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Abstract

Booming in business and a staple analysis in medical trials, the A/B test assesses
the effect of an intervention or treatment by comparing its success rate with that of a
control condition. Across many practical applications, it is desirable that (1) evidence
can be obtained in favor of the null hypothesis that the treatment is ineffective; (2)
evidence can be monitored as the data accumulate; (3) expert prior knowledge can be
taken into account. Most existing approaches do not fulfill these desiderata. Here we
describe a Bayesian A/B procedure based on Kass and Vaidyanathan (1992) that allows
one to monitor the evidence for the hypotheses that the treatment has either a positive
effect, a negative effect, or, crucially, no effect. Furthermore, this approach enables one to
incorporate expert knowledge about the relative prior plausibility of the rival hypotheses
and about the expected size of the effect, given that it is non-zero. To facilitate the wider
adoption of this Bayesian procedure we developed the abtest package in R. We illustrate
the package options and the associated statistical results with a fictitious business example
and a real data medical example.

Keywords: model comparison, Bayes factor, prior elicitation, Bayesian estimation.

1. Introduction

Does the modification of a company website increase the number of online purchases? Does
a new drug result in a lower mortality rate? These are just two examples of the kinds of
questions that can be addressed with A/B testing, a procedure popular not only in business
and medical clinical trials, but also in fields such as psychology, neuroscience, and biology.
The A/B test set-up discussed in this article assumes that the outcome variable is binary;
nevertheless, the outcome variable could in principle also be continuous. Based on a binary
outcome variable, an A/B test compares the success rate of two options or treatment arms, A
and B, and therefore can be conceptualized as a test for a difference between two proportions
(Little 1989). Typically, options A and B correspond to a control condition and an intervention
or treatment of interest.
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Regardless of the specific field of application, we believe three general desiderata for A/B
tests can be identified. First, we believe it is desirable that evidence can be obtained in favor
of the null hypothesis that there is no difference between options A and B. For instance,
suppose a programmer alters code that should leave the appearance of a website unaffected.
An A/B test may be conducted to confirm that the code changes did not lead to unintended
consequences. Alternatively, suppose that a cheaper drug is introduced as a replacement of
the standard drug; here, an A/B test may confirm that the cheaper drug is as effective as the
drug that is currently standard.
Second, we believe it is desirable that evidence can be monitored as the data accumulate. Data
collection can be time-consuming and expensive, and interim tests allow one to assess whether
the results in hand are already sufficiently compelling or whether additional data ought to
be obtained. There is also an ethical aspect to this desideratum, one that is particularly
pronounced in case of new clinical treatments that are potentially beneficial or harmful; it
is unethical to withhold treatment that interim analysis shows to be beneficial, just as it is
unethical to continue to administer a treatment that interim analysis shows to be harmful
(e.g., Armitage 1960; see also Ware 1989 and the accompanying discussion).
Third, we believe it is desirable that expert knowledge can be taken into account (e.g.,
O’Hagan 2019). In many A/B testing applications, there exists considerable expert knowledge
about what size of effect to expect. For instance, the effect of website changes on conversion
rates is often less than 0.5% (Berman, Pekelis, Scott, and Van den Bulte 2018). Incorporating
such expert knowledge into the statistical analysis will yield a more targeted test.
The majority of A/B testing procedures that are currently in vogue do not fulfill the above
desiderata. Specifically, many companies apply standard p-value-based null hypothesis sig-
nificance testing to assess whether or not options A and B differ. This procedure has the
advantage that it is readily available in software such as R (R Core Team 2021, e.g., via the
functions prop.test(), fisher.test(), and chisq.test()). However, this approach cannot
distinguish between absence of evidence (i.e., the data are inconclusive) and evidence of ab-
sence (i.e., the data provide support for the null hypothesis that options A and B do not differ;
e.g., Dienes 2014; Keysers, Gazzola, and Wagenmakers 2020). Furthermore, although com-
mon practice, sequentially monitoring the uncorrected p-value (and stopping data collection
as soon as the p-value is smaller than some fixed α-level) invalidates the analysis (e.g., Feller
1940). However, there exist valid classical sequential procedures that enable one to monitor a
corrected p-value as data accumulate (e.g., Malek, Katariya, Chow, and Ghavamzadeh 2017).
For instance, Optimizely, one of the leading commercial A/B testing platforms, has recently
implemented an alternative p-value-based approach that allows users to continuously monitor
the test outcome (Johari, Koomen, Pekelis, and Walsh 2017). Nevertheless, these sequential
p-value-based procedures retain the inability to quantify evidence for the absence of an effect.
Furthermore, (sequential) p-value-based A/B testing does not allow one to incorporate expert
knowledge into the statistical analysis in a straightforward manner.
An alternative A/B testing approach that has become more popular of late is Bayesian esti-
mation. For instance, VWO, another leading A/B testing platform, has recently implemented
a Bayesian estimation approach (Stucchio 2015). Bayesian estimation is also available via the
BayesianFirstAid package (Bååth 2014) and the bayesAB package (Portman 2021).1 Since

1The bayesAB package provides a range of functions for Bayesian A/B testing. One advantage is that users
can choose from a range of different data distributions (e.g., Bernoulli, normal, Poisson, etc.).
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Bayesian inference does not require sample sizes to be fixed a priori (Berger and Wolpert
1988), this approach allows one to monitor the analysis output as data accumulate. It also
enables the incorporation of expert knowledge via the specification of a prior distribution
that captures the expert’s knowledge about a parameter of interest. However, this approach
operates under the assumption that an effect exists – since a continuous prior assigns zero
probability to a single null value – and consequently does not allow one to obtain evidence
in favor of the null hypothesis of no effect. For instance, bayesAB and BayesianFirstAid
provide the user with the posterior probability that one option yields more successes than the
other, but this ignores the fact that both options could be equally effective. Furthermore, the
currently used Bayesian estimation approaches – such as the one implemented in bayesAB
and BayesianFirstAid – typically assign independent priors to the success probabilities of the
control and treatment condition, a practice that was critiqued by Howard (1998).2

To overcome the limitations of the current A/B tests we developed the abtest package in R
(R Core Team 2021). Package abtest (Gronau 2021) is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=abtest. The abtest
package implements one form of Bayesian inference for the A/B test, using informed prior
distributions that induce a dependency between the two success probabilities. The analysis
approach is based on a model by Kass and Vaidyanathan (1992); for alternative approaches
see Deng, Lu, and Chen (2016), Jamil, Marsman, Ly, Morey, and Wagenmakers (2017),
Pham-Gia, Van Thin, and Doan (2017), and Skorski (2019). The implemented Bayesian
procedure allows users (1) to obtain evidence in favor of the null hypothesis (e.g., Berger and
Delampady 1987; Wagenmakers et al. 2018); (2) monitor the evidence as the data accumulate
(e.g., Rouder 2014); and (3) elicit and incorporate expert prior knowledge (e.g., O’Hagan
2019). The abtest package thus fulfills all three desiderata mentioned above.
The abtest package provides functionality for both hypothesis testing and parameter estima-
tion. In line with Jeffreys (1939) and Fisher (1928), we believe that testing and estimation
are complementary activities (Haaf, Ly, and Wagenmakers 2019): before a parameter is es-
timated, it should be tested whether there is anything to justify estimation at all. Jeffreys
(1939, p. 345) related this principle to Occam’s razor: “variation must be taken as random
until there is positive evidence to the contrary” (see also Kass and Raftery 1995, Section
8.1). However, some researchers and practitioners oppose this idea, for instance because they
believe that one should replace hypothesis testing with parameter estimation (e.g., Gelman
and Rubin 1995; Cumming 2014). Nevertheless, the abtest package may also be useful for
researchers without an interest in hypothesis testing, since the package can also be used
exclusively for Bayesian parameter estimation (and prior elicitation).
This article is organized as follows: The next section introduces a fictitious business example.
Afterwards, the implementation details of the Bayesian A/B test procedure used in abtest are
discussed. Subsequently, the fictitious example is continued and the functionality of the abtest
package and the practical benefits of the implemented approach are demonstrated. Next, a
real data medical example is used to demonstrate further functionality of the package. The
article ends with concluding comments.

2“do English or Scots cattle have a higher proportion of cows infected with a certain virus? Suppose we were
informed (before collecting any data) that the proportion of English cows infected was 0.8. With independent
uniform priors we would now give H1 (p1 > p2) a probability of 0.8 (because the chance that p2 > 0.8 is still
0.2). In very many cases this would not be appropriate. Often we will believe (for example) that if p1 is 80%,
p2 will be near 80% as well and will be almost equally likely to be larger or smaller.” (p. 363)

https://CRAN.R-project.org/package=abtest
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2. Example 1: Effectiveness of resilience training
Suppose the managers of a large consultancy firm are interested in reducing the number of
employees who quit within the first six months, possibly due to the high stress involved in
the job. A coaching company offers a resilience training and claims that this training greatly
reduces the number of employees who quit. Implementing the training for all newly hired
employees would be expensive and some of the managers are not completely convinced that
the training is at all effective. Therefore, the managers decide to run an A/B test where
half of a sample of newly hired employees will receive the training, the other half will not be
trained. The outcome variable is whether or not an employee quit within the first six months
(1 = still on the job, 0 = quit).
The consultancy firm collects 1, 000 observations (500 in each group). These (fictitious) data3

are included in the abtest package (i.e., seqdata). The number of employees still on the job
after six months is 249 in the group without training and 269 in the trained group. Figure 1
provides an illustration of some of the information that can be obtained by analyzing these
data using abtest. The figure displays the probability of the hypothesis that the training has
a positive effect (i.e., H+), negative effect (i.e., H−), and no effect (i.e., H0) as a function of
the number of observations across the two groups. The top part of the figure displays the
probability of the three hypotheses before and after taking into account the observed data
(i.e., prior and posterior probabilities) as probability wheels (e.g., Tversky 1969; Lipkus and
Hollands 1999). Before providing more details about how to obtain and interpret this result
as well as providing additional analyses, we discuss the implementation details of the A/B
test procedure used by abtest.

3The data set is structured such that the sequential nature of the data is retained: The data set contains
the number of observations and the number of successes in each of the two groups after each observation.
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Figure 1: The posterior probability of the hypothesis that the training in Example 1 has
a positive effect (i.e., H+), negative effect (i.e., H−), and no effect (i.e., H0) is plotted as
a function of the number of observations across groups. On top, two probability wheels
visualize the prior probabilities of the hypotheses and the posterior probabilities after taking
into account all observations.
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3. Implementation details
The Bayesian A/B test implemented in the abtest package is based on Kass and Vaidyanathan
(1992, Section 3, “Testing Equality of Two Binomial Proportions”). Appendices A–C provide
detailed derivations.

3.1. Model

Let y1 denote the number of successes for option A with n1 denoting the corresponding total
number of observations for option A. Similarly, y2 denotes the number of successes for option
B with n2 denoting the corresponding total number of observations for option B. The Bayesian
A/B test model based on Kass and Vaidyanathan (1992) is specified as follows:4

log
(

p1
1− p1

)
= β − ψ

2

log
(

p2
1− p2

)
= β + ψ

2
y1 ∼ Binomial(n1, p1)
y2 ∼ Binomial(n2, p2).

(1)

Therefore, the model assumes that y1 and y2 follow binomial distributions with success prob-
abilities p1 and p2. These probabilities are functions of the two model parameters, β and ψ.
Specifically, the log odds corresponding to p1 are given by β − ψ/2 and the log odds corre-
sponding to p2 are given by β + ψ/2. The nuisance parameter β corresponds to the grand
mean of the log odds and the test-relevant parameter ψ corresponds to the log odds ratio.
When ψ is positive, this implies that p2 > p1 (i.e., option B has a higher success probability
than option A); when ψ is negative this implies that p2 < p1 (i.e., option B has a lower success
probability than option A).

3.2. Hypotheses

The abtest package enables both estimation of the model parameters and testing of hypotheses
about the test-relevant log odds ratio parameter ψ. There are four hypotheses that are of
potential interest:

1. The null hypothesisH0 which states that the success probabilities p1 and p2 are identical,
that is, p1 = p2. This is equivalent to H0 : ψ = 0. This hypothesis corresponds to the
claim that there is no difference between options A and B (i.e., the “A/A test”).

2. The two-sided alternative hypothesis H1 which states that the two success probabilities
p1 and p2 are not equal (i.e., p1 6= p2), but does not specify which of the two is larger.
This is equivalent to H1 : ψ 6= 0. This hypothesis corresponds to the claim that options
A and B differ but it is not specified which one yields more successes.

3. The one-sided hypothesis H+ which states that the second success probability p2 is
larger than the first success probability p1. This is equivalent to H+ : ψ > 0. This
hypothesis corresponds to the claim that option B yields more successes than option A.

4Note that this is equivalent to a logistic regression model with a binary covariate (i.e., group membership)
that is coded using ±0.5.
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Test

Hypothesis Default Undirected Positive Negative Direction

H0 0.50 0.50 0.50 0.50 0.00
H1 0.00 0.50 0.00 0.00 0.00
H+ 0.25 0.00 0.50 0.00 0.50
H− 0.25 0.00 0.00 0.50 0.50

Table 1: Changing the prior probability assignments across rival hypotheses produces different
tests.

4. The one-sided hypothesis H− which states that the first success probability p1 is larger
than the second success probability p2. This is equivalent to H− : ψ < 0. This hypoth-
esis corresponds to the claim that option A yields more successes than option B.

Researchers who conduct an A/B test are usually interested in answering the question: Does
option B yield more successes than option A (i.e., H+), fewer successes than option A (i.e.,
H−), or is there no difference between options A and B (i.e., H0)? Therefore, it may be argued
that the hypotheses of interest are typically H+, H−, and H0. Consequently, by default, only
these three hypotheses are assigned non-zero prior probability in the abtest package. Specif-
ically, a default prior probability of 0.50 is assigned to the hypothesis that there is no effect
(i.e., H0), and the remaining prior probability is split evenly across the hypothesis that there
is a positive effect (i.e., H+ receives 0.25) and a negative effect (i.e., H− also receives 0.25).
The user may change these default prior probabilities to custom values. Table 1 provides an
overview of five qualitatively different tests that can be conducted by assigning prior probabil-
ities to hypotheses in certain ways.5 The first column displays the default setting that assigns
probability 0.50 to the null hypothesis and splits the remaining probability evenly across
H+ and H−. The second column displays a prior probability assignment that implements an
undirected test (i.e., H0 is compared to the undirected H1). The third column displays a prior
probability assignment for testing whether the effect is non-existent or positive. The fourth
column displays a prior probability assignment for testing whether the effect is non-existent
or negative. Finally, the fifth column displays a prior probability assignment for a test of
direction, that is, for testing whether the effect is positive or negative. This last setting may
be of interest whenever the null hypothesis is a priori deemed implausible, uninteresting, or
irrelevant.

3.3. Parameter priors

The abtest package assigns normal priors to the model parameters: β ∼ N (µβ, σ2
β) and

ψ ∼ N (µψ, σ2
ψ). As illustrated in the example below, these priors result in a dependency in

the implied prior for the success probabilities p1 and p2, which is generally desirable (Howard
1998).
For the one-sided hypotheses H+ and H−, the prior on ψ is truncated at zero. Specifically, for

5Note that, except for the first column of Table 1 which displays the default setting, the remaining examples
use equal prior probabilities for all hypotheses that are assigned non-zero prior probability. However, the user
can of course also assign prior probability unevenly to the hypotheses of interest (e.g., if prior knowledge exists
about the relative plausibility of the rival hypotheses).
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H+, the prior on ψ is a truncated normal distribution with parameters µψ and σψ and lower
bound at zero. For H−, the prior on ψ is a truncated normal distribution with parameters
µψ and σψ and upper bound at zero. These normal priors are computationally convenient
and sufficiently flexible to encode a wide range of prior information.
By default, the abtest package assigns standard normal priors to both β and ψ. For the
nuisance parameter β, a standard normal prior results in a relatively flat implied prior on p1
and p2 when ψ = 0. Generally, the choice of a prior for the nuisance parameter β is relatively
inconsequential (Kass and Vaidyanathan 1992). In contrast, the prior on the test-relevant
parameter ψ is consequential, as it defines the extent to which the hypotheses of interest
differ from H0. Our choice for a default standard normal prior on the test-relevant parameter
ψ is motivated by the fact that a zero-centered prior does not favor any of the two options
A or B a priori. Furthermore, the standard deviation of 1 results in a prior distribution that
assigns mass to a wide range of reasonable log odds ratios (Chen, Cohen, and Chen 2010)
without being so uninformative that the results unduly favor H0 (Bartlett 1957; Lindley
1957).6 However, large changes in the prior standard deviation of the test-relevant parameter
may result in large changes in the results, as the prior standard deviation governs the degree
to which the hypothesis of interest makes predictions that differ from H0. To include prior
knowledge about the expected results, the abtest package allows the user to change the default
values of the prior distributions for the nuisance parameter β and the test-relevant parameter
ψ, either by changing the location of the normal prior distribution, the scale, or both.

3.4. Encoding prior information

A straightforward way to encode prior information about the model parameters is to set µβ,
σβ, µψ, and σψ directly. However, it may sometimes be easier to specify prior distributions
based on quantities such as the (log) odds ratio, relative risk (i.e., p2/p1, the ratio of the
success probability in condition B and condition A), and absolute risk (i.e., p2 − p1, the
difference of the success probability in condition B and condition A). The elicit_prior()
function allows users to encode prior information about a quantity of interest (either log odds
ratio, odds ratio, relative risk, or absolute risk). The function assumes that the prior on β is
not the primary target of prior elicitation and is fixed by the user a priori (using the arguments
mu_beta and sigma_beta) – for instance, to a standard normal prior which corresponds to a
relatively flat implied prior on p1 and p2 when ψ = 0.
To encode prior information, the user needs to provide quantiles for a quantity of interest. Let
qi, i = 1, . . . , I denote the values of I quantiles provided by the user and let probi, i = 1, . . . , I
denote the corresponding probabilities (e.g., for the median, probi = 0.5). Least-squares
minimization is used to obtain µψ and σψ as follows:

(µψ, σψ) = arg min
µψ ,σψ

I∑
i=1

(F (qi;µψ, σψ)− probi)
2 , (2)

where F (·;µψ, σψ) corresponds to the cumulative distribution function (CDF) for the quantity
of interest implied by the normal prior on ψ. For some quantities, this CDF also depends on
the prior for β; however, as described above, it is assumed that µβ and σβ are fixed a priori.

6Note that the default implied prior on the absolute risk p2 − p1 is considerably more narrow than the
prior induced by the popular default choice that assigns p1 and p2 independent uniform distributions (Jeffreys
1935).
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3.5. Hypothesis testing

To quantify the evidence that the data provide for H0, H1, H+, and H−, one can compute
Bayes factors (Jeffreys 1939; Kass and Raftery 1995) and posterior probabilities of the rival
hypotheses. The posterior probability of hypothesis Hj , j ∈ {0, 1,+,−} is given by:

posterior probability︷ ︸︸ ︷
p(Hj | data) =

updating factor︷ ︸︸ ︷
p(data | Hj)∑

k p(data | Hk) p(Hk)
×

prior probability︷ ︸︸ ︷
p(Hj) . (3)

The Bayes factor for comparing hypotheses Hj and Hk equals the change from prior to
posterior odds:

p(Hj | data)
p(Hk | data)︸ ︷︷ ︸
posterior odds

= p(data | Hj)
p(data | Hk)︸ ︷︷ ︸

Bayes factor BFjk

× p(Hj)
p(Hk)︸ ︷︷ ︸

prior odds

. (4)

In order to obtain posterior probabilities of the hypotheses and Bayes factors one needs to
evaluate the marginal likelihood p(data | Hj) for each hypothesis j ∈ {0, 1,+,−}. For H0
and H1, we evaluate the marginal likelihood using Laplace approximations as suggested by
Kass and Vaidyanathan (1992). Specifically, the marginal likelihood for H0 is approximated
by:

p(data | H0) =
∫
p(data | β)︸ ︷︷ ︸

likelihood

π0(β)︸ ︷︷ ︸
prior

dβ

≈ (2πσ2
0)

1
2 exp {l∗0(β∗0)} ,

(5)

where l∗0(β) = log {p(data | β)π0(β)}, β∗0 corresponds to the mode of l∗0(β), and σ2
0 =(

− d2

dβ2 l
∗
0(β)

)−1
∣∣∣∣
β=β∗0

denotes the inverse of the negative second derivative of l∗0(β) evaluated

at the mode β∗0 .
The marginal likelihood for H1 is approximated by:

p(data | H1) =
∫ ∫

p(data | β, ψ)︸ ︷︷ ︸
likelihood

π(β, ψ)︸ ︷︷ ︸
prior

dβdψ

≈ 2π det (Σ1)
1
2 exp {l∗(β∗, ψ∗)} ,

(6)

where l∗(β, ψ) = log {p(data | β, ψ)π(β, ψ)}, (β∗, ψ∗) denotes the mode of l∗(β, ψ), and Σ1 =
(−H1)−1 ∣∣

(β,ψ)=(β∗,ψ∗) denotes the inverse of the negative Hessian H1 (i.e., the matrix with
second-order partial derivatives) of l∗(β, ψ) evaluated at the mode (β∗, ψ∗).
These Laplace approximations work well in practice, even for sample sizes that are extremely
small. As a demonstration, for a range of synthetic data sets we computed the (log of the)
Bayes factor BF10 which compares H1 to H0 using the above Laplace approximations and,
as a comparison, also using bridge sampling (Meng and Wong 1996; Gronau, Singmann, and
Wagenmakers 2020). The priors on β and ψ were standard normal distributions. Figure 2
displays the results and confirms that the Laplace approximation yields accurate results, even
for sample sizes as small as n1 = n2 = 5.
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Figure 2: Comparison of the Laplace approximation and bridge sampling for computing
the (log of the) Bayes factor BF10. We considered all possible combinations of n1 ∈
{5, 10, 20, 50, 100} and n2 ∈ {5, 10, 20, 50, 100}. For each of the n1-n2 combinations, we con-
sidered all possible combinations of y1 ∈ {1

5n1,
2
5n1,

3
5n1,

4
5n1} and y2 ∈ {1

5n2,
2
5n2,

3
5n2,

4
5n2}.

The results reveal that the two methods yield highly similar results, even when sample size
is very small.

For the one-sided hypotheses H+ and H−, Laplace approximations did not appear to yield
accurate results for small sample sizes, even after removing the constraint on ψ through the
parameterization (β, ξ) = (β, log (ψ)) for H+ and (β, ξ) = (β, log (−ψ)) for H−. The abtest
package therefore uses importance sampling to increase the accuracy of the Laplace approx-
imations when computing the marginal likelihoods for H+ and H−. Specifically, a Laplace
approximation is used to approximate the mode and covariance matrix of the posterior. The
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importance density is then given by a multivariate t distribution with location set to the
approximated posterior mode, scale matrix set to the approximated posterior covariance ma-
trix, and five degrees of freedom (note that the user can change the degrees of freedom). The
marginal likelihood for H+ is then estimated as follows:

p(data | H+) =
∫ ∫

p(data | β, ξ)︸ ︷︷ ︸
likelihood

π+(β, ξ)︸ ︷︷ ︸
prior

dβdξ

≈ 1
S

S∑
s=1

p(data | β̃s, ξ̃s)π+(β̃s, ξ̃s)
gis(β̃s, ξ̃s)

,

(7)

where
{
β̃s, ξ̃s

}S
s=1

denotes S samples from the multivariate t importance density gis, and

π+(β, ξ) = N (β;µβ, σ2
β)N+(exp(ξ);µψ, σ2

ψ) exp(ξ), (8)

where N (x; y, z) denotes the probability density function of a normal distribution with mean
y and variance z that is evaluated at x. Furthermore, N+(x; y, z) denotes the density of
a normal distribution that is truncated to allow only positive values for x. The marginal
likelihood for H− is computed analogously.

3.6. Obtaining posterior samples

In a Bayesian A/B test application, one may not only be interested in testing hypotheses,
but also in obtaining posterior samples for the model parameters under H1, H+, and H−.
The abtest package allows the user to obtain posterior samples using sampling importance re-
sampling (e.g., Robert and Casella 2010). Specifically, posterior samples for H+ are obtained
as follows (samples for the other hypotheses are obtained in an analogous manner):

1. Generate S samples from the multivariate t proposal distribution mentioned before,
denoted by

{
β̃s, ξ̃s

}S
s=1

.

2. Compute the importance weights:

ws = p(data | β̃s, ξ̃s)π+(β̃s, ξ̃s)
gis(β̃s, ξ̃s)

, s = 1, 2, . . . , S. (9)

3. Re-normalize the importance weights: vs = ws/
∑S
t=1wt, s = 1, 2, . . . , S.

4. Re-sample (with replacement) from the samples obtained from the importance density
according to the normalized importance weights vs which yields (approximate) samples
from the posterior distribution.

4. Example 1: Effectiveness of resilience training (continued)
Next we continue the effectiveness of resilience training example and show how expert prior
information can be taken into account, how the hypotheses of interest can be tested, and how
one can estimate the model parameters using the abtest package.
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4.1. Prior specification

Before commencing the A/B test, the managers asked the coaching company to specify how
effective they believe the training will be. The coaching company claimed that, based on
past experience with the training, they expect the proportion of employees who do not quit
within the first six months to be 15% larger for the group who received the training, with
a 95% uncertainty interval ranging from a 2.5% benefit to a 27.5% benefit. Assuming that
the claimed 15% corresponds to the prior median, this expectation corresponds to a median
absolute risk (i.e., p2 − p1) of 0.15 with a 95% uncertainty interval ranging from 0.025 to
0.275. The elicit_prior() function can be used to encode this prior information:7

R> library("abtest")
R> prior_par <- elicit_prior(q = c(0.025, 0.15, 0.275),
+ prob = c(0.025, 0.5, 0.975),
+ what = "arisk")

The obtained prior on the absolute risk can be visualized as follows:

R> plot_prior(prior_par, what = "arisk")

The resulting graph is shown in the top panel of Figure 3.
The user can also visualize the (implied) prior for other quantities. For instance, the prior on
the log odds ratio (middle panel of Figure 3) is obtained as follows:

R> plot_prior(prior_par, what = "logor")

The implied prior on the success probabilities p1 and p2 (bottom panel of Figure 3) is obtained
as follows:

R> plot_prior(prior_par, what = "p1p2")

The bottom panel of Figure 3 illustrates that there is a dependency between p1 and p2 which
is arguably desirable (Howard 1998): When one of the success probabilities is very (small)
large, it is likely that the other one will also be (small) large.

4.2. Hypothesis testing

Since the number of employees still on the job after six months is 249 in the group without
training and 269 in the trained group, the observed success probabilities are p̂1 = 0.498 in the
control group and p̂2 = 0.538 in the group that received training. Consequently, the observed
success probabilities suggest that there is a positive effect of the training of 4%; however,
a statistical analysis is required to assess whether this observed difference is statistically
compelling. The ab_test() function can be used to conduct a Bayesian A/B test as follows:

R> data("seqdata", package = "abtest")
R> set.seed(1)
R> ab <- ab_test(data = seqdata, prior_par = prior_par)

7All code and plots are also available at https://osf.io/t3ajr/.

https://osf.io/t3ajr/
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Figure 3: Elicited (implied) prior distributions for the effectiveness of the resilience training
in Example 1. The top panel displays the prior distribution for the absolute risk which corre-
sponds to the difference between the probability of still being on the job for the trained and
the non-trained employees (i.e., p2 − p1). The middle panel shows the prior distribution for
the log odds ratio parameter ψ. The bottom panel displays the implied joint prior distribu-
tion for the success probabilities p1 and p2. The bottom panel illustrates that the two success
probabilities are assigned dependent priors. Furthermore, most prior mass is above the main
diagonal which represents the coaching company’s prior expectation that the training is suc-
cessful.
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This yields the following output:

R> print(ab)

Bayesian A/B Test Results:

Bayes Factors:

BF10: 0.1406443
BF+0: 0.13823
BF-0: 0.4920187

Prior Probabilities Hypotheses:

H+: 0.25
H-: 0.25
H0: 0.5

Posterior Probabilities Hypotheses:

H+: 0.0526
H-: 0.1871
H0: 0.7604

The first part of the output presents Bayes factors in favor of the hypothesesH1, H+, andH−,
where the reference hypothesis (i.e., denominator of the Bayes factor) is H0. Since all three
Bayes factors are smaller than 1, they all indicate evidence in favor of the null hypothesis of
no effect. The next part of the output displays the prior probabilities of the hypotheses with
non-zero prior probability. As explained before, the default setting assigns probability 0.50
to the null hypothesis and splits the remaining probability evenly across H+ and H−. The
user can change this default setting via the prior_prob argument (e.g., to assign non-zero
probability to H1). The final part of the output displays the posterior probabilities of the
hypotheses with non-zero prior probability. The posterior probability of the null hypothesis
H0 indicates that the data have increased the plausibility of the null hypothesis from 0.50 to
0.76. Furthermore, the data have decreased the plausibility of both H+ and H−.
As an aside, it may appear paradoxical that the data indicate a 4% positive effect of the
training and yet the posterior probability of H− is larger than that of H+. The reason for
this result is that the company’s prior was overly ambitious, and H+ is penalized for having
predicted effects that are much too large. Furthermore, note that the test-relevant prior dis-
tribution under H− is obtained by truncating the prior on ψ at zero and re-normalizing. Since
the company’s prior assigns almost all mass to positive log odds ratio values, re-normalizing
the negative part of the distribution results in a prior that is highly similar to H0; this ex-
plains why H− receives non-trivial posterior probability. These considerations underscore the
fact that the outcome of a Bayesian analysis is always relative to the specific set of models
(and associated prior distributions) under consideration. Because highly informed priors can
exert a large influence on the results, it is generally wise to examine the robustness of the
conclusions by executing the default analysis as well. This analysis is reported in Appendix D.
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P(H+ | data) = 0.053

P(H− | data) = 0.187

P(H0 | data) = 0.760

Figure 4: Posterior probabilities of the hypotheses visualized as a probability wheel for Ex-
ample 1.

The abtest package allows users to visualize the posterior probabilities of the hypotheses by
means of a probability wheel (Figure 4):

R> prob_wheel(ab)

Overall, the data support the hypothesis that the training is ineffective over the company’s
hypothesis that the training is highly effective. The Bayes factor for H0 over H+ equals
1/0.138 ≈ 7.2, which indicates moderate evidence (Jeffreys 1939, Appendix I).
Since the data set is of a sequential nature, it may be of interest to consider not only the result
based on all observations, but to conduct also a sequential analysis that tracks the evidential
flow as a function of the total number of observations (i.e., the number of observations across
both groups). This sequential analysis can be conducted as follows:

R> plot_sequential(ab, thin = 4)

Setting the thin argument to 4 indicates that the evidence is computed after every 4th
observation. Thinning can be useful to speed up the analysis in case the data set is very large
or in case observations arrive in batches. Figure 1 displays the result of the sequential analysis.
The posterior probability of each hypothesis with non-zero prior probability is plotted as a
function of the total number of observations. At the top, two probability wheels visualize
the prior probabilities of the hypotheses and the posterior probabilities of the hypotheses
based on all available data. Figure 1 shows that after some initial fluctuation, adding more
observations increased the probability of the null hypothesis that there is no effect of the
training.

4.3. Parameter estimation

The data indicate evidence in favor of the null hypothesis versus the hypothesis that the
training is highly effective, leaving open the possibility that the training does have an effect,
but of a more modest size than the company anticipated. To assess this possibility one may
investigate the potential size of the effect under the assumption that the effect is non-zero.8
For parameter estimation, we generally prefer to investigate the posterior distribution for the
unconstrained alternative hypothesis H1; however, the abtest package also provides posterior
samples and plotting functionality for the constrained hypotheses H+ and H−.

8For consistency, we continue this analysis with the company’s prior; an analysis with the less enthusiastic
default prior is provided in Appendix D.
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Figure 5: (Implied) prior and posterior distributions under H1 for Example 1. The dotted
lines display the prior distributions, the solid lines display the posterior distributions (with
95% central credible intervals). The medians and the bounds of the 95% central credible
intervals are displayed on top of each panel. The top panel displays the posterior distribution
for the absolute risk (i.e., p2 − p1); the middle panel shows the posterior distribution for the
log odds ratio parameter ψ; the bottom panel displays the marginal posterior distributions
for the success probabilities p1 and p2.
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The top panel of Figure 5 displays the posterior distribution for the absolute risk (i.e., p2−p1)
that can be obtained as follows:

R> plot_posterior(ab, what = "arisk")

The top panel of Figure 5 shows the prior distribution as a dotted line and the posterior
distribution (with 95% central credible interval) as a solid line. The plot indicates that,
under the assumption that the difference between the two success probabilities is not exactly
zero, it is likely to be smaller than expected: The posterior median is 0.067 and the 95%
central credible interval ranges from 0.011 to 0.122.
The middle panel of Figure 5 displays the posterior distribution for the log odds ratio ψ that
can be obtained as follows:

R> plot_posterior(ab, what = "logor")

The middle panel of Figure 5 indicates that, given the log odds ratio is not exactly zero, it is
likely to be between 0.043 and 0.492, where the posterior median is 0.267.
It may also be of interest to consider the marginal posterior distributions of the success
probabilities p1 and p2. This plot can be produced as follows:

R> plot_posterior(ab, what = "p1p2")

The bottom panel of Figure 5 displays the resulting plot. In this example, p1 and p2 correspond
to the probability of still being on the job after six month for the non-trained employees and
the employees that received the training, respectively. The bottom panel of Figure 5 indicates
that the posterior median for p1 is 0.485, with 95% credible ranging from 0.443 to 0.527, and
the posterior median for p2 is 0.551, with 95% credible interval ranging from 0.509 to 0.592.
In sum, this fictitious data set offers modest evidence in favor of the null hypothesis which
states that the training is not effective over the hypothesis that the training is highly effective;
nevertheless, the consultancy firm should probably continue to collect data in order to obtain
more compelling evidence before deciding whether or not the training should be implemented.
If the true effect is as small as 4%, continued testing will ultimately show compelling evidence
for H+ over H0. Note that continued testing is trivial in the Bayesian framework: The results
can simply be updated as new observations arrive.

5. Example 2: Progesterone in women with bleeding
As a second example application of the abtest package, here we present a reanalysis of a
recent medical trial9. Coomarasamy et al. (2019) assessed the effectiveness of progesterone in
preventing miscarriages. The number of live births was 74.7% (1513/2025) in the progesterone
group and 72.5% (1459/2013) in the placebo group (p = 0.08). The authors concluded: “The
incidence of adverse events did not differ significantly between the groups” (Coomarasamy
et al. 2019, p. 1815).
This conclusion leaves unaddressed the degree to which the data undercut or support the
no-effect hypothesis H0 over the positive-effect hypothesis H+. To quantify such evidence we
can use the abtest package. A default analysis can be conducted as follows:

9This reanalysis is also available in Gronau and Wagenmakers (2019).
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Figure 6: Prior robustness analysis for Example 2. The heat map displays the Bayes factor
BF0+ as a function of the test-relevant prior parameters µψ and σψ. Across different prior
settings, the evidence for the no-effect hypothesis H0 over the positive-effect hypothesis H+
is weak.

R> data <- list(y1 = 1459, n1 = 2013, y2 = 1513, n2 = 2025)
R> set.seed(1)
R> ab <- ab_test(data = data)

This yields the following output:

R> print(ab)

Bayesian A/B Test Results:

Bayes Factors:

BF10: 0.259709
BF+0: 0.4866008
BF-0: 0.02796485

Prior Probabilities Hypotheses:

H+: 0.25
H-: 0.25
H0: 0.5

Posterior Probabilities Hypotheses:

H+: 0.1935
H-: 0.0111
H0: 0.7954
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A Bayes factor of BF0+ = 1/BF+0 ≈ 2 indicates that there is only weak evidence in favor
of the no-effect hypothesis H0 over the positive-effect hypothesis H+ (Jeffreys 1939). To
alleviate concerns about the choice of the prior distribution for the test-relevant log odds
ratio parameter ψ one can conduct a prior robustness analysis as follows:

R> plot_robustness(ab, bftype = "BF0+")

Note that the bftype argument is used to indicate which Bayes factor is plotted (in this case
BF0+). Figure 6 displays the results and shows that the evidence is weak for all combinations
of µψ ∈ [0, 0.30] and σψ ∈ [0.25, 1].
In sum, these data neither undercut nor support the progesterone hypothesis in compelling
fashion.

6. Concluding comments
In this article, we have introduced the abtest package that implements both Bayesian hypoth-
esis testing and Bayesian estimation for the A/B test using informed priors. The procedure
allows users to (1) obtain evidence in favor of the null hypothesis; (2) monitor the evidence
as data accumulate; and (3) elicit and incorporate expert prior distributions. We hope that
the provided analysis approach is useful across different fields that apply A/B testing on a
routine basis, particularly business and medicine.
We have introduced the approach implemented in abtest as testing hypotheses of interest
about the test-relevant log odds ratio parameter ψ for the model in Equation 1. However, it
should be pointed out that an alternative interpretation is to view the procedure as estimat-
ing a mixture model, where the mixture components correspond to the different hypotheses
of interest, and the mixture weights are given by the prior/posterior probabilities of the
hypotheses (e.g., Mitchell and Beauchamp 1988). This interpretation is illustrated with a
fictitious example in Figure 7. For simplicity, the plot assumes that the user has set the prior
probabilities of H+ and H− to zero, whereas the prior probabilities of H1 and H0 are both
set to 0.50. The left panel illustrates the mixture representation before having observed any
data. Specifically, the height of the spike at zero corresponds to the prior probability of H0
whereas the shape of the slab corresponds to the continuous default prior distribution for
ψ under H1. The maximum height of this continuous distribution corresponds to the prior
probability of H1.10 The right panel illustrates the mixture representation after having ob-
served 20 successes out of 40 observations in the control condition and 30 successes out of 40
observations in the experimental condition (these are fictitious data). The height of the spike
corresponds to the posterior probability of H0, and the maximum height of the continuous
posterior distribution under H1 (i.e., the slab) corresponds to the posterior probability of H1.
In this fictitious example, the data have decreased the plausibility of H0 and have increased
the plausibility of H1.
Despite the practical benefits that the package offers right now, there are areas for future
improvement. For instance, abtest currently allows users to compare two groups; however,
there are applications in which one may be interested in simultaneously comparing more than
two groups. Furthermore, at the moment, abtest expects the outcome variable to be binary.

10This scaling method is inspired by the BAS package (Clyde 2021).
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Figure 7: Mixture representation of the A/B test procedure. The left panel illustrates the
mixture representation before having observed any data, the right panel illustrates the mix-
ture representation after having observed 20 successes out of 40 observations in the control
condition and 30 successes out of 40 observations in the experimental condition. The height
of the spike at zero corresponds to the prior/posterior probability of H0 whereas the shape
of the slab corresponds to the continuous default prior/posterior distribution for ψ under
H1. The maximum height of this continuous distribution corresponds to the prior/posterior
probability of H1.

Nevertheless, in certain scenarios, it may be more natural to compare the two groups based
on a continuous outcome variable. This scenario resembles an independent samples t-test
for which well-established Bayesian procedures exist (e.g., Rouder, Speckman, Sun, Morey,
and Iverson 2009; Ly, Verhagen, and Wagenmakers 2016) which are available, for instance,
in the BayesFactor package (Morey and Rouder 2018) and JASP (Love, Selker, Marsman,
Jamil, Dropmann, Verhagen, Ly, Gronau, Šmíra, Epskamp, Matzke, Wild, Knight, Rouder,
Morey, and Wagenmakers 2019).11 Moreover, currently, the abtest package does not provide
functions for generating predictions. Note, however, that users can generate predictions in
a straightforward manner themselves based on the posterior samples that are provided by
abtest. The implementation also does not allow users to incorporate utilities explicitly (e.g.,
Lindley 1985; for alternative approaches see also Azevedo, Alex, Montiel Olea, Rao, and
Weyl 2019 and Feit and Berman 2019). However, again, based on the provided posterior
probabilities and posterior samples, users who wish to take into account utilities may do so in
a relatively straightforward way. Furthermore, users interested in adjusting the model used in
abtest (e.g., to account for hierarchically-structured data or covariates) are referred to general-
purpose Bayesian software such as Stan (Carpenter et al. 2017; Stan Development Team 2020)
and the related R package brms (Bürkner 2017). In combination with the bridgesampling
package (Gronau et al. 2020), this enables the user to compare custom models using Bayes
factors and posterior model probabilities. A more structural limitation of abtest is that it has
been developed to analyze A/B test data, but not to run the A/B test experiment itself.
In sum, A/B testing is ubiquitous in business and medicine. Here we have demonstrated how
the abtest package enables relatively complete Bayesian inference including the capability
to obtain support for the null, continuously monitor the results, and elicit and incorporate
expert prior knowledge. Hopefully, this approach forms a basis for evidence-based conclusions
that will benefit both businesses and patients.

11For a list of Bayesian R packages, see Park (2021).
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Computational details
The results in this paper have been obtained with R 4.0.4, g++ compiler version 10.3.0 for
C++, rstan 2.21.2 with StanHeaders 2.21.0.7, bridgesampling 1.1.2 on a Pop OS 21.04 (based
on Ubuntu 21.04) system. The random seed was set to 1. Note, however, that for replicating
the results exactly, the same operating system, same compiler, and compiler version would
be required for Stan. In other setups the results will be very similar, though, leading to the
same conclusions qualitatively.
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A. Interpretation of the parameters

Here we show that β corresponds to the grand mean of the log odds and that ψ corresponds
to the log odds ratio (for the model definition, see Equation 1). The nuisance parameter β
corresponds to the grand mean of the log odds since

1
2 log

(
p1

1− p1

)
+ 1

2 log
(

p2
1− p2

)
= 1

2β −
1
4ψ + 1

2β + 1
4ψ = β.

The test-relevant parameter ψ corresponds to the log odds ratio since

log
( p2

1−p2
p1

1−p1

)
= log

(
p2

1− p2

)
− log

(
p1

1− p1

)
= β + ψ

2 −
(
β − ψ

2

)
= ψ.

B. Prior elicitation: Implied distributions

The prior elicitation approach described in Equation 2 requires the CDF’s for the quantities
of interest. Here, we derive the implied CDF’s for these quantities; we also derive the corre-
sponding probability density functions (PDF’s). Additionally, we derive four further implied
distributions of interest: The joint PDF of p1 and p2, the conditional PDF of p2 given p1 is
fixed to a particular value, the marginal distribution for p1, and the marginal distribution for
p2. A few of these expressions will contain a one-dimensional integral which can easily be
evaluated using numerical integration.

B.1. Log odds ratio

Since ψ itself corresponds to the log odds ratio, F (·;µψ, σψ) corresponds in this case to the
CDF of a normal distribution with mean µψ and standard deviation σψ. The corresponding
PDF is the normal probability density function.

B.2. Odds ratio

The implied prior on the odds ratio ω = exp(ψ) is a log-normal distribution. Hence,
F (·;µψ, σψ) corresponds in this case to the CDF of a log-normal distribution with parameters
µψ and σψ. The corresponding PDF is the log-normal probability density function.

B.3. Relative risk

The relative risk is given by Λ = p2
p1
. We use a capital letter (i.e., Λ) to refer to the random

variable and use a lower-case letter (i.e., λ) to refer to a concrete realization. Note that so
far, we have abused notation by only using lower-case letters, but it should be clear from
the context when we referred to a random variable or a concrete realization. However, for
deriving the following CDF, we need the distinction to keep the notation clear. To derive the
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implied CDF for the relative risk, we proceed as follows:

P(Λ ≤ λ) = P
(
p2
p1
≤ λ

)
= P (p2 ≤ λp1)

= P

 1
1 + exp

(
−β − ψ

2

) ≤ λ

1 + exp
(
−β + ψ

2

)
 .

Taking reciprocals and some algebra yields

P
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ψ

2

))2
+ (1− λ) exp(β) exp
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ψ

2

)
− λ ≤ 0

)
.

When we set (
exp

(
ψ

2

))2
+ (1− λ) exp(β) exp

(
ψ

2

)
− λ = 0,

we can solve for ψ using the fact that this is a quadratic equation in exp
(
ψ
2

)
and we obtain:
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(
ψ

2

)
=
− (1− λ) exp(β) +

√
(1− λ)2 exp(2β) + 4λ
2 ,

where we took into account that exp
(
ψ
2

)
needs to be positive (i.e., we omitted the solution

corresponding to minus the square root). Hence,

ψ = 2 log

− (1− λ) exp(β) +
√

(1− λ)2 exp(2β) + 4λ
2
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Therefore,
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Hence, the desired CDF can be written as
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(10)



26 Informed Bayesian Inference for the A/B Test

where Φ
(
·;µψ, σ2

ψ

)
denotes the CDF of a normal distribution with mean µψ and variance σ2

ψ,
and N (·;µβ, σ2

β) denotes the corresponding PDF.
The PDF of the relative risk is obtained by taking the derivative with respect to λ:

d
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(11)

B.4. Absolute risk

The absolute risk is given by Υ = p2 − p1. We use the upper-case letter Υ to refer to the
random variable and the lower-case letter υ to refer to a concrete realization. To derive the
implied CDF for the absolute risk, we proceed as follows:

P(Υ ≤ υ) = P (p2 − p1 ≤ υ)
= P (p2 ≤ υ + p1)

= P
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After some algebra, we obtain
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corresponding to minus the square root). Hence,

ψ = 2 log
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Therefore, exp (β) (1− υ)
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Hence, the desired CDF can be written as
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The PDF of the absolute risk is obtained by taking the derivative with respect to υ:
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B.5. Joint distribution of p1 and p2

Another distribution of interest is the implied joint distribution of the two success probabilities
p1 and p2. This distribution will not be used to elicit the prior on ψ which is the reason why
we only derive the PDF and not the CDF. The model parameters β and ψ are related to p1
and p2 as follows:

log
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)
= β − ψ

2

log
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p2
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)
= β + ψ

2 .

Hence, the inverse transformation is given by:
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)
ψ = log

(
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)
.
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The corresponding Jacobian is:
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Therefore, the joint PDF of p1 and p2 is given by:
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B.6. Marginal distribution of p1

The marginal distribution of p1 is given by:

p(p1) =
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B.7. Marginal distribution of p2

The marginal distribution of p2 is given by:

p(p2) =
∫ 1

0
p(p′1, p2)dp′1

=
∫ 1

0

1
p′1p2(1− p′1)(1− p2) N

(1
2

[
log

(
p′1

1− p′1

)
+ log

(
p2

1− p2

)]
;µβ, σ2

β

)
×N

(
log

(
p2

1− p2

)
− log

(
p′1

1− p′1

)
;µψ, σ2

ψ

)
dp′1.

(16)

B.8. Conditional distribution of p2 given p1

Another distribution of interest is the conditional distribution of the second success probability
p2 given a particular value of p1. This distribution will not be used for prior elicitation which
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is the reason why we only present the expression for the PDF which is given by:

p(p2 | p1) = p(p1, p2)∫ 1
0 p(p1, p′2)dp′2

=
1

p2(1−p2) N
(

1
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log
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)]
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N
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log
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0
1
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(
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+ log
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log
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− log

(
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;µψ, σ2

ψ

)
dp′2

.

(17)

B.9. Implied distributions for truncated priors on the log odds ratio

Note that the above expressions can be all easily modified in case the prior on the log odds ratio
ψ is a truncated normal distribution (e.g., restricting ψ to be larger/smaller than zero) which
is the case for the hypotheses H+ and H−. In this case, the normal prior density function and
cumulative distribution function for ψ simply need to be replaced by the truncated versions.
For the implied log-normal prior on the odds ratio, the truncation bounds simply need to be
exponentiated to obtain the truncation bounds with respect to the log-normal prior.

C. Laplace approximation details

The Laplace approximations require first-order and second-order derivatives. Let us first state
explicitly the functions for which we need to find the derivatives. For H0 we have:

l∗0(β) = log {p(y | β)π0(β)}

= (y1 + y2) log
( exp(β)

1 + exp(β)

)
+ (n1 + n2 − y1 − y2) log

(
1− exp(β)

1 + exp(β)

)
− 1

2 log
(
2πσ2

β

)
− 1

2σ2
β

(β − µβ)2.

(18)

For H1 we have:

l∗(β, ψ) = log {p(y | β, ψ)π(β, ψ)}

= y1 log
(

exp(β − ψ
2 )

1 + exp(β − ψ
2 )

)
+ (n1 − y1) log

(
1−

exp(β − ψ
2 )

1 + exp(β − ψ
2 )

)

+ y2 log
(

exp(β + ψ
2 )

1 + exp(β + ψ
2 )

)
+ (n2 − y2) log

(
1−

exp(β + ψ
2 )

1 + exp(β + ψ
2 )

)

− 1
2 log

(
2πσ2

β

)
− 1

2σ2
β

(β − µβ)2 − 1
2 log

(
2πσ2

ψ

)
− 1

2σ2
ψ

(ψ − µψ)2.

(19)
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For H+ we have:

l∗+(β, ξ) = log {p(y | β, ξ)π+(β, ξ)}

= y1 log
(

exp(β − exp(ξ)
2 )

1 + exp(β − exp(ξ)
2 )

)
+ (n1 − y1) log

(
1−

exp(β − exp(ξ)
2 )

1 + exp(β − exp(ξ)
2 )

)

+ y2 log
(

exp(β + exp(ξ)
2 )

1 + exp(β + exp(ξ)
2 )

)
+ (n2 − y2) log

(
1−

exp(β + exp(ξ)
2 )

1 + exp(β + exp(ξ)
2 )

)

− 1
2 log

(
2πσ2

β

)
− 1

2σ2
β
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− 1
2 log

(
2πσ2

ψ

)
− 1

2σ2
ψ

(exp(ξ)− µψ)2 − log(1− Φ
(
0;µψ, σ2

ψ

)
) + ξ.

(20)

Finally, for H− we have

l∗−(β, ξ) = log {p(y | β, ξ)π−(β, ξ)}

= y1 log
(

exp(β + exp(ξ)
2 )

1 + exp(β + exp(ξ)
2 )

)
+ (n1 − y1) log

(
1−

exp(β + exp(ξ)
2 )

1 + exp(β + exp(ξ)
2 )

)

+ y2 log
(

exp(β − exp(ξ)
2 )
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2 )

)
+ (n2 − y2) log

(
1−

exp(β − exp(ξ)
2 )

1 + exp(β − exp(ξ)
2 )

)

− 1
2 log

(
2πσ2

β

)
− 1

2σ2
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− 1
2 log
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2πσ2

ψ

)
− 1

2σ2
ψ

(− exp(ξ)− µψ)2 − log(Φ
(
0;µψ, σ2

ψ

)
) + ξ.

(21)

C.1. First-order derivatives

The first-order derivatives are used to find the modes for the Laplace approximations. As
shown below, we can find these derivatives analytically; however, setting the derivatives equal
to zero and solving for the parameters is not straightforward. Nevertheless, having these
derivatives is useful not only as an intermediate step to finding the second-order derivatives
but also for finding the modes: This allows us to provide numerical optimizers with the
analytic expressions for the derivatives which can increase speed and accuracy for numerically
finding the modes of the relevant functions.
The first-order derivative for l0(β) is given by:

d

dβ
l∗0(β) = y1 + y2 − (n1 + n2 − y1 − y2) exp(β)

1 + exp(β) − β − µβ
σ2
β

. (22)

The first-order partial derivatives for l∗(β, ψ) are given by

∂

∂β
l∗(β, ψ) =

y1 − (n1 − y1) exp(β − ψ
2 )

1 + exp(β − ψ
2 )

+
y2 − (n2 − y2) exp(β + ψ

2 )
1 + exp(β + ψ

2 )
− β − µβ

σ2
β

, (23)
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and

∂

∂ψ
l∗(β, ψ) = 1

2

(
(n1 − y1) exp(β − ψ

2 )− y1

1 + exp(β − ψ
2 )

+
y2 − (n2 − y2) exp(β + ψ

2 )
1 + exp(β + ψ

2 )

)
− ψ − µψ

σ2
ψ

. (24)

The first-order partial derivatives for l∗+(β, ξ) are given by:

∂

∂β
l∗+(β, ξ) =

y1 − (n1 − y1) exp
(
β − exp(ξ)

2

)
1 + exp

(
β − exp(ξ)

2

) +
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)
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2

) − β − µβ
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β

,

(25)
and

∂

∂ξ
l∗+(β, ξ) = exp(ξ)

2

(
(n1 − y1) exp(β − exp(ξ)

2 )− y1

1 + exp(β − exp(ξ)
2 )

+
y2 − (n2 − y2) exp(β + exp(ξ)

2 )
1 + exp(β + exp(ξ)

2 )

)

− exp(ξ)exp(ξ)− µψ
σ2
ψ

+ 1.

(26)

The first-order partial derivatives for l∗−(β, ξ) are given by:

∂

∂β
l∗−(β, ξ) =

y1 − (n1 − y1) exp
(
β + exp(ξ)

2

)
1 + exp

(
β + exp(ξ)

2

) +
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)
1 + exp

(
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(27)
and

∂

∂ξ
l∗−(β, ξ) = exp(ξ)

2

(
y1 − (n1 − y1) exp(β + exp(ξ)

2 )
1 + exp(β + exp(ξ)

2 )
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(n2 − y2) exp(β − exp(ξ)
2 )− y2

1 + exp(β − exp(ξ)
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+ exp(ξ)− exp(ξ)− µψ
σ2
ψ

+ 1.

(28)

C.2. Second-order derivatives

For the Laplace approximations, we also need the inverse of the negative Hessians. The
Hessian is the matrix with the second-order partial derivatives which is the reason why we now
present expressions for the second-order partial derivatives. Note that under all hypotheses
there are either one or two parameters. Hence, the Hessians will be at most 2 by 2 matrices.
For matrices up to 2 by 2, it is straightforward to find the inverse and the determinant which
makes it easy to obtain the quantities needed for the Laplace approximations once we have
the required derivatives.
For l∗0(β), there is only one parameter and the second-order derivative is given by:

d2

dβ2 l
∗
0(β) = −(n1 + n2) exp(β)

(1 + exp(β))2 − 1
σ2
β

. (29)
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For l∗(β, ψ) the second-order partial derivatives are given by

∂2

∂β2 l
∗(β, ψ) = −

n1 exp(β − ψ
2 )(

1 + exp(β − ψ
2 )
)2 −
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and
∂2
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and
∂2
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ψ
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For l∗+(β, ξ) the second-order partial derivatives are given by

∂2
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∗
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n1 exp
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and
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(35)

For l∗−(β, ξ) the second-order partial derivatives are given by
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and
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and
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(38)

C.3. Hessians

Having derived the relevant second-order partial derivatives, we can simply build the Hessian
matrices of interest by inserting the relevant expressions. Next, we present symbolically the
Hessians of interest, that is, we show which of the second-order partial derivatives need to
be inserted where. Note that we omit the one for H0 since this is a single number which is
simply the second-order derivative of l∗0(β).
The Hessian for H1 is given by:

H1 =
(

∂2

∂β2 l
∗(β, ψ) ∂2

∂β∂ψ l
∗(β, ψ)

∂2

∂β∂ψ l
∗(β, ψ) ∂2

∂ψ2 l
∗(β, ψ)

)
. (39)

The Hessian for H+ is given by:

H+ =
(

∂2

∂β2 l
∗
+(β, ξ) ∂2

∂β∂ξ l
∗
+(β, ξ)

∂2

∂β∂ξ l
∗
+(β, ξ) ∂2

∂ξ2 l
∗
+(β, ξ)

)
. (40)

The Hessian for H− is given by:

H− =
(

∂2

∂β2 l
∗
−(β, ξ) ∂2

∂β∂ξ l
∗
−(β, ξ)

∂2

∂β∂ξ l
∗
−(β, ξ) ∂2

∂ξ2 l
∗
−(β, ξ)

)
. (41)

Computing the inverse of the negative Hessians

Note that computing the inverses of the 2 by 2 negative Hessians is straightforward: We
simply need to attach minus signs to each element of the Hessians and then make use of the

fact that the inverse of a 2 by 2 matrix A =
(
a b
c d

)
is given by A−1 = 1

det(A)

(
d −b
−c a

)
,

where det (A) = ad− bc.

D. Example 1: Effectiveness of resilience training (defaults)
Here we present the results for the resilience training example obtained using the default prior
setting.
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Figure 8: Default (implied) prior distributions. The top panel displays the prior distribution
for the absolute risk which corresponds to the difference between the probability of still being
on the job for the trained and the non-trained employees (i.e., p2 − p1). The middle panel
shows the prior distribution for the log odds ratio parameter ψ. The bottom panel displays
the implied joint prior distribution for the success probabilities p1 and p2. The bottom panel
illustrates that the two success probabilities are assigned dependent priors.

D.1. Prior specification

We use the default prior setting in the abtest package that assigns both β and ψ standard
normal prior distributions. The implied prior on the absolute risk can be visualized as follows:

R> library("abtest")



Journal of Statistical Software 35

R> plot_prior(what = "arisk")

The resulting graph is shown in the top panel of Figure 8.
The user can also visualize the (implied) prior for other quantities. For instance, the prior on
the log odds ratio (middle panel of Figure 8) is obtained as follows:

R> plot_prior(what = "logor")

The implied prior on the success probabilities p1 and p2 (bottom panel of Figure 8) is obtained
as follows:

R> plot_prior(what = "p1p2")

The bottom panel of Figure 8 illustrates that there is a dependency between p1 and p2 which
is arguably desirable (Howard 1998): When one of the success probabilities is very (small)
large, it is likely that the other one will also be (small) large.

D.2. Hypothesis testing

The ab_test() function can be used to conduct a Bayesian A/B test using the default prior
setting as follows:

R> data("seqdata", package = "abtest")
R> set.seed(1)
R> ab_default <- ab_test(data = seqdata)

This yields the following output:

R> print(ab_default)

Bayesian A/B Test Results:

Bayes Factors:

BF10: 0.2767214
BF+0: 0.4890489
BF-0: 0.05778357

Prior Probabilities Hypotheses:

H+: 0.25
H-: 0.25
H0: 0.5

Posterior Probabilities Hypotheses:

H+: 0.192
H-: 0.0227
H0: 0.7853
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P(H+ | data) = 0.192

P(H− | data) = 0.023

P(H0 | data) = 0.785

Figure 9: Posterior probabilities of the hypotheses visualized as a probability wheel.
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Figure 10: Sequential analysis results. The posterior probability of each hypothesis is plotted
as a function of the number of observations across groups. On top, two probability wheels
visualize the prior probabilities of the hypotheses and the posterior probabilities after taking
into account all observations.

The first part of the output presents Bayes factors in favor of the hypothesesH1, H+, andH−,
where the reference hypothesis (i.e., denominator of the Bayes factor) is H0. Since all three
Bayes factors are smaller than 1, they all indicate evidence in favor of the null hypothesis of no
effect. The next part of the output displays the prior probabilities of the hypotheses with non-
zero prior probability. The final part of the output displays the posterior probabilities of the
hypotheses with non-zero prior probability. The posterior probability of the null hypothesis
H0 indicates that the data have increased the plausibility of the null hypothesis from 0.50 to
0.79. Furthermore, the data have decreased the plausibility of both H+ and H−.
The abtest package allows users to visualize the posterior probabilities of the hypotheses by
means of a probability wheel (Figure 9):

R> prob_wheel(ab_default)

Overall, the data support the hypothesis that the training is ineffective over the hypothesis
that the training has a positive effect. The Bayes factor forH0 overH+ equals 1/0.489 ≈ 2.04;
however, this indicates only anecdotal evidence (Jeffreys 1939, Appendix I).
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Since the data set is of a sequential nature, it may be of interest to consider not only the result
based on all observations, but to conduct also a sequential analysis that tracks the evidential
flow as a function of the total number of observations (i.e., the number of observations across
both groups). This sequential analysis can be conducted as follows:

R> plot_sequential(ab_default, thin = 4)

Figure 10 displays the result of the sequential analysis. The sequential analysis indicates that
after some initial fluctuation, adding more observations increased the probability of the null
hypothesis that there is no effect of the training.

D.3. Parameter estimation

The data indicate only anecdotal evidence in favor of the null hypothesis versus the hypothesis
that the training is effective, leaving open the possibility that the training does have an
effect. To assess this possibility one may investigate the potential size of the effect under
the assumption that the effect is non-zero. For parameter estimation, we generally prefer to
investigate the posterior distribution for the unconstrained alternative hypothesis H1.
The top panel of Figure 11 displays the posterior distribution for the absolute risk (i.e., p2−p1)
that can be obtained as follows:

R> plot_posterior(ab_default, what = "arisk")

The top panel of Figure 11 shows the prior distribution as a dotted line and the posterior
distribution (with 95% central credible interval) as a solid line. The plot indicates that, under
the assumption that the difference between the two success probabilities is not exactly zero,
the posterior median is 0.039 and the 95% central credible interval ranges from −0.022 to
0.101.
The middle panel of Figure 11 displays the posterior distribution for the log odds ratio ψ that
can be obtained as follows:

R> plot_posterior(ab_default, what = "logor")

The middle panel of Figure 11 indicates that, given the log odds ratio is not exactly zero, it
is likely to be between −0.089 and 0.406, where the posterior median is 0.159.
It may also be of interest to consider the marginal posterior distributions of the success
probabilities p1 and p2. This plot can be produced as follows:

R> plot_posterior(ab_default, what = "p1p2")

The bottom panel of Figure 11 displays the resulting plot. In this example, p1 and p2 corre-
spond to the probability of still being on the job after six month for the non-trained employees
and the employees that received the training, respectively. The bottom panel of Figure 11
indicates that the posterior median for p1 is 0.498, with 95% credible ranging from 0.455 to
0.542, and the posterior median for p2 is 0.537, with 95% credible interval ranging from 0.494
to 0.581.
In sum, based on a default prior analysis, this fictitious data set offers anecdotal evidence in
favor of the null hypothesis which states that the training is not effective over the hypothesis
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Figure 11: (Implied) prior and posterior distributions under H1. The dotted lines display
the prior distributions, the solid lines display the posterior distributions (with 95% central
credible intervals). The medians and the bounds of the 95% central credible intervals are
displayed on top of each panel. The top panel displays the posterior distribution for the
absolute risk (i.e., p2−p1); the middle panel shows the posterior distribution for the log odds
ratio parameter ψ; the bottom panel displays the marginal posterior distributions for the
success probabilities p1 and p2.
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that the training is effective; the consultancy firm should probably continue to collect data in
order to obtain more compelling evidence before deciding whether or not the training should
be implemented. If the true effect is as small as 4%, continued testing will ultimately show
compelling evidence for H+ over H0. Note that continued testing is trivial in the Bayesian
framework: The results can simply be updated as new observations arrive.
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