
JSS Journal of Statistical Software
March 2019, Volume 88, Issue 7. doi: 10.18637/jss.v088.i07

CoClust: A Python Package for Co-Clustering

François Role
University of Paris Descartes

Stanislas Morbieu
University of Paris Descartes

Mohamed Nadif
University of Paris Descartes

Abstract

Co-clustering (also known as biclustering), is an important extension of cluster anal-
ysis since it allows to simultaneously group objects and features in a matrix, resulting in
row and column clusters that are both more accurate and easier to interpret. This paper
presents the theory underlying several effective diagonal and non-diagonal co-clustering
algorithms, and describes CoClust, a package which provides implementations for these
algorithms. The quality of the results produced by the implemented algorithms is demon-
strated through extensive tests performed on datasets of various size and balance. CoClust
has been designed to complete and easily interface with popular Python machine learning
libraries such as scikit-learn.

Keywords: data mining, co-clustering, Python.

1. Introduction
In the era of data science, clustering various kinds of objects (documents, genes, customers)
has become a key activity and many high quality packaged implementations are provided
for this purpose by many popular packages such as the base package stats for R (R Core
Team 2019), skmeans (Hornik, Feinerer, Kober, and Buchta 2012), kernlab (Karatzoglou,
Smola, Hornik, and Zeileis 2004), NbClust (Charrad, Ghazzali, Boiteau, and Niknafs 2014),
CLUTO (Karypis 2003), scikit-learn (Pedregosa et al. 2011), SciPy (Jones, Oliphant, Peterson
et al. 2001, including the scipy.cluster module), nltk (Bird, Klein, and Loper 2009, with
the nltk.cluster module), Weka (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten
2009), etc. A natural extension of standard cluster analysis is co-clustering where objects and
features are simultaneously grouped into meaningful blocks called co-clusters or biclusters,
thus making large datasets easier to handle and interpret. In fact, since the seminal work of
Hartigan (1972), co-clustering has found applications in many areas such as bio-informatics
(Cheng and Church 2000; Madeira and Oliveira 2004; Van Mechelen, Bock, and De Boeck
2004; Tanay, Sharan, and Shamir 2005; Cho and Dhillon 2008; Gupta and Aggarwal 2010;
Hanczar and Nadif 2010, 2011, 2012, 2013), web mining (Xu, Zong, Dolog, and Zhang 2010;

https://doi.org/10.18637/jss.v088.i07

2 CoClust: Co-Clustering in Python

Charrad, Lechevallier, Ahmed, and Saporta 2009; George and Merugu 2005; Deodhar and
Ghosh 2010) and text mining (Dhillon 2001; Dhillon, Mallela, and Modha 2003) and various
co-clustering algorithms have been proposed over the years (recent surveys can be found
in Freitas, Ayadi, Elloumi, Oliveira, and Hao 2012; Eren, Deveci, Küçüktunç, and Çatalyürek
2013; Henriques, Antunes, and Madeira 2015).
While quite a large number of implementations of co-clustering algorithms (also known as
biclustering) have been developed for gene expression data, such as biclust (Kaiser and Leisch
2008), BicAT (Barkow, Bleuler, Prelić, Zimmermann, and Zitzler 2006) and bibench (Eren
et al. 2013), not so many implementations are available for co-clustering co-occurrence ma-
trices such, for example, as document-term matrices used in text mining applications. The
CoClust package presented in this paper therefore provides implementations of algorithms
designed to efficiently handle such matrices. Depending on the method used, algorithms for
co-clustering co-occurrence matrices can broadly be divided into several categories:

Spectral methods: Spectral co-clustering methods treat the input data matrix as a bipar-
tite graph between documents and words, and approximate the normalized cut of this
graph using a real relaxation. Currently scikit-learn supports two spectral co-clustering
algorithms: (1) the well-known “spectral co-clustering” (Dhillon 2001) and (2) the “spec-
tral biclustering” (Kluger, Basri, Chang, and Gerstein 2003) which is also available in
the biclust R package.

Model-based methods: With respect to probabilistic co-clustering methods, two model-
based co-clustering methods are implemented in the blockcluster (Singh Bhatia, Iovleff,
and Govaert 2017) and blockmodels (Leger 2016) R packages. The first relies on the
latent block models (LBM), especially Gaussian, Bernoulli and Poisson LBMs. The
derived algorithms are of type expectation-maximization; for details see for instance
Govaert and Nadif (2003, 2005, 2006, 2008); Nadif and Govaert (2010). The second relies
on the stochastic block model and the latent block model without or with covariates.
Both models have been extended to valued networks with optional covariates on the
edges.

Matrix factorization based methods: Matrix factorization based methods are also used
in the clustering and co-clustering fields. However while packages exist for document
clustering based on non-negative matrix factorization (e.g., the NMF R package, Gau-
joux and Seoighe 2010, which includes different NMF methods) leading to clustering (see
for instance Ding, Li, Peng, and Park 2006; Ding and Li 2007), there is unfortunately
no package on non negative matrix trifactorization factorization for co-clustering.

Information-theoretic based methods: Information-theoretic based methods are used to
co-cluster two-way contingency tables. In this approach, a joint probability distribution
is first derived from the two-way contingency matrix. The loss function to minimize is
then the loss in mutual information between this joint probability distribution and a
distribution defined on a reduced contingency table obtained by collapsing the rows and
the columns according to the partitions yielded by the co-clustering program. Notable
algorithms in this area include those in Dhillon et al. (2003); Govaert and Nadif (2013).

Modularity-based methods: The use of bipartite graph-modularity as a criterion to co-
cluster matrices has been pioneered by Labiod and Nadif (2011) and since further inves-
tigated in Ailem, Role, and Nadif (2015, 2016). This method allows to co-cluster binary

Journal of Statistical Software 3

or contingency matrices by maximizing an adapted version of the modularity measure
traditionally used for networks.

Another dimension for characterizing co-clustering algorithms is to distinguish between gen-
eral partitional co-clustering algorithms and those that seek to discover a diagonal structure
(which is displayed to the user in the form of a block-diagonal matrix). In the former case,
the requested number of row clusters can be different from the requested number of column
clusters while in the latter the two numbers obviously have to be the same in order to pro-
duce a diagonal structure. Diagonal algorithms assign each row and each column to exactly
one co-cluster. For text mining applications, the attractiveness of this approach lies in its
simplicity: Each set of documents is automatically labeled by a set of terms. However, there
may be occasions where one may want to associate a set of documents with several sets of
terms. In this case, general, non-diagonal co-clustering methods may be more suitable.
Spectral methods and methods based on matrix factorization are fast and lend themselves to
simple implementations. However, as we noted in a recent comparative study whose prelimi-
nary results can be found in Ailem et al. (2015), they are clearly outperformed by the other
cited methods when co-clustering document-term matrices in terms of accuracy. Also, as indi-
cated above, co-clustering spectral methods are already available in scikit-learn. Probabilistic
co-clustering methods deliver better accuracy, and several open-source implementations al-
ready exist in the form of the above-mentioned R packages blockcluster and blockmodels. The
CoClust package presented in this paper therefore provides scikit-learn-compatible implemen-
tations of two modularity-based methods and one information-theoretic based methods. It is
freely available under a BSD-3 license at https://pypi.python.org/pypi/coclust.
The first two algorithms, CoclustMod (Ailem et al. 2015, 2016) and CoclustSpecMod (Labiod
and Nadif 2011), are recent representatives of the family of block-diagonal co-clustering al-
gorithms. These algorithms have several advantages. First, being block-diagonal algorithms,
they directly produce interpretable descriptions of the resulting document clusters since each
document cluster is directly associated with one term cluster. Second, the experimental re-
sults described in Ailem et al. (2015) have shown that these algorithms can adapt to various
kinds of matrices (whether they are binary, contingency, weighted or unweighted matrices).
In addition to this flexibility, they outperform popular, older block-diagonal algorithms such
as the above-mentioned well-known “spectral co-clustering” algorithm.
The third algorithm (CoclustInfo) is based on an information-theoretic approach. Information-
theoretic co-clustering has become very popular in the text mining community since the
above-mentioned work by Dhillon et al. (2003). Its main benefits are speed of convergence
and scalability. CoclustInfo is an implementation of the CROINFO algorithm described in
Govaert and Nadif (2013, 2018).
Last but not least, the three algorithms have the advantage of simplicity since they can be
implemented using simple alternated iterative procedures where one of the partitions is fixed
(say, the column partition) and a better partition of the other set (say, the row partition) is
searched.
The outline of the paper is as follows. We first review the theory underlying these algorithms
(Section 2) before presenting the interface and API of the module that implements them
(Section 3) and conclude with a benchmark that demonstrates the effectiveness of the software
compared to other algorithms (Section 4).

https://pypi.python.org/pypi/coclust

4 CoClust: Co-Clustering in Python

2. Theory

As said in the introduction, co-clustering algorithms simultaneously cluster rows and columns
into partitions and a pair consisting of a row cluster and a column cluster determines a co-
cluster, which is a submatrix of the original data matrix. Diagonal algorithms assign each row
and each column to exactly one co-cluster and so the rows and columns can be rearranged
so that the co-clusters form a kind of diagonal (see for example Figure 1). Non-diagonal
algorithms, on the other hand, do not have this restriction and rearranging the rows and
columns according to the found partition may result into structures such as the one shown in
Figure 2.
The CoClust package provides three co-clustering algorithms (two diagonal and one non-
diagonal). The first two perform co-clustering by maximizing the modularity of bipartite
graphs while the third one uses the information-theoretic notion of mutual information to
define its criterion. Before describing these notions, we first give some general notations we
will use throughout the paper.

2.1. General notations

We will consider the partition of the sets I of n objects and the set J of d attributes into g
non overlapping clusters, where g may be greater or equal to 2. Let us define a n×g indicator
matrix z = (zik) and a d × g indicator matrix w = (wjk). The kth row cluster is defined by
the set of rows i such that zik = 1. In the same manner, the kth column cluster is defined by
the set of rows j such that wjk = 1. Finally, X is the matrix used as input to all the methods
described in this paper; X can be of any kind provided it is a matrix with non-negative entries
(e.g., a graph adjacency matrix, or a document-term matrix, depending on the application
domain).

2.2. Modularity-based, block-diagonal co-clustering

The first family of algorithms implemented in the CoClust package consists of two algorithms
(CoClustMod and CoclustSpecMod) that seek an optimal block-diagonal clustering, meaning
that objects and features have the same number of clusters and that, after proper permu-
tation of the rows and columns, the algorithm produces as result a block-diagonal matrix
(see Figure 1). In the context of document-term matrices, this co-clustering model has the
advantage of directly producing interpretable descriptions of the resulting document clusters.

A notable block-diagonal co-clustering algorithm is the bipartite spectral graph partitioning
algorithm described in Dhillon (2001). Inspired by previous work on spectral graph cluster-
ing, this algorithm finds the optimal minimum cut partitions in a bipartite document-term
graph by computing the second left and right singular vector of the normalized document-
term matrix, thus using a real relaxation of the discrete optimization problem. The block
diagonal algorithms implemented in CoClust follow a completely different approach: They
try to maximize a measure of the concentration of edges within co-clusters compared with the
random distribution of edges between all nodes regardless of the co-clusters. This criterion is
an adaptation to the bipartite case of the standard “graph modularity”. Before describing the
two algorithms, it is therefore useful to review this notion of “bipartite graph modularity”.

Journal of Statistical Software 5

Figure 1: Left: original data. Middle: data reorganized according to row clusters. Right:
data reorganized according to row and column clusters.

Bipartite graph modularity (BGM)

In this section we first review the standard graph modularity measure, and show how to adapt
it so that it can be used in the co-clustering context.
Modularity is a quality criterion often used for detecting communities in graphs, which has
received considerable attention in several disciplines since the seminal work by Newman and
Girvan (2004). Intuitively, modularity compares the number of edges inside a cluster of nodes
with the expected number if the edges in the graph were placed at random.1

Given the graph G = (V,E), let X be a binary, symmetric adjacency matrix with (i, i′) as
entry; and xii′ = 1 if there is an edge between the nodes i and i′. If there is no edge between
nodes i and i′, xii′ is equal to zero. Finding a partition of the set of nodes V into homogeneous
subsets leads to the resolution of the following integer linear program: maxcQ(X, c) where
Q(X, c) is the modularity measure:

Q(X, c) = 1
2|E|

n∑
i,i′=1

(xii′ −
xi.xi′.

2|E|)cii′ . (1)

In this formula, c is a binary matrix defined by cii′ = ∑g
k=1 zikzi′k, meaning that cii′ is 1

when nodes i and i′ are in the same group and 0 otherwise. In addition, |E| is the number of
edges and xi. = ∑

i′ xii′ is the degree of i.
Let now δ = (δii′) be the (n × n) data matrix defined by ∀i, i′, δii′ = xi.xi′.

2|E| . Expression 1
then becomes Q(X, c) = 1

2|E|Trace[(X − δ)c]. In summary, we seek a binary matrix c which
is defined as zz> and models a partition in a relational space, thus having the properties of
an equivalence relation:

cii = 1, ∀i reflexivity
cii′ − ci′i = 0,∀(i, i′) symmetry
cii′ + ci′i′′ − cii′′ ≤ 1,∀(i, i′, i′′) transitivity
xii′ ∈ {0, 1},∀(i, i′) binarity

1The standard null model used in the literature also assumes that the nodes keep the degree they have in
the original network.

6 CoClust: Co-Clustering in Python

In a bipartite context, the basic idea is to model the simultaneous row and column partitions
using a relation c defined on I × J . Noting that c = zw> and the general term can be
expressed as follows: cij = 1 if object i is in the same block as attribute j and cij = 0
otherwise. Then cij = ∑g

k=1 zikwjk. Now, given a rectangular matrix X defined on I × J ,
modularity can be reformulated as follows in the co-clustering context:

Q(X, c) = 1
x..

n∑
i=1

d∑
j=1

g∑
k=1

(xij −
xi.x.j

x..
)zikwjk, (2)

where x.. = ∑
i,j xij = |E| is the total weight of edges and xi. = ∑

j xij (the degree of i in
the binary case and the sum of the weights in the contingency and continuous cases) and
x.j = ∑

i xij (the degree of j in the binary case and the sum of the weights in the contingency
and continuous cases). This modularity measure can also take the following form:

Q(X, c) = 1
x..

Trace[(X − δ)>zw>] = Q(X, zw>). (3)

As the objective function 3 is linear with respect to c (c = zw>) and as the constraints that
c must respect are linear equations, the problem can theoretically be solved using an integer
linear programming solver. However, this problem is NP hard, and as a result, in practice,
we use heuristics for dealing with large datasets.

CoclustMod: Co-clustering by alternated maximization of BGM

In this section we describe the theory underlying CoClustMod, one of the two block-diagonal
algorithms provided by the CoClust package (Ailem et al. 2015, 2016).

Proposition 1. Let X be a (n×d) matrix with non-negative entries and c be a (n×d) matrix
defining a block seriation, the modularity measure Q(X, c) can be rewritten as:
1.

Q(X, c) = 1
x..

Trace[(Xw − δw)>z] = Q(Xw, z),

where Xw = (xw
ik)1≤i≤n

1≤k≤g
and δw = (δw

ik)1≤i≤n
1≤k≤g

respectively defined by xw
ik = ∑d

j=1wjkxij

and δkj = xi.x
w
.k

x..
where xw

.k = ∑d
j=1wjkx.j .

2.
Q(X, c) = 1

x..
Trace[(Xz − δz)>w] = Q(Xz,w),

where Xz = (xz
kj)1≤k≤g

1≤j≤d

and δz = (δz
kj)1≤k≤g

1≤j≤d

respectively defined by xz
kj = ∑n

i=1 zikxij and

δz
kj = xz

k.x.j

x..
where xz

k. = ∑n
i=1 zikxi..

A proof for Proposition 1 can be found in Ailem et al. (2015). This proposition is at the heart
of the CoclustMod algorithm since it allows to maximize the modularity by alternatively
maximizing Q(Xw, z) and Q(Xz,w). The optimal classification binary matrices z∗ and w∗
are respectively defined by z∗ = arg maxz Trace(Xw−δw)>z and w∗ = arg maxw Trace(Xz−
δz)>w. In fact, Q(Xw, z) and hence modularity can be maximized by assigning row i to the

Journal of Statistical Software 7

Algorithm 1 CoclustMod.
Input: binary or contingency data X, number of clusters g.
Output: partition matrices z and w.
1. Initialization of w.
repeat

2. Compute Xw.
3. Compute z maximizing Q(Xw, z) by zik = 1 if k = arg max1≤`≤g

(
xw

i` −
xi.x

w
.`

x..

)
and

zik = 0 otherwise; ∀i = 1, . . . , n.
4. Compute Xz.
5. Compute w maximizing Q(Xz,w) by wjk = 1 if k = arg max1≤`≤g

(
xz

`j −
xz

`.x.j

x..

)
and

wjk = 0; ∀j = 1, . . . , d.
6. Compute Q(X, zw>).

until no change of Q(X, zw>).

cluster k maximizing (Xw − δw)ik since we have:

Q(Xw, z) = 1
x..

Trace[(Xw − δw)>z]

= 1
x..

∑
i,k

zik(Xw − δw)ik

= 1
x..

n∑
i=1

(g∑
k=1

zik(Xw − δw)ik

)

The same kind of argument applies for Q(Xz,w), which leads to the different steps presented
in Algorithm 1.

CoClustSpecMod: Co-clustering by spectral maximization of BGM

In this section we describe the theory underlying CoClustSpecMod, another block-diagonal
algorithm provided by the CoClust package. In the same way as CoClustMod, CoClust-
SpecMod sees modularity-based co-clustering as a trace maximization problem, but with two
important differences as described in Labiod and Nadif (2011). First, it uses normalized ver-
sions of the z and w matrices, and second, it maximizes modularity using a spectral approach,
which contrasts with the direct maximization performed by CoClustMod.
The use of a normalized modularity matrix is motivated by the desire to balance the row and
column cluster sizes. The z matrix is therefore replaced by a z̃ = zh−

1
2 where h is a diagonal

matrix where each diagonal element contains the number of elements in the kth row cluster.
In the same way, the w matrix is replaced by a w̃ = wf−

1
2 where f is a diagonal matrix

where each diagonal element contains the number of elements in the kth column cluster. The
modularity problem then amounts to the following trace maximization problem:

max
z̃>z̃=Ig ,w̃>w̃=Ig

Trace[z̃>(X − δ)w̃]. (4)

This maximization is performed using a spectral approach by performing the following steps:

1. Scale the modularity matrix.

8 CoClust: Co-Clustering in Python

Algorithm 2 CoclustSpecMod.
Input: data X, number of clusters g.
Output: partition matrices R and C.
1. Form the affinity matrix X.
2. Define Dr and Dc to be the diagonal matrices Dr = diag(X1) and Dc = diag(X>1).
3. Find U ,V the (g − 1) left-right largest eigenvectors of X̃ = D

− 1
2

r XD
− 1

2
c .

4. Form matrices Ũ , Ṽ and Q =
(
Ũ , Ṽ

)>
from U, V .

5. Cluster the rows of Q into g clusters by using k-means.
6. Assign object i to cluster Rk if and only if the corresponding row of the matrix Q was
assigned to cluster Rk, and assign attribute j to cluster Ck if and only if the corresponding
row of the matrix Q was assigned to cluster Ck.

2. Approximate the scaled matrix using SVD.

3. Use the matrices produced by the SVD decomposition to form a new matrix, then apply
a clustering algorithm (e.g., k-means) to cluster the new matrix.

Step 1 is performed as follows. Let B be a bipartite modularity matrix. A scaled version B̃
of this matrix is computed as: B̃ = D

−1
2

r BD
−1
2

c where Dr = diag(A1) and Dc = diag(A>1).
In Step 2, B̃ is approximated as ∑g−1

k=1 ŨkλkṼ
>

k . where Ũ and Ṽ are derived from the singular
vectors as follows:

Ũk = D
1
2
r Uk

‖D
1
2
r Uk‖

and Ṽk = D
1
2
c Vk

‖D
1
2
c Vk‖

.

Finally, Ũ and Ṽ are used to form a matrix Q =
(
Ũ , Ṽ

)>
which is given as input to a

clustering algorithm such as k-means. The different steps of CoClustSpecMod are presented
in Algorithm 2.

2.3. Information-theoretic co-clustering

In this section we describe the notions underlying the third algorithm, CoclustInfo, provided
by the CoClust package. In contrast to the previously described algorithms, CoclustInfo takes
an information-theoretic approach and uses mutual information to define its criterion (Govaert
and Nadif 2013, Chapter 4). Another important difference is that this algorithm does not
seek to discover a block-diagonal structure like the previously described algorithms. The
requested number of row clusters can be different from the requested number of column
clusters. A representative example of the kind of matrix obtained when using CoclustInfo is
shown in Figure 2.

Initial contingency table and associated joint distribution

Let X be a n × d contingency table such as the example shown in Table 1 (left). This
table can be associated with two categorical random variables, taking values in the sets I =
{1, . . . , i, . . . , n} and J = {1, . . . , j, . . . , d} respectively. In summary, we have two categorical
variables, one taking values in the set I of rows and the other in the set J of columns.

Journal of Statistical Software 9

Figure 2: Typical matrix obtained when using CoclustInfo to co-cluster a dataset. This
matrix is to be compared to the kind of block-diagonal matrix obtained when using one of
the two previously described graph-based algorithms.

1 2 3 4 5
1 5 4 6 1 0 16
2 6 5 4 0 1 16
3 1 0 1 7 5 14
4 1 1 0 6 5 13
5 4 5 3 4 5 21
6 5 4 4 3 4 20

22 19 18 21 20 100

1 2 3 4 5
1 0.05 0.04 0.06 0.01 0.00 0.16
2 0.06 0.05 0.04 0.00 0.01 0.16
3 0.01 0.00 0.01 0.07 0.05 0.14
4 0.01 0.01 0.00 0.06 0.05 0.13
5 0.04 0.05 0.03 0.04 0.05 0.21
6 0.05 0.04 0.04 0.03 0.04 0.20

0.22 0.19 0.18 0.21 0.20 1.00

Table 1: Example of contingency table and associated joint distribution.

Let now PIJ = (pij) denote the sample joint probability distribution associated with the
two variables. It can be represented by a n × d matrix defined by pij = pij

N with N = x...
An example of the probability matrix corresponding to our sample contingency matrix is
shown in Table 1 (right). As for other random variables, the association between the two
categorical variables I and J can be measured using mutual information. Intuitively, mutual
information between two variables compares the observed frequencies in the data with the
expected frequencies under the null hypothesis of no association. The mutual information
between two variables I and J is expressed as I(PIJ) = ∑

i,j pij log pij

pi.p.j
.

Aggregated contingency table and associated joint distribution

In this section, we describe the new contingency table and associated joint distributions that
can be derived when simultaneously aggregating the rows and the columns of a contingency
table X according to a couple of partitions of the sets I and J . In fact, if z and w are
partitions in g clusters and m clusters of the set I of the rows and the set J of columns of X,
then a new two-way contingency table Xzw = (xzw

k`) can be associated with two categorical
random variables taking values in sets K = {1, . . . , g} and L = {1, . . . ,m} by merging the
rows and columns according to the partitions z and w:

xzw
k` =

∑
i,j

zikwj`xij ∀k ∈ K and ∀` ∈ L.

10 CoClust: Co-Clustering in Python

1 2
1 30.0 2.0 32.0
2 4.0 23.0 27.0
3 25.0 16.0 41.0

59.0 41.0 100.0

1 2
1 0.30 0.02 0.32
2 0.04 0.23 0.27
3 0.25 0.16 0.41

0.59 0.41 1.00

Table 2: Aggregated contingency table Xzw(left) and associated distribution P zw
KL (right).

The distribution that can be associated to z and w is the distribution P zw
KL = (pzw

k`) defined
on K × L by pzw

k` = xzw
k`
N = ∑

i,j zikwj` pij ∀(k, `) ∈ K × L. The following equation∑
k,`

pzw
k` =

∑
i,j,k,`

zikwj`pij =
∑
i,j

pij

∑
k,`

zikwj` = 1 since
∑
k,`

zikwj` = 1

shows that P zw
KL is a distribution. Moreover it can be noticed that, as∑

`

pzw
k` =

∑
i,j,`

zikwj` pij =
∑

i

(zik

∑
j

(pjj

∑
`

wj`)) =
∑

i

zikpi. since
∑

`

wj` = 1

the row margins of this new distribution do not depend on the partition w and will be denoted
pz

k.. Similarly, the column margins ∑k p
zw
k` are equal to ∑j wj`p.j and will be denoted pw

.` .
For instance, the aggregation of the rows and columns of the data according the partitions z =
(1, 1, 2, 2, 3, 3) and w = (1, 1, 1, 2, 2) leads to the contingency table Xzw and the distribution
P zw

KL reported in Table 2.
Table 2 gives the original distribution PIJ and the distribution P zw

KL obtained after aggregating
the rows and columns. As can be seen in this example, the two distributions are similar. Using
the mutual information applied on the P zw

KL distribution, we obtain the following measure:

I(P zw
KL) =

∑
k,`

pzw
k` log pzw

k`

pz
k.p

w
.`

.

One can then express the loss in mutual information incurred when passing from the original
probability matrix to the aggregated matrix as:

I(PIJ)− I(P zw
KL) = KL(PIJ‖P zw

KL),

where KL(PIJ‖Qzw
KL) = ∑

i,j pij log pij

pzw
ij

is the Kullback-Leibler divergence between the two
distributions PIJ and P zw

KL. This difference in mutual information is exactly the criterion
minimized by the CoclustInfo algorithm. It has been shown (Govaert and Nadif 2013) that
this loss in mutual information can equivalently be expressed as:

I(PIJ)− I(Rzwγ
IJ) = KL(PIJ‖Rzwγ

IJ),

where Rzwγ
IJ = (rzwγ

ij) is a distribution depending on the partitions z and w and a parameter
γ. Rzwγ

IJ can be defined by rzwγ
ij = pi.p.j

∑
k,` zikwj`γk`. The parameter γ = (γk`) corresponds

to a matrix of size (g,m) where each γk` plays the role of the centroid of the co-cluster k` and
such that γk` > 0 ∀k, ` and ∑k,` p

z
k.p

w
.` γk` = 1. It can be shown that Rzwγ

IJ is a distribution,
which in addition has the same column and row margins than the PIJ distribution.

Journal of Statistical Software 11

Algorithm 3 CoclustInfo.
Input: X, g, m.
Initialization: z, w, γk` = pzw

k`
pz

k.
pw

.`
.

repeat
repeat

Step 1. zik = 1 if k = arg max1≤k′≤g

∑
` p

w
i` log γk′` and zik = 0 otherwise ∀i.

Step 2. γk` = pzw
k`

pz
k.

pw
.`
.

until convergence
repeat

Step 3. wj` = 1 if ` = arg max1≤`′≤m

∑
k p

z
kj log γk`′ and wj` = 0 otherwise ∀j.

Step 4. γk` = pzw
k`

pz
k.

pw
.`
.

until convergence
until convergence
return z and w.

Before seeing how the W̃I(z,w,γ) = I(PIJ)−I(Rzwγ
IJ) criterion can be optimized in practice,

it is worth noting here that it is a generalization of the criterion proposed for the well-known
ITCC algorithm (Dhillon et al. 2003).2

The minimization of the criterion W̃I(z,w,γ) can be obtained by alternating the three compu-
tations: z = arg minz W̃I(z,w,γ), w = arg minw W̃I(z,w,γ) and γ = arg minγ W̃I(z,w,γ).
More precisely, it has been shown in Govaert and Nadif (2013) that the minimization of
W̃I(z,w,γ) for fixed w and γ is obtained by assigning each row i to the cluster k maximizing∑

` p
w
i` log γk`. Similarly, in the computation of w, the minimization of W̃I(z,w,γ) for fixed

z and γ is obtained by assigning each column j to the cluster ` maximizing ∑k p
z
kj log γk`.

Finally, for the computations of γ, the problem can be formulated as arg maxγ

∑
k,` p

zw
k` log γk`

with ∑k,` p
z
k.p

w
.` γk` = 1 which yields to γk` = pzw

k`
pz

k.
pw

.`
for all k, `. These different steps are

summarized in the pseudo-code shown in Algorithm 3.

3. Software
The CoClust package provides a set of convenience command-line tools enabling to launch a
co-clustering task on a dataset by only providing the suitable parameters. In addition, for
Python (Van Rossum and others 2011) developers, it also exposes an API designed to provide
a seamless integration with the scikit-learn library.

3.1. Command-line scripts

The two scripts included in the CoClust package are:

• coclust which runs a co-clustering algorithm;

• coclust-nb which provides recommendations to select the best number of co-clusters.
2This generalization is possible thanks to the introduction of the γ parameter. See Govaert and Nadif

(2013) for more details on this point.

12 CoClust: Co-Clustering in Python

Running a co-clustering algorithm: The coclust script

The coclust script can be invoked from the command line to run an algorithm on a data
matrix. It also provides parameters for the evaluation of the results.
The user has to select an algorithm which is given as a first argument to coclust. The choices
are:

• modularity;

• specmodularity;

• info.

These choices correspond to the CoclustMod, CoclustSpecMod, and CoclustInfo algorithms
respectively.
The other options that have to be given depend on the algorithm. Some of them are however
common to all of them:

• those describing the input matrix;

• those used for the evaluation;

• some of the output and algorithm parameters.

The input matrix can be given as a MATLAB (The MathWorks Inc. 2017) file or a text file.
For the MATLAB file, the key corresponding to the matrix must be given. For the text file,
each line should describe an entry of a matrix with three columns: the row index, the column
index and the value. The separator is given by a script parameter.
The names of the parameters are given in the sections corresponding to the algorithms.

CoclustMod algorithm. All the options available for the CoclustMod algorithm are sum-
marized below:

coclust modularity [-h] [-k MATLAB_MATRIX_KEY | -sep CSV_SEP]
[--output_row_labels OUTPUT_ROW_LABELS]
[--output_column_labels OUTPUT_COLUMN_LABELS]
[--output_fuzzy_row_labels OUTPUT_FUZZY_ROW_LABELS]
[--output_fuzzy_column_labels OUTPUT_FUZZY_COLUMN_LABELS]
[--convergence_plot CONVERGENCE_PLOT]
[--reorganized_matrix REORGANIZED_MATRIX]
[-n N_COCLUSTERS] [-m MAX_ITER] [-e EPSILON]
[-i INIT_ROW_LABELS | --n_runs N_RUNS]
[-l TRUE_ROW_LABELS] [--visu]
INPUT_MATRIX

The meaning of the options is given below:

optional arguments:

-h, --help show this help message and exit

Journal of Statistical Software 13

input:

INPUT_MATRIX matrix file path
-k, --matlab_matrix_key if not set, csv input is considered
-sep, --csv_sep if not set, “,” is considered

output:

--output_row_labels file path for the predicted row labels
--output_column_labels file path for the predicted column la-

bels
--output_fuzzy_row_labels file path for the predicted fuzzy row

labels
--output_fuzzy_column_labels file path for the predicted fuzzy col-

umn labels
--convergence_plot file path for the convergence plot
--reorganized_matrix file path for the reorganized matrix

algorithm parameters:

-n=2, --n_coclusters=2 number of co-clusters
-m=15, --max_iter=15 maximum number of iterations
-e=1e-09, --epsilon=1e-09 stop if the criterion (modularity) vari-

ation in an iteration is less than EPSILON
-i, --init_row_labels file containing the initial row labels,

if not set random initialization is per-
formed

--n_runs=1 number of runs

evaluation parameters:

-l, --true_row_labels file containing the true row labels
--visu=False plot modularity values and reorganized

matrix (requires NumPy/SciPy and mat-
plotlib, Oliphant 2006; Hunter 2007).

CoclustSpecMod algorithm. The CoclustSpecMod algorithm takes almost the same op-
tions (a few less), a summary of which is given below:

coclust specmodularity [-h] [-k MATLAB_MATRIX_KEY | -sep CSV_SEP]
[--output_row_labels OUTPUT_ROW_LABELS]
[--output_column_labels OUTPUT_COLUMN_LABELS]
[--reorganized_matrix REORGANIZED_MATRIX]
[-n N_COCLUSTERS] [-m MAX_ITER] [-e EPSILON]
[--n_runs N_RUNS] [-l TRUE_ROW_LABELS] [--visu]
INPUT_MATRIX

The meaning of the options is the same as for the modularity algorithm.

14 CoClust: Co-Clustering in Python

CoclustInfo algorithm.

coclust info [-h] [-k MATLAB_MATRIX_KEY | -sep CSV_SEP]
[--output_row_labels OUTPUT_ROW_LABELS]
[--output_column_labels OUTPUT_COLUMN_LABELS]
[--reorganized_matrix REORGANIZED_MATRIX]
[-K N_ROW_CLUSTERS] [-L N_COL_CLUSTERS] [-m MAX_ITER]
[-e EPSILON] [-i INIT_ROW_LABELS | --n_runs N_RUNS]
[-l TRUE_ROW_LABELS] [--visu]
INPUT_MATRIX

As the CoclustInfo algorithm is non-diagonal, different numbers of clusters for the rows and
the columns can be specified using the following parameters:

-K=2, --n_row_clusters=2 number of row clusters

-L=2, --n_col_clusters=2 number of column clusters

Detecting the best number of co-clusters: The coclust-nb script

The coclust-nb script is a command-line script, which takes almost the same arguments as
coclust modularity. A summary is given below:

coclust-nb [-h] [-k MATLAB_MATRIX_KEY | -sep CSV_SEP]
[--output_row_labels OUTPUT_ROW_LABELS]
[--output_column_labels OUTPUT_COLUMN_LABELS]
[--reorganized_matrix REORGANIZED_MATRIX] [--from FROM]
[--to TO] [-m MAX_ITER] [-e EPSILON] [--n_runs N_RUNS]
[--visu]
INPUT_MATRIX

The number of co-clusters being unknown, the to and from parameters serve to define the
range within which the number has to be searched:

--from=2 minimum number of co-clusters

--to=10 maximum number of co-clusters

For example, for the CSTR dataset, the best number of co-clusters found by the following
command (run from the command line) is 4, the same as the real number of clusters:

$ coclust-nb datasets/cstr.csv --seed=1 --n_runs=30 --max_iter=60 --visu

In this example, the best modularity is 0.478638 and is attained for 4 co-clusters. The
evolution of the modularity against the number of co-clusters is plotted in Figure 3.

Journal of Statistical Software 15

2 3 4 5 6 7 8 9 10

Number of clusters

0.36

0.38

0.40

0.42

0.44

0.46

Lc

Evolution of modularity

Figure 3: Using modularity to detect the best number of clusters.

0 2 4 6 8 10 12 14 16

Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
o
d
u
la
ri
ti
e
s

Figure 4: CoclustMod – evolution of modularity across iterations.

3.2. Python API

Each algorithm is implemented in a specific class, all sharing the same methods as those used
by scikit-learn, thus making it very easy to integrate it with this library. The following sections
contain usage examples for each of the three algorithms. The examples also demonstrate how
to load matrices stored in different formats.

CoClustMod usage

The following example shows how to load the CLASSIC3 dataset from a MATLAB file. The
MATLAB file is loaded using a function provided by the SciPy library. A matrix is then ex-
tracted from the MATLAB dictionary and stored in variable X. A co-clustering model with 3
co-clusters is then created, and receives as input the X matrix. Then, after displaying the max-
imum modularity value as well as its evolution over the iterations (Figure 4), several graphical

16 CoClust: Co-Clustering in Python

0 200 400 600 800 1000 1200 1400
number of occurences

book
study

scientific
science
systems
retrieval
research
libraries
system
library

Cluster 1 (1688 terms)

0 100 200 300 400 500 600 700
number of occurences

hormone
children

cell
treatment

blood
growth
normal
cases
cells

patients

Cluster 2 (1398 terms)

0 200 400 600 800 1000 1200 1400
number of occurences

supersonic
wing

method
heat

shock
theory
mach
layer

pressure
boundary

Cluster 3 (1217 terms)

 Top 10 terms

Figure 5: CoclustMod – displaying the top terms of each cluster using the
plot_cluster_top_terms function.

representations of the obtained term clusters are produced via the plot_cluster_top_terms
and get_term_graph functions (Figures 5 and 6). The get_term_graph function extracts
the n most frequent terms in a given term cluster along with the k most similar (in terms of
cosine similarity) neighbors of each of these most frequent terms.

>>> from scipy.io import loadmat
>>> from coclust.coclustering import CoclustMod
>>> from coclust.visualization import (plot_cluster_top_terms,
... get_term_graph, plot_convergence)
>>>
>>> file_name = "datasets/classic3.mat"
>>> matlab_dict = loadmat(file_name)
>>>
>>> X = matlab_dict['A']
>>>
>>> model = CoclustMod(n_clusters = 3, random_state = 0)
>>> model.fit(X)

Journal of Statistical Software 17

classi�cation

journals

books

de
erm

�nd
date

means

plication

ases

impact

matter
s

chains

retrospective

informatio

glish

urnal

ivate
l

boolean

compare

demands

sources

earlier
implies

society

dent

signals

ses

readers

our

complex

context

kennedy

s

implicationsalphabetical

eria

medicine

resource

linguistic

feasible

discrimination

erage

emic

mpound

estion

ptable
decision

approach

cit

l

mpossible

nformal

understood

graduate

e minal

american

communities

textbook

e

endeavor

rns

ations

s

ticles

policies

mphasis

agencies

lines

ciological

verview
behavior

purposes

manpower

operates

e

ts
bliographical

p
tents

ment

s

nterest

conception

profession

nversiond ents

collection

behaviora

valuation

uction

representations

ates
implementation

atures

productive

ollect

luations

ciples
methodology

references

vocabulary

automatic

advantages

nary

tivities

ment

ide

knowledge

p

univ
institute

p

ty

ortant

ages

bes

y

technological

stan

d

eers

g

b

h

low
load

applicablese

nose

ak

span

nasa

skin

langley

xhaust

tra

exit

e

interferencecompressive masspr

locations

roughnessurbance

bluntness

magnetic

raction

momentum

smallthick

axial

n

yaw

atmosphere

series

ompressible

order

edges

y

g

g ack

satelliteregion

nel

ationary

afterbodies
turbulence

good
ropy

revolution

flight

tion

ation

oefficients

separation

n transitional
ch

ble

vorticity

rocket
os losses

shocks

asp

ssumptions

stress

rogers
dictions

rbits

rust

g

plates

ad

Figure 6: CoclustMod – graph representations of two term clusters. The get_term_graph
convenience function is used to produce a representation allowing to visually detect that
the cluster on the right is dense, and more thematically focused (aerodynamics) than the
cluster on the left which is about more general notions (information, knowledge and science
in general).

>>>
>>> print("MODULARITY: %s" % model.modularity)
>>> plot_convergence(model.modularities, "Modularities")
>>>
>>> terms = [str(x[0][0]) for x in matlab_dict['ms']]
>>> plot_cluster_top_terms(X, terms, 10, model)

MODULARITY: 0.409347854401

CoClustSpecMod usage

In this example, the CSTR dataset is imported as a CSV file. The first line of the file is the
number of rows followed by the number of columns and the number of clusters the model is
fitted with. The other lines are tuples of the form (row number, column number, value). The
spectral modularity based model is fitted, and the plot_cluster_sizes function (available in
the visualization module) is then used to display the sizes of the document and term clusters
(see Figure 7).

>>> import numpy as np
>>> from scipy.sparse import coo_matrix
>>> from coclust.coclustering import CoclustSpecMod

18 CoClust: Co-Clustering in Python

coclust-0 coclust-1 coclust-2 coclust-3

Co-clusters

0

50

100

150

200

250

300

350

400

S
iz
e
s

118

180

114

63

184

387

325

104

Rows

Columns

Figure 7: CoclustSpecMod – plotting the sizes of the obtained co-clusters using the
plot_cluster_sizes utility function.

>>> from coclust.visualization import plot_cluster_sizes
>>>
>>> n_clust = 4
>>> file_name = "datasets/cstr.csv"
>>>
>>> a = np.loadtxt(file_name, delimiter = ',', skiprows = 1)
>>> X = (coo_matrix((a[:, 2], (a[:, 0].astype(int), a[:, 1].astype(int)))))
>>> X = X.tocsr()
>>>
>>> model = CoclustSpecMod(n_clusters = n_clust, random_state = 0)
>>> model.fit(X)
>>>
>>> plot_cluster_sizes(model)

CoClustInfo usage

In this example, the CLASSIC3 dataset is imported from a MATLAB file. A model is created
and fitted. A graph showing the evolution of the criterion is displayed along with the last γkl

matrix obtained at the end of the execution. This matrix allows to visually spot the most
cohesive co-clusters produced by the algorithm (see Figure 8).

>>> import scipy.io as io
>>> from sklearn.metrics import (adjusted_rand_score as ari,
... normalized_mutual_info_score as nmi)
>>> from coclust.coclustering import CoclustInfo
>>> from coclust.evaluation.external import accuracy
>>> from coclust.visualization import plot_delta_kl, plot_convergence

Journal of Statistical Software 19

0 2 4 6 8
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P_
KL

 M
I

0 1 2

0

1

2
0.5

1.0

1.5

2.0

2.5

3.0

Figure 8: CoclustInfo – evolution of the objective function across iterations (left), and the
heatmap showing the final γkl values obtained for each row cluster k and each column cluster l.
This may help to spot the interesting pairs of row and column clusters (right).

>>>
>>> print("1) Loading data")
>>> file_name = "datasets/classic3.mat"
>>> matlab_dict = io.loadmat(file_name)
>>> X = matlab_dict['A']
>>>
>>> nb_clusters = 3
>>> model = CoclustInfo(n_row_clusters = nb_clusters,
... n_col_clusters = nb_clusters, n_init = 4, random_state = 0)
>>> model.fit(X)
>>>
>>> print("CRITERION: %s" % model.criterion)
>>> true_row_labels = matlab_dict['labels'].flatten()
>>> predicted_row_labels = model.row_labels_
>>> nmi_ = nmi(true_row_labels, predicted_row_labels)
>>> ari_ = ari(true_row_labels, predicted_row_labels)
>>> print("NMI: {}\nARI: {}".format(nmi_, ari_))
>>> accuracy = accuracy(true_row_labels, predicted_row_labels)
>>> print("ACCURACY: %s" % accuracy)
>>>
>>> plot_convergence(model.criterions, 'P_KL MI')
>>> plot_delta_kl(model)

Combined usage

The following example shows how easy it is to run several algorithms on the same dataset
and then plot the resulting reorganized matrices in order to have a first visual grasp of what
can be expected from the different algorithms. A plot of three different reorganized matrices
for the CSTR dataset is shown in Figure 9.

>>> import matplotlib.pyplot as plt

20 CoClust: Co-Clustering in Python

Figure 9: Using the plot_reorganized_matrix utility function to plot three reorganized
matrices for the CSTR dataset.

>>> import numpy as np, scipy.sparse as sp, scipy.io as io
>>> from sklearn.metrics import confusion_matrix
>>>
>>> from coclust.coclustering import (CoclustMod, CoclustSpecMod,
... CoclustInfo)
>>> from coclust.visualization import plot_reorganized_matrix
>>>
>>> file_name = "datasets/cstr.mat"
>>> matlab_dict = io.loadmat(file_name)
>>> X = matlab_dict['fea']
>>>
>>> model_1 = CoclustMod(n_clusters = 4, n_init = 4)
>>> model_1.fit(X)
>>>
>>> model_2 = CoclustSpecMod(n_clusters = 4, n_init = 4)
>>> model_2.fit(X)
>>>
>>> model_3 = CoclustInfo(n_row_clusters = 3, n_col_clusters = 4,
... n_init = 4)
>>> model_3.fit(X)
>>>
>>> plot_reorganized_matrix(X, model_1)
>>> plot_reorganized_matrix(X, model_2)
>>> plot_reorganized_matrix(X, model_3)

3.3. Example of integration with scikit-learn
In the following example, the scikit-learn library is used to import the corpus of documents
NG20 (see Section 4.1), select only five categories, and create a document-term matrix. This
example shows how easy it is to include an algorithm of the CoClust package in a scikit-learn
‘Pipeline’.

>>> from coclust.coclustering import CoclustMod
>>> from sklearn.datasets import fetch_20newsgroups
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> from sklearn.metrics.cluster import normalized_mutual_info_score

Journal of Statistical Software 21

>>>
>>> categories = ['rec.motorcycles', 'rec.sport.baseball',
... 'comp.graphics', 'sci.space', 'talk.politics.mideast']
>>> ng5 = fetch_20newsgroups(categories = categories, shuffle = True)
>>>
>>> true_labels = ng5.target
>>>
>>> pipeline = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()), ('coclust', CoclustMod()),])
>>>
>>> pipeline.set_params(coclust__n_clusters = 5)
>>> pipeline.fit(ng5.data)
>>>
>>> predicted_labels = pipeline.named_steps['coclust'].row_labels_
>>>
>>> nmi = normalized_mutual_info_score(true_labels, predicted_labels)
>>> print(nmi)

For a scikit-learn ‘Pipeline’, the set_params method takes a variable number of arguments,
each of the form component__parameter. In pipeline.set_params(coclust__n_clusters
= 5), the component corresponding to the modularity co-clustering algorithm is named
coclust and the parameter of the CoClustMod algorithm we want to set to 5 is n_clusters.

4. Experiments

4.1. Description of datasets

To assess the performance of the three implemented algorithms, we tested them on 8 datasets
of different size, sparsity and balance3. The characteristics of each dataset are reported in
Table 3.

• The CSTR dataset was previously used in Li (2005) and includes the abstracts of tech-
nical reports published in the Department of Computer Science of Rochester University.
These abstracts were divided into 4 research fields: natural language processing (NLP),
robotics/vision, systems, and theory.

• CLASSIC3 and CLASSIC44 consist respectively of 3 different document collections:
CISI, CRANFIELD, and MEDLINE and 4 different document collections: CACM, CISI,
CRANFIELD, and MEDLINE.

• SPORTS is a dataset from the CLUTO toolkit (Karypis 2003), and is the same as that
used in Zhong and Ghosh (2005). This dataset contains documents about 7 different
sports including baseball, basketball, bicycling, boxing, football, golfing and hockey.

3The balance is the ratio of the number of documents in the smallest class to the number of documents in
the largest class.

4http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets

http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets

22 CoClust: Co-Clustering in Python

Datasets Characteristics
#Documents #Words #Clusters Sparsity (%) Balance

CLASSIC3 3891 4303 3 98.94 0.707
CSTR 475 1000 4 96.59 0.398
WEBACE 2340 1000 20 93.90 0.0182
CLASSIC4 7094 5896 4 99.40 0.322
REVIEWS 4069 18483 5 98.99 0.0987
SPORTS 8580 14870 6 99.14 0.0357
RCV1 9625 29992 4 99.74 0.697
NG20 19949 43586 20 99.81 0.991

Table 3: Description of datasets.

• REVIEWS is also a standard dataset used by the CLUTO toolkit.

• WEBACE (Ding and Li 2007) contains news articles partitioned across 20 different
topics obtained from the WEBACE project (Han et al. 1998).

• RCV1 (Cai and He 2012) is a subset of a newswire stories corpus made available by
Reuters containing 4 categories: C15, ECAT, GCAT, and MCAT.

• Finally, NG20 is the 20 Newsgroups dataset.5

In addition to the three algorithms included in the package (denoted as CoclustMod, Co-
clustSpecMod and CoclustInfo in the experiments), we also included in the comparison
the implementations of the two co-clustering algorithms available in scikit-learn, denoted as
SpectralBi and SpectralCo in our experiments.6

4.2. Setup

The experiments were performed on a standard workstation (CPU: Intel(R) Core(TM) i5-
3210M CPU @ 2.50GHz; Memory: 8192 MB DDR3 @ 1600 MHz).7 The reported results were
obtained by running each algorithm 100 times with random initialization and averaging over
the best 50 executions.8 For SpectralBi and SpectralCo the default parameter values
were used, except of course for the numbers of clusters which were set to the same values as
for the other algorithms. The document-term contingency matrices were used in their original
form without any pre-processing or weighting.
To evaluate the performance of the algorithms, we compared the results they generated with
the true classes, by computing clustering accuracy, adjusted Rand index (ARI) and normalized
mutual information (NMI), the number of requested clusters corresponding to the values in
the fourth column of Table 3.

5http://qwone.com/~jason/20Newsgroups/
6SpectralBi and SpectralCo are implementations of the algorithms described in Kluger et al. (2003)

and Dhillon (2001).
7Except for the co-clustering of NG20 using CoclustMod, which required more memory.
8By “best”, we mean the solution optimizing the criterion used by the given algorithm (for example,

maximizing the modularity for CoclustSpecMod).

http://qwone.com/~jason/20Newsgroups/

Journal of Statistical Software 23

Dataset CoclustInfo CoclustMod Coclust- Spectral- Spectral-
SpecMod Biclustering Coclustering

CLASSIC3 0.934±0.001 0.918±0.003 0.914±0.000 0.729±0.059 0.912±0.001
CSTR 0.684±0.024 0.620±0.043 0.781±0.000 0.444±0.038 0.701±0.012
WEBACE 0.612±0.010 0.595±0.013 0.568±0.010 0.442±0.003 0.524±0.005
CLASSIC4 0.632±0.045 0.712±0.027 0.508±0.020 0.383±0.030 0.530±0.094
REVIEWS 0.593±0.023 0.530±0.032 0.341±0.019 0.291±0.001 0.424±0.003
SPORTS 0.564±0.033 0.547±0.026 0.544±0.010 0.395±0.047 0.435±0.009
RCV1 0.495±0.021 0.469±0.034 0.012±0.003 0.304±0.025 0.012±0.002
NG20 0.565±0.010 0.508±0.012 0.474±0.012 0.075±0.022 0.389±0.006

Table 4: NMI values.

Clustering accuracy, denoted Acc, measures the extent to which each cluster contains data
points from the corresponding class and is defined by Acc = 1

n max1≤k≤g
1≤`≤g

[∑Ck,L`
T (Ck,L`)],

where Ck is the kth cluster in the final results, L` is the true `th class and T (Ck,L`) is the
number of entities that belong to class ` and are assigned to cluster k. The greater the
clustering accuracy, the better the clustering performance. NMI (Strehl and Ghosh 2003) is
estimated by:

NMI =
∑

k,`
Nk,`

n log nNk,`

NkN̂`√
(∑k

Nk
n log Nk

n)(∑`
N̂`
n log N̂`

n)
,

where Nk denotes the number of objects contained in the cluster Ck (1 ≤ k ≤ g), N̂` is the
number of objects belonging to the class L` (1 ≤ ` ≤ g), and Nk,` denotes the number of
objects that are in the intersection between cluster Ck and class L`. The larger the NMI,
the better the quality of clustering.9 For ARI, we used the implementation provided by
scikit-learn.

4.3. Results and discussion

In particular, the results presented in Tables 4, 5 and 6 clearly show that the three CoClust
implementations outperform the spectral implementations available in scikit-learn in terms of
NMI and clustering accuracy.10 More precisely, CoclustInfo and CoclustMod perform
better than their spectral competitors (including CoclustSpecMod). Also, CoclustMod
provides an easy way of estimating the appropriate number of clusters (a feature implemented
by the coclust-nb script described in Section 3.1). There, is however a marked difference
in execution time between CoclustInfo and CoclustMod (Table 7). A drawback of
CoclustMod is that it has to handle a non sparse, modularity matrix, which is both time
and memory consuming. As a consequence, in terms of execution time, CoclustMod is
the slowest of the five compared algorithms. In contrast, the implementations available in
scikit-learn are very fast but, as already said, have significantly lower accuracy, ARI and NMI
scores.
The displayed results are those obtained using the technical environment available as of this

9The datasets and benchmark code can be found in the benchmark directory of the package.
10In these tables the number of row and column clusters requested is specified within parentheses after the

dataset name.

24 CoClust: Co-Clustering in Python

Dataset CoclustInfo CoclustMod Coclust- Spectral- Spectral-
SpecMod Biclustering Coclustering

CLASSIC3 0.987±0.000 0.983±0.001 0.979±0.000 0.884±0.041 0.979±0.000
CSTR 0.814±0.044 0.803±0.044 0.897±0.000 0.560±0.019 0.823±0.007
WEBACE 0.510±0.021 0.583±0.023 0.501±0.020 0.305±0.007 0.389±0.010
CLASSIC4 0.774±0.075 0.888±0.018 0.596±0.011 0.628±0.032 0.629±0.078
REVIEWS 0.716±0.025 0.686±0.035 0.477±0.006 0.462±0.000 0.504±0.001
SPORTS 0.573±0.046 0.674±0.027 0.638±0.028 0.476±0.021 0.550±0.013
RCV1 0.715±0.024 0.710±0.042 0.301±0.000 0.515±0.023 0.301±0.000
NG20 0.492±0.023 0.394±0.021 0.283±0.020 0.078±0.005 0.210±0.005

Table 5: Accuracy values.

Dataset CoclustInfo CoclustMod Coclust- Spectral- Spectral-
SpecMod Biclustering Coclustering

CLASSIC3 0.961±0.001 0.948±0.002 0.941±0.000 0.713±0.082 0.940±0.001
CSTR 0.686±0.055 0.642±0.059 0.809±0.000 0.299±0.035 0.721±0.003
WEBACE 0.434±0.039 0.550±0.031 0.334±0.037 0.213±0.013 0.344±0.011
CLASSIC4 0.529±0.101 0.703±0.040 0.299±0.055 0.296±0.044 0.309±0.142
REVIEWS 0.618±0.042 0.529±0.053 0.184±0.022 0.156±0.000 0.320±0.005
SPORTS 0.460±0.053 0.516±0.029 0.390±0.012 0.228±0.033 0.317±0.027
RCV1 0.501±0.029 0.484±0.043 0.000±0.000 0.238±0.028 0.000±0.000
NG20 0.380±0.017 0.285±0.019 0.196±0.019 0.008±0.004 0.125±0.008

Table 6: ARI values.

Dataset CoclustInfo CoclustMod Coclust- Spectral- Spectral-
SpecMod Biclustering Coclustering

CLASSIC3 1.902±0.568 4.226±1.221 5.915±0.044 0.305±0.012 0.108±0.001
CSTR 0.611±0.173 0.585±0.137 0.109±0.004 2.022±0.011 0.039±0.003
WEBACE 1.958±0.332 1.383±0.242 0.961±0.017 4.725±0.047 0.243±0.011
CLASSIC4 4.844±1.695 10.337±1.665 19.952±0.337 0.347±0.012 0.153±0.006
REVIEWS 9.985±2.670 20.696±4.344 71.652±0.213 0.938±0.034 0.446±0.006
SPORTS 10.063±2.085 33.538±6.009 99.342±0.280 1.313±0.038 0.661±0.025
RCV1 12.204±2.600 66.902±8.879 426.514±11.963 0.988±0.039 0.524±0.016
NG20 48.539±12.207 361.590±53.294 1825.573±156.806 4.486±0.261 2.289±0.375

Table 7: Compared execution times.

writing. They may slightly differ in the future with the evolution of the external resources
used in the implementation (e.g., NumPy, SciPy, etc.).

5. Conclusion
Co-clustering is an important technique in the era of so-called “big data” since it allows
to compress large, high dimensional matrices. However, few tools were available so far for
the Python community, and the CoClust package, therefore, aims at filling this gap. By

Journal of Statistical Software 25

presenting and contrasting the theory and implementation of two distinct families of co-
clustering algorithms (block-diagonal and non diagonal algorithms). The paper also provides
the reader with a representative survey of methods available in the co-clustering field.
Experimental results show that the three implemented algorithms adapt well to datasets of
various balance and sparsity and can be used with good co-clustering performance in many
settings. In particular, they clearly outperform the available Python implementations of co-
clustering algorithm in terms of result quality.
In the future we plan to include model-based co-clustering algorithms. We will more specifi-
cally focus on algorithms based on the Poisson latent-block model (Govaert and Nadif 2018;
Ailem, Role, and Nadif 2017b,a; Salah and Nadif 2019), but with extensions of these models
to better take into account data sparsity. Adding post-processing tools for facilitating the
interpretation of the produced co-clusters is another path for future work.

References

Ailem M, Role F, Nadif M (2015). “Co-Clustering Document-Term Matrices by Direct Max-
imization of Graph Modularity.” In CIKM 2015, pp. 1807–1810.

Ailem M, Role F, Nadif M (2016). “Graph Modularity Maximization as an Effective Method
for Co-Clustering Text Data.” Knowledge-Based Systems, 109, 160–173. doi:10.1016/j.
knosys.2016.07.002.

Ailem M, Role F, Nadif M (2017a). “Model-Based Co-Clustering for the Effective Handling
of Sparse Data.” Pattern Recognition, 72, 108–122. doi:10.1016/j.patcog.2017.06.005.

Ailem M, Role F, Nadif M (2017b). “Sparse Poisson Latent Block Model for Document
Clustering.” IEEE Transactions on Knowledge and Data Engineering, 29(7), 1563–1576.
doi:10.1109/tkde.2017.2681669.

Barkow S, Bleuler S, Prelić A, Zimmermann P, Zitzler E (2006). “BicAT: A Biclustering
Analysis Toolbox.” Bioinformatics, 22(10), 1282–1283. doi:10.1093/bioinformatics/
btl099.

Bird S, Klein E, Loper E (2009). Natural Language Processing with Python. O’Reilly Media.

Cai D, He X (2012). “Manifold Adaptive Experimental Design for Text Categorization.” IEEE
Transactions on Knowledge and Data Engineering, 24(4), 707–719. doi:10.1109/tkde.
2011.104.

Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014). “NbClust: An R Package for Deter-
mining the Relevant Number of Clusters in a Data Set.” Journal of Statistical Software,
61(6), 1–36. doi:10.18637/jss.v061.i06.

Charrad M, Lechevallier Y, Ahmed MB, Saporta G (2009). “Block Clustering for Web Pages
Categorization.” In Intelligent Data Engineering and Automated Learning (IDEAL 2009),
pp. 260–267. Springer-Verlag.

https://doi.org/10.1016/j.knosys.2016.07.002
https://doi.org/10.1016/j.knosys.2016.07.002
https://doi.org/10.1016/j.patcog.2017.06.005
https://doi.org/10.1109/tkde.2017.2681669
https://doi.org/10.1093/bioinformatics/btl099
https://doi.org/10.1093/bioinformatics/btl099
https://doi.org/10.1109/tkde.2011.104
https://doi.org/10.1109/tkde.2011.104
https://doi.org/10.18637/jss.v061.i06

26 CoClust: Co-Clustering in Python

Cheng Y, Church GM (2000). “Biclustering of Expression Data.” In ISMB2000 – The 8th
International Conference on Intelligent Systems for Molecular Biology, volume 8, pp. 93–
103.

Cho H, Dhillon IS (2008). “Coclustering of Human Cancer Microarrays Using Minimum Sum-
Squared Residue Coclustering.” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 5(3), 385–400. doi:10.1109/tcbb.2007.70268.

Deodhar M, Ghosh J (2010). “SCOAL: A Framework for Simultaneous Co-Clustering and
Learning from Complex Data.” ACM Transactions on Knowledge Discovery from Data,
4(3), 11. doi:10.1145/1839490.1839492.

Dhillon IS (2001). “Co-Clustering Documents and Words Using Bipartite Spectral Graph
Partitioning.” In KDD’01 – Proceedings of the Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 269–274.

Dhillon IS, Mallela S, Modha DS (2003). “Information-Theoretic Co-Clustering.” In Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 89–98.

Ding C, Li T (2007). “Adaptive Dimension Reduction Using Discriminant Analysis and
k-Means Clustering.” In Proceedings of the 24th International Conference on Machine
Learning, pp. 521–528.

Ding C, Li T, Peng W, Park H (2006). “Orthogonal Non-Negative Matrix Tri-Factorization for
Clustering.” In KDD’06 – Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 126–135.

Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV (2013). “A Comparative Analysis of Biclus-
tering Algorithms for Gene Expression Data.” Briefings in Bioinformatics, 14(3), 279–292.
doi:10.1093/bib/bbs032.

Freitas A, Ayadi W, Elloumi M, Oliveira LJ, Hao JK (2012). “Survey on Biclustering of
Gene Expression Data.” In M Elloumi, AY Zomaya (eds.), Biological Knowledge Discovery
Handbook, pp. 591–608. John Wiley & Sons. doi:10.1002/9781118617151.ch25.

Gaujoux R, Seoighe C (2010). “A Flexible R Package for Nonnegative Matrix Factorization.”
BMC Bioinformatics, 11(367), 1–9. doi:10.1186/1471-2105-11-367.

George T, Merugu S (2005). “A Scalable Collaborative Filtering Framework Based on Co-
Clustering.” In ICDM’05, pp. 625–628. IEEE Computer Society.

Govaert G, Nadif M (2003). “Clustering with Block Mixture Models.” Pattern Recognition,
36(2), 463–473. doi:10.1016/s0031-3203(02)00074-2.

Govaert G, Nadif M (2005). “An EM Algorithm for the Block Mixture Model.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(4), 643–647. doi:
10.1109/tpami.2005.69.

Govaert G, Nadif M (2006). “Fuzzy Clustering to Estimate the Parameters of Block Mixture
Models.” Soft Computing, 10(5), 415–422. doi:10.1007/s00500-005-0502-z.

https://doi.org/10.1109/tcbb.2007.70268
https://doi.org/10.1145/1839490.1839492
https://doi.org/10.1093/bib/bbs032
https://doi.org/10.1002/9781118617151.ch25
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1016/s0031-3203(02)00074-2
https://doi.org/10.1109/tpami.2005.69
https://doi.org/10.1109/tpami.2005.69
https://doi.org/10.1007/s00500-005-0502-z

Journal of Statistical Software 27

Govaert G, Nadif M (2008). “Block Clustering with Bernoulli Mixture Models: Comparison
of Different Approaches.” Computational Statistics & Data Analysis, 52(6), 3233–3245.
doi:10.1016/j.csda.2007.09.007.

Govaert G, Nadif M (2013). Co-Clustering: Models, Algorithms and Applications. John Wiley
& Sons. doi:10.1002/9781118649480.

Govaert G, Nadif M (2018). “Mutual Information, Phi-Squared and Model-Based Co-
Clustering for Contingency Tables.” Advances in Data Analysis and Classification, 12(3),
455–488. doi:10.1007/s11634-016-0274-6.

Gupta N, Aggarwal S (2010). “MIB: Using Mutual Information for Biclustering Gene Expres-
sion Data.” Pattern Recognition, 43(8), 2692–2697. doi:10.1016/j.patcog.2010.03.002.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009). “The Weka
Data Mining Software: An Update.” ACM SIGKDD Explorations Newsletter, 11(1), 10–
18. doi:10.1145/1656274.1656278.

Han EH, Boley D, Gini ML, Gross R, Hastings K, Karypis G, Kumar V, Mobasher B, Moore
J (1998). “WebACE: A Web Agent for Document Categorization and Exploration.” In
Agents, pp. 408–415.

Hanczar B, Nadif M (2010). “Bagging for Biclustering: Application to Microarray Data.” In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 490–505.

Hanczar B, Nadif M (2011). “Using the Bagging Approach for Biclustering of Gene Expression
Data.” Neurocomputing, 74(10), 1595–1605. doi:10.1016/j.neucom.2011.01.013.

Hanczar B, Nadif M (2012). “Ensemble Methods for Biclustering Tasks.” Pattern Recognition,
45(11), 3938–3949. doi:10.1016/j.patcog.2012.04.010.

Hanczar B, Nadif M (2013). “Precision-Recall Space to Correct External Indices for Biclus-
tering.” In International Conference on Machine Learning, pp. 136–144.

Hartigan JA (1972). “Direct Clustering of a Data Matrix.” Journal of the American Statistical
Association, 67(337), 123–129. doi:10.2307/2284710.

Henriques R, Antunes C, Madeira SC (2015). “A Structured View on Pattern Mining-Based
Biclustering.” Pattern Recognition, 48(12), 3941–3958. doi:10.1016/j.patcog.2015.06.
018.

Hornik K, Feinerer I, Kober M, Buchta C (2012). “Spherical k-Means Clustering.” Journal
of Statistical Software, 50(10), 1–22. doi:10.18637/jss.v050.i10.

Hunter JD (2007). “matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

Jones E, Oliphant T, Peterson P, et al. (2001). “SciPy: Open Source Scientific Tools for
Python.” URL http://www.scipy.org/.

https://doi.org/10.1016/j.csda.2007.09.007
https://doi.org/10.1002/9781118649480
https://doi.org/10.1007/s11634-016-0274-6
https://doi.org/10.1016/j.patcog.2010.03.002
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1016/j.neucom.2011.01.013
https://doi.org/10.1016/j.patcog.2012.04.010
https://doi.org/10.2307/2284710
https://doi.org/10.1016/j.patcog.2015.06.018
https://doi.org/10.1016/j.patcog.2015.06.018
https://doi.org/10.18637/jss.v050.i10
https://doi.org/10.1109/mcse.2007.55
http://www.scipy.org/

28 CoClust: Co-Clustering in Python

Kaiser S, Leisch F (2008). “A Toolbox for Bicluster Analysis in R.” In P Brito (ed.), COMP-
STAT 2008 – Proceedings in Computational Statistics, volume II. Physica Verlag, Heidel-
berg.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. doi:10.18637/jss.v011.i09.

Karypis G (2003). “CLUTO: A Clustering Toolkit.” Technical Report 02-017, Department of
Computer Science, University of Minnesota.

Kluger Y, Basri R, Chang JT, Gerstein M (2003). “Spectral Biclustering of Microarray
Cancer Data: Co-Clustering Genes and Conditions.” Genome Research, 13(4), 703–716.
doi:10.1101/gr.648603.

Labiod L, Nadif M (2011). “Co-Clustering for Binary and Categorical Data with Maximum
Modularity.” In 11th IEEE International Conference on Data Mining, ICDM, pp. 1140–
1145.

Leger JB (2016). “blockmodels: A R-Package for Estimating in Latent Block Model and
Stochastic Block Model, with Various Probability Functions, with or without Covariates.”
arXiv 1602.07587, arXiv.org E-Print Archive. URL http://arxiv.org/abs/1602.07587.

Li T (2005). “A General Model for Clustering Binary Data.” In KDD’05, pp. 188–197.

Madeira SC, Oliveira AL (2004). “Biclustering Algorithms for Biological Data Analysis: A
Survey.” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1),
24–45. doi:10.1109/tcbb.2004.2.

Nadif M, Govaert G (2010). “Model-Based Co-Clustering for Continuous Data.” In Ninth
International Conference on Machine Learning and Applications (ICMLA), pp. 175–180.

Newman MEJ, Girvan M (2004). “Finding and Evaluating Community Structure in Net-
works.” Physical Review E, 69(2), 026113. doi:10.1103/physreve.69.026113.

Oliphant TE (2006). A Guide to NumPy. Trelgol Publishing, USA.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “scikit-Learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Salah A, Nadif M (2019). “Directional Co-Clustering.” Advances in Data Analysis and Clas-
sification. doi:10.1007/s11634-018-0323-4.

Singh Bhatia P, Iovleff S, Govaert G (2017). “blockcluster: An R Package for Model-Based
Co-Clustering.” Journal of Statistical Software, 76(9), 1–24. doi:10.18637/jss.v076.i09.

Strehl A, Ghosh J (2003). “Cluster Ensembles – A Knowledge Reuse Framework for Com-
bining Multiple Partitions.” Journal of Machine Learning Research, 3, 583–617.

https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.1101/gr.648603
http://arxiv.org/abs/1602.07587
https://doi.org/10.1109/tcbb.2004.2
https://doi.org/10.1103/physreve.69.026113
https://www.R-project.org/
https://doi.org/10.1007/s11634-018-0323-4
https://doi.org/10.18637/jss.v076.i09

Journal of Statistical Software 29

Tanay A, Sharan R, Shamir R (2005). “Biclustering Algorithms: A Survey.” In S Aluru (ed.),
Handbook of Computational Molecular Biology. Chapman & Hall/CRC.

The MathWorks Inc (2017). MATLAB – The Language of Technical Computing, Version
R2017b. Natick, Massachusetts.

Van Mechelen I, Bock HH, De Boeck P (2004). “Two-Mode Clustering Methods: A
Structured Overview.” Statistical Methods in Medical Research, 13(5), 363–394. doi:
10.1191/0962280204sm373ra.

Van Rossum G, others (2011). Python Programming Language.

Xu G, Zong Y, Dolog P, Zhang Y (2010). “Co-Clustering Analysis of Weblogs Using Bipar-
tite Spectral Projection Approach.” In Knowledge-Based and Intelligent Information and
Engineering Systems, pp. 398–407. Springer-Verlag.

Zhong S, Ghosh J (2005). “Generative Model-Based Document Clustering: A Com-
parative Study.” Knowledge and Information Systems, 8(3), 374–384. doi:10.1007/
s10115-004-0194-1.

Affiliation:
François Role, Stanislas Morbieu, Mohamed Nadif
LIPADE
Université Paris-Descartes
45 rue des Saints Pères
Paris 75006, France
E-mail: francois.role@parisdescartes.fr,

stanislas.morbieu@etu.parisdescartes.fr,
mohamed.nadif@parisdescartes.fr

URL: http://lipade.mi.parisdescartes.fr/?page_id=242

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

March 2019, Volume 88, Issue 7 Submitted: 2016-04-21
doi:10.18637/jss.v088.i07 Accepted: 2017-12-11

https://doi.org/10.1191/0962280204sm373ra
https://doi.org/10.1191/0962280204sm373ra
https://doi.org/10.1007/s10115-004-0194-1
https://doi.org/10.1007/s10115-004-0194-1
mailto:francois.role@parisdescartes.fr
mailto:stanislas.morbieu@etu.parisdescartes.fr
mailto:mohamed.nadif@parisdescartes.fr
http://lipade.mi.parisdescartes.fr/?page_id=242
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v088.i07

	Introduction
	Theory
	General notations
	Modularity-based, block-diagonal co-clustering
	Bipartite graph modularity (BGM)
	CoclustMod: Co-clustering by alternated maximization of BGM
	CoClustSpecMod: Co-clustering by spectral maximization of BGM

	Information-theoretic co-clustering
	Initial contingency table and associated joint distribution
	Aggregated contingency table and associated joint distribution

	Software
	Command-line scripts
	Running a co-clustering algorithm: The coclust script
	Detecting the best number of co-clusters: The coclust-nb script

	Python API
	CoClustMod usage
	CoClustSpecMod usage
	CoClustInfo usage
	Combined usage

	Example of integration with scikit-learn

	Experiments
	Description of datasets
	Setup
	Results and discussion

	Conclusion

