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Abstract

Traditional regression models, including generalized linear mixed models, focus on un-
derstanding the deterministic factors that affect the mean of a response variable. Many
biological studies seek to understand non-deterministic patterns in the variance or dis-
persion of a phenotypic or ecological response variable. We describe a new R package,
dalmatian, that provides methods for fitting double hierarchical generalized linear models
incorporating fixed and random predictors of both the mean and variance. Models are
fit via Markov chain Monte Carlo sampling implemented in either JAGS or nimble and
the package provides simple functions for monitoring the sampler and summarizing the
results. We illustrate these functions through an application to data on food delivery by
breeding pied flycatchers (Ficedula hypoleuca). Our intent is that this package makes it
easier for practitioners to implement these models without having to learn the intricacies
of Markov chain Monte Carlo methods.

Keywords: Bayesian inference, diversity patterns, hierarchical models, generalized linear mod-
els, Markov chain Monte Carlo, structured residual variance, variance patterns.

1. Introduction

Linear models and their extensions, including generalized linear models, generalized additive
models, and even random or mixed effects models, focus on describing how the mean of a
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response variable varies either as a function of known explanatory variables or as a result
of unexplained variation between observational units. In all of these models, the residuals
are assumed to be random noise generated from some distribution whose variance does not
depend directly on the explanatory variables or random effects. Simple linear regression,
for example, commonly assumes that the residuals are normally distributed with mean zero
and constant variance while the variance of the response in a generalized linear model is
determined by the mean and, possibly, a constant dispersion parameter. However, there are
many cases in which it is as important to understand changes in the variation of a response
as it is to understand changes in its mean.
Our own work is motivated by problems of understanding differences in the variability of a
biological response that may be associated with ecological or evolutionary effects. Ecological
and organismal variation exists in hierarchical structures: population dynamics vary with
spatial scale (e.g., Bjørnstad, Ims, and Lambin 1999; Liebhold, Koenig, and Bjørnstad 2004),
indices of diversity vary with spatial scale and trophic level (e.g, Willig, Kaufman, and Stevens
2003), and phenotypes vary within , among individuals, and among higher taxonomic units
(e.g., Westneat, Wright, and Dingemanse 2015). Partitioning variation according to these
hierarchical structures is key to understanding how differences between individuals, species,
and ecological communities are produced and maintained. Linear mixed effects models pro-
vide an important tool for describing patterns in variance and covariance, but impose the
assumption of constant residual variance conditional on the fixed and random effects in the
mean. However, this assumption may be violated, and recent work has shown that residual
variance may differ as the result of some relatively under-studied ecological or evolutionary
processes (Westneat et al. 2015) and may also exhibit hierarchical structure itself (Westneat,
Schofield, and Wright 2012).
The dalmatian package facilitates fitting of double hierarchical generalized linear models
(DHGLM) in R (R Core Team 2021) via Markov chain Monte Carlo (MCMC) sampling
implemented in JAGS (Plummer 2003) or nimble (de Valpine, Turek, Paciorek, Anderson-
Bergman, Temple Lang, and Bodik 2017; de Valpine, Paciorek, Turek, Michaud, Anderson-
Bergman, Obermeyer, Wehrhahn Cortes, Rodríguez, Temple Lang, and Paganin 2020). These
models extend traditional generalized linear mixed effects models (GLMM) by allowing the
dispersion parameter to depend on both fixed and random effects. The package allows users to
construct these models through a simple syntax that describes the structure of the mean and
dispersion components. The package also provides functions to generate initial values, assess
the MCMC sampler’s performance, and summarize the output, both visually and numerically.
Our hope is that this makes these complex models more accessible to other researchers who
are interested in modeling changes in the variability in ecological problems, or in any other
field.

2. Getting the package

Package dalmatian (Bonner and Kim 2021) is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=dalmatian. The dalmatian
package can be installed in R by running install.packages("dalmatian"). At the time
of writing the version available is 1.0.0. Updates to the package will be made available on
CRAN and are developed on GitHub at https://github.com/sjbonner/dalmatian.

https://CRAN.R-project.org/package=dalmatian
https://github.com/sjbonner/dalmatian
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3. Model structure
Data are assumed to comprise a sample of n observations with Yi denoting the response for
observation i, xµ,i the vector of observed covariates associated with the mean, and xφ,i the
vector of observed covariates associated with the dispersion. Note that xµ,i and xφ,i may
share components. Let Y = (Y1, . . . , Yn)> denote the combined vector of responses, Xµ the
matrix of covariates for the mean with x>µ,i in the i-th row and Xφ the matrix of covariates
for the dispersion with x>φ,i in the i-th row. Similarly, let Zµ and Zφ represent the design
matrices for the random effects of the mean and dispersion components.
Models fit by dalmatian assume the following structure:

1. Conditional on the fixed and random effects, Y1, . . . , Yn represent independent draws
from some distribution which can be parameterized in terms of the mean, µi, and a
dispersion parameter, φi, such that E(Yi) = µi and Var(Yi) is a function of µi and
φi. This definition includes distributions in the exponential family, but broadens the
class of models to include distributions like the negative binomial and beta-binomial
that are commonly applied to over-dispersed counts or success/failure data. Table 1
describes the distributions currently available. We plan to add further distributions as
the package is developed.

2. The mean and dispersion for each observation, after suitable transformation, are linear
functions of the associated fixed and random effects such that

g(µ) = η = Xµα+ Zµε (1)

and
h(φ) = λ = Xφψ + Zφξ. (2)

Here g(µ) = (g(µ1), . . . , g(µn))> and h(φ) = (h(φ1), . . . , h(φn))> represent the vectors
formed by applying the link functions g(·) and h(·) to each element of µ and φ respec-
tively, and η = (η1, . . . , ηn)> and λ = (λ1, . . . , λn)> denote the linear predictors for the
two components.

3. The random effects are assumed to be independent and normally distributed such that

εj ∼ N(0, τ2
ε ), j = 1, . . . , p

and

ξk ∼ N(0, τ2
ξ ), k = 1, . . . , q

where p and q denote the length of ε and ξ, respectively. Current versions of the package
do not allow for non-normal random effects or correlation between the elements of ε
and ξ, though we plan to relax this assumption in the future.

4. Sample data
As an example, we consider data from a study of pied flycatchers (Ficedula hypoleuca) col-
lected in the Abergwyngregyn National Nature Reserve, North Wales, United Kingdom, in
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Gaussian Gamma Negative Beta-
binomial binomial

Support (−∞,∞) (0,∞) 0, 1, 2, . . . 0, 1, 2, . . . ,m

JAGS parameters µ, τ2 r, λ r, p α, β

Mean µ ∈ (−∞,∞) r
λ > 0 r(1−p)

p > 0 mα
(α+β) ∈ (0,m)

Variance 1
τ2

r
λ2

r(1−p)
p2

mαβ(α+β+m)
(α+β)2(α+β+1)

Dispersion parameter 1
τ2 > 0 1

λ > 0 1
p > 1 1

α+β+1 ∈ (0, 1)

Table 1: Response distributions currently implemented in dalmatian. The columns describe
the distributions in terms of their support, the parameterization implemented in JAGS, the
relationship between the JAGS parameters and the mean and variance, and the dispersion
parameter.

the summers of 1998 and 1999. Westneat, Mutzel, Bonner, and Wright (2017) presented full
details of the study. Briefly, the researchers observed pairs of flycatchers nesting in 21 nest
boxes in the first year and 16 nest boxes in the second year to study the effects of manipu-
lating brood size on the parents’ provisioning behavior. Chicks were moved between the nest
boxes 2 or 3 days after hatching to artificially increase or decrease the number of offspring
in each brood. Video cameras affixed to the boxes enabled the researchers to monitor the
timing of the parents’ visits to the nests, types of prey delivered, and begging behavior of
chicks, and electronic balances fitted to each box monitored the amount of food left by the
parents on these visits (the load), rounded to the nearest tenth of a gram. Each box was
monitored for 6 bouts of approximately 1.5 hours (dependent on the camera’s battery) over
one 24 hour period 7–12 days after hatching. All data from 7 boxes observed in 1998 and 3
in 1999 were excluded because the nests were predated or only a single parent attended the
chicks. Individual visits were excluded if the parent removed a fecal sac from the nest, since
the load could not be determined. The final data contained 4693 records from 52 parents
of 26 broods. These data can be accessed with data("pied_flycatchers_1", package =
"dalmatian") once the package is loaded in R.
The initial model we fitted to these data considered the log of the load on each visit as the
response variable. In many cases load was recorded as zero even though the parent was
carrying food indicating that the load was below the tolerance of the scale. For these records,
we set the response equal to log(0.01) ≈ −4.6. We assumed that residuals were normally
distributed and considered the mean as a function of the log of the time between visits
(the inter-visit interval or IVI) and allowed both the mean and dispersion (the variance)
to depend on the treatment, i.e., increased or decreased brood size, and the parent’s sex.
We also included random effects in both components of the model to allow for variation
among individuals and to account for dependence between the repeated observations from
each individual. Mathematically, our model implies that the k-th observation of log load
from the j-th parent in box i, denoted yijk, has mean

µijk = α0 + α1log(IVI)ijk + α2Broodi + α3Sexij + εij (3)
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and variance σ2
ij such that

log(σ2
ij) = ψ0 + ψ1Broodi + ψ2Sexij + ξij (4)

where Broodi = 1 if the brood size in box i was increased, and 0 otherwise, and Sexij = 1
if the parent is male, and 0 otherwise. We let τ2

ε = Var(εij) and τ2
ξ = Var(ξij) denote the

random effects variances.
The following code loads the library, makes the data available, and computes the appropriate
response variable. We also set the random seed in order that our results can be reproduced
exactly (which would not be necessary in new analyses):

R> library("dalmatian")
R> set.seed(27182)
R> data("pied_flycatchers_1", package = "dalmatian")
R> pfdata$logLoad <- log(pmax(pfdata$load, 0.01))

5. Model fitting

5.1. Model definition

The structure of the model is defined through two named lists corresponding to the mean and
dispersion components of the model, which are passed as arguments to the package’s main
function, dalmatian(). Each of these lists may contain three elements named fixed, random,
and link. Both fixed and random are themselves lists containing the following elements:

• name: The base name for the corresponding coefficients other function that can appear
on the left side of an expression in JAGS/nimble.

• formula: A one-side formula defining the associated linear predictor.

• priors: A list defining the prior distributions for the associated parameters.

The link element must be a text string specifying the link function. Choices include "log",
"logit", "cloglog", and "probit". If this element is not defined then the identity link will
be used. Each element of the list of prior distributions must be a vector that specifies the
class of distribution, by name of the corresponding JAGS/nimble function (e.g., dnorm for the
normal distribution and dt for the t distribution), and its parameters according to the default
BUGS parameterization as described in the manuals for both JAGS (Plummer 2017, Section
9.2) and nimble (de Valpine et al. 2020, Section 5.2.4). The list of prior distributions may
either have the same length as the number of effects or length one, in which case the same prior
is assigned to all parameters in that component of the model. For example, if a component of
the model contained an intercept and a slope then priors = list(c("dnorm", 0, 0.001))
would specify that both parameters are assigned independent normal priors with mean 0
and precision 0.001 (variance 1000). Alternatively, priors = list(c("dnorm", 0, 0.001),
c("dexp", 0, 0.001)) would specify that the intercept is assigned a normal prior while the
slope is assigned a double exponential prior with mean, both with mean 0 and precision 0.001.
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Prior distributions for each parameter are assumed to be independent and any univariate
distribution supported by the chosen MCMC engine may be assigned to any parameter. It
is generally up to the user to select appropriate distributions. However, dalmatian will,
by default, constrain the values generated by the MCMC sampler such that the mean and
dispersion remain within the allowable ranges for the selected model (e.g., φi > 0 for the
Gaussian model or µi > 0 and φ0 for the gamma model). If the list of prior distributions
is omitted then default prior distributions are assigned. These are normal with mean 0 and
variance 1000 for fixed effects and half-t with 3 degrees of freedom and scale parameter 5 for
the standard deviations of any random effects.
The mean component of the pied flycatcher load model in Equation 3 is defined as:

R> mymean <- list(
+ fixed = list(name = "alpha", formula = ~ log(IVI) + broodsize + sex),
+ random = list(name = "epsilon", formula = ~ -1 + indidx)
+ )

The fixed element indicates that the linear predictor contains three known predictors and
the associated parameters will be called alpha.log(IVI), alpha.broodsize, and alpha.sex.
These parameters will be assigned the default prior. The random element indicates that the
random effects are defined according to the variable indix, a factor with distinct levels for
each of the 60 individuals observed during the experiment. The vector of standard deviations
for the random effects will be named sd.epsilon and will have length equal to the number of
effects in the formula. The -1 in the formula of the random effects is required to remove the
intercept from the design matrix and maintain the mean of zero. The identity link function
will be used since link is not specified.
The dispersion component in Equation 4 is defined similarly:

R> mydisp <- list(
+ fixed = list(name = "psi", formula = ~ broodsize + sex),
+ random = list(name = "xi", formula = ~ -1 + indidx),
+ link = "log"
+ )

The only differences are that we add the link element to specify that the dispersion be
modeled on the log scale, remove log(IVI) from the formula for the fixed effects, and change
the base name of the parameters. Once again, we assign the default priors.

5.2. MCMC arguments

The choice of MCMC sampling package is controlled by the engine argument of the function
dalmatian() (either engine = "JAGS" or engine = "nimble"). Further arguments also
need to be supplied to control the MCMC sampler. These arguments are defined in two
named lists, jags.model.args and coda.samples.args, which take their names from the
functions jags.model() and coda.samples() for creating and sampling from model objects
in the rjags package (Plummer 2021). The only required element of jags.model.args is file
that names the file to which the model code will be written. Further, optional, arguments
include inits, n.adapt, and quiet, as described in the help for jags.model. If initial values
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are provided then dalmatian will take the number of chains, n.chains, from the length of
inits. Otherwise, three chains will be run in parallel and the initial values will be generated
as described in Section 5.3. If n.adapt is not set then the chains will be adapted over 1000
iterations (the default given by rjags). The second list must include the element n.init
specifying the number of iterations to run the sampler after the adaption phase. Further
arguments may include thin and na.rm as defined in the help file for coda.samples().
The following code will sample from the posterior distribution of the model of the pied fly-
catcher data by running three parallel chains, since initial values are not specified, with 1000
iterations in the adaption phase and 2000 iterations in the sampling phase. The model file
will be named pied_flycatchers_1.jags:

R> jm.args <- list(file = "pied_flycatchers_1.jags", n.adapt = 1000)
R> cs.args <- list(n.iter = 2000)

5.3. Initial values

Our package also handles automatic generation of diffuse initial values to start parallel chains
for assessing convergence and mixing. If initial values are not specified then dalmatian gener-
ates three sets of initial values by fitting models including only the fixed effects (Xµ and Xφ),
only the random effects (Zµ and Zφ), and both the fixed and random effects. These models
are fit via the package dglm for fitting double generalized linear models (DGLMs, Dunn and
Smyth 2020) with the random effects treated as fixed effects in order to speed the computa-
tions. Initial variances for the random effects are then set equal to the empirical variance of
the random effects. For example, the second set of initial values for the pied flycatcher model
are generated by fitting the DGLM with:

µijk = α0 + εij and log(σ2
ij) = ψ0 + ξij

treating εij and ξij as fixed, not random, effects. Initial values of the random effects variances
are then computed as Var(εij) = ∑

i,j ε̂
2
ij and Var(ξij) = ∑

i,j ξ̂
2
ij (noting that ∑

i,j ε̂ij = 0 and∑
i,j ξ̂ij = 0). In some cases the mixed effects model will be over-parameterized when the

random effects are treated as fixed effects and some values of ξij and εij will not be estimated
by dglm. When this occurs we compute the variances based on the estimated values and
then fill in the missing values with random draws from a mean zero normal distribution. For
the first set of initial values we set Var(εij) = Var(ξij) = 0.001, since these values must be
positive, and allow the sampler to generate the initial values of εij and ξij . Our package also
allows the user to specify initial values directly, which is often most useful if initial values can
be pulled from a previous run of a similar model as illustrated in Section 7.1.
The initial states of the random number generators for each chain can also be passed to JAGS
through the list of initial values in the jags.model.args list (see Plummer 2017, Section 3.3.2,
for details). This is not usually required, but we set the specify the random number generators
and their seeds for each model in order that the results shown below can be reproduced:

R> jm.args$inits <- list(
+ list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 13),
+ list(".RNG.name" = "base::Marsaglia-Multicarry", ".RNG.seed" = 1597),
+ list(".RNG.name" = "base::Super-Duper", ".RNG.seed" = 196418))
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Note that the output in this paper was generated with R 4.1.1, g++ compiler provided by the
Gnu Compiler Collection (GCC) version 9.3.0-17, and JAGS version 4.3.0 running on Ubuntu
Linux 20.04. Exact results may depend on the operating system, version of R, compiler, and
compiler version. However, the results in other setups will be very similar and lead to the
same conclusions qualitatively.

5.4. Running the sampler

Having defined the model structure and arguments controlling the MCMC sampler, the model
can now be fit via the function dalmatian(). Required arguments are:

• df: The data frame containing the response and predictor values.

• mean.model: The list defining the structure of the mean.

• dispersion.model: The list defining the structure of the dispersion.

• jags.model.args: The list of arguments passed to jags.model().

• coda.samples.args: The list of arguments passed to coda.samples().

The user must also specify either the name of the response variable, response, or both lower
and upper if the response is censored (see Section 7.1). Further arguments to this function
allow the fitting to be fine-tuned and are described in the documentation.
The following command runs the MCMC sampler in JAGS for the previously defined model
of the pied flycatcher data. As described in Section 5.2, the sampler could be run with nimble
by adding the argument engine = "nimble".

R> pfresults <- dalmatian(df = pfdata, mean.model = mymean,
+ dispersion.model = mydisp, jags.model.args = jm.args,
+ coda.samples.args = cs.args, response = "logLoad")

Sampling for this model in JAGS took approximately 50 minutes on a machine with an Intel
i7-6700K 4.00 GhZ CPU and 32 GB of RAM running Ubuntu Linux 18.04 LTS. The output of
dalmatian() is an object of class ‘dalmatian’ which contains the core input arguments and
the sampled values in an mcmc.list object called coda which can be manipulated with the
functions from the coda package (Plummer, Best, Cowles, and Vines 2006), see the associated
help file for further details.

6. Post-processing
Our package provides several functions to process the MCMC output either to assess conver-
gence and mixing of the sampling algorithm or to summarize the posterior distribution. Most
are wrappers for corresponding functions from the coda and ggmcmc packages (see Plummer
et al. 2006; i Marín 2016, respectively). All of these functions are constructed as S3 generic
functions with specific methods for objects of class ‘dalmatian’.
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6.1. Convergence diagnostics

The function traceplots() creates trace plots for visually assessing the convergence and
mixing of the Markov chains constructed by the sampler. Specifically, the function constructs
trace plots for the fixed effects and the standard deviations of the random effects for both the
mean and dispersion components, as applicable. If the argument show = TRUE hen the plots
will be displayed immediately in the open graphics device. Otherwise the saved trace plots
for the four components can be accessed individually as follows:

R> pftraceplots <- traceplots(pfresults, show = FALSE)
R> pftraceplots$meanFixed
R> pftraceplots$dispersionFixed
R> pftraceplots$meanRandom
R> pftraceplots$dipsersionRandom

Trace plots for the parameters of the pied flycatcher example are displayed in Figure 1,
Figure 2, and Figure 3 in Appendix A.1. The traces suggest that the chains have converged
well, but might be mixing slowly for some parameters indicating that the sampler should be
run for longer to compute accurate summaries of the posterior distribution.
Numerical convergence diagnostics including the Brooks-Gelman-Rubin potential scale re-
duction factor (Gelman and Rubin 1992; Brooks and Gelman 1998), Raftery and Lewis run
length diagnostic (Raftery and Lewis 1995), and effective sample size are computed by the
function convergence(). Again, the individual elements may be saved to be accessed at a
later time:

R> pfconvergence <- convergence(pfresults)
R> pfconvergence$gelman
R> pfconvergence$raftery
R> round(pfconvergence$effectiveSize)

Convergence diagnostics for the pied flycatcher example, provided in Appendix A.2, confirm
our suspicions from examining the trace plots. The Brooks-Gelman-Rubin diagnostics indicate
that the chains have converged. However, the Raftery and Lewis diagnostics indicate that
many more iterations would be required to estimate the 2.5-th percentile of all fixed effects
0.005 with probability 0.95. The estimated effective sample size for these parameters is also
below 300; too small to provide precise estimates of the 95% credible intervals.

6.2. Posterior summaries

Functions are also provided to construct numerical and visual summaries of the posterior
distribution. Numerical summaries including the mean, standard deviation, and limits of
highest posterior density credible intervals are computed via the function summary():

R> summary(pfresults)

Caterpillar plots which provide a graphical representation of the same information are con-
structed with caterpillar(). As with the trace plots, caterpillar plots for all parameters
can be displayed immediately or saved and accessed later as follows:
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R> pfcaterpillar <- caterpillar(pfresults, show = FALSE)
R> pfcaterpillar$meanFixed
R> pfcaterpillar$dispersionFixed
R> pfcaterpillar$meanRandom
R> pfcaterpillar$dispersionRandom

Caterpillar plots of the fixed effects for the analysis of the pied flycatchers shown in Ap-
pendix A.4 indicate that there are significant effects of the brood size manipulation, sex, and
the log of the IVI on the mean of the log load. There is also some evidence of an effect of sex,
but not the brood size manipulation, on the variance. We do not discuss these results further
and instead point the reader to the complete analysis in Westneat et al. (2017).

6.3. Fitted values

The function predict() computes either the posterior mean or mode of the mean and dis-
persion components for specified values of the covariates. Primary arguments include:

• object: An object of class ‘dalmatian’ containing previous model output.

• newdata: An optional data frame specifying the combinations of covariates at which to
compute the fitted values.

If newdata is not provided then fitted values are computed for each entry in the original data.
Names and formats of variables in newdata should match the original data, and any factor
variables must have the same number of levels with the same names. Population level fitted
values can be obtained by setting the values of variables defining the random effects to NA.
Further arguments include:

• method: Either mean (default) or mode.

• se: A boolean flag indicating whether posterior standard deviations should be computed
(defaults to TRUE).

• ci: A boolean flag indicating whether credible intervals should be computed (defaults
to TRUE).

• type: Identifies whether prediction are on the scale of the linear predictor (the default)
or the response.

• level: A vector of levels for the credible intervals (defaults to 0.95).

For example, the following code would compute the fitted value of the linear predictor of the
mean and variance of the log load, with 95% credible intervals, for the individual represented
in the first line of data, the female at the first box, for values of IVI ranging between 1 and
100:

R> newdata <- cbind(pfdata[1, c("broodsize", "sex", "indidx")],
+ data.frame(IVI = 1:100))
R> predict(object = pfresults, newdata = newdata)
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Alternatively, population level fitted values for the mean and variance for all combinations of
sex, brood size manipulation, and values IVI ranging from 1 to 100 can be computed using
package tidyr (Wickham 2014; Wickham, François, Henry, and Müller 2021) as:

R> library("tidyr")
R> newdata1 <- crossing(broodsize = factor(c("Decreased", "Increased")),
+ IVI = 1:100, sex = factor(c("Female", "Male")))
R> newdata1$indidx <- factor(NA, levels(pfdata$indidx))
R> fitted1 <- predict(object = pfresults, newdata = newdata1,
+ type = "response")

Plots (created with package ggplot2, Wickham 2016) comparing the fitted values of fitted
population median load (back-transformed from the fitted mean on the log scale) as a func-
tion of IVI for males and females with reduced and increased brood sizes are provided in
Appendix A.5. As expected from the model output, the plots indicate that load is higher,
on average, for females than for males and for parents in boxes with increased rather than
decreased brood sizes.

6.4. Print and plot

The package also provides print() and plot() methods to provide easy access to several
of the above functions and summarize dalmatian() objects. Calling the print() method
displays basic information about the structure of the fitted model, and calls the previously
described functions that compute numerical summaries and convergence diagnostics. The
plot() method calls the previous functions that create trace plots and caterpillar plots.

7. Further features

7.1. Rounding

One feature of dalmatian is that it provides the ability to model censored response variables.
Loads returned by the parents in the pied flycatcher study were measured on analog scales
visible in the video recordings and were rounded to the nearest 0.10 g. For a small number of
observations, less than 4%, the researchers attempted to round the load to the nearest 0.05 g.
To account for this, we treat load as a censored response variable known only to lie in the
interval (yijk−0.049, yijk + 0.05) if the observed load is positive, yijk > 0, and in (0.001, 0.05)
if yijk = 0.
To implement this in dalmatian we create two new variables bounding the true response
variable, which is the logarithm of the load:

R> pfdata$lowerLoad <- log(pmax(0.001, pfdata$load - 0.049))
R> pfdata$upperLoad <- log(pfdata$load + 0.05)

We then specify that rounding = TRUE in the call to dalmatian() and supply the new
variables as the bounds on the response via the arguments lower and upper. Here we also
illustrate how initial values may be supplied by extracting initial values from previous results.
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Initial values for the true load are randomly drawn from a uniform distribution between
the lower and upper bounds. Note that initial values are specified in the list passed to the
jags.model.args argument of dalmatian(). Any uninitialized variables are initialized by
the sampler. The following code extracts initial values from the final iteration of the previous
model and then fits the new model, saving the JAGS code to pied_flycatchers_2.jags.
As before, we set specify the initial states of the random number generators in order that the
results can be reproduced:

R> jm.args2 <- list(file = "pied_flycatchers_2.jags", n.adapt = 1000,
+ inits = lapply(1:3, function(i) {
+ last <- pfresults$coda[[i]][2000, ]
+ setJAGSInits(mymean, mydisp,
+ fixed.mean = last[1:4], random.mean = last[5:56],
+ fixed.dispersion = last[57:59],
+ sd.mean = last[60], sd.variance = last[61],
+ random.dispersion = last[62:113],
+ y = runif(nrow(pfdata), pfdata$lowerLoad, pfdata$upperLoad))
+ })
+ )
R > jm.args2$inits[[1]] <- c(jm.args2$inits[[1]],
+ list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 21))
R> jm.args2$inits[[2]] <- c(jm.args2$inits[[2]],
+ list(".RNG.name" = "base::Marsaglia-Multicarry", ".RNG.seed" = 2584))
R> jm.args2$inits[[3]] <- c(jm.args2$inits[[3]],
+ list(".RNG.name" = "base::Super-Duper", ".RNG.seed" = 317811))
R> pfresults2 <- dalmatian(df = pfdata,
+ mean.model = mymean, dispersion.model = mydisp,
+ jags.model.args = jm.args2, coda.samples.args = cs.args,
+ rounding = TRUE, lower = "lowerLoad", upper = "upperLoad")

7.2. Weights

Another feature of dalmatian is its ability to handle weighted regression in the context of
double linear models. This would arise, for example, if the recorded value Yi is the average of
ni independent and identically distributed observations each with mean µi and variance σ2

i

as defined in Equation 1 and Equation 2. In this case, Var(Yi) = σ2
i /ni and the model will

not provide the correct estimates if this is not accounted for. This can be handled by adding
a weight argument to the variance structure naming the variable in the data which records
the weights.
As an example, suppose that we had only a data set called pfdataByDay recording the total
number of visits to the nest per day for each bird (nvisit), the average of the load returned
on these visits avgLoad, and the average inter visit interval (avgIVI). It is not practical to
include random effects in this model because almost no birds were observed for more than
one day. So, for illustration, we fit a model to the summarized including only the fixed effects
on the mean and dispersion. Here we define the new model including the number of visits as
the weights in the dispersion component:
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R> mymean <- list(fixed = list(name = "alpha",
+ formula = ~ log(avgIVI) + broodsize + sex,
+ priors = list(c("dnorm", 0, 0.001))))
R> mydisp <- list(fixed = list(name = "psi", formula = ~ broodsize + sex),
+ link = "log", weights = "nvisit")

The model with the new response variable can then be run with the following code:

R> pfdataByDay$logAvgLoad <- log(pmax(pfdataByDay$avgLoad, 0.001))
R> jm.args3 <- list(file = "pied_flycatchers_3.jags", n.adapt = 1000)
R> jm.args$inits = list(
+ list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 34),
+ list(".RNG.name" = "base::Marsaglia-Multicarry", ".RNG.seed" = 4181),
+ list(".RNG.name" = "base::Super-Duper", ".RNG.seed" = 514229))
R> pfresults3 <- dalmatian(df = pfdataByDay,
+ mean.model = mymean, dispersion.model = mydisp,
+ jags.model.args = jm.args3, coda.samples.args = cs.args,
+ response = "logAvgLoad")

Numerical summaries are presented in Appendix C.

8. Comparison with existing packages
Several existing packages for R overlap with dalmatian. In the Bayesian framework, general-
ized linear mixed effects models (GLMM) that incorporate random effects on the mean alone
may be fit via the packages MCMCglmm which implements the MCMC sampling algorithms
with custom code and also allows for multivariate responses (Hadfield 2010), glmmBUGS
(Brown and Zhou 2010) which acts as an interface to JAGS, OpenBUGS, or WinBUGS in
much the same way as dalmatian, brms which acts as a wrapper for the recently developed Stan
software implementing Hamiltonian Monte Carlo (Bürkner 2017), and blme which performs
inference based on the posterior mode and normal approximation to avoid MCMC sampling
(Chung, Rabe-Hesketh, Dorie, Gelman, and Liu 2013). The bamlss package (Umlauf, Klein,
Simon, and Zeileis 2021) extends this framework further by fitting Bayesian generalized ad-
ditive models that may capture variation in any parameter for a broad range of response
distributions. The linear predictors may be very complex and can include fixed effects, ran-
dom effects, or smooth terms (in one or more dimensions) defined through basis functions
expansions.
In the classical, likelihood based framework, GLMM can be fit with the glmer() function
from lme4 which applies quadrature to integrate over the random effects and compute the
value of the likelihood (Bates, Mächler, Bolker, and Walker 2015), the glmm package which
approximates the likelihood by importance sampling of the random effects (Knudson 2020),
glmmsr which provides sequential reduction approximation in addition to both quadrature
(through lme4) and importance sampling (Ogden 2019), and glmmTMB which acts as a
wrapper for the TMB (template model builder) package and integrates over the random
effects via Laplace approximation (Kristensen, Nielsen, Berg, Skaug, and Bell 2016; Brooks
et al. 2017). The dglm package fits double generalized linear models in which both the mean
and variance may be functions of fixed covariates (Dunn and Smyth 2020) and the glmmLasso
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fits GLMM with variable selection performed automatically via the LASSO (L1-penalization)
(Groll 2017).

The package that provides most similar functionality to dalmatian is dhglm (Lee and Noh
2018). Similar to our package, the main function, dhglmfit() accepts descriptions of the
mean and dispersion models including both fixed and random effects as input. The package
does not allow for censored observations, but random effects that may follow the normal,
gamma, inverse-gamma, or beta distributions. The main difference, however, is that estima-
tion is conducted in a completely different paradigm based on the h-likelihood – the joint
density of the observed data and random effects (see Chapter 4 of Lee, Nelder, and Pawitan
2017, for details). This would be called a complete data likelihood in the Bayesian con-
text. In fact, dalmatian makes use of this likelihood to remove the random effects through
Monte Carlo integration. In the framework of the h-likelihood, the random effects are es-
timated by maximizing the h-likelihood and estimates of fixed effects are obtained from
the marginal likelihood. Laplace approximations are applied to simplify computation of
the marginal likelihood when it cannot be computed analytically, and inference about the
dispersion is obtained from the REML likelihood. Complete details of the h-likelihood ap-
proach are given in (Lee et al. 2017). Jin and Lee (2020) provides a shorter review and
also introduces a new, online software package for fitting DHGLM called Albatross Analytics
(http://cheoling.snu.ac.kr:3838/DHGLM/). A Some authors have argued against the use
of the h-likelihood (e.g., Meng 2009), but these arguments seem to have been based on the
misconception that estimates are computed by direct maximization of extended likelihood,
a technique long known to be problematic (Little and Rubin 1983). Our experience with
a limited simulation study is that the methods appear to perform well from a frequentist
perspective.

9. Conclusion

The package we have presented provides a simple interface that will allow researchers in a
broad range of areas to harness the power of DHGLM via MCMC sampling without having
to implement the necessary methods. The package relies on general software for MCMC
sampling, currently JAGS and nimble, and we plan to extend the package to interface with
Stan as well. This has several advantages including that these packages have a long history
and are now very stable, it is simple to implement new models without needing to write
custom samplers, and users familiar with these packages may easily edit the code produced
by dalmatian themselves to make changes to the models. The disadvantage is that MCMC
sampling is often slow, particularly for models with many unobserved nodes as when the
response is rounded, and generic samplers are usually slower than custom implementations.

As we continue to develop dalmatian, we plan to work with the developers of these packages
to improve the computational efficiency. We also plan to implement more features, including
allowing for non-normally distributed random effects and correlation of the random effects
within and between the linear predictors of the mean and variance. We encourage users to
contact us with questions and suggestions by e-mail or through the code repository (https:
//github.com/sjbonner/dalmatian), and hope that users will contribute new examples that
will help us to illustrate and extend dalmatian’s functionality.

http://cheoling.snu.ac.kr:3838/DHGLM/
https://github.com/sjbonner/dalmatian
https://github.com/sjbonner/dalmatian
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A. Results 1

A.1. Trace plots

This section includes the trace plots for the first model of load delivery fit to the pied fly-
catchers data set in Section 5. In particular, Figure 1 shows the trace plots of the fixed effects
for the mean, Figure 2 shows trace plots for the fixed effects of the dispersion, and Figure 3
shows trace plots of the standard deviations of the random effects included in both the mean
and dispersion components.

A.2. Convergence diagnostics

Convergence diagnostics of the models fit in in Section 5. The values of the Brooks-Gelman-
Rubin potential scale reduction factors obtained are:

R> pfconvergence$gelman

Potential scale reduction factors:

Point est. Upper C.I.
alpha.(Intercept) 1.00 1.00
alpha.log(IVI) 1.00 1.00
alpha.broodsizeIncreased 1.00 1.00
alpha.sexMale 1.00 1.00
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Figure 1: Trace plots for the fixed effects of the mean for the model of load delivery by the
pied flycatcher parents.
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Figure 2: Trace plots for the fixed effects of the dispersion for the model of load delivery by
the pied flycatcher parents.

sd.epsilon.indidx

1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

Iteration

va
lu

e

Chain

1

2

3

sd.xi.indidx

1000 1500 2000 2500 3000

0.1

0.2

0.3

Iteration

va
lu

e

Chain

1

2

3

Figure 3: Trace plots for the standard deviations of the random effects of the mean (top) and
dispersion (bottom) for the model of load delivery by the pied flycatcher parents.
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psi.(Intercept) 1.01 1.02
psi.broodsizeIncreased 1.00 1.01
psi.sexMale 1.00 1.01
sd.epsilon.indidx 1.00 1.01
sd.xi.indidx 1.00 1.01

R> pfconvergence$raftery

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

alpha.(Intercept) 4 5314 3746 1.42
alpha.log(IVI) 2 3761 3746 1.00
alpha.broodsizeIncreased 12 12620 3746 3.37
alpha.sexMale 18 19347 3746 5.16
psi.(Intercept) 18 20316 3746 5.42
psi.broodsizeIncreased 22 23840 3746 6.36
psi.sexMale 16 17218 3746 4.60
sd.epsilon.indidx 3 4197 3746 1.12
sd.xi.indidx 10 11968 3746 3.19

R> round(pfconvergence$effectiveSize)

alpha.(Intercept) alpha.log(IVI)
775 4808

alpha.broodsizeIncreased alpha.sexMale
416 374

psi.(Intercept) psi.broodsizeIncreased
331 422

psi.sexMale sd.epsilon.indidx
499 2044

sd.xi.indidx
1329

A.3. Numerical summaries

Numerical summaries of the model parameters for the model fit in Section 5:

Iterations = 1001:3000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000
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Posterior Summary Statistics for Each Model Component

Mean Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) -3.47 -3.47 0.13 -3.72 -3.56 -3.39
log(IVI) 0.14 0.14 0.02 0.11 0.13 0.16
broodsizeIncreased 0.16 0.15 0.10 -0.04 0.08 0.21
sexMale -0.14 -0.14 0.10 -0.35 -0.20 -0.08

Upper 95%
(Intercept) -3.21
log(IVI) 0.18
broodsizeIncreased 0.35
sexMale 0.04

Mean Model: Random Effects
Mean Median SD Lower 95% Lower 50% Upper 50% Upper 95%

indidx 0.32 0.32 0.04 0.25 0.29 0.34 0.4

Dispersion Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) 0.22 0.22 0.06 0.10 0.19 0.27
broodsizeIncreased -0.06 -0.06 0.06 -0.19 -0.10 -0.02
sexMale 0.12 0.11 0.06 0.00 0.08 0.16

Upper 95%
(Intercept) 0.32
broodsizeIncreased 0.06
sexMale 0.24

Dispersion Model: Random Effects
Mean Median SD Lower 95% Lower 50% Upper 50% Upper 95%

indidx 0.16 0.16 0.03 0.1 0.13 0.17 0.23

A.4. Graphical summaries

This section includes graphical summaries of the model parameters obtained from the first
model of load delivery fit to the pied flycatchers data set in Section 5. In particular, Figure 4
shows the caterpillar plots of the fixed effects of the mean and Figure 5 shows the fixed effects
of the variance for the model of load delivery.

A.5. Fitted values

This section includes the graphical summaries of the fitted values produced by the model fit
to the pied flycatchers data set in Section 5. Figure 6 shows the fitted values as a function of
gender and brood size.
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Figure 4: Caterpillar plots for the fixed effects of the mean for the model of load delivery by
the pied flycatcher parents.
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Figure 5: Caterpillar plots for the fixed effects of the variance for the model of load delivery
by the pied flycatcher parents.
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Figure 6: Fitted mean load as a function of IVI male and pied flycatchers with increased and
decreased brood size.

B. Results 2: Accounting for rounding
Numerical summaries of the parameters for the model fit to censored response variables fit in
Section 7.1 are as follows:

Iterations = 1001:3000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

Posterior Summary Statistics for Each Model Component

Mean Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) -3.08 -3.08 0.09 -3.26 -3.15 -3.03
log(IVI) 0.11 0.11 0.01 0.09 0.10 0.12
broodsizeIncreased 0.10 0.10 0.07 -0.03 0.06 0.15
sexMale -0.11 -0.10 0.08 -0.25 -0.15 -0.05

Upper 95%
(Intercept) -2.90
log(IVI) 0.14
broodsizeIncreased 0.24
sexMale 0.04

Mean Model: Random Effects
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Mean Median SD Lower 95% Lower 50% Upper 50% Upper 95%
indidx 0.23 0.23 0.03 0.18 0.21 0.24 0.29

Dispersion Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) -0.81 -0.81 0.08 -0.95 -0.86 -0.75
broodsizeIncreased 0.03 0.03 0.08 -0.13 -0.01 0.11
sexMale 0.10 0.10 0.08 -0.07 0.04 0.16

Upper 95%
(Intercept) -0.64
broodsizeIncreased 0.19
sexMale 0.25

Dispersion Model: Random Effects
Mean Median SD Lower 95% Lower 50% Upper 50% Upper 95%

indidx 0.21 0.21 0.05 0.12 0.17 0.23 0.31

C. Results 3: Load averaged by day
Numerical summaries of the parameters for the model fit using a weighted regression in
Section 7.2 are as follows:

Iterations = 1001:3000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

Posterior Summary Statistics for Each Model Component

Mean Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) -5.03 -5.04 0.66 -6.32 -5.50 -4.61
log(avgIVI) 0.52 0.52 0.13 0.26 0.43 0.60
broodsizeIncreased 0.25 0.25 0.08 0.10 0.20 0.31
sexMale -0.09 -0.09 0.07 -0.22 -0.14 -0.05

Upper 95%
(Intercept) -3.70
log(avgIVI) 0.77
broodsizeIncreased 0.40
sexMale 0.04

Dispersion Model: Fixed Effects
Mean Median SD Lower 95% Lower 50% Upper 50%

(Intercept) 1.30 1.29 0.35 0.58 1.03 1.50
broodsizeIncreased 0.83 0.84 0.39 0.04 0.59 1.11
sexMale -0.48 -0.48 0.41 -1.26 -0.77 -0.21
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Upper 95%
(Intercept) 1.99
broodsizeIncreased 1.58
sexMale 0.34
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