to model the effect of x was sufficiently large, while edf ≈ k’
would indicate that the fit is using all the available degrees of freedom, and that we might
want to increase the number of basis functions used.
The results presented in this section and our practical experience on loss smoothness selection
and convergence checking with qgam can be summarized in the following set of suggestions:

• the automatic procedure for selecting the loss smoothness generally offers a good com-
promise between statistical bias, variance and numerical stability;

• the old default (used in versions of the qgam package lower than 1.3.0) was err = 0.05,
which generally does not lead to unacceptably high levels of bias;

30 qgam: Nonparametric Regression Modeling in R

• if the calibration loss plotted by check(fittedQGAM$learn) is irregular, or the text
printed by check(fittedQGAM) does not confirm that full convergence was achieved,
try to increase err;

• if you have to increase err to 0.2 or higher to avoid convergence issues, then there might
be something wrong with your model (for example, it is missing an important effect);

• the bias attributable to the adoption of a smoothed ELF loss can be estimated using
check(fittedQGAM);

• you might get messages saying that outer Newton did not converge fully during
estimation. These are generated by mgcv::gam during LAML maximization, and should
not be problematic as long as the calibration loss is smooth (which you can check using
check(fittedQGAM$calibr)) and check(fittedQGAM) states that full convergence
was achieved;

• in preliminary studies, that is when you are exploring different model structures and
you are not yet interested in getting the most accurate estimates, do not decrease err
too much as it considerably slows down computation;

• setting err too low is generally not a good idea. In fact, err is an approximate upper
bound on the bias, the latter being generally much lower than this parameter suggests,
and it is arguably better to have a small amount of bias than numerical problems. As
stated above, the default loss smoothness selection procedure, used by default in qgam
and mqgam, typically provides stable fits and a near optimal bias-variance tradeoff.

A.2. Derivation of the asymptotic bias

To simplify the notation, we indicate p̃τ (y − µ) with p̃τ (y). We start from

F (µ∗)− F (µ0) =
∫
1(y ≤ µ∗)f(y)dy − τ =

∫ {
∂ log p̃τ (y)

∂µ

∣∣∣∣
µ=µ∗

− ∂ρτ (y)
∂µ

∣∣∣∣
µ=µ∗

}
f(y) dy,

where f(y) is the PDF of y and we used the fact that
∫
∂ log p̃τ (y)/∂µ|µ=µ∗f(y)dy = 0, by

definition of µ∗. We proceed to bound the right hand side from above. For any µ, simple
manipulations lead to∫ {

∂ log p̃τ (y)
∂µ

− ∂ρτ (y)
∂µ

}
f(y) dy =

∫ {
Φ(y|µ, λσ)− 1(y > µ)

}
f(y) dy, (13)

where 1(·) is the indicator function and Φ(y|µ, λσ) is the CDF of a logistic random variable
with mean µ and scale λσ. Then we have

|F (µ∗)− F (µ0)| ≤
∫ ∣∣∣∣Φ(y|µ∗, λσ)− 1(y > µ∗)

∣∣∣∣ sup
y
f(y) dy

= 2 sup
y
f(y)

∫ µ∗

−∞
Φ(y|µ∗, λσ) dy,

Journal of Statistical Software 31

where the second equality holds due to the symmetry of the integrand around µ∗. Finally,
the substitution z = (y − µ∗)/λσ leads to

|F (µ∗)− F (µ0)| ≤ 2λσ sup
y
f(y)

∫ 0

−∞

1
1 + e−z

dz

= 2 log (2)λσ sup
y
f(y).

Note that the right hand side of (13) makes it clear that, if f(y) is symmetric around µ∗, then
|F (µ∗)− F (µ0)| = 0 and there is no bias.

Affiliation:
Matteo Fasiolo
School of Mathematics
University of Bristol
University Walk
BS8 1TW Bristol, United Kingdom
E-mail: matteo.fasiolo@gmail.com
URL: https://research-information.bristol.ac.uk/en/persons/matteo-fasiolo

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
November 2021, Volume 100, Issue 9 Submitted: 2019-06-20
doi:10.18637/jss.v100.i09 Accepted: 2021-02-08

mailto:matteo.fasiolo@gmail.com
https://research-information.bristol.ac.uk/en/persons/matteo-fasiolo
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v100.i09

	Introduction: Additive quantile modeling in R
	Models, methods and software
	General structure of additive quantile regression models
	Performing the Bayesian update under the ELF loss
	Fast calibrated Bayesian model fitting methods
	Inner iteration: MAP estimation of the regression coefficients
	Intermediate iteration: Selecting the smoothing parameters and ELF loss smoothness
	Outer iteration: Selection of the learning rate by calibrated Bayes

	Software implementation of the fitting framework

	Examples
	A basic example: The motorcycle data set
	Functional QGAM modeling of electricity demand data

	Conclusions
	Choosing the loss bandwidth manually
	Illustrating the effect of the loss bandwidth and some diagnostics
	Derivation of the asymptotic bias

